* NEWS: Add entry for stdio gdbserver.
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75 4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7b6bb8da 5 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
c906108c
SS
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
c906108c
SS
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
c906108c 33#include "demangle.h"
d16aafd8 34#include "doublest.h"
5ae326fa 35#include "gdb_assert.h"
36160dc4 36#include "regcache.h"
fe898f56 37#include "block.h"
27bc4d80 38#include "dfp.h"
bccdca4a 39#include "objfiles.h"
79a45b7d 40#include "valprint.h"
bc3b79fd 41#include "cli/cli-decode.h"
8af8e3bc 42#include "exceptions.h"
a08702d6 43#include "python/python.h"
3bd0f5ef 44#include <ctype.h>
0914bcdb
SS
45#include "tracepoint.h"
46
581e13c1 47/* Prototypes for exported functions. */
c906108c 48
a14ed312 49void _initialize_values (void);
c906108c 50
bc3b79fd
TJB
51/* Definition of a user function. */
52struct internal_function
53{
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64};
65
4e07d55f
PA
66/* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68struct range
69{
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75};
76
77typedef struct range range_s;
78
79DEF_VEC_O(range_s);
80
81/* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84static int
85ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87{
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93}
94
95/* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100static int
101range_lessthan (const range_s *r1, const range_s *r2)
102{
103 return r1->offset < r2->offset;
104}
105
106/* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109static int
110ranges_contain (VEC(range_s) *ranges, int offset, int length)
111{
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168}
169
bc3b79fd
TJB
170static struct cmd_list_element *functionlist;
171
91294c83
AC
172struct value
173{
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
179 int modifiable;
180
181 /* Location of value (if lval). */
182 union
183 {
184 /* If lval == lval_memory, this is the address in the inferior.
185 If lval == lval_register, this is the byte offset into the
186 registers structure. */
187 CORE_ADDR address;
188
189 /* Pointer to internal variable. */
190 struct internalvar *internalvar;
5f5233d4
PA
191
192 /* If lval == lval_computed, this is a set of function pointers
193 to use to access and describe the value, and a closure pointer
194 for them to use. */
195 struct
196 {
c8f2448a
JK
197 /* Functions to call. */
198 const struct lval_funcs *funcs;
199
200 /* Closure for those functions to use. */
201 void *closure;
5f5233d4 202 } computed;
91294c83
AC
203 } location;
204
205 /* Describes offset of a value within lval of a structure in bytes.
206 If lval == lval_memory, this is an offset to the address. If
207 lval == lval_register, this is a further offset from
208 location.address within the registers structure. Note also the
209 member embedded_offset below. */
210 int offset;
211
212 /* Only used for bitfields; number of bits contained in them. */
213 int bitsize;
214
215 /* Only used for bitfields; position of start of field. For
32c9a795 216 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 217 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
218 int bitpos;
219
4ea48cc1
DJ
220 /* Only used for bitfields; the containing value. This allows a
221 single read from the target when displaying multiple
222 bitfields. */
223 struct value *parent;
224
91294c83
AC
225 /* Frame register value is relative to. This will be described in
226 the lval enum above as "lval_register". */
227 struct frame_id frame_id;
228
229 /* Type of the value. */
230 struct type *type;
231
232 /* If a value represents a C++ object, then the `type' field gives
233 the object's compile-time type. If the object actually belongs
234 to some class derived from `type', perhaps with other base
235 classes and additional members, then `type' is just a subobject
236 of the real thing, and the full object is probably larger than
237 `type' would suggest.
238
239 If `type' is a dynamic class (i.e. one with a vtable), then GDB
240 can actually determine the object's run-time type by looking at
241 the run-time type information in the vtable. When this
242 information is available, we may elect to read in the entire
243 object, for several reasons:
244
245 - When printing the value, the user would probably rather see the
246 full object, not just the limited portion apparent from the
247 compile-time type.
248
249 - If `type' has virtual base classes, then even printing `type'
250 alone may require reaching outside the `type' portion of the
251 object to wherever the virtual base class has been stored.
