* gdb.cp/cp-relocate.exp: Remove single-quoting of C++ methods.
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75 4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 5 2009, 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
c906108c
SS
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
c906108c
SS
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
c906108c 33#include "demangle.h"
d16aafd8 34#include "doublest.h"
5ae326fa 35#include "gdb_assert.h"
36160dc4 36#include "regcache.h"
fe898f56 37#include "block.h"
27bc4d80 38#include "dfp.h"
bccdca4a 39#include "objfiles.h"
79a45b7d 40#include "valprint.h"
bc3b79fd 41#include "cli/cli-decode.h"
c906108c 42
a08702d6
TJB
43#include "python/python.h"
44
c906108c
SS
45/* Prototypes for exported functions. */
46
a14ed312 47void _initialize_values (void);
c906108c 48
bc3b79fd
TJB
49/* Definition of a user function. */
50struct internal_function
51{
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62};
63
64static struct cmd_list_element *functionlist;
65
91294c83
AC
66struct value
67{
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
5f5233d4
PA
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
91294c83
AC
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
32c9a795
MD
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
109 int bitpos;
110
4ea48cc1
DJ
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
91294c83
AC
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
a08702d6
TJB
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
91294c83
AC
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
91294c83
AC
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
42be36b3
CT
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
4e5d721f
DE
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
201 int stack;
202
3e3d7139
JG
203 /* Actual contents of the value. Target byte-order. NULL or not
204 valid if lazy is nonzero. */
205 gdb_byte *contents;
828d3400
DJ
206
207 /* The number of references to this value. When a value is created,
208 the value chain holds a reference, so REFERENCE_COUNT is 1. If
209 release_value is called, this value is removed from the chain but
210 the caller of release_value now has a reference to this value.
211 The caller must arrange for a call to value_free later. */
212 int reference_count;
91294c83
AC
213};
214
c906108c
SS
215/* Prototypes for local functions. */
216
a14ed312 217static void show_values (char *, int);
c906108c 218
a14ed312 219static void show_convenience (char *, int);
c906108c 220
c906108c
SS
221
222/* The value-history records all the values printed
223 by print commands during this session. Each chunk
224 records 60 consecutive values. The first chunk on
225 the chain records the most recent values.
226 The total number of values is in value_history_count. */
227
228#define VALUE_HISTORY_CHUNK 60
229
230struct value_history_chunk
c5aa993b
JM
231 {
232 struct value_history_chunk *next;
f23631e4 233 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 234 };
c906108c
SS
235
236/* Chain of chunks now in use. */
237
238static struct value_history_chunk *value_history_chain;
239
240static int value_history_count; /* Abs number of last entry stored */
bc3b79fd 241
c906108c
SS
242\f
243/* List of all value objects currently allocated
244 (except for those released by calls to release_value)
245 This is so they can be freed after each command. */
246
f23631e4 247static struct value *all_values;
c906108c 248
3e3d7139
JG
249/* Allocate a lazy value for type TYPE. Its actual content is
250 "lazily" allocated too: the content field of the return value is
251 NULL; it will be allocated when it is fetched from the target. */
c906108c 252
f23631e4 253struct value *
3e3d7139 254allocate_value_lazy (struct type *type)
c906108c 255{
f23631e4 256 struct value *val;
c54eabfa
JK
257
258 /* Call check_typedef on our type to make sure that, if TYPE
259 is a TYPE_CODE_TYPEDEF, its length is set to the length
260 of the target type instead of zero. However, we do not
261 replace the typedef type by the target type, because we want
262 to keep the typedef in order to be able to set the VAL's type
263 description correctly. */
264 check_typedef (type);
c906108c 265
3e3d7139
JG
266 val = (struct value *) xzalloc (sizeof (struct value));
267 val->contents = NULL;
df407dfe 268 val->next = all_values;
c906108c 269 all_values = val;
df407dfe 270 val->type = type;
4754a64e 271 val->enclosing_type = type;
c906108c 272 VALUE_LVAL (val) = not_lval;
42ae5230 273 val->location.address = 0;
1df6926e 274 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
275 val->offset = 0;
276 val->bitpos = 0;
277 val->bitsize = 0;
9ee8fc9d 278 VALUE_REGNUM (val) = -1;
3e3d7139 279 val->lazy = 1;
feb13ab0 280 val->optimized_out = 0;
13c3b5f5 281 val->embedded_offset = 0;
b44d461b 282 val->pointed_to_offset = 0;
c906108c 283 val->modifiable = 1;
42be36b3 284 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
285
286 /* Values start out on the all_values chain. */
287 val->reference_count = 1;
288
c906108c
SS
289 return val;
290}
291
3e3d7139
JG
292/* Allocate the contents of VAL if it has not been allocated yet. */
293
294void
295allocate_value_contents (struct value *val)
296{
297 if (!val->contents)
298 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
299}
300
301/* Allocate a value and its contents for type TYPE. */
302
303struct value *
304allocate_value (struct type *type)
305{
306 struct value *val = allocate_value_lazy (type);
307 allocate_value_contents (val);
308 val->lazy = 0;
309 return val;
310}
311
c906108c 312/* Allocate a value that has the correct length
938f5214 313 for COUNT repetitions of type TYPE. */
c906108c 314
f23631e4 315struct value *
fba45db2 316allocate_repeat_value (struct type *type, int count)
c906108c 317{
c5aa993b 318 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
319 /* FIXME-type-allocation: need a way to free this type when we are
320 done with it. */
e3506a9f
UW
321 struct type *array_type
322 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
323 return allocate_value (array_type);
c906108c
SS
324}
325
5f5233d4
PA
326struct value *
327allocate_computed_value (struct type *type,
328 struct lval_funcs *funcs,
329 void *closure)
330{
331 struct value *v = allocate_value (type);
332 VALUE_LVAL (v) = lval_computed;
333 v->location.computed.funcs = funcs;
334 v->location.computed.closure = closure;
335 set_value_lazy (v, 1);
336
337 return v;
338}
339
df407dfe
AC
340/* Accessor methods. */
341
17cf0ecd
AC
342struct value *
343value_next (struct value *value)
344{
345 return value->next;
346}
347
df407dfe
AC
348struct type *
349value_type (struct value *value)
350{
351 return value->type;
352}
04624583
AC
353void
354deprecated_set_value_type (struct value *value, struct type *type)
355{
356 value->type = type;
357}
df407dfe
AC
358
359int
360value_offset (struct value *value)
361{
362 return value->offset;
363}
f5cf64a7
AC
364void
365set_value_offset (struct value *value, int offset)
366{
367 value->offset = offset;
368}
df407dfe
AC
369
370int
371value_bitpos (struct value *value)
372{
373 return value->bitpos;
374}
9bbda503
AC
375void
376set_value_bitpos (struct value *value, int bit)
377{
378 value->bitpos = bit;
379}
df407dfe
AC
380
381int
382value_bitsize (struct value *value)
383{
384 return value->bitsize;
385}
9bbda503
AC
386void
387set_value_bitsize (struct value *value, int bit)
388{
389 value->bitsize = bit;
390}
df407dfe 391
4ea48cc1
DJ
392struct value *
393value_parent (struct value *value)
394{
395 return value->parent;
396}
397
fc1a4b47 398gdb_byte *
990a07ab
AC
399value_contents_raw (struct value *value)
400{
3e3d7139
JG
401 allocate_value_contents (value);
402 return value->contents + value->embedded_offset;
990a07ab
AC
403}
404
fc1a4b47 405gdb_byte *
990a07ab
AC
406value_contents_all_raw (struct value *value)
407{
3e3d7139
JG
408 allocate_value_contents (value);
409 return value->contents;
990a07ab
AC
410}
411
4754a64e
AC
412struct type *
413value_enclosing_type (struct value *value)
414{
415 return value->enclosing_type;
416}
417
fc1a4b47 418const gdb_byte *
46615f07
AC
419value_contents_all (struct value *value)
420{
421 if (value->lazy)
422 value_fetch_lazy (value);
3e3d7139 423 return value->contents;
46615f07
AC
424}
425
d69fe07e
AC
426int
427value_lazy (struct value *value)
428{
429 return value->lazy;
430}
431
dfa52d88
AC
432void
433set_value_lazy (struct value *value, int val)
434{
435 value->lazy = val;
436}
437
4e5d721f
DE
438int
439value_stack (struct value *value)
440{
441 return value->stack;
442}
443
444void
445set_value_stack (struct value *value, int val)
446{
447 value->stack = val;
448}
449
fc1a4b47 450const gdb_byte *
0fd88904
AC
451value_contents (struct value *value)
452{
