Add AVX512 registers support to GDB and GDBserver.
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
ecd75fc8 3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
0e9f083f 22#include <string.h>
c906108c
SS
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "gdbcore.h"
c906108c
SS
27#include "command.h"
28#include "gdbcmd.h"
29#include "target.h"
30#include "language.h"
c906108c 31#include "demangle.h"
d16aafd8 32#include "doublest.h"
5ae326fa 33#include "gdb_assert.h"
36160dc4 34#include "regcache.h"
fe898f56 35#include "block.h"
27bc4d80 36#include "dfp.h"
bccdca4a 37#include "objfiles.h"
79a45b7d 38#include "valprint.h"
bc3b79fd 39#include "cli/cli-decode.h"
8af8e3bc 40#include "exceptions.h"
6dddc817 41#include "extension.h"
3bd0f5ef 42#include <ctype.h>
0914bcdb 43#include "tracepoint.h"
be335936 44#include "cp-abi.h"
a58e2656 45#include "user-regs.h"
0914bcdb 46
581e13c1 47/* Prototypes for exported functions. */
c906108c 48
a14ed312 49void _initialize_values (void);
c906108c 50
bc3b79fd
TJB
51/* Definition of a user function. */
52struct internal_function
53{
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64};
65
4e07d55f
PA
66/* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68struct range
69{
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75};
76
77typedef struct range range_s;
78
79DEF_VEC_O(range_s);
80
81/* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84static int
85ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87{
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93}
94
95/* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100static int
101range_lessthan (const range_s *r1, const range_s *r2)
102{
103 return r1->offset < r2->offset;
104}
105
106/* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109static int
110ranges_contain (VEC(range_s) *ranges, int offset, int length)
111{
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168}
169
bc3b79fd
TJB
170static struct cmd_list_element *functionlist;
171
87784a47
TT
172/* Note that the fields in this structure are arranged to save a bit
173 of memory. */
174
91294c83
AC
175struct value
176{
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
179 enum lval_type lval;
180
181 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
182 unsigned int modifiable : 1;
183
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
188
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
199
901461f8
PA
200 /* If nonzero, this is the value of a variable that does not
201 actually exist in the program. If nonzero, and LVAL is
202 lval_register, this is a register ($pc, $sp, etc., never a
203 program variable) that has not been saved in the frame. All
204 optimized-out values are treated pretty much the same, except
205 registers have a different string representation and related
206 error strings. */
87784a47
TT
207 unsigned int optimized_out : 1;
208
209 /* If value is a variable, is it initialized or not. */
210 unsigned int initialized : 1;
211
212 /* If value is from the stack. If this is set, read_stack will be
213 used instead of read_memory to enable extra caching. */
214 unsigned int stack : 1;
91294c83 215
e848a8a5
TT
216 /* If the value has been released. */
217 unsigned int released : 1;
218
98b1cfdc
TT
219 /* Register number if the value is from a register. */
220 short regnum;
221
91294c83
AC
222 /* Location of value (if lval). */
223 union
224 {
225 /* If lval == lval_memory, this is the address in the inferior.
226 If lval == lval_register, this is the byte offset into the
227 registers structure. */
228 CORE_ADDR address;
229
230 /* Pointer to internal variable. */
231 struct internalvar *internalvar;
5f5233d4
PA
232
233 /* If lval == lval_computed, this is a set of function pointers
234 to use to access and describe the value, and a closure pointer
235 for them to use. */
236 struct
237 {
c8f2448a
JK
238 /* Functions to call. */
239 const struct lval_funcs *funcs;
240
241 /* Closure for those functions to use. */
242 void *closure;
5f5233d4 243 } computed;
91294c83
AC
244 } location;
245
246 /* Describes offset of a value within lval of a structure in bytes.
247 If lval == lval_memory, this is an offset to the address. If
248 lval == lval_register, this is a further offset from
249 location.address within the registers structure. Note also the
250 member embedded_offset below. */
251 int offset;
252
253 /* Only used for bitfields; number of bits contained in them. */
254 int bitsize;
255
256 /* Only used for bitfields; position of start of field. For
32c9a795 257 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 258 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
259 int bitpos;
260
87784a47
TT
261 /* The number of references to this value. When a value is created,
262 the value chain holds a reference, so REFERENCE_COUNT is 1. If
263 release_value is called, this value is removed from the chain but
264 the caller of release_value now has a reference to this value.
265 The caller must arrange for a call to value_free later. */
266 int reference_count;
267
4ea48cc1
DJ
268 /* Only used for bitfields; the containing value. This allows a
269 single read from the target when displaying multiple
270 bitfields. */
271 struct value *parent;
272
91294c83
AC
273 /* Frame register value is relative to. This will be described in
274 the lval enum above as "lval_register". */
275 struct frame_id frame_id;
276
277 /* Type of the value. */
278 struct type *type;
279
280 /* If a value represents a C++ object, then the `type' field gives
281 the object's compile-time type. If the object actually belongs
282 to some class derived from `type', perhaps with other base
283 classes and additional members, then `type' is just a subobject
284 of the real thing, and the full object is probably larger than
285 `type' would suggest.
286
287 If `type' is a dynamic class (i.e. one with a vtable), then GDB
288 can actually determine the object's run-time type by looking at
289 the run-time type information in the vtable. When this
290 information is available, we may elect to read in the entire
291 object, for several reasons:
292
293 - When printing the value, the user would probably rather see the
294 full object, not just the limited portion apparent from the
295 compile-time type.
296
297 - If `type' has virtual base classes, then even printing `type'
298 alone may require reaching outside the `type' portion of the
299 object to wherever the virtual base class has been stored.
300
301 When we store the entire object, `enclosing_type' is the run-time
302 type -- the complete object -- and `embedded_offset' is the
303 offset of `type' within that larger type, in bytes. The
304 value_contents() macro takes `embedded_offset' into account, so
305 most GDB code continues to see the `type' portion of the value,
306 just as the inferior would.
307
308 If `type' is a pointer to an object, then `enclosing_type' is a
309 pointer to the object's run-time type, and `pointed_to_offset' is
310 the offset in bytes from the full object to the pointed-to object
311 -- that is, the value `embedded_offset' would have if we followed
312 the pointer and fetched the complete object. (I don't really see
313 the point. Why not just determine the run-time type when you
314 indirect, and avoid the special case? The contents don't matter
315 until you indirect anyway.)
316
317 If we're not doing anything fancy, `enclosing_type' is equal to
318 `type', and `embedded_offset' is zero, so everything works
319 normally. */
320 struct type *enclosing_type;
321 int embedded_offset;
322 int pointed_to_offset;
323
324 /* Values are stored in a chain, so that they can be deleted easily
325 over calls to the inferior. Values assigned to internal
a08702d6
TJB
326 variables, put into the value history or exposed to Python are
327 taken off this list. */
91294c83
AC
328 struct value *next;
329
3e3d7139
JG
330 /* Actual contents of the value. Target byte-order. NULL or not
331 valid if lazy is nonzero. */
332 gdb_byte *contents;
828d3400 333
4e07d55f
PA
334 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
335 rather than available, since the common and default case is for a
bdf22206
AB
336 value to be available. This is filled in at value read time. The
337 unavailable ranges are tracked in bits. */
4e07d55f 338 VEC(range_s) *unavailable;
91294c83
AC
339};
340
4e07d55f 341int
bdf22206 342value_bits_available (const struct value *value, int offset, int length)
4e07d55f
PA
343{
344 gdb_assert (!value->lazy);
345
346 return !ranges_contain (value->unavailable, offset, length);
347}
348
bdf22206
AB
349int
350value_bytes_available (const struct value *value, int offset, int length)
351{
352 return value_bits_available (value,
353 offset * TARGET_CHAR_BIT,
354 length * TARGET_CHAR_BIT);
355}
356
ec0a52e1
PA
357int
358value_entirely_available (struct value *value)
359{
360 /* We can only tell whether the whole value is available when we try
361 to read it. */
362 if (value->lazy)
363 value_fetch_lazy (value);
364
365 if (VEC_empty (range_s, value->unavailable))
366 return 1;
367 return 0;
368}
369
6211c335
YQ
370int
371value_entirely_unavailable (struct value *value)
372{
373 /* We can only tell whether the whole value is available when we try
374 to read it. */
375 if (value->lazy)
376 value_fetch_lazy (value);
377
378 if (VEC_length (range_s, value->unavailable) == 1)
379 {
380 struct range *t = VEC_index (range_s, value->unavailable, 0);
381
382 if (t->offset == 0
64c46ce4
JB
383 && t->length == (TARGET_CHAR_BIT
384 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
385 return 1;
386 }
387
388 return 0;
389}
390
4e07d55f 391void
bdf22206 392mark_value_bits_unavailable (struct value *value, int offset, int length)
4e07d55f
PA
393{
394 range_s newr;
395 int i;
396
397 /* Insert the range sorted. If there's overlap or the new range
398 would be contiguous with an existing range, merge. */
399
400 newr.offset = offset;
401 newr.length = length;
402
403 /* Do a binary search for the position the given range would be
404 inserted if we only considered the starting OFFSET of ranges.
405 Call that position I. Since we also have LENGTH to care for
406 (this is a range afterall), we need to check if the _previous_
407 range overlaps the I range. E.g., calling R the new range:
408
409 #1 - overlaps with previous
410
411 R
412 |-...-|
413 |---| |---| |------| ... |--|
414 0 1 2 N
415
416 I=1
417
418 In the case #1 above, the binary search would return `I=1',
419 meaning, this OFFSET should be inserted at position 1, and the
420 current position 1 should be pushed further (and become 2). But,
421 note that `0' overlaps with R, so we want to merge them.
422
423 A similar consideration needs to be taken if the new range would
424 be contiguous with the previous range:
425
426 #2 - contiguous with previous
427
428 R
429 |-...-|
430 |--| |---| |------| ... |--|
431 0 1 2 N
432
433 I=1
434
435 If there's no overlap with the previous range, as in:
436
437 #3 - not overlapping and not contiguous
438
439 R
440 |-...-|
441 |--| |---| |------| ... |--|
442 0 1 2 N
443
444 I=1
445
446 or if I is 0:
447
448 #4 - R is the range with lowest offset
449
450 R
451 |-...-|
452 |--| |---| |------| ... |--|
453 0 1 2 N
454
455 I=0
456
457 ... we just push the new range to I.
458
459 All the 4 cases above need to consider that the new range may
460 also overlap several of the ranges that follow, or that R may be
461 contiguous with the following range, and merge. E.g.,
462
463 #5 - overlapping following ranges
464
465 R
466 |------------------------|
467 |--| |---| |------| ... |--|
468 0 1 2 N
469
470 I=0
471
472 or:
473
474 R
475 |-------|
476 |--| |---| |------| ... |--|
477 0 1 2 N
478
479 I=1
480
481 */
482
483 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
484 if (i > 0)
485 {
6bfc80c7 486 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
4e07d55f
PA
487
488 if (ranges_overlap (bef->offset, bef->length, offset, length))
489 {
490 /* #1 */
491 ULONGEST l = min (bef->offset, offset);
492 ULONGEST h = max (bef->offset + bef->length, offset + length);
493
494 bef->offset = l;
495 bef->length = h - l;
496 i--;
497 }
498 else if (offset == bef->offset + bef->length)
499 {
500 /* #2 */
501 bef->length += length;
502 i--;
503 }
504 else
505 {
506 /* #3 */
507 VEC_safe_insert (range_s, value->unavailable, i, &newr);
508 }
509 }
510 else
511 {
512 /* #4 */
513 VEC_safe_insert (range_s, value->unavailable, i, &newr);
514 }
515
516 /* Check whether the ranges following the one we've just added or
517 touched can be folded in (#5 above). */
518 if (i + 1 < VEC_length (range_s, value->unavailable))
519 {
520 struct range *t;
521 struct range *r;
522 int removed = 0;
523 int next = i + 1;
524
525 /* Get the range we just touched. */
526 t = VEC_index (range_s, value->unavailable, i);
527 removed = 0;
528
529 i = next;
530 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
531 if (r->offset <= t->offset + t->length)
532 {
533 ULONGEST l, h;
534
535 l = min (t->offset, r->offset);
536 h = max (t->offset + t->length, r->offset + r->length);
537
538 t->offset = l;
539 t->length = h - l;
540
541 removed++;
542 }
543 else
544 {
545 /* If we couldn't merge this one, we won't be able to
546 merge following ones either, since the ranges are
547 always sorted by OFFSET. */
548 break;
549 }
550
551 if (removed != 0)
552 VEC_block_remove (range_s, value->unavailable, next, removed);
553 }
554}
555
bdf22206
AB
556void
557mark_value_bytes_unavailable (struct value *value, int offset, int length)
558{
559 mark_value_bits_unavailable (value,
560 offset * TARGET_CHAR_BIT,
561 length * TARGET_CHAR_BIT);
562}
563
c8c1c22f
PA
564/* Find the first range in RANGES that overlaps the range defined by
565 OFFSET and LENGTH, starting at element POS in the RANGES vector,
566 Returns the index into RANGES where such overlapping range was
567 found, or -1 if none was found. */
568
569static int
570find_first_range_overlap (VEC(range_s) *ranges, int pos,
571 int offset, int length)
572{
573 range_s *r;
574 int i;
575
576 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
577 if (ranges_overlap (r->offset, r->length, offset, length))
578 return i;
579
580 return -1;
581}
582
bdf22206
AB
583/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
584 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
585 return non-zero.
