Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
1bac305b | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
0fb0cc75 JB |
4 | 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
5 | 2009 Free Software Foundation, Inc. | |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
e17c207e | 23 | #include "arch-utils.h" |
c906108c SS |
24 | #include "gdb_string.h" |
25 | #include "symtab.h" | |
26 | #include "gdbtypes.h" | |
27 | #include "value.h" | |
28 | #include "gdbcore.h" | |
c906108c SS |
29 | #include "command.h" |
30 | #include "gdbcmd.h" | |
31 | #include "target.h" | |
32 | #include "language.h" | |
c906108c | 33 | #include "demangle.h" |
d16aafd8 | 34 | #include "doublest.h" |
5ae326fa | 35 | #include "gdb_assert.h" |
36160dc4 | 36 | #include "regcache.h" |
fe898f56 | 37 | #include "block.h" |
27bc4d80 | 38 | #include "dfp.h" |
bccdca4a | 39 | #include "objfiles.h" |
79a45b7d | 40 | #include "valprint.h" |
bc3b79fd | 41 | #include "cli/cli-decode.h" |
c906108c | 42 | |
a08702d6 TJB |
43 | #include "python/python.h" |
44 | ||
c906108c SS |
45 | /* Prototypes for exported functions. */ |
46 | ||
a14ed312 | 47 | void _initialize_values (void); |
c906108c | 48 | |
bc3b79fd TJB |
49 | /* Definition of a user function. */ |
50 | struct internal_function | |
51 | { | |
52 | /* The name of the function. It is a bit odd to have this in the | |
53 | function itself -- the user might use a differently-named | |
54 | convenience variable to hold the function. */ | |
55 | char *name; | |
56 | ||
57 | /* The handler. */ | |
58 | internal_function_fn handler; | |
59 | ||
60 | /* User data for the handler. */ | |
61 | void *cookie; | |
62 | }; | |
63 | ||
64 | static struct cmd_list_element *functionlist; | |
65 | ||
91294c83 AC |
66 | struct value |
67 | { | |
68 | /* Type of value; either not an lval, or one of the various | |
69 | different possible kinds of lval. */ | |
70 | enum lval_type lval; | |
71 | ||
72 | /* Is it modifiable? Only relevant if lval != not_lval. */ | |
73 | int modifiable; | |
74 | ||
75 | /* Location of value (if lval). */ | |
76 | union | |
77 | { | |
78 | /* If lval == lval_memory, this is the address in the inferior. | |
79 | If lval == lval_register, this is the byte offset into the | |
80 | registers structure. */ | |
81 | CORE_ADDR address; | |
82 | ||
83 | /* Pointer to internal variable. */ | |
84 | struct internalvar *internalvar; | |
5f5233d4 PA |
85 | |
86 | /* If lval == lval_computed, this is a set of function pointers | |
87 | to use to access and describe the value, and a closure pointer | |
88 | for them to use. */ | |
89 | struct | |
90 | { | |
91 | struct lval_funcs *funcs; /* Functions to call. */ | |
92 | void *closure; /* Closure for those functions to use. */ | |
93 | } computed; | |
91294c83 AC |
94 | } location; |
95 | ||
96 | /* Describes offset of a value within lval of a structure in bytes. | |
97 | If lval == lval_memory, this is an offset to the address. If | |
98 | lval == lval_register, this is a further offset from | |
99 | location.address within the registers structure. Note also the | |
100 | member embedded_offset below. */ | |
101 | int offset; | |
102 | ||
103 | /* Only used for bitfields; number of bits contained in them. */ | |
104 | int bitsize; | |
105 | ||
106 | /* Only used for bitfields; position of start of field. For | |
32c9a795 MD |
107 | gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For |
108 | gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */ | |
91294c83 AC |
109 | int bitpos; |
110 | ||
4ea48cc1 DJ |
111 | /* Only used for bitfields; the containing value. This allows a |
112 | single read from the target when displaying multiple | |
113 | bitfields. */ | |
114 | struct value *parent; | |
115 | ||
91294c83 AC |
116 | /* Frame register value is relative to. This will be described in |
117 | the lval enum above as "lval_register". */ | |
118 | struct frame_id frame_id; | |
119 | ||
120 | /* Type of the value. */ | |
121 | struct type *type; | |
122 | ||
123 | /* If a value represents a C++ object, then the `type' field gives | |
124 | the object's compile-time type. If the object actually belongs | |
125 | to some class derived from `type', perhaps with other base | |
126 | classes and additional members, then `type' is just a subobject | |
127 | of the real thing, and the full object is probably larger than | |
128 | `type' would suggest. | |
129 | ||
130 | If `type' is a dynamic class (i.e. one with a vtable), then GDB | |
131 | can actually determine the object's run-time type by looking at | |
132 | the run-time type information in the vtable. When this | |
133 | information is available, we may elect to read in the entire | |
134 | object, for several reasons: | |
135 | ||
136 | - When printing the value, the user would probably rather see the | |
137 | full object, not just the limited portion apparent from the | |
138 | compile-time type. | |
139 | ||
140 | - If `type' has virtual base classes, then even printing `type' | |
141 | alone may require reaching outside the `type' portion of the | |
142 | object to wherever the virtual base class has been stored. | |
143 | ||
144 | When we store the entire object, `enclosing_type' is the run-time | |
145 | type -- the complete object -- and `embedded_offset' is the | |
146 | offset of `type' within that larger type, in bytes. The | |
147 | value_contents() macro takes `embedded_offset' into account, so | |
148 | most GDB code continues to see the `type' portion of the value, | |
149 | just as the inferior would. | |
150 | ||
151 | If `type' is a pointer to an object, then `enclosing_type' is a | |
152 | pointer to the object's run-time type, and `pointed_to_offset' is | |
153 | the offset in bytes from the full object to the pointed-to object | |
154 | -- that is, the value `embedded_offset' would have if we followed | |
155 | the pointer and fetched the complete object. (I don't really see | |
156 | the point. Why not just determine the run-time type when you | |
157 | indirect, and avoid the special case? The contents don't matter | |
158 | until you indirect anyway.) | |
159 | ||
160 | If we're not doing anything fancy, `enclosing_type' is equal to | |
161 | `type', and `embedded_offset' is zero, so everything works | |
162 | normally. */ | |
163 | struct type *enclosing_type; | |
164 | int embedded_offset; | |
165 | int pointed_to_offset; | |
166 | ||
167 | /* Values are stored in a chain, so that they can be deleted easily | |
168 | over calls to the inferior. Values assigned to internal | |
a08702d6 TJB |
169 | variables, put into the value history or exposed to Python are |
170 | taken off this list. */ | |
91294c83 AC |
171 | struct value *next; |
172 | ||
173 | /* Register number if the value is from a register. */ | |
174 | short regnum; | |
175 | ||
176 | /* If zero, contents of this value are in the contents field. If | |
9214ee5f DJ |
177 | nonzero, contents are in inferior. If the lval field is lval_memory, |
178 | the contents are in inferior memory at location.address plus offset. | |
179 | The lval field may also be lval_register. | |
91294c83 AC |
180 | |
181 | WARNING: This field is used by the code which handles watchpoints | |
182 | (see breakpoint.c) to decide whether a particular value can be | |
183 | watched by hardware watchpoints. If the lazy flag is set for | |
184 | some member of a value chain, it is assumed that this member of | |
185 | the chain doesn't need to be watched as part of watching the | |
186 | value itself. This is how GDB avoids watching the entire struct | |
187 | or array when the user wants to watch a single struct member or | |
188 | array element. If you ever change the way lazy flag is set and | |
189 | reset, be sure to consider this use as well! */ | |
190 | char lazy; | |
191 | ||
192 | /* If nonzero, this is the value of a variable which does not | |
193 | actually exist in the program. */ | |
194 | char optimized_out; | |
195 | ||
42be36b3 CT |
196 | /* If value is a variable, is it initialized or not. */ |
197 | int initialized; | |
198 | ||
4e5d721f DE |
199 | /* If value is from the stack. If this is set, read_stack will be |
200 | used instead of read_memory to enable extra caching. */ | |
201 | int stack; | |
202 | ||
3e3d7139 JG |
203 | /* Actual contents of the value. Target byte-order. NULL or not |
204 | valid if lazy is nonzero. */ | |
205 | gdb_byte *contents; | |
828d3400 DJ |
206 | |
207 | /* The number of references to this value. When a value is created, | |
208 | the value chain holds a reference, so REFERENCE_COUNT is 1. If | |
209 | release_value is called, this value is removed from the chain but | |
210 | the caller of release_value now has a reference to this value. | |
211 | The caller must arrange for a call to value_free later. */ | |
212 | int reference_count; | |
91294c83 AC |
213 | }; |
214 | ||
c906108c SS |
215 | /* Prototypes for local functions. */ |
216 | ||
a14ed312 | 217 | static void show_values (char *, int); |
c906108c | 218 | |
a14ed312 | 219 | static void show_convenience (char *, int); |
c906108c | 220 | |
c906108c SS |
221 | |
222 | /* The value-history records all the values printed | |
223 | by print commands during this session. Each chunk | |
224 | records 60 consecutive values. The first chunk on | |
225 | the chain records the most recent values. | |
226 | The total number of values is in value_history_count. */ | |
227 | ||
228 | #define VALUE_HISTORY_CHUNK 60 | |
229 | ||
230 | struct value_history_chunk | |
c5aa993b JM |
231 | { |
232 | struct value_history_chunk *next; | |
f23631e4 | 233 | struct value *values[VALUE_HISTORY_CHUNK]; |
c5aa993b | 234 | }; |
c906108c SS |
235 | |
236 | /* Chain of chunks now in use. */ | |
237 | ||
238 | static struct value_history_chunk *value_history_chain; | |
239 | ||
240 | static int value_history_count; /* Abs number of last entry stored */ | |
bc3b79fd | 241 | |
c906108c SS |
242 | \f |
243 | /* List of all value objects currently allocated | |
244 | (except for those released by calls to release_value) | |
245 | This is so they can be freed after each command. */ | |
246 | ||
f23631e4 | 247 | static struct value *all_values; |
c906108c | 248 | |
3e3d7139 JG |
249 | /* Allocate a lazy value for type TYPE. Its actual content is |
250 | "lazily" allocated too: the content field of the return value is | |
251 | NULL; it will be allocated when it is fetched from the target. */ | |
c906108c | 252 | |
f23631e4 | 253 | struct value * |
3e3d7139 | 254 | allocate_value_lazy (struct type *type) |
c906108c | 255 | { |
f23631e4 | 256 | struct value *val; |
c906108c SS |
257 | struct type *atype = check_typedef (type); |
258 | ||
3e3d7139 JG |
259 | val = (struct value *) xzalloc (sizeof (struct value)); |
260 | val->contents = NULL; | |
df407dfe | 261 | val->next = all_values; |
c906108c | 262 | all_values = val; |
df407dfe | 263 | val->type = type; |
4754a64e | 264 | val->enclosing_type = type; |
c906108c | 265 | VALUE_LVAL (val) = not_lval; |
42ae5230 | 266 | val->location.address = 0; |
1df6926e | 267 | VALUE_FRAME_ID (val) = null_frame_id; |
df407dfe AC |
268 | val->offset = 0; |
269 | val->bitpos = 0; | |
270 | val->bitsize = 0; | |
9ee8fc9d | 271 | VALUE_REGNUM (val) = -1; |
3e3d7139 | 272 | val->lazy = 1; |
feb13ab0 | 273 | val->optimized_out = 0; |
13c3b5f5 | 274 | val->embedded_offset = 0; |
b44d461b | 275 | val->pointed_to_offset = 0; |
c906108c | 276 | val->modifiable = 1; |
42be36b3 | 277 | val->initialized = 1; /* Default to initialized. */ |
828d3400 DJ |
278 | |
279 | /* Values start out on the all_values chain. */ | |
280 | val->reference_count = 1; | |
