Spelling fix.
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca
DJ
3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007
4f2aea11 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
c906108c
SS
28#include "command.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "language.h"
c906108c 32#include "demangle.h"
d16aafd8 33#include "doublest.h"
5ae326fa 34#include "gdb_assert.h"
36160dc4 35#include "regcache.h"
fe898f56 36#include "block.h"
c906108c
SS
37
38/* Prototypes for exported functions. */
39
a14ed312 40void _initialize_values (void);
c906108c 41
91294c83
AC
42struct value
43{
44 /* Type of value; either not an lval, or one of the various
45 different possible kinds of lval. */
46 enum lval_type lval;
47
48 /* Is it modifiable? Only relevant if lval != not_lval. */
49 int modifiable;
50
51 /* Location of value (if lval). */
52 union
53 {
54 /* If lval == lval_memory, this is the address in the inferior.
55 If lval == lval_register, this is the byte offset into the
56 registers structure. */
57 CORE_ADDR address;
58
59 /* Pointer to internal variable. */
60 struct internalvar *internalvar;
61 } location;
62
63 /* Describes offset of a value within lval of a structure in bytes.
64 If lval == lval_memory, this is an offset to the address. If
65 lval == lval_register, this is a further offset from
66 location.address within the registers structure. Note also the
67 member embedded_offset below. */
68 int offset;
69
70 /* Only used for bitfields; number of bits contained in them. */
71 int bitsize;
72
73 /* Only used for bitfields; position of start of field. For
74 BITS_BIG_ENDIAN=0 targets, it is the position of the LSB. For
75 BITS_BIG_ENDIAN=1 targets, it is the position of the MSB. */
76 int bitpos;
77
78 /* Frame register value is relative to. This will be described in
79 the lval enum above as "lval_register". */
80 struct frame_id frame_id;
81
82 /* Type of the value. */
83 struct type *type;
84
85 /* If a value represents a C++ object, then the `type' field gives
86 the object's compile-time type. If the object actually belongs
87 to some class derived from `type', perhaps with other base
88 classes and additional members, then `type' is just a subobject
89 of the real thing, and the full object is probably larger than
90 `type' would suggest.
91
92 If `type' is a dynamic class (i.e. one with a vtable), then GDB
93 can actually determine the object's run-time type by looking at
94 the run-time type information in the vtable. When this
95 information is available, we may elect to read in the entire
96 object, for several reasons:
97
98 - When printing the value, the user would probably rather see the
99 full object, not just the limited portion apparent from the
100 compile-time type.
101
102 - If `type' has virtual base classes, then even printing `type'
103 alone may require reaching outside the `type' portion of the
104 object to wherever the virtual base class has been stored.
105
106 When we store the entire object, `enclosing_type' is the run-time
107 type -- the complete object -- and `embedded_offset' is the
108 offset of `type' within that larger type, in bytes. The
109 value_contents() macro takes `embedded_offset' into account, so
110 most GDB code continues to see the `type' portion of the value,
111 just as the inferior would.
112
113 If `type' is a pointer to an object, then `enclosing_type' is a
114 pointer to the object's run-time type, and `pointed_to_offset' is
115 the offset in bytes from the full object to the pointed-to object
116 -- that is, the value `embedded_offset' would have if we followed
117 the pointer and fetched the complete object. (I don't really see
118 the point. Why not just determine the run-time type when you
119 indirect, and avoid the special case? The contents don't matter
120 until you indirect anyway.)
121
122 If we're not doing anything fancy, `enclosing_type' is equal to
123 `type', and `embedded_offset' is zero, so everything works
124 normally. */
125 struct type *enclosing_type;
126 int embedded_offset;
127 int pointed_to_offset;
128
129 /* Values are stored in a chain, so that they can be deleted easily
130 over calls to the inferior. Values assigned to internal
131 variables or put into the value history are taken off this
132 list. */
133 struct value *next;
134
135 /* Register number if the value is from a register. */
136 short regnum;
137
138 /* If zero, contents of this value are in the contents field. If
139 nonzero, contents are in inferior memory at address in the
140 location.address field plus the offset field (and the lval field
141 should be lval_memory).
142
143 WARNING: This field is used by the code which handles watchpoints
144 (see breakpoint.c) to decide whether a particular value can be
145 watched by hardware watchpoints. If the lazy flag is set for
146 some member of a value chain, it is assumed that this member of
147 the chain doesn't need to be watched as part of watching the
148 value itself. This is how GDB avoids watching the entire struct
149 or array when the user wants to watch a single struct member or
150 array element. If you ever change the way lazy flag is set and
151 reset, be sure to consider this use as well! */
152 char lazy;
153
154 /* If nonzero, this is the value of a variable which does not
155 actually exist in the program. */
156 char optimized_out;
157
42be36b3
CT
158 /* If value is a variable, is it initialized or not. */
159 int initialized;
160
91294c83
AC
161 /* Actual contents of the value. For use of this value; setting it
162 uses the stuff above. Not valid if lazy is nonzero. Target
163 byte-order. We force it to be aligned properly for any possible
164 value. Note that a value therefore extends beyond what is
165 declared here. */
166 union
167 {
fc1a4b47 168 gdb_byte contents[1];
91294c83
AC
169 DOUBLEST force_doublest_align;
170 LONGEST force_longest_align;
171 CORE_ADDR force_core_addr_align;
172 void *force_pointer_align;
173 } aligner;
174 /* Do not add any new members here -- contents above will trash
175 them. */
176};
177
c906108c
SS
178/* Prototypes for local functions. */
179
a14ed312 180static void show_values (char *, int);
c906108c 181
a14ed312 182static void show_convenience (char *, int);
c906108c 183
c906108c
SS
184
185/* The value-history records all the values printed
186 by print commands during this session. Each chunk
187 records 60 consecutive values. The first chunk on
188 the chain records the most recent values.