586
587 It must always be the case that:
588 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
589
590 It is assumed that memory can be accessed from:
591 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
592 to:
593 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
594 / TARGET_CHAR_BIT) */
595static int
596memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
597 const gdb_byte *ptr2, size_t offset2_bits,
598 size_t length_bits)
599{
600 gdb_assert (offset1_bits % TARGET_CHAR_BIT
601 == offset2_bits % TARGET_CHAR_BIT);
602
603 if (offset1_bits % TARGET_CHAR_BIT != 0)
604 {
605 size_t bits;
606 gdb_byte mask, b1, b2;
607
608 /* The offset from the base pointers PTR1 and PTR2 is not a complete
609 number of bytes. A number of bits up to either the next exact
610 byte boundary, or LENGTH_BITS (which ever is sooner) will be
611 compared. */
612 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
613 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
614 mask = (1 << bits) - 1;
615
616 if (length_bits < bits)
617 {
618 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
619 bits = length_bits;
620 }
621
622 /* Now load the two bytes and mask off the bits we care about. */
623 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
624 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
625
626 if (b1 != b2)
627 return 1;
628
629 /* Now update the length and offsets to take account of the bits
630 we've just compared. */
631 length_bits -= bits;
632 offset1_bits += bits;
633 offset2_bits += bits;
634 }
635
636 if (length_bits % TARGET_CHAR_BIT != 0)
637 {
638 size_t bits;
639 size_t o1, o2;
640 gdb_byte mask, b1, b2;
641
642 /* The length is not an exact number of bytes. After the previous
643 IF.. block then the offsets are byte aligned, or the
644 length is zero (in which case this code is not reached). Compare
645 a number of bits at the end of the region, starting from an exact
646 byte boundary. */
647 bits = length_bits % TARGET_CHAR_BIT;
648 o1 = offset1_bits + length_bits - bits;
649 o2 = offset2_bits + length_bits - bits;
650
651 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
652 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
653
654 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
655 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
656
657 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
658 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
659
660 if (b1 != b2)
661 return 1;
662
663 length_bits -= bits;
664 }
665
666 if (length_bits > 0)
667 {
668 /* We've now taken care of any stray "bits" at the start, or end of
669 the region to compare, the remainder can be covered with a simple
670 memcmp. */
671 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
672 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
673 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
674
675 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
676 ptr2 + offset2_bits / TARGET_CHAR_BIT,
677 length_bits / TARGET_CHAR_BIT);
678 }
679
680 /* Length is zero, regions match. */
681 return 0;
682}
683
684/* Helper function for value_available_contents_eq. The only difference is
685 that this function is bit rather than byte based.
686
687 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits with
688 LENGTH bits of VAL2's contents starting at OFFSET2 bits. Return true
689 if the available bits match. */
690
691static int
692value_available_contents_bits_eq (const struct value *val1, int offset1,
693 const struct value *val2, int offset2,
694 int length)
c8c1c22f 695{
c8c1c22f 696 int idx1 = 0, idx2 = 0;
c8c1c22f 697
4eb59108 698 /* See function description in value.h. */
c8c1c22f
PA
699 gdb_assert (!val1->lazy && !val2->lazy);
700
c8c1c22f
PA
701 while (length > 0)
702 {
703 range_s *r1, *r2;
704 ULONGEST l1, h1;
705 ULONGEST l2, h2;
706
707 idx1 = find_first_range_overlap (val1->unavailable, idx1,
708 offset1, length);
709 idx2 = find_first_range_overlap (val2->unavailable, idx2,
710 offset2, length);
711
712 /* The usual case is for both values to be completely available. */
713 if (idx1 == -1 && idx2 == -1)
bdf22206
AB
714 return (memcmp_with_bit_offsets (val1->contents, offset1,
715 val2->contents, offset2,
716 length) == 0);
c8c1c22f
PA
717 /* The contents only match equal if the available set matches as
718 well. */
719 else if (idx1 == -1 || idx2 == -1)
720 return 0;
721
722 gdb_assert (idx1 != -1 && idx2 != -1);
723
724 r1 = VEC_index (range_s, val1->unavailable, idx1);
725 r2 = VEC_index (range_s, val2->unavailable, idx2);
726
727 /* Get the unavailable windows intersected by the incoming
728 ranges. The first and last ranges that overlap the argument
729 range may be wider than said incoming arguments ranges. */
730 l1 = max (offset1, r1->offset);
731 h1 = min (offset1 + length, r1->offset + r1->length);
732
733 l2 = max (offset2, r2->offset);
734 h2 = min (offset2 + length, r2->offset + r2->length);
735
736 /* Make them relative to the respective start offsets, so we can
737 compare them for equality. */
738 l1 -= offset1;
739 h1 -= offset1;
740
741 l2 -= offset2;
742 h2 -= offset2;
743
744 /* Different availability, no match. */
745 if (l1 != l2 || h1 != h2)
746 return 0;
747
748 /* Compare the _available_ contents. */
bdf22206
AB
749 if (memcmp_with_bit_offsets (val1->contents, offset1,
750 val2->contents, offset2, l1) != 0)
c8c1c22f
PA
751 return 0;
752
c8c1c22f
PA
753 length -= h1;
754 offset1 += h1;
755 offset2 += h1;
756 }
757
758 return 1;
759}
760
bdf22206
AB
761int
762value_available_contents_eq (const struct value *val1, int offset1,
763 const struct value *val2, int offset2,
764 int length)
765{
766 return value_available_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
767 val2, offset2 * TARGET_CHAR_BIT,
768 length * TARGET_CHAR_BIT);
769}
770
581e13c1 771/* Prototypes for local functions. */
c906108c 772
a14ed312 773static void show_values (char *, int);
c906108c 774
a14ed312 775static void show_convenience (char *, int);
c906108c 776
c906108c
SS
777
778/* The value-history records all the values printed
779 by print commands during this session. Each chunk
780 records 60 consecutive values. The first chunk on
781 the chain records the most recent values.
782 The total number of values is in value_history_count. */
783
784#define VALUE_HISTORY_CHUNK 60
785
786struct value_history_chunk
c5aa993b
JM
787 {
788 struct value_history_chunk *next;
f23631e4 789 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 790 };
c906108c
SS
791
792/* Chain of chunks now in use. */
793
794static struct value_history_chunk *value_history_chain;
795
581e13c1 796static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 797
c906108c
SS
798\f
799/* List of all value objects currently allocated
800 (except for those released by calls to release_value)
801 This is so they can be freed after each command. */
802
f23631e4 803static struct value *all_values;
c906108c 804
3e3d7139
JG
805/* Allocate a lazy value for type TYPE. Its actual content is
806 "lazily" allocated too: the content field of the return value is
807 NULL; it will be allocated when it is fetched from the target. */
c906108c 808
f23631e4 809struct value *
3e3d7139 810allocate_value_lazy (struct type *type)
c906108c 811{
f23631e4 812 struct value *val;
c54eabfa
JK
813
814 /* Call check_typedef on our type to make sure that, if TYPE
815 is a TYPE_CODE_TYPEDEF, its length is set to the length
816 of the target type instead of zero. However, we do not
817 replace the typedef type by the target type, because we want
818 to keep the typedef in order to be able to set the VAL's type
819 description correctly. */
820 check_typedef (type);
c906108c 821
3e3d7139
JG
822 val = (struct value *) xzalloc (sizeof (struct value));
823 val->contents = NULL;
df407dfe 824 val->next = all_values;
c906108c 825 all_values = val;
df407dfe 826 val->type = type;
4754a64e 827 val->enclosing_type = type;
c906108c 828 VALUE_LVAL (val) = not_lval;
42ae5230 829 val->location.address = 0;
1df6926e 830 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
831 val->offset = 0;
832 val->bitpos = 0;
833 val->bitsize = 0;
9ee8fc9d 834 VALUE_REGNUM (val) = -1;
3e3d7139 835 val->lazy = 1;
feb13ab0 836 val->optimized_out = 0;
13c3b5f5 837 val->embedded_offset = 0;
b44d461b 838 val->pointed_to_offset = 0;
c906108c 839 val->modifiable = 1;
42be36b3 840 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
841
842 /* Values start out on the all_values chain. */
843 val->reference_count = 1;
844
c906108c
SS
845 return val;
846}
847
3e3d7139
JG
848/* Allocate the contents of VAL if it has not been allocated yet. */
849
548b762d 850static void
3e3d7139
JG
851allocate_value_contents (struct value *val)
852{
853 if (!val->contents)
854 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
855}
856
857/* Allocate a value and its contents for type TYPE. */
858
859struct value *
860allocate_value (struct type *type)
861{
862 struct value *val = allocate_value_lazy (type);
a109c7c1 863
3e3d7139
JG
864 allocate_value_contents (val);
865 val->lazy = 0;
866 return val;
867}
868
c906108c 869/* Allocate a value that has the correct length
938f5214 870 for COUNT repetitions of type TYPE. */
c906108c 871
f23631e4 872struct value *
fba45db2 873allocate_repeat_value (struct type *type, int count)
c906108c 874{
c5aa993b 875 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
876 /* FIXME-type-allocation: need a way to free this type when we are
877 done with it. */
e3506a9f
UW
878 struct type *array_type
879 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 880
e3506a9f 881 return allocate_value (array_type);
c906108c
SS
882}
883
5f5233d4
PA
884struct value *
885allocate_computed_value (struct type *type,
c8f2448a 886 const struct lval_funcs *funcs,
5f5233d4
PA
887 void *closure)
888{
41e8491f 889 struct value *v = allocate_value_lazy (type);
a109c7c1 890
5f5233d4
PA
891 VALUE_LVAL (v) = lval_computed;
892 v->location.computed.funcs = funcs;
893 v->location.computed.closure = closure;
5f5233d4
PA
894
895 return v;
896}
897
a7035dbb
JK
898/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
899
900struct value *
901allocate_optimized_out_value (struct type *type)
902{
903 struct value *retval = allocate_value_lazy (type);
904
905 set_value_optimized_out (retval, 1);
4f14910f 906 set_value_lazy (retval, 0);
a7035dbb
JK
907 return retval;
908}
909
df407dfe
AC
910/* Accessor methods. */
911
17cf0ecd
AC
912struct value *
913value_next (struct value *value)
914{
915 return value->next;
916}
917
df407dfe 918struct type *
0e03807e 919value_type (const struct value *value)
df407dfe
AC
920{
921 return value->type;
922}
04624583
AC
923void
924deprecated_set_value_type (struct value *value, struct type *type)
925{
926 value->type = type;
927}
df407dfe
AC
928
929int
0e03807e 930value_offset (const struct value *value)
df407dfe
AC
931{
932 return value->offset;
933}
f5cf64a7
AC
934void
935set_value_offset (struct value *value, int offset)
936{
937 value->offset = offset;
938}
df407dfe
AC
939
940int
0e03807e 941value_bitpos (const struct value *value)
df407dfe
AC
942{
943 return value->bitpos;
944}
9bbda503
AC
945void
946set_value_bitpos (struct value *value, int bit)
947{
948 value->bitpos = bit;
949}
df407dfe
AC
950
951int
0e03807e 952value_bitsize (const struct value *value)
df407dfe
AC
953{
954 return value->bitsize;
955}
9bbda503
AC
956void
957set_value_bitsize (struct value *value, int bit)
958{
959 value->bitsize = bit;
960}
df407dfe 961
4ea48cc1
DJ
962struct value *
963value_parent (struct value *value)
964{
965 return value->parent;
966}
967
53ba8333
JB
968/* See value.h. */
969
970void
971set_value_parent (struct value *value, struct value *parent)
972{
40501e00
TT
973 struct value *old = value->parent;
974
53ba8333 975 value->parent = parent;
40501e00
TT
976 if (parent != NULL)
977 value_incref (parent);
978 value_free (old);
53ba8333
JB
979}
980
fc1a4b47 981gdb_byte *
990a07ab
AC
982value_contents_raw (struct value *value)
983{
3e3d7139
JG
984 allocate_value_contents (value);
985 return value->contents + value->embedded_offset;
990a07ab
AC
986}
987
fc1a4b47 988gdb_byte *
990a07ab
AC
989value_contents_all_raw (struct value *value)
990{
3e3d7139
JG
991 allocate_value_contents (value);
992 return value->contents;
990a07ab
AC
993}
994
4754a64e
AC
995struct type *
996value_enclosing_type (struct value *value)
997{
998 return value->enclosing_type;
999}
1000
8264ba82
AG
1001/* Look at value.h for description. */
1002
1003struct type *
1004value_actual_type (struct value *value, int resolve_simple_types,
1005 int *real_type_found)
1006{
1007 struct value_print_options opts;
8264ba82
AG
1008 struct type *result;
1009
1010 get_user_print_options (&opts);
1011
1012 if (real_type_found)
1013 *real_type_found = 0;
1014 result = value_type (value);
1015 if (opts.objectprint)
1016 {
5e34c6c3
LM
1017 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1018 fetch its rtti type. */
1019 if ((TYPE_CODE (result) == TYPE_CODE_PTR
8264ba82 1020 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3
LM
1021 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1022 == TYPE_CODE_STRUCT)
8264ba82
AG
1023 {
1024 struct type *real_type;
1025
1026 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1027 if (real_type)
1028 {
1029 if (real_type_found)
1030 *real_type_found = 1;
1031 result = real_type;
1032 }
1033 }
1034 else if (resolve_simple_types)
1035 {
1036 if (real_type_found)
1037 *real_type_found = 1;
1038 result = value_enclosing_type (value);
1039 }
1040 }
1041
1042 return result;
1043}
1044
901461f8
PA
1045void
1046error_value_optimized_out (void)
1047{
1048 error (_("value has been optimized out"));
1049}
1050
0e03807e 1051static void
4e07d55f 1052require_not_optimized_out (const struct value *value)
0e03807e
TT
1053{
1054 if (value->optimized_out)
901461f8
PA
1055 {
1056 if (value->lval == lval_register)
1057 error (_("register has not been saved in frame"));
1058 else
1059 error_value_optimized_out ();
1060 }
0e03807e
TT
1061}
1062
4e07d55f
PA
1063static void
1064require_available (const struct value *value)
1065{
1066 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1067 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1068}
1069
fc1a4b47 1070const gdb_byte *
0e03807e 1071value_contents_for_printing (struct value *value)
46615f07
AC
1072{
1073 if (value->lazy)
1074 value_fetch_lazy (value);
3e3d7139 1075 return value->contents;
46615f07
AC
1076}
1077
de4127a3
PA
1078const gdb_byte *
1079value_contents_for_printing_const (const struct value *value)
1080{
1081 gdb_assert (!value->lazy);
1082 return value->contents;
1083}
1084
0e03807e
TT
1085const gdb_byte *
1086value_contents_all (struct value *value)
1087{
1088 const gdb_byte *result = value_contents_for_printing (value);
1089 require_not_optimized_out (value);
4e07d55f 1090 require_available (value);
0e03807e
TT
1091 return result;
1092}
1093
29976f3f
PA
1094/* Copy LENGTH bytes of SRC value's (all) contents
1095 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1096 contents, starting at DST_OFFSET. If unavailable contents are
1097 being copied from SRC, the corresponding DST contents are marked
1098 unavailable accordingly. Neither DST nor SRC may be lazy
1099 values.
