sim: ft32: correct simulation of MEMCPY and MEMSET
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
32d0add0 3 Copyright (C) 1986-2015 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
d16aafd8 31#include "doublest.h"
36160dc4 32#include "regcache.h"
fe898f56 33#include "block.h"
27bc4d80 34#include "dfp.h"
bccdca4a 35#include "objfiles.h"
79a45b7d 36#include "valprint.h"
bc3b79fd 37#include "cli/cli-decode.h"
6dddc817 38#include "extension.h"
3bd0f5ef 39#include <ctype.h>
0914bcdb 40#include "tracepoint.h"
be335936 41#include "cp-abi.h"
a58e2656 42#include "user-regs.h"
0914bcdb 43
581e13c1 44/* Prototypes for exported functions. */
c906108c 45
a14ed312 46void _initialize_values (void);
c906108c 47
bc3b79fd
TJB
48/* Definition of a user function. */
49struct internal_function
50{
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61};
62
4e07d55f
PA
63/* Defines an [OFFSET, OFFSET + LENGTH) range. */
64
65struct range
66{
67 /* Lowest offset in the range. */
68 int offset;
69
70 /* Length of the range. */
71 int length;
72};
73
74typedef struct range range_s;
75
76DEF_VEC_O(range_s);
77
78/* Returns true if the ranges defined by [offset1, offset1+len1) and
79 [offset2, offset2+len2) overlap. */
80
81static int
82ranges_overlap (int offset1, int len1,
83 int offset2, int len2)
84{
85 ULONGEST h, l;
86
87 l = max (offset1, offset2);
88 h = min (offset1 + len1, offset2 + len2);
89 return (l < h);
90}
91
92/* Returns true if the first argument is strictly less than the
93 second, useful for VEC_lower_bound. We keep ranges sorted by
94 offset and coalesce overlapping and contiguous ranges, so this just
95 compares the starting offset. */
96
97static int
98range_lessthan (const range_s *r1, const range_s *r2)
99{
100 return r1->offset < r2->offset;
101}
102
103/* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106static int
107ranges_contain (VEC(range_s) *ranges, int offset, int length)
108{
109 range_s what;
110 int i;
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
146 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
147
148 if (i > 0)
149 {
150 struct range *bef = VEC_index (range_s, ranges, i - 1);
151
152 if (ranges_overlap (bef->offset, bef->length, offset, length))
153 return 1;
154 }
155
156 if (i < VEC_length (range_s, ranges))
157 {
158 struct range *r = VEC_index (range_s, ranges, i);
159
160 if (ranges_overlap (r->offset, r->length, offset, length))
161 return 1;
162 }
163
164 return 0;
165}
166
bc3b79fd
TJB
167static struct cmd_list_element *functionlist;
168
87784a47
TT
169/* Note that the fields in this structure are arranged to save a bit
170 of memory. */
171
91294c83
AC
172struct value
173{
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
179 unsigned int modifiable : 1;
180
181 /* If zero, contents of this value are in the contents field. If
182 nonzero, contents are in inferior. If the lval field is lval_memory,
183 the contents are in inferior memory at location.address plus offset.
184 The lval field may also be lval_register.
185
186 WARNING: This field is used by the code which handles watchpoints
187 (see breakpoint.c) to decide whether a particular value can be
188 watched by hardware watchpoints. If the lazy flag is set for
189 some member of a value chain, it is assumed that this member of
190 the chain doesn't need to be watched as part of watching the
191 value itself. This is how GDB avoids watching the entire struct
192 or array when the user wants to watch a single struct member or
193 array element. If you ever change the way lazy flag is set and
194 reset, be sure to consider this use as well! */
195 unsigned int lazy : 1;
196
87784a47
TT
197 /* If value is a variable, is it initialized or not. */
198 unsigned int initialized : 1;
199
200 /* If value is from the stack. If this is set, read_stack will be
201 used instead of read_memory to enable extra caching. */
202 unsigned int stack : 1;
91294c83 203
e848a8a5
TT
204 /* If the value has been released. */
205 unsigned int released : 1;
206
98b1cfdc
TT
207 /* Register number if the value is from a register. */
208 short regnum;
209
91294c83
AC
210 /* Location of value (if lval). */
211 union
212 {
213 /* If lval == lval_memory, this is the address in the inferior.
214 If lval == lval_register, this is the byte offset into the
215 registers structure. */
216 CORE_ADDR address;
217
218 /* Pointer to internal variable. */
219 struct internalvar *internalvar;
5f5233d4 220
e81e7f5e
SC
221 /* Pointer to xmethod worker. */
222 struct xmethod_worker *xm_worker;
223
5f5233d4
PA
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
c8f2448a
JK
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
5f5233d4 234 } computed;
91294c83
AC
235 } location;
236
3723fda8
SM
237 /* Describes offset of a value within lval of a structure in target
238 addressable memory units. If lval == lval_memory, this is an offset to
239 the address. If lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the member
241 embedded_offset below. */
91294c83
AC
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
32c9a795 248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
250 int bitpos;
251
87784a47
TT
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
4ea48cc1
DJ
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
91294c83
AC
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
294 offset of `type' within that larger type, in target addressable memory
295 units. The value_contents() macro takes `embedded_offset' into account,
296 so most GDB code continues to see the `type' portion of the value, just
297 as the inferior would.
91294c83
AC
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
301 the offset in target addressable memory units from the full object
302 to the pointed-to object -- that is, the value `embedded_offset' would
303 have if we followed the pointer and fetched the complete object.
304 (I don't really see the point. Why not just determine the
305 run-time type when you indirect, and avoid the special case? The
306 contents don't matter until you indirect anyway.)
91294c83
AC
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
a08702d6
TJB
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
91294c83
AC
319 struct value *next;
320
3e3d7139
JG
321 /* Actual contents of the value. Target byte-order. NULL or not
322 valid if lazy is nonzero. */
323 gdb_byte *contents;
828d3400 324
4e07d55f
PA
325 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
326 rather than available, since the common and default case is for a
9a0dc9e3
PA
327 value to be available. This is filled in at value read time.
328 The unavailable ranges are tracked in bits. Note that a contents
329 bit that has been optimized out doesn't really exist in the
330 program, so it can't be marked unavailable either. */
4e07d55f 331 VEC(range_s) *unavailable;
9a0dc9e3
PA
332
333 /* Likewise, but for optimized out contents (a chunk of the value of
334 a variable that does not actually exist in the program). If LVAL
335 is lval_register, this is a register ($pc, $sp, etc., never a
336 program variable) that has not been saved in the frame. Not
337 saved registers and optimized-out program variables values are
338 treated pretty much the same, except not-saved registers have a
339 different string representation and related error strings. */
340 VEC(range_s) *optimized_out;
91294c83
AC
341};
342
e512cdbd
SM
343/* See value.h. */
344
345struct gdbarch *
346get_value_arch (const struct value *value)
347{
348 return get_type_arch (value_type (value));
349}
350
4e07d55f 351int
bdf22206 352value_bits_available (const struct value *value, int offset, int length)
4e07d55f
PA
353{
354 gdb_assert (!value->lazy);
355
356 return !ranges_contain (value->unavailable, offset, length);
357}
358
bdf22206
AB
359int
360value_bytes_available (const struct value *value, int offset, int length)
361{
362 return value_bits_available (value,
363 offset * TARGET_CHAR_BIT,
364 length * TARGET_CHAR_BIT);
365}
366
9a0dc9e3
PA
367int
368value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
369{
370 gdb_assert (!value->lazy);
371
372 return ranges_contain (value->optimized_out, bit_offset, bit_length);
373}
374
ec0a52e1
PA
375int
376value_entirely_available (struct value *value)
377{
378 /* We can only tell whether the whole value is available when we try
379 to read it. */
380 if (value->lazy)
381 value_fetch_lazy (value);
382
383 if (VEC_empty (range_s, value->unavailable))
384 return 1;
385 return 0;
386}
387
9a0dc9e3
PA
388/* Returns true if VALUE is entirely covered by RANGES. If the value
389 is lazy, it'll be read now. Note that RANGE is a pointer to
390 pointer because reading the value might change *RANGE. */
391
392static int
393value_entirely_covered_by_range_vector (struct value *value,
394 VEC(range_s) **ranges)
6211c335 395{
9a0dc9e3
PA
396 /* We can only tell whether the whole value is optimized out /
397 unavailable when we try to read it. */
6211c335
YQ
398 if (value->lazy)
399 value_fetch_lazy (value);
400
9a0dc9e3 401 if (VEC_length (range_s, *ranges) == 1)
6211c335 402 {
9a0dc9e3 403 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
404
405 if (t->offset == 0
64c46ce4
JB
406 && t->length == (TARGET_CHAR_BIT
407 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
408 return 1;
409 }
410
411 return 0;
412}
413
9a0dc9e3
PA
414int
415value_entirely_unavailable (struct value *value)
416{
417 return value_entirely_covered_by_range_vector (value, &value->unavailable);
418}
419
420int
421value_entirely_optimized_out (struct value *value)
422{
423 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
424}
425
426/* Insert into the vector pointed to by VECTORP the bit range starting of
427 OFFSET bits, and extending for the next LENGTH bits. */
428
429static void
430insert_into_bit_range_vector (VEC(range_s) **vectorp, int offset, int length)
4e07d55f
PA
431{
432 range_s newr;
433 int i;
434
435 /* Insert the range sorted. If there's overlap or the new range
436 would be contiguous with an existing range, merge. */
437
438 newr.offset = offset;
439 newr.length = length;
440
441 /* Do a binary search for the position the given range would be
442 inserted if we only considered the starting OFFSET of ranges.
443 Call that position I. Since we also have LENGTH to care for
444 (this is a range afterall), we need to check if the _previous_
445 range overlaps the I range. E.g., calling R the new range:
446
447 #1 - overlaps with previous
448
449 R
450 |-...-|
451 |---| |---| |------| ... |--|
452 0 1 2 N
453
454 I=1
455
456 In the case #1 above, the binary search would return `I=1',
457 meaning, this OFFSET should be inserted at position 1, and the
458 current position 1 should be pushed further (and become 2). But,
459 note that `0' overlaps with R, so we want to merge them.
460
461 A similar consideration needs to be taken if the new range would
462 be contiguous with the previous range:
463
464 #2 - contiguous with previous
465
466 R
467 |-...-|
468 |--| |---| |------| ... |--|
469 0 1 2 N
470
471 I=1
472
473 If there's no overlap with the previous range, as in:
474
475 #3 - not overlapping and not contiguous
476
477 R
478 |-...-|
479 |--| |---| |------| ... |--|
480 0 1 2 N
481
482 I=1
483
484 or if I is 0:
485
486 #4 - R is the range with lowest offset
487
488 R
489 |-...-|
490 |--| |---| |------| ... |--|
491 0 1 2 N
492
493 I=0
494
495 ... we just push the new range to I.
496
497 All the 4 cases above need to consider that the new range may
498 also overlap several of the ranges that follow, or that R may be
499 contiguous with the following range, and merge. E.g.,
500
501 #5 - overlapping following ranges
502
503 R
504 |------------------------|
505 |--| |---| |------| ... |--|
506 0 1 2 N
507
508 I=0
509
510 or:
511
512 R
513 |-------|
514 |--| |---| |------| ... |--|
515 0 1 2 N
516
517 I=1
518
519 */
520
9a0dc9e3 521 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
522 if (i > 0)
523 {
9a0dc9e3 524 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
525
526 if (ranges_overlap (bef->offset, bef->length, offset, length))
527 {
528 /* #1 */
529 ULONGEST l = min (bef->offset, offset);
530 ULONGEST h = max (bef->offset + bef->length, offset + length);
531
532 bef->offset = l;
533 bef->length = h - l;
534 i--;
535 }
536 else if (offset == bef->offset + bef->length)
537 {
538 /* #2 */
539 bef->length += length;
540 i--;
541 }
542 else
543 {
544 /* #3 */
9a0dc9e3 545 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
546 }
547 }
548 else
549 {
550 /* #4 */
9a0dc9e3 551 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
552 }
553
554 /* Check whether the ranges following the one we've just added or
555 touched can be folded in (#5 above). */
9a0dc9e3 556 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
557 {
558 struct range *t;
559 struct range *r;
560 int removed = 0;
561 int next = i + 1;
562
563 /* Get the range we just touched. */
9a0dc9e3 564 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
565 removed = 0;
566
567 i = next;
9a0dc9e3 568 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
569 if (r->offset <= t->offset + t->length)
570 {
571 ULONGEST l, h;
572
573 l = min (t->offset, r->offset);
574 h = max (t->offset + t->length, r->offset + r->length);
575
576 t->offset = l;
577 t->length = h - l;
578
579 removed++;
580 }
581 else
582 {
583 /* If we couldn't merge this one, we won't be able to
584 merge following ones either, since the ranges are
585 always sorted by OFFSET. */
586 break;
587 }
588
589 if (removed != 0)
9a0dc9e3 590 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
591 }
592}
593
9a0dc9e3
PA
594void
595mark_value_bits_unavailable (struct value *value, int offset, int length)
596{
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
598}
599
bdf22206
AB
600void
601mark_value_bytes_unavailable (struct value *value, int offset, int length)
602{
603 mark_value_bits_unavailable (value,
604 offset * TARGET_CHAR_BIT,
605 length * TARGET_CHAR_BIT);
606}
607
c8c1c22f
PA
608/* Find the first range in RANGES that overlaps the range defined by
609 OFFSET and LENGTH, starting at element POS in the RANGES vector,
610 Returns the index into RANGES where such overlapping range was
611 found, or -1 if none was found. */
612
613static int
614find_first_range_overlap (VEC(range_s) *ranges, int pos,
615 int offset, int length)
616{
617 range_s *r;
618 int i;
619
620 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
621 if (ranges_overlap (r->offset, r->length, offset, length))
622 return i;
623
624 return -1;
625}
626
bdf22206
AB
627/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
628 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
629 return non-zero.
