* infrun.c (handle_inferior_event): Clear trap_expected after
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75
JB
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
c906108c
SS
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
c906108c
SS
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
c906108c 33#include "demangle.h"
d16aafd8 34#include "doublest.h"
5ae326fa 35#include "gdb_assert.h"
36160dc4 36#include "regcache.h"
fe898f56 37#include "block.h"
27bc4d80 38#include "dfp.h"
bccdca4a 39#include "objfiles.h"
79a45b7d 40#include "valprint.h"
bc3b79fd 41#include "cli/cli-decode.h"
c906108c 42
a08702d6
TJB
43#include "python/python.h"
44
c906108c
SS
45/* Prototypes for exported functions. */
46
a14ed312 47void _initialize_values (void);
c906108c 48
bc3b79fd
TJB
49/* Definition of a user function. */
50struct internal_function
51{
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62};
63
64static struct cmd_list_element *functionlist;
65
91294c83
AC
66struct value
67{
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
5f5233d4
PA
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
91294c83
AC
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
32c9a795
MD
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
109 int bitpos;
110
4ea48cc1
DJ
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
91294c83
AC
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
a08702d6
TJB
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
91294c83
AC
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
91294c83
AC
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
42be36b3
CT
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
3e3d7139
JG
199 /* Actual contents of the value. Target byte-order. NULL or not
200 valid if lazy is nonzero. */
201 gdb_byte *contents;
828d3400
DJ
202
203 /* The number of references to this value. When a value is created,
204 the value chain holds a reference, so REFERENCE_COUNT is 1. If
205 release_value is called, this value is removed from the chain but
206 the caller of release_value now has a reference to this value.
207 The caller must arrange for a call to value_free later. */
208 int reference_count;
91294c83
AC
209};
210
c906108c
SS
211/* Prototypes for local functions. */
212
a14ed312 213static void show_values (char *, int);
c906108c 214
a14ed312 215static void show_convenience (char *, int);
c906108c 216
c906108c
SS
217
218/* The value-history records all the values printed
219 by print commands during this session. Each chunk
220 records 60 consecutive values. The first chunk on
221 the chain records the most recent values.
222 The total number of values is in value_history_count. */
223
224#define VALUE_HISTORY_CHUNK 60
225
226struct value_history_chunk
c5aa993b
JM
227 {
228 struct value_history_chunk *next;
f23631e4 229 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 230 };
c906108c
SS
231
232/* Chain of chunks now in use. */
233
234static struct value_history_chunk *value_history_chain;
235
236static int value_history_count; /* Abs number of last entry stored */
bc3b79fd 237
c906108c
SS
238\f
239/* List of all value objects currently allocated
240 (except for those released by calls to release_value)
241 This is so they can be freed after each command. */
242
f23631e4 243static struct value *all_values;
c906108c 244
3e3d7139
JG
245/* Allocate a lazy value for type TYPE. Its actual content is
246 "lazily" allocated too: the content field of the return value is
247 NULL; it will be allocated when it is fetched from the target. */
c906108c 248
f23631e4 249struct value *
3e3d7139 250allocate_value_lazy (struct type *type)
c906108c 251{
f23631e4 252 struct value *val;
c906108c
SS
253 struct type *atype = check_typedef (type);
254
3e3d7139
JG
255 val = (struct value *) xzalloc (sizeof (struct value));
256 val->contents = NULL;
df407dfe 257 val->next = all_values;
c906108c 258 all_values = val;
df407dfe 259 val->type = type;
4754a64e 260 val->enclosing_type = type;
c906108c 261 VALUE_LVAL (val) = not_lval;
42ae5230 262 val->location.address = 0;
1df6926e 263 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
264 val->offset = 0;
265 val->bitpos = 0;
266 val->bitsize = 0;
9ee8fc9d 267 VALUE_REGNUM (val) = -1;
3e3d7139 268 val->lazy = 1;
feb13ab0 269 val->optimized_out = 0;
13c3b5f5 270 val->embedded_offset = 0;
b44d461b 271 val->pointed_to_offset = 0;
c906108c 272 val->modifiable = 1;
42be36b3 273 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
274
275 /* Values start out on the all_values chain. */
276 val->reference_count = 1;
277
c906108c
SS
278 return val;
279}
280
3e3d7139
JG
281/* Allocate the contents of VAL if it has not been allocated yet. */
282
283void
284allocate_value_contents (struct value *val)
285{
286 if (!val->contents)
287 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
288}
289
290/* Allocate a value and its contents for type TYPE. */
291
292struct value *
293allocate_value (struct type *type)
294{
295 struct value *val = allocate_value_lazy (type);
296 allocate_value_contents (val);
297 val->lazy = 0;
298 return val;
299}
300
c906108c 301/* Allocate a value that has the correct length
938f5214 302 for COUNT repetitions of type TYPE. */
c906108c 303
f23631e4 304struct value *
fba45db2 305allocate_repeat_value (struct type *type, int count)
c906108c 306{
c5aa993b 307 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
308 /* FIXME-type-allocation: need a way to free this type when we are
309 done with it. */
e3506a9f
UW
310 struct type *array_type
311 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
312 return allocate_value (array_type);
c906108c
SS
313}
314
a08702d6
TJB
315/* Needed if another module needs to maintain its on list of values. */
316void
317value_prepend_to_list (struct value **head, struct value *val)
318{
319 val->next = *head;
320 *head = val;
321}
322
323/* Needed if another module needs to maintain its on list of values. */
324void
325value_remove_from_list (struct value **head, struct value *val)
326{
327 struct value *prev;
328
329 if (*head == val)
330 *head = (*head)->next;
331 else
332 for (prev = *head; prev->next; prev = prev->next)
333 if (prev->next == val)
334 {
335 prev->next = val->next;
336 break;
337 }
338}
339
5f5233d4
PA
340struct value *
341allocate_computed_value (struct type *type,
342 struct lval_funcs *funcs,
343 void *closure)
344{
345 struct value *v = allocate_value (type);
346 VALUE_LVAL (v) = lval_computed;
347 v->location.computed.funcs = funcs;
348 v->location.computed.closure = closure;
349 set_value_lazy (v, 1);
350
351 return v;
352}
353
df407dfe
AC
354/* Accessor methods. */
355
17cf0ecd
AC
356struct value *
357value_next (struct value *value)
358{
359 return value->next;
360}
361
df407dfe
AC
362struct type *
363value_type (struct value *value)
364{
365 return value->type;
366}
04624583
AC
367void
368deprecated_set_value_type (struct value *value, struct type *type)
369{
370 value->type = type;
371}
df407dfe
AC
372
373int
374value_offset (struct value *value)
375{
376 return value->offset;
377}
f5cf64a7
AC
378void
379set_value_offset (struct value *value, int offset)
380{
381 value->offset = offset;
382}
df407dfe
AC
383
384int
385value_bitpos (struct value *value)
386{
387 return value->bitpos;
388}
9bbda503
AC
389void
390set_value_bitpos (struct value *value, int bit)
391{
392 value->bitpos = bit;
393}
df407dfe
AC
394
395int
396value_bitsize (struct value *value)
397{
398 return value->bitsize;
399}
9bbda503
AC
400void
401set_value_bitsize (struct value *value, int bit)
402{
403 value->bitsize = bit;
404}
df407dfe 405
4ea48cc1
DJ
406struct value *
407value_parent (struct value *value)
408{
409 return value->parent;
410}
411
fc1a4b47 412gdb_byte *
990a07ab
AC
413value_contents_raw (struct value *value)
414{
3e3d7139
JG
415 allocate_value_contents (value);
416 return value->contents + value->embedded_offset;
990a07ab
AC
417}
418
fc1a4b47 419gdb_byte *
990a07ab
AC
420value_contents_all_raw (struct value *value)
421{
3e3d7139
JG
422 allocate_value_contents (value);
423 return value->contents;
990a07ab
AC
424}
425
4754a64e
AC
426struct type *
427value_enclosing_type (struct value *value)
428{
429 return value->enclosing_type;
430}
431
fc1a4b47 432const gdb_byte *
46615f07
AC
433value_contents_all (struct value *value)
434{
435 if (value->lazy)
436 value_fetch_lazy (value);
3e3d7139 437 return value->contents;
46615f07
AC
438}
439
d69fe07e
AC
440int
441value_lazy (struct value *value)
442{
443 return value->lazy;
444}
445
dfa52d88
AC
446void
447set_value_lazy (struct value *value, int val)
448{
449 value->lazy = val;
450}
451
fc1a4b47 452const gdb_byte *
0fd88904
AC
453value_contents (struct value *value)