1100
1101 It is assumed the contents of DST in the [DST_OFFSET,
1102 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1103
1104void
1105value_contents_copy_raw (struct value *dst, int dst_offset,
1106 struct value *src, int src_offset, int length)
1107{
1108 range_s *r;
1109 int i;
bdf22206 1110 int src_bit_offset, dst_bit_offset, bit_length;
39d37385
PA
1111
1112 /* A lazy DST would make that this copy operation useless, since as
1113 soon as DST's contents were un-lazied (by a later value_contents
1114 call, say), the contents would be overwritten. A lazy SRC would
1115 mean we'd be copying garbage. */
1116 gdb_assert (!dst->lazy && !src->lazy);
1117
29976f3f
PA
1118 /* The overwritten DST range gets unavailability ORed in, not
1119 replaced. Make sure to remember to implement replacing if it
1120 turns out actually necessary. */
1121 gdb_assert (value_bytes_available (dst, dst_offset, length));
1122
39d37385
PA
1123 /* Copy the data. */
1124 memcpy (value_contents_all_raw (dst) + dst_offset,
1125 value_contents_all_raw (src) + src_offset,
1126 length);
1127
1128 /* Copy the meta-data, adjusted. */
bdf22206
AB
1129 src_bit_offset = src_offset * TARGET_CHAR_BIT;
1130 dst_bit_offset = dst_offset * TARGET_CHAR_BIT;
1131 bit_length = length * TARGET_CHAR_BIT;
39d37385
PA
1132 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
1133 {
1134 ULONGEST h, l;
1135
bdf22206
AB
1136 l = max (r->offset, src_bit_offset);
1137 h = min (r->offset + r->length, src_bit_offset + bit_length);
39d37385
PA
1138
1139 if (l < h)
bdf22206
AB
1140 mark_value_bits_unavailable (dst,
1141 dst_bit_offset + (l - src_bit_offset),
1142 h - l);
39d37385
PA
1143 }
1144}
1145
29976f3f
PA
1146/* Copy LENGTH bytes of SRC value's (all) contents
1147 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1148 (all) contents, starting at DST_OFFSET. If unavailable contents
1149 are being copied from SRC, the corresponding DST contents are
1150 marked unavailable accordingly. DST must not be lazy. If SRC is
1151 lazy, it will be fetched now. If SRC is not valid (is optimized
1152 out), an error is thrown.
1153
1154 It is assumed the contents of DST in the [DST_OFFSET,
1155 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1156
1157void
1158value_contents_copy (struct value *dst, int dst_offset,
1159 struct value *src, int src_offset, int length)
1160{
1161 require_not_optimized_out (src);
1162
1163 if (src->lazy)
1164 value_fetch_lazy (src);
1165
1166 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1167}
1168
d69fe07e
AC
1169int
1170value_lazy (struct value *value)
1171{
1172 return value->lazy;
1173}
1174
dfa52d88
AC
1175void
1176set_value_lazy (struct value *value, int val)
1177{
1178 value->lazy = val;
1179}
1180
4e5d721f
DE
1181int
1182value_stack (struct value *value)
1183{
1184 return value->stack;
1185}
1186
1187void
1188set_value_stack (struct value *value, int val)
1189{
1190 value->stack = val;
1191}
1192
fc1a4b47 1193const gdb_byte *
0fd88904
AC
1194value_contents (struct value *value)
1195{
0e03807e
TT
1196 const gdb_byte *result = value_contents_writeable (value);
1197 require_not_optimized_out (value);
4e07d55f 1198 require_available (value);
0e03807e 1199 return result;
0fd88904
AC
1200}
1201
fc1a4b47 1202gdb_byte *
0fd88904
AC
1203value_contents_writeable (struct value *value)
1204{
1205 if (value->lazy)
1206 value_fetch_lazy (value);
fc0c53a0 1207 return value_contents_raw (value);
0fd88904
AC
1208}
1209
a6c442d8
MK
1210/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
1211 this function is different from value_equal; in C the operator ==
1212 can return 0 even if the two values being compared are equal. */
1213
1214int
1215value_contents_equal (struct value *val1, struct value *val2)
1216{
1217 struct type *type1;
1218 struct type *type2;
a6c442d8
MK
1219
1220 type1 = check_typedef (value_type (val1));
1221 type2 = check_typedef (value_type (val2));
744a8059 1222 if (TYPE_LENGTH (type1) != TYPE_LENGTH (type2))
a6c442d8
MK
1223 return 0;
1224
744a8059
SP
1225 return (memcmp (value_contents (val1), value_contents (val2),
1226 TYPE_LENGTH (type1)) == 0);
a6c442d8
MK
1227}
1228
feb13ab0
AC
1229int
1230value_optimized_out (struct value *value)
1231{
691a26f5
AB
1232 /* We can only know if a value is optimized out once we have tried to
1233 fetch it. */
1234 if (!value->optimized_out && value->lazy)
1235 value_fetch_lazy (value);
1236
feb13ab0
AC
1237 return value->optimized_out;
1238}
1239
eca07816
JB
1240int
1241value_optimized_out_const (const struct value *value)
1242{
1243 return value->optimized_out;
1244}
1245
feb13ab0
AC
1246void
1247set_value_optimized_out (struct value *value, int val)
1248{
1249 value->optimized_out = val;
1250}
13c3b5f5 1251
0e03807e
TT
1252int
1253value_entirely_optimized_out (const struct value *value)
1254{
1255 if (!value->optimized_out)
1256 return 0;
1257 if (value->lval != lval_computed
ba19bb4d 1258 || !value->location.computed.funcs->check_any_valid)
0e03807e 1259 return 1;
b65c7efe 1260 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
1261}
1262
1263int
1264value_bits_valid (const struct value *value, int offset, int length)
1265{
466c1fca
AB
1266 if (!value->optimized_out)
1267 return 1;
0e03807e
TT
1268 if (value->lval != lval_computed
1269 || !value->location.computed.funcs->check_validity)
466c1fca
AB
1270 return 0;
1271 return value->location.computed.funcs->check_validity (value, offset,
1272 length);
0e03807e
TT
1273}
1274
8cf6f0b1
TT
1275int
1276value_bits_synthetic_pointer (const struct value *value,
1277 int offset, int length)
1278{
e7303042 1279 if (value->lval != lval_computed
8cf6f0b1
TT
1280 || !value->location.computed.funcs->check_synthetic_pointer)
1281 return 0;
1282 return value->location.computed.funcs->check_synthetic_pointer (value,
1283 offset,
1284 length);
1285}
1286
13c3b5f5
AC
1287int
1288value_embedded_offset (struct value *value)
1289{
1290 return value->embedded_offset;
1291}
1292
1293void
1294set_value_embedded_offset (struct value *value, int val)
1295{
1296 value->embedded_offset = val;
1297}
b44d461b
AC
1298
1299int
1300value_pointed_to_offset (struct value *value)
1301{
1302 return value->pointed_to_offset;
1303}
1304
1305void
1306set_value_pointed_to_offset (struct value *value, int val)
1307{
1308 value->pointed_to_offset = val;
1309}
13bb5560 1310
c8f2448a 1311const struct lval_funcs *
a471c594 1312value_computed_funcs (const struct value *v)
5f5233d4 1313{
a471c594 1314 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1315
1316 return v->location.computed.funcs;
1317}
1318
1319void *
0e03807e 1320value_computed_closure (const struct value *v)
5f5233d4 1321{
0e03807e 1322 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1323
1324 return v->location.computed.closure;
1325}
1326
13bb5560
AC
1327enum lval_type *
1328deprecated_value_lval_hack (struct value *value)
1329{
1330 return &value->lval;
1331}
1332
a471c594
JK
1333enum lval_type
1334value_lval_const (const struct value *value)
1335{
1336 return value->lval;
1337}
1338
42ae5230 1339CORE_ADDR
de4127a3 1340value_address (const struct value *value)
42ae5230
TT
1341{
1342 if (value->lval == lval_internalvar
1343 || value->lval == lval_internalvar_component)
1344 return 0;
53ba8333
JB
1345 if (value->parent != NULL)
1346 return value_address (value->parent) + value->offset;
1347 else
1348 return value->location.address + value->offset;
42ae5230
TT
1349}
1350
1351CORE_ADDR
1352value_raw_address (struct value *value)
1353{
1354 if (value->lval == lval_internalvar
1355 || value->lval == lval_internalvar_component)
1356 return 0;
1357 return value->location.address;
1358}
1359
1360void
1361set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1362{
42ae5230
TT
1363 gdb_assert (value->lval != lval_internalvar
1364 && value->lval != lval_internalvar_component);
1365 value->location.address = addr;
13bb5560
AC
1366}
1367
1368struct internalvar **
1369deprecated_value_internalvar_hack (struct value *value)
1370{
1371 return &value->location.internalvar;
1372}
1373
1374struct frame_id *
1375deprecated_value_frame_id_hack (struct value *value)
1376{
1377 return &value->frame_id;
1378}
1379
1380short *
1381deprecated_value_regnum_hack (struct value *value)
1382{
1383 return &value->regnum;
1384}
88e3b34b
AC
1385
1386int
1387deprecated_value_modifiable (struct value *value)
1388{
1389 return value->modifiable;
1390}
990a07ab 1391\f
c906108c
SS
1392/* Return a mark in the value chain. All values allocated after the
1393 mark is obtained (except for those released) are subject to being freed
1394 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1395struct value *
fba45db2 1396value_mark (void)
c906108c
SS
1397{
1398 return all_values;
1399}
1400
828d3400
DJ
1401/* Take a reference to VAL. VAL will not be deallocated until all
1402 references are released. */
1403
1404void
1405value_incref (struct value *val)
1406{
1407 val->reference_count++;
1408}
1409
1410/* Release a reference to VAL, which was acquired with value_incref.
1411 This function is also called to deallocate values from the value
1412 chain. */
1413
3e3d7139
JG
1414void
1415value_free (struct value *val)
1416{
1417 if (val)
5f5233d4 1418 {
828d3400
DJ
1419 gdb_assert (val->reference_count > 0);
1420 val->reference_count--;
1421 if (val->reference_count > 0)
1422 return;
1423
4ea48cc1
DJ
1424 /* If there's an associated parent value, drop our reference to
1425 it. */
1426 if (val->parent != NULL)
1427 value_free (val->parent);
1428
5f5233d4
PA
1429 if (VALUE_LVAL (val) == lval_computed)
1430 {
c8f2448a 1431 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1432
1433 if (funcs->free_closure)
1434 funcs->free_closure (val);
1435 }
1436
1437 xfree (val->contents);
4e07d55f 1438 VEC_free (range_s, val->unavailable);
5f5233d4 1439 }
3e3d7139
JG
1440 xfree (val);
1441}
1442
c906108c
SS
1443/* Free all values allocated since MARK was obtained by value_mark
1444 (except for those released). */
1445void
f23631e4 1446value_free_to_mark (struct value *mark)
c906108c 1447{
f23631e4
AC
1448 struct value *val;
1449 struct value *next;
c906108c
SS
1450
1451 for (val = all_values; val && val != mark; val = next)
1452 {
df407dfe 1453 next = val->next;
e848a8a5 1454 val->released = 1;
c906108c
SS
1455 value_free (val);
1456 }
1457 all_values = val;
1458}
1459
1460/* Free all the values that have been allocated (except for those released).
725e88af
DE
1461 Call after each command, successful or not.
1462 In practice this is called before each command, which is sufficient. */
c906108c
SS
1463
1464void
fba45db2 1465free_all_values (void)
c906108c 1466{
f23631e4
AC
1467 struct value *val;
1468 struct value *next;
c906108c
SS
1469
1470 for (val = all_values; val; val = next)
1471 {
df407dfe 1472 next = val->next;
e848a8a5 1473 val->released = 1;
c906108c
SS
1474 value_free (val);
1475 }
1476
1477 all_values = 0;
1478}
1479
0cf6dd15
TJB
1480/* Frees all the elements in a chain of values. */
1481
1482void
1483free_value_chain (struct value *v)
1484{
1485 struct value *next;
1486
1487 for (; v; v = next)
1488 {
1489 next = value_next (v);
1490 value_free (v);
1491 }
1492}
1493
c906108c
SS
1494/* Remove VAL from the chain all_values
1495 so it will not be freed automatically. */
1496
1497void
f23631e4 1498release_value (struct value *val)
c906108c 1499{
f23631e4 1500 struct value *v;
c906108c
SS
1501
1502 if (all_values == val)
1503 {
1504 all_values = val->next;
06a64a0b 1505 val->next = NULL;
e848a8a5 1506 val->released = 1;
c906108c
SS
1507 return;
1508 }
1509
1510 for (v = all_values; v; v = v->next)
1511 {
1512 if (v->next == val)
1513 {
1514 v->next = val->next;
06a64a0b 1515 val->next = NULL;
e848a8a5 1516 val->released = 1;
c906108c
SS
1517 break;
1518 }
1519 }
1520}
1521
e848a8a5
TT
1522/* If the value is not already released, release it.
1523 If the value is already released, increment its reference count.
1524 That is, this function ensures that the value is released from the
1525 value chain and that the caller owns a reference to it. */
1526
1527void
1528release_value_or_incref (struct value *val)
1529{
1530 if (val->released)
1531 value_incref (val);
1532 else
1533 release_value (val);
1534}
1535
c906108c 1536/* Release all values up to mark */
f23631e4
AC
1537struct value *
1538value_release_to_mark (struct value *mark)
c906108c 1539{
f23631e4
AC
1540 struct value *val;
1541 struct value *next;
c906108c 1542
df407dfe 1543 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1544 {
1545 if (next->next == mark)
1546 {
1547 all_values = next->next;
1548 next->next = NULL;
1549 return val;
1550 }
1551 next->released = 1;
1552 }
c906108c
SS
1553 all_values = 0;
1554 return val;
1555}
1556
1557/* Return a copy of the value ARG.