453 return value_contents_writeable (value);
454}
455
fc1a4b47 456gdb_byte *
0fd88904
AC
457value_contents_writeable (struct value *value)
458{
459 if (value->lazy)
460 value_fetch_lazy (value);
fc0c53a0 461 return value_contents_raw (value);
0fd88904
AC
462}
463
a6c442d8
MK
464/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
465 this function is different from value_equal; in C the operator ==
466 can return 0 even if the two values being compared are equal. */
467
468int
469value_contents_equal (struct value *val1, struct value *val2)
470{
471 struct type *type1;
472 struct type *type2;
473 int len;
474
475 type1 = check_typedef (value_type (val1));
476 type2 = check_typedef (value_type (val2));
477 len = TYPE_LENGTH (type1);
478 if (len != TYPE_LENGTH (type2))
479 return 0;
480
481 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
482}
483
feb13ab0
AC
484int
485value_optimized_out (struct value *value)
486{
487 return value->optimized_out;
488}
489
490void
491set_value_optimized_out (struct value *value, int val)
492{
493 value->optimized_out = val;
494}
13c3b5f5
AC
495
496int
497value_embedded_offset (struct value *value)
498{
499 return value->embedded_offset;
500}
501
502void
503set_value_embedded_offset (struct value *value, int val)
504{
505 value->embedded_offset = val;
506}
b44d461b
AC
507
508int
509value_pointed_to_offset (struct value *value)
510{
511 return value->pointed_to_offset;
512}
513
514void
515set_value_pointed_to_offset (struct value *value, int val)
516{
517 value->pointed_to_offset = val;
518}
13bb5560 519
5f5233d4
PA
520struct lval_funcs *
521value_computed_funcs (struct value *v)
522{
523 gdb_assert (VALUE_LVAL (v) == lval_computed);
524
525 return v->location.computed.funcs;
526}
527
528void *
529value_computed_closure (struct value *v)
530{
531 gdb_assert (VALUE_LVAL (v) == lval_computed);
532
533 return v->location.computed.closure;
534}
535
13bb5560
AC
536enum lval_type *
537deprecated_value_lval_hack (struct value *value)
538{
539 return &value->lval;
540}
541
42ae5230
TT
542CORE_ADDR
543value_address (struct value *value)
544{
545 if (value->lval == lval_internalvar
546 || value->lval == lval_internalvar_component)
547 return 0;
548 return value->location.address + value->offset;
549}
550
551CORE_ADDR
552value_raw_address (struct value *value)
553{
554 if (value->lval == lval_internalvar
555 || value->lval == lval_internalvar_component)
556 return 0;
557 return value->location.address;
558}
559
560void
561set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 562{
42ae5230
TT
563 gdb_assert (value->lval != lval_internalvar
564 && value->lval != lval_internalvar_component);
565 value->location.address = addr;
13bb5560
AC
566}
567
568struct internalvar **
569deprecated_value_internalvar_hack (struct value *value)
570{
571 return &value->location.internalvar;
572}
573
574struct frame_id *
575deprecated_value_frame_id_hack (struct value *value)
576{
577 return &value->frame_id;
578}
579
580short *
581deprecated_value_regnum_hack (struct value *value)
582{
583 return &value->regnum;
584}
88e3b34b
AC
585
586int
587deprecated_value_modifiable (struct value *value)
588{
589 return value->modifiable;
590}
591void
592deprecated_set_value_modifiable (struct value *value, int modifiable)
593{
594 value->modifiable = modifiable;
595}
990a07ab 596\f
c906108c
SS
597/* Return a mark in the value chain. All values allocated after the
598 mark is obtained (except for those released) are subject to being freed
599 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 600struct value *
fba45db2 601value_mark (void)
c906108c
SS
602{
603 return all_values;
604}
605
828d3400
DJ
606/* Take a reference to VAL. VAL will not be deallocated until all
607 references are released. */
608
609void
610value_incref (struct value *val)
611{
612 val->reference_count++;
613}
614
615/* Release a reference to VAL, which was acquired with value_incref.
616 This function is also called to deallocate values from the value
617 chain. */
618
3e3d7139
JG
619void
620value_free (struct value *val)
621{
622 if (val)
5f5233d4 623 {
828d3400
DJ
624 gdb_assert (val->reference_count > 0);
625 val->reference_count--;
626 if (val->reference_count > 0)
627 return;
628
4ea48cc1
DJ
629 /* If there's an associated parent value, drop our reference to
630 it. */
631 if (val->parent != NULL)
632 value_free (val->parent);
633
5f5233d4
PA
634 if (VALUE_LVAL (val) == lval_computed)
635 {
636 struct lval_funcs *funcs = val->location.computed.funcs;
637
638 if (funcs->free_closure)
639 funcs->free_closure (val);
640 }
641
642 xfree (val->contents);
643 }
3e3d7139
JG
644 xfree (val);
645}
646
c906108c
SS
647/* Free all values allocated since MARK was obtained by value_mark
648 (except for those released). */
649void
f23631e4 650value_free_to_mark (struct value *mark)
c906108c 651{
f23631e4
AC
652 struct value *val;
653 struct value *next;
c906108c
SS
654
655 for (val = all_values; val && val != mark; val = next)
656 {
df407dfe 657 next = val->next;
c906108c
SS
658 value_free (val);
659 }
660 all_values = val;
661}
662
663/* Free all the values that have been allocated (except for those released).
725e88af
DE
664 Call after each command, successful or not.
665 In practice this is called before each command, which is sufficient. */
c906108c
SS
666
667void
fba45db2 668free_all_values (void)
c906108c 669{
f23631e4
AC
670 struct value *val;
671 struct value *next;
c906108c
SS
672
673 for (val = all_values; val; val = next)
674 {
df407dfe 675 next = val->next;
c906108c
SS
676 value_free (val);
677 }
678
679 all_values = 0;
680}
681
682/* Remove VAL from the chain all_values
683 so it will not be freed automatically. */
684
685void
f23631e4 686release_value (struct value *val)
c906108c 687{
f23631e4 688 struct value *v;
c906108c
SS
689
690 if (all_values == val)
691 {
692 all_values = val->next;
693 return;
694 }
695
696 for (v = all_values; v; v = v->next)
697 {
698 if (v->next == val)
699 {
700 v->next = val->next;
701 break;
702 }
703 }
704}
705
706/* Release all values up to mark */
f23631e4
AC
707struct value *
708value_release_to_mark (struct value *mark)
c906108c 709{
f23631e4
AC
710 struct value *val;
711 struct value *next;
c906108c 712
df407dfe
AC
713 for (val = next = all_values; next; next = next->next)
714 if (next->next == mark)
c906108c 715 {
df407dfe
AC
716 all_values = next->next;
717 next->next = NULL;
c906108c
SS
718 return val;
719 }
720 all_values = 0;
721 return val;
722}
723
724/* Return a copy of the value ARG.
725 It contains the same contents, for same memory address,
726 but it's a different block of storage. */
727
f23631e4
AC
728struct value *
729value_copy (struct value *arg)
c906108c 730{
4754a64e 731 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
732 struct value *val;
733
734 if (value_lazy (arg))
735 val = allocate_value_lazy (encl_type);
736 else
737 val = allocate_value (encl_type);
df407dfe 738 val->type = arg->type;
c906108c 739 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 740 val->location = arg->location;
df407dfe
AC
741 val->offset = arg->offset;
742 val->bitpos = arg->bitpos;
743 val->bitsize = arg->bitsize;
1df6926e 744 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 745 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 746 val->lazy = arg->lazy;
feb13ab0 747 val->optimized_out = arg->optimized_out;
13c3b5f5 748 val->embedded_offset = value_embedded_offset (arg);
b44d461b 749 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 750 val->modifiable = arg->modifiable;
d69fe07e 751 if (!value_lazy (val))
c906108c 752 {
990a07ab 753 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 754 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
755
756 }
4ea48cc1
DJ
757 val->parent = arg->parent;
758 if (val->parent)
759 value_incref (val->parent);
5f5233d4
PA
760 if (VALUE_LVAL (val) == lval_computed)
761 {
762 struct lval_funcs *funcs = val->location.computed.funcs;
763
764 if (funcs->copy_closure)
765 val->location.computed.closure = funcs->copy_closure (val);
766 }
c906108c
SS
767 return val;
768}
74bcbdf3
PA
769
770void
771set_value_component_location (struct value *component, struct value *whole)
772{
773 if (VALUE_LVAL (whole) == lval_internalvar)
774 VALUE_LVAL (component) = lval_internalvar_component;
775 else
776 VALUE_LVAL (component) = VALUE_LVAL (whole);
5f5233d4 777
74bcbdf3 778 component->location = whole->location;
5f5233d4
PA
779 if (VALUE_LVAL (whole) == lval_computed)
780 {
781 struct lval_funcs *funcs = whole->location.computed.funcs;
782
783 if (funcs->copy_closure)
784 component->location.computed.closure = funcs->copy_closure (whole);
785 }
74bcbdf3
PA
786}
787
c906108c
SS
788\f
789/* Access to the value history. */
790
791/* Record a new value in the value history.