454{
455 return value_contents_writeable (value);
456}
457
fc1a4b47 458gdb_byte *
0fd88904
AC
459value_contents_writeable (struct value *value)
460{
461 if (value->lazy)
462 value_fetch_lazy (value);
fc0c53a0 463 return value_contents_raw (value);
0fd88904
AC
464}
465
a6c442d8
MK
466/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
467 this function is different from value_equal; in C the operator ==
468 can return 0 even if the two values being compared are equal. */
469
470int
471value_contents_equal (struct value *val1, struct value *val2)
472{
473 struct type *type1;
474 struct type *type2;
475 int len;
476
477 type1 = check_typedef (value_type (val1));
478 type2 = check_typedef (value_type (val2));
479 len = TYPE_LENGTH (type1);
480 if (len != TYPE_LENGTH (type2))
481 return 0;
482
483 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
484}
485
feb13ab0
AC
486int
487value_optimized_out (struct value *value)
488{
489 return value->optimized_out;
490}
491
492void
493set_value_optimized_out (struct value *value, int val)
494{
495 value->optimized_out = val;
496}
13c3b5f5
AC
497
498int
499value_embedded_offset (struct value *value)
500{
501 return value->embedded_offset;
502}
503
504void
505set_value_embedded_offset (struct value *value, int val)
506{
507 value->embedded_offset = val;
508}
b44d461b
AC
509
510int
511value_pointed_to_offset (struct value *value)
512{
513 return value->pointed_to_offset;
514}
515
516void
517set_value_pointed_to_offset (struct value *value, int val)
518{
519 value->pointed_to_offset = val;
520}
13bb5560 521
5f5233d4
PA
522struct lval_funcs *
523value_computed_funcs (struct value *v)
524{
525 gdb_assert (VALUE_LVAL (v) == lval_computed);
526
527 return v->location.computed.funcs;
528}
529
530void *
531value_computed_closure (struct value *v)
532{
533 gdb_assert (VALUE_LVAL (v) == lval_computed);
534
535 return v->location.computed.closure;
536}
537
13bb5560
AC
538enum lval_type *
539deprecated_value_lval_hack (struct value *value)
540{
541 return &value->lval;
542}
543
42ae5230
TT
544CORE_ADDR
545value_address (struct value *value)
546{
547 if (value->lval == lval_internalvar
548 || value->lval == lval_internalvar_component)
549 return 0;
550 return value->location.address + value->offset;
551}
552
553CORE_ADDR
554value_raw_address (struct value *value)
555{
556 if (value->lval == lval_internalvar
557 || value->lval == lval_internalvar_component)
558 return 0;
559 return value->location.address;
560}
561
562void
563set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 564{
42ae5230
TT
565 gdb_assert (value->lval != lval_internalvar
566 && value->lval != lval_internalvar_component);
567 value->location.address = addr;
13bb5560
AC
568}
569
570struct internalvar **
571deprecated_value_internalvar_hack (struct value *value)
572{
573 return &value->location.internalvar;
574}
575
576struct frame_id *
577deprecated_value_frame_id_hack (struct value *value)
578{
579 return &value->frame_id;
580}
581
582short *
583deprecated_value_regnum_hack (struct value *value)
584{
585 return &value->regnum;
586}
88e3b34b
AC
587
588int
589deprecated_value_modifiable (struct value *value)
590{
591 return value->modifiable;
592}
593void
594deprecated_set_value_modifiable (struct value *value, int modifiable)
595{
596 value->modifiable = modifiable;
597}
990a07ab 598\f
c906108c
SS
599/* Return a mark in the value chain. All values allocated after the
600 mark is obtained (except for those released) are subject to being freed
601 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 602struct value *
fba45db2 603value_mark (void)
c906108c
SS
604{
605 return all_values;
606}
607
828d3400
DJ
608/* Take a reference to VAL. VAL will not be deallocated until all
609 references are released. */
610
611void
612value_incref (struct value *val)
613{
614 val->reference_count++;
615}
616
617/* Release a reference to VAL, which was acquired with value_incref.
618 This function is also called to deallocate values from the value
619 chain. */
620
3e3d7139
JG
621void
622value_free (struct value *val)
623{
624 if (val)
5f5233d4 625 {
828d3400
DJ
626 gdb_assert (val->reference_count > 0);
627 val->reference_count--;
628 if (val->reference_count > 0)
629 return;
630
4ea48cc1
DJ
631 /* If there's an associated parent value, drop our reference to
632 it. */
633 if (val->parent != NULL)
634 value_free (val->parent);
635
5f5233d4
PA
636 if (VALUE_LVAL (val) == lval_computed)
637 {
638 struct lval_funcs *funcs = val->location.computed.funcs;
639
640 if (funcs->free_closure)
641 funcs->free_closure (val);
642 }
643
644 xfree (val->contents);
645 }
3e3d7139
JG
646 xfree (val);
647}
648
c906108c
SS
649/* Free all values allocated since MARK was obtained by value_mark
650 (except for those released). */
651void
f23631e4 652value_free_to_mark (struct value *mark)
c906108c 653{
f23631e4
AC
654 struct value *val;
655 struct value *next;
c906108c
SS
656
657 for (val = all_values; val && val != mark; val = next)
658 {
df407dfe 659 next = val->next;
c906108c
SS
660 value_free (val);
661 }
662 all_values = val;
663}
664
665/* Free all the values that have been allocated (except for those released).
666 Called after each command, successful or not. */
667
668void
fba45db2 669free_all_values (void)
c906108c 670{
f23631e4
AC
671 struct value *val;
672 struct value *next;
c906108c
SS
673
674 for (val = all_values; val; val = next)
675 {
df407dfe 676 next = val->next;
c906108c
SS
677 value_free (val);
678 }
679
680 all_values = 0;
681}
682
683/* Remove VAL from the chain all_values
684 so it will not be freed automatically. */
685
686void
f23631e4 687release_value (struct value *val)
c906108c 688{
f23631e4 689 struct value *v;
c906108c
SS
690
691 if (all_values == val)
692 {
693 all_values = val->next;
694 return;
695 }
696
697 for (v = all_values; v; v = v->next)
698 {
699 if (v->next == val)
700 {
701 v->next = val->next;
702 break;
703 }
704 }
705}
706
707/* Release all values up to mark */
f23631e4
AC
708struct value *
709value_release_to_mark (struct value *mark)
c906108c 710{
f23631e4
AC
711 struct value *val;
712 struct value *next;
c906108c 713
df407dfe
AC
714 for (val = next = all_values; next; next = next->next)
715 if (next->next == mark)
c906108c 716 {
df407dfe
AC
717 all_values = next->next;
718 next->next = NULL;
c906108c
SS
719 return val;
720 }
721 all_values = 0;
722 return val;
723}
724
725/* Return a copy of the value ARG.
726 It contains the same contents, for same memory address,
727 but it's a different block of storage. */
728
f23631e4
AC
729struct value *
730value_copy (struct value *arg)
c906108c 731{
4754a64e 732 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
733 struct value *val;
734
735 if (value_lazy (arg))
736 val = allocate_value_lazy (encl_type);
737 else
738 val = allocate_value (encl_type);
df407dfe 739 val->type = arg->type;
c906108c 740 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 741 val->location = arg->location;
df407dfe
AC
742 val->offset = arg->offset;
743 val->bitpos = arg->bitpos;
744 val->bitsize = arg->bitsize;
1df6926e 745 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 746 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 747 val->lazy = arg->lazy;
feb13ab0 748 val->optimized_out = arg->optimized_out;
13c3b5f5 749 val->embedded_offset = value_embedded_offset (arg);
b44d461b 750 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 751 val->modifiable = arg->modifiable;
d69fe07e 752 if (!value_lazy (val))
c906108c 753 {
990a07ab 754 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 755 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
756
757 }
4ea48cc1
DJ
758 val->parent = arg->parent;
759 if (val->parent)
760 value_incref (val->parent);
5f5233d4
PA
761 if (VALUE_LVAL (val) == lval_computed)
762 {
763 struct lval_funcs *funcs = val->location.computed.funcs;
764
765 if (funcs->copy_closure)
766 val->location.computed.closure = funcs->copy_closure (val);
767 }
c906108c
SS
768 return val;
769}
74bcbdf3
PA
770
771void
772set_value_component_location (struct value *component, struct value *whole)
773{
774 if (VALUE_LVAL (whole) == lval_internalvar)
775 VALUE_LVAL (component) = lval_internalvar_component;
776 else
777 VALUE_LVAL (component) = VALUE_LVAL (whole);
5f5233d4 778
74bcbdf3 779 component->location = whole->location;
5f5233d4
PA
780 if (VALUE_LVAL (whole) == lval_computed)
781 {
782 struct lval_funcs *funcs = whole->location.computed.funcs;
783
784 if (funcs->copy_closure)
785 component->location.computed.closure = funcs->copy_closure (whole);
786 }
74bcbdf3
PA
787}
788
c906108c
SS
789\f
790/* Access to the value history. */
791
792/* Record a new value in the value history.