252
253 When we store the entire object, `enclosing_type' is the run-time
254 type -- the complete object -- and `embedded_offset' is the
255 offset of `type' within that larger type, in bytes. The
256 value_contents() macro takes `embedded_offset' into account, so
257 most GDB code continues to see the `type' portion of the value,
258 just as the inferior would.
259
260 If `type' is a pointer to an object, then `enclosing_type' is a
261 pointer to the object's run-time type, and `pointed_to_offset' is
262 the offset in bytes from the full object to the pointed-to object
263 -- that is, the value `embedded_offset' would have if we followed
264 the pointer and fetched the complete object. (I don't really see
265 the point. Why not just determine the run-time type when you
266 indirect, and avoid the special case? The contents don't matter
267 until you indirect anyway.)
268
269 If we're not doing anything fancy, `enclosing_type' is equal to
270 `type', and `embedded_offset' is zero, so everything works
271 normally. */
272 struct type *enclosing_type;
273 int embedded_offset;
274 int pointed_to_offset;
275
276 /* Values are stored in a chain, so that they can be deleted easily
277 over calls to the inferior. Values assigned to internal
a08702d6
TJB
278 variables, put into the value history or exposed to Python are
279 taken off this list. */
91294c83
AC
280 struct value *next;
281
282 /* Register number if the value is from a register. */
283 short regnum;
284
285 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
286 nonzero, contents are in inferior. If the lval field is lval_memory,
287 the contents are in inferior memory at location.address plus offset.
288 The lval field may also be lval_register.
91294c83
AC
289
290 WARNING: This field is used by the code which handles watchpoints
291 (see breakpoint.c) to decide whether a particular value can be
292 watched by hardware watchpoints. If the lazy flag is set for
293 some member of a value chain, it is assumed that this member of
294 the chain doesn't need to be watched as part of watching the
295 value itself. This is how GDB avoids watching the entire struct
296 or array when the user wants to watch a single struct member or
297 array element. If you ever change the way lazy flag is set and
298 reset, be sure to consider this use as well! */
299 char lazy;
300
301 /* If nonzero, this is the value of a variable which does not
302 actually exist in the program. */
303 char optimized_out;
304
42be36b3
CT
305 /* If value is a variable, is it initialized or not. */
306 int initialized;
307
4e5d721f
DE
308 /* If value is from the stack. If this is set, read_stack will be
309 used instead of read_memory to enable extra caching. */
310 int stack;
311
3e3d7139
JG
312 /* Actual contents of the value. Target byte-order. NULL or not
313 valid if lazy is nonzero. */
314 gdb_byte *contents;
828d3400 315
4e07d55f
PA
316 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
317 rather than available, since the common and default case is for a
318 value to be available. This is filled in at value read time. */
319 VEC(range_s) *unavailable;
320
828d3400
DJ
321 /* The number of references to this value. When a value is created,
322 the value chain holds a reference, so REFERENCE_COUNT is 1. If
323 release_value is called, this value is removed from the chain but
324 the caller of release_value now has a reference to this value.
325 The caller must arrange for a call to value_free later. */
326 int reference_count;
91294c83
AC
327};
328
4e07d55f
PA
329int
330value_bytes_available (const struct value *value, int offset, int length)
331{
332 gdb_assert (!value->lazy);
333
334 return !ranges_contain (value->unavailable, offset, length);
335}
336
ec0a52e1
PA
337int
338value_entirely_available (struct value *value)
339{
340 /* We can only tell whether the whole value is available when we try
341 to read it. */
342 if (value->lazy)
343 value_fetch_lazy (value);
344
345 if (VEC_empty (range_s, value->unavailable))
346 return 1;
347 return 0;
348}
349
4e07d55f
PA
350void
351mark_value_bytes_unavailable (struct value *value, int offset, int length)
352{
353 range_s newr;
354 int i;
355
356 /* Insert the range sorted. If there's overlap or the new range
357 would be contiguous with an existing range, merge. */
358
359 newr.offset = offset;
360 newr.length = length;
361
362 /* Do a binary search for the position the given range would be
363 inserted if we only considered the starting OFFSET of ranges.