189 The total number of values is in value_history_count. */
190
191#define VALUE_HISTORY_CHUNK 60
192
193struct value_history_chunk
c5aa993b
JM
194 {
195 struct value_history_chunk *next;
f23631e4 196 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 197 };
c906108c
SS
198
199/* Chain of chunks now in use. */
200
201static struct value_history_chunk *value_history_chain;
202
203static int value_history_count; /* Abs number of last entry stored */
204\f
205/* List of all value objects currently allocated
206 (except for those released by calls to release_value)
207 This is so they can be freed after each command. */
208
f23631e4 209static struct value *all_values;
c906108c
SS
210
211/* Allocate a value that has the correct length for type TYPE. */
212
f23631e4 213struct value *
fba45db2 214allocate_value (struct type *type)
c906108c 215{
f23631e4 216 struct value *val;
c906108c
SS
217 struct type *atype = check_typedef (type);
218
5b90c7b5 219 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
df407dfe 220 val->next = all_values;
c906108c 221 all_values = val;
df407dfe 222 val->type = type;
4754a64e 223 val->enclosing_type = type;
c906108c
SS
224 VALUE_LVAL (val) = not_lval;
225 VALUE_ADDRESS (val) = 0;
1df6926e 226 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
227 val->offset = 0;
228 val->bitpos = 0;
229 val->bitsize = 0;
9ee8fc9d 230 VALUE_REGNUM (val) = -1;
d69fe07e 231 val->lazy = 0;
feb13ab0 232 val->optimized_out = 0;
13c3b5f5 233 val->embedded_offset = 0;
b44d461b 234 val->pointed_to_offset = 0;
c906108c 235 val->modifiable = 1;
42be36b3 236 val->initialized = 1; /* Default to initialized. */
c906108c
SS
237 return val;
238}
239
240/* Allocate a value that has the correct length
241 for COUNT repetitions type TYPE. */
242
f23631e4 243struct value *
fba45db2 244allocate_repeat_value (struct type *type, int count)
c906108c 245{
c5aa993b 246 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
247 /* FIXME-type-allocation: need a way to free this type when we are
248 done with it. */
249 struct type *range_type
c5aa993b
JM
250 = create_range_type ((struct type *) NULL, builtin_type_int,
251 low_bound, count + low_bound - 1);
c906108c
SS
252 /* FIXME-type-allocation: need a way to free this type when we are
253 done with it. */
254 return allocate_value (create_array_type ((struct type *) NULL,
255 type, range_type));
256}
257
df407dfe
AC
258/* Accessor methods. */
259
17cf0ecd
AC
260struct value *
261value_next (struct value *value)
262{
263 return value->next;
264}
265
df407dfe
AC
266struct type *
267value_type (struct value *value)
268{
269 return value->type;
270}
04624583
AC
271void
272deprecated_set_value_type (struct value *value, struct type *type)
273{
274 value->type = type;
275}
df407dfe
AC
276
277int
278value_offset (struct value *value)
279{
280 return value->offset;
281}
f5cf64a7
AC
282void
283set_value_offset (struct value *value, int offset)
284{
285 value->offset = offset;
286}
df407dfe
AC
287
288int
289value_bitpos (struct value *value)
290{
291 return value->bitpos;
292}
9bbda503
AC
293void
294set_value_bitpos (struct value *value, int bit)
295{
296 value->bitpos = bit;
297}
df407dfe
AC
298
299int
300value_bitsize (struct value *value)
301{
302 return value->bitsize;
303}
9bbda503
AC
304void
305set_value_bitsize (struct value *value, int bit)
306{
307 value->bitsize = bit;
308}
df407dfe 309
fc1a4b47 310gdb_byte *
990a07ab
AC
311value_contents_raw (struct value *value)
312{
313 return value->aligner.contents + value->embedded_offset;
314}
315
fc1a4b47 316gdb_byte *
990a07ab
AC
317value_contents_all_raw (struct value *value)
318{
319 return value->aligner.contents;
320}
321
4754a64e
AC
322struct type *
323value_enclosing_type (struct value *value)
324{
325 return value->enclosing_type;
326}
327
fc1a4b47 328const gdb_byte *
46615f07
AC
329value_contents_all (struct value *value)
330{
331 if (value->lazy)
332 value_fetch_lazy (value);
333 return value->aligner.contents;
334}
335
d69fe07e
AC
336int
337value_lazy (struct value *value)
338{
339 return value->lazy;
340}
341
dfa52d88
AC
342void
343set_value_lazy (struct value *value, int val)
344{
345 value->lazy = val;
346}
347
fc1a4b47 348const gdb_byte *
0fd88904
AC
349value_contents (struct value *value)
350{
351 return value_contents_writeable (value);
352}
353
fc1a4b47 354gdb_byte *
0fd88904
AC
355value_contents_writeable (struct value *value)
356{
357 if (value->lazy)
358 value_fetch_lazy (value);
fc0c53a0 359 return value_contents_raw (value);
0fd88904
AC
360}
361
a6c442d8
MK
362/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
363 this function is different from value_equal; in C the operator ==
364 can return 0 even if the two values being compared are equal. */
365
366int
367value_contents_equal (struct value *val1, struct value *val2)
368{
369 struct type *type1;
370 struct type *type2;
371 int len;
372
373 type1 = check_typedef (value_type (val1));
374 type2 = check_typedef (value_type (val2));
375 len = TYPE_LENGTH (type1);
376 if (len != TYPE_LENGTH (type2))
377 return 0;
378
379 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
380}
381
feb13ab0
AC
382int
383value_optimized_out (struct value *value)
384{
385 return value->optimized_out;
386}
387
388void
389set_value_optimized_out (struct value *value, int val)
390{
391 value->optimized_out = val;
392}
13c3b5f5
AC
393
394int
395value_embedded_offset (struct value *value)
396{
397 return value->embedded_offset;
398}
399
400void
401set_value_embedded_offset (struct value *value, int val)
402{
403 value->embedded_offset = val;
404}
b44d461b
AC
405
406int
407value_pointed_to_offset (struct value *value)
408{
409 return value->pointed_to_offset;
410}
411
412void
413set_value_pointed_to_offset (struct value *value, int val)
414{
415 value->pointed_to_offset = val;
416}
13bb5560
AC
417
418enum lval_type *
419deprecated_value_lval_hack (struct value *value)
420{
421 return &value->lval;
422}
423
424CORE_ADDR *
425deprecated_value_address_hack (struct value *value)
426{
427 return &value->location.address;
428}
429
430struct internalvar **
431deprecated_value_internalvar_hack (struct value *value)
432{
433 return &value->location.internalvar;
434}
435
436struct frame_id *
437deprecated_value_frame_id_hack (struct value *value)
438{
439 return &value->frame_id;
440}
441
442short *
443deprecated_value_regnum_hack (struct value *value)
444{
445 return &value->regnum;
446}
88e3b34b
AC
447
448int
449deprecated_value_modifiable (struct value *value)
450{
451 return value->modifiable;
452}
453void
454deprecated_set_value_modifiable (struct value *value, int modifiable)
455{
456 value->modifiable = modifiable;
457}
990a07ab 458\f
c906108c
SS
459/* Return a mark in the value chain. All values allocated after the
460 mark is obtained (except for those released) are subject to being freed
461 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 462struct value *
fba45db2 463value_mark (void)
c906108c
SS
464{
465 return all_values;
466}
467
468/* Free all values allocated since MARK was obtained by value_mark
469 (except for those released). */
470void
f23631e4 471value_free_to_mark (struct value *mark)
c906108c 472{
f23631e4
AC
473 struct value *val;
474 struct value *next;
c906108c
SS
475
476 for (val = all_values; val && val != mark; val = next)
477 {
df407dfe 478 next = val->next;
c906108c
SS
479 value_free (val);
480 }
481 all_values = val;
482}
483
484/* Free all the values that have been allocated (except for those released).