793 Returns the absolute history index of the entry.
794 Result of -1 indicates the value was not saved; otherwise it is the
795 value history index of this new item. */
796
797int
f23631e4 798record_latest_value (struct value *val)
c906108c
SS
799{
800 int i;
801
802 /* We don't want this value to have anything to do with the inferior anymore.
803 In particular, "set $1 = 50" should not affect the variable from which
804 the value was taken, and fast watchpoints should be able to assume that
805 a value on the value history never changes. */
d69fe07e 806 if (value_lazy (val))
c906108c
SS
807 value_fetch_lazy (val);
808 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
809 from. This is a bit dubious, because then *&$1 does not just return $1
810 but the current contents of that location. c'est la vie... */
811 val->modifiable = 0;
812 release_value (val);
813
814 /* Here we treat value_history_count as origin-zero
815 and applying to the value being stored now. */
816
817 i = value_history_count % VALUE_HISTORY_CHUNK;
818 if (i == 0)
819 {
f23631e4 820 struct value_history_chunk *new
c5aa993b
JM
821 = (struct value_history_chunk *)
822 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
823 memset (new->values, 0, sizeof new->values);
824 new->next = value_history_chain;
825 value_history_chain = new;
826 }
827
828 value_history_chain->values[i] = val;
829
830 /* Now we regard value_history_count as origin-one
831 and applying to the value just stored. */
832
833 return ++value_history_count;
834}
835
836/* Return a copy of the value in the history with sequence number NUM. */
837
f23631e4 838struct value *
fba45db2 839access_value_history (int num)
c906108c 840{
f23631e4 841 struct value_history_chunk *chunk;
52f0bd74
AC
842 int i;
843 int absnum = num;
c906108c
SS
844
845 if (absnum <= 0)
846 absnum += value_history_count;
847
848 if (absnum <= 0)
849 {
850 if (num == 0)
8a3fe4f8 851 error (_("The history is empty."));
c906108c 852 else if (num == 1)
8a3fe4f8 853 error (_("There is only one value in the history."));
c906108c 854 else
8a3fe4f8 855 error (_("History does not go back to $$%d."), -num);
c906108c
SS
856 }
857 if (absnum > value_history_count)
8a3fe4f8 858 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
859
860 absnum--;
861
862 /* Now absnum is always absolute and origin zero. */
863
864 chunk = value_history_chain;
865 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
866 i > 0; i--)
867 chunk = chunk->next;
868
869 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
870}
871
c906108c 872static void
fba45db2 873show_values (char *num_exp, int from_tty)
c906108c 874{
52f0bd74 875 int i;
f23631e4 876 struct value *val;
c906108c
SS
877 static int num = 1;
878
879 if (num_exp)
880 {
f132ba9d
TJB
881 /* "show values +" should print from the stored position.
882 "show values <exp>" should print around value number <exp>. */
c906108c 883 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 884 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
885 }
886 else
887 {
f132ba9d 888 /* "show values" means print the last 10 values. */
c906108c
SS
889 num = value_history_count - 9;
890 }
891
892 if (num <= 0)
893 num = 1;
894
895 for (i = num; i < num + 10 && i <= value_history_count; i++)
896 {
79a45b7d 897 struct value_print_options opts;
c906108c 898 val = access_value_history (i);
a3f17187 899 printf_filtered (("$%d = "), i);
79a45b7d
TT
900 get_user_print_options (&opts);
901 value_print (val, gdb_stdout, &opts);
a3f17187 902 printf_filtered (("\n"));
c906108c
SS
903 }
904
f132ba9d 905 /* The next "show values +" should start after what we just printed. */
c906108c
SS
906 num += 10;
907
908 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
909 "show values +". If num_exp is null, this is unnecessary, since
910 "show values +" is not useful after "show values". */
c906108c
SS
911 if (from_tty && num_exp)
912 {
913 num_exp[0] = '+';
914 num_exp[1] = '\0';
915 }
916}
917\f
918/* Internal variables. These are variables within the debugger
919 that hold values assigned by debugger commands.
920 The user refers to them with a '$' prefix
921 that does not appear in the variable names stored internally. */
922
4fa62494
UW
923struct internalvar
924{
925 struct internalvar *next;
926 char *name;
4fa62494 927
78267919
UW
928 /* We support various different kinds of content of an internal variable.
929 enum internalvar_kind specifies the kind, and union internalvar_data
930 provides the data associated with this particular kind. */
931
932 enum internalvar_kind
933 {
934 /* The internal variable is empty. */
935 INTERNALVAR_VOID,
936
937 /* The value of the internal variable is provided directly as
938 a GDB value object. */
939 INTERNALVAR_VALUE,
940
941 /* A fresh value is computed via a call-back routine on every
942 access to the internal variable. */
943 INTERNALVAR_MAKE_VALUE,
4fa62494 944
78267919
UW
945 /* The internal variable holds a GDB internal convenience function. */
946 INTERNALVAR_FUNCTION,
947
948 /* The variable holds a simple scalar value. */
949 INTERNALVAR_SCALAR,
950
951 /* The variable holds a GDB-provided string. */
952 INTERNALVAR_STRING,
953
954 } kind;
4fa62494 955
4fa62494
UW
956 union internalvar_data
957 {
78267919
UW
958 /* A value object used with INTERNALVAR_VALUE. */
959 struct value *value;
960
961 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
962 internalvar_make_value make_value;
963
964 /* The internal function used with INTERNALVAR_FUNCTION. */
965 struct
966 {
967 struct internal_function *function;
968 /* True if this is the canonical name for the function. */
969 int canonical;
970 } fn;
971
972 /* A scalar value used with INTERNALVAR_SCALAR. */
973 struct
974 {
975 /* If type is non-NULL, it will be used as the type to generate
976 a value for this internal variable. If type is NULL, a default
977 integer type for the architecture is used. */
978 struct type *type;
979 union
980 {
981 LONGEST l; /* Used with TYPE_CODE_INT and NULL types. */
982 CORE_ADDR a; /* Used with TYPE_CODE_PTR types. */
983 } val;
984 } scalar;
985
986 /* A string value used with INTERNALVAR_STRING. */
987 char *string;
4fa62494
UW
988 } u;
989};
990
c906108c
SS
991static struct internalvar *internalvars;
992
53e5f3cf
AS
993/* If the variable does not already exist create it and give it the value given.
994 If no value is given then the default is zero. */
995static void
996init_if_undefined_command (char* args, int from_tty)
997{
998 struct internalvar* intvar;
999
1000 /* Parse the expression - this is taken from set_command(). */
1001 struct expression *expr = parse_expression (args);
1002 register struct cleanup *old_chain =
1003 make_cleanup (free_current_contents, &expr);
1004
1005 /* Validate the expression.
1006 Was the expression an assignment?
1007 Or even an expression at all? */
1008 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1009 error (_("Init-if-undefined requires an assignment expression."));
1010
1011 /* Extract the variable from the parsed expression.
1012 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1013 if (expr->elts[1].opcode != OP_INTERNALVAR)
1014 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1015 intvar = expr->elts[2].internalvar;
1016
1017 /* Only evaluate the expression if the lvalue is void.
1018 This may still fail if the expresssion is invalid. */
78267919 1019 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1020 evaluate_expression (expr);
1021
1022 do_cleanups (old_chain);
1023}
1024
1025
c906108c
SS
1026/* Look up an internal variable with name NAME. NAME should not
1027 normally include a dollar sign.
1028
1029 If the specified internal variable does not exist,
c4a3d09a 1030 the return value is NULL. */
c906108c
SS
1031
1032struct internalvar *
bc3b79fd 1033lookup_only_internalvar (const char *name)
c906108c 1034{
52f0bd74 1035 struct internalvar *var;
c906108c
SS
1036
1037 for (var = internalvars; var; var = var->next)
5cb316ef 1038 if (strcmp (var->name, name) == 0)
c906108c
SS
1039 return var;
1040
c4a3d09a
MF
1041 return NULL;
1042}
1043
1044
1045/* Create an internal variable with name NAME and with a void value.
1046 NAME should not normally include a dollar sign. */
1047
1048struct internalvar *
bc3b79fd 1049create_internalvar (const char *name)
c4a3d09a
MF
1050{
1051 struct internalvar *var;
c906108c 1052 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1053 var->name = concat (name, (char *)NULL);
78267919 1054 var->kind = INTERNALVAR_VOID;
c906108c
SS
1055 var->next = internalvars;
1056 internalvars = var;
1057 return var;
1058}
1059
4aa995e1
PA
1060/* Create an internal variable with name NAME and register FUN as the
1061 function that value_of_internalvar uses to create a value whenever
1062 this variable is referenced. NAME should not normally include a
1063 dollar sign. */
1064
1065struct internalvar *
1066create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1067{
4fa62494 1068 struct internalvar *var = create_internalvar (name);
78267919
UW
1069 var->kind = INTERNALVAR_MAKE_VALUE;
1070 var->u.make_value = fun;
4aa995e1
PA
1071 return var;
1072}
c4a3d09a
MF
1073
1074/* Look up an internal variable with name NAME. NAME should not
1075 normally include a dollar sign.