281 | ||
c906108c SS |
282 | return val; |
283 | } | |
284 | ||
3e3d7139 JG |
285 | /* Allocate the contents of VAL if it has not been allocated yet. */ |
286 | ||
287 | void | |
288 | allocate_value_contents (struct value *val) | |
289 | { | |
290 | if (!val->contents) | |
291 | val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)); | |
292 | } | |
293 | ||
294 | /* Allocate a value and its contents for type TYPE. */ | |
295 | ||
296 | struct value * | |
297 | allocate_value (struct type *type) | |
298 | { | |
299 | struct value *val = allocate_value_lazy (type); | |
300 | allocate_value_contents (val); | |
301 | val->lazy = 0; | |
302 | return val; | |
303 | } | |
304 | ||
c906108c | 305 | /* Allocate a value that has the correct length |
938f5214 | 306 | for COUNT repetitions of type TYPE. */ |
c906108c | 307 | |
f23631e4 | 308 | struct value * |
fba45db2 | 309 | allocate_repeat_value (struct type *type, int count) |
c906108c | 310 | { |
c5aa993b | 311 | int low_bound = current_language->string_lower_bound; /* ??? */ |
c906108c SS |
312 | /* FIXME-type-allocation: need a way to free this type when we are |
313 | done with it. */ | |
e3506a9f UW |
314 | struct type *array_type |
315 | = lookup_array_range_type (type, low_bound, count + low_bound - 1); | |
316 | return allocate_value (array_type); | |
c906108c SS |
317 | } |
318 | ||
5f5233d4 PA |
319 | struct value * |
320 | allocate_computed_value (struct type *type, | |
321 | struct lval_funcs *funcs, | |
322 | void *closure) | |
323 | { | |
324 | struct value *v = allocate_value (type); | |
325 | VALUE_LVAL (v) = lval_computed; | |
326 | v->location.computed.funcs = funcs; | |
327 | v->location.computed.closure = closure; | |
328 | set_value_lazy (v, 1); | |
329 | ||
330 | return v; | |
331 | } | |
332 | ||
df407dfe AC |
333 | /* Accessor methods. */ |
334 | ||
17cf0ecd AC |
335 | struct value * |
336 | value_next (struct value *value) | |
337 | { | |
338 | return value->next; | |
339 | } | |
340 | ||
df407dfe AC |
341 | struct type * |
342 | value_type (struct value *value) | |
343 | { | |
344 | return value->type; | |
345 | } | |
04624583 AC |
346 | void |
347 | deprecated_set_value_type (struct value *value, struct type *type) | |
348 | { | |
349 | value->type = type; | |
350 | } | |
df407dfe AC |
351 | |
352 | int | |
353 | value_offset (struct value *value) | |
354 | { | |
355 | return value->offset; | |
356 | } | |
f5cf64a7 AC |
357 | void |
358 | set_value_offset (struct value *value, int offset) | |
359 | { | |
360 | value->offset = offset; | |
361 | } | |
df407dfe AC |
362 | |
363 | int | |
364 | value_bitpos (struct value *value) | |
365 | { | |
366 | return value->bitpos; | |
367 | } | |
9bbda503 AC |
368 | void |
369 | set_value_bitpos (struct value *value, int bit) | |
370 | { | |
371 | value->bitpos = bit; | |
372 | } | |
df407dfe AC |
373 | |
374 | int | |
375 | value_bitsize (struct value *value) | |
376 | { | |
377 | return value->bitsize; | |
378 | } | |
9bbda503 AC |
379 | void |
380 | set_value_bitsize (struct value *value, int bit) | |
381 | { | |
382 | value->bitsize = bit; | |
383 | } | |
df407dfe | 384 | |
4ea48cc1 DJ |
385 | struct value * |
386 | value_parent (struct value *value) | |
387 | { | |
388 | return value->parent; | |
389 | } | |
390 | ||
fc1a4b47 | 391 | gdb_byte * |
990a07ab AC |
392 | value_contents_raw (struct value *value) |
393 | { | |
3e3d7139 JG |
394 | allocate_value_contents (value); |
395 | return value->contents + value->embedded_offset; | |
990a07ab AC |
396 | } |
397 | ||
fc1a4b47 | 398 | gdb_byte * |
990a07ab AC |
399 | value_contents_all_raw (struct value *value) |
400 | { | |
3e3d7139 JG |
401 | allocate_value_contents (value); |
402 | return value->contents; | |
990a07ab AC |
403 | } |
404 | ||
4754a64e AC |
405 | struct type * |
406 | value_enclosing_type (struct value *value) | |
407 | { | |
408 | return value->enclosing_type; | |
409 | } | |
410 | ||
fc1a4b47 | 411 | const gdb_byte * |
46615f07 AC |
412 | value_contents_all (struct value *value) |
413 | { | |
414 | if (value->lazy) | |
415 | value_fetch_lazy (value); | |
3e3d7139 | 416 | return value->contents; |
46615f07 AC |
417 | } |
418 | ||
d69fe07e AC |
419 | int |
420 | value_lazy (struct value *value) | |
421 | { | |
422 | return value->lazy; | |
423 | } | |
424 | ||
dfa52d88 AC |
425 | void |
426 | set_value_lazy (struct value *value, int val) | |
427 | { | |
428 | value->lazy = val; | |
429 | } | |
430 | ||
4e5d721f DE |
431 | int |
432 | value_stack (struct value *value) | |
433 | { | |
434 | return value->stack; | |
435 | } | |
436 | ||
437 | void | |
438 | set_value_stack (struct value *value, int val) | |
439 | { | |
440 | value->stack = val; | |
441 | } | |
442 | ||
fc1a4b47 | 443 | const gdb_byte * |
0fd88904 AC |
444 | value_contents (struct value *value) |
445 | { | |
446 | return value_contents_writeable (value); | |
447 | } | |
448 | ||
fc1a4b47 | 449 | gdb_byte * |
0fd88904 AC |
450 | value_contents_writeable (struct value *value) |
451 | { | |
452 | if (value->lazy) | |
453 | value_fetch_lazy (value); | |
fc0c53a0 | 454 | return value_contents_raw (value); |
0fd88904 AC |
455 | } |
456 | ||
a6c442d8 MK |
457 | /* Return non-zero if VAL1 and VAL2 have the same contents. Note that |
458 | this function is different from value_equal; in C the operator == | |
459 | can return 0 even if the two values being compared are equal. */ | |
460 | ||
461 | int | |
462 | value_contents_equal (struct value *val1, struct value *val2) | |
463 | { | |
464 | struct type *type1; | |
465 | struct type *type2; | |
466 | int len; | |
467 | ||
468 | type1 = check_typedef (value_type (val1)); | |
469 | type2 = check_typedef (value_type (val2)); | |
470 | len = TYPE_LENGTH (type1); | |
471 | if (len != TYPE_LENGTH (type2)) | |
472 | return 0; | |
473 | ||
474 | return (memcmp (value_contents (val1), value_contents (val2), len) == 0); | |
475 | } | |
476 | ||
feb13ab0 AC |
477 | int |
478 | value_optimized_out (struct value *value) | |
479 | { | |
480 | return value->optimized_out; | |
481 | } | |
482 | ||
483 | void | |
484 | set_value_optimized_out (struct value *value, int val) | |
485 | { | |
486 | value->optimized_out = val; | |
487 | } | |
13c3b5f5 AC |
488 | |
489 | int | |
490 | value_embedded_offset (struct value *value) | |
491 | { | |
492 | return value->embedded_offset; | |
493 | } | |
494 | ||
495 | void | |
496 | set_value_embedded_offset (struct value *value, int val) | |
497 | { | |
498 | value->embedded_offset = val; | |
499 | } | |
b44d461b AC |
500 | |
501 | int | |
502 | value_pointed_to_offset (struct value *value) | |
503 | { | |
504 | return value->pointed_to_offset; | |
505 | } | |
506 | ||
507 | void | |
508 | set_value_pointed_to_offset (struct value *value, int val) | |
509 | { | |
510 | value->pointed_to_offset = val; | |
511 | } | |
13bb5560 | 512 | |
5f5233d4 PA |
513 | struct lval_funcs * |
514 | value_computed_funcs (struct value *v) | |
515 | { | |
516 | gdb_assert (VALUE_LVAL (v) == lval_computed); | |
517 | ||
518 | return v->location.computed.funcs; | |
519 | } | |
520 | ||
521 | void * | |
522 | value_computed_closure (struct value *v) | |
523 | { | |
524 | gdb_assert (VALUE_LVAL (v) == lval_computed); | |
525 | ||
526 | return v->location.computed.closure; | |
527 | } | |
528 | ||
13bb5560 AC |
529 | enum lval_type * |
530 | deprecated_value_lval_hack (struct value *value) | |
531 | { | |
532 | return &value->lval; | |
533 | } | |
534 | ||
42ae5230 TT |
535 | CORE_ADDR |
536 | value_address (struct value *value) | |
537 | { | |
538 | if (value->lval == lval_internalvar | |
539 | || value->lval == lval_internalvar_component) | |
540 | return 0; | |
541 | return value->location.address + value->offset; | |
542 | } | |
543 | ||
544 | CORE_ADDR | |
545 | value_raw_address (struct value *value) | |
546 | { | |
547 | if (value->lval == lval_internalvar | |
548 | || value->lval == lval_internalvar_component) | |
549 | return 0; | |
550 | return value->location.address; | |
551 | } | |
552 | ||
553 | void | |
554 | set_value_address (struct value *value, CORE_ADDR addr) | |
13bb5560 | 555 | { |
42ae5230 TT |
556 | gdb_assert (value->lval != lval_internalvar |
557 | && value->lval != lval_internalvar_component); | |
558 | value->location.address = addr; | |
13bb5560 AC |
559 | } |
560 | ||
561 | struct internalvar ** | |
562 | deprecated_value_internalvar_hack (struct value *value) | |
563 | { | |
564 | return &value->location.internalvar; | |
565 | } | |
566 | ||
567 | struct frame_id * | |
568 | deprecated_value_frame_id_hack (struct value *value) | |
569 | { | |
570 | return &value->frame_id; | |
571 | } | |
572 | ||
573 | short * | |
574 | deprecated_value_regnum_hack (struct value *value) | |
575 | { | |
576 | return &value->regnum; | |
577 | } | |
88e3b34b AC |
578 | |
579 | int | |
580 | deprecated_value_modifiable (struct value *value) | |
581 | { | |
582 | return value->modifiable; | |
583 | } | |
584 | void | |
585 | deprecated_set_value_modifiable (struct value *value, int modifiable) | |
586 | { | |
587 | value->modifiable = modifiable; | |
588 | } | |
990a07ab | 589 | \f |
c906108c SS |
590 | /* Return a mark in the value chain. All values allocated after the |
591 | mark is obtained (except for those released) are subject to being freed | |
592 | if a subsequent value_free_to_mark is passed the mark. */ | |
f23631e4 | 593 | struct value * |
fba45db2 | 594 | value_mark (void) |
c906108c SS |
595 | { |
596 | return all_values; | |
597 | } | |
598 | ||
828d3400 DJ |
599 | /* Take a reference to VAL. VAL will not be deallocated until all |
600 | references are released. */ | |
601 | ||
602 | void | |
603 | value_incref (struct value *val) | |
604 | { | |
605 | val->reference_count++; | |
606 | } | |
607 | ||
608 | /* Release a reference to VAL, which was acquired with value_incref. | |
609 | This function is also called to deallocate values from the value | |
610 | chain. */ | |
611 | ||
3e3d7139 JG |
612 | void |
613 | value_free (struct value *val) | |
614 | { | |
615 | if (val) | |
5f5233d4 | 616 | { |
828d3400 DJ |
617 | gdb_assert (val->reference_count > 0); |
618 | val->reference_count--; | |
619 | if (val->reference_count > 0) | |
620 | return; | |
621 | ||
4ea48cc1 DJ |
622 | /* If there's an associated parent value, drop our reference to |
623 | it. */ | |
624 | if (val->parent != NULL) | |
625 | value_free (val->parent); | |
626 | ||
5f5233d4 PA |
627 | if (VALUE_LVAL (val) == lval_computed) |
628 | { | |
629 | struct lval_funcs *funcs = val->location.computed.funcs; | |
630 | ||
631 | if (funcs->free_closure) | |
632 | funcs->free_closure (val); | |
633 | } | |
634 | ||
635 | xfree (val->contents); | |
636 | } | |
3e3d7139 JG |
637 | xfree (val); |
638 | } | |
639 | ||
c906108c SS |
640 | /* Free all values allocated since MARK was obtained by value_mark |
641 | (except for those released). */ | |
642 | void | |
f23631e4 | 643 | value_free_to_mark (struct value *mark) |
c906108c | 644 | { |
f23631e4 AC |
645 | struct value *val; |
646 | struct value *next; | |
c906108c SS |
647 | |
648 | for (val = all_values; val && val != mark; val = next) | |
649 | { | |
df407dfe | 650 | next = val->next; |
c906108c SS |
651 | value_free (val); |
652 | } | |
653 | all_values = val; | |
654 | } | |
655 | ||
656 | /* Free all the values that have been allocated (except for those released). | |
725e88af DE |
657 | Call after each command, successful or not. |
658 | In practice this is called before each command, which is sufficient. */ | |
c906108c SS |
659 | |
660 | void | |
fba45db2 | 661 | free_all_values (void) |