1558 It contains the same contents, for same memory address,
1559 but it's a different block of storage. */
1560
f23631e4
AC
1561struct value *
1562value_copy (struct value *arg)
c906108c 1563{
4754a64e 1564 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1565 struct value *val;
1566
1567 if (value_lazy (arg))
1568 val = allocate_value_lazy (encl_type);
1569 else
1570 val = allocate_value (encl_type);
df407dfe 1571 val->type = arg->type;
c906108c 1572 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1573 val->location = arg->location;
df407dfe
AC
1574 val->offset = arg->offset;
1575 val->bitpos = arg->bitpos;
1576 val->bitsize = arg->bitsize;
1df6926e 1577 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1578 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1579 val->lazy = arg->lazy;
feb13ab0 1580 val->optimized_out = arg->optimized_out;
13c3b5f5 1581 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1582 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1583 val->modifiable = arg->modifiable;
d69fe07e 1584 if (!value_lazy (val))
c906108c 1585 {
990a07ab 1586 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1587 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1588
1589 }
4e07d55f 1590 val->unavailable = VEC_copy (range_s, arg->unavailable);
40501e00 1591 set_value_parent (val, arg->parent);
5f5233d4
PA
1592 if (VALUE_LVAL (val) == lval_computed)
1593 {
c8f2448a 1594 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1595
1596 if (funcs->copy_closure)
1597 val->location.computed.closure = funcs->copy_closure (val);
1598 }
c906108c
SS
1599 return val;
1600}
74bcbdf3 1601
c37f7098
KW
1602/* Return a version of ARG that is non-lvalue. */
1603
1604struct value *
1605value_non_lval (struct value *arg)
1606{
1607 if (VALUE_LVAL (arg) != not_lval)
1608 {
1609 struct type *enc_type = value_enclosing_type (arg);
1610 struct value *val = allocate_value (enc_type);
1611
1612 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1613 TYPE_LENGTH (enc_type));
1614 val->type = arg->type;
1615 set_value_embedded_offset (val, value_embedded_offset (arg));
1616 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1617 return val;
1618 }
1619 return arg;
1620}
1621
74bcbdf3 1622void
0e03807e
TT
1623set_value_component_location (struct value *component,
1624 const struct value *whole)
74bcbdf3 1625{
0e03807e 1626 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1627 VALUE_LVAL (component) = lval_internalvar_component;
1628 else
0e03807e 1629 VALUE_LVAL (component) = whole->lval;
5f5233d4 1630
74bcbdf3 1631 component->location = whole->location;
0e03807e 1632 if (whole->lval == lval_computed)
5f5233d4 1633 {
c8f2448a 1634 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1635
1636 if (funcs->copy_closure)
1637 component->location.computed.closure = funcs->copy_closure (whole);
1638 }
74bcbdf3
PA
1639}
1640
c906108c
SS
1641\f
1642/* Access to the value history. */
1643
1644/* Record a new value in the value history.
eddf0bae 1645 Returns the absolute history index of the entry. */
c906108c
SS
1646
1647int
f23631e4 1648record_latest_value (struct value *val)
c906108c
SS
1649{
1650 int i;
1651
1652 /* We don't want this value to have anything to do with the inferior anymore.
1653 In particular, "set $1 = 50" should not affect the variable from which
1654 the value was taken, and fast watchpoints should be able to assume that
1655 a value on the value history never changes. */
d69fe07e 1656 if (value_lazy (val))
c906108c
SS
1657 value_fetch_lazy (val);
1658 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1659 from. This is a bit dubious, because then *&$1 does not just return $1
1660 but the current contents of that location. c'est la vie... */
1661 val->modifiable = 0;
350e1a76
DE
1662
1663 /* The value may have already been released, in which case we're adding a
1664 new reference for its entry in the history. That is why we call
1665 release_value_or_incref here instead of release_value. */
1666 release_value_or_incref (val);
c906108c
SS
1667
1668 /* Here we treat value_history_count as origin-zero
1669 and applying to the value being stored now. */
1670
1671 i = value_history_count % VALUE_HISTORY_CHUNK;
1672 if (i == 0)
1673 {
f23631e4 1674 struct value_history_chunk *new
a109c7c1
MS
1675 = (struct value_history_chunk *)
1676
c5aa993b 1677 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
1678 memset (new->values, 0, sizeof new->values);
1679 new->next = value_history_chain;
1680 value_history_chain = new;
1681 }
1682
1683 value_history_chain->values[i] = val;
1684
1685 /* Now we regard value_history_count as origin-one
1686 and applying to the value just stored. */
1687
1688 return ++value_history_count;
1689}
1690
1691/* Return a copy of the value in the history with sequence number NUM. */
1692
f23631e4 1693struct value *
fba45db2 1694access_value_history (int num)
c906108c 1695{
f23631e4 1696 struct value_history_chunk *chunk;
52f0bd74
AC
1697 int i;
1698 int absnum = num;
c906108c
SS
1699
1700 if (absnum <= 0)
1701 absnum += value_history_count;
1702
1703 if (absnum <= 0)
1704 {
1705 if (num == 0)
8a3fe4f8 1706 error (_("The history is empty."));
c906108c 1707 else if (num == 1)
8a3fe4f8 1708 error (_("There is only one value in the history."));
c906108c 1709 else
8a3fe4f8 1710 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1711 }
1712 if (absnum > value_history_count)
8a3fe4f8 1713 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1714
1715 absnum--;
1716
1717 /* Now absnum is always absolute and origin zero. */
1718
1719 chunk = value_history_chain;
3e43a32a
MS
1720 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1721 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1722 i > 0; i--)
1723 chunk = chunk->next;
1724
1725 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1726}
1727
c906108c 1728static void
fba45db2 1729show_values (char *num_exp, int from_tty)
c906108c 1730{
52f0bd74 1731 int i;
f23631e4 1732 struct value *val;
c906108c
SS
1733 static int num = 1;
1734
1735 if (num_exp)
1736 {
f132ba9d
TJB
1737 /* "show values +" should print from the stored position.
1738 "show values <exp>" should print around value number <exp>. */
c906108c 1739 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1740 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1741 }
1742 else
1743 {
f132ba9d 1744 /* "show values" means print the last 10 values. */
c906108c
SS
1745 num = value_history_count - 9;
1746 }
1747
1748 if (num <= 0)
1749 num = 1;
1750
1751 for (i = num; i < num + 10 && i <= value_history_count; i++)
1752 {
79a45b7d 1753 struct value_print_options opts;
a109c7c1 1754
c906108c 1755 val = access_value_history (i);
a3f17187 1756 printf_filtered (("$%d = "), i);
79a45b7d
TT
1757 get_user_print_options (&opts);
1758 value_print (val, gdb_stdout, &opts);
a3f17187 1759 printf_filtered (("\n"));
c906108c
SS
1760 }
1761
f132ba9d 1762 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1763 num += 10;
1764
1765 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1766 "show values +". If num_exp is null, this is unnecessary, since
1767 "show values +" is not useful after "show values". */
c906108c
SS
1768 if (from_tty && num_exp)
1769 {
1770 num_exp[0] = '+';
1771 num_exp[1] = '\0';
1772 }
1773}
1774\f
1775/* Internal variables. These are variables within the debugger
1776 that hold values assigned by debugger commands.
1777 The user refers to them with a '$' prefix
1778 that does not appear in the variable names stored internally. */
1779
4fa62494
UW
1780struct internalvar
1781{
1782 struct internalvar *next;
1783 char *name;
4fa62494 1784
78267919
UW
1785 /* We support various different kinds of content of an internal variable.
1786 enum internalvar_kind specifies the kind, and union internalvar_data
1787 provides the data associated with this particular kind. */
1788
1789 enum internalvar_kind
1790 {
1791 /* The internal variable is empty. */
1792 INTERNALVAR_VOID,
1793
1794 /* The value of the internal variable is provided directly as
1795 a GDB value object. */
1796 INTERNALVAR_VALUE,
1797
1798 /* A fresh value is computed via a call-back routine on every
1799 access to the internal variable. */
1800 INTERNALVAR_MAKE_VALUE,
4fa62494 1801
78267919
UW
1802 /* The internal variable holds a GDB internal convenience function. */
1803 INTERNALVAR_FUNCTION,
1804
cab0c772
UW
1805 /* The variable holds an integer value. */
1806 INTERNALVAR_INTEGER,
1807
78267919
UW
1808 /* The variable holds a GDB-provided string. */
1809 INTERNALVAR_STRING,
1810
1811 } kind;
4fa62494 1812
4fa62494
UW
1813 union internalvar_data
1814 {
78267919
UW
1815 /* A value object used with INTERNALVAR_VALUE. */
1816 struct value *value;
1817
1818 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
22d2b532
SDJ
1819 struct
1820 {
1821 /* The functions to call. */
1822 const struct internalvar_funcs *functions;
1823
1824 /* The function's user-data. */
1825 void *data;
1826 } make_value;
78267919
UW
1827
1828 /* The internal function used with INTERNALVAR_FUNCTION. */
1829 struct
1830 {
1831 struct internal_function *function;
1832 /* True if this is the canonical name for the function. */
1833 int canonical;
1834 } fn;
1835
cab0c772 1836 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1837 struct
1838 {
1839 /* If type is non-NULL, it will be used as the type to generate
1840 a value for this internal variable. If type is NULL, a default
1841 integer type for the architecture is used. */
1842 struct type *type;
cab0c772
UW
1843 LONGEST val;
1844 } integer;
1845
78267919
UW
1846 /* A string value used with INTERNALVAR_STRING. */
1847 char *string;
4fa62494
UW
1848 } u;
1849};
1850
c906108c
SS
1851static struct internalvar *internalvars;
1852
3e43a32a
MS
1853/* If the variable does not already exist create it and give it the
1854 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1855static void
1856init_if_undefined_command (char* args, int from_tty)
1857{
1858 struct internalvar* intvar;
1859
1860 /* Parse the expression - this is taken from set_command(). */
1861 struct expression *expr = parse_expression (args);
1862 register struct cleanup *old_chain =
1863 make_cleanup (free_current_contents, &expr);
1864
1865 /* Validate the expression.
1866 Was the expression an assignment?
1867 Or even an expression at all? */
1868 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1869 error (_("Init-if-undefined requires an assignment expression."));
1870
1871 /* Extract the variable from the parsed expression.
1872 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1873 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1874 error (_("The first parameter to init-if-undefined "
1875 "should be a GDB variable."));
53e5f3cf
AS
1876 intvar = expr->elts[2].internalvar;
1877
1878 /* Only evaluate the expression if the lvalue is void.
1879 This may still fail if the expresssion is invalid. */
78267919 1880 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1881 evaluate_expression (expr);
1882
1883 do_cleanups (old_chain);
1884}
1885
1886
c906108c
SS
1887/* Look up an internal variable with name NAME. NAME should not
1888 normally include a dollar sign.
1889
1890 If the specified internal variable does not exist,
c4a3d09a 1891 the return value is NULL. */
c906108c
SS
1892
1893struct internalvar *
bc3b79fd 1894lookup_only_internalvar (const char *name)
c906108c 1895{
52f0bd74 1896 struct internalvar *var;
c906108c
SS
1897
1898 for (var = internalvars; var; var = var->next)
5cb316ef 1899 if (strcmp (var->name, name) == 0)
c906108c
SS
1900 return var;
1901
c4a3d09a
MF
1902 return NULL;
1903}
1904
d55637df
TT
1905/* Complete NAME by comparing it to the names of internal variables.
1906 Returns a vector of newly allocated strings, or NULL if no matches
1907 were found. */
1908
1909VEC (char_ptr) *
1910complete_internalvar (const char *name)
1911{
1912 VEC (char_ptr) *result = NULL;
1913 struct internalvar *var;
1914 int len;
1915
1916 len = strlen (name);
1917
1918 for (var = internalvars; var; var = var->next)
1919 if (strncmp (var->name, name, len) == 0)
1920 {
1921 char *r = xstrdup (var->name);
1922
1923 VEC_safe_push (char_ptr, result, r);
1924 }
1925
1926 return result;
1927}
c4a3d09a
MF
1928
1929/* Create an internal variable with name NAME and with a void value.
1930 NAME should not normally include a dollar sign. */
1931
1932struct internalvar *
bc3b79fd 1933create_internalvar (const char *name)
c4a3d09a
MF
1934{
1935 struct internalvar *var;
a109c7c1 1936
c906108c 1937 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1938 var->name = concat (name, (char *)NULL);
78267919 1939 var->kind = INTERNALVAR_VOID;
c906108c
SS
1940 var->next = internalvars;
1941 internalvars = var;
1942 return var;
1943}
1944
4aa995e1
PA
1945/* Create an internal variable with name NAME and register FUN as the
1946 function that value_of_internalvar uses to create a value whenever
1947 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
1948 dollar sign. DATA is passed uninterpreted to FUN when it is
1949 called. CLEANUP, if not NULL, is called when the internal variable
1950 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
1951
1952struct internalvar *
22d2b532
SDJ
1953create_internalvar_type_lazy (const char *name,
1954 const struct internalvar_funcs *funcs,
1955 void *data)
4aa995e1 1956{
4fa62494 1957 struct internalvar *var = create_internalvar (name);
a109c7c1 1958
78267919 1959 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
1960 var->u.make_value.functions = funcs;
1961 var->u.make_value.data = data;
4aa995e1
PA
1962 return var;
1963}
c4a3d09a 1964
22d2b532
SDJ
1965/* See documentation in value.h. */
1966
1967int
1968compile_internalvar_to_ax (struct internalvar *var,
1969 struct agent_expr *expr,
1970 struct axs_value *value)
1971{
1972 if (var->kind != INTERNALVAR_MAKE_VALUE
1973 || var->u.make_value.functions->compile_to_ax == NULL)
1974 return 0;
1975
1976 var->u.make_value.functions->compile_to_ax (var, expr, value,
1977 var->u.make_value.data);
1978 return 1;
1979}
1980
c4a3d09a
MF
1981/* Look up an internal variable with name NAME. NAME should not
1982 normally include a dollar sign.
1983
1984 If the specified internal variable does not exist,
1985 one is created, with a void value. */
1986
1987struct internalvar *
bc3b79fd 1988lookup_internalvar (const char *name)
c4a3d09a
MF
1989{
1990 struct internalvar *var;
1991
1992 var = lookup_only_internalvar (name);
1993 if (var)
1994 return var;
1995
1996 return create_internalvar (name);
1997}
1998
78267919
UW
1999/* Return current value of internal variable VAR. For variables that
2000 are not inherently typed, use a value type appropriate for GDBARCH. */
2001
f23631e4 2002struct value *
78267919 2003value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2004{
f23631e4 2005 struct value *val;
0914bcdb
SS
2006 struct trace_state_variable *tsv;
2007
2008 /* If there is a trace state variable of the same name, assume that
2009 is what we really want to see. */
2010 tsv = find_trace_state_variable (var->name);
2011 if (tsv)
2012 {
2013 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2014 &(tsv->value));
2015 if (tsv->value_known)
2016 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2017 tsv->value);
2018 else
2019 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2020 return val;
2021 }
c906108c 2022
78267919 2023 switch (var->kind)
5f5233d4 2024 {
78267919
UW
2025 case INTERNALVAR_VOID:
2026 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2027 break;
4fa62494 2028
78267919
UW
2029 case INTERNALVAR_FUNCTION:
2030 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2031 break;
4fa62494 2032
cab0c772
UW
2033 case INTERNALVAR_INTEGER:
2034 if (!var->u.integer.type)
78267919 2035 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2036 var->u.integer.val);
78267919 2037 else
cab0c772
UW
2038 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2039 break;
2040
78267919
UW
2041 case INTERNALVAR_STRING:
2042 val = value_cstring (var->u.string, strlen (var->u.string),
2043 builtin_type (gdbarch)->builtin_char);
2044 break;
4fa62494 2045
78267919
UW
2046 case INTERNALVAR_VALUE:
2047 val = value_copy (var->u.value);
4aa995e1
PA
2048 if (value_lazy (val))
2049 value_fetch_lazy (val);
78267919 2050 break;
4aa995e1 2051
78267919 2052 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2053 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2054 var->u.make_value.data);
78267919
UW
2055 break;
2056
2057 default:
9b20d036 2058 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2059 }
2060
2061 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2062 on this value go back to affect the original internal variable.