1076
1077 If the specified internal variable does not exist,
1078 one is created, with a void value. */
1079
1080struct internalvar *
bc3b79fd 1081lookup_internalvar (const char *name)
c4a3d09a
MF
1082{
1083 struct internalvar *var;
1084
1085 var = lookup_only_internalvar (name);
1086 if (var)
1087 return var;
1088
1089 return create_internalvar (name);
1090}
1091
78267919
UW
1092/* Return current value of internal variable VAR. For variables that
1093 are not inherently typed, use a value type appropriate for GDBARCH. */
1094
f23631e4 1095struct value *
78267919 1096value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1097{
f23631e4 1098 struct value *val;
c906108c 1099
78267919 1100 switch (var->kind)
5f5233d4 1101 {
78267919
UW
1102 case INTERNALVAR_VOID:
1103 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1104 break;
4fa62494 1105
78267919
UW
1106 case INTERNALVAR_FUNCTION:
1107 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1108 break;
4fa62494 1109
78267919
UW
1110 case INTERNALVAR_SCALAR:
1111 if (!var->u.scalar.type)
1112 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1113 var->u.scalar.val.l);
1114 else if (TYPE_CODE (var->u.scalar.type) == TYPE_CODE_INT)
1115 val = value_from_longest (var->u.scalar.type, var->u.scalar.val.l);
1116 else if (TYPE_CODE (var->u.scalar.type) == TYPE_CODE_PTR)
1117 val = value_from_pointer (var->u.scalar.type, var->u.scalar.val.a);
1118 else
1119 internal_error (__FILE__, __LINE__, "bad type");
1120 break;
4fa62494 1121
78267919
UW
1122 case INTERNALVAR_STRING:
1123 val = value_cstring (var->u.string, strlen (var->u.string),
1124 builtin_type (gdbarch)->builtin_char);
1125 break;
4fa62494 1126
78267919
UW
1127 case INTERNALVAR_VALUE:
1128 val = value_copy (var->u.value);
4aa995e1
PA
1129 if (value_lazy (val))
1130 value_fetch_lazy (val);
78267919 1131 break;
4aa995e1 1132
78267919
UW
1133 case INTERNALVAR_MAKE_VALUE:
1134 val = (*var->u.make_value) (gdbarch, var);
1135 break;
1136
1137 default:
1138 internal_error (__FILE__, __LINE__, "bad kind");
1139 }
1140
1141 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1142 on this value go back to affect the original internal variable.
1143
1144 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1145 no underlying modifyable state in the internal variable.
1146
1147 Likewise, if the variable's value is a computed lvalue, we want
1148 references to it to produce another computed lvalue, where
1149 references and assignments actually operate through the
1150 computed value's functions.
1151
1152 This means that internal variables with computed values
1153 behave a little differently from other internal variables:
1154 assignments to them don't just replace the previous value
1155 altogether. At the moment, this seems like the behavior we
1156 want. */
1157
1158 if (var->kind != INTERNALVAR_MAKE_VALUE
1159 && val->lval != lval_computed)
1160 {
1161 VALUE_LVAL (val) = lval_internalvar;
1162 VALUE_INTERNALVAR (val) = var;
5f5233d4 1163 }
d3c139e9 1164
4fa62494
UW
1165 return val;
1166}
d3c139e9 1167
4fa62494
UW
1168int
1169get_internalvar_integer (struct internalvar *var, LONGEST *result)
1170{
78267919 1171 switch (var->kind)
4fa62494 1172 {
78267919
UW
1173 case INTERNALVAR_SCALAR:
1174 if (var->u.scalar.type == NULL
1175 || TYPE_CODE (var->u.scalar.type) == TYPE_CODE_INT)
1176 {
1177 *result = var->u.scalar.val.l;
1178 return 1;
1179 }
1180 /* Fall through. */
d3c139e9 1181
4fa62494
UW
1182 default:
1183 return 0;
1184 }
1185}
d3c139e9 1186
4fa62494
UW
1187static int
1188get_internalvar_function (struct internalvar *var,
1189 struct internal_function **result)
1190{
78267919 1191 switch (var->kind)
d3c139e9 1192 {
78267919
UW
1193 case INTERNALVAR_FUNCTION:
1194 *result = var->u.fn.function;
4fa62494 1195 return 1;
d3c139e9 1196
4fa62494
UW
1197 default:
1198 return 0;
1199 }
c906108c
SS
1200}
1201
1202void
fba45db2 1203set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1204 int bitsize, struct value *newval)
c906108c 1205{
4fa62494 1206 gdb_byte *addr;
c906108c 1207
78267919 1208 switch (var->kind)
4fa62494 1209 {
78267919
UW
1210 case INTERNALVAR_VALUE:
1211 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1212
1213 if (bitsize)
50810684 1214 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1215 value_as_long (newval), bitpos, bitsize);
1216 else
1217 memcpy (addr + offset, value_contents (newval),
1218 TYPE_LENGTH (value_type (newval)));
1219 break;
78267919
UW
1220
1221 default:
1222 /* We can never get a component of any other kind. */
1223 internal_error (__FILE__, __LINE__, "set_internalvar_component");
4fa62494 1224 }
c906108c
SS
1225}
1226
1227void
f23631e4 1228set_internalvar (struct internalvar *var, struct value *val)
c906108c 1229{
78267919 1230 enum internalvar_kind new_kind;
4fa62494 1231 union internalvar_data new_data = { 0 };
c906108c 1232
78267919 1233 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1234 error (_("Cannot overwrite convenience function %s"), var->name);
1235
4fa62494 1236 /* Prepare new contents. */
78267919 1237 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1238 {
1239 case TYPE_CODE_VOID:
78267919 1240 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1241 break;
1242
1243 case TYPE_CODE_INTERNAL_FUNCTION:
1244 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1245 new_kind = INTERNALVAR_FUNCTION;
1246 get_internalvar_function (VALUE_INTERNALVAR (val),
1247 &new_data.fn.function);
1248 /* Copies created here are never canonical. */
4fa62494
UW
1249 break;
1250
1251 case TYPE_CODE_INT:
78267919
UW
1252 new_kind = INTERNALVAR_SCALAR;
1253 new_data.scalar.type = value_type (val);
1254 new_data.scalar.val.l = value_as_long (val);
4fa62494
UW
1255 break;
1256
1257 case TYPE_CODE_PTR:
78267919
UW
1258 new_kind = INTERNALVAR_SCALAR;
1259 new_data.scalar.type = value_type (val);
1260 new_data.scalar.val.a = value_as_address (val);
4fa62494
UW
1261 break;
1262
1263 default:
78267919
UW
1264 new_kind = INTERNALVAR_VALUE;
1265 new_data.value = value_copy (val);
1266 new_data.value->modifiable = 1;
4fa62494
UW
1267
1268 /* Force the value to be fetched from the target now, to avoid problems
1269 later when this internalvar is referenced and the target is gone or
1270 has changed. */
78267919
UW
1271 if (value_lazy (new_data.value))
1272 value_fetch_lazy (new_data.value);
4fa62494
UW
1273
1274 /* Release the value from the value chain to prevent it from being
1275 deleted by free_all_values. From here on this function should not
1276 call error () until new_data is installed into the var->u to avoid
1277 leaking memory. */
78267919 1278 release_value (new_data.value);
4fa62494
UW
1279 break;
1280 }
1281
1282 /* Clean up old contents. */
1283 clear_internalvar (var);
1284
1285 /* Switch over. */
78267919 1286 var->kind = new_kind;
4fa62494 1287 var->u = new_data;
c906108c
SS
1288 /* End code which must not call error(). */
1289}
1290
4fa62494
UW
1291void
1292set_internalvar_integer (struct internalvar *var, LONGEST l)
1293{
1294 /* Clean up old contents. */
1295 clear_internalvar (var);
1296
78267919
UW
1297 var->kind = INTERNALVAR_SCALAR;
1298 var->u.scalar.type = NULL;
1299 var->u.scalar.val.l = l;
1300}
1301
1302void
1303set_internalvar_string (struct internalvar *var, const char *string)
1304{
1305 /* Clean up old contents. */
1306 clear_internalvar (var);
1307
1308 var->kind = INTERNALVAR_STRING;
1309 var->u.string = xstrdup (string);
4fa62494
UW
1310}
1311
1312static void
1313set_internalvar_function (struct internalvar *var, struct internal_function *f)
1314{
1315 /* Clean up old contents. */
1316 clear_internalvar (var);
1317
78267919
UW
1318 var->kind = INTERNALVAR_FUNCTION;
1319 var->u.fn.function = f;
1320 var->u.fn.canonical = 1;
1321 /* Variables installed here are always the canonical version. */
4fa62494
UW
1322}
1323
1324void
1325clear_internalvar (struct internalvar *var)
1326{
1327 /* Clean up old contents. */
78267919 1328 switch (var->kind)
4fa62494 1329 {
78267919
UW
1330 case INTERNALVAR_VALUE:
1331 value_free (var->u.value);
1332 break;
1333
1334 case INTERNALVAR_STRING:
1335 xfree (var->u.string);
4fa62494
UW
1336 break;
1337
1338 default:
4fa62494
UW
1339 break;
1340 }
1341
78267919
UW
1342 /* Reset to void kind. */
1343 var->kind = INTERNALVAR_VOID;
4fa62494