c906108c | 662 | { |
f23631e4 AC |
663 | struct value *val; |
664 | struct value *next; | |
c906108c SS |
665 | |
666 | for (val = all_values; val; val = next) | |
667 | { | |
df407dfe | 668 | next = val->next; |
c906108c SS |
669 | value_free (val); |
670 | } | |
671 | ||
672 | all_values = 0; | |
673 | } | |
674 | ||
675 | /* Remove VAL from the chain all_values | |
676 | so it will not be freed automatically. */ | |
677 | ||
678 | void | |
f23631e4 | 679 | release_value (struct value *val) |
c906108c | 680 | { |
f23631e4 | 681 | struct value *v; |
c906108c SS |
682 | |
683 | if (all_values == val) | |
684 | { | |
685 | all_values = val->next; | |
686 | return; | |
687 | } | |
688 | ||
689 | for (v = all_values; v; v = v->next) | |
690 | { | |
691 | if (v->next == val) | |
692 | { | |
693 | v->next = val->next; | |
694 | break; | |
695 | } | |
696 | } | |
697 | } | |
698 | ||
699 | /* Release all values up to mark */ | |
f23631e4 AC |
700 | struct value * |
701 | value_release_to_mark (struct value *mark) | |
c906108c | 702 | { |
f23631e4 AC |
703 | struct value *val; |
704 | struct value *next; | |
c906108c | 705 | |
df407dfe AC |
706 | for (val = next = all_values; next; next = next->next) |
707 | if (next->next == mark) | |
c906108c | 708 | { |
df407dfe AC |
709 | all_values = next->next; |
710 | next->next = NULL; | |
c906108c SS |
711 | return val; |
712 | } | |
713 | all_values = 0; | |
714 | return val; | |
715 | } | |
716 | ||
717 | /* Return a copy of the value ARG. | |
718 | It contains the same contents, for same memory address, | |
719 | but it's a different block of storage. */ | |
720 | ||
f23631e4 AC |
721 | struct value * |
722 | value_copy (struct value *arg) | |
c906108c | 723 | { |
4754a64e | 724 | struct type *encl_type = value_enclosing_type (arg); |
3e3d7139 JG |
725 | struct value *val; |
726 | ||
727 | if (value_lazy (arg)) | |
728 | val = allocate_value_lazy (encl_type); | |
729 | else | |
730 | val = allocate_value (encl_type); | |
df407dfe | 731 | val->type = arg->type; |
c906108c | 732 | VALUE_LVAL (val) = VALUE_LVAL (arg); |
6f7c8fc2 | 733 | val->location = arg->location; |
df407dfe AC |
734 | val->offset = arg->offset; |
735 | val->bitpos = arg->bitpos; | |
736 | val->bitsize = arg->bitsize; | |
1df6926e | 737 | VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg); |
9ee8fc9d | 738 | VALUE_REGNUM (val) = VALUE_REGNUM (arg); |
d69fe07e | 739 | val->lazy = arg->lazy; |
feb13ab0 | 740 | val->optimized_out = arg->optimized_out; |
13c3b5f5 | 741 | val->embedded_offset = value_embedded_offset (arg); |
b44d461b | 742 | val->pointed_to_offset = arg->pointed_to_offset; |
c906108c | 743 | val->modifiable = arg->modifiable; |
d69fe07e | 744 | if (!value_lazy (val)) |
c906108c | 745 | { |
990a07ab | 746 | memcpy (value_contents_all_raw (val), value_contents_all_raw (arg), |
4754a64e | 747 | TYPE_LENGTH (value_enclosing_type (arg))); |
c906108c SS |
748 | |
749 | } | |
4ea48cc1 DJ |
750 | val->parent = arg->parent; |
751 | if (val->parent) | |
752 | value_incref (val->parent); | |
5f5233d4 PA |
753 | if (VALUE_LVAL (val) == lval_computed) |
754 | { | |
755 | struct lval_funcs *funcs = val->location.computed.funcs; | |
756 | ||
757 | if (funcs->copy_closure) | |
758 | val->location.computed.closure = funcs->copy_closure (val); | |
759 | } | |
c906108c SS |
760 | return val; |
761 | } | |
74bcbdf3 PA |
762 | |
763 | void | |
764 | set_value_component_location (struct value *component, struct value *whole) | |
765 | { | |
766 | if (VALUE_LVAL (whole) == lval_internalvar) | |
767 | VALUE_LVAL (component) = lval_internalvar_component; | |
768 | else | |
769 | VALUE_LVAL (component) = VALUE_LVAL (whole); | |
5f5233d4 | 770 | |
74bcbdf3 | 771 | component->location = whole->location; |
5f5233d4 PA |
772 | if (VALUE_LVAL (whole) == lval_computed) |
773 | { | |
774 | struct lval_funcs *funcs = whole->location.computed.funcs; | |
775 | ||
776 | if (funcs->copy_closure) | |
777 | component->location.computed.closure = funcs->copy_closure (whole); | |
778 | } | |
74bcbdf3 PA |
779 | } |
780 | ||
c906108c SS |
781 | \f |
782 | /* Access to the value history. */ | |
783 | ||
784 | /* Record a new value in the value history. | |
785 | Returns the absolute history index of the entry. | |
786 | Result of -1 indicates the value was not saved; otherwise it is the | |
787 | value history index of this new item. */ | |
788 | ||
789 | int | |
f23631e4 | 790 | record_latest_value (struct value *val) |
c906108c SS |
791 | { |
792 | int i; | |
793 | ||
794 | /* We don't want this value to have anything to do with the inferior anymore. | |
795 | In particular, "set $1 = 50" should not affect the variable from which | |
796 | the value was taken, and fast watchpoints should be able to assume that | |
797 | a value on the value history never changes. */ | |
d69fe07e | 798 | if (value_lazy (val)) |
c906108c SS |
799 | value_fetch_lazy (val); |
800 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched | |
801 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
802 | but the current contents of that location. c'est la vie... */ | |
803 | val->modifiable = 0; | |
804 | release_value (val); | |
805 | ||
806 | /* Here we treat value_history_count as origin-zero | |
807 | and applying to the value being stored now. */ | |
808 | ||
809 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
810 | if (i == 0) | |
811 | { | |
f23631e4 | 812 | struct value_history_chunk *new |
c5aa993b JM |
813 | = (struct value_history_chunk *) |
814 | xmalloc (sizeof (struct value_history_chunk)); | |
c906108c SS |
815 | memset (new->values, 0, sizeof new->values); |
816 | new->next = value_history_chain; | |
817 | value_history_chain = new; | |
818 | } | |
819 | ||
820 | value_history_chain->values[i] = val; | |
821 | ||
822 | /* Now we regard value_history_count as origin-one | |
823 | and applying to the value just stored. */ | |
824 | ||
825 | return ++value_history_count; | |
826 | } | |
827 | ||
828 | /* Return a copy of the value in the history with sequence number NUM. */ | |
829 | ||
f23631e4 | 830 | struct value * |
fba45db2 | 831 | access_value_history (int num) |
c906108c | 832 | { |
f23631e4 | 833 | struct value_history_chunk *chunk; |
52f0bd74 AC |
834 | int i; |
835 | int absnum = num; | |
c906108c SS |
836 | |
837 | if (absnum <= 0) | |
838 | absnum += value_history_count; | |
839 | ||
840 | if (absnum <= 0) | |
841 | { | |
842 | if (num == 0) | |
8a3fe4f8 | 843 | error (_("The history is empty.")); |
c906108c | 844 | else if (num == 1) |
8a3fe4f8 | 845 | error (_("There is only one value in the history.")); |
c906108c | 846 | else |
8a3fe4f8 | 847 | error (_("History does not go back to $$%d."), -num); |
c906108c SS |
848 | } |
849 | if (absnum > value_history_count) | |
8a3fe4f8 | 850 | error (_("History has not yet reached $%d."), absnum); |
c906108c SS |
851 | |
852 | absnum--; | |
853 | ||
854 | /* Now absnum is always absolute and origin zero. */ | |
855 | ||
856 | chunk = value_history_chain; | |
857 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
858 | i > 0; i--) | |
859 | chunk = chunk->next; | |
860 | ||
861 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
862 | } | |
863 | ||
c906108c | 864 | static void |
fba45db2 | 865 | show_values (char *num_exp, int from_tty) |
c906108c | 866 | { |
52f0bd74 | 867 | int i; |
f23631e4 | 868 | struct value *val; |
c906108c SS |
869 | static int num = 1; |
870 | ||
871 | if (num_exp) | |
872 | { | |
f132ba9d TJB |
873 | /* "show values +" should print from the stored position. |
874 | "show values <exp>" should print around value number <exp>. */ | |
c906108c | 875 | if (num_exp[0] != '+' || num_exp[1] != '\0') |
bb518678 | 876 | num = parse_and_eval_long (num_exp) - 5; |
c906108c SS |
877 | } |
878 | else | |
879 | { | |
f132ba9d | 880 | /* "show values" means print the last 10 values. */ |
c906108c SS |
881 | num = value_history_count - 9; |
882 | } | |
883 | ||
884 | if (num <= 0) | |
885 | num = 1; | |
886 | ||
887 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
888 | { | |
79a45b7d | 889 | struct value_print_options opts; |
c906108c | 890 | val = access_value_history (i); |
a3f17187 | 891 | printf_filtered (("$%d = "), i); |
79a45b7d TT |
892 | get_user_print_options (&opts); |
893 | value_print (val, gdb_stdout, &opts); | |
a3f17187 | 894 | printf_filtered (("\n")); |
c906108c SS |
895 | } |
896 | ||
f132ba9d | 897 | /* The next "show values +" should start after what we just printed. */ |
c906108c SS |
898 | num += 10; |
899 | ||
900 | /* Hitting just return after this command should do the same thing as | |
f132ba9d TJB |
901 | "show values +". If num_exp is null, this is unnecessary, since |
902 | "show values +" is not useful after "show values". */ | |
c906108c SS |
903 | if (from_tty && num_exp) |
904 | { | |
905 | num_exp[0] = '+'; | |
906 | num_exp[1] = '\0'; | |
907 | } | |
908 | } | |
909 | \f | |
910 | /* Internal variables. These are variables within the debugger | |
911 | that hold values assigned by debugger commands. | |
912 | The user refers to them with a '$' prefix | |
913 | that does not appear in the variable names stored internally. */ | |
914 | ||
4fa62494 UW |
915 | struct internalvar |
916 | { | |
917 | struct internalvar *next; | |
918 | char *name; | |
4fa62494 | 919 | |
78267919 UW |
920 | /* We support various different kinds of content of an internal variable. |
921 | enum internalvar_kind specifies the kind, and union internalvar_data | |
922 | provides the data associated with this particular kind. */ | |
923 | ||
924 | enum internalvar_kind | |
925 | { | |
926 | /* The internal variable is empty. */ | |
927 | INTERNALVAR_VOID, | |
928 | ||
929 | /* The value of the internal variable is provided directly as | |
930 | a GDB value object. */ | |
931 | INTERNALVAR_VALUE, | |
932 | ||
933 | /* A fresh value is computed via a call-back routine on every | |
934 | access to the internal variable. */ | |
935 | INTERNALVAR_MAKE_VALUE, | |
4fa62494 | 936 | |
78267919 UW |
937 | /* The internal variable holds a GDB internal convenience function. */ |
938 | INTERNALVAR_FUNCTION, | |
939 | ||
cab0c772 UW |
940 | /* The variable holds an integer value. */ |
941 | INTERNALVAR_INTEGER, | |
942 | ||
943 | /* The variable holds a pointer value. */ | |
944 | INTERNALVAR_POINTER, | |
78267919 UW |
945 | |
946 | /* The variable holds a GDB-provided string. */ | |
947 | INTERNALVAR_STRING, | |
948 | ||
949 | } kind; | |
4fa62494 | 950 | |
4fa62494 UW |
951 | union internalvar_data |
952 | { | |
78267919 UW |
953 | /* A value object used with INTERNALVAR_VALUE. */ |
954 | struct value *value; | |
955 | ||
956 | /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */ | |
957 | internalvar_make_value make_value; | |
958 | ||
959 | /* The internal function used with INTERNALVAR_FUNCTION. */ | |
960 | struct | |
961 | { | |
962 | struct internal_function *function; | |
963 | /* True if this is the canonical name for the function. */ | |
964 | int canonical; | |
965 | } fn; | |
966 | ||
cab0c772 | 967 | /* An integer value used with INTERNALVAR_INTEGER. */ |
78267919 UW |
968 | struct |
969 | { | |
970 | /* If type is non-NULL, it will be used as the type to generate | |
971 | a value for this internal variable. If type is NULL, a default | |
972 | integer type for the architecture is used. */ | |
973 | struct type *type; | |
cab0c772 UW |
974 | LONGEST val; |
975 | } integer; | |
976 | ||
977 | /* A pointer value used with INTERNALVAR_POINTER. */ | |
978 | struct | |
979 | { | |
980 | struct type *type; | |
981 | CORE_ADDR val; | |
982 | } pointer; | |
78267919 UW |
983 | |
