Add scoped_value_mark
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
61baf725 3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
d16aafd8 31#include "doublest.h"
36160dc4 32#include "regcache.h"
fe898f56 33#include "block.h"
27bc4d80 34#include "dfp.h"
bccdca4a 35#include "objfiles.h"
79a45b7d 36#include "valprint.h"
bc3b79fd 37#include "cli/cli-decode.h"
6dddc817 38#include "extension.h"
3bd0f5ef 39#include <ctype.h>
0914bcdb 40#include "tracepoint.h"
be335936 41#include "cp-abi.h"
a58e2656 42#include "user-regs.h"
325fac50 43#include <algorithm>
0914bcdb 44
581e13c1 45/* Prototypes for exported functions. */
c906108c 46
a14ed312 47void _initialize_values (void);
c906108c 48
bc3b79fd
TJB
49/* Definition of a user function. */
50struct internal_function
51{
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62};
63
4e07d55f
PA
64/* Defines an [OFFSET, OFFSET + LENGTH) range. */
65
66struct range
67{
68 /* Lowest offset in the range. */
6b850546 69 LONGEST offset;
4e07d55f
PA
70
71 /* Length of the range. */
6b850546 72 LONGEST length;
4e07d55f
PA
73};
74
75typedef struct range range_s;
76
77DEF_VEC_O(range_s);
78
79/* Returns true if the ranges defined by [offset1, offset1+len1) and
80 [offset2, offset2+len2) overlap. */
81
82static int
6b850546
DT
83ranges_overlap (LONGEST offset1, LONGEST len1,
84 LONGEST offset2, LONGEST len2)
4e07d55f
PA
85{
86 ULONGEST h, l;
87
325fac50
PA
88 l = std::max (offset1, offset2);
89 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
90 return (l < h);
91}
92
93/* Returns true if the first argument is strictly less than the
94 second, useful for VEC_lower_bound. We keep ranges sorted by
95 offset and coalesce overlapping and contiguous ranges, so this just
96 compares the starting offset. */
97
98static int
99range_lessthan (const range_s *r1, const range_s *r2)
100{
101 return r1->offset < r2->offset;
102}
103
104/* Returns true if RANGES contains any range that overlaps [OFFSET,
105 OFFSET+LENGTH). */
106
107static int
6b850546 108ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
4e07d55f
PA
109{
110 range_s what;
6b850546 111 LONGEST i;
4e07d55f
PA
112
113 what.offset = offset;
114 what.length = length;
115
116 /* We keep ranges sorted by offset and coalesce overlapping and
117 contiguous ranges, so to check if a range list contains a given
118 range, we can do a binary search for the position the given range
119 would be inserted if we only considered the starting OFFSET of
120 ranges. We call that position I. Since we also have LENGTH to
121 care for (this is a range afterall), we need to check if the
122 _previous_ range overlaps the I range. E.g.,
123
124 R
125 |---|
126 |---| |---| |------| ... |--|
127 0 1 2 N
128
129 I=1
130
131 In the case above, the binary search would return `I=1', meaning,
132 this OFFSET should be inserted at position 1, and the current
133 position 1 should be pushed further (and before 2). But, `0'
134 overlaps with R.
135
136 Then we need to check if the I range overlaps the I range itself.
137 E.g.,
138
139 R
140 |---|
141 |---| |---| |-------| ... |--|
142 0 1 2 N
143
144 I=1
145 */
146
147 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
148
149 if (i > 0)
150 {
151 struct range *bef = VEC_index (range_s, ranges, i - 1);
152
153 if (ranges_overlap (bef->offset, bef->length, offset, length))
154 return 1;
155 }
156
157 if (i < VEC_length (range_s, ranges))
158 {
159 struct range *r = VEC_index (range_s, ranges, i);
160
161 if (ranges_overlap (r->offset, r->length, offset, length))
162 return 1;
163 }
164
165 return 0;
166}
167
bc3b79fd
TJB
168static struct cmd_list_element *functionlist;
169
87784a47
TT
170/* Note that the fields in this structure are arranged to save a bit
171 of memory. */
172
91294c83
AC
173struct value
174{
175 /* Type of value; either not an lval, or one of the various
176 different possible kinds of lval. */
177 enum lval_type lval;
178
179 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
180 unsigned int modifiable : 1;
181
182 /* If zero, contents of this value are in the contents field. If
183 nonzero, contents are in inferior. If the lval field is lval_memory,
184 the contents are in inferior memory at location.address plus offset.
185 The lval field may also be lval_register.
186
187 WARNING: This field is used by the code which handles watchpoints
188 (see breakpoint.c) to decide whether a particular value can be
189 watched by hardware watchpoints. If the lazy flag is set for
190 some member of a value chain, it is assumed that this member of
191 the chain doesn't need to be watched as part of watching the
192 value itself. This is how GDB avoids watching the entire struct
193 or array when the user wants to watch a single struct member or
194 array element. If you ever change the way lazy flag is set and
195 reset, be sure to consider this use as well! */
196 unsigned int lazy : 1;
197
87784a47
TT
198 /* If value is a variable, is it initialized or not. */
199 unsigned int initialized : 1;
200
201 /* If value is from the stack. If this is set, read_stack will be
202 used instead of read_memory to enable extra caching. */
203 unsigned int stack : 1;
91294c83 204
e848a8a5
TT
205 /* If the value has been released. */
206 unsigned int released : 1;
207
91294c83
AC
208 /* Location of value (if lval). */
209 union
210 {
7dc54575 211 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
212 CORE_ADDR address;
213
7dc54575
YQ
214 /*If lval == lval_register, the value is from a register. */
215 struct
216 {
217 /* Register number. */
218 int regnum;
219 /* Frame ID of "next" frame to which a register value is relative.
220 If the register value is found relative to frame F, then the
221 frame id of F->next will be stored in next_frame_id. */
222 struct frame_id next_frame_id;
223 } reg;
224
91294c83
AC
225 /* Pointer to internal variable. */
226 struct internalvar *internalvar;
5f5233d4 227
e81e7f5e
SC
228 /* Pointer to xmethod worker. */
229 struct xmethod_worker *xm_worker;
230
5f5233d4
PA
231 /* If lval == lval_computed, this is a set of function pointers
232 to use to access and describe the value, and a closure pointer
233 for them to use. */
234 struct
235 {
c8f2448a
JK
236 /* Functions to call. */
237 const struct lval_funcs *funcs;
238
239 /* Closure for those functions to use. */
240 void *closure;
5f5233d4 241 } computed;
91294c83
AC
242 } location;
243
3723fda8 244 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
245 addressable memory units. Note also the member embedded_offset
246 below. */
6b850546 247 LONGEST offset;
91294c83
AC
248
249 /* Only used for bitfields; number of bits contained in them. */
6b850546 250 LONGEST bitsize;
91294c83
AC
251
252 /* Only used for bitfields; position of start of field. For
32c9a795 253 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 254 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
6b850546 255 LONGEST bitpos;
91294c83 256
87784a47
TT
257 /* The number of references to this value. When a value is created,
258 the value chain holds a reference, so REFERENCE_COUNT is 1. If
259 release_value is called, this value is removed from the chain but
260 the caller of release_value now has a reference to this value.
261 The caller must arrange for a call to value_free later. */
262 int reference_count;
263
4ea48cc1
DJ
264 /* Only used for bitfields; the containing value. This allows a
265 single read from the target when displaying multiple
266 bitfields. */
267 struct value *parent;
268
91294c83
AC
269 /* Type of the value. */
270 struct type *type;
271
272 /* If a value represents a C++ object, then the `type' field gives
273 the object's compile-time type. If the object actually belongs
274 to some class derived from `type', perhaps with other base
275 classes and additional members, then `type' is just a subobject
276 of the real thing, and the full object is probably larger than
277 `type' would suggest.
278
279 If `type' is a dynamic class (i.e. one with a vtable), then GDB
280 can actually determine the object's run-time type by looking at
281 the run-time type information in the vtable. When this
282 information is available, we may elect to read in the entire
283 object, for several reasons:
284
285 - When printing the value, the user would probably rather see the
286 full object, not just the limited portion apparent from the
287 compile-time type.
288
289 - If `type' has virtual base classes, then even printing `type'
290 alone may require reaching outside the `type' portion of the
291 object to wherever the virtual base class has been stored.
292
293 When we store the entire object, `enclosing_type' is the run-time
294 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
295 offset of `type' within that larger type, in target addressable memory
296 units. The value_contents() macro takes `embedded_offset' into account,
297 so most GDB code continues to see the `type' portion of the value, just
298 as the inferior would.
91294c83
AC
299
300 If `type' is a pointer to an object, then `enclosing_type' is a
301 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
302 the offset in target addressable memory units from the full object
303 to the pointed-to object -- that is, the value `embedded_offset' would
304 have if we followed the pointer and fetched the complete object.
305 (I don't really see the point. Why not just determine the
306 run-time type when you indirect, and avoid the special case? The
307 contents don't matter until you indirect anyway.)
91294c83
AC
308
309 If we're not doing anything fancy, `enclosing_type' is equal to
310 `type', and `embedded_offset' is zero, so everything works
311 normally. */
312 struct type *enclosing_type;
6b850546
DT
313 LONGEST embedded_offset;
314 LONGEST pointed_to_offset;
91294c83
AC
315
316 /* Values are stored in a chain, so that they can be deleted easily
317 over calls to the inferior. Values assigned to internal
a08702d6
TJB
318 variables, put into the value history or exposed to Python are
319 taken off this list. */
91294c83
AC
320 struct value *next;
321
3e3d7139
JG
322 /* Actual contents of the value. Target byte-order. NULL or not
323 valid if lazy is nonzero. */
324 gdb_byte *contents;
828d3400 325
4e07d55f
PA
326 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
327 rather than available, since the common and default case is for a
9a0dc9e3
PA
328 value to be available. This is filled in at value read time.
329 The unavailable ranges are tracked in bits. Note that a contents
330 bit that has been optimized out doesn't really exist in the
331 program, so it can't be marked unavailable either. */
4e07d55f 332 VEC(range_s) *unavailable;
9a0dc9e3
PA
333
334 /* Likewise, but for optimized out contents (a chunk of the value of
335 a variable that does not actually exist in the program). If LVAL
336 is lval_register, this is a register ($pc, $sp, etc., never a
337 program variable) that has not been saved in the frame. Not
338 saved registers and optimized-out program variables values are
339 treated pretty much the same, except not-saved registers have a
340 different string representation and related error strings. */
341 VEC(range_s) *optimized_out;
91294c83
AC
342};
343
e512cdbd
SM
344/* See value.h. */
345
346struct gdbarch *
347get_value_arch (const struct value *value)
348{
349 return get_type_arch (value_type (value));
350}
351
4e07d55f 352int
6b850546 353value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
354{
355 gdb_assert (!value->lazy);
356
357 return !ranges_contain (value->unavailable, offset, length);
358}
359
bdf22206 360int
6b850546
DT
361value_bytes_available (const struct value *value,
362 LONGEST offset, LONGEST length)
bdf22206
AB
363{
364 return value_bits_available (value,
365 offset * TARGET_CHAR_BIT,
366 length * TARGET_CHAR_BIT);
367}
368
9a0dc9e3
PA
369int
370value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
371{
372 gdb_assert (!value->lazy);
373
374 return ranges_contain (value->optimized_out, bit_offset, bit_length);
375}
376
ec0a52e1
PA
377int
378value_entirely_available (struct value *value)
379{
380 /* We can only tell whether the whole value is available when we try
381 to read it. */
382 if (value->lazy)
383 value_fetch_lazy (value);
384
385 if (VEC_empty (range_s, value->unavailable))
386 return 1;
387 return 0;
388}
389
9a0dc9e3
PA
390/* Returns true if VALUE is entirely covered by RANGES. If the value
391 is lazy, it'll be read now. Note that RANGE is a pointer to
392 pointer because reading the value might change *RANGE. */
393
394static int
395value_entirely_covered_by_range_vector (struct value *value,
396 VEC(range_s) **ranges)
6211c335 397{
9a0dc9e3
PA
398 /* We can only tell whether the whole value is optimized out /
399 unavailable when we try to read it. */
6211c335
YQ
400 if (value->lazy)
401 value_fetch_lazy (value);
402
9a0dc9e3 403 if (VEC_length (range_s, *ranges) == 1)
6211c335 404 {
9a0dc9e3 405 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
406
407 if (t->offset == 0
64c46ce4
JB
408 && t->length == (TARGET_CHAR_BIT
409 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
410 return 1;
411 }
412
413 return 0;
414}
415
9a0dc9e3
PA
416int
417value_entirely_unavailable (struct value *value)
418{
419 return value_entirely_covered_by_range_vector (value, &value->unavailable);
420}
421
422int
423value_entirely_optimized_out (struct value *value)
424{
425 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
426}
427
428/* Insert into the vector pointed to by VECTORP the bit range starting of
429 OFFSET bits, and extending for the next LENGTH bits. */
430
431static void
6b850546
DT
432insert_into_bit_range_vector (VEC(range_s) **vectorp,
433 LONGEST offset, LONGEST length)
4e07d55f
PA
434{
435 range_s newr;
436 int i;
437
438 /* Insert the range sorted. If there's overlap or the new range
439 would be contiguous with an existing range, merge. */
440
441 newr.offset = offset;
442 newr.length = length;
443
444 /* Do a binary search for the position the given range would be
445 inserted if we only considered the starting OFFSET of ranges.
446 Call that position I. Since we also have LENGTH to care for
447 (this is a range afterall), we need to check if the _previous_
448 range overlaps the I range. E.g., calling R the new range:
449
450 #1 - overlaps with previous
451
452 R
453 |-...-|
454 |---| |---| |------| ... |--|
455 0 1 2 N
456
457 I=1
458
459 In the case #1 above, the binary search would return `I=1',
460 meaning, this OFFSET should be inserted at position 1, and the
461 current position 1 should be pushed further (and become 2). But,
462 note that `0' overlaps with R, so we want to merge them.
463
464 A similar consideration needs to be taken if the new range would
465 be contiguous with the previous range:
466
467 #2 - contiguous with previous
468
469 R
470 |-...-|
471 |--| |---| |------| ... |--|
472 0 1 2 N
473
474 I=1
475
476 If there's no overlap with the previous range, as in:
477
478 #3 - not overlapping and not contiguous
479
480 R
481 |-...-|
482 |--| |---| |------| ... |--|
483 0 1 2 N
484
485 I=1
486
487 or if I is 0:
488
489 #4 - R is the range with lowest offset
490
491 R
492 |-...-|
493 |--| |---| |------| ... |--|
494 0 1 2 N
495
496 I=0
497
498 ... we just push the new range to I.
499
500 All the 4 cases above need to consider that the new range may
501 also overlap several of the ranges that follow, or that R may be
502 contiguous with the following range, and merge. E.g.,
503
504 #5 - overlapping following ranges
505
506 R
507 |------------------------|
508 |--| |---| |------| ... |--|
509 0 1 2 N
510
511 I=0
512
513 or:
514
515 R
516 |-------|
517 |--| |---| |------| ... |--|
518 0 1 2 N
519
520 I=1
521
522 */
523
9a0dc9e3 524 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
525 if (i > 0)
526 {
9a0dc9e3 527 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
528
529 if (ranges_overlap (bef->offset, bef->length, offset, length))
530 {
531 /* #1 */
325fac50
PA
532 ULONGEST l = std::min (bef->offset, offset);
533 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
4e07d55f
PA
534
535 bef->offset = l;
536 bef->length = h - l;
537 i--;
538 }
539 else if (offset == bef->offset + bef->length)
540 {
541 /* #2 */
542 bef->length += length;
543 i--;
544 }
545 else
546 {
547 /* #3 */
9a0dc9e3 548 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
549 }
550 }
551 else
552 {
553 /* #4 */
9a0dc9e3 554 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
555 }
556
557 /* Check whether the ranges following the one we've just added or
558 touched can be folded in (#5 above). */
9a0dc9e3 559 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
560 {
561 struct range *t;
562 struct range *r;
563 int removed = 0;
564 int next = i + 1;
565
566 /* Get the range we just touched. */
9a0dc9e3 567 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
568 removed = 0;
569
570 i = next;
9a0dc9e3 571 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
572 if (r->offset <= t->offset + t->length)
573 {
574 ULONGEST l, h;
575
325fac50
PA
576 l = std::min (t->offset, r->offset);
577 h = std::max (t->offset + t->length, r->offset + r->length);
4e07d55f
PA
578
579 t->offset = l;
580 t->length = h - l;
581
582 removed++;
583 }
584 else
585 {
586 /* If we couldn't merge this one, we won't be able to
587 merge following ones either, since the ranges are
588 always sorted by OFFSET. */
589 break;
590 }
591
592 if (removed != 0)
9a0dc9e3 593 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
594 }
595}
596
9a0dc9e3 597void
6b850546
DT
598mark_value_bits_unavailable (struct value *value,
599 LONGEST offset, LONGEST length)
9a0dc9e3
PA
600{
601 insert_into_bit_range_vector (&value->unavailable, offset, length);
602}
603
bdf22206 604void
6b850546
DT
605mark_value_bytes_unavailable (struct value *value,
606 LONGEST offset, LONGEST length)
bdf22206
AB
607{
608 mark_value_bits_unavailable (value,
609 offset * TARGET_CHAR_BIT,
610 length * TARGET_CHAR_BIT);
611}
612
c8c1c22f
PA
613/* Find the first range in RANGES that overlaps the range defined by
614 OFFSET and LENGTH, starting at element POS in the RANGES vector,
615 Returns the index into RANGES where such overlapping range was
616 found, or -1 if none was found. */
617
618static int
619find_first_range_overlap (VEC(range_s) *ranges, int pos,
6b850546 620 LONGEST offset, LONGEST length)
c8c1c22f
PA
621{
622 range_s *r;
623 int i;
624
625 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
626 if (ranges_overlap (r->offset, r->length, offset, length))
627 return i;
628
629 return -1;
630}
631
bdf22206
AB
632/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
633 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
634 return non-zero.