UW
1344}
1345
c906108c 1346char *
fba45db2 1347internalvar_name (struct internalvar *var)
c906108c
SS
1348{
1349 return var->name;
1350}
1351
4fa62494
UW
1352static struct internal_function *
1353create_internal_function (const char *name,
1354 internal_function_fn handler, void *cookie)
bc3b79fd 1355{
bc3b79fd
TJB
1356 struct internal_function *ifn = XNEW (struct internal_function);
1357 ifn->name = xstrdup (name);
1358 ifn->handler = handler;
1359 ifn->cookie = cookie;
4fa62494 1360 return ifn;
bc3b79fd
TJB
1361}
1362
1363char *
1364value_internal_function_name (struct value *val)
1365{
4fa62494
UW
1366 struct internal_function *ifn;
1367 int result;
1368
1369 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1370 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1371 gdb_assert (result);
1372
bc3b79fd
TJB
1373 return ifn->name;
1374}
1375
1376struct value *
d452c4bc
UW
1377call_internal_function (struct gdbarch *gdbarch,
1378 const struct language_defn *language,
1379 struct value *func, int argc, struct value **argv)
bc3b79fd 1380{
4fa62494
UW
1381 struct internal_function *ifn;
1382 int result;
1383
1384 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1385 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1386 gdb_assert (result);
1387
d452c4bc 1388 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
1389}
1390
1391/* The 'function' command. This does nothing -- it is just a
1392 placeholder to let "help function NAME" work. This is also used as
1393 the implementation of the sub-command that is created when
1394 registering an internal function. */
1395static void
1396function_command (char *command, int from_tty)
1397{
1398 /* Do nothing. */
1399}
1400
1401/* Clean up if an internal function's command is destroyed. */
1402static void
1403function_destroyer (struct cmd_list_element *self, void *ignore)
1404{
1405 xfree (self->name);
1406 xfree (self->doc);
1407}
1408
1409/* Add a new internal function. NAME is the name of the function; DOC
1410 is a documentation string describing the function. HANDLER is
1411 called when the function is invoked. COOKIE is an arbitrary
1412 pointer which is passed to HANDLER and is intended for "user
1413 data". */
1414void
1415add_internal_function (const char *name, const char *doc,
1416 internal_function_fn handler, void *cookie)
1417{
1418 struct cmd_list_element *cmd;
4fa62494 1419 struct internal_function *ifn;
bc3b79fd 1420 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
1421
1422 ifn = create_internal_function (name, handler, cookie);
1423 set_internalvar_function (var, ifn);
bc3b79fd
TJB
1424
1425 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1426 &functionlist);
1427 cmd->destroyer = function_destroyer;
1428}
1429
ae5a43e0
DJ
1430/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1431 prevent cycles / duplicates. */
1432
1433static void
1434preserve_one_value (struct value *value, struct objfile *objfile,
1435 htab_t copied_types)
1436{
1437 if (TYPE_OBJFILE (value->type) == objfile)
1438 value->type = copy_type_recursive (objfile, value->type, copied_types);
1439
1440 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1441 value->enclosing_type = copy_type_recursive (objfile,
1442 value->enclosing_type,
1443 copied_types);
1444}
1445
78267919
UW
1446/* Likewise for internal variable VAR. */
1447
1448static void
1449preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1450 htab_t copied_types)
1451{
1452 switch (var->kind)
1453 {
1454 case INTERNALVAR_SCALAR:
1455 if (var->u.scalar.type && TYPE_OBJFILE (var->u.scalar.type) == objfile)
1456 var->u.scalar.type
1457 = copy_type_recursive (objfile, var->u.scalar.type, copied_types);
1458 break;
1459
1460 case INTERNALVAR_VALUE:
1461 preserve_one_value (var->u.value, objfile, copied_types);
1462 break;
1463 }
1464}
1465
ae5a43e0
DJ
1466/* Update the internal variables and value history when OBJFILE is
1467 discarded; we must copy the types out of the objfile. New global types
1468 will be created for every convenience variable which currently points to
1469 this objfile's types, and the convenience variables will be adjusted to
1470 use the new global types. */
c906108c
SS
1471
1472void
ae5a43e0 1473preserve_values (struct objfile *objfile)
c906108c 1474{
ae5a43e0
DJ
1475 htab_t copied_types;
1476 struct value_history_chunk *cur;
52f0bd74 1477 struct internalvar *var;
a08702d6 1478 struct value *val;
ae5a43e0 1479 int i;
c906108c 1480
ae5a43e0
DJ
1481 /* Create the hash table. We allocate on the objfile's obstack, since
1482 it is soon to be deleted. */
1483 copied_types = create_copied_types_hash (objfile);
1484
1485 for (cur = value_history_chain; cur; cur = cur->next)
1486 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1487 if (cur->values[i])
1488 preserve_one_value (cur->values[i], objfile, copied_types);
1489
1490 for (var = internalvars; var; var = var->next)
78267919 1491 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 1492
a08702d6
TJB
1493 for (val = values_in_python; val; val = val->next)
1494 preserve_one_value (val, objfile, copied_types);
1495
ae5a43e0 1496 htab_delete (copied_types);
c906108c
SS
1497}
1498
1499static void
fba45db2 1500show_convenience (char *ignore, int from_tty)
c906108c 1501{
e17c207e 1502 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 1503 struct internalvar *var;
c906108c 1504 int varseen = 0;
79a45b7d 1505 struct value_print_options opts;
c906108c 1506
79a45b7d 1507 get_user_print_options (&opts);
c906108c
SS
1508 for (var = internalvars; var; var = var->next)
1509 {
c906108c
SS
1510 if (!varseen)
1511 {
1512 varseen = 1;
1513 }
a3f17187 1514 printf_filtered (("$%s = "), var->name);
78267919 1515 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
79a45b7d 1516 &opts);
a3f17187 1517 printf_filtered (("\n"));
c906108c
SS
1518 }
1519 if (!varseen)
a3f17187
AC
1520 printf_unfiltered (_("\
1521No debugger convenience variables now defined.\n\
c906108c 1522Convenience variables have names starting with \"$\";\n\
a3f17187 1523use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
1524}
1525\f
1526/* Extract a value as a C number (either long or double).
1527 Knows how to convert fixed values to double, or
1528 floating values to long.
1529 Does not deallocate the value. */
1530
1531LONGEST
f23631e4 1532value_as_long (struct value *val)
c906108c
SS
1533{
1534 /* This coerces arrays and functions, which is necessary (e.g.
1535 in disassemble_command). It also dereferences references, which
1536 I suspect is the most logical thing to do. */
994b9211 1537 val = coerce_array (val);
0fd88904 1538 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1539}
1540
1541DOUBLEST
f23631e4 1542value_as_double (struct value *val)
c906108c
SS
1543{
1544 DOUBLEST foo;
1545 int inv;
c5aa993b 1546
0fd88904 1547 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1548 if (inv)
8a3fe4f8 1549 error (_("Invalid floating value found in program."));
c906108c
SS
1550 return foo;
1551}
4ef30785 1552
4478b372
JB
1553/* Extract a value as a C pointer. Does not deallocate the value.
1554 Note that val's type may not actually be a pointer; value_as_long
1555 handles all the cases. */
c906108c 1556CORE_ADDR
f23631e4 1557value_as_address (struct value *val)
c906108c 1558{
50810684
UW
1559 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1560
c906108c
SS
1561 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1562 whether we want this to be true eventually. */
1563#if 0
bf6ae464 1564 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1565 non-address (e.g. argument to "signal", "info break", etc.), or
1566 for pointers to char, in which the low bits *are* significant. */
50810684 1567 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 1568#else
f312f057
JB
1569
1570 /* There are several targets (IA-64, PowerPC, and others) which
1571 don't represent pointers to functions as simply the address of
1572 the function's entry point. For example, on the IA-64, a
1573 function pointer points to a two-word descriptor, generated by
1574 the linker, which contains the function's entry point, and the
1575 value the IA-64 "global pointer" register should have --- to
1576 support position-independent code. The linker generates
1577 descriptors only for those functions whose addresses are taken.