984 | /* A string value used with INTERNALVAR_STRING. */ | |
985 | char *string; | |
4fa62494 UW |
986 | } u; |
987 | }; | |
988 | ||
c906108c SS |
989 | static struct internalvar *internalvars; |
990 | ||
53e5f3cf AS |
991 | /* If the variable does not already exist create it and give it the value given. |
992 | If no value is given then the default is zero. */ | |
993 | static void | |
994 | init_if_undefined_command (char* args, int from_tty) | |
995 | { | |
996 | struct internalvar* intvar; | |
997 | ||
998 | /* Parse the expression - this is taken from set_command(). */ | |
999 | struct expression *expr = parse_expression (args); | |
1000 | register struct cleanup *old_chain = | |
1001 | make_cleanup (free_current_contents, &expr); | |
1002 | ||
1003 | /* Validate the expression. | |
1004 | Was the expression an assignment? | |
1005 | Or even an expression at all? */ | |
1006 | if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN) | |
1007 | error (_("Init-if-undefined requires an assignment expression.")); | |
1008 | ||
1009 | /* Extract the variable from the parsed expression. | |
1010 | In the case of an assign the lvalue will be in elts[1] and elts[2]. */ | |
1011 | if (expr->elts[1].opcode != OP_INTERNALVAR) | |
1012 | error (_("The first parameter to init-if-undefined should be a GDB variable.")); | |
1013 | intvar = expr->elts[2].internalvar; | |
1014 | ||
1015 | /* Only evaluate the expression if the lvalue is void. | |
1016 | This may still fail if the expresssion is invalid. */ | |
78267919 | 1017 | if (intvar->kind == INTERNALVAR_VOID) |
53e5f3cf AS |
1018 | evaluate_expression (expr); |
1019 | ||
1020 | do_cleanups (old_chain); | |
1021 | } | |
1022 | ||
1023 | ||
c906108c SS |
1024 | /* Look up an internal variable with name NAME. NAME should not |
1025 | normally include a dollar sign. | |
1026 | ||
1027 | If the specified internal variable does not exist, | |
c4a3d09a | 1028 | the return value is NULL. */ |
c906108c SS |
1029 | |
1030 | struct internalvar * | |
bc3b79fd | 1031 | lookup_only_internalvar (const char *name) |
c906108c | 1032 | { |
52f0bd74 | 1033 | struct internalvar *var; |
c906108c SS |
1034 | |
1035 | for (var = internalvars; var; var = var->next) | |
5cb316ef | 1036 | if (strcmp (var->name, name) == 0) |
c906108c SS |
1037 | return var; |
1038 | ||
c4a3d09a MF |
1039 | return NULL; |
1040 | } | |
1041 | ||
1042 | ||
1043 | /* Create an internal variable with name NAME and with a void value. | |
1044 | NAME should not normally include a dollar sign. */ | |
1045 | ||
1046 | struct internalvar * | |
bc3b79fd | 1047 | create_internalvar (const char *name) |
c4a3d09a MF |
1048 | { |
1049 | struct internalvar *var; | |
c906108c | 1050 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); |
1754f103 | 1051 | var->name = concat (name, (char *)NULL); |
78267919 | 1052 | var->kind = INTERNALVAR_VOID; |
c906108c SS |
1053 | var->next = internalvars; |
1054 | internalvars = var; | |
1055 | return var; | |
1056 | } | |
1057 | ||
4aa995e1 PA |
1058 | /* Create an internal variable with name NAME and register FUN as the |
1059 | function that value_of_internalvar uses to create a value whenever | |
1060 | this variable is referenced. NAME should not normally include a | |
1061 | dollar sign. */ | |
1062 | ||
1063 | struct internalvar * | |
1064 | create_internalvar_type_lazy (char *name, internalvar_make_value fun) | |
1065 | { | |
4fa62494 | 1066 | struct internalvar *var = create_internalvar (name); |
78267919 UW |
1067 | var->kind = INTERNALVAR_MAKE_VALUE; |
1068 | var->u.make_value = fun; | |
4aa995e1 PA |
1069 | return var; |
1070 | } | |
c4a3d09a MF |
1071 | |
1072 | /* Look up an internal variable with name NAME. NAME should not | |
1073 | normally include a dollar sign. | |
1074 | ||
1075 | If the specified internal variable does not exist, | |
1076 | one is created, with a void value. */ | |
1077 | ||
1078 | struct internalvar * | |
bc3b79fd | 1079 | lookup_internalvar (const char *name) |
c4a3d09a MF |
1080 | { |
1081 | struct internalvar *var; | |
1082 | ||
1083 | var = lookup_only_internalvar (name); | |
1084 | if (var) | |
1085 | return var; | |
1086 | ||
1087 | return create_internalvar (name); | |
1088 | } | |
1089 | ||
78267919 UW |
1090 | /* Return current value of internal variable VAR. For variables that |
1091 | are not inherently typed, use a value type appropriate for GDBARCH. */ | |
1092 | ||
f23631e4 | 1093 | struct value * |
78267919 | 1094 | value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var) |
c906108c | 1095 | { |
f23631e4 | 1096 | struct value *val; |
c906108c | 1097 | |
78267919 | 1098 | switch (var->kind) |
5f5233d4 | 1099 | { |
78267919 UW |
1100 | case INTERNALVAR_VOID: |
1101 | val = allocate_value (builtin_type (gdbarch)->builtin_void); | |
1102 | break; | |
4fa62494 | 1103 | |
78267919 UW |
1104 | case INTERNALVAR_FUNCTION: |
1105 | val = allocate_value (builtin_type (gdbarch)->internal_fn); | |
1106 | break; | |
4fa62494 | 1107 | |
cab0c772 UW |
1108 | case INTERNALVAR_INTEGER: |
1109 | if (!var->u.integer.type) | |
78267919 | 1110 | val = value_from_longest (builtin_type (gdbarch)->builtin_int, |
cab0c772 | 1111 | var->u.integer.val); |
78267919 | 1112 | else |
cab0c772 UW |
1113 | val = value_from_longest (var->u.integer.type, var->u.integer.val); |
1114 | break; | |
1115 | ||
1116 | case INTERNALVAR_POINTER: | |
1117 | val = value_from_pointer (var->u.pointer.type, var->u.pointer.val); | |
78267919 | 1118 | break; |
4fa62494 | 1119 | |
78267919 UW |
1120 | case INTERNALVAR_STRING: |
1121 | val = value_cstring (var->u.string, strlen (var->u.string), | |
1122 | builtin_type (gdbarch)->builtin_char); | |
1123 | break; | |
4fa62494 | 1124 | |
78267919 UW |
1125 | case INTERNALVAR_VALUE: |
1126 | val = value_copy (var->u.value); | |
4aa995e1 PA |
1127 | if (value_lazy (val)) |
1128 | value_fetch_lazy (val); | |
78267919 | 1129 | break; |
4aa995e1 | 1130 | |
78267919 UW |
1131 | case INTERNALVAR_MAKE_VALUE: |
1132 | val = (*var->u.make_value) (gdbarch, var); | |
1133 | break; | |
1134 | ||
1135 | default: | |
1136 | internal_error (__FILE__, __LINE__, "bad kind"); | |
1137 | } | |
1138 | ||
1139 | /* Change the VALUE_LVAL to lval_internalvar so that future operations | |
1140 | on this value go back to affect the original internal variable. | |
1141 | ||
1142 | Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have | |
1143 | no underlying modifyable state in the internal variable. | |
1144 | ||
1145 | Likewise, if the variable's value is a computed lvalue, we want | |
1146 | references to it to produce another computed lvalue, where | |
1147 | references and assignments actually operate through the | |
1148 | computed value's functions. | |
1149 | ||
1150 | This means that internal variables with computed values | |
1151 | behave a little differently from other internal variables: | |
1152 | assignments to them don't just replace the previous value | |
1153 | altogether. At the moment, this seems like the behavior we | |
1154 | want. */ | |
1155 | ||
1156 | if (var->kind != INTERNALVAR_MAKE_VALUE | |
1157 | && val->lval != lval_computed) | |
1158 | { | |
1159 | VALUE_LVAL (val) = lval_internalvar; | |
1160 | VALUE_INTERNALVAR (val) = var; | |
5f5233d4 | 1161 | } |
d3c139e9 | 1162 | |
4fa62494 UW |
1163 | return val; |
1164 | } | |
d3c139e9 | 1165 | |
4fa62494 UW |
1166 | int |
1167 | get_internalvar_integer (struct internalvar *var, LONGEST *result) | |
1168 | { | |
78267919 | 1169 | switch (var->kind) |
4fa62494 | 1170 | { |
cab0c772 UW |
1171 | case INTERNALVAR_INTEGER: |
1172 | *result = var->u.integer.val; | |
1173 | return 1; | |
d3c139e9 | 1174 | |
4fa62494 UW |
1175 | default: |
1176 | return 0; | |
1177 | } | |
1178 | } | |
d3c139e9 | 1179 | |
4fa62494 UW |
1180 | static int |
1181 | get_internalvar_function (struct internalvar *var, | |
1182 | struct internal_function **result) | |
1183 | { | |
78267919 | 1184 | switch (var->kind) |
d3c139e9 | 1185 | { |
78267919 UW |
1186 | case INTERNALVAR_FUNCTION: |
1187 | *result = var->u.fn.function; | |
4fa62494 | 1188 | return 1; |
d3c139e9 | 1189 | |
4fa62494 UW |
1190 | default: |
1191 | return 0; | |
1192 | } | |
c906108c SS |
1193 | } |
1194 | ||
1195 | void | |
fba45db2 | 1196 | set_internalvar_component (struct internalvar *var, int offset, int bitpos, |
f23631e4 | 1197 | int bitsize, struct value *newval) |
c906108c | 1198 | { |
4fa62494 | 1199 | gdb_byte *addr; |
c906108c | 1200 | |
78267919 | 1201 | switch (var->kind) |
4fa62494 | 1202 | { |
78267919 UW |
1203 | case INTERNALVAR_VALUE: |
1204 | addr = value_contents_writeable (var->u.value); | |
4fa62494 UW |
1205 | |
1206 | if (bitsize) | |
50810684 | 1207 | modify_field (value_type (var->u.value), addr + offset, |
4fa62494 UW |
1208 | value_as_long (newval), bitpos, bitsize); |
1209 | else | |
1210 | memcpy (addr + offset, value_contents (newval), | |
1211 | TYPE_LENGTH (value_type (newval))); | |
1212 | break; | |
78267919 UW |
1213 | |
1214 | default: | |
1215 | /* We can never get a component of any other kind. */ | |
1216 | internal_error (__FILE__, __LINE__, "set_internalvar_component"); | |
4fa62494 | 1217 | } |
c906108c SS |
1218 | } |
1219 | ||
1220 | void | |
f23631e4 | 1221 | set_internalvar (struct internalvar *var, struct value *val) |
c906108c | 1222 | { |
78267919 | 1223 | enum internalvar_kind new_kind; |
4fa62494 | 1224 | union internalvar_data new_data = { 0 }; |
c906108c | 1225 | |
78267919 | 1226 | if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical) |
bc3b79fd TJB |
1227 | error (_("Cannot overwrite convenience function %s"), var->name); |
1228 | ||
4fa62494 | 1229 | /* Prepare new contents. */ |
78267919 | 1230 | switch (TYPE_CODE (check_typedef (value_type (val)))) |
4fa62494 UW |
1231 | { |
1232 | case TYPE_CODE_VOID: | |
78267919 | 1233 | new_kind = INTERNALVAR_VOID; |
4fa62494 UW |
1234 | break; |
1235 | ||
1236 | case TYPE_CODE_INTERNAL_FUNCTION: | |
1237 | gdb_assert (VALUE_LVAL (val) == lval_internalvar); | |
78267919 UW |
1238 | new_kind = INTERNALVAR_FUNCTION; |
1239 | get_internalvar_function (VALUE_INTERNALVAR (val), | |
1240 | &new_data.fn.function); | |
1241 | /* Copies created here are never canonical. */ | |
4fa62494 UW |
1242 | break; |
1243 | ||
1244 | case TYPE_CODE_INT: | |
cab0c772 UW |
1245 | new_kind = INTERNALVAR_INTEGER; |
1246 | new_data.integer.type = value_type (val); | |
1247 | new_data.integer.val = value_as_long (val); | |
4fa62494 UW |
1248 | break; |
1249 | ||
1250 | case TYPE_CODE_PTR: | |
cab0c772 UW |
1251 | new_kind = INTERNALVAR_POINTER; |
1252 | new_data.pointer.type = value_type (val); | |
1253 | new_data.pointer.val = value_as_address (val); | |
4fa62494 UW |
1254 | break; |
1255 | ||
1256 | default: | |
78267919 UW |
1257 | new_kind = INTERNALVAR_VALUE; |
1258 | new_data.value = value_copy (val); | |
1259 | new_data.value->modifiable = 1; | |
4fa62494 UW |
1260 | |
1261 | /* Force the value to be fetched from the target now, to avoid problems | |
1262 | later when this internalvar is referenced and the target is gone or | |
1263 | has changed. */ | |
78267919 UW |
1264 | if (value_lazy (new_data.value)) |
1265 | value_fetch_lazy (new_data.value); | |
4fa62494 UW |
1266 | |
1267 | /* Release the value from the value chain to prevent it from being | |
1268 | deleted by free_all_values. From here on this function should not | |
1269 | call error () until new_data is installed into the var->u to avoid | |
1270 | leaking memory. */ | |
78267919 | 1271 | release_value (new_data.value); |
4fa62494 UW |
1272 | break; |
1273 | } | |
1274 | ||
1275 | /* Clean up old contents. */ | |