364 Call that position I. Since we also have LENGTH to care for
365 (this is a range afterall), we need to check if the _previous_
366 range overlaps the I range. E.g., calling R the new range:
367
368 #1 - overlaps with previous
369
370 R
371 |-...-|
372 |---| |---| |------| ... |--|
373 0 1 2 N
374
375 I=1
376
377 In the case #1 above, the binary search would return `I=1',
378 meaning, this OFFSET should be inserted at position 1, and the
379 current position 1 should be pushed further (and become 2). But,
380 note that `0' overlaps with R, so we want to merge them.
381
382 A similar consideration needs to be taken if the new range would
383 be contiguous with the previous range:
384
385 #2 - contiguous with previous
386
387 R
388 |-...-|
389 |--| |---| |------| ... |--|
390 0 1 2 N
391
392 I=1
393
394 If there's no overlap with the previous range, as in:
395
396 #3 - not overlapping and not contiguous
397
398 R
399 |-...-|
400 |--| |---| |------| ... |--|
401 0 1 2 N
402
403 I=1
404
405 or if I is 0:
406
407 #4 - R is the range with lowest offset
408
409 R
410 |-...-|
411 |--| |---| |------| ... |--|
412 0 1 2 N
413
414 I=0
415
416 ... we just push the new range to I.
417
418 All the 4 cases above need to consider that the new range may
419 also overlap several of the ranges that follow, or that R may be
420 contiguous with the following range, and merge. E.g.,
421
422 #5 - overlapping following ranges
423
424 R
425 |------------------------|
426 |--| |---| |------| ... |--|
427 0 1 2 N
428
429 I=0
430
431 or:
432
433 R
434 |-------|
435 |--| |---| |------| ... |--|
436 0 1 2 N
437
438 I=1
439
440 */
441
442 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
443 if (i > 0)
444 {
6bfc80c7 445 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
4e07d55f
PA
446
447 if (ranges_overlap (bef->offset, bef->length, offset, length))
448 {
449 /* #1 */
450 ULONGEST l = min (bef->offset, offset);
451 ULONGEST h = max (bef->offset + bef->length, offset + length);
452
453 bef->offset = l;
454 bef->length = h - l;
455 i--;
456 }
457 else if (offset == bef->offset + bef->length)
458 {
459 /* #2 */
460 bef->length += length;
461 i--;
462 }
463 else
464 {
465 /* #3 */
466 VEC_safe_insert (range_s, value->unavailable, i, &newr);
467 }
468 }
469 else
470 {
471 /* #4 */
472 VEC_safe_insert (range_s, value->unavailable, i, &newr);
473 }
474
475 /* Check whether the ranges following the one we've just added or
476 touched can be folded in (#5 above). */
477 if (i + 1 < VEC_length (range_s, value->unavailable))
478 {
479 struct range *t;
480 struct range *r;
481 int removed = 0;
482 int next = i + 1;
483
484 /* Get the range we just touched. */
485 t = VEC_index (range_s, value->unavailable, i);
486 removed = 0;
487
488 i = next;
489 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
490 if (r->offset <= t->offset + t->length)
491 {
492 ULONGEST l, h;
493
494 l = min (t->offset, r->offset);
495 h = max (t->offset + t->length, r->offset + r->length);
496
497 t->offset = l;
498 t->length = h - l;
499
500 removed++;
501 }
502 else
503 {
504 /* If we couldn't merge this one, we won't be able to
505 merge following ones either, since the ranges are
506 always sorted by OFFSET. */
507 break;
508 }
509
510 if (removed != 0)