485 Called after each command, successful or not. */
486
487void
fba45db2 488free_all_values (void)
c906108c 489{
f23631e4
AC
490 struct value *val;
491 struct value *next;
c906108c
SS
492
493 for (val = all_values; val; val = next)
494 {
df407dfe 495 next = val->next;
c906108c
SS
496 value_free (val);
497 }
498
499 all_values = 0;
500}
501
502/* Remove VAL from the chain all_values
503 so it will not be freed automatically. */
504
505void
f23631e4 506release_value (struct value *val)
c906108c 507{
f23631e4 508 struct value *v;
c906108c
SS
509
510 if (all_values == val)
511 {
512 all_values = val->next;
513 return;
514 }
515
516 for (v = all_values; v; v = v->next)
517 {
518 if (v->next == val)
519 {
520 v->next = val->next;
521 break;
522 }
523 }
524}
525
526/* Release all values up to mark */
f23631e4
AC
527struct value *
528value_release_to_mark (struct value *mark)
c906108c 529{
f23631e4
AC
530 struct value *val;
531 struct value *next;
c906108c 532
df407dfe
AC
533 for (val = next = all_values; next; next = next->next)
534 if (next->next == mark)
c906108c 535 {
df407dfe
AC
536 all_values = next->next;
537 next->next = NULL;
c906108c
SS
538 return val;
539 }
540 all_values = 0;
541 return val;
542}
543
544/* Return a copy of the value ARG.
545 It contains the same contents, for same memory address,
546 but it's a different block of storage. */
547
f23631e4
AC
548struct value *
549value_copy (struct value *arg)
c906108c 550{
4754a64e 551 struct type *encl_type = value_enclosing_type (arg);
f23631e4 552 struct value *val = allocate_value (encl_type);
df407dfe 553 val->type = arg->type;
c906108c 554 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 555 val->location = arg->location;
df407dfe
AC
556 val->offset = arg->offset;
557 val->bitpos = arg->bitpos;
558 val->bitsize = arg->bitsize;
1df6926e 559 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 560 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 561 val->lazy = arg->lazy;
feb13ab0 562 val->optimized_out = arg->optimized_out;
13c3b5f5 563 val->embedded_offset = value_embedded_offset (arg);
b44d461b 564 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 565 val->modifiable = arg->modifiable;
d69fe07e 566 if (!value_lazy (val))
c906108c 567 {
990a07ab 568 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 569 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
570
571 }
572 return val;
573}
574\f
575/* Access to the value history. */
576
577/* Record a new value in the value history.
578 Returns the absolute history index of the entry.
579 Result of -1 indicates the value was not saved; otherwise it is the
580 value history index of this new item. */
581
582int
f23631e4 583record_latest_value (struct value *val)
c906108c
SS
584{
585 int i;
586
587 /* We don't want this value to have anything to do with the inferior anymore.
588 In particular, "set $1 = 50" should not affect the variable from which
589 the value was taken, and fast watchpoints should be able to assume that
590 a value on the value history never changes. */
d69fe07e 591 if (value_lazy (val))
c906108c
SS
592 value_fetch_lazy (val);
593 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
594 from. This is a bit dubious, because then *&$1 does not just return $1
595 but the current contents of that location. c'est la vie... */
596 val->modifiable = 0;
597 release_value (val);
598
599 /* Here we treat value_history_count as origin-zero
600 and applying to the value being stored now. */
601
602 i = value_history_count % VALUE_HISTORY_CHUNK;
603 if (i == 0)
604 {
f23631e4 605 struct value_history_chunk *new
c5aa993b
JM
606 = (struct value_history_chunk *)
607 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
608 memset (new->values, 0, sizeof new->values);
609 new->next = value_history_chain;
610 value_history_chain = new;
611 }
612
613 value_history_chain->values[i] = val;
614
615 /* Now we regard value_history_count as origin-one
616 and applying to the value just stored. */
617
618 return ++value_history_count;
619}
620
621/* Return a copy of the value in the history with sequence number NUM. */
622
f23631e4 623struct value *
fba45db2 624access_value_history (int num)
c906108c 625{
f23631e4 626 struct value_history_chunk *chunk;
52f0bd74
AC
627 int i;
628 int absnum = num;
c906108c
SS
629
630 if (absnum <= 0)
631 absnum += value_history_count;
632
633 if (absnum <= 0)
634 {
635 if (num == 0)
8a3fe4f8 636 error (_("The history is empty."));
c906108c 637 else if (num == 1)
8a3fe4f8 638 error (_("There is only one value in the history."));
c906108c 639 else
8a3fe4f8 640 error (_("History does not go back to $$%d."), -num);
c906108c
SS
641 }
642 if (absnum > value_history_count)
8a3fe4f8 643 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
644
645 absnum--;
646
647 /* Now absnum is always absolute and origin zero. */
648
649 chunk = value_history_chain;
650 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
651 i > 0; i--)
652 chunk = chunk->next;
653
654 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
655}
656
c906108c 657static void
fba45db2 658show_values (char *num_exp, int from_tty)
c906108c 659{
52f0bd74 660 int i;
f23631e4 661 struct value *val;
c906108c
SS
662 static int num = 1;
663
664 if (num_exp)
665 {
c5aa993b
JM
666 /* "info history +" should print from the stored position.
667 "info history <exp>" should print around value number <exp>. */
c906108c 668 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 669 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
670 }
671 else
672 {
673 /* "info history" means print the last 10 values. */
674 num = value_history_count - 9;
675 }
676
677 if (num <= 0)
678 num = 1;
679
680 for (i = num; i < num + 10 && i <= value_history_count; i++)
681 {
682 val = access_value_history (i);
a3f17187 683 printf_filtered (("$%d = "), i);
c906108c 684 value_print (val, gdb_stdout, 0, Val_pretty_default);
a3f17187 685 printf_filtered (("\n"));
c906108c
SS
686 }
687
688 /* The next "info history +" should start after what we just printed. */
689 num += 10;
690
691 /* Hitting just return after this command should do the same thing as
692 "info history +". If num_exp is null, this is unnecessary, since
693 "info history +" is not useful after "info history". */
694 if (from_tty && num_exp)
695 {
696 num_exp[0] = '+';
697 num_exp[1] = '\0';
698 }
699}
700\f
701/* Internal variables. These are variables within the debugger
702 that hold values assigned by debugger commands.
703 The user refers to them with a '$' prefix
704 that does not appear in the variable names stored internally. */
705
706static struct internalvar *internalvars;
707
53e5f3cf
AS
708/* If the variable does not already exist create it and give it the value given.
709 If no value is given then the default is zero. */
710static void
711init_if_undefined_command (char* args, int from_tty)
712{
713 struct internalvar* intvar;
714
715 /* Parse the expression - this is taken from set_command(). */
716 struct expression *expr = parse_expression (args);
717 register struct cleanup *old_chain =
718 make_cleanup (free_current_contents, &expr);
719
720 /* Validate the expression.
721 Was the expression an assignment?
722 Or even an expression at all? */
723 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
724 error (_("Init-if-undefined requires an assignment expression."));
725
726 /* Extract the variable from the parsed expression.
727 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
728 if (expr->elts[1].opcode != OP_INTERNALVAR)
729 error (_("The first parameter to init-if-undefined should be a GDB variable."));
730 intvar = expr->elts[2].internalvar;
731
732 /* Only evaluate the expression if the lvalue is void.