1276 | clear_internalvar (var); | |
1277 | ||
1278 | /* Switch over. */ | |
78267919 | 1279 | var->kind = new_kind; |
4fa62494 | 1280 | var->u = new_data; |
c906108c SS |
1281 | /* End code which must not call error(). */ |
1282 | } | |
1283 | ||
4fa62494 UW |
1284 | void |
1285 | set_internalvar_integer (struct internalvar *var, LONGEST l) | |
1286 | { | |
1287 | /* Clean up old contents. */ | |
1288 | clear_internalvar (var); | |
1289 | ||
cab0c772 UW |
1290 | var->kind = INTERNALVAR_INTEGER; |
1291 | var->u.integer.type = NULL; | |
1292 | var->u.integer.val = l; | |
78267919 UW |
1293 | } |
1294 | ||
1295 | void | |
1296 | set_internalvar_string (struct internalvar *var, const char *string) | |
1297 | { | |
1298 | /* Clean up old contents. */ | |
1299 | clear_internalvar (var); | |
1300 | ||
1301 | var->kind = INTERNALVAR_STRING; | |
1302 | var->u.string = xstrdup (string); | |
4fa62494 UW |
1303 | } |
1304 | ||
1305 | static void | |
1306 | set_internalvar_function (struct internalvar *var, struct internal_function *f) | |
1307 | { | |
1308 | /* Clean up old contents. */ | |
1309 | clear_internalvar (var); | |
1310 | ||
78267919 UW |
1311 | var->kind = INTERNALVAR_FUNCTION; |
1312 | var->u.fn.function = f; | |
1313 | var->u.fn.canonical = 1; | |
1314 | /* Variables installed here are always the canonical version. */ | |
4fa62494 UW |
1315 | } |
1316 | ||
1317 | void | |
1318 | clear_internalvar (struct internalvar *var) | |
1319 | { | |
1320 | /* Clean up old contents. */ | |
78267919 | 1321 | switch (var->kind) |
4fa62494 | 1322 | { |
78267919 UW |
1323 | case INTERNALVAR_VALUE: |
1324 | value_free (var->u.value); | |
1325 | break; | |
1326 | ||
1327 | case INTERNALVAR_STRING: | |
1328 | xfree (var->u.string); | |
4fa62494 UW |
1329 | break; |
1330 | ||
1331 | default: | |
4fa62494 UW |
1332 | break; |
1333 | } | |
1334 | ||
78267919 UW |
1335 | /* Reset to void kind. */ |
1336 | var->kind = INTERNALVAR_VOID; | |
4fa62494 UW |
1337 | } |
1338 | ||
c906108c | 1339 | char * |
fba45db2 | 1340 | internalvar_name (struct internalvar *var) |
c906108c SS |
1341 | { |
1342 | return var->name; | |
1343 | } | |
1344 | ||
4fa62494 UW |
1345 | static struct internal_function * |
1346 | create_internal_function (const char *name, | |
1347 | internal_function_fn handler, void *cookie) | |
bc3b79fd | 1348 | { |
bc3b79fd TJB |
1349 | struct internal_function *ifn = XNEW (struct internal_function); |
1350 | ifn->name = xstrdup (name); | |
1351 | ifn->handler = handler; | |
1352 | ifn->cookie = cookie; | |
4fa62494 | 1353 | return ifn; |
bc3b79fd TJB |
1354 | } |
1355 | ||
1356 | char * | |
1357 | value_internal_function_name (struct value *val) | |
1358 | { | |
4fa62494 UW |
1359 | struct internal_function *ifn; |
1360 | int result; | |
1361 | ||
1362 | gdb_assert (VALUE_LVAL (val) == lval_internalvar); | |
1363 | result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn); | |
1364 | gdb_assert (result); | |
1365 | ||
bc3b79fd TJB |
1366 | return ifn->name; |
1367 | } | |
1368 | ||
1369 | struct value * | |
d452c4bc UW |
1370 | call_internal_function (struct gdbarch *gdbarch, |
1371 | const struct language_defn *language, | |
1372 | struct value *func, int argc, struct value **argv) | |
bc3b79fd | 1373 | { |
4fa62494 UW |
1374 | struct internal_function *ifn; |
1375 | int result; | |
1376 | ||
1377 | gdb_assert (VALUE_LVAL (func) == lval_internalvar); | |
1378 | result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn); | |
1379 | gdb_assert (result); | |
1380 | ||
d452c4bc | 1381 | return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv); |
bc3b79fd TJB |
1382 | } |
1383 | ||
1384 | /* The 'function' command. This does nothing -- it is just a | |
1385 | placeholder to let "help function NAME" work. This is also used as | |
1386 | the implementation of the sub-command that is created when | |
1387 | registering an internal function. */ | |
1388 | static void | |
1389 | function_command (char *command, int from_tty) | |
1390 | { | |
1391 | /* Do nothing. */ | |
1392 | } | |
1393 | ||
1394 | /* Clean up if an internal function's command is destroyed. */ | |
1395 | static void | |
1396 | function_destroyer (struct cmd_list_element *self, void *ignore) | |
1397 | { | |
1398 | xfree (self->name); | |
1399 | xfree (self->doc); | |
1400 | } | |
1401 | ||
1402 | /* Add a new internal function. NAME is the name of the function; DOC | |
1403 | is a documentation string describing the function. HANDLER is | |
1404 | called when the function is invoked. COOKIE is an arbitrary | |
1405 | pointer which is passed to HANDLER and is intended for "user | |
1406 | data". */ | |
1407 | void | |
1408 | add_internal_function (const char *name, const char *doc, | |
1409 | internal_function_fn handler, void *cookie) | |
1410 | { | |
1411 | struct cmd_list_element *cmd; | |
4fa62494 | 1412 | struct internal_function *ifn; |
bc3b79fd | 1413 | struct internalvar *var = lookup_internalvar (name); |
4fa62494 UW |
1414 | |
1415 | ifn = create_internal_function (name, handler, cookie); | |
1416 | set_internalvar_function (var, ifn); | |
bc3b79fd TJB |
1417 | |
1418 | cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc, | |
1419 | &functionlist); | |
1420 | cmd->destroyer = function_destroyer; | |
1421 | } | |
1422 | ||
ae5a43e0 DJ |
1423 | /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to |
1424 | prevent cycles / duplicates. */ | |
1425 | ||
4e7a5ef5 | 1426 | void |
ae5a43e0 DJ |
1427 | preserve_one_value (struct value *value, struct objfile *objfile, |
1428 | htab_t copied_types) | |
1429 | { | |
1430 | if (TYPE_OBJFILE (value->type) == objfile) | |
1431 | value->type = copy_type_recursive (objfile, value->type, copied_types); | |
1432 | ||
1433 | if (TYPE_OBJFILE (value->enclosing_type) == objfile) | |
1434 | value->enclosing_type = copy_type_recursive (objfile, | |
1435 | value->enclosing_type, | |
1436 | copied_types); | |
1437 | } | |
1438 | ||
78267919 UW |
1439 | /* Likewise for internal variable VAR. */ |
1440 | ||
1441 | static void | |
1442 | preserve_one_internalvar (struct internalvar *var, struct objfile *objfile, | |
1443 | htab_t copied_types) | |
1444 | { | |
1445 | switch (var->kind) | |
1446 | { | |
cab0c772 UW |
1447 | case INTERNALVAR_INTEGER: |
1448 | if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile) | |
1449 | var->u.integer.type | |
1450 | = copy_type_recursive (objfile, var->u.integer.type, copied_types); | |
1451 | break; | |
1452 | ||
1453 | case INTERNALVAR_POINTER: | |
1454 | if (TYPE_OBJFILE (var->u.pointer.type) == objfile) | |
1455 | var->u.pointer.type | |
1456 | = copy_type_recursive (objfile, var->u.pointer.type, copied_types); | |
78267919 UW |
1457 | break; |
1458 | ||
1459 | case INTERNALVAR_VALUE: | |
1460 | preserve_one_value (var->u.value, objfile, copied_types); | |
1461 | break; | |
1462 | } | |
1463 | } | |
1464 | ||
ae5a43e0 DJ |
1465 | /* Update the internal variables and value history when OBJFILE is |
1466 | discarded; we must copy the types out of the objfile. New global types | |
1467 | will be created for every convenience variable which currently points to | |
1468 | this objfile's types, and the convenience variables will be adjusted to | |
1469 | use the new global types. */ | |
c906108c SS |
1470 | |
1471 | void | |
ae5a43e0 | 1472 | preserve_values (struct objfile *objfile) |
c906108c | 1473 | { |
ae5a43e0 DJ |
1474 | htab_t copied_types; |
1475 | struct value_history_chunk *cur; | |
52f0bd74 | 1476 | struct internalvar *var; |
a08702d6 | 1477 | struct value *val; |
ae5a43e0 | 1478 | int i; |
c906108c | 1479 | |
ae5a43e0 DJ |
1480 | /* Create the hash table. We allocate on the objfile's obstack, since |
1481 | it is soon to be deleted. */ | |
1482 | copied_types = create_copied_types_hash (objfile); | |
1483 | ||
1484 | for (cur = value_history_chain; cur; cur = cur->next) | |
1485 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
1486 | if (cur->values[i]) | |
1487 | preserve_one_value (cur->values[i], objfile, copied_types); | |
1488 | ||
1489 | for (var = internalvars; var; var = var->next) | |
78267919 | 1490 | preserve_one_internalvar (var, objfile, copied_types); |
ae5a43e0 | 1491 | |
4e7a5ef5 | 1492 | preserve_python_values (objfile, copied_types); |
a08702d6 | 1493 | |
ae5a43e0 | 1494 | htab_delete (copied_types); |
c906108c SS |
1495 | } |
1496 | ||
1497 | static void | |
fba45db2 | 1498 | show_convenience (char *ignore, int from_tty) |
c906108c | 1499 | { |
e17c207e | 1500 | struct gdbarch *gdbarch = get_current_arch (); |
52f0bd74 | 1501 | struct internalvar *var; |
c906108c | 1502 | int varseen = 0; |
79a45b7d | 1503 | struct value_print_options opts; |
c906108c | 1504 | |
79a45b7d | 1505 | get_user_print_options (&opts); |
c906108c SS |
1506 | for (var = internalvars; var; var = var->next) |
1507 | { | |
c906108c SS |
1508 | if (!varseen) |
1509 | { | |
1510 | varseen = 1; | |
1511 | } | |
a3f17187 | 1512 | printf_filtered (("$%s = "), var->name); |
78267919 | 1513 | value_print (value_of_internalvar (gdbarch, var), gdb_stdout, |
79a45b7d | 1514 | &opts); |
a3f17187 | 1515 | printf_filtered (("\n")); |
c906108c SS |
1516 | } |
1517 | if (!varseen) | |
a3f17187 AC |
1518 | printf_unfiltered (_("\ |
1519 | No debugger convenience variables now defined.\n\ | |
c906108c | 1520 | Convenience variables have names starting with \"$\";\n\ |
a3f17187 | 1521 | use \"set\" as in \"set $foo = 5\" to define them.\n")); |
c906108c SS |
1522 | } |
1523 | \f | |
1524 | /* Extract a value as a C number (either long or double). | |
1525 | Knows how to convert fixed values to double, or | |
1526 | floating values to long. | |
1527 | Does not deallocate the value. */ | |
1528 | ||
1529 | LONGEST | |
f23631e4 | 1530 | value_as_long (struct value *val) |
c906108c SS |
1531 | { |
1532 | /* This coerces arrays and functions, which is necessary (e.g. | |
1533 | in disassemble_command). It also dereferences references, which | |
1534 | I suspect is the most logical thing to do. */ | |
994b9211 | 1535 | val = coerce_array (val); |
0fd88904 | 1536 | return unpack_long (value_type (val), value_contents (val)); |
c906108c SS |
1537 | } |
1538 | ||
1539 | DOUBLEST | |
f23631e4 | 1540 | value_as_double (struct value *val) |
c906108c SS |
1541 | { |
1542 | DOUBLEST foo; | |
1543 | int inv; | |
c5aa993b | 1544 | |
0fd88904 | 1545 | foo = unpack_double (value_type (val), value_contents (val), &inv); |
c906108c | 1546 | if (inv) |
8a3fe4f8 | 1547 | error (_("Invalid floating value found in program.")); |
c906108c SS |
1548 | return foo; |
1549 | } | |
4ef30785 | 1550 | |
4478b372 JB |
1551 | /* Extract a value as a C pointer. Does not deallocate the value. |
1552 | Note that val's type may not actually be a pointer; value_as_long | |
1553 | handles all the cases. */ | |
c906108c | 1554 | CORE_ADDR |
f23631e4 | 1555 | value_as_address (struct value *val) |
c906108c | 1556 | { |
50810684 UW |
1557 | struct gdbarch *gdbarch = get_type_arch (value_type (val)); |
1558 | ||
c906108c SS |
1559 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
1560 | whether we want this to be true eventually. */ | |
1561 | #if 0 | |
bf6ae464 | 1562 | /* gdbarch_addr_bits_remove is wrong if we are being called for a |
c906108c SS |
1563 | non-address (e.g. argument to "signal", "info break", etc.), or |
1564 | for pointers to char, in which the low bits *are* significant. */ | |
50810684 | 1565 | return gdbarch_addr_bits_remove (gdbarch, value_as_long (val)); |
c906108c | 1566 | #else |
f312f057 JB |
1567 | |
1568 | /* There are several targets (IA-64, PowerPC, and others) which | |
1569 | don't represent pointers to functions as simply the address of | |