792 Returns the absolute history index of the entry.
793 Result of -1 indicates the value was not saved; otherwise it is the
794 value history index of this new item. */
795
796int
f23631e4 797record_latest_value (struct value *val)
c906108c
SS
798{
799 int i;
800
801 /* We don't want this value to have anything to do with the inferior anymore.
802 In particular, "set $1 = 50" should not affect the variable from which
803 the value was taken, and fast watchpoints should be able to assume that
804 a value on the value history never changes. */
d69fe07e 805 if (value_lazy (val))
c906108c
SS
806 value_fetch_lazy (val);
807 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
808 from. This is a bit dubious, because then *&$1 does not just return $1
809 but the current contents of that location. c'est la vie... */
810 val->modifiable = 0;
811 release_value (val);
812
813 /* Here we treat value_history_count as origin-zero
814 and applying to the value being stored now. */
815
816 i = value_history_count % VALUE_HISTORY_CHUNK;
817 if (i == 0)
818 {
f23631e4 819 struct value_history_chunk *new
c5aa993b
JM
820 = (struct value_history_chunk *)
821 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
822 memset (new->values, 0, sizeof new->values);
823 new->next = value_history_chain;
824 value_history_chain = new;
825 }
826
827 value_history_chain->values[i] = val;
828
829 /* Now we regard value_history_count as origin-one
830 and applying to the value just stored. */
831
832 return ++value_history_count;
833}
834
835/* Return a copy of the value in the history with sequence number NUM. */
836
f23631e4 837struct value *
fba45db2 838access_value_history (int num)
c906108c 839{
f23631e4 840 struct value_history_chunk *chunk;
52f0bd74
AC
841 int i;
842 int absnum = num;
c906108c
SS
843
844 if (absnum <= 0)
845 absnum += value_history_count;
846
847 if (absnum <= 0)
848 {
849 if (num == 0)
8a3fe4f8 850 error (_("The history is empty."));
c906108c 851 else if (num == 1)
8a3fe4f8 852 error (_("There is only one value in the history."));
c906108c 853 else
8a3fe4f8 854 error (_("History does not go back to $$%d."), -num);
c906108c
SS
855 }
856 if (absnum > value_history_count)
8a3fe4f8 857 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
858
859 absnum--;
860
861 /* Now absnum is always absolute and origin zero. */
862
863 chunk = value_history_chain;
864 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
865 i > 0; i--)
866 chunk = chunk->next;
867
868 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
869}
870
c906108c 871static void
fba45db2 872show_values (char *num_exp, int from_tty)
c906108c 873{
52f0bd74 874 int i;
f23631e4 875 struct value *val;
c906108c
SS
876 static int num = 1;
877
878 if (num_exp)
879 {
f132ba9d
TJB
880 /* "show values +" should print from the stored position.
881 "show values <exp>" should print around value number <exp>. */
c906108c 882 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 883 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
884 }
885 else
886 {
f132ba9d 887 /* "show values" means print the last 10 values. */
c906108c
SS
888 num = value_history_count - 9;
889 }
890
891 if (num <= 0)
892 num = 1;
893
894 for (i = num; i < num + 10 && i <= value_history_count; i++)
895 {
79a45b7d 896 struct value_print_options opts;
c906108c 897 val = access_value_history (i);
a3f17187 898 printf_filtered (("$%d = "), i);
79a45b7d
TT
899 get_user_print_options (&opts);
900 value_print (val, gdb_stdout, &opts);
a3f17187 901 printf_filtered (("\n"));
c906108c
SS
902 }
903
f132ba9d 904 /* The next "show values +" should start after what we just printed. */
c906108c
SS
905 num += 10;
906
907 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
908 "show values +". If num_exp is null, this is unnecessary, since
909 "show values +" is not useful after "show values". */
c906108c
SS
910 if (from_tty && num_exp)
911 {
912 num_exp[0] = '+';
913 num_exp[1] = '\0';
914 }
915}
916\f
917/* Internal variables. These are variables within the debugger
918 that hold values assigned by debugger commands.
919 The user refers to them with a '$' prefix
920 that does not appear in the variable names stored internally. */
921
4fa62494
UW
922struct internalvar
923{
924 struct internalvar *next;
925 char *name;
4fa62494 926
78267919
UW
927 /* We support various different kinds of content of an internal variable.
928 enum internalvar_kind specifies the kind, and union internalvar_data
929 provides the data associated with this particular kind. */
930
931 enum internalvar_kind
932 {
933 /* The internal variable is empty. */
934 INTERNALVAR_VOID,
935
936 /* The value of the internal variable is provided directly as
937 a GDB value object. */
938 INTERNALVAR_VALUE,
939
940 /* A fresh value is computed via a call-back routine on every
941 access to the internal variable. */
942 INTERNALVAR_MAKE_VALUE,
4fa62494 943
78267919
UW
944 /* The internal variable holds a GDB internal convenience function. */
945 INTERNALVAR_FUNCTION,
946
cab0c772
UW
947 /* The variable holds an integer value. */
948 INTERNALVAR_INTEGER,
949
950 /* The variable holds a pointer value. */
951 INTERNALVAR_POINTER,
78267919
UW
952
953 /* The variable holds a GDB-provided string. */
954 INTERNALVAR_STRING,
955
956 } kind;
4fa62494 957
4fa62494
UW
958 union internalvar_data
959 {
78267919
UW
960 /* A value object used with INTERNALVAR_VALUE. */
961 struct value *value;
962
963 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
964 internalvar_make_value make_value;
965
966 /* The internal function used with INTERNALVAR_FUNCTION. */
967 struct
968 {
969 struct internal_function *function;
970 /* True if this is the canonical name for the function. */
971 int canonical;
972 } fn;
973
cab0c772 974 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
975 struct
976 {
977 /* If type is non-NULL, it will be used as the type to generate
978 a value for this internal variable. If type is NULL, a default
979 integer type for the architecture is used. */
980 struct type *type;
cab0c772
UW
981 LONGEST val;
982 } integer;
983
984 /* A pointer value used with INTERNALVAR_POINTER. */
985 struct
986 {
987 struct type *type;
988 CORE_ADDR val;
989 } pointer;
78267919
UW
990
991 /* A string value used with INTERNALVAR_STRING. */
992 char *string;
4fa62494
UW
993 } u;
994};
995
c906108c
SS
996static struct internalvar *internalvars;
997
53e5f3cf
AS
998/* If the variable does not already exist create it and give it the value given.
999 If no value is given then the default is zero. */
1000static void
1001init_if_undefined_command (char* args, int from_tty)
1002{
1003 struct internalvar* intvar;
1004
1005 /* Parse the expression - this is taken from set_command(). */
1006 struct expression *expr = parse_expression (args);
1007 register struct cleanup *old_chain =
1008 make_cleanup (free_current_contents, &expr);
1009
1010 /* Validate the expression.
1011 Was the expression an assignment?
1012 Or even an expression at all? */
1013 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1014 error (_("Init-if-undefined requires an assignment expression."));
1015
1016 /* Extract the variable from the parsed expression.
1017 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1018 if (expr->elts[1].opcode != OP_INTERNALVAR)
1019 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1020 intvar = expr->elts[2].internalvar;
1021
1022 /* Only evaluate the expression if the lvalue is void.
1023 This may still fail if the expresssion is invalid. */
78267919 1024 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1025 evaluate_expression (expr);
1026
1027 do_cleanups (old_chain);
1028}
1029
1030
c906108c
SS
1031/* Look up an internal variable with name NAME. NAME should not
1032 normally include a dollar sign.
1033
1034 If the specified internal variable does not exist,
c4a3d09a 1035 the return value is NULL. */
c906108c
SS
1036
1037struct internalvar *
bc3b79fd 1038lookup_only_internalvar (const char *name)
c906108c 1039{
52f0bd74 1040 struct internalvar *var;
c906108c
SS
1041
1042 for (var = internalvars; var; var = var->next)
5cb316ef 1043 if (strcmp (var->name, name) == 0)
c906108c
SS
1044 return var;
1045
c4a3d09a
MF
1046 return NULL;
1047}
1048
1049
1050/* Create an internal variable with name NAME and with a void value.
1051 NAME should not normally include a dollar sign. */
1052
1053struct internalvar *
bc3b79fd 1054create_internalvar (const char *name)
c4a3d09a
MF
1055{
1056 struct internalvar *var;
c906108c 1057 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1058 var->name = concat (name, (char *)NULL);
78267919 1059 var->kind = INTERNALVAR_VOID;
c906108c
SS
1060 var->next = internalvars;
1061 internalvars = var;
1062 return var;
1063}
1064
4aa995e1
PA
1065/* Create an internal variable with name NAME and register FUN as the
1066 function that value_of_internalvar uses to create a value whenever
1067 this variable is referenced. NAME should not normally include a
1068 dollar sign. */
1069
1070struct internalvar *
1071create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1072{
4fa62494 1073 struct internalvar *var = create_internalvar (name);
78267919
UW
1074 var->kind = INTERNALVAR_MAKE_VALUE;
1075 var->u.make_value = fun;
4aa995e1
PA
1076 return var;
1077}
c4a3d09a
MF
1078
1079/* Look up an internal variable with name NAME. NAME should not
1080 normally include a dollar sign.