733 This may still fail if the expresssion is invalid. */
734 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
735 evaluate_expression (expr);
736
737 do_cleanups (old_chain);
738}
739
740
c906108c
SS
741/* Look up an internal variable with name NAME. NAME should not
742 normally include a dollar sign.
743
744 If the specified internal variable does not exist,
745 one is created, with a void value. */
746
747struct internalvar *
fba45db2 748lookup_internalvar (char *name)
c906108c 749{
52f0bd74 750 struct internalvar *var;
c906108c
SS
751
752 for (var = internalvars; var; var = var->next)
5cb316ef 753 if (strcmp (var->name, name) == 0)
c906108c
SS
754 return var;
755
756 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 757 var->name = concat (name, (char *)NULL);
c906108c 758 var->value = allocate_value (builtin_type_void);
0d20ae72 759 var->endian = gdbarch_byte_order (current_gdbarch);
c906108c
SS
760 release_value (var->value);
761 var->next = internalvars;
762 internalvars = var;
763 return var;
764}
765
f23631e4 766struct value *
fba45db2 767value_of_internalvar (struct internalvar *var)
c906108c 768{
f23631e4 769 struct value *val;
d3c139e9
AS
770 int i, j;
771 gdb_byte temp;
c906108c 772
c906108c 773 val = value_copy (var->value);
d69fe07e 774 if (value_lazy (val))
c906108c
SS
775 value_fetch_lazy (val);
776 VALUE_LVAL (val) = lval_internalvar;
777 VALUE_INTERNALVAR (val) = var;
d3c139e9
AS
778
779 /* Values are always stored in the target's byte order. When connected to a
780 target this will most likely always be correct, so there's normally no
781 need to worry about it.
782
783 However, internal variables can be set up before the target endian is
784 known and so may become out of date. Fix it up before anybody sees.
785
786 Internal variables usually hold simple scalar values, and we can
787 correct those. More complex values (e.g. structures and floating
788 point types) are left alone, because they would be too complicated
789 to correct. */
790
0d20ae72 791 if (var->endian != gdbarch_byte_order (current_gdbarch))
d3c139e9
AS
792 {
793 gdb_byte *array = value_contents_raw (val);
794 struct type *type = check_typedef (value_enclosing_type (val));
795 switch (TYPE_CODE (type))
796 {
797 case TYPE_CODE_INT:
798 case TYPE_CODE_PTR:
799 /* Reverse the bytes. */
800 for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
801 {
802 temp = array[j];
803 array[j] = array[i];
804 array[i] = temp;
805 }
806 break;
807 }
808 }
809
c906108c
SS
810 return val;
811}
812
813void
fba45db2 814set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 815 int bitsize, struct value *newval)
c906108c 816{
fc1a4b47 817 gdb_byte *addr = value_contents_writeable (var->value) + offset;
c906108c 818
c906108c
SS
819 if (bitsize)
820 modify_field (addr, value_as_long (newval),
821 bitpos, bitsize);
822 else
0fd88904 823 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
c906108c
SS
824}
825
826void
f23631e4 827set_internalvar (struct internalvar *var, struct value *val)
c906108c 828{
f23631e4 829 struct value *newval;
c906108c 830
c906108c
SS
831 newval = value_copy (val);
832 newval->modifiable = 1;
833
834 /* Force the value to be fetched from the target now, to avoid problems
835 later when this internalvar is referenced and the target is gone or
836 has changed. */
d69fe07e 837 if (value_lazy (newval))
c906108c
SS
838 value_fetch_lazy (newval);
839
840 /* Begin code which must not call error(). If var->value points to
841 something free'd, an error() obviously leaves a dangling pointer.
842 But we also get a danling pointer if var->value points to
843 something in the value chain (i.e., before release_value is
844 called), because after the error free_all_values will get called before
845 long. */
b8c9b27d 846 xfree (var->value);
c906108c 847 var->value = newval;
0d20ae72 848 var->endian = gdbarch_byte_order (current_gdbarch);
c906108c
SS
849 release_value (newval);
850 /* End code which must not call error(). */
851}
852
853char *
fba45db2 854internalvar_name (struct internalvar *var)
c906108c
SS
855{
856 return var->name;
857}
858
ae5a43e0
DJ
859/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
860 prevent cycles / duplicates. */
861
862static void
863preserve_one_value (struct value *value, struct objfile *objfile,
864 htab_t copied_types)
865{
866 if (TYPE_OBJFILE (value->type) == objfile)
867 value->type = copy_type_recursive (objfile, value->type, copied_types);
868
869 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
870 value->enclosing_type = copy_type_recursive (objfile,
871 value->enclosing_type,
872 copied_types);
873}
874
875/* Update the internal variables and value history when OBJFILE is
876 discarded; we must copy the types out of the objfile. New global types
877 will be created for every convenience variable which currently points to
878 this objfile's types, and the convenience variables will be adjusted to
879 use the new global types. */
c906108c
SS
880
881void
ae5a43e0 882preserve_values (struct objfile *objfile)
c906108c 883{
ae5a43e0
DJ
884 htab_t copied_types;
885 struct value_history_chunk *cur;
52f0bd74 886 struct internalvar *var;
ae5a43e0 887 int i;
c906108c 888
ae5a43e0
DJ
889 /* Create the hash table. We allocate on the objfile's obstack, since
890 it is soon to be deleted. */
891 copied_types = create_copied_types_hash (objfile);
892
893 for (cur = value_history_chain; cur; cur = cur->next)
894 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
895 if (cur->values[i])
896 preserve_one_value (cur->values[i], objfile, copied_types);
897
898 for (var = internalvars; var; var = var->next)
899 preserve_one_value (var->value, objfile, copied_types);
900
901 htab_delete (copied_types);
c906108c
SS
902}
903
904static void
fba45db2 905show_convenience (char *ignore, int from_tty)
c906108c 906{
52f0bd74 907 struct internalvar *var;
c906108c
SS
908 int varseen = 0;
909
910 for (var = internalvars; var; var = var->next)
911 {
c906108c
SS
912 if (!varseen)
913 {
914 varseen = 1;
915 }
a3f17187 916 printf_filtered (("$%s = "), var->name);
d3c139e9
AS
917 value_print (value_of_internalvar (var), gdb_stdout,
918 0, Val_pretty_default);
a3f17187 919 printf_filtered (("\n"));
c906108c
SS
920 }
921 if (!varseen)
a3f17187
AC
922 printf_unfiltered (_("\
923No debugger convenience variables now defined.\n\
c906108c 924Convenience variables have names starting with \"$\";\n\
a3f17187 925use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
926}
927\f
928/* Extract a value as a C number (either long or double).
929 Knows how to convert fixed values to double, or
930 floating values to long.
931 Does not deallocate the value. */
932
933LONGEST
f23631e4 934value_as_long (struct value *val)
c906108c
SS
935{
936 /* This coerces arrays and functions, which is necessary (e.g.