635
636 It must always be the case that:
637 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
638
639 It is assumed that memory can be accessed from:
640 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
641 to:
642 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
643 / TARGET_CHAR_BIT) */
644static int
645memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
646 const gdb_byte *ptr2, size_t offset2_bits,
647 size_t length_bits)
648{
649 gdb_assert (offset1_bits % TARGET_CHAR_BIT
650 == offset2_bits % TARGET_CHAR_BIT);
651
652 if (offset1_bits % TARGET_CHAR_BIT != 0)
653 {
654 size_t bits;
655 gdb_byte mask, b1, b2;
656
657 /* The offset from the base pointers PTR1 and PTR2 is not a complete
658 number of bytes. A number of bits up to either the next exact
659 byte boundary, or LENGTH_BITS (which ever is sooner) will be
660 compared. */
661 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
662 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
663 mask = (1 << bits) - 1;
664
665 if (length_bits < bits)
666 {
667 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
668 bits = length_bits;
669 }
670
671 /* Now load the two bytes and mask off the bits we care about. */
672 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
673 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
674
675 if (b1 != b2)
676 return 1;
677
678 /* Now update the length and offsets to take account of the bits
679 we've just compared. */
680 length_bits -= bits;
681 offset1_bits += bits;
682 offset2_bits += bits;
683 }
684
685 if (length_bits % TARGET_CHAR_BIT != 0)
686 {
687 size_t bits;
688 size_t o1, o2;
689 gdb_byte mask, b1, b2;
690
691 /* The length is not an exact number of bytes. After the previous
692 IF.. block then the offsets are byte aligned, or the
693 length is zero (in which case this code is not reached). Compare
694 a number of bits at the end of the region, starting from an exact
695 byte boundary. */
696 bits = length_bits % TARGET_CHAR_BIT;
697 o1 = offset1_bits + length_bits - bits;
698 o2 = offset2_bits + length_bits - bits;
699
700 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
701 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
702
703 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
704 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
705
706 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
707 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
708
709 if (b1 != b2)
710 return 1;
711
712 length_bits -= bits;
713 }
714
715 if (length_bits > 0)
716 {
717 /* We've now taken care of any stray "bits" at the start, or end of
718 the region to compare, the remainder can be covered with a simple
719 memcmp. */
720 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
721 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
722 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
723
724 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
725 ptr2 + offset2_bits / TARGET_CHAR_BIT,
726 length_bits / TARGET_CHAR_BIT);
727 }
728
729 /* Length is zero, regions match. */
730 return 0;
731}
732
9a0dc9e3
PA
733/* Helper struct for find_first_range_overlap_and_match and
734 value_contents_bits_eq. Keep track of which slot of a given ranges
735 vector have we last looked at. */
bdf22206 736
9a0dc9e3
PA
737struct ranges_and_idx
738{
739 /* The ranges. */
740 VEC(range_s) *ranges;
741
742 /* The range we've last found in RANGES. Given ranges are sorted,
743 we can start the next lookup here. */
744 int idx;
745};
746
747/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
748 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
749 ranges starting at OFFSET2 bits. Return true if the ranges match
750 and fill in *L and *H with the overlapping window relative to
751 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
752
753static int
9a0dc9e3
PA
754find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
755 struct ranges_and_idx *rp2,
6b850546
DT
756 LONGEST offset1, LONGEST offset2,
757 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 758{
9a0dc9e3
PA
759 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
760 offset1, length);
761 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
762 offset2, length);
c8c1c22f 763
9a0dc9e3
PA
764 if (rp1->idx == -1 && rp2->idx == -1)
765 {
766 *l = length;
767 *h = length;
768 return 1;
769 }
770 else if (rp1->idx == -1 || rp2->idx == -1)
771 return 0;
772 else
c8c1c22f
PA
773 {
774 range_s *r1, *r2;
775 ULONGEST l1, h1;
776 ULONGEST l2, h2;
777
9a0dc9e3
PA
778 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
779 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
780
781 /* Get the unavailable windows intersected by the incoming
782 ranges. The first and last ranges that overlap the argument
783 range may be wider than said incoming arguments ranges. */
325fac50
PA
784 l1 = std::max (offset1, r1->offset);
785 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 786
325fac50
PA
787 l2 = std::max (offset2, r2->offset);
788 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
789
790 /* Make them relative to the respective start offsets, so we can
791 compare them for equality. */
792 l1 -= offset1;
793 h1 -= offset1;
794
795 l2 -= offset2;
796 h2 -= offset2;
797
9a0dc9e3 798 /* Different ranges, no match. */
c8c1c22f
PA
799 if (l1 != l2 || h1 != h2)
800 return 0;
801
9a0dc9e3
PA
802 *h = h1;
803 *l = l1;
804 return 1;
805 }
806}
807
808/* Helper function for value_contents_eq. The only difference is that
809 this function is bit rather than byte based.
810
811 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
812 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
813 Return true if the available bits match. */
814
815static int
816value_contents_bits_eq (const struct value *val1, int offset1,
817 const struct value *val2, int offset2,
818 int length)
819{
820 /* Each array element corresponds to a ranges source (unavailable,
821 optimized out). '1' is for VAL1, '2' for VAL2. */
822 struct ranges_and_idx rp1[2], rp2[2];
823
824 /* See function description in value.h. */
825 gdb_assert (!val1->lazy && !val2->lazy);
826
827 /* We shouldn't be trying to compare past the end of the values. */
828 gdb_assert (offset1 + length
829 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
830 gdb_assert (offset2 + length
831 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
832
833 memset (&rp1, 0, sizeof (rp1));
834 memset (&rp2, 0, sizeof (rp2));
835 rp1[0].ranges = val1->unavailable;
836 rp2[0].ranges = val2->unavailable;
837 rp1[1].ranges = val1->optimized_out;
838 rp2[1].ranges = val2->optimized_out;
839
840 while (length > 0)
841 {
000339af 842 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
843 int i;
844
845 for (i = 0; i < 2; i++)
846 {
847 ULONGEST l_tmp, h_tmp;
848
849 /* The contents only match equal if the invalid/unavailable
850 contents ranges match as well. */
851 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
852 offset1, offset2, length,
853 &l_tmp, &h_tmp))
854 return 0;
855
856 /* We're interested in the lowest/first range found. */
857 if (i == 0 || l_tmp < l)
858 {
859 l = l_tmp;
860 h = h_tmp;
861 }
862 }
863
864 /* Compare the available/valid contents. */
bdf22206 865 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 866 val2->contents, offset2, l) != 0)
c8c1c22f
PA
867 return 0;
868
9a0dc9e3
PA
869 length -= h;
870 offset1 += h;
871 offset2 += h;
c8c1c22f
PA
872 }
873
874 return 1;
875}
876
bdf22206 877int
6b850546
DT
878value_contents_eq (const struct value *val1, LONGEST offset1,
879 const struct value *val2, LONGEST offset2,
880 LONGEST length)
bdf22206 881{
9a0dc9e3
PA
882 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
883 val2, offset2 * TARGET_CHAR_BIT,
884 length * TARGET_CHAR_BIT);
bdf22206
AB
885}
886
581e13c1 887/* Prototypes for local functions. */
c906108c 888
a14ed312 889static void show_values (char *, int);
c906108c 890
a14ed312 891static void show_convenience (char *, int);
c906108c 892
c906108c
SS
893
894/* The value-history records all the values printed
895 by print commands during this session. Each chunk
896 records 60 consecutive values. The first chunk on
897 the chain records the most recent values.
898 The total number of values is in value_history_count. */
899
900#define VALUE_HISTORY_CHUNK 60
901
902struct value_history_chunk
c5aa993b
JM
903 {
904 struct value_history_chunk *next;
f23631e4 905 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 906 };
c906108c
SS
907
908/* Chain of chunks now in use. */
909
910static struct value_history_chunk *value_history_chain;
911
581e13c1 912static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 913
c906108c
SS
914\f
915/* List of all value objects currently allocated
916 (except for those released by calls to release_value)
917 This is so they can be freed after each command. */
918
f23631e4 919static struct value *all_values;
c906108c 920
3e3d7139
JG
921/* Allocate a lazy value for type TYPE. Its actual content is
922 "lazily" allocated too: the content field of the return value is
923 NULL; it will be allocated when it is fetched from the target. */
c906108c 924
f23631e4 925struct value *
3e3d7139 926allocate_value_lazy (struct type *type)
c906108c 927{
f23631e4 928 struct value *val;
c54eabfa
JK
929
930 /* Call check_typedef on our type to make sure that, if TYPE
931 is a TYPE_CODE_TYPEDEF, its length is set to the length
932 of the target type instead of zero. However, we do not
933 replace the typedef type by the target type, because we want
934 to keep the typedef in order to be able to set the VAL's type
935 description correctly. */
936 check_typedef (type);
c906108c 937
8d749320 938 val = XCNEW (struct value);
3e3d7139 939 val->contents = NULL;
df407dfe 940 val->next = all_values;
c906108c 941 all_values = val;
df407dfe 942 val->type = type;
4754a64e 943 val->enclosing_type = type;
c906108c 944 VALUE_LVAL (val) = not_lval;
42ae5230 945 val->location.address = 0;
df407dfe
AC
946 val->offset = 0;
947 val->bitpos = 0;
948 val->bitsize = 0;
3e3d7139 949 val->lazy = 1;
13c3b5f5 950 val->embedded_offset = 0;
b44d461b 951 val->pointed_to_offset = 0;
c906108c 952 val->modifiable = 1;
42be36b3 953 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
954
955 /* Values start out on the all_values chain. */
956 val->reference_count = 1;
957
c906108c
SS
958 return val;
959}
960
5fdf6324
AB
961/* The maximum size, in bytes, that GDB will try to allocate for a value.
962 The initial value of 64k was not selected for any specific reason, it is
963 just a reasonable starting point. */
964
965static int max_value_size = 65536; /* 64k bytes */
966
967/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
968 LONGEST, otherwise GDB will not be able to parse integer values from the
969 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
970 be unable to parse "set max-value-size 2".