1081
1082 If the specified internal variable does not exist,
1083 one is created, with a void value. */
1084
1085struct internalvar *
bc3b79fd 1086lookup_internalvar (const char *name)
c4a3d09a
MF
1087{
1088 struct internalvar *var;
1089
1090 var = lookup_only_internalvar (name);
1091 if (var)
1092 return var;
1093
1094 return create_internalvar (name);
1095}
1096
78267919
UW
1097/* Return current value of internal variable VAR. For variables that
1098 are not inherently typed, use a value type appropriate for GDBARCH. */
1099
f23631e4 1100struct value *
78267919 1101value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1102{
f23631e4 1103 struct value *val;
c906108c 1104
78267919 1105 switch (var->kind)
5f5233d4 1106 {
78267919
UW
1107 case INTERNALVAR_VOID:
1108 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1109 break;
4fa62494 1110
78267919
UW
1111 case INTERNALVAR_FUNCTION:
1112 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1113 break;
4fa62494 1114
cab0c772
UW
1115 case INTERNALVAR_INTEGER:
1116 if (!var->u.integer.type)
78267919 1117 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 1118 var->u.integer.val);
78267919 1119 else
cab0c772
UW
1120 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1121 break;
1122
1123 case INTERNALVAR_POINTER:
1124 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
78267919 1125 break;
4fa62494 1126
78267919
UW
1127 case INTERNALVAR_STRING:
1128 val = value_cstring (var->u.string, strlen (var->u.string),
1129 builtin_type (gdbarch)->builtin_char);
1130 break;
4fa62494 1131
78267919
UW
1132 case INTERNALVAR_VALUE:
1133 val = value_copy (var->u.value);
4aa995e1
PA
1134 if (value_lazy (val))
1135 value_fetch_lazy (val);
78267919 1136 break;
4aa995e1 1137
78267919
UW
1138 case INTERNALVAR_MAKE_VALUE:
1139 val = (*var->u.make_value) (gdbarch, var);
1140 break;
1141
1142 default:
1143 internal_error (__FILE__, __LINE__, "bad kind");
1144 }
1145
1146 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1147 on this value go back to affect the original internal variable.
1148
1149 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1150 no underlying modifyable state in the internal variable.
1151
1152 Likewise, if the variable's value is a computed lvalue, we want
1153 references to it to produce another computed lvalue, where
1154 references and assignments actually operate through the
1155 computed value's functions.
1156
1157 This means that internal variables with computed values
1158 behave a little differently from other internal variables:
1159 assignments to them don't just replace the previous value
1160 altogether. At the moment, this seems like the behavior we
1161 want. */
1162
1163 if (var->kind != INTERNALVAR_MAKE_VALUE
1164 && val->lval != lval_computed)
1165 {
1166 VALUE_LVAL (val) = lval_internalvar;
1167 VALUE_INTERNALVAR (val) = var;
5f5233d4 1168 }
d3c139e9 1169
4fa62494
UW
1170 return val;
1171}
d3c139e9 1172
4fa62494
UW
1173int
1174get_internalvar_integer (struct internalvar *var, LONGEST *result)
1175{
78267919 1176 switch (var->kind)
4fa62494 1177 {
cab0c772
UW
1178 case INTERNALVAR_INTEGER:
1179 *result = var->u.integer.val;
1180 return 1;
d3c139e9 1181
4fa62494
UW
1182 default:
1183 return 0;
1184 }
1185}
d3c139e9 1186
4fa62494
UW
1187static int
1188get_internalvar_function (struct internalvar *var,
1189 struct internal_function **result)
1190{
78267919 1191 switch (var->kind)
d3c139e9 1192 {
78267919
UW
1193 case INTERNALVAR_FUNCTION:
1194 *result = var->u.fn.function;
4fa62494 1195 return 1;
d3c139e9 1196
4fa62494
UW
1197 default:
1198 return 0;
1199 }
c906108c
SS
1200}
1201
1202void
fba45db2 1203set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1204 int bitsize, struct value *newval)
c906108c 1205{
4fa62494 1206 gdb_byte *addr;
c906108c 1207
78267919 1208 switch (var->kind)
4fa62494 1209 {
78267919
UW
1210 case INTERNALVAR_VALUE:
1211 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1212
1213 if (bitsize)
50810684 1214 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1215 value_as_long (newval), bitpos, bitsize);
1216 else
1217 memcpy (addr + offset, value_contents (newval),
1218 TYPE_LENGTH (value_type (newval)));
1219 break;
78267919
UW
1220
1221 default:
1222 /* We can never get a component of any other kind. */
1223 internal_error (__FILE__, __LINE__, "set_internalvar_component");
4fa62494 1224 }
c906108c
SS
1225}
1226
1227void
f23631e4 1228set_internalvar (struct internalvar *var, struct value *val)
c906108c 1229{
78267919 1230 enum internalvar_kind new_kind;
4fa62494 1231 union internalvar_data new_data = { 0 };
c906108c 1232
78267919 1233 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1234 error (_("Cannot overwrite convenience function %s"), var->name);
1235
4fa62494 1236 /* Prepare new contents. */
78267919 1237 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1238 {
1239 case TYPE_CODE_VOID:
78267919 1240 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1241 break;
1242
1243 case TYPE_CODE_INTERNAL_FUNCTION:
1244 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1245 new_kind = INTERNALVAR_FUNCTION;
1246 get_internalvar_function (VALUE_INTERNALVAR (val),
1247 &new_data.fn.function);
1248 /* Copies created here are never canonical. */
4fa62494
UW
1249 break;
1250
1251 case TYPE_CODE_INT:
cab0c772
UW
1252 new_kind = INTERNALVAR_INTEGER;
1253 new_data.integer.type = value_type (val);
1254 new_data.integer.val = value_as_long (val);
4fa62494
UW
1255 break;
1256
1257 case TYPE_CODE_PTR:
cab0c772
UW
1258 new_kind = INTERNALVAR_POINTER;
1259 new_data.pointer.type = value_type (val);
1260 new_data.pointer.val = value_as_address (val);
4fa62494
UW
1261 break;
1262
1263 default:
78267919
UW
1264 new_kind = INTERNALVAR_VALUE;
1265 new_data.value = value_copy (val);
1266 new_data.value->modifiable = 1;
4fa62494
UW
1267
1268 /* Force the value to be fetched from the target now, to avoid problems
1269 later when this internalvar is referenced and the target is gone or
1270 has changed. */
78267919
UW
1271 if (value_lazy (new_data.value))
1272 value_fetch_lazy (new_data.value);
4fa62494
UW
1273
1274 /* Release the value from the value chain to prevent it from being
1275 deleted by free_all_values. From here on this function should not
1276 call error () until new_data is installed into the var->u to avoid
1277 leaking memory. */
78267919 1278 release_value (new_data.value);
4fa62494
UW
1279 break;
1280 }
1281
1282 /* Clean up old contents. */
1283 clear_internalvar (var);
1284
1285 /* Switch over. */
78267919 1286 var->kind = new_kind;
4fa62494 1287 var->u = new_data;
c906108c
SS
1288 /* End code which must not call error(). */
1289}
1290
4fa62494
UW
1291void
1292set_internalvar_integer (struct internalvar *var, LONGEST l)
1293{
1294 /* Clean up old contents. */
1295 clear_internalvar (var);
1296
cab0c772
UW
1297 var->kind = INTERNALVAR_INTEGER;
1298 var->u.integer.type = NULL;
1299 var->u.integer.val = l;
78267919
UW
1300}
1301
1302void
1303set_internalvar_string (struct internalvar *var, const char *string)
1304{
1305 /* Clean up old contents. */
1306 clear_internalvar (var);
1307
1308 var->kind = INTERNALVAR_STRING;
1309 var->u.string = xstrdup (string);
4fa62494
UW
1310}
1311
1312static void
1313set_internalvar_function (struct internalvar *var, struct internal_function *f)
1314{
1315 /* Clean up old contents. */
1316 clear_internalvar (var);
1317
78267919
UW
1318 var->kind = INTERNALVAR_FUNCTION;
1319 var->u.fn.function = f;
1320 var->u.fn.canonical = 1;
1321 /* Variables installed here are always the canonical version. */
4fa62494
UW
1322}
1323
1324void
1325clear_internalvar (struct internalvar *var)
1326{
1327 /* Clean up old contents. */
78267919 1328 switch (var->kind)
4fa62494 1329 {
78267919
UW
1330 case INTERNALVAR_VALUE:
1331 value_free (var->u.value);
1332 break;
1333
1334 case INTERNALVAR_STRING:
1335 xfree (var->u.string);
4fa62494
UW
1336 break;
1337
1338 default:
4fa62494
UW
1339 break;
1340 }
1341
78267919
UW
1342 /* Reset to void kind. */
1343 var->kind = INTERNALVAR_VOID;
4fa62494
UW
1344}
1345
c906108c 1346char *
fba45db2 1347internalvar_name (struct internalvar *var)
c906108c
SS
1348{
1349 return var->name;
1350}
1351
4fa62494
UW
1352static struct internal_function *
1353create_internal_function (const char *name,
1354 internal_function_fn handler, void *cookie)
bc3b79fd 1355{
bc3b79fd
TJB
1356 struct internal_function *ifn = XNEW (struct internal_function);
1357 ifn->name = xstrdup (name);