630
631 It must always be the case that:
632 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
633
634 It is assumed that memory can be accessed from:
635 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
636 to:
637 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
638 / TARGET_CHAR_BIT) */
639static int
640memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
641 const gdb_byte *ptr2, size_t offset2_bits,
642 size_t length_bits)
643{
644 gdb_assert (offset1_bits % TARGET_CHAR_BIT
645 == offset2_bits % TARGET_CHAR_BIT);
646
647 if (offset1_bits % TARGET_CHAR_BIT != 0)
648 {
649 size_t bits;
650 gdb_byte mask, b1, b2;
651
652 /* The offset from the base pointers PTR1 and PTR2 is not a complete
653 number of bytes. A number of bits up to either the next exact
654 byte boundary, or LENGTH_BITS (which ever is sooner) will be
655 compared. */
656 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
657 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
658 mask = (1 << bits) - 1;
659
660 if (length_bits < bits)
661 {
662 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
663 bits = length_bits;
664 }
665
666 /* Now load the two bytes and mask off the bits we care about. */
667 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
668 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
669
670 if (b1 != b2)
671 return 1;
672
673 /* Now update the length and offsets to take account of the bits
674 we've just compared. */
675 length_bits -= bits;
676 offset1_bits += bits;
677 offset2_bits += bits;
678 }
679
680 if (length_bits % TARGET_CHAR_BIT != 0)
681 {
682 size_t bits;
683 size_t o1, o2;
684 gdb_byte mask, b1, b2;
685
686 /* The length is not an exact number of bytes. After the previous
687 IF.. block then the offsets are byte aligned, or the
688 length is zero (in which case this code is not reached). Compare
689 a number of bits at the end of the region, starting from an exact
690 byte boundary. */
691 bits = length_bits % TARGET_CHAR_BIT;
692 o1 = offset1_bits + length_bits - bits;
693 o2 = offset2_bits + length_bits - bits;
694
695 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
696 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
697
698 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
699 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
700
701 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
702 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
703
704 if (b1 != b2)
705 return 1;
706
707 length_bits -= bits;
708 }
709
710 if (length_bits > 0)
711 {
712 /* We've now taken care of any stray "bits" at the start, or end of
713 the region to compare, the remainder can be covered with a simple
714 memcmp. */
715 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
716 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
718
719 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
720 ptr2 + offset2_bits / TARGET_CHAR_BIT,
721 length_bits / TARGET_CHAR_BIT);
722 }
723
724 /* Length is zero, regions match. */
725 return 0;
726}
727
9a0dc9e3
PA
728/* Helper struct for find_first_range_overlap_and_match and
729 value_contents_bits_eq. Keep track of which slot of a given ranges
730 vector have we last looked at. */
bdf22206 731
9a0dc9e3
PA
732struct ranges_and_idx
733{
734 /* The ranges. */
735 VEC(range_s) *ranges;
736
737 /* The range we've last found in RANGES. Given ranges are sorted,
738 we can start the next lookup here. */
739 int idx;
740};
741
742/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
743 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
744 ranges starting at OFFSET2 bits. Return true if the ranges match
745 and fill in *L and *H with the overlapping window relative to
746 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
747
748static int
9a0dc9e3
PA
749find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
750 struct ranges_and_idx *rp2,
751 int offset1, int offset2,
752 int length, ULONGEST *l, ULONGEST *h)
c8c1c22f 753{
9a0dc9e3
PA
754 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
755 offset1, length);
756 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
757 offset2, length);
c8c1c22f 758
9a0dc9e3
PA
759 if (rp1->idx == -1 && rp2->idx == -1)
760 {
761 *l = length;
762 *h = length;
763 return 1;
764 }
765 else if (rp1->idx == -1 || rp2->idx == -1)
766 return 0;
767 else
c8c1c22f
PA
768 {
769 range_s *r1, *r2;
770 ULONGEST l1, h1;
771 ULONGEST l2, h2;
772
9a0dc9e3
PA
773 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
774 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
775
776 /* Get the unavailable windows intersected by the incoming
777 ranges. The first and last ranges that overlap the argument
778 range may be wider than said incoming arguments ranges. */
779 l1 = max (offset1, r1->offset);
780 h1 = min (offset1 + length, r1->offset + r1->length);
781
782 l2 = max (offset2, r2->offset);
9a0dc9e3 783 h2 = min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
784
785 /* Make them relative to the respective start offsets, so we can
786 compare them for equality. */
787 l1 -= offset1;
788 h1 -= offset1;
789
790 l2 -= offset2;
791 h2 -= offset2;
792
9a0dc9e3 793 /* Different ranges, no match. */
c8c1c22f
PA
794 if (l1 != l2 || h1 != h2)
795 return 0;
796
9a0dc9e3
PA
797 *h = h1;
798 *l = l1;
799 return 1;
800 }
801}
802
803/* Helper function for value_contents_eq. The only difference is that
804 this function is bit rather than byte based.
805
806 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
807 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
808 Return true if the available bits match. */
809
810static int
811value_contents_bits_eq (const struct value *val1, int offset1,
812 const struct value *val2, int offset2,
813 int length)
814{
815 /* Each array element corresponds to a ranges source (unavailable,
816 optimized out). '1' is for VAL1, '2' for VAL2. */
817 struct ranges_and_idx rp1[2], rp2[2];
818
819 /* See function description in value.h. */
820 gdb_assert (!val1->lazy && !val2->lazy);
821
822 /* We shouldn't be trying to compare past the end of the values. */
823 gdb_assert (offset1 + length
824 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
825 gdb_assert (offset2 + length
826 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
827
828 memset (&rp1, 0, sizeof (rp1));
829 memset (&rp2, 0, sizeof (rp2));
830 rp1[0].ranges = val1->unavailable;
831 rp2[0].ranges = val2->unavailable;
832 rp1[1].ranges = val1->optimized_out;
833 rp2[1].ranges = val2->optimized_out;
834
835 while (length > 0)
836 {
000339af 837 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
838 int i;
839
840 for (i = 0; i < 2; i++)
841 {
842 ULONGEST l_tmp, h_tmp;
843
844 /* The contents only match equal if the invalid/unavailable
845 contents ranges match as well. */
846 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
847 offset1, offset2, length,
848 &l_tmp, &h_tmp))
849 return 0;
850
851 /* We're interested in the lowest/first range found. */
852 if (i == 0 || l_tmp < l)
853 {
854 l = l_tmp;
855 h = h_tmp;
856 }
857 }
858
859 /* Compare the available/valid contents. */
bdf22206 860 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 861 val2->contents, offset2, l) != 0)
c8c1c22f
PA
862 return 0;
863
9a0dc9e3
PA
864 length -= h;
865 offset1 += h;
866 offset2 += h;
c8c1c22f
PA
867 }
868
869 return 1;
870}
871
bdf22206 872int
9a0dc9e3
PA
873value_contents_eq (const struct value *val1, int offset1,
874 const struct value *val2, int offset2,
875 int length)
bdf22206 876{
9a0dc9e3
PA
877 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
878 val2, offset2 * TARGET_CHAR_BIT,
879 length * TARGET_CHAR_BIT);
bdf22206
AB
880}
881
581e13c1 882/* Prototypes for local functions. */
c906108c 883
a14ed312 884static void show_values (char *, int);
c906108c 885
a14ed312 886static void show_convenience (char *, int);
c906108c 887
c906108c
SS
888
889/* The value-history records all the values printed
890 by print commands during this session. Each chunk
891 records 60 consecutive values. The first chunk on
892 the chain records the most recent values.
893 The total number of values is in value_history_count. */
894
895#define VALUE_HISTORY_CHUNK 60
896
897struct value_history_chunk
c5aa993b
JM
898 {
899 struct value_history_chunk *next;
f23631e4 900 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 901 };
c906108c
SS
902
903/* Chain of chunks now in use. */
904
905static struct value_history_chunk *value_history_chain;
906
581e13c1 907static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 908
c906108c
SS
909\f
910/* List of all value objects currently allocated
911 (except for those released by calls to release_value)
912 This is so they can be freed after each command. */
913
f23631e4 914static struct value *all_values;
c906108c 915
3e3d7139
JG
916/* Allocate a lazy value for type TYPE. Its actual content is
917 "lazily" allocated too: the content field of the return value is
918 NULL; it will be allocated when it is fetched from the target. */
c906108c 919
f23631e4 920struct value *
3e3d7139 921allocate_value_lazy (struct type *type)
c906108c 922{
f23631e4 923 struct value *val;
c54eabfa
JK
924
925 /* Call check_typedef on our type to make sure that, if TYPE
926 is a TYPE_CODE_TYPEDEF, its length is set to the length
927 of the target type instead of zero. However, we do not
928 replace the typedef type by the target type, because we want
929 to keep the typedef in order to be able to set the VAL's type
930 description correctly. */
931 check_typedef (type);
c906108c 932
8d749320 933 val = XCNEW (struct value);
3e3d7139 934 val->contents = NULL;
df407dfe 935 val->next = all_values;
c906108c 936 all_values = val;
df407dfe 937 val->type = type;
4754a64e 938 val->enclosing_type = type;
c906108c 939 VALUE_LVAL (val) = not_lval;
42ae5230 940 val->location.address = 0;
1df6926e 941 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
942 val->offset = 0;
943 val->bitpos = 0;
944 val->bitsize = 0;
9ee8fc9d 945 VALUE_REGNUM (val) = -1;
3e3d7139 946 val->lazy = 1;
13c3b5f5 947 val->embedded_offset = 0;
b44d461b 948 val->pointed_to_offset = 0;
c906108c 949 val->modifiable = 1;
42be36b3 950 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
951
952 /* Values start out on the all_values chain. */
953 val->reference_count = 1;
954
c906108c
SS
955 return val;
956}
957
3e3d7139
JG
958/* Allocate the contents of VAL if it has not been allocated yet. */
959
548b762d 960static void
3e3d7139
JG
961allocate_value_contents (struct value *val)
962{
963 if (!val->contents)
964 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
965}
966
967/* Allocate a value and its contents for type TYPE. */
968
969struct value *
970allocate_value (struct type *type)
971{
972 struct value *val = allocate_value_lazy (type);
a109c7c1 973
3e3d7139
JG
974 allocate_value_contents (val);
975 val->lazy = 0;
976 return val;
977}
978
c906108c 979/* Allocate a value that has the correct length
938f5214 980 for COUNT repetitions of type TYPE. */
c906108c 981
f23631e4 982struct value *
fba45db2 983allocate_repeat_value (struct type *type, int count)
c906108c 984{
c5aa993b 985 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
986 /* FIXME-type-allocation: need a way to free this type when we are
987 done with it. */
e3506a9f
UW
988 struct type *array_type
989 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 990
e3506a9f 991 return allocate_value (array_type);
c906108c
SS
992}
993
5f5233d4
PA
994struct value *
995allocate_computed_value (struct type *type,
c8f2448a 996 const struct lval_funcs *funcs,
5f5233d4
PA
997 void *closure)
998{
41e8491f 999 struct value *v = allocate_value_lazy (type);
a109c7c1 1000
5f5233d4
PA
1001 VALUE_LVAL (v) = lval_computed;
1002 v->location.computed.funcs = funcs;
1003 v->location.computed.closure = closure;
5f5233d4
PA
1004
1005 return v;
1006}
1007
a7035dbb
JK
1008/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1009
1010struct value *
1011allocate_optimized_out_value (struct type *type)
1012{
1013 struct value *retval = allocate_value_lazy (type);
1014
9a0dc9e3
PA
1015 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1016 set_value_lazy (retval, 0);
a7035dbb
JK
1017 return retval;
1018}
1019
df407dfe
AC
1020/* Accessor methods. */
1021
17cf0ecd
AC
1022struct value *
1023value_next (struct value *value)
1024{
1025 return value->next;
1026}
1027
df407dfe 1028struct type *
0e03807e 1029value_type (const struct value *value)
df407dfe
AC
1030{
1031 return value->type;
1032}
04624583
AC
1033void
1034deprecated_set_value_type (struct value *value, struct type *type)
1035{
1036 value->type = type;
1037}
df407dfe
AC
1038
1039int
0e03807e 1040value_offset (const struct value *value)
df407dfe
AC
1041{
1042 return value->offset;
1043}
f5cf64a7
AC
1044void
1045set_value_offset (struct value *value, int offset)
1046{
1047 value->offset = offset;
1048}
df407dfe
AC
1049
1050int
0e03807e 1051value_bitpos (const struct value *value)
df407dfe
AC
1052{
1053 return value->bitpos;
1054}
9bbda503
AC
1055void
1056set_value_bitpos (struct value *value, int bit)
1057{
1058 value->bitpos = bit;
1059}
df407dfe
AC
1060
1061int
0e03807e 1062value_bitsize (const struct value *value)
df407dfe
AC
1063{
1064 return value->bitsize;
1065}
9bbda503
AC
1066void
1067set_value_bitsize (struct value *value, int bit)
1068{
1069 value->bitsize = bit;
1070}
df407dfe 1071
4ea48cc1
DJ
1072struct value *
1073value_parent (struct value *value)
1074{
1075 return value->parent;
1076}
1077
53ba8333
JB
1078/* See value.h. */
1079
1080void
1081set_value_parent (struct value *value, struct value *parent)
1082{
40501e00
TT
1083 struct value *old = value->parent;
1084
53ba8333 1085 value->parent = parent;
40501e00
TT
1086 if (parent != NULL)
1087 value_incref (parent);
1088 value_free (old);
53ba8333
JB
1089}
1090
fc1a4b47 1091gdb_byte *
990a07ab
AC
1092value_contents_raw (struct value *value)
1093{
3ae385af
SM
1094 struct gdbarch *arch = get_value_arch (value);
1095 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1096
3e3d7139 1097 allocate_value_contents (value);
3ae385af 1098 return value->contents + value->embedded_offset * unit_size;
990a07ab
AC
1099}
1100
fc1a4b47 1101gdb_byte *
990a07ab
AC
1102value_contents_all_raw (struct value *value)
1103{
3e3d7139
JG
1104 allocate_value_contents (value);
1105 return value->contents;
990a07ab
AC
1106}
1107
4754a64e
AC
1108struct type *
1109value_enclosing_type (struct value *value)
1110{
1111 return value->enclosing_type;
1112}
1113
8264ba82
AG
1114/* Look at value.h for description. */
1115
1116struct type *
1117value_actual_type (struct value *value, int resolve_simple_types,
1118 int *real_type_found)
1119{
1120 struct value_print_options opts;
8264ba82
AG
1121 struct type *result;
1122
1123 get_user_print_options (&opts);
1124
1125 if (real_type_found)
1126 *real_type_found = 0;
1127 result = value_type (value);
1128 if (opts.objectprint)
1129 {
5e34c6c3
LM
1130 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1131 fetch its rtti type. */
1132 if ((TYPE_CODE (result) == TYPE_CODE_PTR
8264ba82 1133 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3
LM
1134 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1135 == TYPE_CODE_STRUCT)
8264ba82
AG
1136 {
1137 struct type *real_type;
1138
1139 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1140 if (real_type)
1141 {
1142 if (real_type_found)
1143 *real_type_found = 1;
1144 result = real_type;
1145 }
1146 }
1147 else if (resolve_simple_types)
1148 {
1149 if (real_type_found)
1150 *real_type_found = 1;
1151 result = value_enclosing_type (value);
1152 }
1153 }
1154
1155 return result;
1156}
1157
901461f8
PA
1158void
1159error_value_optimized_out (void)
1160{
1161 error (_("value has been optimized out"));
1162}
1163
0e03807e 1164static void
4e07d55f 1165require_not_optimized_out (const struct value *value)
0e03807e 1166{
9a0dc9e3 1167 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1168 {
1169 if (value->lval == lval_register)
1170 error (_("register has not been saved in frame"));
1171 else
1172 error_value_optimized_out ();
1173 }
0e03807e
TT
1174}
1175
4e07d55f
PA
1176static void
1177require_available (const struct value *value)
1178{
1179 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1180 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1181}
1182
fc1a4b47 1183const gdb_byte *
0e03807e 1184value_contents_for_printing (struct value *value)
46615f07
AC
1185{
1186 if (value->lazy)
1187 value_fetch_lazy (value);
3e3d7139 1188 return value->contents;
46615f07
AC
1189}
1190
de4127a3
PA
1191const gdb_byte *
1192value_contents_for_printing_const (const struct value *value)
1193{
1194 gdb_assert (!value->lazy);
1195 return value->contents;
1196}
1197
0e03807e
TT
1198const gdb_byte *
1199value_contents_all (struct value *value)
1200{
1201 const gdb_byte *result = value_contents_for_printing (value);
1202 require_not_optimized_out (value);
4e07d55f 1203 require_available (value);
0e03807e
TT
1204 return result;
1205}
1206
9a0dc9e3
PA
1207/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1208 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1209
1210static void
1211ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1212 VEC (range_s) *src_range, int src_bit_offset,
1213 int bit_length)
1214{
1215 range_s *r;
1216 int i;
1217
1218 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1219 {
1220 ULONGEST h, l;
1221
1222 l = max (r->offset, src_bit_offset);
1223 h = min (r->offset + r->length, src_bit_offset + bit_length);
1224
1225 if (l < h)
1226 insert_into_bit_range_vector (dst_range,
1227 dst_bit_offset + (l - src_bit_offset),
1228 h - l);
1229 }
1230}
1231
4875ffdb
PA
1232/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1233 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1234
1235static void
1236value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1237 const struct value *src, int src_bit_offset,
1238 int bit_length)
1239{
1240 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1241 src->unavailable, src_bit_offset,
1242 bit_length);
1243 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1244 src->optimized_out, src_bit_offset,
1245 bit_length);
1246}
1247
3ae385af 1248/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1249 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1250 contents, starting at DST_OFFSET. If unavailable contents are
1251 being copied from SRC, the corresponding DST contents are marked
1252 unavailable accordingly. Neither DST nor SRC may be lazy
1253 values.