511 VEC_block_remove (range_s, value->unavailable, next, removed);
512 }
513}
514
c8c1c22f
PA
515/* Find the first range in RANGES that overlaps the range defined by
516 OFFSET and LENGTH, starting at element POS in the RANGES vector,
517 Returns the index into RANGES where such overlapping range was
518 found, or -1 if none was found. */
519
520static int
521find_first_range_overlap (VEC(range_s) *ranges, int pos,
522 int offset, int length)
523{
524 range_s *r;
525 int i;
526
527 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
528 if (ranges_overlap (r->offset, r->length, offset, length))
529 return i;
530
531 return -1;
532}
533
534int
535value_available_contents_eq (const struct value *val1, int offset1,
536 const struct value *val2, int offset2,
537 int length)
538{
c8c1c22f 539 int idx1 = 0, idx2 = 0;
c8c1c22f
PA
540
541 /* This routine is used by printing routines, where we should
542 already have read the value. Note that we only know whether a
543 value chunk is available if we've tried to read it. */
544 gdb_assert (!val1->lazy && !val2->lazy);
545
c8c1c22f
PA
546 while (length > 0)
547 {
548 range_s *r1, *r2;
549 ULONGEST l1, h1;
550 ULONGEST l2, h2;
551
552 idx1 = find_first_range_overlap (val1->unavailable, idx1,
553 offset1, length);
554 idx2 = find_first_range_overlap (val2->unavailable, idx2,
555 offset2, length);
556
557 /* The usual case is for both values to be completely available. */
558 if (idx1 == -1 && idx2 == -1)
cd24cfaa
PA
559 return (memcmp (val1->contents + offset1,
560 val2->contents + offset2,
561 length) == 0);
c8c1c22f
PA
562 /* The contents only match equal if the available set matches as
563 well. */
564 else if (idx1 == -1 || idx2 == -1)
565 return 0;
566
567 gdb_assert (idx1 != -1 && idx2 != -1);
568
569 r1 = VEC_index (range_s, val1->unavailable, idx1);
570 r2 = VEC_index (range_s, val2->unavailable, idx2);
571
572 /* Get the unavailable windows intersected by the incoming
573 ranges. The first and last ranges that overlap the argument
574 range may be wider than said incoming arguments ranges. */
575 l1 = max (offset1, r1->offset);
576 h1 = min (offset1 + length, r1->offset + r1->length);
577
578 l2 = max (offset2, r2->offset);
579 h2 = min (offset2 + length, r2->offset + r2->length);
580
581 /* Make them relative to the respective start offsets, so we can
582 compare them for equality. */
583 l1 -= offset1;
584 h1 -= offset1;
585
586 l2 -= offset2;
587 h2 -= offset2;
588
589 /* Different availability, no match. */
590 if (l1 != l2 || h1 != h2)
591 return 0;
592
593 /* Compare the _available_ contents. */
cd24cfaa
PA
594 if (memcmp (val1->contents + offset1,
595 val2->contents + offset2,
596 l1) != 0)
c8c1c22f
PA
597 return 0;
598
c8c1c22f
PA
599 length -= h1;
600 offset1 += h1;
601 offset2 += h1;
602 }
603
604 return 1;
605}
606
581e13c1 607/* Prototypes for local functions. */
c906108c 608
a14ed312 609static void show_values (char *, int);
c906108c 610
a14ed312 611static void show_convenience (char *, int);
c906108c 612
c906108c
SS
613
614/* The value-history records all the values printed
615 by print commands during this session. Each chunk
616 records 60 consecutive values. The first chunk on
617 the chain records the most recent values.