971
972 As we want a consistent GDB experience across hosts with different sizes
973 of LONGEST, this arbitrary minimum value was selected, so long as this
974 is bigger than LONGEST on all GDB supported hosts we're fine. */
975
976#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
977gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
978
979/* Implement the "set max-value-size" command. */
980
981static void
982set_max_value_size (char *args, int from_tty,
983 struct cmd_list_element *c)
984{
985 gdb_assert (max_value_size == -1 || max_value_size >= 0);
986
987 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
988 {
989 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
990 error (_("max-value-size set too low, increasing to %d bytes"),
991 max_value_size);
992 }
993}
994
995/* Implement the "show max-value-size" command. */
996
997static void
998show_max_value_size (struct ui_file *file, int from_tty,
999 struct cmd_list_element *c, const char *value)
1000{
1001 if (max_value_size == -1)
1002 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
1003 else
1004 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
1005 max_value_size);
1006}
1007
1008/* Called before we attempt to allocate or reallocate a buffer for the
1009 contents of a value. TYPE is the type of the value for which we are
1010 allocating the buffer. If the buffer is too large (based on the user
1011 controllable setting) then throw an error. If this function returns
1012 then we should attempt to allocate the buffer. */
1013
1014static void
1015check_type_length_before_alloc (const struct type *type)
1016{
1017 unsigned int length = TYPE_LENGTH (type);
1018
1019 if (max_value_size > -1 && length > max_value_size)
1020 {
1021 if (TYPE_NAME (type) != NULL)
1022 error (_("value of type `%s' requires %u bytes, which is more "
1023 "than max-value-size"), TYPE_NAME (type), length);
1024 else
1025 error (_("value requires %u bytes, which is more than "
1026 "max-value-size"), length);
1027 }
1028}
1029
3e3d7139
JG
1030/* Allocate the contents of VAL if it has not been allocated yet. */
1031
548b762d 1032static void
3e3d7139
JG
1033allocate_value_contents (struct value *val)
1034{
1035 if (!val->contents)
5fdf6324
AB
1036 {
1037 check_type_length_before_alloc (val->enclosing_type);
1038 val->contents
1039 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1040 }
3e3d7139
JG
1041}
1042
1043/* Allocate a value and its contents for type TYPE. */
1044
1045struct value *
1046allocate_value (struct type *type)
1047{
1048 struct value *val = allocate_value_lazy (type);
a109c7c1 1049
3e3d7139
JG
1050 allocate_value_contents (val);
1051 val->lazy = 0;
1052 return val;
1053}
1054
c906108c 1055/* Allocate a value that has the correct length
938f5214 1056 for COUNT repetitions of type TYPE. */
c906108c 1057
f23631e4 1058struct value *
fba45db2 1059allocate_repeat_value (struct type *type, int count)
c906108c 1060{
c5aa993b 1061 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1062 /* FIXME-type-allocation: need a way to free this type when we are
1063 done with it. */
e3506a9f
UW
1064 struct type *array_type
1065 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1066
e3506a9f 1067 return allocate_value (array_type);
c906108c
SS
1068}
1069
5f5233d4
PA
1070struct value *
1071allocate_computed_value (struct type *type,
c8f2448a 1072 const struct lval_funcs *funcs,
5f5233d4
PA
1073 void *closure)
1074{
41e8491f 1075 struct value *v = allocate_value_lazy (type);
a109c7c1 1076
5f5233d4
PA
1077 VALUE_LVAL (v) = lval_computed;
1078 v->location.computed.funcs = funcs;
1079 v->location.computed.closure = closure;
5f5233d4
PA
1080
1081 return v;
1082}
1083
a7035dbb
JK
1084/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1085
1086struct value *
1087allocate_optimized_out_value (struct type *type)
1088{
1089 struct value *retval = allocate_value_lazy (type);
1090
9a0dc9e3
PA
1091 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1092 set_value_lazy (retval, 0);
a7035dbb
JK
1093 return retval;
1094}
1095
df407dfe
AC
1096/* Accessor methods. */
1097
17cf0ecd 1098struct value *
4bf7b526 1099value_next (const struct value *value)
17cf0ecd
AC
1100{
1101 return value->next;
1102}
1103
df407dfe 1104struct type *
0e03807e 1105value_type (const struct value *value)
df407dfe
AC
1106{
1107 return value->type;
1108}
04624583
AC
1109void
1110deprecated_set_value_type (struct value *value, struct type *type)
1111{
1112 value->type = type;
1113}
df407dfe 1114
6b850546 1115LONGEST
0e03807e 1116value_offset (const struct value *value)
df407dfe
AC
1117{
1118 return value->offset;
1119}
f5cf64a7 1120void
6b850546 1121set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1122{
1123 value->offset = offset;
1124}
df407dfe 1125
6b850546 1126LONGEST
0e03807e 1127value_bitpos (const struct value *value)
df407dfe
AC
1128{
1129 return value->bitpos;
1130}
9bbda503 1131void
6b850546 1132set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1133{
1134 value->bitpos = bit;
1135}
df407dfe 1136
6b850546 1137LONGEST
0e03807e 1138value_bitsize (const struct value *value)
df407dfe
AC
1139{
1140 return value->bitsize;
1141}
9bbda503 1142void
6b850546 1143set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1144{
1145 value->bitsize = bit;
1146}
df407dfe 1147
4ea48cc1 1148struct value *
4bf7b526 1149value_parent (const struct value *value)
4ea48cc1
DJ
1150{
1151 return value->parent;
1152}
1153
53ba8333
JB
1154/* See value.h. */
1155
1156void
1157set_value_parent (struct value *value, struct value *parent)
1158{
40501e00
TT
1159 struct value *old = value->parent;
1160
53ba8333 1161 value->parent = parent;
40501e00
TT
1162 if (parent != NULL)
1163 value_incref (parent);
1164 value_free (old);
53ba8333
JB
1165}
1166
fc1a4b47 1167gdb_byte *
990a07ab
AC
1168value_contents_raw (struct value *value)
1169{
3ae385af
SM
1170 struct gdbarch *arch = get_value_arch (value);
1171 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1172
3e3d7139 1173 allocate_value_contents (value);
3ae385af 1174 return value->contents + value->embedded_offset * unit_size;
990a07ab
AC
1175}
1176
fc1a4b47 1177gdb_byte *
990a07ab
AC
1178value_contents_all_raw (struct value *value)
1179{
3e3d7139
JG
1180 allocate_value_contents (value);
1181 return value->contents;
990a07ab
AC
1182}
1183
4754a64e 1184struct type *
4bf7b526 1185value_enclosing_type (const struct value *value)
4754a64e
AC
1186{
1187 return value->enclosing_type;
1188}
1189
8264ba82
AG
1190/* Look at value.h for description. */
1191
1192struct type *
1193value_actual_type (struct value *value, int resolve_simple_types,
1194 int *real_type_found)
1195{
1196 struct value_print_options opts;
8264ba82
AG
1197 struct type *result;
1198
1199 get_user_print_options (&opts);
1200
1201 if (real_type_found)
1202 *real_type_found = 0;
1203 result = value_type (value);
1204 if (opts.objectprint)
1205 {
5e34c6c3
LM
1206 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1207 fetch its rtti type. */
1208 if ((TYPE_CODE (result) == TYPE_CODE_PTR
444bca65 1209 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3 1210 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1211 == TYPE_CODE_STRUCT
1212 && !value_optimized_out (value))
8264ba82
AG
1213 {
1214 struct type *real_type;
1215
1216 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1217 if (real_type)
1218 {
1219 if (real_type_found)
1220 *real_type_found = 1;
1221 result = real_type;
1222 }
1223 }
1224 else if (resolve_simple_types)
1225 {
1226 if (real_type_found)
1227 *real_type_found = 1;
1228 result = value_enclosing_type (value);
1229 }
1230 }
1231
1232 return result;
1233}
1234
901461f8
PA
1235void
1236error_value_optimized_out (void)
1237{
1238 error (_("value has been optimized out"));
1239}
1240
0e03807e 1241static void
4e07d55f 1242require_not_optimized_out (const struct value *value)
0e03807e 1243{
9a0dc9e3 1244 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1245 {
1246 if (value->lval == lval_register)
1247 error (_("register has not been saved in frame"));
1248 else
1249 error_value_optimized_out ();
1250 }
0e03807e
TT
1251}
1252
4e07d55f
PA
1253static void
1254require_available (const struct value *value)
1255{
1256 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1257 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1258}
1259
fc1a4b47 1260const gdb_byte *
0e03807e 1261value_contents_for_printing (struct value *value)
46615f07
AC
1262{
1263 if (value->lazy)
1264 value_fetch_lazy (value);
3e3d7139 1265 return value->contents;
46615f07
AC
1266}
1267
de4127a3
PA
1268const gdb_byte *
1269value_contents_for_printing_const (const struct value *value)
1270{
1271 gdb_assert (!value->lazy);
1272 return value->contents;
1273}
1274
0e03807e
TT
1275const gdb_byte *
1276value_contents_all (struct value *value)
1277{
1278 const gdb_byte *result = value_contents_for_printing (value);
1279 require_not_optimized_out (value);
4e07d55f 1280 require_available (value);
0e03807e
TT
1281 return result;
1282}
1283
9a0dc9e3
PA
1284/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1285 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1286
1287static void
1288ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1289 VEC (range_s) *src_range, int src_bit_offset,
1290 int bit_length)
1291{
1292 range_s *r;
1293 int i;
1294
1295 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1296 {
1297 ULONGEST h, l;
1298
325fac50
PA
1299 l = std::max (r->offset, (LONGEST) src_bit_offset);
1300 h = std::min (r->offset + r->length,
1301 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1302
1303 if (l < h)
1304 insert_into_bit_range_vector (dst_range,
1305 dst_bit_offset + (l - src_bit_offset),
1306 h - l);
1307 }
1308}
1309
4875ffdb
PA
1310/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1311 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1312
1313static void
1314value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1315 const struct value *src, int src_bit_offset,
1316 int bit_length)
1317{
1318 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1319 src->unavailable, src_bit_offset,
1320 bit_length);
1321 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1322 src->optimized_out, src_bit_offset,
1323 bit_length);
1324}
1325
3ae385af 1326/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1327 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1328 contents, starting at DST_OFFSET. If unavailable contents are
1329 being copied from SRC, the corresponding DST contents are marked
1330 unavailable accordingly. Neither DST nor SRC may be lazy
1331 values.
1332
1333 It is assumed the contents of DST in the [DST_OFFSET,
1334 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1335
1336void
6b850546
DT
1337value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1338 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1339{
6b850546 1340 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1341 struct gdbarch *arch = get_value_arch (src);
1342 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1343
1344 /* A lazy DST would make that this copy operation useless, since as
1345 soon as DST's contents were un-lazied (by a later value_contents
1346 call, say), the contents would be overwritten. A lazy SRC would
1347 mean we'd be copying garbage. */
1348 gdb_assert (!dst->lazy && !src->lazy);
1349
29976f3f
PA
1350 /* The overwritten DST range gets unavailability ORed in, not
1351 replaced. Make sure to remember to implement replacing if it
1352 turns out actually necessary. */
1353 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1354 gdb_assert (!value_bits_any_optimized_out (dst,
1355 TARGET_CHAR_BIT * dst_offset,
1356 TARGET_CHAR_BIT * length));
29976f3f 1357
39d37385 1358 /* Copy the data. */
3ae385af
SM
1359 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1360 value_contents_all_raw (src) + src_offset * unit_size,
1361 length * unit_size);
39d37385
PA
1362
1363 /* Copy the meta-data, adjusted. */
3ae385af
SM
1364 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1365 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1366 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1367
4875ffdb
PA
1368 value_ranges_copy_adjusted (dst, dst_bit_offset,
1369 src, src_bit_offset,
1370 bit_length);
39d37385
PA
1371}
1372
29976f3f
PA
1373/* Copy LENGTH bytes of SRC value's (all) contents
1374 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1375 (all) contents, starting at DST_OFFSET. If unavailable contents
1376 are being copied from SRC, the corresponding DST contents are
1377 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1378 lazy, it will be fetched now.
29976f3f
PA
1379
1380 It is assumed the contents of DST in the [DST_OFFSET,
1381 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1382
1383void
6b850546
DT
1384value_contents_copy (struct value *dst, LONGEST dst_offset,
1385 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1386{
39d37385
PA
1387 if (src->lazy)
1388 value_fetch_lazy (src);
1389
1390 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1391}
1392
d69fe07e 1393int
4bf7b526 1394value_lazy (const struct value *value)
d69fe07e
AC
1395{
1396 return value->lazy;
1397}
1398
dfa52d88
AC
1399void
1400set_value_lazy (struct value *value, int val)
1401{
1402 value->lazy = val;
1403}
1404
4e5d721f 1405int
4bf7b526 1406value_stack (const struct value *value)
4e5d721f
DE
1407{
1408 return value->stack;
1409}
1410
1411void
1412set_value_stack (struct value *value, int val)
1413{
1414 value->stack = val;
1415}
1416
fc1a4b47 1417const gdb_byte *
0fd88904
AC
1418value_contents (struct value *value)
1419{
0e03807e
TT
1420 const gdb_byte *result = value_contents_writeable (value);
1421 require_not_optimized_out (value);
4e07d55f 1422 require_available (value);
0e03807e 1423 return result;
0fd88904
AC
1424}
1425
fc1a4b47 1426gdb_byte *
0fd88904
AC
1427value_contents_writeable (struct value *value)
1428{
1429 if (value->lazy)
1430 value_fetch_lazy (value);
fc0c53a0 1431 return value_contents_raw (value);
0fd88904
AC
1432}
1433
feb13ab0
AC
1434int
1435value_optimized_out (struct value *value)
1436{
691a26f5
AB
1437 /* We can only know if a value is optimized out once we have tried to
1438 fetch it. */
9a0dc9e3 1439 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
ecf2e90c
DB
1440 {
1441 TRY
1442 {
1443 value_fetch_lazy (value);
1444 }
1445 CATCH (ex, RETURN_MASK_ERROR)
1446 {
1447 /* Fall back to checking value->optimized_out. */
1448 }
1449 END_CATCH
1450 }
691a26f5 1451
9a0dc9e3 1452 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1453}
1454
9a0dc9e3
PA
1455/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1456 the following LENGTH bytes. */
eca07816 1457
feb13ab0 1458void
9a0dc9e3 1459mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1460{
9a0dc9e3
PA
1461 mark_value_bits_optimized_out (value,
1462 offset * TARGET_CHAR_BIT,
1463 length * TARGET_CHAR_BIT);
feb13ab0 1464}
13c3b5f5 1465
9a0dc9e3 1466/* See value.h. */
0e03807e 1467
9a0dc9e3 1468void
6b850546
DT
1469mark_value_bits_optimized_out (struct value *value,
1470 LONGEST offset, LONGEST length)
0e03807e 1471{
9a0dc9e3 1472 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1473}
1474
8cf6f0b1
TT
1475int
1476value_bits_synthetic_pointer (const struct value *value,
6b850546 1477 LONGEST offset, LONGEST length)
8cf6f0b1 1478{
e7303042 1479 if (value->lval != lval_computed
8cf6f0b1
TT
1480 || !value->location.computed.funcs->check_synthetic_pointer)
1481 return 0;
1482 return value->location.computed.funcs->check_synthetic_pointer (value,
1483 offset,
1484 length);
1485}
1486
6b850546 1487LONGEST
4bf7b526 1488value_embedded_offset (const struct value *value)
13c3b5f5
AC
1489{
1490 return value->embedded_offset;
1491}
1492
1493void
6b850546 1494set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1495{
1496 value->embedded_offset = val;
1497}
b44d461b 1498
6b850546 1499LONGEST
4bf7b526 1500value_pointed_to_offset (const struct value *value)
b44d461b
AC
1501{
1502 return value->pointed_to_offset;
1503}
1504
1505void
6b850546 1506set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1507{
1508 value->pointed_to_offset = val;
1509}
13bb5560 1510
c8f2448a 1511const struct lval_funcs *
a471c594 1512value_computed_funcs (const struct value *v)
5f5233d4 1513{
a471c594 1514 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1515
1516 return v->location.computed.funcs;
1517}
1518
1519void *
0e03807e 1520value_computed_closure (const struct value *v)
5f5233d4 1521{
0e03807e 1522 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1523
1524 return v->location.computed.closure;
1525}
1526
13bb5560
AC
1527enum lval_type *
1528deprecated_value_lval_hack (struct value *value)
1529{
1530 return &value->lval;
1531}
1532
a471c594
JK
1533enum lval_type
1534value_lval_const (const struct value *value)
1535{
1536 return value->lval;
1537}
1538
42ae5230 1539CORE_ADDR
de4127a3 1540value_address (const struct value *value)
42ae5230 1541{
1a088441 1542 if (value->lval != lval_memory)
42ae5230 1543 return 0;
53ba8333
JB
1544 if (value->parent != NULL)
1545 return value_address (value->parent) + value->offset;
9920b434
BH
1546 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1547 {
1548 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1549 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1550 }
1551
1552 return value->location.address + value->offset;
42ae5230
TT
1553}
1554
1555CORE_ADDR
4bf7b526 1556value_raw_address (const struct value *value)
42ae5230 1557{
1a088441 1558 if (value->lval != lval_memory)
42ae5230
TT
1559 return 0;
1560 return value->location.address;
1561}
1562
1563void
1564set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1565{
1a088441 1566 gdb_assert (value->lval == lval_memory);
42ae5230 1567 value->location.address = addr;
13bb5560
AC
1568}
1569
1570struct internalvar **
1571deprecated_value_internalvar_hack (struct value *value)
1572{
1573 return &value->location.internalvar;
1574}
1575
1576struct frame_id *
41b56feb 1577deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1578{
7c2ba67e 1579 gdb_assert (value->lval == lval_register);
7dc54575 1580 return &value->location.reg.next_frame_id;
13bb5560
AC
1581}
1582
7dc54575 1583int *
13bb5560
AC
1584deprecated_value_regnum_hack (struct value *value)
1585{
7c2ba67e 1586 gdb_assert (value->lval == lval_register);
7dc54575 1587 return &value->location.reg.regnum;
13bb5560 1588}
88e3b34b
AC
1589
1590int
4bf7b526 1591deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1592{
1593 return value->modifiable;
1594}
990a07ab 1595\f
c906108c
SS
1596/* Return a mark in the value chain. All values allocated after the
1597 mark is obtained (except for those released) are subject to being freed
1598 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1599struct value *
fba45db2 1600value_mark (void)
c906108c
SS
1601{
1602 return all_values;
1603}
1604
828d3400
DJ
1605/* Take a reference to VAL. VAL will not be deallocated until all
1606 references are released. */
1607
1608void
1609value_incref (struct value *val)
1610{
1611 val->reference_count++;
1612}
1613
1614/* Release a reference to VAL, which was acquired with value_incref.
1615 This function is also called to deallocate values from the value
1616 chain. */
1617
3e3d7139
JG
1618void
1619value_free (struct value *val)
1620{
1621 if (val)
5f5233d4 1622 {
828d3400
DJ
1623 gdb_assert (val->reference_count > 0);
1624 val->reference_count--;
1625 if (val->reference_count > 0)
1626 return;
1627
4ea48cc1
DJ
1628 /* If there's an associated parent value, drop our reference to
1629 it. */
1630 if (val->parent != NULL)
1631 value_free (val->parent);
1632
5f5233d4
PA
1633 if (VALUE_LVAL (val) == lval_computed)
1634 {
c8f2448a 1635 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1636
1637 if (funcs->free_closure)
1638 funcs->free_closure (val);
1639 }
e81e7f5e
SC
1640 else if (VALUE_LVAL (val) == lval_xcallable)
1641 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1642
1643 xfree (val->contents);
4e07d55f 1644 VEC_free (range_s, val->unavailable);
5f5233d4 1645 }
3e3d7139
JG
1646 xfree (val);
1647}
1648
c906108c
SS
1649/* Free all values allocated since MARK was obtained by value_mark
1650 (except for those released). */
1651void
4bf7b526 1652value_free_to_mark (const struct value *mark)
c906108c 1653{
f23631e4
AC
1654 struct value *val;
1655 struct value *next;
c906108c
SS
1656
1657 for (val = all_values; val && val != mark; val = next)
1658 {
df407dfe 1659 next = val->next;
e848a8a5 1660 val->released = 1;
c906108c
SS
1661 value_free (val);
1662 }
1663 all_values = val;
1664}
1665
1666/* Free all the values that have been allocated (except for those released).