2063
2064 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2065 no underlying modifyable state in the internal variable.
2066
2067 Likewise, if the variable's value is a computed lvalue, we want
2068 references to it to produce another computed lvalue, where
2069 references and assignments actually operate through the
2070 computed value's functions.
2071
2072 This means that internal variables with computed values
2073 behave a little differently from other internal variables:
2074 assignments to them don't just replace the previous value
2075 altogether. At the moment, this seems like the behavior we
2076 want. */
2077
2078 if (var->kind != INTERNALVAR_MAKE_VALUE
2079 && val->lval != lval_computed)
2080 {
2081 VALUE_LVAL (val) = lval_internalvar;
2082 VALUE_INTERNALVAR (val) = var;
5f5233d4 2083 }
d3c139e9 2084
4fa62494
UW
2085 return val;
2086}
d3c139e9 2087
4fa62494
UW
2088int
2089get_internalvar_integer (struct internalvar *var, LONGEST *result)
2090{
3158c6ed 2091 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2092 {
cab0c772
UW
2093 *result = var->u.integer.val;
2094 return 1;
3158c6ed 2095 }
d3c139e9 2096
3158c6ed
PA
2097 if (var->kind == INTERNALVAR_VALUE)
2098 {
2099 struct type *type = check_typedef (value_type (var->u.value));
2100
2101 if (TYPE_CODE (type) == TYPE_CODE_INT)
2102 {
2103 *result = value_as_long (var->u.value);
2104 return 1;
2105 }
4fa62494 2106 }
3158c6ed
PA
2107
2108 return 0;
4fa62494 2109}
d3c139e9 2110
4fa62494
UW
2111static int
2112get_internalvar_function (struct internalvar *var,
2113 struct internal_function **result)
2114{
78267919 2115 switch (var->kind)
d3c139e9 2116 {
78267919
UW
2117 case INTERNALVAR_FUNCTION:
2118 *result = var->u.fn.function;
4fa62494 2119 return 1;
d3c139e9 2120
4fa62494
UW
2121 default:
2122 return 0;
2123 }
c906108c
SS
2124}
2125
2126void
fba45db2 2127set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 2128 int bitsize, struct value *newval)
c906108c 2129{
4fa62494 2130 gdb_byte *addr;
c906108c 2131
78267919 2132 switch (var->kind)
4fa62494 2133 {
78267919
UW
2134 case INTERNALVAR_VALUE:
2135 addr = value_contents_writeable (var->u.value);
4fa62494
UW
2136
2137 if (bitsize)
50810684 2138 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2139 value_as_long (newval), bitpos, bitsize);
2140 else
2141 memcpy (addr + offset, value_contents (newval),
2142 TYPE_LENGTH (value_type (newval)));
2143 break;
78267919
UW
2144
2145 default:
2146 /* We can never get a component of any other kind. */
9b20d036 2147 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2148 }
c906108c
SS
2149}
2150
2151void
f23631e4 2152set_internalvar (struct internalvar *var, struct value *val)
c906108c 2153{
78267919 2154 enum internalvar_kind new_kind;
4fa62494 2155 union internalvar_data new_data = { 0 };
c906108c 2156
78267919 2157 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2158 error (_("Cannot overwrite convenience function %s"), var->name);
2159
4fa62494 2160 /* Prepare new contents. */
78267919 2161 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2162 {
2163 case TYPE_CODE_VOID:
78267919 2164 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2165 break;
2166
2167 case TYPE_CODE_INTERNAL_FUNCTION:
2168 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2169 new_kind = INTERNALVAR_FUNCTION;
2170 get_internalvar_function (VALUE_INTERNALVAR (val),
2171 &new_data.fn.function);
2172 /* Copies created here are never canonical. */
4fa62494
UW
2173 break;
2174
4fa62494 2175 default:
78267919
UW
2176 new_kind = INTERNALVAR_VALUE;
2177 new_data.value = value_copy (val);
2178 new_data.value->modifiable = 1;
4fa62494
UW
2179
2180 /* Force the value to be fetched from the target now, to avoid problems
2181 later when this internalvar is referenced and the target is gone or
2182 has changed. */
78267919
UW
2183 if (value_lazy (new_data.value))
2184 value_fetch_lazy (new_data.value);
4fa62494
UW
2185
2186 /* Release the value from the value chain to prevent it from being
2187 deleted by free_all_values. From here on this function should not
2188 call error () until new_data is installed into the var->u to avoid
2189 leaking memory. */
78267919 2190 release_value (new_data.value);
4fa62494
UW
2191 break;
2192 }
2193
2194 /* Clean up old contents. */
2195 clear_internalvar (var);
2196
2197 /* Switch over. */
78267919 2198 var->kind = new_kind;
4fa62494 2199 var->u = new_data;
c906108c
SS
2200 /* End code which must not call error(). */
2201}
2202
4fa62494
UW
2203void
2204set_internalvar_integer (struct internalvar *var, LONGEST l)
2205{
2206 /* Clean up old contents. */
2207 clear_internalvar (var);
2208
cab0c772
UW
2209 var->kind = INTERNALVAR_INTEGER;
2210 var->u.integer.type = NULL;
2211 var->u.integer.val = l;
78267919
UW
2212}
2213
2214void
2215set_internalvar_string (struct internalvar *var, const char *string)
2216{
2217 /* Clean up old contents. */
2218 clear_internalvar (var);
2219
2220 var->kind = INTERNALVAR_STRING;
2221 var->u.string = xstrdup (string);
4fa62494
UW
2222}
2223
2224static void
2225set_internalvar_function (struct internalvar *var, struct internal_function *f)
2226{
2227 /* Clean up old contents. */
2228 clear_internalvar (var);
2229
78267919
UW
2230 var->kind = INTERNALVAR_FUNCTION;
2231 var->u.fn.function = f;
2232 var->u.fn.canonical = 1;
2233 /* Variables installed here are always the canonical version. */
4fa62494
UW
2234}
2235
2236void
2237clear_internalvar (struct internalvar *var)
2238{
2239 /* Clean up old contents. */
78267919 2240 switch (var->kind)
4fa62494 2241 {
78267919
UW
2242 case INTERNALVAR_VALUE:
2243 value_free (var->u.value);
2244 break;
2245
2246 case INTERNALVAR_STRING:
2247 xfree (var->u.string);
4fa62494
UW
2248 break;
2249
22d2b532
SDJ
2250 case INTERNALVAR_MAKE_VALUE:
2251 if (var->u.make_value.functions->destroy != NULL)
2252 var->u.make_value.functions->destroy (var->u.make_value.data);
2253 break;
2254
4fa62494 2255 default:
4fa62494
UW
2256 break;
2257 }
2258
78267919
UW
2259 /* Reset to void kind. */
2260 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2261}
2262
c906108c 2263char *
fba45db2 2264internalvar_name (struct internalvar *var)
c906108c
SS
2265{
2266 return var->name;
2267}
2268
4fa62494
UW
2269static struct internal_function *
2270create_internal_function (const char *name,
2271 internal_function_fn handler, void *cookie)
bc3b79fd 2272{
bc3b79fd 2273 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2274
bc3b79fd
TJB
2275 ifn->name = xstrdup (name);
2276 ifn->handler = handler;
2277 ifn->cookie = cookie;
4fa62494 2278 return ifn;
bc3b79fd
TJB
2279}
2280
2281char *
2282value_internal_function_name (struct value *val)
2283{
4fa62494
UW
2284 struct internal_function *ifn;
2285 int result;
2286
2287 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2288 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2289 gdb_assert (result);
2290
bc3b79fd
TJB
2291 return ifn->name;
2292}
2293
2294struct value *
d452c4bc
UW
2295call_internal_function (struct gdbarch *gdbarch,
2296 const struct language_defn *language,
2297 struct value *func, int argc, struct value **argv)
bc3b79fd 2298{
4fa62494
UW
2299 struct internal_function *ifn;
2300 int result;
2301
2302 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2303 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2304 gdb_assert (result);
2305
d452c4bc 2306 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2307}
2308
2309/* The 'function' command. This does nothing -- it is just a
2310 placeholder to let "help function NAME" work. This is also used as
2311 the implementation of the sub-command that is created when
2312 registering an internal function. */
2313static void
2314function_command (char *command, int from_tty)
2315{
2316 /* Do nothing. */
2317}
2318
2319/* Clean up if an internal function's command is destroyed. */
2320static void
2321function_destroyer (struct cmd_list_element *self, void *ignore)
2322{
6f937416 2323 xfree ((char *) self->name);
bc3b79fd
TJB
2324 xfree (self->doc);
2325}
2326
2327/* Add a new internal function. NAME is the name of the function; DOC
2328 is a documentation string describing the function. HANDLER is
2329 called when the function is invoked. COOKIE is an arbitrary
2330 pointer which is passed to HANDLER and is intended for "user
2331 data". */
2332void
2333add_internal_function (const char *name, const char *doc,
2334 internal_function_fn handler, void *cookie)
2335{
2336 struct cmd_list_element *cmd;
4fa62494 2337 struct internal_function *ifn;
bc3b79fd 2338 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2339
2340 ifn = create_internal_function (name, handler, cookie);
2341 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2342
2343 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2344 &functionlist);
2345 cmd->destroyer = function_destroyer;
2346}
2347
ae5a43e0
DJ
2348/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2349 prevent cycles / duplicates. */
2350
4e7a5ef5 2351void
ae5a43e0
DJ
2352preserve_one_value (struct value *value, struct objfile *objfile,
2353 htab_t copied_types)
2354{
2355 if (TYPE_OBJFILE (value->type) == objfile)
2356 value->type = copy_type_recursive (objfile, value->type, copied_types);
2357
2358 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2359 value->enclosing_type = copy_type_recursive (objfile,
2360 value->enclosing_type,
2361 copied_types);
2362}
2363
78267919
UW
2364/* Likewise for internal variable VAR. */
2365
2366static void
2367preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2368 htab_t copied_types)
2369{
2370 switch (var->kind)
2371 {
cab0c772
UW
2372 case INTERNALVAR_INTEGER:
2373 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2374 var->u.integer.type
2375 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2376 break;
2377
78267919
UW
2378 case INTERNALVAR_VALUE:
2379 preserve_one_value (var->u.value, objfile, copied_types);
2380 break;
2381 }
2382}
2383
ae5a43e0
DJ
2384/* Update the internal variables and value history when OBJFILE is
2385 discarded; we must copy the types out of the objfile. New global types
2386 will be created for every convenience variable which currently points to
2387 this objfile's types, and the convenience variables will be adjusted to
2388 use the new global types. */
c906108c
SS
2389
2390void
ae5a43e0 2391preserve_values (struct objfile *objfile)
c906108c 2392{
ae5a43e0
DJ
2393 htab_t copied_types;
2394 struct value_history_chunk *cur;
52f0bd74 2395 struct internalvar *var;
ae5a43e0 2396 int i;
c906108c 2397
ae5a43e0
DJ
2398 /* Create the hash table. We allocate on the objfile's obstack, since
2399 it is soon to be deleted. */
2400 copied_types = create_copied_types_hash (objfile);
2401
2402 for (cur = value_history_chain; cur; cur = cur->next)
2403 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2404 if (cur->values[i])
2405 preserve_one_value (cur->values[i], objfile, copied_types);
2406
2407 for (var = internalvars; var; var = var->next)
78267919 2408 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2409
6dddc817 2410 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2411
ae5a43e0 2412 htab_delete (copied_types);
c906108c
SS
2413}
2414
2415static void
fba45db2 2416show_convenience (char *ignore, int from_tty)
c906108c 2417{
e17c207e 2418 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2419 struct internalvar *var;
c906108c 2420 int varseen = 0;
79a45b7d 2421 struct value_print_options opts;
c906108c 2422
79a45b7d 2423 get_user_print_options (&opts);
c906108c
SS
2424 for (var = internalvars; var; var = var->next)
2425 {
c709acd1
PA
2426 volatile struct gdb_exception ex;
2427
c906108c
SS
2428 if (!varseen)
2429 {
2430 varseen = 1;
2431 }
a3f17187 2432 printf_filtered (("$%s = "), var->name);
c709acd1
PA
2433
2434 TRY_CATCH (ex, RETURN_MASK_ERROR)
2435 {
2436 struct value *val;
2437
2438 val = value_of_internalvar (gdbarch, var);
2439 value_print (val, gdb_stdout, &opts);
2440 }
2441 if (ex.reason < 0)
2442 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
a3f17187 2443 printf_filtered (("\n"));
c906108c
SS
2444 }
2445 if (!varseen)
f47f77df
DE
2446 {
2447 /* This text does not mention convenience functions on purpose.
2448 The user can't create them except via Python, and if Python support
2449 is installed this message will never be printed ($_streq will
2450 exist). */
2451 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2452 "Convenience variables have "
2453 "names starting with \"$\";\n"
2454 "use \"set\" as in \"set "
2455 "$foo = 5\" to define them.\n"));
2456 }
c906108c
SS
2457}
2458\f
2459/* Extract a value as a C number (either long or double).
2460 Knows how to convert fixed values to double, or
2461 floating values to long.
2462 Does not deallocate the value. */
2463
2464LONGEST
f23631e4 2465value_as_long (struct value *val)
c906108c
SS
2466{
2467 /* This coerces arrays and functions, which is necessary (e.g.
2468 in disassemble_command). It also dereferences references, which
2469 I suspect is the most logical thing to do. */
994b9211 2470 val = coerce_array (val);
0fd88904 2471 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2472}
2473
2474DOUBLEST
f23631e4 2475value_as_double (struct value *val)
c906108c
SS
2476{
2477 DOUBLEST foo;
2478 int inv;
c5aa993b 2479
0fd88904 2480 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2481 if (inv)
8a3fe4f8 2482 error (_("Invalid floating value found in program."));
c906108c
SS
2483 return foo;
2484}
4ef30785 2485
581e13c1 2486/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2487 Note that val's type may not actually be a pointer; value_as_long
2488 handles all the cases. */
c906108c 2489CORE_ADDR
f23631e4 2490value_as_address (struct value *val)
c906108c 2491{
50810684
UW
2492 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2493
c906108c
SS
2494 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2495 whether we want this to be true eventually. */
2496#if 0
bf6ae464 2497 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2498 non-address (e.g. argument to "signal", "info break", etc.), or
2499 for pointers to char, in which the low bits *are* significant. */
50810684 2500 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2501#else
f312f057
JB
2502
2503 /* There are several targets (IA-64, PowerPC, and others) which
2504 don't represent pointers to functions as simply the address of
2505 the function's entry point. For example, on the IA-64, a
2506 function pointer points to a two-word descriptor, generated by
2507 the linker, which contains the function's entry point, and the
2508 value the IA-64 "global pointer" register should have --- to
2509 support position-independent code. The linker generates
2510 descriptors only for those functions whose addresses are taken.