1578
1579 On such targets, it's difficult for GDB to convert an arbitrary
1580 function address into a function pointer; it has to either find
1581 an existing descriptor for that function, or call malloc and
1582 build its own. On some targets, it is impossible for GDB to
1583 build a descriptor at all: the descriptor must contain a jump
1584 instruction; data memory cannot be executed; and code memory
1585 cannot be modified.
1586
1587 Upon entry to this function, if VAL is a value of type `function'
1588 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 1589 value_address (val) is the address of the function. This is what
f312f057
JB
1590 you'll get if you evaluate an expression like `main'. The call
1591 to COERCE_ARRAY below actually does all the usual unary
1592 conversions, which includes converting values of type `function'
1593 to `pointer to function'. This is the challenging conversion
1594 discussed above. Then, `unpack_long' will convert that pointer
1595 back into an address.
1596
1597 So, suppose the user types `disassemble foo' on an architecture
1598 with a strange function pointer representation, on which GDB
1599 cannot build its own descriptors, and suppose further that `foo'
1600 has no linker-built descriptor. The address->pointer conversion
1601 will signal an error and prevent the command from running, even
1602 though the next step would have been to convert the pointer
1603 directly back into the same address.
1604
1605 The following shortcut avoids this whole mess. If VAL is a
1606 function, just return its address directly. */
df407dfe
AC
1607 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1608 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 1609 return value_address (val);
f312f057 1610
994b9211 1611 val = coerce_array (val);
fc0c74b1
AC
1612
1613 /* Some architectures (e.g. Harvard), map instruction and data
1614 addresses onto a single large unified address space. For
1615 instance: An architecture may consider a large integer in the
1616 range 0x10000000 .. 0x1000ffff to already represent a data
1617 addresses (hence not need a pointer to address conversion) while
1618 a small integer would still need to be converted integer to
1619 pointer to address. Just assume such architectures handle all
1620 integer conversions in a single function. */
1621
1622 /* JimB writes:
1623
1624 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1625 must admonish GDB hackers to make sure its behavior matches the
1626 compiler's, whenever possible.
1627
1628 In general, I think GDB should evaluate expressions the same way
1629 the compiler does. When the user copies an expression out of
1630 their source code and hands it to a `print' command, they should
1631 get the same value the compiler would have computed. Any
1632 deviation from this rule can cause major confusion and annoyance,
1633 and needs to be justified carefully. In other words, GDB doesn't
1634 really have the freedom to do these conversions in clever and
1635 useful ways.
1636
1637 AndrewC pointed out that users aren't complaining about how GDB
1638 casts integers to pointers; they are complaining that they can't
1639 take an address from a disassembly listing and give it to `x/i'.
1640 This is certainly important.
1641
79dd2d24 1642 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1643 makes it possible for GDB to "get it right" in all circumstances
1644 --- the target has complete control over how things get done, so
1645 people can Do The Right Thing for their target without breaking
1646 anyone else. The standard doesn't specify how integers get
1647 converted to pointers; usually, the ABI doesn't either, but
1648 ABI-specific code is a more reasonable place to handle it. */
1649
df407dfe
AC
1650 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1651 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
1652 && gdbarch_integer_to_address_p (gdbarch))
1653 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 1654 value_contents (val));
fc0c74b1 1655
0fd88904 1656 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1657#endif
1658}
1659\f
1660/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1661 as a long, or as a double, assuming the raw data is described
1662 by type TYPE. Knows how to convert different sizes of values
1663 and can convert between fixed and floating point. We don't assume
1664 any alignment for the raw data. Return value is in host byte order.
1665
1666 If you want functions and arrays to be coerced to pointers, and
1667 references to be dereferenced, call value_as_long() instead.
1668
1669 C++: It is assumed that the front-end has taken care of
1670 all matters concerning pointers to members. A pointer
1671 to member which reaches here is considered to be equivalent
1672 to an INT (or some size). After all, it is only an offset. */
1673
1674LONGEST
fc1a4b47 1675unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1676{
e17a4113 1677 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
1678 enum type_code code = TYPE_CODE (type);
1679 int len = TYPE_LENGTH (type);
1680 int nosign = TYPE_UNSIGNED (type);
c906108c 1681
c906108c
SS
1682 switch (code)
1683 {
1684 case TYPE_CODE_TYPEDEF:
1685 return unpack_long (check_typedef (type), valaddr);
1686 case TYPE_CODE_ENUM:
4f2aea11 1687 case TYPE_CODE_FLAGS:
c906108c
SS
1688 case TYPE_CODE_BOOL:
1689 case TYPE_CODE_INT:
1690 case TYPE_CODE_CHAR:
1691 case TYPE_CODE_RANGE:
0d5de010 1692 case TYPE_CODE_MEMBERPTR:
c906108c 1693 if (nosign)
e17a4113 1694 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 1695 else
e17a4113 1696 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
1697
1698 case TYPE_CODE_FLT:
96d2f608 1699 return extract_typed_floating (valaddr, type);
c906108c 1700
4ef30785
TJB
1701 case TYPE_CODE_DECFLOAT:
1702 /* libdecnumber has a function to convert from decimal to integer, but
1703 it doesn't work when the decimal number has a fractional part. */
e17a4113 1704 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 1705
c906108c
SS
1706 case TYPE_CODE_PTR:
1707 case TYPE_CODE_REF:
1708 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1709 whether we want this to be true eventually. */
4478b372 1710 return extract_typed_address (valaddr, type);
c906108c 1711
c906108c 1712 default:
8a3fe4f8 1713 error (_("Value can't be converted to integer."));
c906108c 1714 }
c5aa993b 1715 return 0; /* Placate lint. */
c906108c
SS
1716}
1717
1718/* Return a double value from the specified type and address.
1719 INVP points to an int which is set to 0 for valid value,
1720 1 for invalid value (bad float format). In either case,
1721 the returned double is OK to use. Argument is in target
1722 format, result is in host format. */
1723
1724DOUBLEST
fc1a4b47 1725unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 1726{
e17a4113 1727 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
1728 enum type_code code;
1729 int len;
1730 int nosign;
1731
1732 *invp = 0; /* Assume valid. */
1733 CHECK_TYPEDEF (type);
1734 code = TYPE_CODE (type);
1735 len = TYPE_LENGTH (type);
1736 nosign = TYPE_UNSIGNED (type);
1737 if (code == TYPE_CODE_FLT)
1738 {
75bc7ddf
AC
1739 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1740 floating-point value was valid (using the macro
1741 INVALID_FLOAT). That test/macro have been removed.
1742
1743 It turns out that only the VAX defined this macro and then
1744 only in a non-portable way. Fixing the portability problem
1745 wouldn't help since the VAX floating-point code is also badly
1746 bit-rotten. The target needs to add definitions for the
ea06eb3d 1747 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1748 exactly describe the target floating-point format. The
1749 problem here is that the corresponding floatformat_vax_f and
1750 floatformat_vax_d values these methods should be set to are
1751 also not defined either. Oops!
1752
1753 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1754 definitions and the new cases for floatformat_is_valid (). */
1755
1756 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1757 {
1758 *invp = 1;
1759 return 0.0;
1760 }
1761
96d2f608 1762 return extract_typed_floating (valaddr, type);
c906108c 1763 }
4ef30785 1764 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 1765 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
1766 else if (nosign)
1767 {
1768 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1769 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1770 }
1771 else
1772 {
1773 /* Signed -- we are OK with unpack_long. */
1774 return unpack_long (type, valaddr);
1775 }
1776}
1777
1778/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1779 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1780 We don't assume any alignment for the raw data. Return value is in
1781 host byte order.