1570 | the function's entry point. For example, on the IA-64, a | |
1571 | function pointer points to a two-word descriptor, generated by | |
1572 | the linker, which contains the function's entry point, and the | |
1573 | value the IA-64 "global pointer" register should have --- to | |
1574 | support position-independent code. The linker generates | |
1575 | descriptors only for those functions whose addresses are taken. | |
1576 | ||
1577 | On such targets, it's difficult for GDB to convert an arbitrary | |
1578 | function address into a function pointer; it has to either find | |
1579 | an existing descriptor for that function, or call malloc and | |
1580 | build its own. On some targets, it is impossible for GDB to | |
1581 | build a descriptor at all: the descriptor must contain a jump | |
1582 | instruction; data memory cannot be executed; and code memory | |
1583 | cannot be modified. | |
1584 | ||
1585 | Upon entry to this function, if VAL is a value of type `function' | |
1586 | (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then | |
42ae5230 | 1587 | value_address (val) is the address of the function. This is what |
f312f057 JB |
1588 | you'll get if you evaluate an expression like `main'. The call |
1589 | to COERCE_ARRAY below actually does all the usual unary | |
1590 | conversions, which includes converting values of type `function' | |
1591 | to `pointer to function'. This is the challenging conversion | |
1592 | discussed above. Then, `unpack_long' will convert that pointer | |
1593 | back into an address. | |
1594 | ||
1595 | So, suppose the user types `disassemble foo' on an architecture | |
1596 | with a strange function pointer representation, on which GDB | |
1597 | cannot build its own descriptors, and suppose further that `foo' | |
1598 | has no linker-built descriptor. The address->pointer conversion | |
1599 | will signal an error and prevent the command from running, even | |
1600 | though the next step would have been to convert the pointer | |
1601 | directly back into the same address. | |
1602 | ||
1603 | The following shortcut avoids this whole mess. If VAL is a | |
1604 | function, just return its address directly. */ | |
df407dfe AC |
1605 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC |
1606 | || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD) | |
42ae5230 | 1607 | return value_address (val); |
f312f057 | 1608 | |
994b9211 | 1609 | val = coerce_array (val); |
fc0c74b1 AC |
1610 | |
1611 | /* Some architectures (e.g. Harvard), map instruction and data | |
1612 | addresses onto a single large unified address space. For | |
1613 | instance: An architecture may consider a large integer in the | |
1614 | range 0x10000000 .. 0x1000ffff to already represent a data | |
1615 | addresses (hence not need a pointer to address conversion) while | |
1616 | a small integer would still need to be converted integer to | |
1617 | pointer to address. Just assume such architectures handle all | |
1618 | integer conversions in a single function. */ | |
1619 | ||
1620 | /* JimB writes: | |
1621 | ||
1622 | I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we | |
1623 | must admonish GDB hackers to make sure its behavior matches the | |
1624 | compiler's, whenever possible. | |
1625 | ||
1626 | In general, I think GDB should evaluate expressions the same way | |
1627 | the compiler does. When the user copies an expression out of | |
1628 | their source code and hands it to a `print' command, they should | |
1629 | get the same value the compiler would have computed. Any | |
1630 | deviation from this rule can cause major confusion and annoyance, | |
1631 | and needs to be justified carefully. In other words, GDB doesn't | |
1632 | really have the freedom to do these conversions in clever and | |
1633 | useful ways. | |
1634 | ||
1635 | AndrewC pointed out that users aren't complaining about how GDB | |
1636 | casts integers to pointers; they are complaining that they can't | |
1637 | take an address from a disassembly listing and give it to `x/i'. | |
1638 | This is certainly important. | |
1639 | ||
79dd2d24 | 1640 | Adding an architecture method like integer_to_address() certainly |
fc0c74b1 AC |
1641 | makes it possible for GDB to "get it right" in all circumstances |
1642 | --- the target has complete control over how things get done, so | |
1643 | people can Do The Right Thing for their target without breaking | |
1644 | anyone else. The standard doesn't specify how integers get | |
1645 | converted to pointers; usually, the ABI doesn't either, but | |
1646 | ABI-specific code is a more reasonable place to handle it. */ | |
1647 | ||
df407dfe AC |
1648 | if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR |
1649 | && TYPE_CODE (value_type (val)) != TYPE_CODE_REF | |
50810684 UW |
1650 | && gdbarch_integer_to_address_p (gdbarch)) |
1651 | return gdbarch_integer_to_address (gdbarch, value_type (val), | |
0fd88904 | 1652 | value_contents (val)); |
fc0c74b1 | 1653 | |
0fd88904 | 1654 | return unpack_long (value_type (val), value_contents (val)); |
c906108c SS |
1655 | #endif |
1656 | } | |
1657 | \f | |
1658 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
1659 | as a long, or as a double, assuming the raw data is described | |
1660 | by type TYPE. Knows how to convert different sizes of values | |
1661 | and can convert between fixed and floating point. We don't assume | |
1662 | any alignment for the raw data. Return value is in host byte order. | |
1663 | ||
1664 | If you want functions and arrays to be coerced to pointers, and | |
1665 | references to be dereferenced, call value_as_long() instead. | |
1666 | ||
1667 | C++: It is assumed that the front-end has taken care of | |
1668 | all matters concerning pointers to members. A pointer | |
1669 | to member which reaches here is considered to be equivalent | |
1670 | to an INT (or some size). After all, it is only an offset. */ | |
1671 | ||
1672 | LONGEST | |
fc1a4b47 | 1673 | unpack_long (struct type *type, const gdb_byte *valaddr) |
c906108c | 1674 | { |
e17a4113 | 1675 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
52f0bd74 AC |
1676 | enum type_code code = TYPE_CODE (type); |
1677 | int len = TYPE_LENGTH (type); | |
1678 | int nosign = TYPE_UNSIGNED (type); | |
c906108c | 1679 | |
c906108c SS |
1680 | switch (code) |
1681 | { | |
1682 | case TYPE_CODE_TYPEDEF: | |
1683 | return unpack_long (check_typedef (type), valaddr); | |
1684 | case TYPE_CODE_ENUM: | |
4f2aea11 | 1685 | case TYPE_CODE_FLAGS: |
c906108c SS |
1686 | case TYPE_CODE_BOOL: |
1687 | case TYPE_CODE_INT: | |
1688 | case TYPE_CODE_CHAR: | |
1689 | case TYPE_CODE_RANGE: | |
0d5de010 | 1690 | case TYPE_CODE_MEMBERPTR: |
c906108c | 1691 | if (nosign) |
e17a4113 | 1692 | return extract_unsigned_integer (valaddr, len, byte_order); |
c906108c | 1693 | else |
e17a4113 | 1694 | return extract_signed_integer (valaddr, len, byte_order); |
c906108c SS |
1695 | |
1696 | case TYPE_CODE_FLT: | |
96d2f608 | 1697 | return extract_typed_floating (valaddr, type); |
c906108c | 1698 | |
4ef30785 TJB |
1699 | case TYPE_CODE_DECFLOAT: |
1700 | /* libdecnumber has a function to convert from decimal to integer, but | |
1701 | it doesn't work when the decimal number has a fractional part. */ | |
e17a4113 | 1702 | return decimal_to_doublest (valaddr, len, byte_order); |
4ef30785 | 1703 | |
c906108c SS |
1704 | case TYPE_CODE_PTR: |
1705 | case TYPE_CODE_REF: | |
1706 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
c5aa993b | 1707 | whether we want this to be true eventually. */ |
4478b372 | 1708 | return extract_typed_address (valaddr, type); |
c906108c | 1709 | |
c906108c | 1710 | default: |
8a3fe4f8 | 1711 | error (_("Value can't be converted to integer.")); |
c906108c | 1712 | } |
c5aa993b | 1713 | return 0; /* Placate lint. */ |
c906108c SS |
1714 | } |
1715 | ||
1716 | /* Return a double value from the specified type and address. | |
1717 | INVP points to an int which is set to 0 for valid value, | |
1718 | 1 for invalid value (bad float format). In either case, | |
1719 | the returned double is OK to use. Argument is in target | |
1720 | format, result is in host format. */ | |
1721 | ||
1722 | DOUBLEST | |
fc1a4b47 | 1723 | unpack_double (struct type *type, const gdb_byte *valaddr, int *invp) |
c906108c | 1724 | { |
e17a4113 | 1725 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
c906108c SS |
1726 | enum type_code code; |
1727 | int len; | |
1728 | int nosign; | |
1729 | ||
1730 | *invp = 0; /* Assume valid. */ | |
1731 | CHECK_TYPEDEF (type); | |
1732 | code = TYPE_CODE (type); | |
1733 | len = TYPE_LENGTH (type); | |
1734 | nosign = TYPE_UNSIGNED (type); | |
1735 | if (code == TYPE_CODE_FLT) | |
1736 | { | |
75bc7ddf AC |
1737 | /* NOTE: cagney/2002-02-19: There was a test here to see if the |
1738 | floating-point value was valid (using the macro | |
1739 | INVALID_FLOAT). That test/macro have been removed. | |
1740 | ||
1741 | It turns out that only the VAX defined this macro and then | |
1742 | only in a non-portable way. Fixing the portability problem | |
1743 | wouldn't help since the VAX floating-point code is also badly | |
1744 | bit-rotten. The target needs to add definitions for the | |
ea06eb3d | 1745 | methods gdbarch_float_format and gdbarch_double_format - these |
75bc7ddf AC |
1746 | exactly describe the target floating-point format. The |
1747 | problem here is that the corresponding floatformat_vax_f and | |
1748 | floatformat_vax_d values these methods should be set to are | |
1749 | also not defined either. Oops! | |
1750 | ||
1751 | Hopefully someone will add both the missing floatformat | |
ac79b88b DJ |
1752 | definitions and the new cases for floatformat_is_valid (). */ |
1753 | ||
1754 | if (!floatformat_is_valid (floatformat_from_type (type), valaddr)) | |
1755 | { | |
1756 | *invp = 1; | |
1757 | return 0.0; | |
1758 | } | |
1759 | ||
96d2f608 | 1760 | return extract_typed_floating (valaddr, type); |
c906108c | 1761 | } |
4ef30785 | 1762 | else if (code == TYPE_CODE_DECFLOAT) |
e17a4113 | 1763 | return decimal_to_doublest (valaddr, len, byte_order); |
c906108c SS |
1764 | else if (nosign) |
1765 | { | |
1766 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
c906108c | 1767 | return (ULONGEST) unpack_long (type, valaddr); |
c906108c SS |
1768 | } |
1769 | else | |
1770 | { | |
1771 | /* Signed -- we are OK with unpack_long. */ | |
1772 | return unpack_long (type, valaddr); | |
1773 | } | |
1774 | } | |
1775 | ||
1776 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
1777 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
1778 | We don't assume any alignment for the raw data. Return value is in | |
1779 | host byte order. | |
1780 | ||
1781 | If you want functions and arrays to be coerced to pointers, and | |
1aa20aa8 | 1782 | references to be dereferenced, call value_as_address() instead. |
c906108c SS |
1783 | |
1784 | C++: It is assumed that the front-end has taken care of | |
1785 | all matters concerning pointers to members. A pointer | |
1786 | to member which reaches here is considered to be equivalent | |
1787 | to an INT (or some size). After all, it is only an offset. */ | |
1788 | ||
1789 | CORE_ADDR | |
fc1a4b47 | 1790 | unpack_pointer (struct type *type, const gdb_byte *valaddr) |
c906108c SS |
1791 | { |
1792 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
1793 | whether we want this to be true eventually. */ | |
1794 | return unpack_long (type, valaddr); | |
1795 | } | |
4478b372 | 1796 | |
c906108c | 1797 | \f |
2c2738a0 DC |
1798 | /* Get the value of the FIELDN'th field (which must be static) of |