2511
2512 On such targets, it's difficult for GDB to convert an arbitrary
2513 function address into a function pointer; it has to either find
2514 an existing descriptor for that function, or call malloc and
2515 build its own. On some targets, it is impossible for GDB to
2516 build a descriptor at all: the descriptor must contain a jump
2517 instruction; data memory cannot be executed; and code memory
2518 cannot be modified.
2519
2520 Upon entry to this function, if VAL is a value of type `function'
2521 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2522 value_address (val) is the address of the function. This is what
f312f057
JB
2523 you'll get if you evaluate an expression like `main'. The call
2524 to COERCE_ARRAY below actually does all the usual unary
2525 conversions, which includes converting values of type `function'
2526 to `pointer to function'. This is the challenging conversion
2527 discussed above. Then, `unpack_long' will convert that pointer
2528 back into an address.
2529
2530 So, suppose the user types `disassemble foo' on an architecture
2531 with a strange function pointer representation, on which GDB
2532 cannot build its own descriptors, and suppose further that `foo'
2533 has no linker-built descriptor. The address->pointer conversion
2534 will signal an error and prevent the command from running, even
2535 though the next step would have been to convert the pointer
2536 directly back into the same address.
2537
2538 The following shortcut avoids this whole mess. If VAL is a
2539 function, just return its address directly. */
df407dfe
AC
2540 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2541 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2542 return value_address (val);
f312f057 2543
994b9211 2544 val = coerce_array (val);
fc0c74b1
AC
2545
2546 /* Some architectures (e.g. Harvard), map instruction and data
2547 addresses onto a single large unified address space. For
2548 instance: An architecture may consider a large integer in the
2549 range 0x10000000 .. 0x1000ffff to already represent a data
2550 addresses (hence not need a pointer to address conversion) while
2551 a small integer would still need to be converted integer to
2552 pointer to address. Just assume such architectures handle all
2553 integer conversions in a single function. */
2554
2555 /* JimB writes:
2556
2557 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2558 must admonish GDB hackers to make sure its behavior matches the
2559 compiler's, whenever possible.
2560
2561 In general, I think GDB should evaluate expressions the same way
2562 the compiler does. When the user copies an expression out of
2563 their source code and hands it to a `print' command, they should
2564 get the same value the compiler would have computed. Any
2565 deviation from this rule can cause major confusion and annoyance,
2566 and needs to be justified carefully. In other words, GDB doesn't
2567 really have the freedom to do these conversions in clever and
2568 useful ways.
2569
2570 AndrewC pointed out that users aren't complaining about how GDB
2571 casts integers to pointers; they are complaining that they can't
2572 take an address from a disassembly listing and give it to `x/i'.
2573 This is certainly important.
2574
79dd2d24 2575 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2576 makes it possible for GDB to "get it right" in all circumstances
2577 --- the target has complete control over how things get done, so
2578 people can Do The Right Thing for their target without breaking
2579 anyone else. The standard doesn't specify how integers get
2580 converted to pointers; usually, the ABI doesn't either, but
2581 ABI-specific code is a more reasonable place to handle it. */
2582
df407dfe
AC
2583 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2584 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2585 && gdbarch_integer_to_address_p (gdbarch))
2586 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2587 value_contents (val));
fc0c74b1 2588
0fd88904 2589 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2590#endif
2591}
2592\f
2593/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2594 as a long, or as a double, assuming the raw data is described
2595 by type TYPE. Knows how to convert different sizes of values
2596 and can convert between fixed and floating point. We don't assume
2597 any alignment for the raw data. Return value is in host byte order.
2598
2599 If you want functions and arrays to be coerced to pointers, and
2600 references to be dereferenced, call value_as_long() instead.
2601
2602 C++: It is assumed that the front-end has taken care of
2603 all matters concerning pointers to members. A pointer
2604 to member which reaches here is considered to be equivalent
2605 to an INT (or some size). After all, it is only an offset. */
2606
2607LONGEST
fc1a4b47 2608unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2609{
e17a4113 2610 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2611 enum type_code code = TYPE_CODE (type);
2612 int len = TYPE_LENGTH (type);
2613 int nosign = TYPE_UNSIGNED (type);
c906108c 2614
c906108c
SS
2615 switch (code)
2616 {
2617 case TYPE_CODE_TYPEDEF:
2618 return unpack_long (check_typedef (type), valaddr);
2619 case TYPE_CODE_ENUM:
4f2aea11 2620 case TYPE_CODE_FLAGS:
c906108c
SS
2621 case TYPE_CODE_BOOL:
2622 case TYPE_CODE_INT:
2623 case TYPE_CODE_CHAR:
2624 case TYPE_CODE_RANGE:
0d5de010 2625 case TYPE_CODE_MEMBERPTR:
c906108c 2626 if (nosign)
e17a4113 2627 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2628 else
e17a4113 2629 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2630
2631 case TYPE_CODE_FLT:
96d2f608 2632 return extract_typed_floating (valaddr, type);
c906108c 2633
4ef30785
TJB
2634 case TYPE_CODE_DECFLOAT:
2635 /* libdecnumber has a function to convert from decimal to integer, but
2636 it doesn't work when the decimal number has a fractional part. */
e17a4113 2637 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2638
c906108c
SS
2639 case TYPE_CODE_PTR:
2640 case TYPE_CODE_REF:
2641 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2642 whether we want this to be true eventually. */
4478b372 2643 return extract_typed_address (valaddr, type);
c906108c 2644
c906108c 2645 default:
8a3fe4f8 2646 error (_("Value can't be converted to integer."));
c906108c 2647 }
c5aa993b 2648 return 0; /* Placate lint. */
c906108c
SS
2649}
2650
2651/* Return a double value from the specified type and address.
2652 INVP points to an int which is set to 0 for valid value,
2653 1 for invalid value (bad float format). In either case,
2654 the returned double is OK to use. Argument is in target
2655 format, result is in host format. */
2656
2657DOUBLEST
fc1a4b47 2658unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2659{
e17a4113 2660 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2661 enum type_code code;
2662 int len;
2663 int nosign;
2664
581e13c1 2665 *invp = 0; /* Assume valid. */
c906108c
SS
2666 CHECK_TYPEDEF (type);
2667 code = TYPE_CODE (type);
2668 len = TYPE_LENGTH (type);
2669 nosign = TYPE_UNSIGNED (type);
2670 if (code == TYPE_CODE_FLT)
2671 {
75bc7ddf
AC
2672 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2673 floating-point value was valid (using the macro
2674 INVALID_FLOAT). That test/macro have been removed.
2675
2676 It turns out that only the VAX defined this macro and then
2677 only in a non-portable way. Fixing the portability problem
2678 wouldn't help since the VAX floating-point code is also badly
2679 bit-rotten. The target needs to add definitions for the
ea06eb3d 2680 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2681 exactly describe the target floating-point format. The
2682 problem here is that the corresponding floatformat_vax_f and
2683 floatformat_vax_d values these methods should be set to are
2684 also not defined either. Oops!
2685
2686 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2687 definitions and the new cases for floatformat_is_valid (). */
2688
2689 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2690 {
2691 *invp = 1;
2692 return 0.0;
2693 }
2694
96d2f608 2695 return extract_typed_floating (valaddr, type);
c906108c 2696 }
4ef30785 2697 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2698 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2699 else if (nosign)
2700 {
2701 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2702 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2703 }
2704 else
2705 {
2706 /* Signed -- we are OK with unpack_long. */
2707 return unpack_long (type, valaddr);
2708 }
2709}
2710
2711/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2712 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2713 We don't assume any alignment for the raw data. Return value is in
2714 host byte order.
2715
2716 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2717 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2718
2719 C++: It is assumed that the front-end has taken care of
2720 all matters concerning pointers to members. A pointer
2721 to member which reaches here is considered to be equivalent
2722 to an INT (or some size). After all, it is only an offset. */
2723
2724CORE_ADDR
fc1a4b47 2725unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2726{
2727 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2728 whether we want this to be true eventually. */
2729 return unpack_long (type, valaddr);
2730}
4478b372 2731
c906108c 2732\f
1596cb5d 2733/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2734 TYPE. */
c906108c 2735
f23631e4 2736struct value *
fba45db2 2737value_static_field (struct type *type, int fieldno)
c906108c 2738{
948e66d9
DJ
2739 struct value *retval;
2740
1596cb5d 2741 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2742 {
1596cb5d 2743 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2744 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2745 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2746 break;
2747 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2748 {
ff355380 2749 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2750 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 2751 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2752
948e66d9 2753 if (sym == NULL)
c906108c 2754 {
a109c7c1 2755 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2756 reported as non-debuggable symbols. */
3b7344d5
TT
2757 struct bound_minimal_symbol msym
2758 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 2759
3b7344d5 2760 if (!msym.minsym)
686d4def 2761 return allocate_optimized_out_value (type);
c906108c 2762 else
c5aa993b 2763 {
52e9fde8 2764 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 2765 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2766 }
2767 }
2768 else
515ed532 2769 retval = value_of_variable (sym, NULL);
1596cb5d 2770 break;
c906108c 2771 }
1596cb5d 2772 default:
f3574227 2773 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2774 }
2775
948e66d9 2776 return retval;
c906108c
SS
2777}
2778
4dfea560
DE
2779/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2780 You have to be careful here, since the size of the data area for the value
2781 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2782 than the old enclosing type, you have to allocate more space for the
2783 data. */
2b127877 2784
4dfea560
DE
2785void
2786set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2787{
3e3d7139
JG
2788 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2789 val->contents =
2790 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2791
2792 val->enclosing_type = new_encl_type;
2b127877
DB
2793}
2794
c906108c
SS
2795/* Given a value ARG1 (offset by OFFSET bytes)
2796 of a struct or union type ARG_TYPE,
2797 extract and return the value of one of its (non-static) fields.
581e13c1 2798 FIELDNO says which field. */
c906108c 2799
f23631e4
AC
2800struct value *
2801value_primitive_field (struct value *arg1, int offset,
aa1ee363 2802 int fieldno, struct type *arg_type)
c906108c 2803{
f23631e4 2804 struct value *v;
52f0bd74 2805 struct type *type;
c906108c
SS
2806
2807 CHECK_TYPEDEF (arg_type);
2808 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2809
2810 /* Call check_typedef on our type to make sure that, if TYPE
2811 is a TYPE_CODE_TYPEDEF, its length is set to the length
2812 of the target type instead of zero. However, we do not
2813 replace the typedef type by the target type, because we want
2814 to keep the typedef in order to be able to print the type
2815 description correctly. */
2816 check_typedef (type);
c906108c 2817
691a26f5 2818 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2819 {
22c05d8a
JK
2820 /* Handle packed fields.
2821
2822 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2823 set. If possible, arrange offset and bitpos so that we can
2824 do a single aligned read of the size of the containing type.
2825 Otherwise, adjust offset to the byte containing the first
2826 bit. Assume that the address, offset, and embedded offset
2827 are sufficiently aligned. */
22c05d8a 2828
4ea48cc1
DJ
2829 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2830 int container_bitsize = TYPE_LENGTH (type) * 8;
2831
691a26f5
AB
2832 if (arg1->optimized_out)
2833 v = allocate_optimized_out_value (type);
4ea48cc1 2834 else
691a26f5
AB
2835 {
2836 v = allocate_value_lazy (type);
2837 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2838 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2839 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2840 v->bitpos = bitpos % container_bitsize;
2841 else
2842 v->bitpos = bitpos % 8;
2843 v->offset = (value_embedded_offset (arg1)
2844 + offset
2845 + (bitpos - v->bitpos) / 8);
2846 set_value_parent (v, arg1);
2847 if (!value_lazy (arg1))
2848 value_fetch_lazy (v);
2849 }
c906108c
SS
2850 }
2851 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2852 {
2853 /* This field is actually a base subobject, so preserve the
39d37385
PA
2854 entire object's contents for later references to virtual
2855 bases, etc. */
be335936 2856 int boffset;
a4e2ee12
DJ
2857
2858 /* Lazy register values with offsets are not supported. */
2859 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2860 value_fetch_lazy (arg1);
2861
691a26f5
AB
2862 /* The optimized_out flag is only set correctly once a lazy value is
2863 loaded, having just loaded some lazy values we should check the
2864 optimized out case now. */
2865 if (arg1->optimized_out)
2866 v = allocate_optimized_out_value (type);
c906108c 2867 else
3e3d7139 2868 {
691a26f5
AB
2869 /* We special case virtual inheritance here because this
2870 requires access to the contents, which we would rather avoid
2871 for references to ordinary fields of unavailable values. */
2872 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2873 boffset = baseclass_offset (arg_type, fieldno,
2874 value_contents (arg1),
2875 value_embedded_offset (arg1),
2876 value_address (arg1),
2877 arg1);
2878 else
2879 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2880
2881 if (value_lazy (arg1))
2882 v = allocate_value_lazy (value_enclosing_type (arg1));
2883 else
2884 {
2885 v = allocate_value (value_enclosing_type (arg1));
2886 value_contents_copy_raw (v, 0, arg1, 0,
2887 TYPE_LENGTH (value_enclosing_type (arg1)));
2888 }
2889 v->type = type;
2890 v->offset = value_offset (arg1);
2891 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3e3d7139 2892 }
c906108c
SS
2893 }
2894 else
2895 {
2896 /* Plain old data member */
2897 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2898
2899 /* Lazy register values with offsets are not supported. */
2900 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2901 value_fetch_lazy (arg1);
2902
691a26f5
AB
2903 /* The optimized_out flag is only set correctly once a lazy value is
2904 loaded, having just loaded some lazy values we should check for
2905 the optimized out case now. */
2906 if (arg1->optimized_out)
2907 v = allocate_optimized_out_value (type);
2908 else if (value_lazy (arg1))
3e3d7139 2909 v = allocate_value_lazy (type);
c906108c 2910 else
3e3d7139
JG
2911 {
2912 v = allocate_value (type);
39d37385
PA
2913 value_contents_copy_raw (v, value_embedded_offset (v),
2914 arg1, value_embedded_offset (arg1) + offset,
2915 TYPE_LENGTH (type));
3e3d7139 2916 }
df407dfe 2917 v->offset = (value_offset (arg1) + offset
13c3b5f5 2918 + value_embedded_offset (arg1));
c906108c 2919 }
74bcbdf3 2920 set_value_component_location (v, arg1);
9ee8fc9d 2921 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2922 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2923 return v;
2924}
2925
2926/* Given a value ARG1 of a struct or union type,
2927 extract and return the value of one of its (non-static) fields.