1358 ifn->handler = handler;
1359 ifn->cookie = cookie;
4fa62494 1360 return ifn;
bc3b79fd
TJB
1361}
1362
1363char *
1364value_internal_function_name (struct value *val)
1365{
4fa62494
UW
1366 struct internal_function *ifn;
1367 int result;
1368
1369 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1370 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1371 gdb_assert (result);
1372
bc3b79fd
TJB
1373 return ifn->name;
1374}
1375
1376struct value *
d452c4bc
UW
1377call_internal_function (struct gdbarch *gdbarch,
1378 const struct language_defn *language,
1379 struct value *func, int argc, struct value **argv)
bc3b79fd 1380{
4fa62494
UW
1381 struct internal_function *ifn;
1382 int result;
1383
1384 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1385 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1386 gdb_assert (result);
1387
d452c4bc 1388 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
1389}
1390
1391/* The 'function' command. This does nothing -- it is just a
1392 placeholder to let "help function NAME" work. This is also used as
1393 the implementation of the sub-command that is created when
1394 registering an internal function. */
1395static void
1396function_command (char *command, int from_tty)
1397{
1398 /* Do nothing. */
1399}
1400
1401/* Clean up if an internal function's command is destroyed. */
1402static void
1403function_destroyer (struct cmd_list_element *self, void *ignore)
1404{
1405 xfree (self->name);
1406 xfree (self->doc);
1407}
1408
1409/* Add a new internal function. NAME is the name of the function; DOC
1410 is a documentation string describing the function. HANDLER is
1411 called when the function is invoked. COOKIE is an arbitrary
1412 pointer which is passed to HANDLER and is intended for "user
1413 data". */
1414void
1415add_internal_function (const char *name, const char *doc,
1416 internal_function_fn handler, void *cookie)
1417{
1418 struct cmd_list_element *cmd;
4fa62494 1419 struct internal_function *ifn;
bc3b79fd 1420 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
1421
1422 ifn = create_internal_function (name, handler, cookie);
1423 set_internalvar_function (var, ifn);
bc3b79fd
TJB
1424
1425 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1426 &functionlist);
1427 cmd->destroyer = function_destroyer;
1428}
1429
ae5a43e0
DJ
1430/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1431 prevent cycles / duplicates. */
1432
4e7a5ef5 1433void
ae5a43e0
DJ
1434preserve_one_value (struct value *value, struct objfile *objfile,
1435 htab_t copied_types)
1436{
1437 if (TYPE_OBJFILE (value->type) == objfile)
1438 value->type = copy_type_recursive (objfile, value->type, copied_types);
1439
1440 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1441 value->enclosing_type = copy_type_recursive (objfile,
1442 value->enclosing_type,
1443 copied_types);
1444}
1445
78267919
UW
1446/* Likewise for internal variable VAR. */
1447
1448static void
1449preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1450 htab_t copied_types)
1451{
1452 switch (var->kind)
1453 {
cab0c772
UW
1454 case INTERNALVAR_INTEGER:
1455 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1456 var->u.integer.type
1457 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1458 break;
1459
1460 case INTERNALVAR_POINTER:
1461 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1462 var->u.pointer.type
1463 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
78267919
UW
1464 break;
1465
1466 case INTERNALVAR_VALUE:
1467 preserve_one_value (var->u.value, objfile, copied_types);
1468 break;
1469 }
1470}
1471
ae5a43e0
DJ
1472/* Update the internal variables and value history when OBJFILE is
1473 discarded; we must copy the types out of the objfile. New global types
1474 will be created for every convenience variable which currently points to
1475 this objfile's types, and the convenience variables will be adjusted to
1476 use the new global types. */
c906108c
SS
1477
1478void
ae5a43e0 1479preserve_values (struct objfile *objfile)
c906108c 1480{
ae5a43e0
DJ
1481 htab_t copied_types;
1482 struct value_history_chunk *cur;
52f0bd74 1483 struct internalvar *var;
a08702d6 1484 struct value *val;
ae5a43e0 1485 int i;
c906108c 1486
ae5a43e0
DJ
1487 /* Create the hash table. We allocate on the objfile's obstack, since
1488 it is soon to be deleted. */
1489 copied_types = create_copied_types_hash (objfile);
1490
1491 for (cur = value_history_chain; cur; cur = cur->next)
1492 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1493 if (cur->values[i])
1494 preserve_one_value (cur->values[i], objfile, copied_types);
1495
1496 for (var = internalvars; var; var = var->next)
78267919 1497 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 1498
4e7a5ef5 1499 preserve_python_values (objfile, copied_types);
a08702d6 1500
ae5a43e0 1501 htab_delete (copied_types);
c906108c
SS
1502}
1503
1504static void
fba45db2 1505show_convenience (char *ignore, int from_tty)
c906108c 1506{
e17c207e 1507 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 1508 struct internalvar *var;
c906108c 1509 int varseen = 0;
79a45b7d 1510 struct value_print_options opts;
c906108c 1511
79a45b7d 1512 get_user_print_options (&opts);
c906108c
SS
1513 for (var = internalvars; var; var = var->next)
1514 {
c906108c
SS
1515 if (!varseen)
1516 {
1517 varseen = 1;
1518 }
a3f17187 1519 printf_filtered (("$%s = "), var->name);
78267919 1520 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
79a45b7d 1521 &opts);
a3f17187 1522 printf_filtered (("\n"));
c906108c
SS
1523 }
1524 if (!varseen)
a3f17187
AC
1525 printf_unfiltered (_("\
1526No debugger convenience variables now defined.\n\
c906108c 1527Convenience variables have names starting with \"$\";\n\
a3f17187 1528use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
1529}
1530\f
1531/* Extract a value as a C number (either long or double).
1532 Knows how to convert fixed values to double, or
1533 floating values to long.
1534 Does not deallocate the value. */
1535
1536LONGEST
f23631e4 1537value_as_long (struct value *val)
c906108c
SS
1538{
1539 /* This coerces arrays and functions, which is necessary (e.g.
1540 in disassemble_command). It also dereferences references, which
1541 I suspect is the most logical thing to do. */
994b9211 1542 val = coerce_array (val);
0fd88904 1543 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1544}
1545
1546DOUBLEST
f23631e4 1547value_as_double (struct value *val)
c906108c
SS
1548{
1549 DOUBLEST foo;
1550 int inv;
c5aa993b 1551
0fd88904 1552 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1553 if (inv)
8a3fe4f8 1554 error (_("Invalid floating value found in program."));
c906108c
SS
1555 return foo;
1556}
4ef30785 1557
4478b372
JB
1558/* Extract a value as a C pointer. Does not deallocate the value.
1559 Note that val's type may not actually be a pointer; value_as_long
1560 handles all the cases. */
c906108c 1561CORE_ADDR
f23631e4 1562value_as_address (struct value *val)
c906108c 1563{
50810684
UW
1564 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1565
c906108c
SS
1566 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1567 whether we want this to be true eventually. */
1568#if 0
bf6ae464 1569 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1570 non-address (e.g. argument to "signal", "info break", etc.), or
1571 for pointers to char, in which the low bits *are* significant. */
50810684 1572 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 1573#else
f312f057
JB
1574
1575 /* There are several targets (IA-64, PowerPC, and others) which
1576 don't represent pointers to functions as simply the address of
1577 the function's entry point. For example, on the IA-64, a
1578 function pointer points to a two-word descriptor, generated by
1579 the linker, which contains the function's entry point, and the
1580 value the IA-64 "global pointer" register should have --- to
1581 support position-independent code. The linker generates
1582 descriptors only for those functions whose addresses are taken.
1583
1584 On such targets, it's difficult for GDB to convert an arbitrary
1585 function address into a function pointer; it has to either find
1586 an existing descriptor for that function, or call malloc and
1587 build its own. On some targets, it is impossible for GDB to
1588 build a descriptor at all: the descriptor must contain a jump
1589 instruction; data memory cannot be executed; and code memory
1590 cannot be modified.