937 in disassemble_command). It also dereferences references, which
938 I suspect is the most logical thing to do. */
994b9211 939 val = coerce_array (val);
0fd88904 940 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
941}
942
943DOUBLEST
f23631e4 944value_as_double (struct value *val)
c906108c
SS
945{
946 DOUBLEST foo;
947 int inv;
c5aa993b 948
0fd88904 949 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 950 if (inv)
8a3fe4f8 951 error (_("Invalid floating value found in program."));
c906108c
SS
952 return foo;
953}
4478b372
JB
954/* Extract a value as a C pointer. Does not deallocate the value.
955 Note that val's type may not actually be a pointer; value_as_long
956 handles all the cases. */
c906108c 957CORE_ADDR
f23631e4 958value_as_address (struct value *val)
c906108c
SS
959{
960 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
961 whether we want this to be true eventually. */
962#if 0
bf6ae464 963 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
964 non-address (e.g. argument to "signal", "info break", etc.), or
965 for pointers to char, in which the low bits *are* significant. */
bf6ae464 966 return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
c906108c 967#else
f312f057
JB
968
969 /* There are several targets (IA-64, PowerPC, and others) which
970 don't represent pointers to functions as simply the address of
971 the function's entry point. For example, on the IA-64, a
972 function pointer points to a two-word descriptor, generated by
973 the linker, which contains the function's entry point, and the
974 value the IA-64 "global pointer" register should have --- to
975 support position-independent code. The linker generates
976 descriptors only for those functions whose addresses are taken.
977
978 On such targets, it's difficult for GDB to convert an arbitrary
979 function address into a function pointer; it has to either find
980 an existing descriptor for that function, or call malloc and
981 build its own. On some targets, it is impossible for GDB to
982 build a descriptor at all: the descriptor must contain a jump
983 instruction; data memory cannot be executed; and code memory
984 cannot be modified.
985
986 Upon entry to this function, if VAL is a value of type `function'
987 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
988 VALUE_ADDRESS (val) is the address of the function. This is what
989 you'll get if you evaluate an expression like `main'. The call
990 to COERCE_ARRAY below actually does all the usual unary
991 conversions, which includes converting values of type `function'
992 to `pointer to function'. This is the challenging conversion
993 discussed above. Then, `unpack_long' will convert that pointer
994 back into an address.
995
996 So, suppose the user types `disassemble foo' on an architecture
997 with a strange function pointer representation, on which GDB
998 cannot build its own descriptors, and suppose further that `foo'
999 has no linker-built descriptor. The address->pointer conversion
1000 will signal an error and prevent the command from running, even
1001 though the next step would have been to convert the pointer
1002 directly back into the same address.
1003
1004 The following shortcut avoids this whole mess. If VAL is a
1005 function, just return its address directly. */
df407dfe
AC
1006 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1007 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
f312f057
JB
1008 return VALUE_ADDRESS (val);
1009
994b9211 1010 val = coerce_array (val);
fc0c74b1
AC
1011
1012 /* Some architectures (e.g. Harvard), map instruction and data
1013 addresses onto a single large unified address space. For
1014 instance: An architecture may consider a large integer in the
1015 range 0x10000000 .. 0x1000ffff to already represent a data
1016 addresses (hence not need a pointer to address conversion) while
1017 a small integer would still need to be converted integer to
1018 pointer to address. Just assume such architectures handle all
1019 integer conversions in a single function. */
1020
1021 /* JimB writes:
1022
1023 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1024 must admonish GDB hackers to make sure its behavior matches the
1025 compiler's, whenever possible.
1026
1027 In general, I think GDB should evaluate expressions the same way
1028 the compiler does. When the user copies an expression out of
1029 their source code and hands it to a `print' command, they should
1030 get the same value the compiler would have computed. Any
1031 deviation from this rule can cause major confusion and annoyance,
1032 and needs to be justified carefully. In other words, GDB doesn't
1033 really have the freedom to do these conversions in clever and
1034 useful ways.
1035
1036 AndrewC pointed out that users aren't complaining about how GDB
1037 casts integers to pointers; they are complaining that they can't
1038 take an address from a disassembly listing and give it to `x/i'.
1039 This is certainly important.
1040
79dd2d24 1041 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1042 makes it possible for GDB to "get it right" in all circumstances
1043 --- the target has complete control over how things get done, so
1044 people can Do The Right Thing for their target without breaking
1045 anyone else. The standard doesn't specify how integers get
1046 converted to pointers; usually, the ABI doesn't either, but
1047 ABI-specific code is a more reasonable place to handle it. */
1048
df407dfe
AC
1049 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1050 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
79dd2d24
AC
1051 && gdbarch_integer_to_address_p (current_gdbarch))
1052 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
0fd88904 1053 value_contents (val));
fc0c74b1 1054
0fd88904 1055 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1056#endif
1057}
1058\f
1059/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1060 as a long, or as a double, assuming the raw data is described
1061 by type TYPE. Knows how to convert different sizes of values
1062 and can convert between fixed and floating point. We don't assume
1063 any alignment for the raw data. Return value is in host byte order.
1064
1065 If you want functions and arrays to be coerced to pointers, and
1066 references to be dereferenced, call value_as_long() instead.
1067
1068 C++: It is assumed that the front-end has taken care of
1069 all matters concerning pointers to members. A pointer
1070 to member which reaches here is considered to be equivalent
1071 to an INT (or some size). After all, it is only an offset. */
1072
1073LONGEST
fc1a4b47 1074unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1075{
52f0bd74
AC
1076 enum type_code code = TYPE_CODE (type);
1077 int len = TYPE_LENGTH (type);
1078 int nosign = TYPE_UNSIGNED (type);
c906108c 1079
c906108c
SS
1080 switch (code)
1081 {
1082 case TYPE_CODE_TYPEDEF:
1083 return unpack_long (check_typedef (type), valaddr);
1084 case TYPE_CODE_ENUM:
4f2aea11 1085 case TYPE_CODE_FLAGS:
c906108c
SS
1086 case TYPE_CODE_BOOL:
1087 case TYPE_CODE_INT:
1088 case TYPE_CODE_CHAR:
1089 case TYPE_CODE_RANGE:
0d5de010 1090 case TYPE_CODE_MEMBERPTR:
c906108c
SS
1091 if (nosign)
1092 return extract_unsigned_integer (valaddr, len);
1093 else
1094 return extract_signed_integer (valaddr, len);
1095
1096 case TYPE_CODE_FLT:
96d2f608 1097 return extract_typed_floating (valaddr, type);
c906108c
SS
1098
1099 case TYPE_CODE_PTR:
1100 case TYPE_CODE_REF:
1101 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1102 whether we want this to be true eventually. */
4478b372 1103 return extract_typed_address (valaddr, type);
c906108c 1104
c906108c 1105 default:
8a3fe4f8 1106 error (_("Value can't be converted to integer."));
c906108c 1107 }
c5aa993b 1108 return 0; /* Placate lint. */
c906108c
SS
1109}
1110
1111/* Return a double value from the specified type and address.