581e13c1 2928 FIELDNO says which field. */
c906108c 2929
f23631e4 2930struct value *
aa1ee363 2931value_field (struct value *arg1, int fieldno)
c906108c 2932{
df407dfe 2933 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2934}
2935
2936/* Return a non-virtual function as a value.
2937 F is the list of member functions which contains the desired method.
0478d61c
FF
2938 J is an index into F which provides the desired method.
2939
2940 We only use the symbol for its address, so be happy with either a
581e13c1 2941 full symbol or a minimal symbol. */
c906108c 2942
f23631e4 2943struct value *
3e43a32a
MS
2944value_fn_field (struct value **arg1p, struct fn_field *f,
2945 int j, struct type *type,
fba45db2 2946 int offset)
c906108c 2947{
f23631e4 2948 struct value *v;
52f0bd74 2949 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 2950 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2951 struct symbol *sym;
7c7b6655 2952 struct bound_minimal_symbol msym;
c906108c 2953
2570f2b7 2954 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2955 if (sym != NULL)
0478d61c 2956 {
7c7b6655 2957 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
2958 }
2959 else
2960 {
2961 gdb_assert (sym == NULL);
7c7b6655
TT
2962 msym = lookup_bound_minimal_symbol (physname);
2963 if (msym.minsym == NULL)
5ae326fa 2964 return NULL;
0478d61c
FF
2965 }
2966
c906108c 2967 v = allocate_value (ftype);
0478d61c
FF
2968 if (sym)
2969 {
42ae5230 2970 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2971 }
2972 else
2973 {
bccdca4a
UW
2974 /* The minimal symbol might point to a function descriptor;
2975 resolve it to the actual code address instead. */
7c7b6655 2976 struct objfile *objfile = msym.objfile;
bccdca4a
UW
2977 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2978
42ae5230
TT
2979 set_value_address (v,
2980 gdbarch_convert_from_func_ptr_addr
77e371c0 2981 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2982 }
c906108c
SS
2983
2984 if (arg1p)
c5aa993b 2985 {
df407dfe 2986 if (type != value_type (*arg1p))
c5aa993b
JM
2987 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2988 value_addr (*arg1p)));
2989
070ad9f0 2990 /* Move the `this' pointer according to the offset.
581e13c1 2991 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
2992 }
2993
2994 return v;
2995}
2996
c906108c 2997\f
c906108c 2998
5467c6c8
PA
2999/* Helper function for both unpack_value_bits_as_long and
3000 unpack_bits_as_long. See those functions for more details on the
3001 interface; the only difference is that this function accepts either
3002 a NULL or a non-NULL ORIGINAL_VALUE. */
c906108c 3003
5467c6c8
PA
3004static int
3005unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
3006 int embedded_offset, int bitpos, int bitsize,
3007 const struct value *original_value,
3008 LONGEST *result)
c906108c 3009{
4ea48cc1 3010 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3011 ULONGEST val;
3012 ULONGEST valmask;
c906108c 3013 int lsbcount;
4a76eae5 3014 int bytes_read;
5467c6c8 3015 int read_offset;
c906108c 3016
4a76eae5
DJ
3017 /* Read the minimum number of bytes required; there may not be
3018 enough bytes to read an entire ULONGEST. */
c906108c 3019 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
3020 if (bitsize)
3021 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3022 else
3023 bytes_read = TYPE_LENGTH (field_type);
3024
5467c6c8
PA
3025 read_offset = bitpos / 8;
3026
3027 if (original_value != NULL
bdf22206
AB
3028 && !value_bits_available (original_value, embedded_offset + bitpos,
3029 bitsize))
5467c6c8
PA
3030 return 0;
3031
3032 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
4a76eae5 3033 bytes_read, byte_order);
c906108c 3034
581e13c1 3035 /* Extract bits. See comment above. */
c906108c 3036
4ea48cc1 3037 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3038 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3039 else
3040 lsbcount = (bitpos % 8);
3041 val >>= lsbcount;
3042
3043 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3044 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3045
3046 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3047 {
3048 valmask = (((ULONGEST) 1) << bitsize) - 1;
3049 val &= valmask;
3050 if (!TYPE_UNSIGNED (field_type))
3051 {
3052 if (val & (valmask ^ (valmask >> 1)))
3053 {
3054 val |= ~valmask;
3055 }
3056 }
3057 }
5467c6c8
PA
3058
3059 *result = val;
3060 return 1;
c906108c
SS
3061}
3062
5467c6c8
PA
3063/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3064 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
3065 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
3066 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
3067 bits.
4ea48cc1 3068
5467c6c8
PA
3069 Returns false if the value contents are unavailable, otherwise
3070 returns true, indicating a valid value has been stored in *RESULT.
3071
3072 Extracting bits depends on endianness of the machine. Compute the
3073 number of least significant bits to discard. For big endian machines,
3074 we compute the total number of bits in the anonymous object, subtract
3075 off the bit count from the MSB of the object to the MSB of the
3076 bitfield, then the size of the bitfield, which leaves the LSB discard
3077 count. For little endian machines, the discard count is simply the
3078 number of bits from the LSB of the anonymous object to the LSB of the
3079 bitfield.
3080
3081 If the field is signed, we also do sign extension. */
3082
3083int
3084unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3085 int embedded_offset, int bitpos, int bitsize,
3086 const struct value *original_value,
3087 LONGEST *result)
3088{
3089 gdb_assert (original_value != NULL);
3090
3091 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3092 bitpos, bitsize, original_value, result);
3093
3094}
3095
3096/* Unpack a field FIELDNO of the specified TYPE, from the object at
3097 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3098 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
3099 details. */
3100
3101static int
3102unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
3103 int embedded_offset, int fieldno,
3104 const struct value *val, LONGEST *result)
4ea48cc1
DJ
3105{
3106 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3107 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3108 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3109
5467c6c8
PA
3110 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3111 bitpos, bitsize, val,
3112 result);
3113}
3114
3115/* Unpack a field FIELDNO of the specified TYPE, from the object at
3116 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3117 ORIGINAL_VALUE, which must not be NULL. See
3118 unpack_value_bits_as_long for more details. */
3119
3120int
3121unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3122 int embedded_offset, int fieldno,
3123 const struct value *val, LONGEST *result)
3124{
3125 gdb_assert (val != NULL);
3126
3127 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
3128 fieldno, val, result);
3129}
3130
3131/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3132 object at VALADDR. See unpack_value_bits_as_long for more details.
3133 This function differs from unpack_value_field_as_long in that it
3134 operates without a struct value object. */
3135
3136LONGEST
3137unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3138{
3139 LONGEST result;
3140
3141 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
3142 return result;
3143}
3144
3145/* Return a new value with type TYPE, which is FIELDNO field of the
3146 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3147 of VAL. If the VAL's contents required to extract the bitfield
3148 from are unavailable, the new value is correspondingly marked as
3149 unavailable. */
3150
3151struct value *
3152value_field_bitfield (struct type *type, int fieldno,
3153 const gdb_byte *valaddr,
3154 int embedded_offset, const struct value *val)
3155{
3156 LONGEST l;
3157
3158 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
3159 val, &l))
3160 {
3161 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3162 struct value *retval = allocate_value (field_type);
3163 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
3164 return retval;
3165 }
3166 else
3167 {
3168 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
3169 }
4ea48cc1
DJ
3170}
3171
c906108c
SS
3172/* Modify the value of a bitfield. ADDR points to a block of memory in
3173 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3174 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3175 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3176 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3177 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3178
3179void
50810684
UW
3180modify_field (struct type *type, gdb_byte *addr,
3181 LONGEST fieldval, int bitpos, int bitsize)
c906108c 3182{
e17a4113 3183 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3184 ULONGEST oword;
3185 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
3186 int bytesize;
3187
3188 /* Normalize BITPOS. */
3189 addr += bitpos / 8;
3190 bitpos %= 8;
c906108c
SS
3191
3192 /* If a negative fieldval fits in the field in question, chop
3193 off the sign extension bits. */
f4e88c8e
PH
3194 if ((~fieldval & ~(mask >> 1)) == 0)
3195 fieldval &= mask;
c906108c
SS
3196
3197 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3198 if (0 != (fieldval & ~mask))
c906108c
SS
3199 {
3200 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3201 we don't have a sprintf_longest. */
8a3fe4f8 3202 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
3203
3204 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3205 fieldval &= mask;
c906108c
SS
3206 }
3207
19f220c3
JK
3208 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3209 false valgrind reports. */
3210
3211 bytesize = (bitpos + bitsize + 7) / 8;
3212 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3213
3214 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3215 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3216 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3217
f4e88c8e 3218 oword &= ~(mask << bitpos);
c906108c
SS
3219 oword |= fieldval << bitpos;
3220
19f220c3 3221 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3222}
3223\f
14d06750 3224/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3225
14d06750
DJ
3226void
3227pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3228{
e17a4113 3229 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3230 int len;
14d06750
DJ
3231
3232 type = check_typedef (type);
c906108c
SS
3233 len = TYPE_LENGTH (type);
3234
14d06750 3235 switch (TYPE_CODE (type))
c906108c 3236 {
c906108c
SS
3237 case TYPE_CODE_INT:
3238 case TYPE_CODE_CHAR:
3239 case TYPE_CODE_ENUM:
4f2aea11 3240 case TYPE_CODE_FLAGS:
c906108c
SS
3241 case TYPE_CODE_BOOL:
3242 case TYPE_CODE_RANGE:
0d5de010 3243 case TYPE_CODE_MEMBERPTR:
e17a4113 3244 store_signed_integer (buf, len, byte_order, num);
c906108c 3245 break;
c5aa993b 3246
c906108c
SS
3247 case TYPE_CODE_REF:
3248 case TYPE_CODE_PTR:
14d06750 3249 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3250 break;
c5aa993b 3251
c906108c 3252 default:
14d06750
DJ
3253 error (_("Unexpected type (%d) encountered for integer constant."),
3254 TYPE_CODE (type));
c906108c 3255 }
14d06750
DJ
3256}
3257
3258
595939de
PM
3259/* Pack NUM into BUF using a target format of TYPE. */
3260
70221824 3261static void
595939de
PM
3262pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3263{
3264 int len;
3265 enum bfd_endian byte_order;
3266
3267 type = check_typedef (type);
3268 len = TYPE_LENGTH (type);
3269 byte_order = gdbarch_byte_order (get_type_arch (type));
3270
3271 switch (TYPE_CODE (type))
3272 {
3273 case TYPE_CODE_INT:
3274 case TYPE_CODE_CHAR:
3275 case TYPE_CODE_ENUM:
3276 case TYPE_CODE_FLAGS:
3277 case TYPE_CODE_BOOL:
3278 case TYPE_CODE_RANGE:
3279 case TYPE_CODE_MEMBERPTR:
3280 store_unsigned_integer (buf, len, byte_order, num);
3281 break;
3282
3283 case TYPE_CODE_REF:
3284 case TYPE_CODE_PTR:
3285 store_typed_address (buf, type, (CORE_ADDR) num);
3286 break;
3287
3288 default:
3e43a32a
MS
3289 error (_("Unexpected type (%d) encountered "
3290 "for unsigned integer constant."),
595939de
PM
3291 TYPE_CODE (type));
3292 }
3293}
3294
3295
14d06750
DJ
3296/* Convert C numbers into newly allocated values. */
3297
3298struct value *
3299value_from_longest (struct type *type, LONGEST num)
3300{
3301 struct value *val = allocate_value (type);
3302
3303 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3304 return val;
3305}
3306
4478b372 3307
595939de
PM
3308/* Convert C unsigned numbers into newly allocated values. */
3309
3310struct value *
3311value_from_ulongest (struct type *type, ULONGEST num)
3312{
3313 struct value *val = allocate_value (type);
3314
3315 pack_unsigned_long (value_contents_raw (val), type, num);
3316
3317 return val;
3318}
3319
3320
4478b372 3321/* Create a value representing a pointer of type TYPE to the address
80180f79
SA
3322 ADDR. The type of the created value may differ from the passed
3323 type TYPE. Make sure to retrieve the returned values's new type
3324 after this call e.g. in case of an variable length array. */
3325
f23631e4 3326struct value *
4478b372
JB
3327value_from_pointer (struct type *type, CORE_ADDR addr)
3328{
80180f79
SA
3329 struct type *resolved_type = resolve_dynamic_type (type, addr);
3330 struct value *val = allocate_value (resolved_type);
a109c7c1 3331
80180f79
SA
3332 store_typed_address (value_contents_raw (val),
3333 check_typedef (resolved_type), addr);
4478b372
JB
3334 return val;
3335}
3336
3337
8acb6b92
TT
3338/* Create a value of type TYPE whose contents come from VALADDR, if it
3339 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3340 ADDRESS. The type of the created value may differ from the passed
3341 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3342
3343struct value *
3344value_from_contents_and_address (struct type *type,
3345 const gdb_byte *valaddr,
3346 CORE_ADDR address)
3347{
80180f79 3348 struct type *resolved_type = resolve_dynamic_type (type, address);
41e8491f 3349 struct value *v;
a109c7c1 3350
8acb6b92 3351 if (valaddr == NULL)
80180f79 3352 v = allocate_value_lazy (resolved_type);
8acb6b92 3353 else
80180f79 3354 v = value_from_contents (resolved_type, valaddr);
42ae5230 3355 set_value_address (v, address);
33d502b4 3356 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3357 return v;
3358}
3359
8a9b8146
TT
3360/* Create a value of type TYPE holding the contents CONTENTS.