1591
1592 Upon entry to this function, if VAL is a value of type `function'
1593 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 1594 value_address (val) is the address of the function. This is what
f312f057
JB
1595 you'll get if you evaluate an expression like `main'. The call
1596 to COERCE_ARRAY below actually does all the usual unary
1597 conversions, which includes converting values of type `function'
1598 to `pointer to function'. This is the challenging conversion
1599 discussed above. Then, `unpack_long' will convert that pointer
1600 back into an address.
1601
1602 So, suppose the user types `disassemble foo' on an architecture
1603 with a strange function pointer representation, on which GDB
1604 cannot build its own descriptors, and suppose further that `foo'
1605 has no linker-built descriptor. The address->pointer conversion
1606 will signal an error and prevent the command from running, even
1607 though the next step would have been to convert the pointer
1608 directly back into the same address.
1609
1610 The following shortcut avoids this whole mess. If VAL is a
1611 function, just return its address directly. */
df407dfe
AC
1612 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1613 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 1614 return value_address (val);
f312f057 1615
994b9211 1616 val = coerce_array (val);
fc0c74b1
AC
1617
1618 /* Some architectures (e.g. Harvard), map instruction and data
1619 addresses onto a single large unified address space. For
1620 instance: An architecture may consider a large integer in the
1621 range 0x10000000 .. 0x1000ffff to already represent a data
1622 addresses (hence not need a pointer to address conversion) while
1623 a small integer would still need to be converted integer to
1624 pointer to address. Just assume such architectures handle all
1625 integer conversions in a single function. */
1626
1627 /* JimB writes:
1628
1629 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1630 must admonish GDB hackers to make sure its behavior matches the
1631 compiler's, whenever possible.
1632
1633 In general, I think GDB should evaluate expressions the same way
1634 the compiler does. When the user copies an expression out of
1635 their source code and hands it to a `print' command, they should
1636 get the same value the compiler would have computed. Any
1637 deviation from this rule can cause major confusion and annoyance,
1638 and needs to be justified carefully. In other words, GDB doesn't
1639 really have the freedom to do these conversions in clever and
1640 useful ways.
1641
1642 AndrewC pointed out that users aren't complaining about how GDB
1643 casts integers to pointers; they are complaining that they can't
1644 take an address from a disassembly listing and give it to `x/i'.
1645 This is certainly important.
1646
79dd2d24 1647 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1648 makes it possible for GDB to "get it right" in all circumstances
1649 --- the target has complete control over how things get done, so
1650 people can Do The Right Thing for their target without breaking
1651 anyone else. The standard doesn't specify how integers get
1652 converted to pointers; usually, the ABI doesn't either, but
1653 ABI-specific code is a more reasonable place to handle it. */
1654
df407dfe
AC
1655 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1656 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
1657 && gdbarch_integer_to_address_p (gdbarch))
1658 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 1659 value_contents (val));
fc0c74b1 1660
0fd88904 1661 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1662#endif
1663}
1664\f
1665/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1666 as a long, or as a double, assuming the raw data is described
1667 by type TYPE. Knows how to convert different sizes of values
1668 and can convert between fixed and floating point. We don't assume
1669 any alignment for the raw data. Return value is in host byte order.
1670
1671 If you want functions and arrays to be coerced to pointers, and
1672 references to be dereferenced, call value_as_long() instead.
1673
1674 C++: It is assumed that the front-end has taken care of
1675 all matters concerning pointers to members. A pointer
1676 to member which reaches here is considered to be equivalent
1677 to an INT (or some size). After all, it is only an offset. */
1678
1679LONGEST
fc1a4b47 1680unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1681{
e17a4113 1682 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
1683 enum type_code code = TYPE_CODE (type);
1684 int len = TYPE_LENGTH (type);
1685 int nosign = TYPE_UNSIGNED (type);
c906108c 1686
c906108c
SS
1687 switch (code)
1688 {
1689 case TYPE_CODE_TYPEDEF:
1690 return unpack_long (check_typedef (type), valaddr);
1691 case TYPE_CODE_ENUM:
4f2aea11 1692 case TYPE_CODE_FLAGS:
c906108c
SS
1693 case TYPE_CODE_BOOL:
1694 case TYPE_CODE_INT:
1695 case TYPE_CODE_CHAR:
1696 case TYPE_CODE_RANGE:
0d5de010 1697 case TYPE_CODE_MEMBERPTR:
c906108c 1698 if (nosign)
e17a4113 1699 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 1700 else
e17a4113 1701 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
1702
1703 case TYPE_CODE_FLT:
96d2f608 1704 return extract_typed_floating (valaddr, type);
c906108c 1705
4ef30785
TJB
1706 case TYPE_CODE_DECFLOAT:
1707 /* libdecnumber has a function to convert from decimal to integer, but
1708 it doesn't work when the decimal number has a fractional part. */
e17a4113 1709 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 1710
c906108c
SS
1711 case TYPE_CODE_PTR:
1712 case TYPE_CODE_REF:
1713 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1714 whether we want this to be true eventually. */
4478b372 1715 return extract_typed_address (valaddr, type);
c906108c 1716
c906108c 1717 default:
8a3fe4f8 1718 error (_("Value can't be converted to integer."));
c906108c 1719 }
c5aa993b 1720 return 0; /* Placate lint. */
c906108c
SS
1721}
1722
1723/* Return a double value from the specified type and address.
1724 INVP points to an int which is set to 0 for valid value,
1725 1 for invalid value (bad float format). In either case,
1726 the returned double is OK to use. Argument is in target
1727 format, result is in host format. */
1728
1729DOUBLEST
fc1a4b47 1730unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 1731{
e17a4113 1732 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
1733 enum type_code code;
1734 int len;
1735 int nosign;
1736
1737 *invp = 0; /* Assume valid. */
1738 CHECK_TYPEDEF (type);
1739 code = TYPE_CODE (type);
1740 len = TYPE_LENGTH (type);
1741 nosign = TYPE_UNSIGNED (type);
1742 if (code == TYPE_CODE_FLT)
1743 {
75bc7ddf
AC
1744 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1745 floating-point value was valid (using the macro
1746 INVALID_FLOAT). That test/macro have been removed.
1747
1748 It turns out that only the VAX defined this macro and then
1749 only in a non-portable way. Fixing the portability problem
1750 wouldn't help since the VAX floating-point code is also badly
1751 bit-rotten. The target needs to add definitions for the
ea06eb3d 1752 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1753 exactly describe the target floating-point format. The
1754 problem here is that the corresponding floatformat_vax_f and
1755 floatformat_vax_d values these methods should be set to are
1756 also not defined either. Oops!
1757
1758 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1759 definitions and the new cases for floatformat_is_valid (). */
1760
1761 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1762 {
1763 *invp = 1;
1764 return 0.0;
1765 }
1766
96d2f608 1767 return extract_typed_floating (valaddr, type);
c906108c 1768 }
4ef30785 1769 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 1770 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
1771 else if (nosign)
1772 {
1773 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1774 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1775 }
1776 else
1777 {
1778 /* Signed -- we are OK with unpack_long. */
1779 return unpack_long (type, valaddr);
1780 }
1781}
1782
1783/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1784 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1785 We don't assume any alignment for the raw data. Return value is in
1786 host byte order.
1787
1788 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1789 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1790
1791 C++: It is assumed that the front-end has taken care of
1792 all matters concerning pointers to members. A pointer
1793 to member which reaches here is considered to be equivalent
1794 to an INT (or some size). After all, it is only an offset. */
1795
1796CORE_ADDR
fc1a4b47 1797unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1798{
1799 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1800 whether we want this to be true eventually. */
1801 return unpack_long (type, valaddr);
1802}
4478b372 1803
c906108c 1804\f
2c2738a0
DC
1805/* Get the value of the FIELDN'th field (which must be static) of
1806 TYPE. Return NULL if the field doesn't exist or has been
1807 optimized out. */
c906108c 1808
f23631e4 1809struct value *
fba45db2 1810value_static_field (struct type *type, int fieldno)
c906108c 1811{
948e66d9
DJ
1812 struct value *retval;
1813
d6a843b5 1814 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
c906108c 1815 {
948e66d9 1816 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1817 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
1818 }
1819 else
1820 {
1821 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2570f2b7 1822 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
948e66d9 1823 if (sym == NULL)
c906108c
SS
1824 {
1825 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
1826 as non-debuggable symbols */
1827 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
1828 if (!msym)
1829 return NULL;
1830 else
c5aa993b 1831 {
948e66d9 1832 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1833 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1834 }
1835 }
1836 else
1837 {
948e66d9
DJ
1838 /* SYM should never have a SYMBOL_CLASS which will require
1839 read_var_value to use the FRAME parameter. */
1840 if (symbol_read_needs_frame (sym))
8a3fe4f8
AC
1841 warning (_("static field's value depends on the current "
1842 "frame - bad debug info?"));
948e66d9 1843 retval = read_var_value (sym, NULL);
2b127877 1844 }
948e66d9
DJ
1845 if (retval && VALUE_LVAL (retval) == lval_memory)
1846 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
42ae5230 1847 value_address (retval));
c906108c 1848 }
948e66d9 1849 return retval;
c906108c
SS
1850}
1851
2b127877
DB
1852/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1853 You have to be careful here, since the size of the data area for the value
1854 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1855 than the old enclosing type, you have to allocate more space for the data.