1782
1783 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1784 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1785
1786 C++: It is assumed that the front-end has taken care of
1787 all matters concerning pointers to members. A pointer
1788 to member which reaches here is considered to be equivalent
1789 to an INT (or some size). After all, it is only an offset. */
1790
1791CORE_ADDR
fc1a4b47 1792unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1793{
1794 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1795 whether we want this to be true eventually. */
1796 return unpack_long (type, valaddr);
1797}
4478b372 1798
c906108c 1799\f
2c2738a0
DC
1800/* Get the value of the FIELDN'th field (which must be static) of
1801 TYPE. Return NULL if the field doesn't exist or has been
1802 optimized out. */
c906108c 1803
f23631e4 1804struct value *
fba45db2 1805value_static_field (struct type *type, int fieldno)
c906108c 1806{
948e66d9
DJ
1807 struct value *retval;
1808
d6a843b5 1809 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
c906108c 1810 {
948e66d9 1811 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1812 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
1813 }
1814 else
1815 {
1816 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2570f2b7 1817 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
948e66d9 1818 if (sym == NULL)
c906108c
SS
1819 {
1820 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
1821 as non-debuggable symbols */
1822 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
1823 if (!msym)
1824 return NULL;
1825 else
c5aa993b 1826 {
948e66d9 1827 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1828 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1829 }
1830 }
1831 else
1832 {
948e66d9
DJ
1833 /* SYM should never have a SYMBOL_CLASS which will require
1834 read_var_value to use the FRAME parameter. */
1835 if (symbol_read_needs_frame (sym))
8a3fe4f8
AC
1836 warning (_("static field's value depends on the current "
1837 "frame - bad debug info?"));
948e66d9 1838 retval = read_var_value (sym, NULL);
2b127877 1839 }
948e66d9
DJ
1840 if (retval && VALUE_LVAL (retval) == lval_memory)
1841 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
42ae5230 1842 value_address (retval));
c906108c 1843 }
948e66d9 1844 return retval;
c906108c
SS
1845}
1846
2b127877
DB
1847/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1848 You have to be careful here, since the size of the data area for the value
1849 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1850 than the old enclosing type, you have to allocate more space for the data.
1851 The return value is a pointer to the new version of this value structure. */
1852
f23631e4
AC
1853struct value *
1854value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1855{
3e3d7139
JG
1856 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1857 val->contents =
1858 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1859
1860 val->enclosing_type = new_encl_type;
1861 return val;
2b127877
DB
1862}
1863
c906108c
SS
1864/* Given a value ARG1 (offset by OFFSET bytes)
1865 of a struct or union type ARG_TYPE,
1866 extract and return the value of one of its (non-static) fields.
1867 FIELDNO says which field. */
1868
f23631e4
AC
1869struct value *
1870value_primitive_field (struct value *arg1, int offset,
aa1ee363 1871 int fieldno, struct type *arg_type)
c906108c 1872{
f23631e4 1873 struct value *v;
52f0bd74 1874 struct type *type;
c906108c
SS
1875
1876 CHECK_TYPEDEF (arg_type);
1877 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1878
1879 /* Handle packed fields */
1880
1881 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1882 {
4ea48cc1
DJ
1883 /* Create a new value for the bitfield, with bitpos and bitsize
1884 set. If possible, arrange offset and bitpos so that we can
1885 do a single aligned read of the size of the containing type.
1886 Otherwise, adjust offset to the byte containing the first
1887 bit. Assume that the address, offset, and embedded offset
1888 are sufficiently aligned. */
1889 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1890 int container_bitsize = TYPE_LENGTH (type) * 8;
1891
1892 v = allocate_value_lazy (type);
df407dfe 1893 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
4ea48cc1
DJ
1894 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1895 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1896 v->bitpos = bitpos % container_bitsize;
1897 else
1898 v->bitpos = bitpos % 8;
1899 v->offset = value_offset (arg1) + value_embedded_offset (arg1)
1900 + (bitpos - v->bitpos) / 8;
1901 v->parent = arg1;
1902 value_incref (v->parent);
1903 if (!value_lazy (arg1))
1904 value_fetch_lazy (v);
c906108c
SS
1905 }
1906 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1907 {
1908 /* This field is actually a base subobject, so preserve the
1909 entire object's contents for later references to virtual
1910 bases, etc. */
a4e2ee12
DJ
1911
1912 /* Lazy register values with offsets are not supported. */
1913 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1914 value_fetch_lazy (arg1);
1915
1916 if (value_lazy (arg1))
3e3d7139 1917 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 1918 else
3e3d7139
JG
1919 {
1920 v = allocate_value (value_enclosing_type (arg1));
1921 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1922 TYPE_LENGTH (value_enclosing_type (arg1)));
1923 }
1924 v->type = type;
df407dfe 1925 v->offset = value_offset (arg1);
13c3b5f5
AC
1926 v->embedded_offset = (offset + value_embedded_offset (arg1)
1927 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
1928 }
1929 else
1930 {
1931 /* Plain old data member */
1932 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
1933
1934 /* Lazy register values with offsets are not supported. */
1935 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1936 value_fetch_lazy (arg1);
1937
1938 if (value_lazy (arg1))
3e3d7139 1939 v = allocate_value_lazy (type);
c906108c 1940 else
3e3d7139
JG
1941 {
1942 v = allocate_value (type);
1943 memcpy (value_contents_raw (v),
1944 value_contents_raw (arg1) + offset,
1945 TYPE_LENGTH (type));
1946 }
df407dfe 1947 v->offset = (value_offset (arg1) + offset
13c3b5f5 1948 + value_embedded_offset (arg1));
c906108c 1949 }
74bcbdf3 1950 set_value_component_location (v, arg1);
9ee8fc9d 1951 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 1952 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
1953 return v;
1954}
1955
1956/* Given a value ARG1 of a struct or union type,
1957 extract and return the value of one of its (non-static) fields.
1958 FIELDNO says which field. */
1959
f23631e4 1960struct value *
aa1ee363 1961value_field (struct value *arg1, int fieldno)
c906108c 1962{
df407dfe 1963 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
1964}
1965
1966/* Return a non-virtual function as a value.
1967 F is the list of member functions which contains the desired method.
0478d61c
FF
1968 J is an index into F which provides the desired method.
1969
1970 We only use the symbol for its address, so be happy with either a
1971 full symbol or a minimal symbol.
1972 */
c906108c 1973
f23631e4
AC
1974struct value *
1975value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 1976 int offset)
c906108c 1977{
f23631e4 1978 struct value *v;
52f0bd74 1979 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 1980 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 1981 struct symbol *sym;
0478d61c 1982 struct minimal_symbol *msym;
c906108c 1983
2570f2b7 1984 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 1985 if (sym != NULL)
0478d61c 1986 {
5ae326fa
AC
1987 msym = NULL;
1988 }
1989 else
1990 {
1991 gdb_assert (sym == NULL);
0478d61c 1992 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
1993 if (msym == NULL)
1994 return NULL;
0478d61c
FF
1995 }
1996
c906108c 1997 v = allocate_value (ftype);
0478d61c
FF
1998 if (sym)
1999 {
42ae5230 2000 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2001 }
2002 else
2003 {
bccdca4a
UW
2004 /* The minimal symbol might point to a function descriptor;
2005 resolve it to the actual code address instead. */
2006 struct objfile *objfile = msymbol_objfile (msym);
2007 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2008
42ae5230
TT
2009 set_value_address (v,
2010 gdbarch_convert_from_func_ptr_addr
2011 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2012 }
c906108c
SS
2013
2014 if (arg1p)
c5aa993b 2015 {
df407dfe 2016 if (type != value_type (*arg1p))
c5aa993b
JM
2017 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2018 value_addr (*arg1p)));
2019
070ad9f0 2020 /* Move the `this' pointer according to the offset.
c5aa993b
JM
2021 VALUE_OFFSET (*arg1p) += offset;
2022 */
c906108c
SS
2023 }
2024
2025 return v;
2026}
2027
c906108c 2028\f
4ea48cc1
DJ
2029/* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2030 object at VALADDR. The bitfield starts at BITPOS bits and contains
2031 BITSIZE bits.
c906108c
SS
2032
2033 Extracting bits depends on endianness of the machine. Compute the
2034 number of least significant bits to discard. For big endian machines,
2035 we compute the total number of bits in the anonymous object, subtract
2036 off the bit count from the MSB of the object to the MSB of the
2037 bitfield, then the size of the bitfield, which leaves the LSB discard
2038 count. For little endian machines, the discard count is simply the
2039 number of bits from the LSB of the anonymous object to the LSB of the
2040 bitfield.
2041
2042 If the field is signed, we also do sign extension. */
2043
2044LONGEST
4ea48cc1
DJ
2045unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2046 int bitpos, int bitsize)
c906108c 2047{
4ea48cc1 2048 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2049 ULONGEST val;
2050 ULONGEST valmask;
c906108c 2051 int lsbcount;
c906108c 2052
e17a4113
UW
2053 val = extract_unsigned_integer (valaddr + bitpos / 8,
2054 sizeof (val), byte_order);
c906108c
SS
2055 CHECK_TYPEDEF (field_type);
2056
2057 /* Extract bits. See comment above. */
2058
4ea48cc1 2059 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
c906108c
SS
2060 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
2061 else
2062 lsbcount = (bitpos % 8);
2063 val >>= lsbcount;
2064
2065 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2066 If the field is signed, and is negative, then sign extend. */
2067
2068 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2069 {
2070 valmask = (((ULONGEST) 1) << bitsize) - 1;
2071 val &= valmask;
2072 if (!TYPE_UNSIGNED (field_type))
2073 {
2074 if (val & (valmask ^ (valmask >> 1)))
2075 {
2076 val |= ~valmask;
2077 }
2078 }
2079 }
2080 return (val);
2081}
2082
4ea48cc1
DJ
2083/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2084 VALADDR. See unpack_bits_as_long for more details. */
2085
2086LONGEST
2087unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2088{
2089 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2090 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2091 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2092
2093 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2094}
2095
c906108c
SS
2096/* Modify the value of a bitfield. ADDR points to a block of memory in
2097 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2098 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
2099 indicate which bits (in target bit order) comprise the bitfield.