3361 The new value is `not_lval'. */
3362
3363struct value *
3364value_from_contents (struct type *type, const gdb_byte *contents)
3365{
3366 struct value *result;
3367
3368 result = allocate_value (type);
3369 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3370 return result;
3371}
3372
f23631e4 3373struct value *
fba45db2 3374value_from_double (struct type *type, DOUBLEST num)
c906108c 3375{
f23631e4 3376 struct value *val = allocate_value (type);
c906108c 3377 struct type *base_type = check_typedef (type);
52f0bd74 3378 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3379
3380 if (code == TYPE_CODE_FLT)
3381 {
990a07ab 3382 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3383 }
3384 else
8a3fe4f8 3385 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3386
3387 return val;
3388}
994b9211 3389
27bc4d80 3390struct value *
4ef30785 3391value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3392{
3393 struct value *val = allocate_value (type);
27bc4d80 3394
4ef30785 3395 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3396 return val;
3397}
3398
3bd0f5ef
MS
3399/* Extract a value from the history file. Input will be of the form
3400 $digits or $$digits. See block comment above 'write_dollar_variable'
3401 for details. */
3402
3403struct value *
3404value_from_history_ref (char *h, char **endp)
3405{
3406 int index, len;
3407
3408 if (h[0] == '$')
3409 len = 1;
3410 else
3411 return NULL;
3412
3413 if (h[1] == '$')
3414 len = 2;
3415
3416 /* Find length of numeral string. */
3417 for (; isdigit (h[len]); len++)
3418 ;
3419
3420 /* Make sure numeral string is not part of an identifier. */
3421 if (h[len] == '_' || isalpha (h[len]))
3422 return NULL;
3423
3424 /* Now collect the index value. */
3425 if (h[1] == '$')
3426 {
3427 if (len == 2)
3428 {
3429 /* For some bizarre reason, "$$" is equivalent to "$$1",
3430 rather than to "$$0" as it ought to be! */
3431 index = -1;
3432 *endp += len;
3433 }
3434 else
3435 index = -strtol (&h[2], endp, 10);
3436 }
3437 else
3438 {
3439 if (len == 1)
3440 {
3441 /* "$" is equivalent to "$0". */
3442 index = 0;
3443 *endp += len;
3444 }
3445 else
3446 index = strtol (&h[1], endp, 10);
3447 }
3448
3449 return access_value_history (index);
3450}
3451
a471c594
JK
3452struct value *
3453coerce_ref_if_computed (const struct value *arg)
3454{
3455 const struct lval_funcs *funcs;
3456
3457 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3458 return NULL;
3459
3460 if (value_lval_const (arg) != lval_computed)
3461 return NULL;
3462
3463 funcs = value_computed_funcs (arg);
3464 if (funcs->coerce_ref == NULL)
3465 return NULL;
3466
3467 return funcs->coerce_ref (arg);
3468}
3469
dfcee124
AG
3470/* Look at value.h for description. */
3471
3472struct value *
3473readjust_indirect_value_type (struct value *value, struct type *enc_type,
3474 struct type *original_type,
3475 struct value *original_value)
3476{
3477 /* Re-adjust type. */
3478 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3479
3480 /* Add embedding info. */
3481 set_value_enclosing_type (value, enc_type);
3482 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3483
3484 /* We may be pointing to an object of some derived type. */
3485 return value_full_object (value, NULL, 0, 0, 0);
3486}
3487
994b9211
AC
3488struct value *
3489coerce_ref (struct value *arg)
3490{
df407dfe 3491 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3492 struct value *retval;
dfcee124 3493 struct type *enc_type;
a109c7c1 3494
a471c594
JK
3495 retval = coerce_ref_if_computed (arg);
3496 if (retval)
3497 return retval;
3498
3499 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3500 return arg;
3501
dfcee124
AG
3502 enc_type = check_typedef (value_enclosing_type (arg));
3503 enc_type = TYPE_TARGET_TYPE (enc_type);
3504
3505 retval = value_at_lazy (enc_type,
3506 unpack_pointer (value_type (arg),
3507 value_contents (arg)));
9f1f738a 3508 enc_type = value_type (retval);
dfcee124
AG
3509 return readjust_indirect_value_type (retval, enc_type,
3510 value_type_arg_tmp, arg);
994b9211
AC
3511}
3512
3513struct value *
3514coerce_array (struct value *arg)
3515{
f3134b88
TT
3516 struct type *type;
3517
994b9211 3518 arg = coerce_ref (arg);
f3134b88
TT
3519 type = check_typedef (value_type (arg));
3520
3521 switch (TYPE_CODE (type))
3522 {
3523 case TYPE_CODE_ARRAY:
7346b668 3524 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3525 arg = value_coerce_array (arg);
3526 break;
3527 case TYPE_CODE_FUNC:
3528 arg = value_coerce_function (arg);
3529 break;
3530 }
994b9211
AC
3531 return arg;
3532}
c906108c 3533\f
c906108c 3534
bbfdfe1c
DM
3535/* Return the return value convention that will be used for the
3536 specified type. */
3537
3538enum return_value_convention
3539struct_return_convention (struct gdbarch *gdbarch,
3540 struct value *function, struct type *value_type)
3541{
3542 enum type_code code = TYPE_CODE (value_type);
3543
3544 if (code == TYPE_CODE_ERROR)
3545 error (_("Function return type unknown."));
3546
3547 /* Probe the architecture for the return-value convention. */
3548 return gdbarch_return_value (gdbarch, function, value_type,
3549 NULL, NULL, NULL);
3550}
3551
48436ce6
AC
3552/* Return true if the function returning the specified type is using
3553 the convention of returning structures in memory (passing in the
82585c72 3554 address as a hidden first parameter). */
c906108c
SS
3555
3556int
d80b854b 3557using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3558 struct value *function, struct type *value_type)
c906108c 3559{
bbfdfe1c 3560 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3561 /* A void return value is never in memory. See also corresponding
44e5158b 3562 code in "print_return_value". */
667e784f
AC
3563 return 0;
3564
bbfdfe1c 3565 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3566 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3567}
3568
42be36b3
CT
3569/* Set the initialized field in a value struct. */
3570
3571void
3572set_value_initialized (struct value *val, int status)
3573{
3574 val->initialized = status;
3575}
3576
3577/* Return the initialized field in a value struct. */
3578
3579int
3580value_initialized (struct value *val)
3581{
3582 return val->initialized;
3583}
3584
a58e2656
AB
3585/* Called only from the value_contents and value_contents_all()
3586 macros, if the current data for a variable needs to be loaded into
3587 value_contents(VAL). Fetches the data from the user's process, and
3588 clears the lazy flag to indicate that the data in the buffer is
3589 valid.
3590
3591 If the value is zero-length, we avoid calling read_memory, which
3592 would abort. We mark the value as fetched anyway -- all 0 bytes of
3593 it.
3594
3595 This function returns a value because it is used in the
3596 value_contents macro as part of an expression, where a void would
3597 not work. The value is ignored. */
3598
3599int
3600value_fetch_lazy (struct value *val)
3601{
3602 gdb_assert (value_lazy (val));
3603 allocate_value_contents (val);
3604 if (value_bitsize (val))
3605 {
3606 /* To read a lazy bitfield, read the entire enclosing value. This
3607 prevents reading the same block of (possibly volatile) memory once
3608 per bitfield. It would be even better to read only the containing
3609 word, but we have no way to record that just specific bits of a
3610 value have been fetched. */
3611 struct type *type = check_typedef (value_type (val));
3612 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3613 struct value *parent = value_parent (val);
3614 LONGEST offset = value_offset (val);
3615 LONGEST num;
3616
b0c54aa5
AB
3617 if (value_lazy (parent))
3618 value_fetch_lazy (parent);
3619
3620 if (!value_bits_valid (parent,
a58e2656
AB
3621 TARGET_CHAR_BIT * offset + value_bitpos (val),
3622 value_bitsize (val)))
11b4b7cc
AB
3623 set_value_optimized_out (val, 1);
3624 else if (!unpack_value_bits_as_long (value_type (val),
a58e2656
AB
3625 value_contents_for_printing (parent),
3626 offset,
3627 value_bitpos (val),
3628 value_bitsize (val), parent, &num))
3629 mark_value_bytes_unavailable (val,
3630 value_embedded_offset (val),
3631 TYPE_LENGTH (type));
3632 else
3633 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3634 byte_order, num);
3635 }
3636 else if (VALUE_LVAL (val) == lval_memory)
3637 {
3638 CORE_ADDR addr = value_address (val);
3639 struct type *type = check_typedef (value_enclosing_type (val));
3640
3641 if (TYPE_LENGTH (type))
3642 read_value_memory (val, 0, value_stack (val),
3643 addr, value_contents_all_raw (val),
3644 TYPE_LENGTH (type));
3645 }
3646 else if (VALUE_LVAL (val) == lval_register)
3647 {
3648 struct frame_info *frame;
3649 int regnum;
3650 struct type *type = check_typedef (value_type (val));
3651 struct value *new_val = val, *mark = value_mark ();
3652
3653 /* Offsets are not supported here; lazy register values must
3654 refer to the entire register. */
3655 gdb_assert (value_offset (val) == 0);
3656
3657 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3658 {
6eeee81c
TT
3659 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3660
3661 frame = frame_find_by_id (frame_id);
a58e2656
AB
3662 regnum = VALUE_REGNUM (new_val);
3663
3664 gdb_assert (frame != NULL);
3665
3666 /* Convertible register routines are used for multi-register
3667 values and for interpretation in different types
3668 (e.g. float or int from a double register). Lazy
3669 register values should have the register's natural type,
3670 so they do not apply. */
3671 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3672 regnum, type));
3673
3674 new_val = get_frame_register_value (frame, regnum);
6eeee81c
TT
3675
3676 /* If we get another lazy lval_register value, it means the
3677 register is found by reading it from the next frame.
3678 get_frame_register_value should never return a value with
3679 the frame id pointing to FRAME. If it does, it means we
3680 either have two consecutive frames with the same frame id
3681 in the frame chain, or some code is trying to unwind
3682 behind get_prev_frame's back (e.g., a frame unwind
3683 sniffer trying to unwind), bypassing its validations. In
3684 any case, it should always be an internal error to end up
3685 in this situation. */
3686 if (VALUE_LVAL (new_val) == lval_register
3687 && value_lazy (new_val)
3688 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3689 internal_error (__FILE__, __LINE__,
3690 _("infinite loop while fetching a register"));
a58e2656
AB
3691 }
3692
3693 /* If it's still lazy (for instance, a saved register on the
3694 stack), fetch it. */
3695 if (value_lazy (new_val))
3696 value_fetch_lazy (new_val);
3697
3698 /* If the register was not saved, mark it optimized out. */
3699 if (value_optimized_out (new_val))
3700 set_value_optimized_out (val, 1);
3701 else
3702 {
3703 set_value_lazy (val, 0);
3704 value_contents_copy (val, value_embedded_offset (val),
3705 new_val, value_embedded_offset (new_val),
3706 TYPE_LENGTH (type));
3707 }
3708
3709 if (frame_debug)
3710 {
3711 struct gdbarch *gdbarch;
3712 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3713 regnum = VALUE_REGNUM (val);
3714 gdbarch = get_frame_arch (frame);
3715
3716 fprintf_unfiltered (gdb_stdlog,
3717 "{ value_fetch_lazy "
3718 "(frame=%d,regnum=%d(%s),...) ",
3719 frame_relative_level (frame), regnum,
3720 user_reg_map_regnum_to_name (gdbarch, regnum));
3721
3722 fprintf_unfiltered (gdb_stdlog, "->");
3723 if (value_optimized_out (new_val))
f6c01fc5
AB
3724 {
3725 fprintf_unfiltered (gdb_stdlog, " ");
3726 val_print_optimized_out (new_val, gdb_stdlog);
3727 }
a58e2656
AB
3728 else
3729 {
3730 int i;
3731 const gdb_byte *buf = value_contents (new_val);
3732
3733 if (VALUE_LVAL (new_val) == lval_register)
3734 fprintf_unfiltered (gdb_stdlog, " register=%d",
3735 VALUE_REGNUM (new_val));
3736 else if (VALUE_LVAL (new_val) == lval_memory)
3737 fprintf_unfiltered (gdb_stdlog, " address=%s",
3738 paddress (gdbarch,
3739 value_address (new_val)));
3740 else
3741 fprintf_unfiltered (gdb_stdlog, " computed");
3742
3743 fprintf_unfiltered (gdb_stdlog, " bytes=");
3744 fprintf_unfiltered (gdb_stdlog, "[");
3745 for (i = 0; i < register_size (gdbarch, regnum); i++)
3746 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3747 fprintf_unfiltered (gdb_stdlog, "]");
3748 }
3749
3750 fprintf_unfiltered (gdb_stdlog, " }\n");
3751 }
3752
3753 /* Dispose of the intermediate values. This prevents
3754 watchpoints from trying to watch the saved frame pointer. */
3755 value_free_to_mark (mark);
3756 }
3757 else if (VALUE_LVAL (val) == lval_computed
3758 && value_computed_funcs (val)->read != NULL)
3759 value_computed_funcs (val)->read (val);
691a26f5
AB
3760 /* Don't call value_optimized_out on val, doing so would result in a
3761 recursive call back to value_fetch_lazy, instead check the
3762 optimized_out flag directly. */
3763 else if (val->optimized_out)
a58e2656
AB
3764 /* Keep it optimized out. */;
3765 else
3766 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3767
3768 set_value_lazy (val, 0);
3769 return 0;
3770}
3771
a280dbd1
SDJ
3772/* Implementation of the convenience function $_isvoid. */
3773
3774static struct value *
3775isvoid_internal_fn (struct gdbarch *gdbarch,
3776 const struct language_defn *language,
3777 void *cookie, int argc, struct value **argv)
3778{
3779 int ret;
3780
3781 if (argc != 1)
6bc305f5 3782 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
3783
3784 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3785
3786 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3787}
3788
c906108c 3789void
fba45db2 3790_initialize_values (void)
c906108c 3791{
1a966eab 3792 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
3793Debugger convenience (\"$foo\") variables and functions.\n\
3794Convenience variables are created when you assign them values;\n\
3795thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 3796\n\
c906108c
SS
3797A few convenience variables are given values automatically:\n\
3798\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
3799\"$__\" holds the contents of the last address examined with \"x\"."
3800#ifdef HAVE_PYTHON
3801"\n\n\
3802Convenience functions are defined via the Python API."
3803#endif
3804 ), &showlist);
7e20dfcd 3805 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 3806
db5f229b 3807 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3808Elements of value history around item number IDX (or last ten)."),
c906108c 3809 &showlist);
53e5f3cf
AS
3810
3811 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3812Initialize a convenience variable if necessary.\n\
3813init-if-undefined VARIABLE = EXPRESSION\n\
3814Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3815exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3816VARIABLE is already initialized."));
bc3b79fd
TJB
3817
3818 add_prefix_cmd ("function", no_class, function_command, _("\
3819Placeholder command for showing help on convenience functions."),
3820 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
3821
3822 add_internal_function ("_isvoid", _("\
3823Check whether an expression is void.\n\
3824Usage: $_isvoid (expression)\n\
3825Return 1 if the expression is void, zero otherwise."),
3826 isvoid_internal_fn, NULL);
c906108c 3827}
This page took 1.670111 seconds and 4 git commands to generate.