1254
1255 It is assumed the contents of DST in the [DST_OFFSET,
1256 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1257
1258void
1259value_contents_copy_raw (struct value *dst, int dst_offset,
1260 struct value *src, int src_offset, int length)
1261{
1262 range_s *r;
bdf22206 1263 int src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1264 struct gdbarch *arch = get_value_arch (src);
1265 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1266
1267 /* A lazy DST would make that this copy operation useless, since as
1268 soon as DST's contents were un-lazied (by a later value_contents
1269 call, say), the contents would be overwritten. A lazy SRC would
1270 mean we'd be copying garbage. */
1271 gdb_assert (!dst->lazy && !src->lazy);
1272
29976f3f
PA
1273 /* The overwritten DST range gets unavailability ORed in, not
1274 replaced. Make sure to remember to implement replacing if it
1275 turns out actually necessary. */
1276 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1277 gdb_assert (!value_bits_any_optimized_out (dst,
1278 TARGET_CHAR_BIT * dst_offset,
1279 TARGET_CHAR_BIT * length));
29976f3f 1280
39d37385 1281 /* Copy the data. */
3ae385af
SM
1282 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1283 value_contents_all_raw (src) + src_offset * unit_size,
1284 length * unit_size);
39d37385
PA
1285
1286 /* Copy the meta-data, adjusted. */
3ae385af
SM
1287 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1288 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1289 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1290
4875ffdb
PA
1291 value_ranges_copy_adjusted (dst, dst_bit_offset,
1292 src, src_bit_offset,
1293 bit_length);
39d37385
PA
1294}
1295
29976f3f
PA
1296/* Copy LENGTH bytes of SRC value's (all) contents
1297 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1298 (all) contents, starting at DST_OFFSET. If unavailable contents
1299 are being copied from SRC, the corresponding DST contents are
1300 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1301 lazy, it will be fetched now.
29976f3f
PA
1302
1303 It is assumed the contents of DST in the [DST_OFFSET,
1304 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1305
1306void
1307value_contents_copy (struct value *dst, int dst_offset,
1308 struct value *src, int src_offset, int length)
1309{
39d37385
PA
1310 if (src->lazy)
1311 value_fetch_lazy (src);
1312
1313 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1314}
1315
d69fe07e
AC
1316int
1317value_lazy (struct value *value)
1318{
1319 return value->lazy;
1320}
1321
dfa52d88
AC
1322void
1323set_value_lazy (struct value *value, int val)
1324{
1325 value->lazy = val;
1326}
1327
4e5d721f
DE
1328int
1329value_stack (struct value *value)
1330{
1331 return value->stack;
1332}
1333
1334void
1335set_value_stack (struct value *value, int val)
1336{
1337 value->stack = val;
1338}
1339
fc1a4b47 1340const gdb_byte *
0fd88904
AC
1341value_contents (struct value *value)
1342{
0e03807e
TT
1343 const gdb_byte *result = value_contents_writeable (value);
1344 require_not_optimized_out (value);
4e07d55f 1345 require_available (value);
0e03807e 1346 return result;
0fd88904
AC
1347}
1348
fc1a4b47 1349gdb_byte *
0fd88904
AC
1350value_contents_writeable (struct value *value)
1351{
1352 if (value->lazy)
1353 value_fetch_lazy (value);
fc0c53a0 1354 return value_contents_raw (value);
0fd88904
AC
1355}
1356
feb13ab0
AC
1357int
1358value_optimized_out (struct value *value)
1359{
691a26f5
AB
1360 /* We can only know if a value is optimized out once we have tried to
1361 fetch it. */
9a0dc9e3 1362 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
691a26f5
AB
1363 value_fetch_lazy (value);
1364
9a0dc9e3 1365 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1366}
1367
9a0dc9e3
PA
1368/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1369 the following LENGTH bytes. */
eca07816 1370
feb13ab0 1371void
9a0dc9e3 1372mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1373{
9a0dc9e3
PA
1374 mark_value_bits_optimized_out (value,
1375 offset * TARGET_CHAR_BIT,
1376 length * TARGET_CHAR_BIT);
feb13ab0 1377}
13c3b5f5 1378
9a0dc9e3 1379/* See value.h. */
0e03807e 1380
9a0dc9e3
PA
1381void
1382mark_value_bits_optimized_out (struct value *value, int offset, int length)
0e03807e 1383{
9a0dc9e3 1384 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1385}
1386
8cf6f0b1
TT
1387int
1388value_bits_synthetic_pointer (const struct value *value,
1389 int offset, int length)
1390{
e7303042 1391 if (value->lval != lval_computed
8cf6f0b1
TT
1392 || !value->location.computed.funcs->check_synthetic_pointer)
1393 return 0;
1394 return value->location.computed.funcs->check_synthetic_pointer (value,
1395 offset,
1396 length);
1397}
1398
13c3b5f5
AC
1399int
1400value_embedded_offset (struct value *value)
1401{
1402 return value->embedded_offset;
1403}
1404
1405void
1406set_value_embedded_offset (struct value *value, int val)
1407{
1408 value->embedded_offset = val;
1409}
b44d461b
AC
1410
1411int
1412value_pointed_to_offset (struct value *value)
1413{
1414 return value->pointed_to_offset;
1415}
1416
1417void
1418set_value_pointed_to_offset (struct value *value, int val)
1419{
1420 value->pointed_to_offset = val;
1421}
13bb5560 1422
c8f2448a 1423const struct lval_funcs *
a471c594 1424value_computed_funcs (const struct value *v)
5f5233d4 1425{
a471c594 1426 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1427
1428 return v->location.computed.funcs;
1429}
1430
1431void *
0e03807e 1432value_computed_closure (const struct value *v)
5f5233d4 1433{
0e03807e 1434 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1435
1436 return v->location.computed.closure;
1437}
1438
13bb5560
AC
1439enum lval_type *
1440deprecated_value_lval_hack (struct value *value)
1441{
1442 return &value->lval;
1443}
1444
a471c594
JK
1445enum lval_type
1446value_lval_const (const struct value *value)
1447{
1448 return value->lval;
1449}
1450
42ae5230 1451CORE_ADDR
de4127a3 1452value_address (const struct value *value)
42ae5230
TT
1453{
1454 if (value->lval == lval_internalvar
e81e7f5e
SC
1455 || value->lval == lval_internalvar_component
1456 || value->lval == lval_xcallable)
42ae5230 1457 return 0;
53ba8333
JB
1458 if (value->parent != NULL)
1459 return value_address (value->parent) + value->offset;
1460 else
1461 return value->location.address + value->offset;
42ae5230
TT
1462}
1463
1464CORE_ADDR
1465value_raw_address (struct value *value)
1466{
1467 if (value->lval == lval_internalvar
e81e7f5e
SC
1468 || value->lval == lval_internalvar_component
1469 || value->lval == lval_xcallable)
42ae5230
TT
1470 return 0;
1471 return value->location.address;
1472}
1473
1474void
1475set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1476{
42ae5230 1477 gdb_assert (value->lval != lval_internalvar
e81e7f5e
SC
1478 && value->lval != lval_internalvar_component
1479 && value->lval != lval_xcallable);
42ae5230 1480 value->location.address = addr;
13bb5560
AC
1481}
1482
1483struct internalvar **
1484deprecated_value_internalvar_hack (struct value *value)
1485{
1486 return &value->location.internalvar;
1487}
1488
1489struct frame_id *
1490deprecated_value_frame_id_hack (struct value *value)
1491{
1492 return &value->frame_id;
1493}
1494
1495short *
1496deprecated_value_regnum_hack (struct value *value)
1497{
1498 return &value->regnum;
1499}
88e3b34b
AC
1500
1501int
1502deprecated_value_modifiable (struct value *value)
1503{
1504 return value->modifiable;
1505}
990a07ab 1506\f
c906108c
SS
1507/* Return a mark in the value chain. All values allocated after the
1508 mark is obtained (except for those released) are subject to being freed
1509 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1510struct value *
fba45db2 1511value_mark (void)
c906108c
SS
1512{
1513 return all_values;
1514}
1515
828d3400
DJ
1516/* Take a reference to VAL. VAL will not be deallocated until all
1517 references are released. */
1518
1519void
1520value_incref (struct value *val)
1521{
1522 val->reference_count++;
1523}
1524
1525/* Release a reference to VAL, which was acquired with value_incref.
1526 This function is also called to deallocate values from the value
1527 chain. */
1528
3e3d7139
JG
1529void
1530value_free (struct value *val)
1531{
1532 if (val)
5f5233d4 1533 {
828d3400
DJ
1534 gdb_assert (val->reference_count > 0);
1535 val->reference_count--;
1536 if (val->reference_count > 0)
1537 return;
1538
4ea48cc1
DJ
1539 /* If there's an associated parent value, drop our reference to
1540 it. */
1541 if (val->parent != NULL)
1542 value_free (val->parent);
1543
5f5233d4
PA
1544 if (VALUE_LVAL (val) == lval_computed)
1545 {
c8f2448a 1546 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1547
1548 if (funcs->free_closure)
1549 funcs->free_closure (val);
1550 }
e81e7f5e
SC
1551 else if (VALUE_LVAL (val) == lval_xcallable)
1552 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1553
1554 xfree (val->contents);
4e07d55f 1555 VEC_free (range_s, val->unavailable);
5f5233d4 1556 }
3e3d7139
JG
1557 xfree (val);
1558}
1559
c906108c
SS
1560/* Free all values allocated since MARK was obtained by value_mark
1561 (except for those released). */
1562void
f23631e4 1563value_free_to_mark (struct value *mark)
c906108c 1564{
f23631e4
AC
1565 struct value *val;
1566 struct value *next;
c906108c
SS
1567
1568 for (val = all_values; val && val != mark; val = next)
1569 {
df407dfe 1570 next = val->next;
e848a8a5 1571 val->released = 1;
c906108c
SS
1572 value_free (val);
1573 }
1574 all_values = val;
1575}
1576
1577/* Free all the values that have been allocated (except for those released).
725e88af
DE
1578 Call after each command, successful or not.
1579 In practice this is called before each command, which is sufficient. */
c906108c
SS
1580
1581void
fba45db2 1582free_all_values (void)
c906108c 1583{
f23631e4
AC
1584 struct value *val;
1585 struct value *next;
c906108c
SS
1586
1587 for (val = all_values; val; val = next)
1588 {
df407dfe 1589 next = val->next;
e848a8a5 1590 val->released = 1;
c906108c
SS
1591 value_free (val);
1592 }
1593
1594 all_values = 0;
1595}
1596
0cf6dd15
TJB
1597/* Frees all the elements in a chain of values. */
1598
1599void
1600free_value_chain (struct value *v)
1601{
1602 struct value *next;
1603
1604 for (; v; v = next)
1605 {
1606 next = value_next (v);
1607 value_free (v);
1608 }
1609}
1610
c906108c
SS
1611/* Remove VAL from the chain all_values
1612 so it will not be freed automatically. */
1613
1614void
f23631e4 1615release_value (struct value *val)
c906108c 1616{
f23631e4 1617 struct value *v;
c906108c
SS
1618
1619 if (all_values == val)
1620 {
1621 all_values = val->next;
06a64a0b 1622 val->next = NULL;
e848a8a5 1623 val->released = 1;
c906108c
SS
1624 return;
1625 }
1626
1627 for (v = all_values; v; v = v->next)
1628 {
1629 if (v->next == val)
1630 {
1631 v->next = val->next;
06a64a0b 1632 val->next = NULL;
e848a8a5 1633 val->released = 1;
c906108c
SS
1634 break;
1635 }
1636 }
1637}
1638
e848a8a5
TT
1639/* If the value is not already released, release it.
1640 If the value is already released, increment its reference count.
1641 That is, this function ensures that the value is released from the
1642 value chain and that the caller owns a reference to it. */
1643
1644void
1645release_value_or_incref (struct value *val)
1646{
1647 if (val->released)
1648 value_incref (val);
1649 else
1650 release_value (val);
1651}
1652
c906108c 1653/* Release all values up to mark */
f23631e4
AC
1654struct value *
1655value_release_to_mark (struct value *mark)
c906108c 1656{
f23631e4
AC
1657 struct value *val;
1658 struct value *next;
c906108c 1659
df407dfe 1660 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1661 {
1662 if (next->next == mark)
1663 {
1664 all_values = next->next;
1665 next->next = NULL;
1666 return val;
1667 }
1668 next->released = 1;
1669 }
c906108c
SS
1670 all_values = 0;
1671 return val;
1672}
1673
1674/* Return a copy of the value ARG.
1675 It contains the same contents, for same memory address,
1676 but it's a different block of storage. */
1677
f23631e4
AC
1678struct value *
1679value_copy (struct value *arg)
c906108c 1680{
4754a64e 1681 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1682 struct value *val;
1683
1684 if (value_lazy (arg))
1685 val = allocate_value_lazy (encl_type);
1686 else
1687 val = allocate_value (encl_type);
df407dfe 1688 val->type = arg->type;
c906108c 1689 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1690 val->location = arg->location;
df407dfe
AC
1691 val->offset = arg->offset;
1692 val->bitpos = arg->bitpos;
1693 val->bitsize = arg->bitsize;
1df6926e 1694 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1695 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1696 val->lazy = arg->lazy;
13c3b5f5 1697 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1698 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1699 val->modifiable = arg->modifiable;
d69fe07e 1700 if (!value_lazy (val))
c906108c 1701 {
990a07ab 1702 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1703 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1704
1705 }
4e07d55f 1706 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1707 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1708 set_value_parent (val, arg->parent);
5f5233d4
PA
1709 if (VALUE_LVAL (val) == lval_computed)
1710 {
c8f2448a 1711 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1712
1713 if (funcs->copy_closure)
1714 val->location.computed.closure = funcs->copy_closure (val);
1715 }
c906108c
SS
1716 return val;
1717}
74bcbdf3 1718
4c082a81
SC
1719/* Return a "const" and/or "volatile" qualified version of the value V.