725e88af
DE
1667 Call after each command, successful or not.
1668 In practice this is called before each command, which is sufficient. */
c906108c
SS
1669
1670void
fba45db2 1671free_all_values (void)
c906108c 1672{
f23631e4
AC
1673 struct value *val;
1674 struct value *next;
c906108c
SS
1675
1676 for (val = all_values; val; val = next)
1677 {
df407dfe 1678 next = val->next;
e848a8a5 1679 val->released = 1;
c906108c
SS
1680 value_free (val);
1681 }
1682
1683 all_values = 0;
1684}
1685
0cf6dd15
TJB
1686/* Frees all the elements in a chain of values. */
1687
1688void
1689free_value_chain (struct value *v)
1690{
1691 struct value *next;
1692
1693 for (; v; v = next)
1694 {
1695 next = value_next (v);
1696 value_free (v);
1697 }
1698}
1699
c906108c
SS
1700/* Remove VAL from the chain all_values
1701 so it will not be freed automatically. */
1702
1703void
f23631e4 1704release_value (struct value *val)
c906108c 1705{
f23631e4 1706 struct value *v;
c906108c
SS
1707
1708 if (all_values == val)
1709 {
1710 all_values = val->next;
06a64a0b 1711 val->next = NULL;
e848a8a5 1712 val->released = 1;
c906108c
SS
1713 return;
1714 }
1715
1716 for (v = all_values; v; v = v->next)
1717 {
1718 if (v->next == val)
1719 {
1720 v->next = val->next;
06a64a0b 1721 val->next = NULL;
e848a8a5 1722 val->released = 1;
c906108c
SS
1723 break;
1724 }
1725 }
1726}
1727
e848a8a5
TT
1728/* If the value is not already released, release it.
1729 If the value is already released, increment its reference count.
1730 That is, this function ensures that the value is released from the
1731 value chain and that the caller owns a reference to it. */
1732
1733void
1734release_value_or_incref (struct value *val)
1735{
1736 if (val->released)
1737 value_incref (val);
1738 else
1739 release_value (val);
1740}
1741
c906108c 1742/* Release all values up to mark */
f23631e4 1743struct value *
4bf7b526 1744value_release_to_mark (const struct value *mark)
c906108c 1745{
f23631e4
AC
1746 struct value *val;
1747 struct value *next;
c906108c 1748
df407dfe 1749 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1750 {
1751 if (next->next == mark)
1752 {
1753 all_values = next->next;
1754 next->next = NULL;
1755 return val;
1756 }
1757 next->released = 1;
1758 }
c906108c
SS
1759 all_values = 0;
1760 return val;
1761}
1762
1763/* Return a copy of the value ARG.
1764 It contains the same contents, for same memory address,
1765 but it's a different block of storage. */
1766
f23631e4
AC
1767struct value *
1768value_copy (struct value *arg)
c906108c 1769{
4754a64e 1770 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1771 struct value *val;
1772
1773 if (value_lazy (arg))
1774 val = allocate_value_lazy (encl_type);
1775 else
1776 val = allocate_value (encl_type);
df407dfe 1777 val->type = arg->type;
c906108c 1778 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1779 val->location = arg->location;
df407dfe
AC
1780 val->offset = arg->offset;
1781 val->bitpos = arg->bitpos;
1782 val->bitsize = arg->bitsize;
d69fe07e 1783 val->lazy = arg->lazy;
13c3b5f5 1784 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1785 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1786 val->modifiable = arg->modifiable;
d69fe07e 1787 if (!value_lazy (val))
c906108c 1788 {
990a07ab 1789 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1790 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1791
1792 }
4e07d55f 1793 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1794 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1795 set_value_parent (val, arg->parent);
5f5233d4
PA
1796 if (VALUE_LVAL (val) == lval_computed)
1797 {
c8f2448a 1798 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1799
1800 if (funcs->copy_closure)
1801 val->location.computed.closure = funcs->copy_closure (val);
1802 }
c906108c
SS
1803 return val;
1804}
74bcbdf3 1805
4c082a81
SC
1806/* Return a "const" and/or "volatile" qualified version of the value V.
1807 If CNST is true, then the returned value will be qualified with
1808 "const".
1809 if VOLTL is true, then the returned value will be qualified with
1810 "volatile". */
1811
1812struct value *
1813make_cv_value (int cnst, int voltl, struct value *v)
1814{
1815 struct type *val_type = value_type (v);
1816 struct type *enclosing_type = value_enclosing_type (v);
1817 struct value *cv_val = value_copy (v);
1818
1819 deprecated_set_value_type (cv_val,
1820 make_cv_type (cnst, voltl, val_type, NULL));
1821 set_value_enclosing_type (cv_val,
1822 make_cv_type (cnst, voltl, enclosing_type, NULL));
1823
1824 return cv_val;
1825}
1826
c37f7098
KW
1827/* Return a version of ARG that is non-lvalue. */
1828
1829struct value *
1830value_non_lval (struct value *arg)
1831{
1832 if (VALUE_LVAL (arg) != not_lval)
1833 {
1834 struct type *enc_type = value_enclosing_type (arg);
1835 struct value *val = allocate_value (enc_type);
1836
1837 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1838 TYPE_LENGTH (enc_type));
1839 val->type = arg->type;
1840 set_value_embedded_offset (val, value_embedded_offset (arg));
1841 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1842 return val;
1843 }
1844 return arg;
1845}
1846
6c659fc2
SC
1847/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1848
1849void
1850value_force_lval (struct value *v, CORE_ADDR addr)
1851{
1852 gdb_assert (VALUE_LVAL (v) == not_lval);
1853
1854 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1855 v->lval = lval_memory;
1856 v->location.address = addr;
1857}
1858
74bcbdf3 1859void
0e03807e
TT
1860set_value_component_location (struct value *component,
1861 const struct value *whole)
74bcbdf3 1862{
9920b434
BH
1863 struct type *type;
1864
e81e7f5e
SC
1865 gdb_assert (whole->lval != lval_xcallable);
1866
0e03807e 1867 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1868 VALUE_LVAL (component) = lval_internalvar_component;
1869 else
0e03807e 1870 VALUE_LVAL (component) = whole->lval;
5f5233d4 1871
74bcbdf3 1872 component->location = whole->location;
0e03807e 1873 if (whole->lval == lval_computed)
5f5233d4 1874 {
c8f2448a 1875 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1876
1877 if (funcs->copy_closure)
1878 component->location.computed.closure = funcs->copy_closure (whole);
1879 }
9920b434
BH
1880
1881 /* If type has a dynamic resolved location property
1882 update it's value address. */
1883 type = value_type (whole);
1884 if (NULL != TYPE_DATA_LOCATION (type)
1885 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1886 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1887}
1888
c906108c
SS
1889/* Access to the value history. */
1890
1891/* Record a new value in the value history.
eddf0bae 1892 Returns the absolute history index of the entry. */
c906108c
SS
1893
1894int
f23631e4 1895record_latest_value (struct value *val)
c906108c
SS
1896{
1897 int i;
1898
1899 /* We don't want this value to have anything to do with the inferior anymore.
1900 In particular, "set $1 = 50" should not affect the variable from which
1901 the value was taken, and fast watchpoints should be able to assume that
1902 a value on the value history never changes. */
d69fe07e 1903 if (value_lazy (val))
c906108c
SS
1904 value_fetch_lazy (val);
1905 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1906 from. This is a bit dubious, because then *&$1 does not just return $1
1907 but the current contents of that location. c'est la vie... */
1908 val->modifiable = 0;
350e1a76
DE
1909
1910 /* The value may have already been released, in which case we're adding a
1911 new reference for its entry in the history. That is why we call
1912 release_value_or_incref here instead of release_value. */
1913 release_value_or_incref (val);
c906108c
SS
1914
1915 /* Here we treat value_history_count as origin-zero
1916 and applying to the value being stored now. */
1917
1918 i = value_history_count % VALUE_HISTORY_CHUNK;
1919 if (i == 0)
1920 {
8d749320 1921 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
a109c7c1 1922
fe978cb0
PA
1923 newobj->next = value_history_chain;
1924 value_history_chain = newobj;
c906108c
SS
1925 }
1926
1927 value_history_chain->values[i] = val;
1928
1929 /* Now we regard value_history_count as origin-one
1930 and applying to the value just stored. */
1931
1932 return ++value_history_count;
1933}
1934
1935/* Return a copy of the value in the history with sequence number NUM. */
1936
f23631e4 1937struct value *
fba45db2 1938access_value_history (int num)
c906108c 1939{
f23631e4 1940 struct value_history_chunk *chunk;
52f0bd74
AC
1941 int i;
1942 int absnum = num;
c906108c
SS
1943
1944 if (absnum <= 0)
1945 absnum += value_history_count;
1946
1947 if (absnum <= 0)
1948 {
1949 if (num == 0)
8a3fe4f8 1950 error (_("The history is empty."));
c906108c 1951 else if (num == 1)
8a3fe4f8 1952 error (_("There is only one value in the history."));
c906108c 1953 else
8a3fe4f8 1954 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1955 }
1956 if (absnum > value_history_count)
8a3fe4f8 1957 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1958
1959 absnum--;
1960
1961 /* Now absnum is always absolute and origin zero. */
1962
1963 chunk = value_history_chain;
3e43a32a
MS
1964 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1965 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1966 i > 0; i--)
1967 chunk = chunk->next;
1968
1969 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1970}
1971
c906108c 1972static void
fba45db2 1973show_values (char *num_exp, int from_tty)
c906108c 1974{
52f0bd74 1975 int i;
f23631e4 1976 struct value *val;
c906108c
SS
1977 static int num = 1;
1978
1979 if (num_exp)
1980 {
f132ba9d
TJB
1981 /* "show values +" should print from the stored position.
1982 "show values <exp>" should print around value number <exp>. */
c906108c 1983 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1984 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1985 }
1986 else
1987 {
f132ba9d 1988 /* "show values" means print the last 10 values. */
c906108c
SS
1989 num = value_history_count - 9;
1990 }
1991
1992 if (num <= 0)
1993 num = 1;
1994
1995 for (i = num; i < num + 10 && i <= value_history_count; i++)
1996 {
79a45b7d 1997 struct value_print_options opts;
a109c7c1 1998
c906108c 1999 val = access_value_history (i);
a3f17187 2000 printf_filtered (("$%d = "), i);
79a45b7d
TT
2001 get_user_print_options (&opts);
2002 value_print (val, gdb_stdout, &opts);
a3f17187 2003 printf_filtered (("\n"));
c906108c
SS
2004 }
2005
f132ba9d 2006 /* The next "show values +" should start after what we just printed. */
c906108c
SS
2007 num += 10;
2008
2009 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
2010 "show values +". If num_exp is null, this is unnecessary, since
2011 "show values +" is not useful after "show values". */
c906108c
SS
2012 if (from_tty && num_exp)
2013 {
2014 num_exp[0] = '+';
2015 num_exp[1] = '\0';
2016 }
2017}
2018\f
52059ffd
TT
2019enum internalvar_kind
2020{
2021 /* The internal variable is empty. */
2022 INTERNALVAR_VOID,
2023
2024 /* The value of the internal variable is provided directly as
2025 a GDB value object. */
2026 INTERNALVAR_VALUE,
2027
2028 /* A fresh value is computed via a call-back routine on every
2029 access to the internal variable. */
2030 INTERNALVAR_MAKE_VALUE,
2031
2032 /* The internal variable holds a GDB internal convenience function. */
2033 INTERNALVAR_FUNCTION,
2034
2035 /* The variable holds an integer value. */
2036 INTERNALVAR_INTEGER,
2037
2038 /* The variable holds a GDB-provided string. */
2039 INTERNALVAR_STRING,
2040};
2041
2042union internalvar_data
2043{
2044 /* A value object used with INTERNALVAR_VALUE. */
2045 struct value *value;
2046
2047 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2048 struct
2049 {
2050 /* The functions to call. */
2051 const struct internalvar_funcs *functions;
2052
2053 /* The function's user-data. */
2054 void *data;
2055 } make_value;
2056
2057 /* The internal function used with INTERNALVAR_FUNCTION. */
2058 struct
2059 {
2060 struct internal_function *function;
2061 /* True if this is the canonical name for the function. */
2062 int canonical;
2063 } fn;
2064
2065 /* An integer value used with INTERNALVAR_INTEGER. */
2066 struct
2067 {
2068 /* If type is non-NULL, it will be used as the type to generate
2069 a value for this internal variable. If type is NULL, a default
2070 integer type for the architecture is used. */
2071 struct type *type;
2072 LONGEST val;
2073 } integer;
2074
2075 /* A string value used with INTERNALVAR_STRING. */
2076 char *string;
2077};
2078
c906108c
SS
2079/* Internal variables. These are variables within the debugger
2080 that hold values assigned by debugger commands.
2081 The user refers to them with a '$' prefix
2082 that does not appear in the variable names stored internally. */
2083
4fa62494
UW
2084struct internalvar
2085{
2086 struct internalvar *next;
2087 char *name;
4fa62494 2088
78267919
UW
2089 /* We support various different kinds of content of an internal variable.
2090 enum internalvar_kind specifies the kind, and union internalvar_data
2091 provides the data associated with this particular kind. */
2092
52059ffd 2093 enum internalvar_kind kind;
4fa62494 2094
52059ffd 2095 union internalvar_data u;
4fa62494
UW
2096};
2097
c906108c
SS
2098static struct internalvar *internalvars;
2099
3e43a32a
MS
2100/* If the variable does not already exist create it and give it the
2101 value given. If no value is given then the default is zero. */
53e5f3cf
AS
2102static void
2103init_if_undefined_command (char* args, int from_tty)
2104{
2105 struct internalvar* intvar;
2106
2107 /* Parse the expression - this is taken from set_command(). */
4d01a485 2108 expression_up expr = parse_expression (args);
53e5f3cf
AS
2109
2110 /* Validate the expression.
2111 Was the expression an assignment?
2112 Or even an expression at all? */
2113 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2114 error (_("Init-if-undefined requires an assignment expression."));
2115
2116 /* Extract the variable from the parsed expression.
2117 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2118 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2119 error (_("The first parameter to init-if-undefined "
2120 "should be a GDB variable."));
53e5f3cf
AS
2121 intvar = expr->elts[2].internalvar;
2122
2123 /* Only evaluate the expression if the lvalue is void.
2124 This may still fail if the expresssion is invalid. */
78267919 2125 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 2126 evaluate_expression (expr.get ());
53e5f3cf
AS
2127}
2128
2129
c906108c
SS
2130/* Look up an internal variable with name NAME. NAME should not
2131 normally include a dollar sign.
2132
2133 If the specified internal variable does not exist,
c4a3d09a 2134 the return value is NULL. */
c906108c
SS
2135
2136struct internalvar *
bc3b79fd 2137lookup_only_internalvar (const char *name)
c906108c 2138{
52f0bd74 2139 struct internalvar *var;
c906108c
SS
2140
2141 for (var = internalvars; var; var = var->next)
5cb316ef 2142 if (strcmp (var->name, name) == 0)
c906108c
SS
2143 return var;
2144
c4a3d09a
MF
2145 return NULL;
2146}
2147
d55637df
TT
2148/* Complete NAME by comparing it to the names of internal variables.
2149 Returns a vector of newly allocated strings, or NULL if no matches
2150 were found. */
2151
2152VEC (char_ptr) *
2153complete_internalvar (const char *name)
2154{
2155 VEC (char_ptr) *result = NULL;
2156 struct internalvar *var;
2157 int len;
2158
2159 len = strlen (name);
2160
2161 for (var = internalvars; var; var = var->next)
2162 if (strncmp (var->name, name, len) == 0)
2163 {
2164 char *r = xstrdup (var->name);
2165
2166 VEC_safe_push (char_ptr, result, r);
2167 }
2168
2169 return result;
2170}
c4a3d09a
MF
2171
2172/* Create an internal variable with name NAME and with a void value.
2173 NAME should not normally include a dollar sign. */
2174
2175struct internalvar *
bc3b79fd 2176create_internalvar (const char *name)
c4a3d09a 2177{
8d749320 2178 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2179
1754f103 2180 var->name = concat (name, (char *)NULL);
78267919 2181 var->kind = INTERNALVAR_VOID;
c906108c
SS
2182 var->next = internalvars;
2183 internalvars = var;
2184 return var;
2185}
2186
4aa995e1
PA
2187/* Create an internal variable with name NAME and register FUN as the
2188 function that value_of_internalvar uses to create a value whenever
2189 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2190 dollar sign. DATA is passed uninterpreted to FUN when it is
2191 called. CLEANUP, if not NULL, is called when the internal variable
2192 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2193
2194struct internalvar *
22d2b532
SDJ
2195create_internalvar_type_lazy (const char *name,
2196 const struct internalvar_funcs *funcs,
2197 void *data)
4aa995e1 2198{
4fa62494 2199 struct internalvar *var = create_internalvar (name);
a109c7c1 2200
78267919 2201 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2202 var->u.make_value.functions = funcs;
2203 var->u.make_value.data = data;
4aa995e1
PA
2204 return var;
2205}
c4a3d09a 2206
22d2b532
SDJ
2207/* See documentation in value.h. */
2208
2209int
2210compile_internalvar_to_ax (struct internalvar *var,
2211 struct agent_expr *expr,
2212 struct axs_value *value)
2213{
2214 if (var->kind != INTERNALVAR_MAKE_VALUE
2215 || var->u.make_value.functions->compile_to_ax == NULL)
2216 return 0;
2217
2218 var->u.make_value.functions->compile_to_ax (var, expr, value,
2219 var->u.make_value.data);
2220 return 1;
2221}
2222
c4a3d09a
MF
2223/* Look up an internal variable with name NAME. NAME should not
2224 normally include a dollar sign.