618 The total number of values is in value_history_count. */
619
620#define VALUE_HISTORY_CHUNK 60
621
622struct value_history_chunk
c5aa993b
JM
623 {
624 struct value_history_chunk *next;
f23631e4 625 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 626 };
c906108c
SS
627
628/* Chain of chunks now in use. */
629
630static struct value_history_chunk *value_history_chain;
631
581e13c1 632static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 633
c906108c
SS
634\f
635/* List of all value objects currently allocated
636 (except for those released by calls to release_value)
637 This is so they can be freed after each command. */
638
f23631e4 639static struct value *all_values;
c906108c 640
3e3d7139
JG
641/* Allocate a lazy value for type TYPE. Its actual content is
642 "lazily" allocated too: the content field of the return value is
643 NULL; it will be allocated when it is fetched from the target. */
c906108c 644
f23631e4 645struct value *
3e3d7139 646allocate_value_lazy (struct type *type)
c906108c 647{
f23631e4 648 struct value *val;
c54eabfa
JK
649
650 /* Call check_typedef on our type to make sure that, if TYPE
651 is a TYPE_CODE_TYPEDEF, its length is set to the length
652 of the target type instead of zero. However, we do not
653 replace the typedef type by the target type, because we want
654 to keep the typedef in order to be able to set the VAL's type
655 description correctly. */
656 check_typedef (type);
c906108c 657
3e3d7139
JG
658 val = (struct value *) xzalloc (sizeof (struct value));
659 val->contents = NULL;
df407dfe 660 val->next = all_values;
c906108c 661 all_values = val;
df407dfe 662 val->type = type;
4754a64e 663 val->enclosing_type = type;
c906108c 664 VALUE_LVAL (val) = not_lval;
42ae5230 665 val->location.address = 0;
1df6926e 666 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
667 val->offset = 0;
668 val->bitpos = 0;
669 val->bitsize = 0;
9ee8fc9d 670 VALUE_REGNUM (val) = -1;
3e3d7139 671 val->lazy = 1;
feb13ab0 672 val->optimized_out = 0;
13c3b5f5 673 val->embedded_offset = 0;
b44d461b 674 val->pointed_to_offset = 0;
c906108c 675 val->modifiable = 1;
42be36b3 676 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
677
678 /* Values start out on the all_values chain. */
679 val->reference_count = 1;
680
c906108c
SS
681 return val;
682}
683
3e3d7139
JG
684/* Allocate the contents of VAL if it has not been allocated yet. */
685
686void
687allocate_value_contents (struct value *val)
688{
689 if (!val->contents)
690 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
691}
692
693/* Allocate a value and its contents for type TYPE. */
694
695struct value *
696allocate_value (struct type *type)
697{
698 struct value *val = allocate_value_lazy (type);
a109c7c1 699
3e3d7139
JG
700 allocate_value_contents (val);
701 val->lazy = 0;
702 return val;
703}
704
c906108c 705/* Allocate a value that has the correct length
938f5214 706 for COUNT repetitions of type TYPE. */
c906108c 707
f23631e4 708struct value *
fba45db2 709allocate_repeat_value (struct type *type, int count)
c906108c 710{
c5aa993b 711 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
712 /* FIXME-type-allocation: need a way to free this type when we are
713 done with it. */
e3506a9f
UW
714 struct type *array_type
715 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 716
e3506a9f 717 return allocate_value (array_type);
c906108c
SS
718}
719
5f5233d4
PA
720struct value *
721allocate_computed_value (struct type *type,
c8f2448a 722 const struct lval_funcs *funcs,
5f5233d4
PA
723 void *closure)
724{
41e8491f 725 struct value *v = allocate_value_lazy (type);
a109c7c1 726
5f5233d4
PA
727 VALUE_LVAL (v) = lval_computed;
728 v->location.computed.funcs = funcs;
729 v->location.computed.closure = closure;
5f5233d4
PA
730
731 return v;
732}
733
a7035dbb
JK
734/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
735
736struct value *
737allocate_optimized_out_value (struct type *type)
738{
739 struct value *retval = allocate_value_lazy (type);
740
741 set_value_optimized_out (retval, 1);
742
743 return retval;
744}
745
df407dfe
AC
746/* Accessor methods. */
747
17cf0ecd
AC
748struct value *
749value_next (struct value *value)
750{