1720 If CNST is true, then the returned value will be qualified with
1721 "const".
1722 if VOLTL is true, then the returned value will be qualified with
1723 "volatile". */
1724
1725struct value *
1726make_cv_value (int cnst, int voltl, struct value *v)
1727{
1728 struct type *val_type = value_type (v);
1729 struct type *enclosing_type = value_enclosing_type (v);
1730 struct value *cv_val = value_copy (v);
1731
1732 deprecated_set_value_type (cv_val,
1733 make_cv_type (cnst, voltl, val_type, NULL));
1734 set_value_enclosing_type (cv_val,
1735 make_cv_type (cnst, voltl, enclosing_type, NULL));
1736
1737 return cv_val;
1738}
1739
c37f7098
KW
1740/* Return a version of ARG that is non-lvalue. */
1741
1742struct value *
1743value_non_lval (struct value *arg)
1744{
1745 if (VALUE_LVAL (arg) != not_lval)
1746 {
1747 struct type *enc_type = value_enclosing_type (arg);
1748 struct value *val = allocate_value (enc_type);
1749
1750 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1751 TYPE_LENGTH (enc_type));
1752 val->type = arg->type;
1753 set_value_embedded_offset (val, value_embedded_offset (arg));
1754 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1755 return val;
1756 }
1757 return arg;
1758}
1759
6c659fc2
SC
1760/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1761
1762void
1763value_force_lval (struct value *v, CORE_ADDR addr)
1764{
1765 gdb_assert (VALUE_LVAL (v) == not_lval);
1766
1767 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1768 v->lval = lval_memory;
1769 v->location.address = addr;
1770}
1771
74bcbdf3 1772void
0e03807e
TT
1773set_value_component_location (struct value *component,
1774 const struct value *whole)
74bcbdf3 1775{
e81e7f5e
SC
1776 gdb_assert (whole->lval != lval_xcallable);
1777
0e03807e 1778 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1779 VALUE_LVAL (component) = lval_internalvar_component;
1780 else
0e03807e 1781 VALUE_LVAL (component) = whole->lval;
5f5233d4 1782
74bcbdf3 1783 component->location = whole->location;
0e03807e 1784 if (whole->lval == lval_computed)
5f5233d4 1785 {
c8f2448a 1786 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1787
1788 if (funcs->copy_closure)
1789 component->location.computed.closure = funcs->copy_closure (whole);
1790 }
74bcbdf3
PA
1791}
1792
c906108c
SS
1793\f
1794/* Access to the value history. */
1795
1796/* Record a new value in the value history.
eddf0bae 1797 Returns the absolute history index of the entry. */
c906108c
SS
1798
1799int
f23631e4 1800record_latest_value (struct value *val)
c906108c
SS
1801{
1802 int i;
1803
1804 /* We don't want this value to have anything to do with the inferior anymore.
1805 In particular, "set $1 = 50" should not affect the variable from which
1806 the value was taken, and fast watchpoints should be able to assume that
1807 a value on the value history never changes. */
d69fe07e 1808 if (value_lazy (val))
c906108c
SS
1809 value_fetch_lazy (val);
1810 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1811 from. This is a bit dubious, because then *&$1 does not just return $1
1812 but the current contents of that location. c'est la vie... */
1813 val->modifiable = 0;
350e1a76
DE
1814
1815 /* The value may have already been released, in which case we're adding a
1816 new reference for its entry in the history. That is why we call
1817 release_value_or_incref here instead of release_value. */
1818 release_value_or_incref (val);
c906108c
SS
1819
1820 /* Here we treat value_history_count as origin-zero
1821 and applying to the value being stored now. */
1822
1823 i = value_history_count % VALUE_HISTORY_CHUNK;
1824 if (i == 0)
1825 {
8d749320 1826 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
a109c7c1 1827
fe978cb0
PA
1828 newobj->next = value_history_chain;
1829 value_history_chain = newobj;
c906108c
SS
1830 }
1831
1832 value_history_chain->values[i] = val;
1833
1834 /* Now we regard value_history_count as origin-one
1835 and applying to the value just stored. */
1836
1837 return ++value_history_count;
1838}
1839
1840/* Return a copy of the value in the history with sequence number NUM. */
1841
f23631e4 1842struct value *
fba45db2 1843access_value_history (int num)
c906108c 1844{
f23631e4 1845 struct value_history_chunk *chunk;
52f0bd74
AC
1846 int i;
1847 int absnum = num;
c906108c
SS
1848
1849 if (absnum <= 0)
1850 absnum += value_history_count;
1851
1852 if (absnum <= 0)
1853 {
1854 if (num == 0)
8a3fe4f8 1855 error (_("The history is empty."));
c906108c 1856 else if (num == 1)
8a3fe4f8 1857 error (_("There is only one value in the history."));
c906108c 1858 else
8a3fe4f8 1859 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1860 }
1861 if (absnum > value_history_count)
8a3fe4f8 1862 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1863
1864 absnum--;
1865
1866 /* Now absnum is always absolute and origin zero. */
1867
1868 chunk = value_history_chain;
3e43a32a
MS
1869 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1870 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1871 i > 0; i--)
1872 chunk = chunk->next;
1873
1874 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1875}
1876
c906108c 1877static void
fba45db2 1878show_values (char *num_exp, int from_tty)
c906108c 1879{
52f0bd74 1880 int i;
f23631e4 1881 struct value *val;
c906108c
SS
1882 static int num = 1;
1883
1884 if (num_exp)
1885 {
f132ba9d
TJB
1886 /* "show values +" should print from the stored position.
1887 "show values <exp>" should print around value number <exp>. */
c906108c 1888 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1889 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1890 }
1891 else
1892 {
f132ba9d 1893 /* "show values" means print the last 10 values. */
c906108c
SS
1894 num = value_history_count - 9;
1895 }
1896
1897 if (num <= 0)
1898 num = 1;
1899
1900 for (i = num; i < num + 10 && i <= value_history_count; i++)
1901 {
79a45b7d 1902 struct value_print_options opts;
a109c7c1 1903
c906108c 1904 val = access_value_history (i);
a3f17187 1905 printf_filtered (("$%d = "), i);
79a45b7d
TT
1906 get_user_print_options (&opts);
1907 value_print (val, gdb_stdout, &opts);
a3f17187 1908 printf_filtered (("\n"));
c906108c
SS
1909 }
1910
f132ba9d 1911 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1912 num += 10;
1913
1914 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1915 "show values +". If num_exp is null, this is unnecessary, since
1916 "show values +" is not useful after "show values". */
c906108c
SS
1917 if (from_tty && num_exp)
1918 {
1919 num_exp[0] = '+';
1920 num_exp[1] = '\0';
1921 }
1922}
1923\f
52059ffd
TT
1924enum internalvar_kind
1925{
1926 /* The internal variable is empty. */
1927 INTERNALVAR_VOID,
1928
1929 /* The value of the internal variable is provided directly as
1930 a GDB value object. */
1931 INTERNALVAR_VALUE,
1932
1933 /* A fresh value is computed via a call-back routine on every
1934 access to the internal variable. */
1935 INTERNALVAR_MAKE_VALUE,
1936
1937 /* The internal variable holds a GDB internal convenience function. */
1938 INTERNALVAR_FUNCTION,
1939
1940 /* The variable holds an integer value. */
1941 INTERNALVAR_INTEGER,
1942
1943 /* The variable holds a GDB-provided string. */
1944 INTERNALVAR_STRING,
1945};
1946
1947union internalvar_data
1948{
1949 /* A value object used with INTERNALVAR_VALUE. */
1950 struct value *value;
1951
1952 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1953 struct
1954 {
1955 /* The functions to call. */
1956 const struct internalvar_funcs *functions;
1957
1958 /* The function's user-data. */
1959 void *data;
1960 } make_value;
1961
1962 /* The internal function used with INTERNALVAR_FUNCTION. */
1963 struct
1964 {
1965 struct internal_function *function;
1966 /* True if this is the canonical name for the function. */
1967 int canonical;
1968 } fn;
1969
1970 /* An integer value used with INTERNALVAR_INTEGER. */
1971 struct
1972 {
1973 /* If type is non-NULL, it will be used as the type to generate
1974 a value for this internal variable. If type is NULL, a default
1975 integer type for the architecture is used. */
1976 struct type *type;
1977 LONGEST val;
1978 } integer;
1979
1980 /* A string value used with INTERNALVAR_STRING. */
1981 char *string;
1982};
1983
c906108c
SS
1984/* Internal variables. These are variables within the debugger
1985 that hold values assigned by debugger commands.
1986 The user refers to them with a '$' prefix
1987 that does not appear in the variable names stored internally. */
1988
4fa62494
UW
1989struct internalvar
1990{
1991 struct internalvar *next;
1992 char *name;
4fa62494 1993
78267919
UW
1994 /* We support various different kinds of content of an internal variable.
1995 enum internalvar_kind specifies the kind, and union internalvar_data
1996 provides the data associated with this particular kind. */
1997
52059ffd 1998 enum internalvar_kind kind;
4fa62494 1999
52059ffd 2000 union internalvar_data u;
4fa62494
UW
2001};
2002
c906108c
SS
2003static struct internalvar *internalvars;
2004
3e43a32a
MS
2005/* If the variable does not already exist create it and give it the
2006 value given. If no value is given then the default is zero. */
53e5f3cf
AS
2007static void
2008init_if_undefined_command (char* args, int from_tty)
2009{
2010 struct internalvar* intvar;
2011
2012 /* Parse the expression - this is taken from set_command(). */
2013 struct expression *expr = parse_expression (args);
2014 register struct cleanup *old_chain =
2015 make_cleanup (free_current_contents, &expr);
2016
2017 /* Validate the expression.
2018 Was the expression an assignment?
2019 Or even an expression at all? */
2020 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2021 error (_("Init-if-undefined requires an assignment expression."));
2022
2023 /* Extract the variable from the parsed expression.
2024 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2025 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2026 error (_("The first parameter to init-if-undefined "
2027 "should be a GDB variable."));
53e5f3cf
AS
2028 intvar = expr->elts[2].internalvar;
2029
2030 /* Only evaluate the expression if the lvalue is void.
2031 This may still fail if the expresssion is invalid. */
78267919 2032 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
2033 evaluate_expression (expr);
2034
2035 do_cleanups (old_chain);
2036}
2037
2038
c906108c
SS
2039/* Look up an internal variable with name NAME. NAME should not
2040 normally include a dollar sign.
2041
2042 If the specified internal variable does not exist,
c4a3d09a 2043 the return value is NULL. */
c906108c
SS
2044
2045struct internalvar *
bc3b79fd 2046lookup_only_internalvar (const char *name)
c906108c 2047{
52f0bd74 2048 struct internalvar *var;
c906108c
SS
2049
2050 for (var = internalvars; var; var = var->next)
5cb316ef 2051 if (strcmp (var->name, name) == 0)
c906108c
SS
2052 return var;
2053
c4a3d09a
MF
2054 return NULL;
2055}
2056
d55637df
TT
2057/* Complete NAME by comparing it to the names of internal variables.
2058 Returns a vector of newly allocated strings, or NULL if no matches
2059 were found. */
2060
2061VEC (char_ptr) *
2062complete_internalvar (const char *name)
2063{
2064 VEC (char_ptr) *result = NULL;
2065 struct internalvar *var;
2066 int len;
2067
2068 len = strlen (name);
2069
2070 for (var = internalvars; var; var = var->next)
2071 if (strncmp (var->name, name, len) == 0)
2072 {
2073 char *r = xstrdup (var->name);
2074
2075 VEC_safe_push (char_ptr, result, r);
2076 }
2077
2078 return result;
2079}
c4a3d09a
MF
2080
2081/* Create an internal variable with name NAME and with a void value.
2082 NAME should not normally include a dollar sign. */
2083
2084struct internalvar *
bc3b79fd 2085create_internalvar (const char *name)
c4a3d09a 2086{
8d749320 2087 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2088
1754f103 2089 var->name = concat (name, (char *)NULL);
78267919 2090 var->kind = INTERNALVAR_VOID;
c906108c
SS
2091 var->next = internalvars;
2092 internalvars = var;
2093 return var;
2094}
2095
4aa995e1
PA
2096/* Create an internal variable with name NAME and register FUN as the
2097 function that value_of_internalvar uses to create a value whenever
2098 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2099 dollar sign. DATA is passed uninterpreted to FUN when it is
2100 called. CLEANUP, if not NULL, is called when the internal variable
2101 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2102
2103struct internalvar *
22d2b532
SDJ
2104create_internalvar_type_lazy (const char *name,
2105 const struct internalvar_funcs *funcs,
2106 void *data)
4aa995e1 2107{
4fa62494 2108 struct internalvar *var = create_internalvar (name);
a109c7c1 2109
78267919 2110 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2111 var->u.make_value.functions = funcs;
2112 var->u.make_value.data = data;
4aa995e1
PA
2113 return var;
2114}
c4a3d09a 2115
22d2b532
SDJ
2116/* See documentation in value.h. */
2117
2118int
2119compile_internalvar_to_ax (struct internalvar *var,
2120 struct agent_expr *expr,
2121 struct axs_value *value)
2122{
2123 if (var->kind != INTERNALVAR_MAKE_VALUE
2124 || var->u.make_value.functions->compile_to_ax == NULL)
2125 return 0;
2126
2127 var->u.make_value.functions->compile_to_ax (var, expr, value,
2128 var->u.make_value.data);
2129 return 1;
2130}
2131
c4a3d09a
MF
2132/* Look up an internal variable with name NAME. NAME should not
2133 normally include a dollar sign.