2225
2226 If the specified internal variable does not exist,
2227 one is created, with a void value. */
2228
2229struct internalvar *
bc3b79fd 2230lookup_internalvar (const char *name)
c4a3d09a
MF
2231{
2232 struct internalvar *var;
2233
2234 var = lookup_only_internalvar (name);
2235 if (var)
2236 return var;
2237
2238 return create_internalvar (name);
2239}
2240
78267919
UW
2241/* Return current value of internal variable VAR. For variables that
2242 are not inherently typed, use a value type appropriate for GDBARCH. */
2243
f23631e4 2244struct value *
78267919 2245value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2246{
f23631e4 2247 struct value *val;
0914bcdb
SS
2248 struct trace_state_variable *tsv;
2249
2250 /* If there is a trace state variable of the same name, assume that
2251 is what we really want to see. */
2252 tsv = find_trace_state_variable (var->name);
2253 if (tsv)
2254 {
2255 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2256 &(tsv->value));
2257 if (tsv->value_known)
2258 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2259 tsv->value);
2260 else
2261 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2262 return val;
2263 }
c906108c 2264
78267919 2265 switch (var->kind)
5f5233d4 2266 {
78267919
UW
2267 case INTERNALVAR_VOID:
2268 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2269 break;
4fa62494 2270
78267919
UW
2271 case INTERNALVAR_FUNCTION:
2272 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2273 break;
4fa62494 2274
cab0c772
UW
2275 case INTERNALVAR_INTEGER:
2276 if (!var->u.integer.type)
78267919 2277 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2278 var->u.integer.val);
78267919 2279 else
cab0c772
UW
2280 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2281 break;
2282
78267919
UW
2283 case INTERNALVAR_STRING:
2284 val = value_cstring (var->u.string, strlen (var->u.string),
2285 builtin_type (gdbarch)->builtin_char);
2286 break;
4fa62494 2287
78267919
UW
2288 case INTERNALVAR_VALUE:
2289 val = value_copy (var->u.value);
4aa995e1
PA
2290 if (value_lazy (val))
2291 value_fetch_lazy (val);
78267919 2292 break;
4aa995e1 2293
78267919 2294 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2295 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2296 var->u.make_value.data);
78267919
UW
2297 break;
2298
2299 default:
9b20d036 2300 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2301 }
2302
2303 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2304 on this value go back to affect the original internal variable.
2305
2306 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2307 no underlying modifyable state in the internal variable.
2308
2309 Likewise, if the variable's value is a computed lvalue, we want
2310 references to it to produce another computed lvalue, where
2311 references and assignments actually operate through the
2312 computed value's functions.
2313
2314 This means that internal variables with computed values
2315 behave a little differently from other internal variables:
2316 assignments to them don't just replace the previous value
2317 altogether. At the moment, this seems like the behavior we
2318 want. */
2319
2320 if (var->kind != INTERNALVAR_MAKE_VALUE
2321 && val->lval != lval_computed)
2322 {
2323 VALUE_LVAL (val) = lval_internalvar;
2324 VALUE_INTERNALVAR (val) = var;
5f5233d4 2325 }
d3c139e9 2326
4fa62494
UW
2327 return val;
2328}
d3c139e9 2329
4fa62494
UW
2330int
2331get_internalvar_integer (struct internalvar *var, LONGEST *result)
2332{
3158c6ed 2333 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2334 {
cab0c772
UW
2335 *result = var->u.integer.val;
2336 return 1;
3158c6ed 2337 }
d3c139e9 2338
3158c6ed
PA
2339 if (var->kind == INTERNALVAR_VALUE)
2340 {
2341 struct type *type = check_typedef (value_type (var->u.value));
2342
2343 if (TYPE_CODE (type) == TYPE_CODE_INT)
2344 {
2345 *result = value_as_long (var->u.value);
2346 return 1;
2347 }
4fa62494 2348 }
3158c6ed
PA
2349
2350 return 0;
4fa62494 2351}
d3c139e9 2352
4fa62494
UW
2353static int
2354get_internalvar_function (struct internalvar *var,
2355 struct internal_function **result)
2356{
78267919 2357 switch (var->kind)
d3c139e9 2358 {
78267919
UW
2359 case INTERNALVAR_FUNCTION:
2360 *result = var->u.fn.function;
4fa62494 2361 return 1;
d3c139e9 2362
4fa62494
UW
2363 default:
2364 return 0;
2365 }
c906108c
SS
2366}
2367
2368void
6b850546
DT
2369set_internalvar_component (struct internalvar *var,
2370 LONGEST offset, LONGEST bitpos,
2371 LONGEST bitsize, struct value *newval)
c906108c 2372{
4fa62494 2373 gdb_byte *addr;
3ae385af
SM
2374 struct gdbarch *arch;
2375 int unit_size;
c906108c 2376
78267919 2377 switch (var->kind)
4fa62494 2378 {
78267919
UW
2379 case INTERNALVAR_VALUE:
2380 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2381 arch = get_value_arch (var->u.value);
2382 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2383
2384 if (bitsize)
50810684 2385 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2386 value_as_long (newval), bitpos, bitsize);
2387 else
3ae385af 2388 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2389 TYPE_LENGTH (value_type (newval)));
2390 break;
78267919
UW
2391
2392 default:
2393 /* We can never get a component of any other kind. */
9b20d036 2394 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2395 }
c906108c
SS
2396}
2397
2398void
f23631e4 2399set_internalvar (struct internalvar *var, struct value *val)
c906108c 2400{
78267919 2401 enum internalvar_kind new_kind;
4fa62494 2402 union internalvar_data new_data = { 0 };
c906108c 2403
78267919 2404 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2405 error (_("Cannot overwrite convenience function %s"), var->name);
2406
4fa62494 2407 /* Prepare new contents. */
78267919 2408 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2409 {
2410 case TYPE_CODE_VOID:
78267919 2411 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2412 break;
2413
2414 case TYPE_CODE_INTERNAL_FUNCTION:
2415 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2416 new_kind = INTERNALVAR_FUNCTION;
2417 get_internalvar_function (VALUE_INTERNALVAR (val),
2418 &new_data.fn.function);
2419 /* Copies created here are never canonical. */
4fa62494
UW
2420 break;
2421
4fa62494 2422 default:
78267919
UW
2423 new_kind = INTERNALVAR_VALUE;
2424 new_data.value = value_copy (val);
2425 new_data.value->modifiable = 1;
4fa62494
UW
2426
2427 /* Force the value to be fetched from the target now, to avoid problems
2428 later when this internalvar is referenced and the target is gone or
2429 has changed. */
78267919
UW
2430 if (value_lazy (new_data.value))
2431 value_fetch_lazy (new_data.value);
4fa62494
UW
2432
2433 /* Release the value from the value chain to prevent it from being
2434 deleted by free_all_values. From here on this function should not
2435 call error () until new_data is installed into the var->u to avoid
2436 leaking memory. */
78267919 2437 release_value (new_data.value);
9920b434
BH
2438
2439 /* Internal variables which are created from values with a dynamic
2440 location don't need the location property of the origin anymore.
2441 The resolved dynamic location is used prior then any other address
2442 when accessing the value.
2443 If we keep it, we would still refer to the origin value.
2444 Remove the location property in case it exist. */
2445 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2446
4fa62494
UW
2447 break;
2448 }
2449
2450 /* Clean up old contents. */
2451 clear_internalvar (var);
2452
2453 /* Switch over. */
78267919 2454 var->kind = new_kind;
4fa62494 2455 var->u = new_data;
c906108c
SS
2456 /* End code which must not call error(). */
2457}
2458
4fa62494
UW
2459void
2460set_internalvar_integer (struct internalvar *var, LONGEST l)
2461{
2462 /* Clean up old contents. */
2463 clear_internalvar (var);
2464
cab0c772
UW
2465 var->kind = INTERNALVAR_INTEGER;
2466 var->u.integer.type = NULL;
2467 var->u.integer.val = l;
78267919
UW
2468}
2469
2470void
2471set_internalvar_string (struct internalvar *var, const char *string)
2472{
2473 /* Clean up old contents. */
2474 clear_internalvar (var);
2475
2476 var->kind = INTERNALVAR_STRING;
2477 var->u.string = xstrdup (string);
4fa62494
UW
2478}
2479
2480static void
2481set_internalvar_function (struct internalvar *var, struct internal_function *f)
2482{
2483 /* Clean up old contents. */
2484 clear_internalvar (var);
2485
78267919
UW
2486 var->kind = INTERNALVAR_FUNCTION;
2487 var->u.fn.function = f;
2488 var->u.fn.canonical = 1;
2489 /* Variables installed here are always the canonical version. */
4fa62494
UW
2490}
2491
2492void
2493clear_internalvar (struct internalvar *var)
2494{
2495 /* Clean up old contents. */
78267919 2496 switch (var->kind)
4fa62494 2497 {
78267919
UW
2498 case INTERNALVAR_VALUE:
2499 value_free (var->u.value);
2500 break;
2501
2502 case INTERNALVAR_STRING:
2503 xfree (var->u.string);
4fa62494
UW
2504 break;
2505
22d2b532
SDJ
2506 case INTERNALVAR_MAKE_VALUE:
2507 if (var->u.make_value.functions->destroy != NULL)
2508 var->u.make_value.functions->destroy (var->u.make_value.data);
2509 break;
2510
4fa62494 2511 default:
4fa62494
UW
2512 break;
2513 }
2514
78267919
UW
2515 /* Reset to void kind. */
2516 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2517}
2518
c906108c 2519char *
4bf7b526 2520internalvar_name (const struct internalvar *var)
c906108c
SS
2521{
2522 return var->name;
2523}
2524
4fa62494
UW
2525static struct internal_function *
2526create_internal_function (const char *name,
2527 internal_function_fn handler, void *cookie)
bc3b79fd 2528{
bc3b79fd 2529 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2530
bc3b79fd
TJB
2531 ifn->name = xstrdup (name);
2532 ifn->handler = handler;
2533 ifn->cookie = cookie;
4fa62494 2534 return ifn;
bc3b79fd
TJB
2535}
2536
2537char *
2538value_internal_function_name (struct value *val)
2539{
4fa62494
UW
2540 struct internal_function *ifn;
2541 int result;
2542
2543 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2544 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2545 gdb_assert (result);
2546
bc3b79fd
TJB
2547 return ifn->name;
2548}
2549
2550struct value *
d452c4bc
UW
2551call_internal_function (struct gdbarch *gdbarch,
2552 const struct language_defn *language,
2553 struct value *func, int argc, struct value **argv)
bc3b79fd 2554{
4fa62494
UW
2555 struct internal_function *ifn;
2556 int result;
2557
2558 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2559 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2560 gdb_assert (result);
2561
d452c4bc 2562 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2563}
2564
2565/* The 'function' command. This does nothing -- it is just a
2566 placeholder to let "help function NAME" work. This is also used as
2567 the implementation of the sub-command that is created when
2568 registering an internal function. */
2569static void
2570function_command (char *command, int from_tty)
2571{
2572 /* Do nothing. */
2573}
2574
2575/* Clean up if an internal function's command is destroyed. */
2576static void
2577function_destroyer (struct cmd_list_element *self, void *ignore)
2578{
6f937416 2579 xfree ((char *) self->name);
1947513d 2580 xfree ((char *) self->doc);
bc3b79fd
TJB
2581}
2582
2583/* Add a new internal function. NAME is the name of the function; DOC
2584 is a documentation string describing the function. HANDLER is
2585 called when the function is invoked. COOKIE is an arbitrary
2586 pointer which is passed to HANDLER and is intended for "user
2587 data". */
2588void
2589add_internal_function (const char *name, const char *doc,
2590 internal_function_fn handler, void *cookie)
2591{
2592 struct cmd_list_element *cmd;
4fa62494 2593 struct internal_function *ifn;
bc3b79fd 2594 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2595
2596 ifn = create_internal_function (name, handler, cookie);
2597 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2598
2599 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2600 &functionlist);
2601 cmd->destroyer = function_destroyer;
2602}
2603
ae5a43e0
DJ
2604/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2605 prevent cycles / duplicates. */
2606
4e7a5ef5 2607void
ae5a43e0
DJ
2608preserve_one_value (struct value *value, struct objfile *objfile,
2609 htab_t copied_types)
2610{
2611 if (TYPE_OBJFILE (value->type) == objfile)
2612 value->type = copy_type_recursive (objfile, value->type, copied_types);
2613
2614 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2615 value->enclosing_type = copy_type_recursive (objfile,
2616 value->enclosing_type,
2617 copied_types);
2618}
2619
78267919
UW
2620/* Likewise for internal variable VAR. */
2621
2622static void
2623preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2624 htab_t copied_types)
2625{
2626 switch (var->kind)
2627 {
cab0c772
UW
2628 case INTERNALVAR_INTEGER:
2629 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2630 var->u.integer.type
2631 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2632 break;
2633
78267919
UW
2634 case INTERNALVAR_VALUE:
2635 preserve_one_value (var->u.value, objfile, copied_types);
2636 break;
2637 }
2638}
2639
ae5a43e0
DJ
2640/* Update the internal variables and value history when OBJFILE is
2641 discarded; we must copy the types out of the objfile. New global types
2642 will be created for every convenience variable which currently points to
2643 this objfile's types, and the convenience variables will be adjusted to
2644 use the new global types. */
c906108c
SS
2645
2646void
ae5a43e0 2647preserve_values (struct objfile *objfile)
c906108c 2648{
ae5a43e0
DJ
2649 htab_t copied_types;
2650 struct value_history_chunk *cur;
52f0bd74 2651 struct internalvar *var;
ae5a43e0 2652 int i;
c906108c 2653
ae5a43e0
DJ
2654 /* Create the hash table. We allocate on the objfile's obstack, since
2655 it is soon to be deleted. */
2656 copied_types = create_copied_types_hash (objfile);
2657
2658 for (cur = value_history_chain; cur; cur = cur->next)
2659 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2660 if (cur->values[i])
2661 preserve_one_value (cur->values[i], objfile, copied_types);
2662
2663 for (var = internalvars; var; var = var->next)
78267919 2664 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2665
6dddc817 2666 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2667
ae5a43e0 2668 htab_delete (copied_types);
c906108c
SS
2669}
2670
2671static void
fba45db2 2672show_convenience (char *ignore, int from_tty)
c906108c 2673{
e17c207e 2674 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2675 struct internalvar *var;
c906108c 2676 int varseen = 0;
79a45b7d 2677 struct value_print_options opts;
c906108c 2678
79a45b7d 2679 get_user_print_options (&opts);
c906108c
SS
2680 for (var = internalvars; var; var = var->next)
2681 {
c709acd1 2682
c906108c
SS
2683 if (!varseen)
2684 {
2685 varseen = 1;
2686 }
a3f17187 2687 printf_filtered (("$%s = "), var->name);
c709acd1 2688
492d29ea 2689 TRY
c709acd1
PA
2690 {
2691 struct value *val;
2692
2693 val = value_of_internalvar (gdbarch, var);
2694 value_print (val, gdb_stdout, &opts);
2695 }
492d29ea
PA
2696 CATCH (ex, RETURN_MASK_ERROR)
2697 {
2698 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2699 }
2700 END_CATCH
2701
a3f17187 2702 printf_filtered (("\n"));
c906108c
SS
2703 }
2704 if (!varseen)
f47f77df
DE
2705 {
2706 /* This text does not mention convenience functions on purpose.