1856 The return value is a pointer to the new version of this value structure. */
1857
f23631e4
AC
1858struct value *
1859value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1860{
3e3d7139
JG
1861 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1862 val->contents =
1863 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1864
1865 val->enclosing_type = new_encl_type;
1866 return val;
2b127877
DB
1867}
1868
c906108c
SS
1869/* Given a value ARG1 (offset by OFFSET bytes)
1870 of a struct or union type ARG_TYPE,
1871 extract and return the value of one of its (non-static) fields.
1872 FIELDNO says which field. */
1873
f23631e4
AC
1874struct value *
1875value_primitive_field (struct value *arg1, int offset,
aa1ee363 1876 int fieldno, struct type *arg_type)
c906108c 1877{
f23631e4 1878 struct value *v;
52f0bd74 1879 struct type *type;
c906108c
SS
1880
1881 CHECK_TYPEDEF (arg_type);
1882 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
1883
1884 /* Call check_typedef on our type to make sure that, if TYPE
1885 is a TYPE_CODE_TYPEDEF, its length is set to the length
1886 of the target type instead of zero. However, we do not
1887 replace the typedef type by the target type, because we want
1888 to keep the typedef in order to be able to print the type
1889 description correctly. */
1890 check_typedef (type);
c906108c
SS
1891
1892 /* Handle packed fields */
1893
1894 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1895 {
4ea48cc1
DJ
1896 /* Create a new value for the bitfield, with bitpos and bitsize
1897 set. If possible, arrange offset and bitpos so that we can
1898 do a single aligned read of the size of the containing type.
1899 Otherwise, adjust offset to the byte containing the first
1900 bit. Assume that the address, offset, and embedded offset
1901 are sufficiently aligned. */
1902 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1903 int container_bitsize = TYPE_LENGTH (type) * 8;
1904
1905 v = allocate_value_lazy (type);
df407dfe 1906 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
4ea48cc1
DJ
1907 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1908 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1909 v->bitpos = bitpos % container_bitsize;
1910 else
1911 v->bitpos = bitpos % 8;
4a76eae5 1912 v->offset = value_embedded_offset (arg1)
4ea48cc1
DJ
1913 + (bitpos - v->bitpos) / 8;
1914 v->parent = arg1;
1915 value_incref (v->parent);
1916 if (!value_lazy (arg1))
1917 value_fetch_lazy (v);
c906108c
SS
1918 }
1919 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1920 {
1921 /* This field is actually a base subobject, so preserve the
1922 entire object's contents for later references to virtual
1923 bases, etc. */
a4e2ee12
DJ
1924
1925 /* Lazy register values with offsets are not supported. */
1926 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1927 value_fetch_lazy (arg1);
1928
1929 if (value_lazy (arg1))
3e3d7139 1930 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 1931 else
3e3d7139
JG
1932 {
1933 v = allocate_value (value_enclosing_type (arg1));
1934 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1935 TYPE_LENGTH (value_enclosing_type (arg1)));
1936 }
1937 v->type = type;
df407dfe 1938 v->offset = value_offset (arg1);
13c3b5f5
AC
1939 v->embedded_offset = (offset + value_embedded_offset (arg1)
1940 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
1941 }
1942 else
1943 {
1944 /* Plain old data member */
1945 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
1946
1947 /* Lazy register values with offsets are not supported. */
1948 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1949 value_fetch_lazy (arg1);
1950
1951 if (value_lazy (arg1))
3e3d7139 1952 v = allocate_value_lazy (type);
c906108c 1953 else
3e3d7139
JG
1954 {
1955 v = allocate_value (type);
1956 memcpy (value_contents_raw (v),
1957 value_contents_raw (arg1) + offset,
1958 TYPE_LENGTH (type));
1959 }
df407dfe 1960 v->offset = (value_offset (arg1) + offset
13c3b5f5 1961 + value_embedded_offset (arg1));
c906108c 1962 }
74bcbdf3 1963 set_value_component_location (v, arg1);
9ee8fc9d 1964 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 1965 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
1966 return v;
1967}
1968
1969/* Given a value ARG1 of a struct or union type,
1970 extract and return the value of one of its (non-static) fields.
1971 FIELDNO says which field. */
1972
f23631e4 1973struct value *
aa1ee363 1974value_field (struct value *arg1, int fieldno)
c906108c 1975{
df407dfe 1976 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
1977}
1978
1979/* Return a non-virtual function as a value.
1980 F is the list of member functions which contains the desired method.
0478d61c
FF
1981 J is an index into F which provides the desired method.
1982
1983 We only use the symbol for its address, so be happy with either a
1984 full symbol or a minimal symbol.
1985 */
c906108c 1986
f23631e4
AC
1987struct value *
1988value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 1989 int offset)
c906108c 1990{
f23631e4 1991 struct value *v;
52f0bd74 1992 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 1993 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 1994 struct symbol *sym;
0478d61c 1995 struct minimal_symbol *msym;
c906108c 1996
2570f2b7 1997 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 1998 if (sym != NULL)
0478d61c 1999 {
5ae326fa
AC
2000 msym = NULL;
2001 }
2002 else
2003 {
2004 gdb_assert (sym == NULL);
0478d61c 2005 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
2006 if (msym == NULL)
2007 return NULL;
0478d61c
FF
2008 }
2009
c906108c 2010 v = allocate_value (ftype);
0478d61c
FF
2011 if (sym)
2012 {
42ae5230 2013 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2014 }
2015 else
2016 {
bccdca4a
UW
2017 /* The minimal symbol might point to a function descriptor;
2018 resolve it to the actual code address instead. */
2019 struct objfile *objfile = msymbol_objfile (msym);
2020 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2021
42ae5230
TT
2022 set_value_address (v,
2023 gdbarch_convert_from_func_ptr_addr
2024 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2025 }
c906108c
SS
2026
2027 if (arg1p)
c5aa993b 2028 {
df407dfe 2029 if (type != value_type (*arg1p))
c5aa993b
JM
2030 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2031 value_addr (*arg1p)));
2032
070ad9f0 2033 /* Move the `this' pointer according to the offset.
c5aa993b
JM
2034 VALUE_OFFSET (*arg1p) += offset;
2035 */
c906108c
SS
2036 }
2037
2038 return v;
2039}
2040
c906108c 2041\f
4ea48cc1
DJ
2042/* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2043 object at VALADDR. The bitfield starts at BITPOS bits and contains
2044 BITSIZE bits.
c906108c
SS
2045
2046 Extracting bits depends on endianness of the machine. Compute the
2047 number of least significant bits to discard. For big endian machines,
2048 we compute the total number of bits in the anonymous object, subtract
2049 off the bit count from the MSB of the object to the MSB of the
2050 bitfield, then the size of the bitfield, which leaves the LSB discard
2051 count. For little endian machines, the discard count is simply the
2052 number of bits from the LSB of the anonymous object to the LSB of the
2053 bitfield.
2054
2055 If the field is signed, we also do sign extension. */
2056
2057LONGEST
4ea48cc1
DJ
2058unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2059 int bitpos, int bitsize)
c906108c 2060{
4ea48cc1 2061 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2062 ULONGEST val;
2063 ULONGEST valmask;
c906108c 2064 int lsbcount;
4a76eae5 2065 int bytes_read;
c906108c 2066
4a76eae5
DJ
2067 /* Read the minimum number of bytes required; there may not be
2068 enough bytes to read an entire ULONGEST. */
c906108c 2069 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
2070 if (bitsize)
2071 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2072 else
2073 bytes_read = TYPE_LENGTH (field_type);
2074
2075 val = extract_unsigned_integer (valaddr + bitpos / 8,
2076 bytes_read, byte_order);
c906108c
SS
2077
2078 /* Extract bits. See comment above. */
2079
4ea48cc1 2080 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 2081 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
2082 else
2083 lsbcount = (bitpos % 8);
2084 val >>= lsbcount;
2085
2086 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2087 If the field is signed, and is negative, then sign extend. */
2088
2089 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2090 {
2091 valmask = (((ULONGEST) 1) << bitsize) - 1;
2092 val &= valmask;
2093 if (!TYPE_UNSIGNED (field_type))
2094 {
2095 if (val & (valmask ^ (valmask >> 1)))
2096 {
2097 val |= ~valmask;
2098 }
2099 }
2100 }
2101 return (val);
2102}
2103
4ea48cc1
DJ
2104/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2105 VALADDR. See unpack_bits_as_long for more details. */
2106
2107LONGEST
2108unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2109{
2110 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2111 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2112 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2113
2114 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2115}
2116
c906108c
SS
2117/* Modify the value of a bitfield. ADDR points to a block of memory in
2118 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2119 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
2120 indicate which bits (in target bit order) comprise the bitfield.