2134
2135 If the specified internal variable does not exist,
2136 one is created, with a void value. */
2137
2138struct internalvar *
bc3b79fd 2139lookup_internalvar (const char *name)
c4a3d09a
MF
2140{
2141 struct internalvar *var;
2142
2143 var = lookup_only_internalvar (name);
2144 if (var)
2145 return var;
2146
2147 return create_internalvar (name);
2148}
2149
78267919
UW
2150/* Return current value of internal variable VAR. For variables that
2151 are not inherently typed, use a value type appropriate for GDBARCH. */
2152
f23631e4 2153struct value *
78267919 2154value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2155{
f23631e4 2156 struct value *val;
0914bcdb
SS
2157 struct trace_state_variable *tsv;
2158
2159 /* If there is a trace state variable of the same name, assume that
2160 is what we really want to see. */
2161 tsv = find_trace_state_variable (var->name);
2162 if (tsv)
2163 {
2164 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2165 &(tsv->value));
2166 if (tsv->value_known)
2167 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2168 tsv->value);
2169 else
2170 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2171 return val;
2172 }
c906108c 2173
78267919 2174 switch (var->kind)
5f5233d4 2175 {
78267919
UW
2176 case INTERNALVAR_VOID:
2177 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2178 break;
4fa62494 2179
78267919
UW
2180 case INTERNALVAR_FUNCTION:
2181 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2182 break;
4fa62494 2183
cab0c772
UW
2184 case INTERNALVAR_INTEGER:
2185 if (!var->u.integer.type)
78267919 2186 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2187 var->u.integer.val);
78267919 2188 else
cab0c772
UW
2189 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2190 break;
2191
78267919
UW
2192 case INTERNALVAR_STRING:
2193 val = value_cstring (var->u.string, strlen (var->u.string),
2194 builtin_type (gdbarch)->builtin_char);
2195 break;
4fa62494 2196
78267919
UW
2197 case INTERNALVAR_VALUE:
2198 val = value_copy (var->u.value);
4aa995e1
PA
2199 if (value_lazy (val))
2200 value_fetch_lazy (val);
78267919 2201 break;
4aa995e1 2202
78267919 2203 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2204 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2205 var->u.make_value.data);
78267919
UW
2206 break;
2207
2208 default:
9b20d036 2209 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2210 }
2211
2212 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2213 on this value go back to affect the original internal variable.
2214
2215 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2216 no underlying modifyable state in the internal variable.
2217
2218 Likewise, if the variable's value is a computed lvalue, we want
2219 references to it to produce another computed lvalue, where
2220 references and assignments actually operate through the
2221 computed value's functions.
2222
2223 This means that internal variables with computed values
2224 behave a little differently from other internal variables:
2225 assignments to them don't just replace the previous value
2226 altogether. At the moment, this seems like the behavior we
2227 want. */
2228
2229 if (var->kind != INTERNALVAR_MAKE_VALUE
2230 && val->lval != lval_computed)
2231 {
2232 VALUE_LVAL (val) = lval_internalvar;
2233 VALUE_INTERNALVAR (val) = var;
5f5233d4 2234 }
d3c139e9 2235
4fa62494
UW
2236 return val;
2237}
d3c139e9 2238
4fa62494
UW
2239int
2240get_internalvar_integer (struct internalvar *var, LONGEST *result)
2241{
3158c6ed 2242 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2243 {
cab0c772
UW
2244 *result = var->u.integer.val;
2245 return 1;
3158c6ed 2246 }
d3c139e9 2247
3158c6ed
PA
2248 if (var->kind == INTERNALVAR_VALUE)
2249 {
2250 struct type *type = check_typedef (value_type (var->u.value));
2251
2252 if (TYPE_CODE (type) == TYPE_CODE_INT)
2253 {
2254 *result = value_as_long (var->u.value);
2255 return 1;
2256 }
4fa62494 2257 }
3158c6ed
PA
2258
2259 return 0;
4fa62494 2260}
d3c139e9 2261
4fa62494
UW
2262static int
2263get_internalvar_function (struct internalvar *var,
2264 struct internal_function **result)
2265{
78267919 2266 switch (var->kind)
d3c139e9 2267 {
78267919
UW
2268 case INTERNALVAR_FUNCTION:
2269 *result = var->u.fn.function;
4fa62494 2270 return 1;
d3c139e9 2271
4fa62494
UW
2272 default:
2273 return 0;
2274 }
c906108c
SS
2275}
2276
2277void
fba45db2 2278set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 2279 int bitsize, struct value *newval)
c906108c 2280{
4fa62494 2281 gdb_byte *addr;
3ae385af
SM
2282 struct gdbarch *arch;
2283 int unit_size;
c906108c 2284
78267919 2285 switch (var->kind)
4fa62494 2286 {
78267919
UW
2287 case INTERNALVAR_VALUE:
2288 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2289 arch = get_value_arch (var->u.value);
2290 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2291
2292 if (bitsize)
50810684 2293 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2294 value_as_long (newval), bitpos, bitsize);
2295 else
3ae385af 2296 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2297 TYPE_LENGTH (value_type (newval)));
2298 break;
78267919
UW
2299
2300 default:
2301 /* We can never get a component of any other kind. */
9b20d036 2302 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2303 }
c906108c
SS
2304}
2305
2306void
f23631e4 2307set_internalvar (struct internalvar *var, struct value *val)
c906108c 2308{
78267919 2309 enum internalvar_kind new_kind;
4fa62494 2310 union internalvar_data new_data = { 0 };
c906108c 2311
78267919 2312 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2313 error (_("Cannot overwrite convenience function %s"), var->name);
2314
4fa62494 2315 /* Prepare new contents. */
78267919 2316 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2317 {
2318 case TYPE_CODE_VOID:
78267919 2319 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2320 break;
2321
2322 case TYPE_CODE_INTERNAL_FUNCTION:
2323 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2324 new_kind = INTERNALVAR_FUNCTION;
2325 get_internalvar_function (VALUE_INTERNALVAR (val),
2326 &new_data.fn.function);
2327 /* Copies created here are never canonical. */
4fa62494
UW
2328 break;
2329
4fa62494 2330 default:
78267919
UW
2331 new_kind = INTERNALVAR_VALUE;
2332 new_data.value = value_copy (val);
2333 new_data.value->modifiable = 1;
4fa62494
UW
2334
2335 /* Force the value to be fetched from the target now, to avoid problems
2336 later when this internalvar is referenced and the target is gone or
2337 has changed. */
78267919
UW
2338 if (value_lazy (new_data.value))
2339 value_fetch_lazy (new_data.value);
4fa62494
UW
2340
2341 /* Release the value from the value chain to prevent it from being
2342 deleted by free_all_values. From here on this function should not
2343 call error () until new_data is installed into the var->u to avoid
2344 leaking memory. */
78267919 2345 release_value (new_data.value);
4fa62494
UW
2346 break;
2347 }
2348
2349 /* Clean up old contents. */
2350 clear_internalvar (var);
2351
2352 /* Switch over. */
78267919 2353 var->kind = new_kind;
4fa62494 2354 var->u = new_data;
c906108c
SS
2355 /* End code which must not call error(). */
2356}
2357
4fa62494
UW
2358void
2359set_internalvar_integer (struct internalvar *var, LONGEST l)
2360{
2361 /* Clean up old contents. */
2362 clear_internalvar (var);
2363
cab0c772
UW
2364 var->kind = INTERNALVAR_INTEGER;
2365 var->u.integer.type = NULL;
2366 var->u.integer.val = l;
78267919
UW
2367}
2368
2369void
2370set_internalvar_string (struct internalvar *var, const char *string)
2371{
2372 /* Clean up old contents. */
2373 clear_internalvar (var);
2374
2375 var->kind = INTERNALVAR_STRING;
2376 var->u.string = xstrdup (string);
4fa62494
UW
2377}
2378
2379static void
2380set_internalvar_function (struct internalvar *var, struct internal_function *f)
2381{
2382 /* Clean up old contents. */
2383 clear_internalvar (var);
2384
78267919
UW
2385 var->kind = INTERNALVAR_FUNCTION;
2386 var->u.fn.function = f;
2387 var->u.fn.canonical = 1;
2388 /* Variables installed here are always the canonical version. */
4fa62494
UW
2389}
2390
2391void
2392clear_internalvar (struct internalvar *var)
2393{
2394 /* Clean up old contents. */
78267919 2395 switch (var->kind)
4fa62494 2396 {
78267919
UW
2397 case INTERNALVAR_VALUE:
2398 value_free (var->u.value);
2399 break;
2400
2401 case INTERNALVAR_STRING:
2402 xfree (var->u.string);
4fa62494
UW
2403 break;
2404
22d2b532
SDJ
2405 case INTERNALVAR_MAKE_VALUE:
2406 if (var->u.make_value.functions->destroy != NULL)
2407 var->u.make_value.functions->destroy (var->u.make_value.data);
2408 break;
2409
4fa62494 2410 default:
4fa62494
UW
2411 break;
2412 }
2413
78267919
UW
2414 /* Reset to void kind. */
2415 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2416}
2417
c906108c 2418char *
fba45db2 2419internalvar_name (struct internalvar *var)
c906108c
SS
2420{
2421 return var->name;
2422}
2423
4fa62494
UW
2424static struct internal_function *
2425create_internal_function (const char *name,
2426 internal_function_fn handler, void *cookie)
bc3b79fd 2427{
bc3b79fd 2428 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2429
bc3b79fd
TJB
2430 ifn->name = xstrdup (name);
2431 ifn->handler = handler;
2432 ifn->cookie = cookie;
4fa62494 2433 return ifn;
bc3b79fd
TJB
2434}
2435
2436char *
2437value_internal_function_name (struct value *val)
2438{
4fa62494
UW
2439 struct internal_function *ifn;
2440 int result;
2441
2442 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2443 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2444 gdb_assert (result);
2445
bc3b79fd
TJB
2446 return ifn->name;
2447}
2448
2449struct value *
d452c4bc
UW
2450call_internal_function (struct gdbarch *gdbarch,
2451 const struct language_defn *language,
2452 struct value *func, int argc, struct value **argv)
bc3b79fd 2453{
4fa62494
UW
2454 struct internal_function *ifn;
2455 int result;
2456
2457 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2458 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2459 gdb_assert (result);
2460
d452c4bc 2461 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2462}
2463
2464/* The 'function' command. This does nothing -- it is just a
2465 placeholder to let "help function NAME" work. This is also used as
2466 the implementation of the sub-command that is created when
2467 registering an internal function. */
2468static void
2469function_command (char *command, int from_tty)
2470{
2471 /* Do nothing. */
2472}
2473
2474/* Clean up if an internal function's command is destroyed. */
2475static void
2476function_destroyer (struct cmd_list_element *self, void *ignore)
2477{
6f937416 2478 xfree ((char *) self->name);
1947513d 2479 xfree ((char *) self->doc);
bc3b79fd
TJB
2480}
2481
2482/* Add a new internal function. NAME is the name of the function; DOC
2483 is a documentation string describing the function. HANDLER is
2484 called when the function is invoked. COOKIE is an arbitrary
2485 pointer which is passed to HANDLER and is intended for "user
2486 data". */
2487void
2488add_internal_function (const char *name, const char *doc,
2489 internal_function_fn handler, void *cookie)
2490{
2491 struct cmd_list_element *cmd;
4fa62494 2492 struct internal_function *ifn;
bc3b79fd 2493 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2494
2495 ifn = create_internal_function (name, handler, cookie);
2496 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2497
2498 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2499 &functionlist);
2500 cmd->destroyer = function_destroyer;
2501}
2502
ae5a43e0
DJ
2503/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2504 prevent cycles / duplicates. */
2505
4e7a5ef5 2506void
ae5a43e0
DJ
2507preserve_one_value (struct value *value, struct objfile *objfile,
2508 htab_t copied_types)
2509{
2510 if (TYPE_OBJFILE (value->type) == objfile)
2511 value->type = copy_type_recursive (objfile, value->type, copied_types);
2512
2513 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2514 value->enclosing_type = copy_type_recursive (objfile,
2515 value->enclosing_type,
2516 copied_types);
2517}
2518
78267919
UW
2519/* Likewise for internal variable VAR. */
2520
2521static void
2522preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2523 htab_t copied_types)
2524{
2525 switch (var->kind)
2526 {
cab0c772
UW
2527 case INTERNALVAR_INTEGER:
2528 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2529 var->u.integer.type
2530 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2531 break;
2532
78267919
UW
2533 case INTERNALVAR_VALUE:
2534 preserve_one_value (var->u.value, objfile, copied_types);
2535 break;
2536 }
2537}
2538
ae5a43e0
DJ
2539/* Update the internal variables and value history when OBJFILE is
2540 discarded; we must copy the types out of the objfile. New global types
2541 will be created for every convenience variable which currently points to
2542 this objfile's types, and the convenience variables will be adjusted to
2543 use the new global types. */
c906108c
SS
2544
2545void
ae5a43e0 2546preserve_values (struct objfile *objfile)
c906108c 2547{
ae5a43e0
DJ
2548 htab_t copied_types;
2549 struct value_history_chunk *cur;
52f0bd74 2550 struct internalvar *var;
ae5a43e0 2551 int i;
c906108c 2552
ae5a43e0
DJ
2553 /* Create the hash table. We allocate on the objfile's obstack, since
2554 it is soon to be deleted. */
2555 copied_types = create_copied_types_hash (objfile);
2556
2557 for (cur = value_history_chain; cur; cur = cur->next)
2558 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2559 if (cur->values[i])
2560 preserve_one_value (cur->values[i], objfile, copied_types);
2561
2562 for (var = internalvars; var; var = var->next)
78267919 2563 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2564
6dddc817 2565 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2566
ae5a43e0 2567 htab_delete (copied_types);
c906108c
SS
2568}
2569
2570static void
fba45db2 2571show_convenience (char *ignore, int from_tty)
c906108c 2572{
e17c207e 2573 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2574 struct internalvar *var;
c906108c 2575 int varseen = 0;
79a45b7d 2576 struct value_print_options opts;
c906108c 2577
79a45b7d 2578 get_user_print_options (&opts);
c906108c
SS
2579 for (var = internalvars; var; var = var->next)
2580 {
c709acd1 2581
c906108c
SS
2582 if (!varseen)
2583 {
2584 varseen = 1;
2585 }
a3f17187 2586 printf_filtered (("$%s = "), var->name);
c709acd1 2587
492d29ea 2588 TRY
c709acd1
PA
2589 {
2590 struct value *val;
2591
2592 val = value_of_internalvar (gdbarch, var);
2593 value_print (val, gdb_stdout, &opts);
2594 }
492d29ea
PA
2595 CATCH (ex, RETURN_MASK_ERROR)
2596 {
2597 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2598 }
2599 END_CATCH
2600
a3f17187 2601 printf_filtered (("\n"));
c906108c
SS
2602 }
2603 if (!varseen)
f47f77df
DE
2604 {
2605 /* This text does not mention convenience functions on purpose.
2606 The user can't create them except via Python, and if Python support
2607 is installed this message will never be printed ($_streq will
2608 exist). */
2609 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2610 "Convenience variables have "
2611 "names starting with \"$\";\n"
2612 "use \"set\" as in \"set "
2613 "$foo = 5\" to define them.\n"));
2614 }
c906108c
SS
2615}
2616\f
e81e7f5e
SC
2617/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2618
2619struct value *
2620value_of_xmethod (struct xmethod_worker *worker)
2621{
2622 if (worker->value == NULL)
2623 {
2624 struct value *v;
2625
2626 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2627 v->lval = lval_xcallable;
2628 v->location.xm_worker = worker;
2629 v->modifiable = 0;
2630 worker->value = v;
2631 }
2632
2633 return worker->value;
2634}
2635
2ce1cdbf
DE
2636/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2637
2638struct type *
2639result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2640{
2641 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2642 && method->lval == lval_xcallable && argc > 0);
2643
2644 return get_xmethod_result_type (method->location.xm_worker,
2645 argv[0], argv + 1, argc - 1);
2646}
2647
e81e7f5e
SC
2648/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2649
2650struct value *
2651call_xmethod (struct value *method, int argc, struct value **argv)
2652{
2653 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2654 && method->lval == lval_xcallable && argc > 0);
2655
2656 return invoke_xmethod (method->location.xm_worker,
2657 argv[0], argv + 1, argc - 1);
2658}
2659\f
c906108c
SS
2660/* Extract a value as a C number (either long or double).