2707 The user can't create them except via Python, and if Python support
2708 is installed this message will never be printed ($_streq will
2709 exist). */
2710 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2711 "Convenience variables have "
2712 "names starting with \"$\";\n"
2713 "use \"set\" as in \"set "
2714 "$foo = 5\" to define them.\n"));
2715 }
c906108c
SS
2716}
2717\f
e81e7f5e
SC
2718/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2719
2720struct value *
2721value_of_xmethod (struct xmethod_worker *worker)
2722{
2723 if (worker->value == NULL)
2724 {
2725 struct value *v;
2726
2727 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2728 v->lval = lval_xcallable;
2729 v->location.xm_worker = worker;
2730 v->modifiable = 0;
2731 worker->value = v;
2732 }
2733
2734 return worker->value;
2735}
2736
2ce1cdbf
DE
2737/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2738
2739struct type *
2740result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2741{
2742 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2743 && method->lval == lval_xcallable && argc > 0);
2744
2745 return get_xmethod_result_type (method->location.xm_worker,
2746 argv[0], argv + 1, argc - 1);
2747}
2748
e81e7f5e
SC
2749/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2750
2751struct value *
2752call_xmethod (struct value *method, int argc, struct value **argv)
2753{
2754 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2755 && method->lval == lval_xcallable && argc > 0);
2756
2757 return invoke_xmethod (method->location.xm_worker,
2758 argv[0], argv + 1, argc - 1);
2759}
2760\f
c906108c
SS
2761/* Extract a value as a C number (either long or double).
2762 Knows how to convert fixed values to double, or
2763 floating values to long.
2764 Does not deallocate the value. */
2765
2766LONGEST
f23631e4 2767value_as_long (struct value *val)
c906108c
SS
2768{
2769 /* This coerces arrays and functions, which is necessary (e.g.
2770 in disassemble_command). It also dereferences references, which
2771 I suspect is the most logical thing to do. */
994b9211 2772 val = coerce_array (val);
0fd88904 2773 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2774}
2775
2776DOUBLEST
f23631e4 2777value_as_double (struct value *val)
c906108c
SS
2778{
2779 DOUBLEST foo;
2780 int inv;
c5aa993b 2781
0fd88904 2782 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2783 if (inv)
8a3fe4f8 2784 error (_("Invalid floating value found in program."));
c906108c
SS
2785 return foo;
2786}
4ef30785 2787
581e13c1 2788/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2789 Note that val's type may not actually be a pointer; value_as_long
2790 handles all the cases. */
c906108c 2791CORE_ADDR
f23631e4 2792value_as_address (struct value *val)
c906108c 2793{
50810684
UW
2794 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2795
c906108c
SS
2796 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2797 whether we want this to be true eventually. */
2798#if 0
bf6ae464 2799 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2800 non-address (e.g. argument to "signal", "info break", etc.), or
2801 for pointers to char, in which the low bits *are* significant. */
50810684 2802 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2803#else
f312f057
JB
2804
2805 /* There are several targets (IA-64, PowerPC, and others) which
2806 don't represent pointers to functions as simply the address of
2807 the function's entry point. For example, on the IA-64, a
2808 function pointer points to a two-word descriptor, generated by
2809 the linker, which contains the function's entry point, and the
2810 value the IA-64 "global pointer" register should have --- to
2811 support position-independent code. The linker generates
2812 descriptors only for those functions whose addresses are taken.
2813
2814 On such targets, it's difficult for GDB to convert an arbitrary
2815 function address into a function pointer; it has to either find
2816 an existing descriptor for that function, or call malloc and
2817 build its own. On some targets, it is impossible for GDB to
2818 build a descriptor at all: the descriptor must contain a jump
2819 instruction; data memory cannot be executed; and code memory
2820 cannot be modified.
2821
2822 Upon entry to this function, if VAL is a value of type `function'
2823 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2824 value_address (val) is the address of the function. This is what
f312f057
JB
2825 you'll get if you evaluate an expression like `main'. The call
2826 to COERCE_ARRAY below actually does all the usual unary
2827 conversions, which includes converting values of type `function'
2828 to `pointer to function'. This is the challenging conversion
2829 discussed above. Then, `unpack_long' will convert that pointer
2830 back into an address.
2831
2832 So, suppose the user types `disassemble foo' on an architecture
2833 with a strange function pointer representation, on which GDB
2834 cannot build its own descriptors, and suppose further that `foo'
2835 has no linker-built descriptor. The address->pointer conversion
2836 will signal an error and prevent the command from running, even
2837 though the next step would have been to convert the pointer
2838 directly back into the same address.
2839
2840 The following shortcut avoids this whole mess. If VAL is a
2841 function, just return its address directly. */
df407dfe
AC
2842 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2843 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2844 return value_address (val);
f312f057 2845
994b9211 2846 val = coerce_array (val);
fc0c74b1
AC
2847
2848 /* Some architectures (e.g. Harvard), map instruction and data
2849 addresses onto a single large unified address space. For
2850 instance: An architecture may consider a large integer in the
2851 range 0x10000000 .. 0x1000ffff to already represent a data
2852 addresses (hence not need a pointer to address conversion) while
2853 a small integer would still need to be converted integer to
2854 pointer to address. Just assume such architectures handle all
2855 integer conversions in a single function. */
2856
2857 /* JimB writes:
2858
2859 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2860 must admonish GDB hackers to make sure its behavior matches the
2861 compiler's, whenever possible.
2862
2863 In general, I think GDB should evaluate expressions the same way
2864 the compiler does. When the user copies an expression out of
2865 their source code and hands it to a `print' command, they should
2866 get the same value the compiler would have computed. Any
2867 deviation from this rule can cause major confusion and annoyance,
2868 and needs to be justified carefully. In other words, GDB doesn't
2869 really have the freedom to do these conversions in clever and
2870 useful ways.
2871
2872 AndrewC pointed out that users aren't complaining about how GDB
2873 casts integers to pointers; they are complaining that they can't
2874 take an address from a disassembly listing and give it to `x/i'.
2875 This is certainly important.
2876
79dd2d24 2877 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2878 makes it possible for GDB to "get it right" in all circumstances
2879 --- the target has complete control over how things get done, so
2880 people can Do The Right Thing for their target without breaking
2881 anyone else. The standard doesn't specify how integers get
2882 converted to pointers; usually, the ABI doesn't either, but
2883 ABI-specific code is a more reasonable place to handle it. */
2884
df407dfe
AC
2885 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2886 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2887 && gdbarch_integer_to_address_p (gdbarch))
2888 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2889 value_contents (val));
fc0c74b1 2890
0fd88904 2891 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2892#endif
2893}
2894\f
2895/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2896 as a long, or as a double, assuming the raw data is described
2897 by type TYPE. Knows how to convert different sizes of values
2898 and can convert between fixed and floating point. We don't assume
2899 any alignment for the raw data. Return value is in host byte order.
2900
2901 If you want functions and arrays to be coerced to pointers, and
2902 references to be dereferenced, call value_as_long() instead.
2903
2904 C++: It is assumed that the front-end has taken care of
2905 all matters concerning pointers to members. A pointer
2906 to member which reaches here is considered to be equivalent
2907 to an INT (or some size). After all, it is only an offset. */
2908
2909LONGEST
fc1a4b47 2910unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2911{
e17a4113 2912 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2913 enum type_code code = TYPE_CODE (type);
2914 int len = TYPE_LENGTH (type);
2915 int nosign = TYPE_UNSIGNED (type);
c906108c 2916
c906108c
SS
2917 switch (code)
2918 {
2919 case TYPE_CODE_TYPEDEF:
2920 return unpack_long (check_typedef (type), valaddr);
2921 case TYPE_CODE_ENUM:
4f2aea11 2922 case TYPE_CODE_FLAGS:
c906108c
SS
2923 case TYPE_CODE_BOOL:
2924 case TYPE_CODE_INT:
2925 case TYPE_CODE_CHAR:
2926 case TYPE_CODE_RANGE:
0d5de010 2927 case TYPE_CODE_MEMBERPTR:
c906108c 2928 if (nosign)
e17a4113 2929 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2930 else
e17a4113 2931 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2932
2933 case TYPE_CODE_FLT:
aebf07fc 2934 return (LONGEST) extract_typed_floating (valaddr, type);
c906108c 2935
4ef30785
TJB
2936 case TYPE_CODE_DECFLOAT:
2937 /* libdecnumber has a function to convert from decimal to integer, but
2938 it doesn't work when the decimal number has a fractional part. */
aebf07fc 2939 return (LONGEST) decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2940
c906108c
SS
2941 case TYPE_CODE_PTR:
2942 case TYPE_CODE_REF:
2943 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2944 whether we want this to be true eventually. */
4478b372 2945 return extract_typed_address (valaddr, type);
c906108c 2946
c906108c 2947 default:
8a3fe4f8 2948 error (_("Value can't be converted to integer."));
c906108c 2949 }
c5aa993b 2950 return 0; /* Placate lint. */
c906108c
SS
2951}
2952
2953/* Return a double value from the specified type and address.
2954 INVP points to an int which is set to 0 for valid value,
2955 1 for invalid value (bad float format). In either case,
2956 the returned double is OK to use. Argument is in target
2957 format, result is in host format. */
2958
2959DOUBLEST
fc1a4b47 2960unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2961{
e17a4113 2962 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2963 enum type_code code;
2964 int len;
2965 int nosign;
2966
581e13c1 2967 *invp = 0; /* Assume valid. */
f168693b 2968 type = check_typedef (type);
c906108c
SS
2969 code = TYPE_CODE (type);
2970 len = TYPE_LENGTH (type);
2971 nosign = TYPE_UNSIGNED (type);
2972 if (code == TYPE_CODE_FLT)
2973 {
75bc7ddf
AC
2974 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2975 floating-point value was valid (using the macro
2976 INVALID_FLOAT). That test/macro have been removed.
2977
2978 It turns out that only the VAX defined this macro and then
2979 only in a non-portable way. Fixing the portability problem
2980 wouldn't help since the VAX floating-point code is also badly
2981 bit-rotten. The target needs to add definitions for the
ea06eb3d 2982 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2983 exactly describe the target floating-point format. The
2984 problem here is that the corresponding floatformat_vax_f and
2985 floatformat_vax_d values these methods should be set to are
2986 also not defined either. Oops!
2987
2988 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2989 definitions and the new cases for floatformat_is_valid (). */
2990
2991 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2992 {
2993 *invp = 1;
2994 return 0.0;
2995 }
2996
96d2f608 2997 return extract_typed_floating (valaddr, type);
c906108c 2998 }
4ef30785 2999 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 3000 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
3001 else if (nosign)
3002 {
3003 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 3004 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
3005 }
3006 else
3007 {
3008 /* Signed -- we are OK with unpack_long. */
3009 return unpack_long (type, valaddr);
3010 }
3011}
3012
3013/* Unpack raw data (copied from debugee, target byte order) at VALADDR
3014 as a CORE_ADDR, assuming the raw data is described by type TYPE.
3015 We don't assume any alignment for the raw data. Return value is in
3016 host byte order.
3017
3018 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 3019 references to be dereferenced, call value_as_address() instead.
c906108c
SS
3020
3021 C++: It is assumed that the front-end has taken care of
3022 all matters concerning pointers to members. A pointer
3023 to member which reaches here is considered to be equivalent
3024 to an INT (or some size). After all, it is only an offset. */
3025
3026CORE_ADDR
fc1a4b47 3027unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
3028{
3029 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
3030 whether we want this to be true eventually. */
3031 return unpack_long (type, valaddr);
3032}
4478b372 3033
c906108c 3034\f
1596cb5d 3035/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 3036 TYPE. */
c906108c 3037
f23631e4 3038struct value *
fba45db2 3039value_static_field (struct type *type, int fieldno)
c906108c 3040{
948e66d9
DJ
3041 struct value *retval;
3042
1596cb5d 3043 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 3044 {
1596cb5d 3045 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
3046 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3047 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
3048 break;
3049 case FIELD_LOC_KIND_PHYSNAME:
c906108c 3050 {
ff355380 3051 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 3052 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 3053 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 3054
d12307c1 3055 if (sym.symbol == NULL)
c906108c 3056 {
a109c7c1 3057 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 3058 reported as non-debuggable symbols. */
3b7344d5
TT
3059 struct bound_minimal_symbol msym
3060 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 3061
3b7344d5 3062 if (!msym.minsym)
686d4def 3063 return allocate_optimized_out_value (type);
c906108c 3064 else
c5aa993b 3065 {
52e9fde8 3066 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 3067 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
3068 }
3069 }
3070 else
d12307c1 3071 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 3072 break;
c906108c 3073 }
1596cb5d 3074 default:
f3574227 3075 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
3076 }
3077
948e66d9 3078 return retval;
c906108c
SS
3079}
3080
4dfea560
DE
3081/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3082 You have to be careful here, since the size of the data area for the value
3083 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3084 than the old enclosing type, you have to allocate more space for the
3085 data. */
2b127877 3086
4dfea560
DE
3087void
3088set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 3089{
5fdf6324
AB
3090 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3091 {
3092 check_type_length_before_alloc (new_encl_type);
3093 val->contents
3094 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3095 }
3e3d7139
JG
3096
3097 val->enclosing_type = new_encl_type;
2b127877
DB
3098}
3099
c906108c
SS
3100/* Given a value ARG1 (offset by OFFSET bytes)
3101 of a struct or union type ARG_TYPE,
3102 extract and return the value of one of its (non-static) fields.
581e13c1 3103 FIELDNO says which field. */
c906108c 3104
f23631e4 3105struct value *
6b850546 3106value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 3107 int fieldno, struct type *arg_type)
c906108c 3108{
f23631e4 3109 struct value *v;
52f0bd74 3110 struct type *type;
3ae385af
SM
3111 struct gdbarch *arch = get_value_arch (arg1);
3112 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 3113
f168693b 3114 arg_type = check_typedef (arg_type);
c906108c 3115 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
3116
3117 /* Call check_typedef on our type to make sure that, if TYPE
3118 is a TYPE_CODE_TYPEDEF, its length is set to the length
3119 of the target type instead of zero. However, we do not
3120 replace the typedef type by the target type, because we want
3121 to keep the typedef in order to be able to print the type
3122 description correctly. */
3123 check_typedef (type);
c906108c 3124
691a26f5 3125 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 3126 {
22c05d8a
JK
3127 /* Handle packed fields.
3128
3129 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3130 set. If possible, arrange offset and bitpos so that we can
3131 do a single aligned read of the size of the containing type.
3132 Otherwise, adjust offset to the byte containing the first
3133 bit. Assume that the address, offset, and embedded offset
3134 are sufficiently aligned. */
22c05d8a 3135
6b850546
DT
3136 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3137 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 3138
9a0dc9e3
PA
3139 v = allocate_value_lazy (type);
3140 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3141 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3142 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3143 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3144 else
9a0dc9e3
PA
3145 v->bitpos = bitpos % 8;
3146 v->offset = (value_embedded_offset (arg1)
3147 + offset
3148 + (bitpos - v->bitpos) / 8);
3149 set_value_parent (v, arg1);
3150 if (!value_lazy (arg1))
3151 value_fetch_lazy (v);
c906108c
SS
3152 }
3153 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3154 {
3155 /* This field is actually a base subobject, so preserve the
39d37385
PA
3156 entire object's contents for later references to virtual
3157 bases, etc. */
6b850546 3158 LONGEST boffset;
a4e2ee12
DJ
3159
3160 /* Lazy register values with offsets are not supported. */
3161 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3162 value_fetch_lazy (arg1);
3163
9a0dc9e3
PA
3164 /* We special case virtual inheritance here because this
3165 requires access to the contents, which we would rather avoid
3166 for references to ordinary fields of unavailable values. */
3167 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3168 boffset = baseclass_offset (arg_type, fieldno,
3169 value_contents (arg1),
3170 value_embedded_offset (arg1),
3171 value_address (arg1),
3172 arg1);
c906108c 3173 else
9a0dc9e3 3174 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3175
9a0dc9e3
PA
3176 if (value_lazy (arg1))
3177 v = allocate_value_lazy (value_enclosing_type (arg1));
3178 else
3179 {
3180 v = allocate_value (value_enclosing_type (arg1));
3181 value_contents_copy_raw (v, 0, arg1, 0,
3182 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3183 }
9a0dc9e3
PA
3184 v->type = type;
3185 v->offset = value_offset (arg1);
3186 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 3187 }
9920b434
BH
3188 else if (NULL != TYPE_DATA_LOCATION (type))
3189 {
3190 /* Field is a dynamic data member. */
3191
3192 gdb_assert (0 == offset);
3193 /* We expect an already resolved data location. */
3194 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3195 /* For dynamic data types defer memory allocation
3196 until we actual access the value. */
3197 v = allocate_value_lazy (type);
3198 }
c906108c
SS
3199 else
3200 {
3201 /* Plain old data member */
3ae385af
SM
3202 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3203 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3204
3205 /* Lazy register values with offsets are not supported. */
3206 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3207 value_fetch_lazy (arg1);
3208
9a0dc9e3 3209 if (value_lazy (arg1))
3e3d7139 3210 v = allocate_value_lazy (type);
c906108c 3211 else
3e3d7139
JG
3212 {
3213 v = allocate_value (type);
39d37385
PA
3214 value_contents_copy_raw (v, value_embedded_offset (v),
3215 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3216 type_length_units (type));
3e3d7139 3217 }
df407dfe 3218 v->offset = (value_offset (arg1) + offset
13c3b5f5 3219 + value_embedded_offset (arg1));
c906108c 3220 }
74bcbdf3 3221 set_value_component_location (v, arg1);
c906108c
SS
3222 return v;
3223}
3224
3225/* Given a value ARG1 of a struct or union type,
3226 extract and return the value of one of its (non-static) fields.