1112 INVP points to an int which is set to 0 for valid value,
1113 1 for invalid value (bad float format). In either case,
1114 the returned double is OK to use. Argument is in target
1115 format, result is in host format. */
1116
1117DOUBLEST
fc1a4b47 1118unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c
SS
1119{
1120 enum type_code code;
1121 int len;
1122 int nosign;
1123
1124 *invp = 0; /* Assume valid. */
1125 CHECK_TYPEDEF (type);
1126 code = TYPE_CODE (type);
1127 len = TYPE_LENGTH (type);
1128 nosign = TYPE_UNSIGNED (type);
1129 if (code == TYPE_CODE_FLT)
1130 {
75bc7ddf
AC
1131 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1132 floating-point value was valid (using the macro
1133 INVALID_FLOAT). That test/macro have been removed.
1134
1135 It turns out that only the VAX defined this macro and then
1136 only in a non-portable way. Fixing the portability problem
1137 wouldn't help since the VAX floating-point code is also badly
1138 bit-rotten. The target needs to add definitions for the
ea06eb3d 1139 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1140 exactly describe the target floating-point format. The
1141 problem here is that the corresponding floatformat_vax_f and
1142 floatformat_vax_d values these methods should be set to are
1143 also not defined either. Oops!
1144
1145 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1146 definitions and the new cases for floatformat_is_valid (). */
1147
1148 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1149 {
1150 *invp = 1;
1151 return 0.0;
1152 }
1153
96d2f608 1154 return extract_typed_floating (valaddr, type);
c906108c
SS
1155 }
1156 else if (nosign)
1157 {
1158 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1159 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1160 }
1161 else
1162 {
1163 /* Signed -- we are OK with unpack_long. */
1164 return unpack_long (type, valaddr);
1165 }
1166}
1167
1168/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1169 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1170 We don't assume any alignment for the raw data. Return value is in
1171 host byte order.
1172
1173 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1174 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1175
1176 C++: It is assumed that the front-end has taken care of
1177 all matters concerning pointers to members. A pointer
1178 to member which reaches here is considered to be equivalent
1179 to an INT (or some size). After all, it is only an offset. */
1180
1181CORE_ADDR
fc1a4b47 1182unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1183{
1184 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1185 whether we want this to be true eventually. */
1186 return unpack_long (type, valaddr);
1187}
4478b372 1188
c906108c 1189\f
2c2738a0
DC
1190/* Get the value of the FIELDN'th field (which must be static) of
1191 TYPE. Return NULL if the field doesn't exist or has been
1192 optimized out. */
c906108c 1193
f23631e4 1194struct value *
fba45db2 1195value_static_field (struct type *type, int fieldno)
c906108c 1196{
948e66d9
DJ
1197 struct value *retval;
1198
c906108c
SS
1199 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
1200 {
948e66d9 1201 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1202 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
1203 }
1204 else
1205 {
1206 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
176620f1 1207 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
948e66d9 1208 if (sym == NULL)
c906108c
SS
1209 {
1210 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
1211 as non-debuggable symbols */
1212 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
1213 if (!msym)
1214 return NULL;
1215 else
c5aa993b 1216 {
948e66d9 1217 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1218 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1219 }
1220 }
1221 else
1222 {
948e66d9
DJ
1223 /* SYM should never have a SYMBOL_CLASS which will require
1224 read_var_value to use the FRAME parameter. */
1225 if (symbol_read_needs_frame (sym))
8a3fe4f8
AC
1226 warning (_("static field's value depends on the current "
1227 "frame - bad debug info?"));
948e66d9 1228 retval = read_var_value (sym, NULL);
2b127877 1229 }
948e66d9
DJ
1230 if (retval && VALUE_LVAL (retval) == lval_memory)
1231 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1232 VALUE_ADDRESS (retval));
c906108c 1233 }
948e66d9 1234 return retval;
c906108c
SS
1235}
1236
2b127877
DB
1237/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1238 You have to be careful here, since the size of the data area for the value
1239 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1240 than the old enclosing type, you have to allocate more space for the data.
1241 The return value is a pointer to the new version of this value structure. */
1242
f23631e4
AC
1243struct value *
1244value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1245{
4754a64e 1246 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
2b127877 1247 {
4754a64e 1248 val->enclosing_type = new_encl_type;
2b127877
DB
1249 return val;
1250 }
1251 else
1252 {
f23631e4
AC
1253 struct value *new_val;
1254 struct value *prev;
2b127877 1255
f23631e4 1256 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
cc303028 1257
4754a64e 1258 new_val->enclosing_type = new_encl_type;
cc303028 1259
2b127877
DB
1260 /* We have to make sure this ends up in the same place in the value
1261 chain as the original copy, so it's clean-up behavior is the same.
1262 If the value has been released, this is a waste of time, but there
1263 is no way to tell that in advance, so... */
1264
1265 if (val != all_values)
1266 {
1267 for (prev = all_values; prev != NULL; prev = prev->next)
1268 {
1269 if (prev->next == val)
1270 {
1271 prev->next = new_val;
1272 break;
1273 }
1274 }
1275 }
1276
1277 return new_val;
1278 }
1279}
1280
c906108c
SS
1281/* Given a value ARG1 (offset by OFFSET bytes)
1282 of a struct or union type ARG_TYPE,
1283 extract and return the value of one of its (non-static) fields.
1284 FIELDNO says which field. */
1285
f23631e4
AC
1286struct value *
1287value_primitive_field (struct value *arg1, int offset,
aa1ee363 1288 int fieldno, struct type *arg_type)
c906108c 1289{
f23631e4 1290 struct value *v;
52f0bd74 1291 struct type *type;
c906108c
SS
1292
1293 CHECK_TYPEDEF (arg_type);
1294 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1295
1296 /* Handle packed fields */
1297
1298 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1299 {
1300 v = value_from_longest (type,
1301 unpack_field_as_long (arg_type,
0fd88904 1302 value_contents (arg1)
c5aa993b 1303 + offset,
c906108c 1304 fieldno));
df407dfe
AC
1305 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1306 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1307 v->offset = value_offset (arg1) + offset
2e70b7b9 1308 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
1309 }
1310 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1311 {
1312 /* This field is actually a base subobject, so preserve the
1313 entire object's contents for later references to virtual
1314 bases, etc. */
4754a64e 1315 v = allocate_value (value_enclosing_type (arg1));
df407dfe 1316 v->type = type;
d69fe07e 1317 if (value_lazy (arg1))
dfa52d88 1318 set_value_lazy (v, 1);
c906108c 1319 else
990a07ab 1320 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
4754a64e 1321 TYPE_LENGTH (value_enclosing_type (arg1)));
df407dfe 1322 v->offset = value_offset (arg1);
13c3b5f5
AC
1323 v->embedded_offset = (offset + value_embedded_offset (arg1)
1324 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
1325 }
1326 else
1327 {
1328 /* Plain old data member */
1329 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1330 v = allocate_value (type);
d69fe07e 1331 if (value_lazy (arg1))
dfa52d88 1332 set_value_lazy (v, 1);
c906108c 1333 else
990a07ab
AC
1334 memcpy (value_contents_raw (v),
1335 value_contents_raw (arg1) + offset,
c906108c 1336 TYPE_LENGTH (type));
df407dfe 1337 v->offset = (value_offset (arg1) + offset
13c3b5f5 1338 + value_embedded_offset (arg1));
c906108c
SS
1339 }
1340 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1341 if (VALUE_LVAL (arg1) == lval_internalvar)
1342 VALUE_LVAL (v) = lval_internalvar_component;
7d85ee02 1343 v->location = arg1->location;
9ee8fc9d 1344 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 1345 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
1346 return v;
1347}
1348
1349/* Given a value ARG1 of a struct or union type,
1350 extract and return the value of one of its (non-static) fields.