2661 Knows how to convert fixed values to double, or
2662 floating values to long.
2663 Does not deallocate the value. */
2664
2665LONGEST
f23631e4 2666value_as_long (struct value *val)
c906108c
SS
2667{
2668 /* This coerces arrays and functions, which is necessary (e.g.
2669 in disassemble_command). It also dereferences references, which
2670 I suspect is the most logical thing to do. */
994b9211 2671 val = coerce_array (val);
0fd88904 2672 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2673}
2674
2675DOUBLEST
f23631e4 2676value_as_double (struct value *val)
c906108c
SS
2677{
2678 DOUBLEST foo;
2679 int inv;
c5aa993b 2680
0fd88904 2681 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2682 if (inv)
8a3fe4f8 2683 error (_("Invalid floating value found in program."));
c906108c
SS
2684 return foo;
2685}
4ef30785 2686
581e13c1 2687/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2688 Note that val's type may not actually be a pointer; value_as_long
2689 handles all the cases. */
c906108c 2690CORE_ADDR
f23631e4 2691value_as_address (struct value *val)
c906108c 2692{
50810684
UW
2693 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2694
c906108c
SS
2695 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2696 whether we want this to be true eventually. */
2697#if 0
bf6ae464 2698 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2699 non-address (e.g. argument to "signal", "info break", etc.), or
2700 for pointers to char, in which the low bits *are* significant. */
50810684 2701 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2702#else
f312f057
JB
2703
2704 /* There are several targets (IA-64, PowerPC, and others) which
2705 don't represent pointers to functions as simply the address of
2706 the function's entry point. For example, on the IA-64, a
2707 function pointer points to a two-word descriptor, generated by
2708 the linker, which contains the function's entry point, and the
2709 value the IA-64 "global pointer" register should have --- to
2710 support position-independent code. The linker generates
2711 descriptors only for those functions whose addresses are taken.
2712
2713 On such targets, it's difficult for GDB to convert an arbitrary
2714 function address into a function pointer; it has to either find
2715 an existing descriptor for that function, or call malloc and
2716 build its own. On some targets, it is impossible for GDB to
2717 build a descriptor at all: the descriptor must contain a jump
2718 instruction; data memory cannot be executed; and code memory
2719 cannot be modified.
2720
2721 Upon entry to this function, if VAL is a value of type `function'
2722 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2723 value_address (val) is the address of the function. This is what
f312f057
JB
2724 you'll get if you evaluate an expression like `main'. The call
2725 to COERCE_ARRAY below actually does all the usual unary
2726 conversions, which includes converting values of type `function'
2727 to `pointer to function'. This is the challenging conversion
2728 discussed above. Then, `unpack_long' will convert that pointer
2729 back into an address.
2730
2731 So, suppose the user types `disassemble foo' on an architecture
2732 with a strange function pointer representation, on which GDB
2733 cannot build its own descriptors, and suppose further that `foo'
2734 has no linker-built descriptor. The address->pointer conversion
2735 will signal an error and prevent the command from running, even
2736 though the next step would have been to convert the pointer
2737 directly back into the same address.
2738
2739 The following shortcut avoids this whole mess. If VAL is a
2740 function, just return its address directly. */
df407dfe
AC
2741 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2742 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2743 return value_address (val);
f312f057 2744
994b9211 2745 val = coerce_array (val);
fc0c74b1
AC
2746
2747 /* Some architectures (e.g. Harvard), map instruction and data
2748 addresses onto a single large unified address space. For
2749 instance: An architecture may consider a large integer in the
2750 range 0x10000000 .. 0x1000ffff to already represent a data
2751 addresses (hence not need a pointer to address conversion) while
2752 a small integer would still need to be converted integer to
2753 pointer to address. Just assume such architectures handle all
2754 integer conversions in a single function. */
2755
2756 /* JimB writes:
2757
2758 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2759 must admonish GDB hackers to make sure its behavior matches the
2760 compiler's, whenever possible.
2761
2762 In general, I think GDB should evaluate expressions the same way
2763 the compiler does. When the user copies an expression out of
2764 their source code and hands it to a `print' command, they should
2765 get the same value the compiler would have computed. Any
2766 deviation from this rule can cause major confusion and annoyance,
2767 and needs to be justified carefully. In other words, GDB doesn't
2768 really have the freedom to do these conversions in clever and
2769 useful ways.
2770
2771 AndrewC pointed out that users aren't complaining about how GDB
2772 casts integers to pointers; they are complaining that they can't
2773 take an address from a disassembly listing and give it to `x/i'.
2774 This is certainly important.
2775
79dd2d24 2776 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2777 makes it possible for GDB to "get it right" in all circumstances
2778 --- the target has complete control over how things get done, so
2779 people can Do The Right Thing for their target without breaking
2780 anyone else. The standard doesn't specify how integers get
2781 converted to pointers; usually, the ABI doesn't either, but
2782 ABI-specific code is a more reasonable place to handle it. */
2783
df407dfe
AC
2784 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2785 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2786 && gdbarch_integer_to_address_p (gdbarch))
2787 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2788 value_contents (val));
fc0c74b1 2789
0fd88904 2790 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2791#endif
2792}
2793\f
2794/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2795 as a long, or as a double, assuming the raw data is described
2796 by type TYPE. Knows how to convert different sizes of values
2797 and can convert between fixed and floating point. We don't assume
2798 any alignment for the raw data. Return value is in host byte order.
2799
2800 If you want functions and arrays to be coerced to pointers, and
2801 references to be dereferenced, call value_as_long() instead.
2802
2803 C++: It is assumed that the front-end has taken care of
2804 all matters concerning pointers to members. A pointer
2805 to member which reaches here is considered to be equivalent
2806 to an INT (or some size). After all, it is only an offset. */
2807
2808LONGEST
fc1a4b47 2809unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2810{
e17a4113 2811 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2812 enum type_code code = TYPE_CODE (type);
2813 int len = TYPE_LENGTH (type);
2814 int nosign = TYPE_UNSIGNED (type);
c906108c 2815
c906108c
SS
2816 switch (code)
2817 {
2818 case TYPE_CODE_TYPEDEF:
2819 return unpack_long (check_typedef (type), valaddr);
2820 case TYPE_CODE_ENUM:
4f2aea11 2821 case TYPE_CODE_FLAGS:
c906108c
SS
2822 case TYPE_CODE_BOOL:
2823 case TYPE_CODE_INT:
2824 case TYPE_CODE_CHAR:
2825 case TYPE_CODE_RANGE:
0d5de010 2826 case TYPE_CODE_MEMBERPTR:
c906108c 2827 if (nosign)
e17a4113 2828 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2829 else
e17a4113 2830 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2831
2832 case TYPE_CODE_FLT:
96d2f608 2833 return extract_typed_floating (valaddr, type);
c906108c 2834
4ef30785
TJB
2835 case TYPE_CODE_DECFLOAT:
2836 /* libdecnumber has a function to convert from decimal to integer, but
2837 it doesn't work when the decimal number has a fractional part. */
e17a4113 2838 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2839
c906108c
SS
2840 case TYPE_CODE_PTR:
2841 case TYPE_CODE_REF:
2842 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2843 whether we want this to be true eventually. */
4478b372 2844 return extract_typed_address (valaddr, type);
c906108c 2845
c906108c 2846 default:
8a3fe4f8 2847 error (_("Value can't be converted to integer."));
c906108c 2848 }
c5aa993b 2849 return 0; /* Placate lint. */
c906108c
SS
2850}
2851
2852/* Return a double value from the specified type and address.
2853 INVP points to an int which is set to 0 for valid value,
2854 1 for invalid value (bad float format). In either case,
2855 the returned double is OK to use. Argument is in target
2856 format, result is in host format. */
2857
2858DOUBLEST
fc1a4b47 2859unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2860{
e17a4113 2861 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2862 enum type_code code;
2863 int len;
2864 int nosign;
2865
581e13c1 2866 *invp = 0; /* Assume valid. */
f168693b 2867 type = check_typedef (type);
c906108c
SS
2868 code = TYPE_CODE (type);
2869 len = TYPE_LENGTH (type);
2870 nosign = TYPE_UNSIGNED (type);
2871 if (code == TYPE_CODE_FLT)
2872 {
75bc7ddf
AC
2873 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2874 floating-point value was valid (using the macro
2875 INVALID_FLOAT). That test/macro have been removed.
2876
2877 It turns out that only the VAX defined this macro and then
2878 only in a non-portable way. Fixing the portability problem
2879 wouldn't help since the VAX floating-point code is also badly
2880 bit-rotten. The target needs to add definitions for the
ea06eb3d 2881 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2882 exactly describe the target floating-point format. The
2883 problem here is that the corresponding floatformat_vax_f and
2884 floatformat_vax_d values these methods should be set to are
2885 also not defined either. Oops!
2886
2887 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2888 definitions and the new cases for floatformat_is_valid (). */
2889
2890 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2891 {
2892 *invp = 1;
2893 return 0.0;
2894 }
2895
96d2f608 2896 return extract_typed_floating (valaddr, type);
c906108c 2897 }
4ef30785 2898 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2899 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2900 else if (nosign)
2901 {
2902 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2903 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2904 }
2905 else
2906 {
2907 /* Signed -- we are OK with unpack_long. */
2908 return unpack_long (type, valaddr);
2909 }
2910}
2911
2912/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2913 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2914 We don't assume any alignment for the raw data. Return value is in
2915 host byte order.
2916
2917 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2918 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2919
2920 C++: It is assumed that the front-end has taken care of
2921 all matters concerning pointers to members. A pointer
2922 to member which reaches here is considered to be equivalent
2923 to an INT (or some size). After all, it is only an offset. */
2924
2925CORE_ADDR
fc1a4b47 2926unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2927{
2928 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2929 whether we want this to be true eventually. */
2930 return unpack_long (type, valaddr);
2931}
4478b372 2932
c906108c 2933\f
1596cb5d 2934/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2935 TYPE. */
c906108c 2936
f23631e4 2937struct value *
fba45db2 2938value_static_field (struct type *type, int fieldno)
c906108c 2939{
948e66d9
DJ
2940 struct value *retval;
2941
1596cb5d 2942 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2943 {
1596cb5d 2944 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2945 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2946 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2947 break;
2948 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2949 {
ff355380 2950 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2951 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 2952 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2953
d12307c1 2954 if (sym.symbol == NULL)
c906108c 2955 {
a109c7c1 2956 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2957 reported as non-debuggable symbols. */
3b7344d5
TT
2958 struct bound_minimal_symbol msym
2959 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 2960
3b7344d5 2961 if (!msym.minsym)
686d4def 2962 return allocate_optimized_out_value (type);
c906108c 2963 else
c5aa993b 2964 {
52e9fde8 2965 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 2966 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2967 }
2968 }
2969 else
d12307c1 2970 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 2971 break;
c906108c 2972 }
1596cb5d 2973 default:
f3574227 2974 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2975 }
2976
948e66d9 2977 return retval;
c906108c
SS
2978}
2979
4dfea560
DE
2980/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2981 You have to be careful here, since the size of the data area for the value
2982 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2983 than the old enclosing type, you have to allocate more space for the
2984 data. */
2b127877 2985
4dfea560
DE
2986void
2987set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2988{
3e3d7139
JG
2989 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2990 val->contents =
2991 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2992
2993 val->enclosing_type = new_encl_type;
2b127877
DB
2994}
2995
c906108c
SS
2996/* Given a value ARG1 (offset by OFFSET bytes)
2997 of a struct or union type ARG_TYPE,
2998 extract and return the value of one of its (non-static) fields.
581e13c1 2999 FIELDNO says which field. */
c906108c 3000
f23631e4
AC
3001struct value *
3002value_primitive_field (struct value *arg1, int offset,
aa1ee363 3003 int fieldno, struct type *arg_type)
c906108c 3004{
f23631e4 3005 struct value *v;
52f0bd74 3006 struct type *type;
3ae385af
SM
3007 struct gdbarch *arch = get_value_arch (arg1);
3008 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 3009
f168693b 3010 arg_type = check_typedef (arg_type);
c906108c 3011 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
3012
3013 /* Call check_typedef on our type to make sure that, if TYPE
3014 is a TYPE_CODE_TYPEDEF, its length is set to the length
3015 of the target type instead of zero. However, we do not
3016 replace the typedef type by the target type, because we want
3017 to keep the typedef in order to be able to print the type
3018 description correctly. */
3019 check_typedef (type);
c906108c 3020
691a26f5 3021 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 3022 {
22c05d8a
JK
3023 /* Handle packed fields.
3024
3025 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3026 set. If possible, arrange offset and bitpos so that we can
3027 do a single aligned read of the size of the containing type.
3028 Otherwise, adjust offset to the byte containing the first
3029 bit. Assume that the address, offset, and embedded offset
3030 are sufficiently aligned. */
22c05d8a 3031
4ea48cc1
DJ
3032 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3033 int container_bitsize = TYPE_LENGTH (type) * 8;
3034
9a0dc9e3
PA
3035 v = allocate_value_lazy (type);
3036 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3037 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3038 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3039 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3040 else
9a0dc9e3
PA
3041 v->bitpos = bitpos % 8;
3042 v->offset = (value_embedded_offset (arg1)
3043 + offset
3044 + (bitpos - v->bitpos) / 8);
3045 set_value_parent (v, arg1);
3046 if (!value_lazy (arg1))
3047 value_fetch_lazy (v);
c906108c
SS
3048 }
3049 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3050 {
3051 /* This field is actually a base subobject, so preserve the
39d37385
PA
3052 entire object's contents for later references to virtual
3053 bases, etc. */
be335936 3054 int boffset;
a4e2ee12
DJ
3055
3056 /* Lazy register values with offsets are not supported. */
3057 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3058 value_fetch_lazy (arg1);
3059
9a0dc9e3
PA
3060 /* We special case virtual inheritance here because this
3061 requires access to the contents, which we would rather avoid
3062 for references to ordinary fields of unavailable values. */
3063 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3064 boffset = baseclass_offset (arg_type, fieldno,
3065 value_contents (arg1),
3066 value_embedded_offset (arg1),
3067 value_address (arg1),
3068 arg1);
c906108c 3069 else
9a0dc9e3 3070 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3071
9a0dc9e3
PA
3072 if (value_lazy (arg1))
3073 v = allocate_value_lazy (value_enclosing_type (arg1));
3074 else
3075 {
3076 v = allocate_value (value_enclosing_type (arg1));
3077 value_contents_copy_raw (v, 0, arg1, 0,
3078 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3079 }
9a0dc9e3
PA
3080 v->type = type;
3081 v->offset = value_offset (arg1);
3082 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c
SS
3083 }
3084 else
3085 {
3086 /* Plain old data member */
3ae385af
SM
3087 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3088 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3089
3090 /* Lazy register values with offsets are not supported. */
3091 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3092 value_fetch_lazy (arg1);
3093
9a0dc9e3 3094 if (value_lazy (arg1))
3e3d7139 3095 v = allocate_value_lazy (type);
c906108c 3096 else
3e3d7139
JG
3097 {
3098 v = allocate_value (type);
39d37385
PA
3099 value_contents_copy_raw (v, value_embedded_offset (v),
3100 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3101 type_length_units (type));
3e3d7139 3102 }
df407dfe 3103 v->offset = (value_offset (arg1) + offset
13c3b5f5 3104 + value_embedded_offset (arg1));
c906108c 3105 }
74bcbdf3 3106 set_value_component_location (v, arg1);
9ee8fc9d 3107 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 3108 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
3109 return v;
3110}
3111
3112/* Given a value ARG1 of a struct or union type,
3113 extract and return the value of one of its (non-static) fields.