2121 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2122 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2123
2124void
50810684
UW
2125modify_field (struct type *type, gdb_byte *addr,
2126 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2127{
e17a4113 2128 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2129 ULONGEST oword;
2130 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
2131
2132 /* If a negative fieldval fits in the field in question, chop
2133 off the sign extension bits. */
f4e88c8e
PH
2134 if ((~fieldval & ~(mask >> 1)) == 0)
2135 fieldval &= mask;
c906108c
SS
2136
2137 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2138 if (0 != (fieldval & ~mask))
c906108c
SS
2139 {
2140 /* FIXME: would like to include fieldval in the message, but
c5aa993b 2141 we don't have a sprintf_longest. */
8a3fe4f8 2142 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
2143
2144 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 2145 fieldval &= mask;
c906108c
SS
2146 }
2147
e17a4113 2148 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
c906108c
SS
2149
2150 /* Shifting for bit field depends on endianness of the target machine. */
50810684 2151 if (gdbarch_bits_big_endian (get_type_arch (type)))
c906108c
SS
2152 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2153
f4e88c8e 2154 oword &= ~(mask << bitpos);
c906108c
SS
2155 oword |= fieldval << bitpos;
2156
e17a4113 2157 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
c906108c
SS
2158}
2159\f
14d06750 2160/* Pack NUM into BUF using a target format of TYPE. */
c906108c 2161
14d06750
DJ
2162void
2163pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 2164{
e17a4113 2165 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 2166 int len;
14d06750
DJ
2167
2168 type = check_typedef (type);
c906108c
SS
2169 len = TYPE_LENGTH (type);
2170
14d06750 2171 switch (TYPE_CODE (type))
c906108c 2172 {
c906108c
SS
2173 case TYPE_CODE_INT:
2174 case TYPE_CODE_CHAR:
2175 case TYPE_CODE_ENUM:
4f2aea11 2176 case TYPE_CODE_FLAGS:
c906108c
SS
2177 case TYPE_CODE_BOOL:
2178 case TYPE_CODE_RANGE:
0d5de010 2179 case TYPE_CODE_MEMBERPTR:
e17a4113 2180 store_signed_integer (buf, len, byte_order, num);
c906108c 2181 break;
c5aa993b 2182
c906108c
SS
2183 case TYPE_CODE_REF:
2184 case TYPE_CODE_PTR:
14d06750 2185 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 2186 break;
c5aa993b 2187
c906108c 2188 default:
14d06750
DJ
2189 error (_("Unexpected type (%d) encountered for integer constant."),
2190 TYPE_CODE (type));
c906108c 2191 }
14d06750
DJ
2192}
2193
2194
2195/* Convert C numbers into newly allocated values. */
2196
2197struct value *
2198value_from_longest (struct type *type, LONGEST num)
2199{
2200 struct value *val = allocate_value (type);
2201
2202 pack_long (value_contents_raw (val), type, num);
2203
c906108c
SS
2204 return val;
2205}
2206
4478b372
JB
2207
2208/* Create a value representing a pointer of type TYPE to the address
2209 ADDR. */
f23631e4 2210struct value *
4478b372
JB
2211value_from_pointer (struct type *type, CORE_ADDR addr)
2212{
f23631e4 2213 struct value *val = allocate_value (type);
cab0c772 2214 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
2215 return val;
2216}
2217
2218
8acb6b92
TT
2219/* Create a value of type TYPE whose contents come from VALADDR, if it
2220 is non-null, and whose memory address (in the inferior) is
2221 ADDRESS. */
2222
2223struct value *
2224value_from_contents_and_address (struct type *type,
2225 const gdb_byte *valaddr,
2226 CORE_ADDR address)
2227{
2228 struct value *v = allocate_value (type);
2229 if (valaddr == NULL)
2230 set_value_lazy (v, 1);
2231 else
2232 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
42ae5230 2233 set_value_address (v, address);
33d502b4 2234 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
2235 return v;
2236}
2237
f23631e4 2238struct value *
fba45db2 2239value_from_double (struct type *type, DOUBLEST num)
c906108c 2240{
f23631e4 2241 struct value *val = allocate_value (type);
c906108c 2242 struct type *base_type = check_typedef (type);
52f0bd74
AC
2243 enum type_code code = TYPE_CODE (base_type);
2244 int len = TYPE_LENGTH (base_type);
c906108c
SS
2245
2246 if (code == TYPE_CODE_FLT)
2247 {
990a07ab 2248 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
2249 }
2250 else
8a3fe4f8 2251 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
2252
2253 return val;
2254}
994b9211 2255
27bc4d80 2256struct value *
4ef30785 2257value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
2258{
2259 struct value *val = allocate_value (type);
27bc4d80 2260
4ef30785 2261 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80 2262
27bc4d80
TJB
2263 return val;
2264}
2265
994b9211
AC
2266struct value *
2267coerce_ref (struct value *arg)
2268{
df407dfe 2269 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
994b9211
AC
2270 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2271 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 2272 unpack_pointer (value_type (arg),
0fd88904 2273 value_contents (arg)));
994b9211
AC
2274 return arg;
2275}
2276
2277struct value *
2278coerce_array (struct value *arg)
2279{
f3134b88
TT
2280 struct type *type;
2281
994b9211 2282 arg = coerce_ref (arg);
f3134b88
TT
2283 type = check_typedef (value_type (arg));
2284
2285 switch (TYPE_CODE (type))
2286 {
2287 case TYPE_CODE_ARRAY:
2288 if (current_language->c_style_arrays)
2289 arg = value_coerce_array (arg);
2290 break;
2291 case TYPE_CODE_FUNC:
2292 arg = value_coerce_function (arg);
2293 break;
2294 }
994b9211
AC
2295 return arg;
2296}
c906108c 2297\f
c906108c 2298
48436ce6
AC
2299/* Return true if the function returning the specified type is using
2300 the convention of returning structures in memory (passing in the
82585c72 2301 address as a hidden first parameter). */
c906108c
SS
2302
2303int
d80b854b
UW
2304using_struct_return (struct gdbarch *gdbarch,
2305 struct type *func_type, struct type *value_type)
c906108c 2306{
52f0bd74 2307 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
2308
2309 if (code == TYPE_CODE_ERROR)
8a3fe4f8 2310 error (_("Function return type unknown."));
c906108c 2311
667e784f
AC
2312 if (code == TYPE_CODE_VOID)
2313 /* A void return value is never in memory. See also corresponding
44e5158b 2314 code in "print_return_value". */
667e784f
AC
2315 return 0;
2316
92ad9cd9 2317 /* Probe the architecture for the return-value convention. */
d80b854b 2318 return (gdbarch_return_value (gdbarch, func_type, value_type,
92ad9cd9 2319 NULL, NULL, NULL)
31db7b6c 2320 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
2321}
2322
42be36b3
CT
2323/* Set the initialized field in a value struct. */
2324
2325void
2326set_value_initialized (struct value *val, int status)
2327{
2328 val->initialized = status;
2329}
2330
2331/* Return the initialized field in a value struct. */
2332
2333int
2334value_initialized (struct value *val)
2335{
2336 return val->initialized;
2337}
2338
c906108c 2339void
fba45db2 2340_initialize_values (void)
c906108c 2341{
1a966eab
AC
2342 add_cmd ("convenience", no_class, show_convenience, _("\
2343Debugger convenience (\"$foo\") variables.\n\
c906108c 2344These variables are created when you assign them values;\n\
1a966eab
AC
2345thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2346\n\
c906108c
SS
2347A few convenience variables are given values automatically:\n\
2348\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 2349\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
2350 &showlist);
2351
2352 add_cmd ("values", no_class, show_values,
1a966eab 2353 _("Elements of value history around item number IDX (or last ten)."),
c906108c 2354 &showlist);
53e5f3cf
AS
2355
2356 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2357Initialize a convenience variable if necessary.\n\
2358init-if-undefined VARIABLE = EXPRESSION\n\
2359Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2360exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2361VARIABLE is already initialized."));
bc3b79fd
TJB
2362
2363 add_prefix_cmd ("function", no_class, function_command, _("\
2364Placeholder command for showing help on convenience functions."),
2365 &functionlist, "function ", 0, &cmdlist);
c906108c 2366}
This page took 1.15911 seconds and 4 git commands to generate.