1799 | TYPE. Return NULL if the field doesn't exist or has been | |
1800 | optimized out. */ | |
c906108c | 1801 | |
f23631e4 | 1802 | struct value * |
fba45db2 | 1803 | value_static_field (struct type *type, int fieldno) |
c906108c | 1804 | { |
948e66d9 DJ |
1805 | struct value *retval; |
1806 | ||
d6a843b5 | 1807 | if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR) |
c906108c | 1808 | { |
948e66d9 | 1809 | retval = value_at (TYPE_FIELD_TYPE (type, fieldno), |
00a4c844 | 1810 | TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); |
c906108c SS |
1811 | } |
1812 | else | |
1813 | { | |
1814 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); | |
2570f2b7 | 1815 | struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0); |
948e66d9 | 1816 | if (sym == NULL) |
c906108c SS |
1817 | { |
1818 | /* With some compilers, e.g. HP aCC, static data members are reported | |
c5aa993b JM |
1819 | as non-debuggable symbols */ |
1820 | struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL); | |
c906108c SS |
1821 | if (!msym) |
1822 | return NULL; | |
1823 | else | |
c5aa993b | 1824 | { |
948e66d9 | 1825 | retval = value_at (TYPE_FIELD_TYPE (type, fieldno), |
00a4c844 | 1826 | SYMBOL_VALUE_ADDRESS (msym)); |
c906108c SS |
1827 | } |
1828 | } | |
1829 | else | |
1830 | { | |
948e66d9 DJ |
1831 | /* SYM should never have a SYMBOL_CLASS which will require |
1832 | read_var_value to use the FRAME parameter. */ | |
1833 | if (symbol_read_needs_frame (sym)) | |
8a3fe4f8 AC |
1834 | warning (_("static field's value depends on the current " |
1835 | "frame - bad debug info?")); | |
948e66d9 | 1836 | retval = read_var_value (sym, NULL); |
2b127877 | 1837 | } |
948e66d9 DJ |
1838 | if (retval && VALUE_LVAL (retval) == lval_memory) |
1839 | SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), | |
42ae5230 | 1840 | value_address (retval)); |
c906108c | 1841 | } |
948e66d9 | 1842 | return retval; |
c906108c SS |
1843 | } |
1844 | ||
2b127877 DB |
1845 | /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE. |
1846 | You have to be careful here, since the size of the data area for the value | |
1847 | is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger | |
1848 | than the old enclosing type, you have to allocate more space for the data. | |
1849 | The return value is a pointer to the new version of this value structure. */ | |
1850 | ||
f23631e4 AC |
1851 | struct value * |
1852 | value_change_enclosing_type (struct value *val, struct type *new_encl_type) | |
2b127877 | 1853 | { |
3e3d7139 JG |
1854 | if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val))) |
1855 | val->contents = | |
1856 | (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type)); | |
1857 | ||
1858 | val->enclosing_type = new_encl_type; | |
1859 | return val; | |
2b127877 DB |
1860 | } |
1861 | ||
c906108c SS |
1862 | /* Given a value ARG1 (offset by OFFSET bytes) |
1863 | of a struct or union type ARG_TYPE, | |
1864 | extract and return the value of one of its (non-static) fields. | |
1865 | FIELDNO says which field. */ | |
1866 | ||
f23631e4 AC |
1867 | struct value * |
1868 | value_primitive_field (struct value *arg1, int offset, | |
aa1ee363 | 1869 | int fieldno, struct type *arg_type) |
c906108c | 1870 | { |
f23631e4 | 1871 | struct value *v; |
52f0bd74 | 1872 | struct type *type; |
c906108c SS |
1873 | |
1874 | CHECK_TYPEDEF (arg_type); | |
1875 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
1876 | ||
1877 | /* Handle packed fields */ | |
1878 | ||
1879 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
1880 | { | |
4ea48cc1 DJ |
1881 | /* Create a new value for the bitfield, with bitpos and bitsize |
1882 | set. If possible, arrange offset and bitpos so that we can | |
1883 | do a single aligned read of the size of the containing type. | |
1884 | Otherwise, adjust offset to the byte containing the first | |
1885 | bit. Assume that the address, offset, and embedded offset | |
1886 | are sufficiently aligned. */ | |
1887 | int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno); | |
1888 | int container_bitsize = TYPE_LENGTH (type) * 8; | |
1889 | ||
1890 | v = allocate_value_lazy (type); | |
df407dfe | 1891 | v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno); |
4ea48cc1 DJ |
1892 | if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize |
1893 | && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)) | |
1894 | v->bitpos = bitpos % container_bitsize; | |
1895 | else | |
1896 | v->bitpos = bitpos % 8; | |
4a76eae5 | 1897 | v->offset = value_embedded_offset (arg1) |
4ea48cc1 DJ |
1898 | + (bitpos - v->bitpos) / 8; |
1899 | v->parent = arg1; | |
1900 | value_incref (v->parent); | |
1901 | if (!value_lazy (arg1)) | |
1902 | value_fetch_lazy (v); | |
c906108c SS |
1903 | } |
1904 | else if (fieldno < TYPE_N_BASECLASSES (arg_type)) | |
1905 | { | |
1906 | /* This field is actually a base subobject, so preserve the | |
1907 | entire object's contents for later references to virtual | |
1908 | bases, etc. */ | |
a4e2ee12 DJ |
1909 | |
1910 | /* Lazy register values with offsets are not supported. */ | |
1911 | if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) | |
1912 | value_fetch_lazy (arg1); | |
1913 | ||
1914 | if (value_lazy (arg1)) | |
3e3d7139 | 1915 | v = allocate_value_lazy (value_enclosing_type (arg1)); |
c906108c | 1916 | else |
3e3d7139 JG |
1917 | { |
1918 | v = allocate_value (value_enclosing_type (arg1)); | |
1919 | memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1), | |
1920 | TYPE_LENGTH (value_enclosing_type (arg1))); | |
1921 | } | |
1922 | v->type = type; | |
df407dfe | 1923 | v->offset = value_offset (arg1); |
13c3b5f5 AC |
1924 | v->embedded_offset = (offset + value_embedded_offset (arg1) |
1925 | + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8); | |
c906108c SS |
1926 | } |
1927 | else | |
1928 | { | |
1929 | /* Plain old data member */ | |
1930 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
a4e2ee12 DJ |
1931 | |
1932 | /* Lazy register values with offsets are not supported. */ | |
1933 | if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) | |
1934 | value_fetch_lazy (arg1); | |
1935 | ||
1936 | if (value_lazy (arg1)) | |
3e3d7139 | 1937 | v = allocate_value_lazy (type); |
c906108c | 1938 | else |
3e3d7139 JG |
1939 | { |
1940 | v = allocate_value (type); | |
1941 | memcpy (value_contents_raw (v), | |
1942 | value_contents_raw (arg1) + offset, | |
1943 | TYPE_LENGTH (type)); | |
1944 | } | |
df407dfe | 1945 | v->offset = (value_offset (arg1) + offset |
13c3b5f5 | 1946 | + value_embedded_offset (arg1)); |
c906108c | 1947 | } |
74bcbdf3 | 1948 | set_value_component_location (v, arg1); |
9ee8fc9d | 1949 | VALUE_REGNUM (v) = VALUE_REGNUM (arg1); |
0c16dd26 | 1950 | VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1); |
c906108c SS |
1951 | return v; |
1952 | } | |
1953 | ||
1954 | /* Given a value ARG1 of a struct or union type, | |
1955 | extract and return the value of one of its (non-static) fields. | |
1956 | FIELDNO says which field. */ | |
1957 | ||
f23631e4 | 1958 | struct value * |
aa1ee363 | 1959 | value_field (struct value *arg1, int fieldno) |
c906108c | 1960 | { |
df407dfe | 1961 | return value_primitive_field (arg1, 0, fieldno, value_type (arg1)); |
c906108c SS |
1962 | } |
1963 | ||
1964 | /* Return a non-virtual function as a value. | |
1965 | F is the list of member functions which contains the desired method. | |
0478d61c FF |
1966 | J is an index into F which provides the desired method. |
1967 | ||
1968 | We only use the symbol for its address, so be happy with either a | |
1969 | full symbol or a minimal symbol. | |
1970 | */ | |
c906108c | 1971 | |
f23631e4 AC |
1972 | struct value * |
1973 | value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type, | |
fba45db2 | 1974 | int offset) |
c906108c | 1975 | { |
f23631e4 | 1976 | struct value *v; |
52f0bd74 | 1977 | struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
0478d61c | 1978 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); |
c906108c | 1979 | struct symbol *sym; |
0478d61c | 1980 | struct minimal_symbol *msym; |
c906108c | 1981 | |
2570f2b7 | 1982 | sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0); |
5ae326fa | 1983 | if (sym != NULL) |
0478d61c | 1984 | { |
5ae326fa AC |
1985 | msym = NULL; |
1986 | } | |
1987 | else | |
1988 | { | |
1989 | gdb_assert (sym == NULL); | |
0478d61c | 1990 | msym = lookup_minimal_symbol (physname, NULL, NULL); |
5ae326fa AC |
1991 | if (msym == NULL) |
1992 | return NULL; | |
0478d61c FF |
1993 | } |
1994 | ||
c906108c | 1995 | v = allocate_value (ftype); |
0478d61c FF |
1996 | if (sym) |
1997 | { | |
42ae5230 | 1998 | set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym))); |
0478d61c FF |
1999 | } |
2000 | else | |
2001 | { | |
bccdca4a UW |
2002 | /* The minimal symbol might point to a function descriptor; |
2003 | resolve it to the actual code address instead. */ | |
2004 | struct objfile *objfile = msymbol_objfile (msym); | |
2005 | struct gdbarch *gdbarch = get_objfile_arch (objfile); | |
2006 | ||
42ae5230 TT |
2007 | set_value_address (v, |
2008 | gdbarch_convert_from_func_ptr_addr | |
2009 | (gdbarch, SYMBOL_VALUE_ADDRESS (msym), ¤t_target)); | |
0478d61c | 2010 | } |
c906108c SS |
2011 | |
2012 | if (arg1p) | |
c5aa993b | 2013 | { |
df407dfe | 2014 | if (type != value_type (*arg1p)) |
c5aa993b JM |
2015 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), |
2016 | value_addr (*arg1p))); | |
2017 | ||
070ad9f0 | 2018 | /* Move the `this' pointer according to the offset. |
c5aa993b JM |
2019 | VALUE_OFFSET (*arg1p) += offset; |
2020 | */ | |
c906108c SS |
2021 | } |
2022 | ||
2023 | return v; | |
2024 | } | |
2025 | ||
c906108c | 2026 | \f |
4ea48cc1 DJ |
2027 | /* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous |
2028 | object at VALADDR. The bitfield starts at BITPOS bits and contains | |
2029 | BITSIZE bits. | |
c906108c SS |
2030 | |
2031 | Extracting bits depends on endianness of the machine. Compute the | |
2032 | number of least significant bits to discard. For big endian machines, | |
2033 | we compute the total number of bits in the anonymous object, subtract | |
2034 | off the bit count from the MSB of the object to the MSB of the | |
2035 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
2036 | count. For little endian machines, the discard count is simply the | |
2037 | number of bits from the LSB of the anonymous object to the LSB of the | |
2038 | bitfield. | |
2039 | ||
2040 | If the field is signed, we also do sign extension. */ | |
2041 | ||
2042 | LONGEST | |
4ea48cc1 DJ |
2043 | unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr, |
2044 | int bitpos, int bitsize) | |
c906108c | 2045 | { |
4ea48cc1 | 2046 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type)); |
c906108c SS |
2047 | ULONGEST val; |
2048 | ULONGEST valmask; | |
c906108c | 2049 | int lsbcount; |
4a76eae5 | 2050 | int bytes_read; |
c906108c | 2051 | |
4a76eae5 DJ |
2052 | /* Read the minimum number of bytes required; there may not be |
2053 | enough bytes to read an entire ULONGEST. */ | |
c906108c | 2054 | CHECK_TYPEDEF (field_type); |
4a76eae5 DJ |
2055 | if (bitsize) |
2056 | bytes_read = ((bitpos % 8) + bitsize + 7) / 8; | |
2057 | else | |
2058 | bytes_read = TYPE_LENGTH (field_type); | |
2059 | ||
2060 | val = extract_unsigned_integer (valaddr + bitpos / 8, | |
2061 | bytes_read, byte_order); | |
c906108c SS |
2062 | |
2063 | /* Extract bits. See comment above. */ | |
2064 | ||
4ea48cc1 | 2065 | if (gdbarch_bits_big_endian (get_type_arch (field_type))) |