581e13c1 3114 FIELDNO says which field. */
c906108c 3115
f23631e4 3116struct value *
aa1ee363 3117value_field (struct value *arg1, int fieldno)
c906108c 3118{
df407dfe 3119 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3120}
3121
3122/* Return a non-virtual function as a value.
3123 F is the list of member functions which contains the desired method.
0478d61c
FF
3124 J is an index into F which provides the desired method.
3125
3126 We only use the symbol for its address, so be happy with either a
581e13c1 3127 full symbol or a minimal symbol. */
c906108c 3128
f23631e4 3129struct value *
3e43a32a
MS
3130value_fn_field (struct value **arg1p, struct fn_field *f,
3131 int j, struct type *type,
fba45db2 3132 int offset)
c906108c 3133{
f23631e4 3134 struct value *v;
52f0bd74 3135 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3136 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3137 struct symbol *sym;
7c7b6655 3138 struct bound_minimal_symbol msym;
c906108c 3139
d12307c1 3140 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3141 if (sym != NULL)
0478d61c 3142 {
7c7b6655 3143 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3144 }
3145 else
3146 {
3147 gdb_assert (sym == NULL);
7c7b6655
TT
3148 msym = lookup_bound_minimal_symbol (physname);
3149 if (msym.minsym == NULL)
5ae326fa 3150 return NULL;
0478d61c
FF
3151 }
3152
c906108c 3153 v = allocate_value (ftype);
0478d61c
FF
3154 if (sym)
3155 {
42ae5230 3156 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3157 }
3158 else
3159 {
bccdca4a
UW
3160 /* The minimal symbol might point to a function descriptor;
3161 resolve it to the actual code address instead. */
7c7b6655 3162 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3163 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3164
42ae5230
TT
3165 set_value_address (v,
3166 gdbarch_convert_from_func_ptr_addr
77e371c0 3167 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3168 }
c906108c
SS
3169
3170 if (arg1p)
c5aa993b 3171 {
df407dfe 3172 if (type != value_type (*arg1p))
c5aa993b
JM
3173 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3174 value_addr (*arg1p)));
3175
070ad9f0 3176 /* Move the `this' pointer according to the offset.
581e13c1 3177 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3178 }
3179
3180 return v;
3181}
3182
c906108c 3183\f
c906108c 3184
4875ffdb
PA
3185/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3186 VALADDR, and store the result in *RESULT.
3187 The bitfield starts at BITPOS bits and contains BITSIZE bits.
c906108c 3188
4875ffdb
PA
3189 Extracting bits depends on endianness of the machine. Compute the
3190 number of least significant bits to discard. For big endian machines,
3191 we compute the total number of bits in the anonymous object, subtract
3192 off the bit count from the MSB of the object to the MSB of the
3193 bitfield, then the size of the bitfield, which leaves the LSB discard
3194 count. For little endian machines, the discard count is simply the
3195 number of bits from the LSB of the anonymous object to the LSB of the
3196 bitfield.
3197
3198 If the field is signed, we also do sign extension. */
3199
3200static LONGEST
3201unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3202 int bitpos, int bitsize)
c906108c 3203{
4ea48cc1 3204 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3205 ULONGEST val;
3206 ULONGEST valmask;
c906108c 3207 int lsbcount;
4a76eae5 3208 int bytes_read;
5467c6c8 3209 int read_offset;
c906108c 3210
4a76eae5
DJ
3211 /* Read the minimum number of bytes required; there may not be
3212 enough bytes to read an entire ULONGEST. */
f168693b 3213 field_type = check_typedef (field_type);
4a76eae5
DJ
3214 if (bitsize)
3215 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3216 else
3217 bytes_read = TYPE_LENGTH (field_type);
3218
5467c6c8
PA
3219 read_offset = bitpos / 8;
3220
4875ffdb 3221 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3222 bytes_read, byte_order);
c906108c 3223
581e13c1 3224 /* Extract bits. See comment above. */
c906108c 3225
4ea48cc1 3226 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3227 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3228 else
3229 lsbcount = (bitpos % 8);
3230 val >>= lsbcount;
3231
3232 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3233 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3234
3235 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3236 {
3237 valmask = (((ULONGEST) 1) << bitsize) - 1;
3238 val &= valmask;
3239 if (!TYPE_UNSIGNED (field_type))
3240 {
3241 if (val & (valmask ^ (valmask >> 1)))
3242 {
3243 val |= ~valmask;
3244 }
3245 }
3246 }
5467c6c8 3247
4875ffdb 3248 return val;
5467c6c8
PA
3249}
3250
3251/* Unpack a field FIELDNO of the specified TYPE, from the object at
3252 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3253 ORIGINAL_VALUE, which must not be NULL. See
3254 unpack_value_bits_as_long for more details. */
3255
3256int
3257unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3258 int embedded_offset, int fieldno,
3259 const struct value *val, LONGEST *result)
3260{
4875ffdb
PA
3261 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3262 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3263 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3264 int bit_offset;
3265
5467c6c8
PA
3266 gdb_assert (val != NULL);
3267
4875ffdb
PA
3268 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3269 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3270 || !value_bits_available (val, bit_offset, bitsize))
3271 return 0;
3272
3273 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3274 bitpos, bitsize);
3275 return 1;
5467c6c8
PA
3276}
3277
3278/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3279 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3280
3281LONGEST
3282unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3283{
4875ffdb
PA
3284 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3285 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3286 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3287
4875ffdb
PA
3288 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3289}
3290
3291/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3292 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3293 the contents in DEST_VAL, zero or sign extending if the type of
3294 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3295 VAL. If the VAL's contents required to extract the bitfield from
3296 are unavailable/optimized out, DEST_VAL is correspondingly
3297 marked unavailable/optimized out. */
3298
bb9d5f81 3299void
4875ffdb
PA
3300unpack_value_bitfield (struct value *dest_val,
3301 int bitpos, int bitsize,
3302 const gdb_byte *valaddr, int embedded_offset,
3303 const struct value *val)
3304{
3305 enum bfd_endian byte_order;
3306 int src_bit_offset;
3307 int dst_bit_offset;
3308 LONGEST num;
3309 struct type *field_type = value_type (dest_val);
3310
3311 /* First, unpack and sign extend the bitfield as if it was wholly
3312 available. Invalid/unavailable bits are read as zero, but that's
3313 OK, as they'll end up marked below. */
3314 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3315 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3316 bitpos, bitsize);
3317 store_signed_integer (value_contents_raw (dest_val),
3318 TYPE_LENGTH (field_type), byte_order, num);
3319
3320 /* Now copy the optimized out / unavailability ranges to the right
3321 bits. */
3322 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3323 if (byte_order == BFD_ENDIAN_BIG)
3324 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3325 else
3326 dst_bit_offset = 0;
3327 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3328 val, src_bit_offset, bitsize);
5467c6c8
PA
3329}
3330
3331/* Return a new value with type TYPE, which is FIELDNO field of the
3332 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3333 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3334 from are unavailable/optimized out, the new value is
3335 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3336
3337struct value *
3338value_field_bitfield (struct type *type, int fieldno,
3339 const gdb_byte *valaddr,
3340 int embedded_offset, const struct value *val)
3341{
4875ffdb
PA
3342 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3343 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3344 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3345
4875ffdb
PA
3346 unpack_value_bitfield (res_val, bitpos, bitsize,
3347 valaddr, embedded_offset, val);
3348
3349 return res_val;
4ea48cc1
DJ
3350}
3351
c906108c
SS
3352/* Modify the value of a bitfield. ADDR points to a block of memory in
3353 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3354 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3355 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3356 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3357 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3358
3359void
50810684
UW
3360modify_field (struct type *type, gdb_byte *addr,
3361 LONGEST fieldval, int bitpos, int bitsize)
c906108c 3362{
e17a4113 3363 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3364 ULONGEST oword;
3365 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
3366 int bytesize;
3367
3368 /* Normalize BITPOS. */
3369 addr += bitpos / 8;
3370 bitpos %= 8;
c906108c
SS
3371
3372 /* If a negative fieldval fits in the field in question, chop
3373 off the sign extension bits. */
f4e88c8e
PH
3374 if ((~fieldval & ~(mask >> 1)) == 0)
3375 fieldval &= mask;
c906108c
SS
3376
3377 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3378 if (0 != (fieldval & ~mask))
c906108c
SS
3379 {
3380 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3381 we don't have a sprintf_longest. */
8a3fe4f8 3382 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
3383
3384 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3385 fieldval &= mask;
c906108c
SS
3386 }
3387
19f220c3
JK
3388 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3389 false valgrind reports. */
3390
3391 bytesize = (bitpos + bitsize + 7) / 8;
3392 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3393
3394 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3395 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3396 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3397
f4e88c8e 3398 oword &= ~(mask << bitpos);
c906108c
SS
3399 oword |= fieldval << bitpos;
3400
19f220c3 3401 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3402}
3403\f
14d06750 3404/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3405
14d06750
DJ
3406void
3407pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3408{
e17a4113 3409 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3410 int len;
14d06750
DJ
3411
3412 type = check_typedef (type);
c906108c
SS
3413 len = TYPE_LENGTH (type);
3414
14d06750 3415 switch (TYPE_CODE (type))
c906108c 3416 {
c906108c
SS
3417 case TYPE_CODE_INT:
3418 case TYPE_CODE_CHAR:
3419 case TYPE_CODE_ENUM:
4f2aea11 3420 case TYPE_CODE_FLAGS:
c906108c
SS
3421 case TYPE_CODE_BOOL:
3422 case TYPE_CODE_RANGE:
0d5de010 3423 case TYPE_CODE_MEMBERPTR:
e17a4113 3424 store_signed_integer (buf, len, byte_order, num);
c906108c 3425 break;
c5aa993b 3426
c906108c
SS
3427 case TYPE_CODE_REF:
3428 case TYPE_CODE_PTR:
14d06750 3429 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3430 break;
c5aa993b 3431
c906108c 3432 default:
14d06750
DJ
3433 error (_("Unexpected type (%d) encountered for integer constant."),
3434 TYPE_CODE (type));
c906108c 3435 }
14d06750
DJ
3436}
3437
3438
595939de
PM
3439/* Pack NUM into BUF using a target format of TYPE. */
3440
70221824 3441static void
595939de
PM
3442pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3443{
3444 int len;
3445 enum bfd_endian byte_order;
3446
3447 type = check_typedef (type);
3448 len = TYPE_LENGTH (type);
3449 byte_order = gdbarch_byte_order (get_type_arch (type));
3450
3451 switch (TYPE_CODE (type))
3452 {
3453 case TYPE_CODE_INT:
3454 case TYPE_CODE_CHAR:
3455 case TYPE_CODE_ENUM:
3456 case TYPE_CODE_FLAGS:
3457 case TYPE_CODE_BOOL:
3458 case TYPE_CODE_RANGE:
3459 case TYPE_CODE_MEMBERPTR:
3460 store_unsigned_integer (buf, len, byte_order, num);
3461 break;
3462
3463 case TYPE_CODE_REF:
3464 case TYPE_CODE_PTR:
3465 store_typed_address (buf, type, (CORE_ADDR) num);
3466 break;
3467
3468 default:
3e43a32a
MS
3469 error (_("Unexpected type (%d) encountered "
3470 "for unsigned integer constant."),
595939de
PM
3471 TYPE_CODE (type));
3472 }
3473}
3474
3475
14d06750
DJ
3476/* Convert C numbers into newly allocated values. */
3477
3478struct value *
3479value_from_longest (struct type *type, LONGEST num)
3480{
3481 struct value *val = allocate_value (type);
3482
3483 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3484 return val;
3485}
3486
4478b372 3487
595939de
PM
3488/* Convert C unsigned numbers into newly allocated values. */
3489
3490struct value *
3491value_from_ulongest (struct type *type, ULONGEST num)
3492{
3493 struct value *val = allocate_value (type);
3494
3495 pack_unsigned_long (value_contents_raw (val), type, num);
3496
3497 return val;
3498}
3499
3500
4478b372 3501/* Create a value representing a pointer of type TYPE to the address
cb417230 3502 ADDR. */
80180f79 3503
f23631e4 3504struct value *
4478b372
JB
3505value_from_pointer (struct type *type, CORE_ADDR addr)
3506{
cb417230 3507 struct value *val = allocate_value (type);
a109c7c1 3508
80180f79 3509 store_typed_address (value_contents_raw (val),
cb417230 3510 check_typedef (type), addr);
4478b372
JB
3511 return val;
3512}
3513
3514
012370f6
TT
3515/* Create a value of type TYPE whose contents come from VALADDR, if it
3516 is non-null, and whose memory address (in the inferior) is
3517 ADDRESS. The type of the created value may differ from the passed
3518 type TYPE. Make sure to retrieve values new type after this call.
3519 Note that TYPE is not passed through resolve_dynamic_type; this is
3520 a special API intended for use only by Ada. */
3521
3522struct value *
3523value_from_contents_and_address_unresolved (struct type *type,
3524 const gdb_byte *valaddr,
3525 CORE_ADDR address)
3526{
3527 struct value *v;
3528
3529 if (valaddr == NULL)
3530 v = allocate_value_lazy (type);
3531 else
3532 v = value_from_contents (type, valaddr);
3533 set_value_address (v, address);
3534 VALUE_LVAL (v) = lval_memory;
3535 return v;
3536}
3537
8acb6b92
TT
3538/* Create a value of type TYPE whose contents come from VALADDR, if it
3539 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3540 ADDRESS. The type of the created value may differ from the passed
3541 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3542
3543struct value *
3544value_from_contents_and_address (struct type *type,
3545 const gdb_byte *valaddr,
3546 CORE_ADDR address)
3547{
c3345124 3548 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3549 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3550 struct value *v;
a109c7c1 3551
8acb6b92 3552 if (valaddr == NULL)
80180f79 3553 v = allocate_value_lazy (resolved_type);
8acb6b92 3554 else
80180f79 3555 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3556 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3557 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3558 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
42ae5230 3559 set_value_address (v, address);
33d502b4 3560 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3561 return v;
3562}
3563
8a9b8146
TT
3564/* Create a value of type TYPE holding the contents CONTENTS.