581e13c1 3227 FIELDNO says which field. */
c906108c 3228
f23631e4 3229struct value *
aa1ee363 3230value_field (struct value *arg1, int fieldno)
c906108c 3231{
df407dfe 3232 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3233}
3234
3235/* Return a non-virtual function as a value.
3236 F is the list of member functions which contains the desired method.
0478d61c
FF
3237 J is an index into F which provides the desired method.
3238
3239 We only use the symbol for its address, so be happy with either a
581e13c1 3240 full symbol or a minimal symbol. */
c906108c 3241
f23631e4 3242struct value *
3e43a32a
MS
3243value_fn_field (struct value **arg1p, struct fn_field *f,
3244 int j, struct type *type,
6b850546 3245 LONGEST offset)
c906108c 3246{
f23631e4 3247 struct value *v;
52f0bd74 3248 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3249 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3250 struct symbol *sym;
7c7b6655 3251 struct bound_minimal_symbol msym;
c906108c 3252
d12307c1 3253 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3254 if (sym != NULL)
0478d61c 3255 {
7c7b6655 3256 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3257 }
3258 else
3259 {
3260 gdb_assert (sym == NULL);
7c7b6655
TT
3261 msym = lookup_bound_minimal_symbol (physname);
3262 if (msym.minsym == NULL)
5ae326fa 3263 return NULL;
0478d61c
FF
3264 }
3265
c906108c 3266 v = allocate_value (ftype);
1a088441 3267 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3268 if (sym)
3269 {
42ae5230 3270 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3271 }
3272 else
3273 {
bccdca4a
UW
3274 /* The minimal symbol might point to a function descriptor;
3275 resolve it to the actual code address instead. */
7c7b6655 3276 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3277 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3278
42ae5230
TT
3279 set_value_address (v,
3280 gdbarch_convert_from_func_ptr_addr
77e371c0 3281 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3282 }
c906108c
SS
3283
3284 if (arg1p)
c5aa993b 3285 {
df407dfe 3286 if (type != value_type (*arg1p))
c5aa993b
JM
3287 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3288 value_addr (*arg1p)));
3289
070ad9f0 3290 /* Move the `this' pointer according to the offset.
581e13c1 3291 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3292 }
3293
3294 return v;
3295}
3296
c906108c 3297\f
c906108c 3298
4875ffdb
PA
3299/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3300 VALADDR, and store the result in *RESULT.
3301 The bitfield starts at BITPOS bits and contains BITSIZE bits.
c906108c 3302
4875ffdb
PA
3303 Extracting bits depends on endianness of the machine. Compute the
3304 number of least significant bits to discard. For big endian machines,
3305 we compute the total number of bits in the anonymous object, subtract
3306 off the bit count from the MSB of the object to the MSB of the
3307 bitfield, then the size of the bitfield, which leaves the LSB discard
3308 count. For little endian machines, the discard count is simply the
3309 number of bits from the LSB of the anonymous object to the LSB of the
3310 bitfield.
3311
3312 If the field is signed, we also do sign extension. */
3313
3314static LONGEST
3315unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3316 LONGEST bitpos, LONGEST bitsize)
c906108c 3317{
4ea48cc1 3318 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3319 ULONGEST val;
3320 ULONGEST valmask;
c906108c 3321 int lsbcount;
6b850546
DT
3322 LONGEST bytes_read;
3323 LONGEST read_offset;
c906108c 3324
4a76eae5
DJ
3325 /* Read the minimum number of bytes required; there may not be
3326 enough bytes to read an entire ULONGEST. */
f168693b 3327 field_type = check_typedef (field_type);
4a76eae5
DJ
3328 if (bitsize)
3329 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3330 else
3331 bytes_read = TYPE_LENGTH (field_type);
3332
5467c6c8
PA
3333 read_offset = bitpos / 8;
3334
4875ffdb 3335 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3336 bytes_read, byte_order);
c906108c 3337
581e13c1 3338 /* Extract bits. See comment above. */
c906108c 3339
4ea48cc1 3340 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3341 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3342 else
3343 lsbcount = (bitpos % 8);
3344 val >>= lsbcount;
3345
3346 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3347 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3348
3349 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3350 {
3351 valmask = (((ULONGEST) 1) << bitsize) - 1;
3352 val &= valmask;
3353 if (!TYPE_UNSIGNED (field_type))
3354 {
3355 if (val & (valmask ^ (valmask >> 1)))
3356 {
3357 val |= ~valmask;
3358 }
3359 }
3360 }
5467c6c8 3361
4875ffdb 3362 return val;
5467c6c8
PA
3363}
3364
3365/* Unpack a field FIELDNO of the specified TYPE, from the object at
3366 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3367 ORIGINAL_VALUE, which must not be NULL. See
3368 unpack_value_bits_as_long for more details. */
3369
3370int
3371unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3372 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3373 const struct value *val, LONGEST *result)
3374{
4875ffdb
PA
3375 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3376 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3377 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3378 int bit_offset;
3379
5467c6c8
PA
3380 gdb_assert (val != NULL);
3381
4875ffdb
PA
3382 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3383 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3384 || !value_bits_available (val, bit_offset, bitsize))
3385 return 0;
3386
3387 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3388 bitpos, bitsize);
3389 return 1;
5467c6c8
PA
3390}
3391
3392/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3393 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3394
3395LONGEST
3396unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3397{
4875ffdb
PA
3398 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3399 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3400 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3401
4875ffdb
PA
3402 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3403}
3404
3405/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3406 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3407 the contents in DEST_VAL, zero or sign extending if the type of
3408 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3409 VAL. If the VAL's contents required to extract the bitfield from
3410 are unavailable/optimized out, DEST_VAL is correspondingly
3411 marked unavailable/optimized out. */
3412
bb9d5f81 3413void
4875ffdb 3414unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3415 LONGEST bitpos, LONGEST bitsize,
3416 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3417 const struct value *val)
3418{
3419 enum bfd_endian byte_order;
3420 int src_bit_offset;
3421 int dst_bit_offset;
4875ffdb
PA
3422 struct type *field_type = value_type (dest_val);
3423
4875ffdb 3424 byte_order = gdbarch_byte_order (get_type_arch (field_type));
e5ca03b4
PA
3425
3426 /* First, unpack and sign extend the bitfield as if it was wholly
3427 valid. Optimized out/unavailable bits are read as zero, but
3428 that's OK, as they'll end up marked below. If the VAL is
3429 wholly-invalid we may have skipped allocating its contents,
3430 though. See allocate_optimized_out_value. */
3431 if (valaddr != NULL)
3432 {
3433 LONGEST num;
3434
3435 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3436 bitpos, bitsize);
3437 store_signed_integer (value_contents_raw (dest_val),
3438 TYPE_LENGTH (field_type), byte_order, num);
3439 }
4875ffdb
PA
3440
3441 /* Now copy the optimized out / unavailability ranges to the right
3442 bits. */
3443 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3444 if (byte_order == BFD_ENDIAN_BIG)
3445 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3446 else
3447 dst_bit_offset = 0;
3448 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3449 val, src_bit_offset, bitsize);
5467c6c8
PA
3450}
3451
3452/* Return a new value with type TYPE, which is FIELDNO field of the
3453 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3454 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3455 from are unavailable/optimized out, the new value is
3456 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3457
3458struct value *
3459value_field_bitfield (struct type *type, int fieldno,
3460 const gdb_byte *valaddr,
6b850546 3461 LONGEST embedded_offset, const struct value *val)
5467c6c8 3462{
4875ffdb
PA
3463 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3464 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3465 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3466
4875ffdb
PA
3467 unpack_value_bitfield (res_val, bitpos, bitsize,
3468 valaddr, embedded_offset, val);
3469
3470 return res_val;
4ea48cc1
DJ
3471}
3472
c906108c
SS
3473/* Modify the value of a bitfield. ADDR points to a block of memory in
3474 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3475 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3476 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3477 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3478 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3479
3480void
50810684 3481modify_field (struct type *type, gdb_byte *addr,
6b850546 3482 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3483{
e17a4113 3484 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3485 ULONGEST oword;
3486 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3487 LONGEST bytesize;
19f220c3
JK
3488
3489 /* Normalize BITPOS. */
3490 addr += bitpos / 8;
3491 bitpos %= 8;
c906108c
SS
3492
3493 /* If a negative fieldval fits in the field in question, chop
3494 off the sign extension bits. */
f4e88c8e
PH
3495 if ((~fieldval & ~(mask >> 1)) == 0)
3496 fieldval &= mask;
c906108c
SS
3497
3498 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3499 if (0 != (fieldval & ~mask))
c906108c
SS
3500 {
3501 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3502 we don't have a sprintf_longest. */
6b850546 3503 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3504
3505 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3506 fieldval &= mask;
c906108c
SS
3507 }
3508
19f220c3
JK
3509 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3510 false valgrind reports. */
3511
3512 bytesize = (bitpos + bitsize + 7) / 8;
3513 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3514
3515 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3516 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3517 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3518
f4e88c8e 3519 oword &= ~(mask << bitpos);
c906108c
SS
3520 oword |= fieldval << bitpos;
3521
19f220c3 3522 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3523}
3524\f
14d06750 3525/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3526
14d06750
DJ
3527void
3528pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3529{
e17a4113 3530 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
6b850546 3531 LONGEST len;
14d06750
DJ
3532
3533 type = check_typedef (type);
c906108c
SS
3534 len = TYPE_LENGTH (type);
3535
14d06750 3536 switch (TYPE_CODE (type))
c906108c 3537 {
c906108c
SS
3538 case TYPE_CODE_INT:
3539 case TYPE_CODE_CHAR:
3540 case TYPE_CODE_ENUM:
4f2aea11 3541 case TYPE_CODE_FLAGS:
c906108c
SS
3542 case TYPE_CODE_BOOL:
3543 case TYPE_CODE_RANGE:
0d5de010 3544 case TYPE_CODE_MEMBERPTR:
e17a4113 3545 store_signed_integer (buf, len, byte_order, num);
c906108c 3546 break;
c5aa993b 3547
c906108c
SS
3548 case TYPE_CODE_REF:
3549 case TYPE_CODE_PTR:
14d06750 3550 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3551 break;
c5aa993b 3552
c906108c 3553 default:
14d06750
DJ
3554 error (_("Unexpected type (%d) encountered for integer constant."),
3555 TYPE_CODE (type));
c906108c 3556 }
14d06750
DJ
3557}
3558
3559
595939de
PM
3560/* Pack NUM into BUF using a target format of TYPE. */
3561
70221824 3562static void
595939de
PM
3563pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3564{
6b850546 3565 LONGEST len;
595939de
PM
3566 enum bfd_endian byte_order;
3567
3568 type = check_typedef (type);
3569 len = TYPE_LENGTH (type);
3570 byte_order = gdbarch_byte_order (get_type_arch (type));
3571
3572 switch (TYPE_CODE (type))
3573 {
3574 case TYPE_CODE_INT:
3575 case TYPE_CODE_CHAR:
3576 case TYPE_CODE_ENUM:
3577 case TYPE_CODE_FLAGS:
3578 case TYPE_CODE_BOOL:
3579 case TYPE_CODE_RANGE:
3580 case TYPE_CODE_MEMBERPTR:
3581 store_unsigned_integer (buf, len, byte_order, num);
3582 break;
3583
3584 case TYPE_CODE_REF:
3585 case TYPE_CODE_PTR:
3586 store_typed_address (buf, type, (CORE_ADDR) num);
3587 break;
3588
3589 default:
3e43a32a
MS
3590 error (_("Unexpected type (%d) encountered "
3591 "for unsigned integer constant."),
595939de
PM
3592 TYPE_CODE (type));
3593 }
3594}
3595
3596
14d06750
DJ
3597/* Convert C numbers into newly allocated values. */
3598
3599struct value *
3600value_from_longest (struct type *type, LONGEST num)
3601{
3602 struct value *val = allocate_value (type);
3603
3604 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3605 return val;
3606}
3607
4478b372 3608
595939de
PM
3609/* Convert C unsigned numbers into newly allocated values. */
3610
3611struct value *
3612value_from_ulongest (struct type *type, ULONGEST num)
3613{
3614 struct value *val = allocate_value (type);
3615
3616 pack_unsigned_long (value_contents_raw (val), type, num);
3617
3618 return val;
3619}
3620
3621
4478b372 3622/* Create a value representing a pointer of type TYPE to the address
cb417230 3623 ADDR. */
80180f79 3624
f23631e4 3625struct value *
4478b372
JB
3626value_from_pointer (struct type *type, CORE_ADDR addr)
3627{
cb417230 3628 struct value *val = allocate_value (type);
a109c7c1 3629
80180f79 3630 store_typed_address (value_contents_raw (val),
cb417230 3631 check_typedef (type), addr);
4478b372
JB
3632 return val;
3633}
3634
3635
012370f6
TT
3636/* Create a value of type TYPE whose contents come from VALADDR, if it
3637 is non-null, and whose memory address (in the inferior) is
3638 ADDRESS. The type of the created value may differ from the passed
3639 type TYPE. Make sure to retrieve values new type after this call.
3640 Note that TYPE is not passed through resolve_dynamic_type; this is
3641 a special API intended for use only by Ada. */
3642
3643struct value *
3644value_from_contents_and_address_unresolved (struct type *type,
3645 const gdb_byte *valaddr,
3646 CORE_ADDR address)
3647{
3648 struct value *v;
3649
3650 if (valaddr == NULL)
3651 v = allocate_value_lazy (type);
3652 else
3653 v = value_from_contents (type, valaddr);
012370f6 3654 VALUE_LVAL (v) = lval_memory;
1a088441 3655 set_value_address (v, address);
012370f6
TT
3656 return v;
3657}
3658
8acb6b92
TT
3659/* Create a value of type TYPE whose contents come from VALADDR, if it
3660 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3661 ADDRESS. The type of the created value may differ from the passed
3662 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3663
3664struct value *
3665value_from_contents_and_address (struct type *type,
3666 const gdb_byte *valaddr,
3667 CORE_ADDR address)
3668{
c3345124 3669 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3670 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3671 struct value *v;
a109c7c1 3672
8acb6b92 3673 if (valaddr == NULL)
80180f79 3674 v = allocate_value_lazy (resolved_type);
8acb6b92 3675 else
80180f79 3676 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3677 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3678 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3679 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3680 VALUE_LVAL (v) = lval_memory;
1a088441 3681 set_value_address (v, address);
8acb6b92
TT
3682 return v;
3683}
3684
8a9b8146
TT
3685/* Create a value of type TYPE holding the contents CONTENTS.