4a76eae5 | 2066 | lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize); |
c906108c SS |
2067 | else |
2068 | lsbcount = (bitpos % 8); | |
2069 | val >>= lsbcount; | |
2070 | ||
2071 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
2072 | If the field is signed, and is negative, then sign extend. */ | |
2073 | ||
2074 | if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) | |
2075 | { | |
2076 | valmask = (((ULONGEST) 1) << bitsize) - 1; | |
2077 | val &= valmask; | |
2078 | if (!TYPE_UNSIGNED (field_type)) | |
2079 | { | |
2080 | if (val & (valmask ^ (valmask >> 1))) | |
2081 | { | |
2082 | val |= ~valmask; | |
2083 | } | |
2084 | } | |
2085 | } | |
2086 | return (val); | |
2087 | } | |
2088 | ||
4ea48cc1 DJ |
2089 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at |
2090 | VALADDR. See unpack_bits_as_long for more details. */ | |
2091 | ||
2092 | LONGEST | |
2093 | unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno) | |
2094 | { | |
2095 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); | |
2096 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
2097 | struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); | |
2098 | ||
2099 | return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize); | |
2100 | } | |
2101 | ||
c906108c SS |
2102 | /* Modify the value of a bitfield. ADDR points to a block of memory in |
2103 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
2104 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
f4e88c8e PH |
2105 | indicate which bits (in target bit order) comprise the bitfield. |
2106 | Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and | |
2107 | 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */ | |
c906108c SS |
2108 | |
2109 | void | |
50810684 UW |
2110 | modify_field (struct type *type, gdb_byte *addr, |
2111 | LONGEST fieldval, int bitpos, int bitsize) | |
c906108c | 2112 | { |
e17a4113 | 2113 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
f4e88c8e PH |
2114 | ULONGEST oword; |
2115 | ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize); | |
c906108c SS |
2116 | |
2117 | /* If a negative fieldval fits in the field in question, chop | |
2118 | off the sign extension bits. */ | |
f4e88c8e PH |
2119 | if ((~fieldval & ~(mask >> 1)) == 0) |
2120 | fieldval &= mask; | |
c906108c SS |
2121 | |
2122 | /* Warn if value is too big to fit in the field in question. */ | |
f4e88c8e | 2123 | if (0 != (fieldval & ~mask)) |
c906108c SS |
2124 | { |
2125 | /* FIXME: would like to include fieldval in the message, but | |
c5aa993b | 2126 | we don't have a sprintf_longest. */ |
8a3fe4f8 | 2127 | warning (_("Value does not fit in %d bits."), bitsize); |
c906108c SS |
2128 | |
2129 | /* Truncate it, otherwise adjoining fields may be corrupted. */ | |
f4e88c8e | 2130 | fieldval &= mask; |
c906108c SS |
2131 | } |
2132 | ||
e17a4113 | 2133 | oword = extract_unsigned_integer (addr, sizeof oword, byte_order); |
c906108c SS |
2134 | |
2135 | /* Shifting for bit field depends on endianness of the target machine. */ | |
50810684 | 2136 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
c906108c SS |
2137 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; |
2138 | ||
f4e88c8e | 2139 | oword &= ~(mask << bitpos); |
c906108c SS |
2140 | oword |= fieldval << bitpos; |
2141 | ||
e17a4113 | 2142 | store_unsigned_integer (addr, sizeof oword, byte_order, oword); |
c906108c SS |
2143 | } |
2144 | \f | |
14d06750 | 2145 | /* Pack NUM into BUF using a target format of TYPE. */ |
c906108c | 2146 | |
14d06750 DJ |
2147 | void |
2148 | pack_long (gdb_byte *buf, struct type *type, LONGEST num) | |
c906108c | 2149 | { |
e17a4113 | 2150 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
52f0bd74 | 2151 | int len; |
14d06750 DJ |
2152 | |
2153 | type = check_typedef (type); | |
c906108c SS |
2154 | len = TYPE_LENGTH (type); |
2155 | ||
14d06750 | 2156 | switch (TYPE_CODE (type)) |
c906108c | 2157 | { |
c906108c SS |
2158 | case TYPE_CODE_INT: |
2159 | case TYPE_CODE_CHAR: | |
2160 | case TYPE_CODE_ENUM: | |
4f2aea11 | 2161 | case TYPE_CODE_FLAGS: |
c906108c SS |
2162 | case TYPE_CODE_BOOL: |
2163 | case TYPE_CODE_RANGE: | |
0d5de010 | 2164 | case TYPE_CODE_MEMBERPTR: |
e17a4113 | 2165 | store_signed_integer (buf, len, byte_order, num); |
c906108c | 2166 | break; |
c5aa993b | 2167 | |
c906108c SS |
2168 | case TYPE_CODE_REF: |
2169 | case TYPE_CODE_PTR: | |
14d06750 | 2170 | store_typed_address (buf, type, (CORE_ADDR) num); |
c906108c | 2171 | break; |
c5aa993b | 2172 | |
c906108c | 2173 | default: |
14d06750 DJ |
2174 | error (_("Unexpected type (%d) encountered for integer constant."), |
2175 | TYPE_CODE (type)); | |
c906108c | 2176 | } |
14d06750 DJ |
2177 | } |
2178 | ||
2179 | ||
2180 | /* Convert C numbers into newly allocated values. */ | |
2181 | ||
2182 | struct value * | |
2183 | value_from_longest (struct type *type, LONGEST num) | |
2184 | { | |
2185 | struct value *val = allocate_value (type); | |
2186 | ||
2187 | pack_long (value_contents_raw (val), type, num); | |
2188 | ||
c906108c SS |
2189 | return val; |
2190 | } | |
2191 | ||
4478b372 JB |
2192 | |
2193 | /* Create a value representing a pointer of type TYPE to the address | |
2194 | ADDR. */ | |
f23631e4 | 2195 | struct value * |
4478b372 JB |
2196 | value_from_pointer (struct type *type, CORE_ADDR addr) |
2197 | { | |
f23631e4 | 2198 | struct value *val = allocate_value (type); |
cab0c772 | 2199 | store_typed_address (value_contents_raw (val), check_typedef (type), addr); |
4478b372 JB |
2200 | return val; |
2201 | } | |
2202 | ||
2203 | ||
8acb6b92 TT |
2204 | /* Create a value of type TYPE whose contents come from VALADDR, if it |
2205 | is non-null, and whose memory address (in the inferior) is | |
2206 | ADDRESS. */ | |
2207 | ||
2208 | struct value * | |
2209 | value_from_contents_and_address (struct type *type, | |
2210 | const gdb_byte *valaddr, | |
2211 | CORE_ADDR address) | |
2212 | { | |
2213 | struct value *v = allocate_value (type); | |
2214 | if (valaddr == NULL) | |
2215 | set_value_lazy (v, 1); | |
2216 | else | |
2217 | memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type)); | |
42ae5230 | 2218 | set_value_address (v, address); |
33d502b4 | 2219 | VALUE_LVAL (v) = lval_memory; |
8acb6b92 TT |
2220 | return v; |
2221 | } | |
2222 | ||
f23631e4 | 2223 | struct value * |
fba45db2 | 2224 | value_from_double (struct type *type, DOUBLEST num) |
c906108c | 2225 | { |
f23631e4 | 2226 | struct value *val = allocate_value (type); |
c906108c | 2227 | struct type *base_type = check_typedef (type); |
52f0bd74 AC |
2228 | enum type_code code = TYPE_CODE (base_type); |
2229 | int len = TYPE_LENGTH (base_type); | |
c906108c SS |
2230 | |
2231 | if (code == TYPE_CODE_FLT) | |
2232 | { | |
990a07ab | 2233 | store_typed_floating (value_contents_raw (val), base_type, num); |
c906108c SS |
2234 | } |
2235 | else | |
8a3fe4f8 | 2236 | error (_("Unexpected type encountered for floating constant.")); |
c906108c SS |
2237 | |
2238 | return val; | |
2239 | } | |
994b9211 | 2240 | |
27bc4d80 | 2241 | struct value * |
4ef30785 | 2242 | value_from_decfloat (struct type *type, const gdb_byte *dec) |
27bc4d80 TJB |
2243 | { |
2244 | struct value *val = allocate_value (type); | |
27bc4d80 | 2245 | |
4ef30785 | 2246 | memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type)); |
27bc4d80 | 2247 | |
27bc4d80 TJB |
2248 | return val; |
2249 | } | |
2250 | ||
994b9211 AC |
2251 | struct value * |
2252 | coerce_ref (struct value *arg) | |
2253 | { | |
df407dfe | 2254 | struct type *value_type_arg_tmp = check_typedef (value_type (arg)); |
994b9211 AC |
2255 | if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF) |
2256 | arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp), | |
df407dfe | 2257 | unpack_pointer (value_type (arg), |
0fd88904 | 2258 | value_contents (arg))); |
994b9211 AC |
2259 | return arg; |
2260 | } | |
2261 | ||
2262 | struct value * | |
2263 | coerce_array (struct value *arg) | |
2264 | { | |
f3134b88 TT |
2265 | struct type *type; |
2266 | ||
994b9211 | 2267 | arg = coerce_ref (arg); |
f3134b88 TT |
2268 | type = check_typedef (value_type (arg)); |
2269 | ||
2270 | switch (TYPE_CODE (type)) | |
2271 | { | |
2272 | case TYPE_CODE_ARRAY: | |
2273 | if (current_language->c_style_arrays) | |
2274 | arg = value_coerce_array (arg); | |
2275 | break; | |
2276 | case TYPE_CODE_FUNC: | |
2277 | arg = value_coerce_function (arg); | |
2278 | break; | |
2279 | } | |
994b9211 AC |
2280 | return arg; |
2281 | } | |
c906108c | 2282 | \f |
c906108c | 2283 | |
48436ce6 AC |
2284 | /* Return true if the function returning the specified type is using |
2285 | the convention of returning structures in memory (passing in the | |
82585c72 | 2286 | address as a hidden first parameter). */ |
c906108c SS |
2287 | |
2288 | int | |
d80b854b UW |
2289 | using_struct_return (struct gdbarch *gdbarch, |
2290 | struct type *func_type, struct type *value_type) | |
c906108c | 2291 | { |
52f0bd74 | 2292 | enum type_code code = TYPE_CODE (value_type); |
c906108c SS |
2293 | |
2294 | if (code == TYPE_CODE_ERROR) | |
8a3fe4f8 | 2295 | error (_("Function return type unknown.")); |
c906108c | 2296 | |
667e784f AC |
2297 | if (code == TYPE_CODE_VOID) |
2298 | /* A void return value is never in memory. See also corresponding | |
44e5158b | 2299 | code in "print_return_value". */ |
667e784f AC |
2300 | return 0; |
2301 | ||
92ad9cd9 | 2302 | /* Probe the architecture for the return-value convention. */ |
d80b854b | 2303 | return (gdbarch_return_value (gdbarch, func_type, value_type, |
92ad9cd9 | 2304 | NULL, NULL, NULL) |
31db7b6c | 2305 | != RETURN_VALUE_REGISTER_CONVENTION); |
c906108c SS |
2306 | } |
2307 | ||
42be36b3 CT |
2308 | /* Set the initialized field in a value struct. */ |
2309 | ||
2310 | void | |
2311 | set_value_initialized (struct value *val, int status) | |
2312 | { | |
2313 | val->initialized = status; | |
2314 | } | |
2315 | ||
2316 | /* Return the initialized field in a value struct. */ | |
2317 | ||
2318 | int | |
2319 | value_initialized (struct value *val) | |
2320 | { | |
2321 | return val->initialized; | |
2322 | } | |
2323 | ||
c906108c | 2324 | void |
fba45db2 | 2325 | _initialize_values (void) |
c906108c | 2326 | { |
1a966eab AC |
2327 | add_cmd ("convenience", no_class, show_convenience, _("\ |
2328 | Debugger convenience (\"$foo\") variables.\n\ | |
c906108c | 2329 | These variables are created when you assign them values;\n\ |
1a966eab AC |
2330 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\ |
2331 | \n\ | |
c906108c SS |
2332 | A few convenience variables are given values automatically:\n\ |
2333 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
1a966eab | 2334 | \"$__\" holds the contents of the last address examined with \"x\"."), |
c906108c SS |
2335 | &showlist); |
2336 | ||
2337 | add_cmd ("values", no_class, show_values, | |
1a966eab | 2338 | _("Elements of value history around item number IDX (or last ten)."), |
c906108c | 2339 | &showlist); |
53e5f3cf AS |
2340 | |
2341 | add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\ | |
2342 | Initialize a convenience variable if necessary.\n\ | |
2343 | init-if-undefined VARIABLE = EXPRESSION\n\ | |
2344 | Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\ | |
2345 | exist or does not contain a value. The EXPRESSION is not evaluated if the\n\ | |
2346 | VARIABLE is already initialized.")); | |
bc3b79fd TJB |
2347 | |
2348 | add_prefix_cmd ("function", no_class, function_command, _("\ | |
2349 | Placeholder command for showing help on convenience functions."), | |
2350 | &functionlist, "function ", 0, &cmdlist); | |
c906108c | 2351 | } |