1351 FIELDNO says which field. */
1352
f23631e4 1353struct value *
aa1ee363 1354value_field (struct value *arg1, int fieldno)
c906108c 1355{
df407dfe 1356 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
1357}
1358
1359/* Return a non-virtual function as a value.
1360 F is the list of member functions which contains the desired method.
0478d61c
FF
1361 J is an index into F which provides the desired method.
1362
1363 We only use the symbol for its address, so be happy with either a
1364 full symbol or a minimal symbol.
1365 */
c906108c 1366
f23631e4
AC
1367struct value *
1368value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 1369 int offset)
c906108c 1370{
f23631e4 1371 struct value *v;
52f0bd74 1372 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 1373 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 1374 struct symbol *sym;
0478d61c 1375 struct minimal_symbol *msym;
c906108c 1376
176620f1 1377 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
5ae326fa 1378 if (sym != NULL)
0478d61c 1379 {
5ae326fa
AC
1380 msym = NULL;
1381 }
1382 else
1383 {
1384 gdb_assert (sym == NULL);
0478d61c 1385 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
1386 if (msym == NULL)
1387 return NULL;
0478d61c
FF
1388 }
1389
c906108c 1390 v = allocate_value (ftype);
0478d61c
FF
1391 if (sym)
1392 {
1393 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1394 }
1395 else
1396 {
1397 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1398 }
c906108c
SS
1399
1400 if (arg1p)
c5aa993b 1401 {
df407dfe 1402 if (type != value_type (*arg1p))
c5aa993b
JM
1403 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1404 value_addr (*arg1p)));
1405
070ad9f0 1406 /* Move the `this' pointer according to the offset.
c5aa993b
JM
1407 VALUE_OFFSET (*arg1p) += offset;
1408 */
c906108c
SS
1409 }
1410
1411 return v;
1412}
1413
c906108c
SS
1414\f
1415/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1416 VALADDR.
1417
1418 Extracting bits depends on endianness of the machine. Compute the
1419 number of least significant bits to discard. For big endian machines,
1420 we compute the total number of bits in the anonymous object, subtract
1421 off the bit count from the MSB of the object to the MSB of the
1422 bitfield, then the size of the bitfield, which leaves the LSB discard
1423 count. For little endian machines, the discard count is simply the
1424 number of bits from the LSB of the anonymous object to the LSB of the
1425 bitfield.
1426
1427 If the field is signed, we also do sign extension. */
1428
1429LONGEST
fc1a4b47 1430unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
c906108c
SS
1431{
1432 ULONGEST val;
1433 ULONGEST valmask;
1434 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1435 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1436 int lsbcount;
1437 struct type *field_type;
1438
1439 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1440 field_type = TYPE_FIELD_TYPE (type, fieldno);
1441 CHECK_TYPEDEF (field_type);
1442
1443 /* Extract bits. See comment above. */
1444
1445 if (BITS_BIG_ENDIAN)
1446 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1447 else
1448 lsbcount = (bitpos % 8);
1449 val >>= lsbcount;
1450
1451 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1452 If the field is signed, and is negative, then sign extend. */
1453
1454 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1455 {
1456 valmask = (((ULONGEST) 1) << bitsize) - 1;
1457 val &= valmask;
1458 if (!TYPE_UNSIGNED (field_type))
1459 {
1460 if (val & (valmask ^ (valmask >> 1)))
1461 {
1462 val |= ~valmask;
1463 }
1464 }
1465 }
1466 return (val);
1467}
1468
1469/* Modify the value of a bitfield. ADDR points to a block of memory in
1470 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1471 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
1472 indicate which bits (in target bit order) comprise the bitfield.
1473 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1474 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
1475
1476void
fc1a4b47 1477modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
c906108c 1478{
f4e88c8e
PH
1479 ULONGEST oword;
1480 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
1481
1482 /* If a negative fieldval fits in the field in question, chop
1483 off the sign extension bits. */
f4e88c8e
PH
1484 if ((~fieldval & ~(mask >> 1)) == 0)
1485 fieldval &= mask;
c906108c
SS
1486
1487 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 1488 if (0 != (fieldval & ~mask))
c906108c
SS
1489 {
1490 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1491 we don't have a sprintf_longest. */
8a3fe4f8 1492 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
1493
1494 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 1495 fieldval &= mask;
c906108c
SS
1496 }
1497
f4e88c8e 1498 oword = extract_unsigned_integer (addr, sizeof oword);
c906108c
SS
1499
1500 /* Shifting for bit field depends on endianness of the target machine. */
1501 if (BITS_BIG_ENDIAN)
1502 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1503
f4e88c8e 1504 oword &= ~(mask << bitpos);
c906108c
SS
1505 oword |= fieldval << bitpos;
1506
f4e88c8e 1507 store_unsigned_integer (addr, sizeof oword, oword);
c906108c
SS
1508}
1509\f
14d06750 1510/* Pack NUM into BUF using a target format of TYPE. */
c906108c 1511
14d06750
DJ
1512void
1513pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 1514{
52f0bd74 1515 int len;
14d06750
DJ
1516
1517 type = check_typedef (type);
c906108c
SS
1518 len = TYPE_LENGTH (type);
1519
14d06750 1520 switch (TYPE_CODE (type))
c906108c 1521 {
c906108c
SS
1522 case TYPE_CODE_INT:
1523 case TYPE_CODE_CHAR:
1524 case TYPE_CODE_ENUM:
4f2aea11 1525 case TYPE_CODE_FLAGS:
c906108c
SS
1526 case TYPE_CODE_BOOL:
1527 case TYPE_CODE_RANGE:
0d5de010 1528 case TYPE_CODE_MEMBERPTR:
14d06750 1529 store_signed_integer (buf, len, num);
c906108c 1530 break;
c5aa993b 1531
c906108c
SS
1532 case TYPE_CODE_REF:
1533 case TYPE_CODE_PTR:
14d06750 1534 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 1535 break;
c5aa993b 1536
c906108c 1537 default:
14d06750
DJ
1538 error (_("Unexpected type (%d) encountered for integer constant."),
1539 TYPE_CODE (type));
c906108c 1540 }
14d06750
DJ
1541}
1542
1543
1544/* Convert C numbers into newly allocated values. */
1545
1546struct value *
1547value_from_longest (struct type *type, LONGEST num)
1548{
1549 struct value *val = allocate_value (type);
1550
1551 pack_long (value_contents_raw (val), type, num);
1552
c906108c
SS
1553 return val;
1554}
1555
4478b372
JB
1556
1557/* Create a value representing a pointer of type TYPE to the address
1558 ADDR. */
f23631e4 1559struct value *
4478b372
JB
1560value_from_pointer (struct type *type, CORE_ADDR addr)