3686 The new value is `not_lval'. */
3687
3688struct value *
3689value_from_contents (struct type *type, const gdb_byte *contents)
3690{
3691 struct value *result;
3692
3693 result = allocate_value (type);
3694 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3695 return result;
3696}
3697
f23631e4 3698struct value *
fba45db2 3699value_from_double (struct type *type, DOUBLEST num)
c906108c 3700{
f23631e4 3701 struct value *val = allocate_value (type);
c906108c 3702 struct type *base_type = check_typedef (type);
52f0bd74 3703 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3704
3705 if (code == TYPE_CODE_FLT)
3706 {
990a07ab 3707 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3708 }
3709 else
8a3fe4f8 3710 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3711
3712 return val;
3713}
994b9211 3714
27bc4d80 3715struct value *
4ef30785 3716value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3717{
3718 struct value *val = allocate_value (type);
27bc4d80 3719
4ef30785 3720 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3721 return val;
3722}
3723
3bd0f5ef
MS
3724/* Extract a value from the history file. Input will be of the form
3725 $digits or $$digits. See block comment above 'write_dollar_variable'
3726 for details. */
3727
3728struct value *
e799154c 3729value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3730{
3731 int index, len;
3732
3733 if (h[0] == '$')
3734 len = 1;
3735 else
3736 return NULL;
3737
3738 if (h[1] == '$')
3739 len = 2;
3740
3741 /* Find length of numeral string. */
3742 for (; isdigit (h[len]); len++)
3743 ;
3744
3745 /* Make sure numeral string is not part of an identifier. */
3746 if (h[len] == '_' || isalpha (h[len]))
3747 return NULL;
3748
3749 /* Now collect the index value. */
3750 if (h[1] == '$')
3751 {
3752 if (len == 2)
3753 {
3754 /* For some bizarre reason, "$$" is equivalent to "$$1",
3755 rather than to "$$0" as it ought to be! */
3756 index = -1;
3757 *endp += len;
3758 }
3759 else
e799154c
TT
3760 {
3761 char *local_end;
3762
3763 index = -strtol (&h[2], &local_end, 10);
3764 *endp = local_end;
3765 }
3bd0f5ef
MS
3766 }
3767 else
3768 {
3769 if (len == 1)
3770 {
3771 /* "$" is equivalent to "$0". */
3772 index = 0;
3773 *endp += len;
3774 }
3775 else
e799154c
TT
3776 {
3777 char *local_end;
3778
3779 index = strtol (&h[1], &local_end, 10);
3780 *endp = local_end;
3781 }
3bd0f5ef
MS
3782 }
3783
3784 return access_value_history (index);
3785}
3786
3fff9862
YQ
3787/* Get the component value (offset by OFFSET bytes) of a struct or
3788 union WHOLE. Component's type is TYPE. */
3789
3790struct value *
3791value_from_component (struct value *whole, struct type *type, LONGEST offset)
3792{
3793 struct value *v;
3794
3795 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3796 v = allocate_value_lazy (type);
3797 else
3798 {
3799 v = allocate_value (type);
3800 value_contents_copy (v, value_embedded_offset (v),
3801 whole, value_embedded_offset (whole) + offset,
3802 type_length_units (type));
3803 }
3804 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3805 set_value_component_location (v, whole);
3fff9862
YQ
3806
3807 return v;
3808}
3809
a471c594
JK
3810struct value *
3811coerce_ref_if_computed (const struct value *arg)
3812{
3813 const struct lval_funcs *funcs;
3814
3815 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3816 return NULL;
3817
3818 if (value_lval_const (arg) != lval_computed)
3819 return NULL;
3820
3821 funcs = value_computed_funcs (arg);
3822 if (funcs->coerce_ref == NULL)
3823 return NULL;
3824
3825 return funcs->coerce_ref (arg);
3826}
3827
dfcee124
AG
3828/* Look at value.h for description. */
3829
3830struct value *
3831readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3832 const struct type *original_type,
3833 const struct value *original_value)
dfcee124
AG
3834{
3835 /* Re-adjust type. */
3836 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3837
3838 /* Add embedding info. */
3839 set_value_enclosing_type (value, enc_type);
3840 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3841
3842 /* We may be pointing to an object of some derived type. */
3843 return value_full_object (value, NULL, 0, 0, 0);
3844}
3845
994b9211
AC
3846struct value *
3847coerce_ref (struct value *arg)
3848{
df407dfe 3849 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3850 struct value *retval;
dfcee124 3851 struct type *enc_type;
a109c7c1 3852
a471c594
JK
3853 retval = coerce_ref_if_computed (arg);
3854 if (retval)
3855 return retval;
3856
3857 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3858 return arg;
3859
dfcee124
AG
3860 enc_type = check_typedef (value_enclosing_type (arg));
3861 enc_type = TYPE_TARGET_TYPE (enc_type);
3862
3863 retval = value_at_lazy (enc_type,
3864 unpack_pointer (value_type (arg),
3865 value_contents (arg)));
9f1f738a 3866 enc_type = value_type (retval);
dfcee124
AG
3867 return readjust_indirect_value_type (retval, enc_type,
3868 value_type_arg_tmp, arg);
994b9211
AC
3869}
3870
3871struct value *
3872coerce_array (struct value *arg)
3873{
f3134b88
TT
3874 struct type *type;
3875
994b9211 3876 arg = coerce_ref (arg);
f3134b88
TT
3877 type = check_typedef (value_type (arg));
3878
3879 switch (TYPE_CODE (type))
3880 {
3881 case TYPE_CODE_ARRAY:
7346b668 3882 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3883 arg = value_coerce_array (arg);
3884 break;
3885 case TYPE_CODE_FUNC:
3886 arg = value_coerce_function (arg);
3887 break;
3888 }
994b9211
AC
3889 return arg;
3890}
c906108c 3891\f
c906108c 3892
bbfdfe1c
DM
3893/* Return the return value convention that will be used for the
3894 specified type. */
3895
3896enum return_value_convention
3897struct_return_convention (struct gdbarch *gdbarch,
3898 struct value *function, struct type *value_type)
3899{
3900 enum type_code code = TYPE_CODE (value_type);
3901
3902 if (code == TYPE_CODE_ERROR)
3903 error (_("Function return type unknown."));
3904
3905 /* Probe the architecture for the return-value convention. */
3906 return gdbarch_return_value (gdbarch, function, value_type,
3907 NULL, NULL, NULL);
3908}
3909
48436ce6
AC
3910/* Return true if the function returning the specified type is using
3911 the convention of returning structures in memory (passing in the
82585c72 3912 address as a hidden first parameter). */
c906108c
SS
3913
3914int
d80b854b 3915using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3916 struct value *function, struct type *value_type)
c906108c 3917{
bbfdfe1c 3918 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3919 /* A void return value is never in memory. See also corresponding
44e5158b 3920 code in "print_return_value". */
667e784f
AC
3921 return 0;
3922
bbfdfe1c 3923 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3924 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3925}
3926
42be36b3
CT
3927/* Set the initialized field in a value struct. */
3928
3929void
3930set_value_initialized (struct value *val, int status)
3931{
3932 val->initialized = status;
3933}
3934
3935/* Return the initialized field in a value struct. */
3936
3937int
4bf7b526 3938value_initialized (const struct value *val)
42be36b3
CT
3939{
3940 return val->initialized;
3941}
3942
a844296a
SM
3943/* Load the actual content of a lazy value. Fetch the data from the
3944 user's process and clear the lazy flag to indicate that the data in
3945 the buffer is valid.
a58e2656
AB
3946
3947 If the value is zero-length, we avoid calling read_memory, which
3948 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3949 it. */
a58e2656 3950
a844296a 3951void
a58e2656
AB
3952value_fetch_lazy (struct value *val)
3953{
3954 gdb_assert (value_lazy (val));
3955 allocate_value_contents (val);
9a0dc9e3
PA
3956 /* A value is either lazy, or fully fetched. The
3957 availability/validity is only established as we try to fetch a
3958 value. */
3959 gdb_assert (VEC_empty (range_s, val->optimized_out));
3960 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3961 if (value_bitsize (val))
3962 {
3963 /* To read a lazy bitfield, read the entire enclosing value. This
3964 prevents reading the same block of (possibly volatile) memory once
3965 per bitfield. It would be even better to read only the containing
3966 word, but we have no way to record that just specific bits of a
3967 value have been fetched. */
3968 struct type *type = check_typedef (value_type (val));
a58e2656 3969 struct value *parent = value_parent (val);
a58e2656 3970
b0c54aa5
AB
3971 if (value_lazy (parent))
3972 value_fetch_lazy (parent);
3973
4875ffdb
PA
3974 unpack_value_bitfield (val,
3975 value_bitpos (val), value_bitsize (val),
3976 value_contents_for_printing (parent),
3977 value_offset (val), parent);
a58e2656
AB
3978 }
3979 else if (VALUE_LVAL (val) == lval_memory)
3980 {
3981 CORE_ADDR addr = value_address (val);
3982 struct type *type = check_typedef (value_enclosing_type (val));
3983
3984 if (TYPE_LENGTH (type))
3985 read_value_memory (val, 0, value_stack (val),
3986 addr, value_contents_all_raw (val),
3ae385af 3987 type_length_units (type));
a58e2656
AB
3988 }
3989 else if (VALUE_LVAL (val) == lval_register)
3990 {
41b56feb 3991 struct frame_info *next_frame;
a58e2656
AB
3992 int regnum;
3993 struct type *type = check_typedef (value_type (val));
3994 struct value *new_val = val, *mark = value_mark ();
3995
3996 /* Offsets are not supported here; lazy register values must
3997 refer to the entire register. */
3998 gdb_assert (value_offset (val) == 0);
3999
4000 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
4001 {
41b56feb 4002 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
6eeee81c 4003
41b56feb 4004 next_frame = frame_find_by_id (next_frame_id);
a58e2656
AB
4005 regnum = VALUE_REGNUM (new_val);
4006
41b56feb 4007 gdb_assert (next_frame != NULL);
a58e2656
AB
4008
4009 /* Convertible register routines are used for multi-register
4010 values and for interpretation in different types
4011 (e.g. float or int from a double register). Lazy
4012 register values should have the register's natural type,
4013 so they do not apply. */
41b56feb 4014 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
a58e2656
AB
4015 regnum, type));
4016
41b56feb
KB
4017 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
4018 Since a "->next" operation was performed when setting
4019 this field, we do not need to perform a "next" operation
4020 again when unwinding the register. That's why
4021 frame_unwind_register_value() is called here instead of
4022 get_frame_register_value(). */
4023 new_val = frame_unwind_register_value (next_frame, regnum);
6eeee81c
TT
4024
4025 /* If we get another lazy lval_register value, it means the
41b56feb
KB
4026 register is found by reading it from NEXT_FRAME's next frame.
4027 frame_unwind_register_value should never return a value with
4028 the frame id pointing to NEXT_FRAME. If it does, it means we
6eeee81c
TT
4029 either have two consecutive frames with the same frame id
4030 in the frame chain, or some code is trying to unwind
4031 behind get_prev_frame's back (e.g., a frame unwind
4032 sniffer trying to unwind), bypassing its validations. In
4033 any case, it should always be an internal error to end up
4034 in this situation. */
4035 if (VALUE_LVAL (new_val) == lval_register
4036 && value_lazy (new_val)
41b56feb 4037 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
6eeee81c
TT
4038 internal_error (__FILE__, __LINE__,
4039 _("infinite loop while fetching a register"));
a58e2656
AB
4040 }
4041
4042 /* If it's still lazy (for instance, a saved register on the
4043 stack), fetch it. */
4044 if (value_lazy (new_val))
4045 value_fetch_lazy (new_val);
4046
9a0dc9e3
PA
4047 /* Copy the contents and the unavailability/optimized-out
4048 meta-data from NEW_VAL to VAL. */
4049 set_value_lazy (val, 0);
4050 value_contents_copy (val, value_embedded_offset (val),
4051 new_val, value_embedded_offset (new_val),
3ae385af 4052 type_length_units (type));
a58e2656
AB
4053
4054 if (frame_debug)
4055 {
4056 struct gdbarch *gdbarch;
41b56feb
KB
4057 struct frame_info *frame;
4058 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
4059 so that the frame level will be shown correctly. */
a58e2656
AB
4060 frame = frame_find_by_id (VALUE_FRAME_ID (val));
4061 regnum = VALUE_REGNUM (val);
4062 gdbarch = get_frame_arch (frame);
4063
4064 fprintf_unfiltered (gdb_stdlog,
4065 "{ value_fetch_lazy "
4066 "(frame=%d,regnum=%d(%s),...) ",
4067 frame_relative_level (frame), regnum,
4068 user_reg_map_regnum_to_name (gdbarch, regnum));
4069
4070 fprintf_unfiltered (gdb_stdlog, "->");
4071 if (value_optimized_out (new_val))
f6c01fc5
AB
4072 {
4073 fprintf_unfiltered (gdb_stdlog, " ");
4074 val_print_optimized_out (new_val, gdb_stdlog);
4075 }
a58e2656
AB
4076 else
4077 {
4078 int i;
4079 const gdb_byte *buf = value_contents (new_val);
4080
4081 if (VALUE_LVAL (new_val) == lval_register)
4082 fprintf_unfiltered (gdb_stdlog, " register=%d",
4083 VALUE_REGNUM (new_val));
4084 else if (VALUE_LVAL (new_val) == lval_memory)
4085 fprintf_unfiltered (gdb_stdlog, " address=%s",
4086 paddress (gdbarch,
4087 value_address (new_val)));
4088 else
4089 fprintf_unfiltered (gdb_stdlog, " computed");
4090
4091 fprintf_unfiltered (gdb_stdlog, " bytes=");
4092 fprintf_unfiltered (gdb_stdlog, "[");
4093 for (i = 0; i < register_size (gdbarch, regnum); i++)
4094 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4095 fprintf_unfiltered (gdb_stdlog, "]");
4096 }
4097
4098 fprintf_unfiltered (gdb_stdlog, " }\n");
4099 }
4100
4101 /* Dispose of the intermediate values. This prevents
4102 watchpoints from trying to watch the saved frame pointer. */
4103 value_free_to_mark (mark);
4104 }
4105 else if (VALUE_LVAL (val) == lval_computed
4106 && value_computed_funcs (val)->read != NULL)
4107 value_computed_funcs (val)->read (val);
a58e2656
AB
4108 else
4109 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4110
4111 set_value_lazy (val, 0);
a58e2656
AB
4112}
4113
a280dbd1
SDJ
4114/* Implementation of the convenience function $_isvoid. */
4115
4116static struct value *
4117isvoid_internal_fn (struct gdbarch *gdbarch,
4118 const struct language_defn *language,
4119 void *cookie, int argc, struct value **argv)
4120{
4121 int ret;
4122
4123 if (argc != 1)
6bc305f5 4124 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
4125
4126 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4127
4128 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4129}
4130
c906108c 4131void
fba45db2 4132_initialize_values (void)
c906108c 4133{
1a966eab 4134 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4135Debugger convenience (\"$foo\") variables and functions.\n\
4136Convenience variables are created when you assign them values;\n\
4137thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4138\n\
c906108c
SS
4139A few convenience variables are given values automatically:\n\
4140\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4141\"$__\" holds the contents of the last address examined with \"x\"."
4142#ifdef HAVE_PYTHON
4143"\n\n\
4144Convenience functions are defined via the Python API."
4145#endif
4146 ), &showlist);
7e20dfcd 4147 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4148
db5f229b 4149 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4150Elements of value history around item number IDX (or last ten)."),
c906108c 4151 &showlist);
53e5f3cf
AS
4152
4153 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4154Initialize a convenience variable if necessary.\n\
4155init-if-undefined VARIABLE = EXPRESSION\n\
4156Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4157exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4158VARIABLE is already initialized."));
bc3b79fd
TJB
4159
4160 add_prefix_cmd ("function", no_class, function_command, _("\
4161Placeholder command for showing help on convenience functions."),
4162 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4163
4164 add_internal_function ("_isvoid", _("\
4165Check whether an expression is void.\n\
4166Usage: $_isvoid (expression)\n\
4167Return 1 if the expression is void, zero otherwise."),
4168 isvoid_internal_fn, NULL);
5fdf6324
AB
4169
4170 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4171 class_support, &max_value_size, _("\
4172Set maximum sized value gdb will load from the inferior."), _("\
4173Show maximum sized value gdb will load from the inferior."), _("\
4174Use this to control the maximum size, in bytes, of a value that gdb\n\
4175will load from the inferior. Setting this value to 'unlimited'\n\
4176disables checking.\n\
4177Setting this does not invalidate already allocated values, it only\n\
4178prevents future values, larger than this size, from being allocated."),
4179 set_max_value_size,
4180 show_max_value_size,
4181 &setlist, &showlist);
c906108c 4182}
This page took 2.002044 seconds and 4 git commands to generate.