2100 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2101 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2102
2103void
50810684
UW
2104modify_field (struct type *type, gdb_byte *addr,
2105 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2106{
e17a4113 2107 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2108 ULONGEST oword;
2109 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
2110
2111 /* If a negative fieldval fits in the field in question, chop
2112 off the sign extension bits. */
f4e88c8e
PH
2113 if ((~fieldval & ~(mask >> 1)) == 0)
2114 fieldval &= mask;
c906108c
SS
2115
2116 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2117 if (0 != (fieldval & ~mask))
c906108c
SS
2118 {
2119 /* FIXME: would like to include fieldval in the message, but
c5aa993b 2120 we don't have a sprintf_longest. */
8a3fe4f8 2121 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
2122
2123 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 2124 fieldval &= mask;
c906108c
SS
2125 }
2126
e17a4113 2127 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
c906108c
SS
2128
2129 /* Shifting for bit field depends on endianness of the target machine. */
50810684 2130 if (gdbarch_bits_big_endian (get_type_arch (type)))
c906108c
SS
2131 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2132
f4e88c8e 2133 oword &= ~(mask << bitpos);
c906108c
SS
2134 oword |= fieldval << bitpos;
2135
e17a4113 2136 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
c906108c
SS
2137}
2138\f
14d06750 2139/* Pack NUM into BUF using a target format of TYPE. */
c906108c 2140
14d06750
DJ
2141void
2142pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 2143{
e17a4113 2144 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 2145 int len;
14d06750
DJ
2146
2147 type = check_typedef (type);
c906108c
SS
2148 len = TYPE_LENGTH (type);
2149
14d06750 2150 switch (TYPE_CODE (type))
c906108c 2151 {
c906108c
SS
2152 case TYPE_CODE_INT:
2153 case TYPE_CODE_CHAR:
2154 case TYPE_CODE_ENUM:
4f2aea11 2155 case TYPE_CODE_FLAGS:
c906108c
SS
2156 case TYPE_CODE_BOOL:
2157 case TYPE_CODE_RANGE:
0d5de010 2158 case TYPE_CODE_MEMBERPTR:
e17a4113 2159 store_signed_integer (buf, len, byte_order, num);
c906108c 2160 break;
c5aa993b 2161
c906108c
SS
2162 case TYPE_CODE_REF:
2163 case TYPE_CODE_PTR:
14d06750 2164 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 2165 break;
c5aa993b 2166
c906108c 2167 default:
14d06750
DJ
2168 error (_("Unexpected type (%d) encountered for integer constant."),
2169 TYPE_CODE (type));
c906108c 2170 }
14d06750
DJ
2171}
2172
2173
2174/* Convert C numbers into newly allocated values. */
2175
2176struct value *
2177value_from_longest (struct type *type, LONGEST num)
2178{
2179 struct value *val = allocate_value (type);
2180
2181 pack_long (value_contents_raw (val), type, num);
2182
c906108c
SS
2183 return val;
2184}
2185
4478b372
JB
2186
2187/* Create a value representing a pointer of type TYPE to the address
2188 ADDR. */
f23631e4 2189struct value *
4478b372
JB
2190value_from_pointer (struct type *type, CORE_ADDR addr)
2191{
f23631e4 2192 struct value *val = allocate_value (type);
990a07ab 2193 store_typed_address (value_contents_raw (val), type, addr);
4478b372
JB
2194 return val;
2195}
2196
2197
8acb6b92
TT
2198/* Create a value of type TYPE whose contents come from VALADDR, if it
2199 is non-null, and whose memory address (in the inferior) is
2200 ADDRESS. */
2201
2202struct value *
2203value_from_contents_and_address (struct type *type,
2204 const gdb_byte *valaddr,
2205 CORE_ADDR address)
2206{
2207 struct value *v = allocate_value (type);
2208 if (valaddr == NULL)
2209 set_value_lazy (v, 1);
2210 else
2211 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
42ae5230 2212 set_value_address (v, address);
33d502b4 2213 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
2214 return v;
2215}
2216
f23631e4 2217struct value *
fba45db2 2218value_from_double (struct type *type, DOUBLEST num)
c906108c 2219{
f23631e4 2220 struct value *val = allocate_value (type);
c906108c 2221 struct type *base_type = check_typedef (type);
52f0bd74
AC
2222 enum type_code code = TYPE_CODE (base_type);
2223 int len = TYPE_LENGTH (base_type);
c906108c
SS
2224
2225 if (code == TYPE_CODE_FLT)
2226 {
990a07ab 2227 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
2228 }
2229 else
8a3fe4f8 2230 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
2231
2232 return val;
2233}
994b9211 2234
27bc4d80 2235struct value *
4ef30785 2236value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
2237{
2238 struct value *val = allocate_value (type);
27bc4d80 2239
4ef30785 2240 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80 2241
27bc4d80
TJB
2242 return val;
2243}
2244
994b9211
AC
2245struct value *
2246coerce_ref (struct value *arg)
2247{
df407dfe 2248 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
994b9211
AC
2249 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2250 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 2251 unpack_pointer (value_type (arg),
0fd88904 2252 value_contents (arg)));
994b9211
AC
2253 return arg;
2254}
2255
2256struct value *
2257coerce_array (struct value *arg)
2258{
f3134b88
TT
2259 struct type *type;
2260
994b9211 2261 arg = coerce_ref (arg);
f3134b88
TT
2262 type = check_typedef (value_type (arg));
2263
2264 switch (TYPE_CODE (type))
2265 {
2266 case TYPE_CODE_ARRAY:
2267 if (current_language->c_style_arrays)
2268 arg = value_coerce_array (arg);
2269 break;
2270 case TYPE_CODE_FUNC:
2271 arg = value_coerce_function (arg);
2272 break;
2273 }
994b9211
AC
2274 return arg;
2275}
c906108c 2276\f
c906108c 2277
48436ce6
AC
2278/* Return true if the function returning the specified type is using
2279 the convention of returning structures in memory (passing in the
82585c72 2280 address as a hidden first parameter). */
c906108c
SS
2281
2282int
d80b854b
UW
2283using_struct_return (struct gdbarch *gdbarch,
2284 struct type *func_type, struct type *value_type)
c906108c 2285{
52f0bd74 2286 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
2287
2288 if (code == TYPE_CODE_ERROR)
8a3fe4f8 2289 error (_("Function return type unknown."));
c906108c 2290
667e784f
AC
2291 if (code == TYPE_CODE_VOID)
2292 /* A void return value is never in memory. See also corresponding
44e5158b 2293 code in "print_return_value". */
667e784f
AC
2294 return 0;
2295
92ad9cd9 2296 /* Probe the architecture for the return-value convention. */
d80b854b 2297 return (gdbarch_return_value (gdbarch, func_type, value_type,
92ad9cd9 2298 NULL, NULL, NULL)
31db7b6c 2299 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
2300}
2301
42be36b3
CT
2302/* Set the initialized field in a value struct. */
2303
2304void
2305set_value_initialized (struct value *val, int status)
2306{
2307 val->initialized = status;
2308}
2309
2310/* Return the initialized field in a value struct. */
2311
2312int
2313value_initialized (struct value *val)
2314{
2315 return val->initialized;
2316}
2317
c906108c 2318void
fba45db2 2319_initialize_values (void)
c906108c 2320{
1a966eab
AC
2321 add_cmd ("convenience", no_class, show_convenience, _("\
2322Debugger convenience (\"$foo\") variables.\n\
c906108c 2323These variables are created when you assign them values;\n\
1a966eab
AC
2324thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2325\n\
c906108c
SS
2326A few convenience variables are given values automatically:\n\
2327\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 2328\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
2329 &showlist);
2330
2331 add_cmd ("values", no_class, show_values,
1a966eab 2332 _("Elements of value history around item number IDX (or last ten)."),
c906108c 2333 &showlist);
53e5f3cf
AS
2334
2335 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2336Initialize a convenience variable if necessary.\n\
2337init-if-undefined VARIABLE = EXPRESSION\n\
2338Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2339exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2340VARIABLE is already initialized."));
bc3b79fd
TJB
2341
2342 add_prefix_cmd ("function", no_class, function_command, _("\
2343Placeholder command for showing help on convenience functions."),
2344 &functionlist, "function ", 0, &cmdlist);
c906108c 2345}
This page took 1.424471 seconds and 4 git commands to generate.