3565 The new value is `not_lval'. */
3566
3567struct value *
3568value_from_contents (struct type *type, const gdb_byte *contents)
3569{
3570 struct value *result;
3571
3572 result = allocate_value (type);
3573 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3574 return result;
3575}
3576
f23631e4 3577struct value *
fba45db2 3578value_from_double (struct type *type, DOUBLEST num)
c906108c 3579{
f23631e4 3580 struct value *val = allocate_value (type);
c906108c 3581 struct type *base_type = check_typedef (type);
52f0bd74 3582 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3583
3584 if (code == TYPE_CODE_FLT)
3585 {
990a07ab 3586 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3587 }
3588 else
8a3fe4f8 3589 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3590
3591 return val;
3592}
994b9211 3593
27bc4d80 3594struct value *
4ef30785 3595value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3596{
3597 struct value *val = allocate_value (type);
27bc4d80 3598
4ef30785 3599 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3600 return val;
3601}
3602
3bd0f5ef
MS
3603/* Extract a value from the history file. Input will be of the form
3604 $digits or $$digits. See block comment above 'write_dollar_variable'
3605 for details. */
3606
3607struct value *
e799154c 3608value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3609{
3610 int index, len;
3611
3612 if (h[0] == '$')
3613 len = 1;
3614 else
3615 return NULL;
3616
3617 if (h[1] == '$')
3618 len = 2;
3619
3620 /* Find length of numeral string. */
3621 for (; isdigit (h[len]); len++)
3622 ;
3623
3624 /* Make sure numeral string is not part of an identifier. */
3625 if (h[len] == '_' || isalpha (h[len]))
3626 return NULL;
3627
3628 /* Now collect the index value. */
3629 if (h[1] == '$')
3630 {
3631 if (len == 2)
3632 {
3633 /* For some bizarre reason, "$$" is equivalent to "$$1",
3634 rather than to "$$0" as it ought to be! */
3635 index = -1;
3636 *endp += len;
3637 }
3638 else
e799154c
TT
3639 {
3640 char *local_end;
3641
3642 index = -strtol (&h[2], &local_end, 10);
3643 *endp = local_end;
3644 }
3bd0f5ef
MS
3645 }
3646 else
3647 {
3648 if (len == 1)
3649 {
3650 /* "$" is equivalent to "$0". */
3651 index = 0;
3652 *endp += len;
3653 }
3654 else
e799154c
TT
3655 {
3656 char *local_end;
3657
3658 index = strtol (&h[1], &local_end, 10);
3659 *endp = local_end;
3660 }
3bd0f5ef
MS
3661 }
3662
3663 return access_value_history (index);
3664}
3665
a471c594
JK
3666struct value *
3667coerce_ref_if_computed (const struct value *arg)
3668{
3669 const struct lval_funcs *funcs;
3670
3671 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3672 return NULL;
3673
3674 if (value_lval_const (arg) != lval_computed)
3675 return NULL;
3676
3677 funcs = value_computed_funcs (arg);
3678 if (funcs->coerce_ref == NULL)
3679 return NULL;
3680
3681 return funcs->coerce_ref (arg);
3682}
3683
dfcee124
AG
3684/* Look at value.h for description. */
3685
3686struct value *
3687readjust_indirect_value_type (struct value *value, struct type *enc_type,
3688 struct type *original_type,
3689 struct value *original_value)
3690{
3691 /* Re-adjust type. */
3692 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3693
3694 /* Add embedding info. */
3695 set_value_enclosing_type (value, enc_type);
3696 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3697
3698 /* We may be pointing to an object of some derived type. */
3699 return value_full_object (value, NULL, 0, 0, 0);
3700}
3701
994b9211
AC
3702struct value *
3703coerce_ref (struct value *arg)
3704{
df407dfe 3705 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3706 struct value *retval;
dfcee124 3707 struct type *enc_type;
a109c7c1 3708
a471c594
JK
3709 retval = coerce_ref_if_computed (arg);
3710 if (retval)
3711 return retval;
3712
3713 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3714 return arg;
3715
dfcee124
AG
3716 enc_type = check_typedef (value_enclosing_type (arg));
3717 enc_type = TYPE_TARGET_TYPE (enc_type);
3718
3719 retval = value_at_lazy (enc_type,
3720 unpack_pointer (value_type (arg),
3721 value_contents (arg)));
9f1f738a 3722 enc_type = value_type (retval);
dfcee124
AG
3723 return readjust_indirect_value_type (retval, enc_type,
3724 value_type_arg_tmp, arg);
994b9211
AC
3725}
3726
3727struct value *
3728coerce_array (struct value *arg)
3729{
f3134b88
TT
3730 struct type *type;
3731
994b9211 3732 arg = coerce_ref (arg);
f3134b88
TT
3733 type = check_typedef (value_type (arg));
3734
3735 switch (TYPE_CODE (type))
3736 {
3737 case TYPE_CODE_ARRAY:
7346b668 3738 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3739 arg = value_coerce_array (arg);
3740 break;
3741 case TYPE_CODE_FUNC:
3742 arg = value_coerce_function (arg);
3743 break;
3744 }
994b9211
AC
3745 return arg;
3746}
c906108c 3747\f
c906108c 3748
bbfdfe1c
DM
3749/* Return the return value convention that will be used for the
3750 specified type. */
3751
3752enum return_value_convention
3753struct_return_convention (struct gdbarch *gdbarch,
3754 struct value *function, struct type *value_type)
3755{
3756 enum type_code code = TYPE_CODE (value_type);
3757
3758 if (code == TYPE_CODE_ERROR)
3759 error (_("Function return type unknown."));
3760
3761 /* Probe the architecture for the return-value convention. */
3762 return gdbarch_return_value (gdbarch, function, value_type,
3763 NULL, NULL, NULL);
3764}
3765
48436ce6
AC
3766/* Return true if the function returning the specified type is using
3767 the convention of returning structures in memory (passing in the
82585c72 3768 address as a hidden first parameter). */
c906108c
SS
3769
3770int
d80b854b 3771using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3772 struct value *function, struct type *value_type)
c906108c 3773{
bbfdfe1c 3774 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3775 /* A void return value is never in memory. See also corresponding
44e5158b 3776 code in "print_return_value". */
667e784f
AC
3777 return 0;
3778
bbfdfe1c 3779 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3780 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3781}
3782
42be36b3
CT
3783/* Set the initialized field in a value struct. */
3784
3785void
3786set_value_initialized (struct value *val, int status)
3787{
3788 val->initialized = status;
3789}
3790
3791/* Return the initialized field in a value struct. */
3792
3793int
3794value_initialized (struct value *val)
3795{
3796 return val->initialized;
3797}
3798
a844296a
SM
3799/* Load the actual content of a lazy value. Fetch the data from the
3800 user's process and clear the lazy flag to indicate that the data in
3801 the buffer is valid.
a58e2656
AB
3802
3803 If the value is zero-length, we avoid calling read_memory, which
3804 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3805 it. */
a58e2656 3806
a844296a 3807void
a58e2656
AB
3808value_fetch_lazy (struct value *val)
3809{
3810 gdb_assert (value_lazy (val));
3811 allocate_value_contents (val);
9a0dc9e3
PA
3812 /* A value is either lazy, or fully fetched. The
3813 availability/validity is only established as we try to fetch a
3814 value. */
3815 gdb_assert (VEC_empty (range_s, val->optimized_out));
3816 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3817 if (value_bitsize (val))
3818 {
3819 /* To read a lazy bitfield, read the entire enclosing value. This
3820 prevents reading the same block of (possibly volatile) memory once
3821 per bitfield. It would be even better to read only the containing
3822 word, but we have no way to record that just specific bits of a
3823 value have been fetched. */
3824 struct type *type = check_typedef (value_type (val));
a58e2656 3825 struct value *parent = value_parent (val);
a58e2656 3826
b0c54aa5
AB
3827 if (value_lazy (parent))
3828 value_fetch_lazy (parent);
3829
4875ffdb
PA
3830 unpack_value_bitfield (val,
3831 value_bitpos (val), value_bitsize (val),
3832 value_contents_for_printing (parent),
3833 value_offset (val), parent);
a58e2656
AB
3834 }
3835 else if (VALUE_LVAL (val) == lval_memory)
3836 {
3837 CORE_ADDR addr = value_address (val);
3838 struct type *type = check_typedef (value_enclosing_type (val));
3839
3840 if (TYPE_LENGTH (type))
3841 read_value_memory (val, 0, value_stack (val),
3842 addr, value_contents_all_raw (val),
3ae385af 3843 type_length_units (type));
a58e2656
AB
3844 }
3845 else if (VALUE_LVAL (val) == lval_register)
3846 {
3847 struct frame_info *frame;
3848 int regnum;
3849 struct type *type = check_typedef (value_type (val));
3850 struct value *new_val = val, *mark = value_mark ();
3851
3852 /* Offsets are not supported here; lazy register values must
3853 refer to the entire register. */
3854 gdb_assert (value_offset (val) == 0);
3855
3856 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3857 {
6eeee81c
TT
3858 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3859
3860 frame = frame_find_by_id (frame_id);
a58e2656
AB
3861 regnum = VALUE_REGNUM (new_val);
3862
3863 gdb_assert (frame != NULL);
3864
3865 /* Convertible register routines are used for multi-register
3866 values and for interpretation in different types
3867 (e.g. float or int from a double register). Lazy
3868 register values should have the register's natural type,
3869 so they do not apply. */
3870 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3871 regnum, type));
3872
3873 new_val = get_frame_register_value (frame, regnum);
6eeee81c
TT
3874
3875 /* If we get another lazy lval_register value, it means the
3876 register is found by reading it from the next frame.
3877 get_frame_register_value should never return a value with
3878 the frame id pointing to FRAME. If it does, it means we
3879 either have two consecutive frames with the same frame id
3880 in the frame chain, or some code is trying to unwind
3881 behind get_prev_frame's back (e.g., a frame unwind
3882 sniffer trying to unwind), bypassing its validations. In
3883 any case, it should always be an internal error to end up
3884 in this situation. */
3885 if (VALUE_LVAL (new_val) == lval_register
3886 && value_lazy (new_val)
3887 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3888 internal_error (__FILE__, __LINE__,
3889 _("infinite loop while fetching a register"));
a58e2656
AB
3890 }
3891
3892 /* If it's still lazy (for instance, a saved register on the
3893 stack), fetch it. */
3894 if (value_lazy (new_val))
3895 value_fetch_lazy (new_val);
3896
9a0dc9e3
PA
3897 /* Copy the contents and the unavailability/optimized-out
3898 meta-data from NEW_VAL to VAL. */
3899 set_value_lazy (val, 0);
3900 value_contents_copy (val, value_embedded_offset (val),
3901 new_val, value_embedded_offset (new_val),
3ae385af 3902 type_length_units (type));
a58e2656
AB
3903
3904 if (frame_debug)
3905 {
3906 struct gdbarch *gdbarch;
3907 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3908 regnum = VALUE_REGNUM (val);
3909 gdbarch = get_frame_arch (frame);
3910
3911 fprintf_unfiltered (gdb_stdlog,
3912 "{ value_fetch_lazy "
3913 "(frame=%d,regnum=%d(%s),...) ",
3914 frame_relative_level (frame), regnum,
3915 user_reg_map_regnum_to_name (gdbarch, regnum));
3916
3917 fprintf_unfiltered (gdb_stdlog, "->");
3918 if (value_optimized_out (new_val))
f6c01fc5
AB
3919 {
3920 fprintf_unfiltered (gdb_stdlog, " ");
3921 val_print_optimized_out (new_val, gdb_stdlog);
3922 }
a58e2656
AB
3923 else
3924 {
3925 int i;
3926 const gdb_byte *buf = value_contents (new_val);
3927
3928 if (VALUE_LVAL (new_val) == lval_register)
3929 fprintf_unfiltered (gdb_stdlog, " register=%d",
3930 VALUE_REGNUM (new_val));
3931 else if (VALUE_LVAL (new_val) == lval_memory)
3932 fprintf_unfiltered (gdb_stdlog, " address=%s",
3933 paddress (gdbarch,
3934 value_address (new_val)));
3935 else
3936 fprintf_unfiltered (gdb_stdlog, " computed");
3937
3938 fprintf_unfiltered (gdb_stdlog, " bytes=");
3939 fprintf_unfiltered (gdb_stdlog, "[");
3940 for (i = 0; i < register_size (gdbarch, regnum); i++)
3941 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3942 fprintf_unfiltered (gdb_stdlog, "]");
3943 }
3944
3945 fprintf_unfiltered (gdb_stdlog, " }\n");
3946 }
3947
3948 /* Dispose of the intermediate values. This prevents
3949 watchpoints from trying to watch the saved frame pointer. */
3950 value_free_to_mark (mark);
3951 }
3952 else if (VALUE_LVAL (val) == lval_computed
3953 && value_computed_funcs (val)->read != NULL)
3954 value_computed_funcs (val)->read (val);
a58e2656
AB
3955 else
3956 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3957
3958 set_value_lazy (val, 0);
a58e2656
AB
3959}
3960
a280dbd1
SDJ
3961/* Implementation of the convenience function $_isvoid. */
3962
3963static struct value *
3964isvoid_internal_fn (struct gdbarch *gdbarch,
3965 const struct language_defn *language,
3966 void *cookie, int argc, struct value **argv)
3967{
3968 int ret;
3969
3970 if (argc != 1)
6bc305f5 3971 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
3972
3973 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3974
3975 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3976}
3977
c906108c 3978void
fba45db2 3979_initialize_values (void)
c906108c 3980{
1a966eab 3981 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
3982Debugger convenience (\"$foo\") variables and functions.\n\
3983Convenience variables are created when you assign them values;\n\
3984thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 3985\n\
c906108c
SS
3986A few convenience variables are given values automatically:\n\
3987\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
3988\"$__\" holds the contents of the last address examined with \"x\"."
3989#ifdef HAVE_PYTHON
3990"\n\n\
3991Convenience functions are defined via the Python API."
3992#endif
3993 ), &showlist);
7e20dfcd 3994 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 3995
db5f229b 3996 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3997Elements of value history around item number IDX (or last ten)."),
c906108c 3998 &showlist);
53e5f3cf
AS
3999
4000 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4001Initialize a convenience variable if necessary.\n\
4002init-if-undefined VARIABLE = EXPRESSION\n\
4003Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4004exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4005VARIABLE is already initialized."));
bc3b79fd
TJB
4006
4007 add_prefix_cmd ("function", no_class, function_command, _("\
4008Placeholder command for showing help on convenience functions."),
4009 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4010
4011 add_internal_function ("_isvoid", _("\
4012Check whether an expression is void.\n\
4013Usage: $_isvoid (expression)\n\
4014Return 1 if the expression is void, zero otherwise."),
4015 isvoid_internal_fn, NULL);
c906108c 4016}
This page took 2.505663 seconds and 4 git commands to generate.