1561{
f23631e4 1562 struct value *val = allocate_value (type);
990a07ab 1563 store_typed_address (value_contents_raw (val), type, addr);
4478b372
JB
1564 return val;
1565}
1566
1567
0f71a2f6 1568/* Create a value for a string constant to be stored locally
070ad9f0 1569 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1570 This is analogous to value_from_longest, which also does not
1571 use inferior memory. String shall NOT contain embedded nulls. */
1572
f23631e4 1573struct value *
fba45db2 1574value_from_string (char *ptr)
0f71a2f6 1575{
f23631e4 1576 struct value *val;
c5aa993b 1577 int len = strlen (ptr);
0f71a2f6 1578 int lowbound = current_language->string_lower_bound;
f290d38e
AC
1579 struct type *string_char_type;
1580 struct type *rangetype;
1581 struct type *stringtype;
1582
1583 rangetype = create_range_type ((struct type *) NULL,
1584 builtin_type_int,
1585 lowbound, len + lowbound - 1);
1586 string_char_type = language_string_char_type (current_language,
1587 current_gdbarch);
1588 stringtype = create_array_type ((struct type *) NULL,
1589 string_char_type,
1590 rangetype);
0f71a2f6 1591 val = allocate_value (stringtype);
990a07ab 1592 memcpy (value_contents_raw (val), ptr, len);
0f71a2f6
JM
1593 return val;
1594}
1595
f23631e4 1596struct value *
fba45db2 1597value_from_double (struct type *type, DOUBLEST num)
c906108c 1598{
f23631e4 1599 struct value *val = allocate_value (type);
c906108c 1600 struct type *base_type = check_typedef (type);
52f0bd74
AC
1601 enum type_code code = TYPE_CODE (base_type);
1602 int len = TYPE_LENGTH (base_type);
c906108c
SS
1603
1604 if (code == TYPE_CODE_FLT)
1605 {
990a07ab 1606 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
1607 }
1608 else
8a3fe4f8 1609 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
1610
1611 return val;
1612}
994b9211
AC
1613
1614struct value *
1615coerce_ref (struct value *arg)
1616{
df407dfe 1617 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
994b9211
AC
1618 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1619 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 1620 unpack_pointer (value_type (arg),
0fd88904 1621 value_contents (arg)));
994b9211
AC
1622 return arg;
1623}
1624
1625struct value *
1626coerce_array (struct value *arg)
1627{
1628 arg = coerce_ref (arg);
1629 if (current_language->c_style_arrays
df407dfe 1630 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
994b9211 1631 arg = value_coerce_array (arg);
df407dfe 1632 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
994b9211
AC
1633 arg = value_coerce_function (arg);
1634 return arg;
1635}
1636
1637struct value *
1638coerce_number (struct value *arg)
1639{
1640 arg = coerce_array (arg);
1641 arg = coerce_enum (arg);
1642 return arg;
1643}
1644
1645struct value *
1646coerce_enum (struct value *arg)
1647{
df407dfe 1648 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
994b9211
AC
1649 arg = value_cast (builtin_type_unsigned_int, arg);
1650 return arg;
1651}
c906108c 1652\f
c906108c 1653
74055713 1654/* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
82d1552e 1655 gdbarch_extract_return_value? GCC_P is true if compiled with gcc and TYPE
74055713 1656 is the type (which is known to be struct, union or array).
c906108c
SS
1657
1658 On most machines, the struct convention is used unless we are
1659 using gcc and the type is of a special size. */
1660/* As of about 31 Mar 93, GCC was changed to be compatible with the
1661 native compiler. GCC 2.3.3 was the last release that did it the
1662 old way. Since gcc2_compiled was not changed, we have no
1663 way to correctly win in all cases, so we just do the right thing
1664 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1665 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1666 would cause more chaos than dealing with some struct returns being
1667 handled wrong. */
bc87dfa0
AC
1668/* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1669 dead. */
c906108c
SS
1670
1671int
fba45db2 1672generic_use_struct_convention (int gcc_p, struct type *value_type)
c5aa993b 1673{
bc87dfa0
AC
1674 return !(TYPE_LENGTH (value_type) == 1
1675 || TYPE_LENGTH (value_type) == 2
1676 || TYPE_LENGTH (value_type) == 4
1677 || TYPE_LENGTH (value_type) == 8);
c906108c
SS
1678}
1679
48436ce6
AC
1680/* Return true if the function returning the specified type is using
1681 the convention of returning structures in memory (passing in the
1682 address as a hidden first parameter). GCC_P is nonzero if compiled
c906108c
SS
1683 with GCC. */
1684
1685int
48436ce6 1686using_struct_return (struct type *value_type, int gcc_p)
c906108c 1687{
52f0bd74 1688 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
1689
1690 if (code == TYPE_CODE_ERROR)
8a3fe4f8 1691 error (_("Function return type unknown."));
c906108c 1692
667e784f
AC
1693 if (code == TYPE_CODE_VOID)
1694 /* A void return value is never in memory. See also corresponding
44e5158b 1695 code in "print_return_value". */
667e784f
AC
1696 return 0;
1697
92ad9cd9
AC
1698 /* Probe the architecture for the return-value convention. */
1699 return (gdbarch_return_value (current_gdbarch, value_type,
1700 NULL, NULL, NULL)
31db7b6c 1701 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
1702}
1703
42be36b3
CT
1704/* Set the initialized field in a value struct. */
1705
1706void
1707set_value_initialized (struct value *val, int status)
1708{
1709 val->initialized = status;
1710}
1711
1712/* Return the initialized field in a value struct. */
1713
1714int
1715value_initialized (struct value *val)
1716{
1717 return val->initialized;
1718}
1719
c906108c 1720void
fba45db2 1721_initialize_values (void)
c906108c 1722{
1a966eab
AC
1723 add_cmd ("convenience", no_class, show_convenience, _("\
1724Debugger convenience (\"$foo\") variables.\n\
c906108c 1725These variables are created when you assign them values;\n\
1a966eab
AC
1726thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1727\n\
c906108c
SS
1728A few convenience variables are given values automatically:\n\
1729\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 1730\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
1731 &showlist);
1732
1733 add_cmd ("values", no_class, show_values,
1a966eab 1734 _("Elements of value history around item number IDX (or last ten)."),
c906108c 1735 &showlist);
53e5f3cf
AS
1736
1737 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
1738Initialize a convenience variable if necessary.\n\
1739init-if-undefined VARIABLE = EXPRESSION\n\
1740Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
1741exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
1742VARIABLE is already initialized."));
c906108c 1743}
This page took 0.774845 seconds and 4 git commands to generate.