751 return value->next;
752}
753
df407dfe 754struct type *
0e03807e 755value_type (const struct value *value)
df407dfe
AC
756{
757 return value->type;
758}
04624583
AC
759void
760deprecated_set_value_type (struct value *value, struct type *type)
761{
762 value->type = type;
763}
df407dfe
AC
764
765int
0e03807e 766value_offset (const struct value *value)
df407dfe
AC
767{
768 return value->offset;
769}
f5cf64a7
AC
770void
771set_value_offset (struct value *value, int offset)
772{
773 value->offset = offset;
774}
df407dfe
AC
775
776int
0e03807e 777value_bitpos (const struct value *value)
df407dfe
AC
778{
779 return value->bitpos;
780}
9bbda503
AC
781void
782set_value_bitpos (struct value *value, int bit)
783{
784 value->bitpos = bit;
785}
df407dfe
AC
786
787int
0e03807e 788value_bitsize (const struct value *value)
df407dfe
AC
789{
790 return value->bitsize;
791}
9bbda503
AC
792void
793set_value_bitsize (struct value *value, int bit)
794{
795 value->bitsize = bit;
796}
df407dfe 797
4ea48cc1
DJ
798struct value *
799value_parent (struct value *value)
800{
801 return value->parent;
802}
803
fc1a4b47 804gdb_byte *
990a07ab
AC
805value_contents_raw (struct value *value)
806{
3e3d7139
JG
807 allocate_value_contents (value);
808 return value->contents + value->embedded_offset;
990a07ab
AC
809}
810
fc1a4b47 811gdb_byte *
990a07ab
AC
812value_contents_all_raw (struct value *value)
813{
3e3d7139
JG
814 allocate_value_contents (value);
815 return value->contents;
990a07ab
AC
816}
817
4754a64e
AC
818struct type *
819value_enclosing_type (struct value *value)
820{
821 return value->enclosing_type;
822}
823
0e03807e 824static void
4e07d55f 825require_not_optimized_out (const struct value *value)
0e03807e
TT
826{
827 if (value->optimized_out)
828 error (_("value has been optimized out"));
829}
830
4e07d55f
PA
831static void
832require_available (const struct value *value)
833{
834 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 835 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
836}
837
fc1a4b47 838const gdb_byte *
0e03807e 839value_contents_for_printing (struct value *value)
46615f07
AC
840{
841 if (value->lazy)
842 value_fetch_lazy (value);
3e3d7139 843 return value->contents;
46615f07
AC
844}
845
de4127a3
PA
846const gdb_byte *
847value_contents_for_printing_const (const struct value *value)
848{
849 gdb_assert (!value->lazy);
850 return value->contents;
851}
852
0e03807e
TT
853const gdb_byte *
854value_contents_all (struct value *value)
855{
856 const gdb_byte *result = value_contents_for_printing (value);
857 require_not_optimized_out (value);
4e07d55f 858 require_available (value);
0e03807e
TT
859 return result;
860}
861
29976f3f
PA
862/* Copy LENGTH bytes of SRC value's (all) contents
863 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
864 contents, starting at DST_OFFSET. If unavailable contents are
865 being copied from SRC, the corresponding DST contents are marked
866 unavailable accordingly. Neither DST nor SRC may be lazy
867 values.
868
869 It is assumed the contents of DST in the [DST_OFFSET,
870 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
871
872void
873value_contents_copy_raw (struct value *dst, int dst_offset,
874 struct value *src, int src_offset, int length)
875{
876 range_s *r;
877 int i;
878
879 /* A lazy DST would make that this copy operation useless, since as
880 soon as DST's contents were un-lazied (by a later value_contents
881 call, say), the contents would be overwritten. A lazy SRC would
882 mean we'd be copying garbage. */
883 gdb_assert (!dst->lazy && !src->lazy);
884
29976f3f
PA
885 /* The overwritten DST range gets unavailability ORed in, not
886 replaced. Make sure to remember to implement replacing if it
887 turns out actually necessary. */
888 gdb_assert (value_bytes_available (dst, dst_offset, length));
889
39d37385
PA
890 /* Copy the data. */
891 memcpy (value_contents_all_raw (dst) + dst_offset,
892 value_contents_all_raw (src) + src_offset,
893 length);
894
895 /* Copy the meta-data, adjusted. */
896 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
897 {
898 ULONGEST h, l;
899
900 l = max (r->offset, src_offset);
901 h = min (r->offset + r->length, src_offset + length);
902
903 if (l < h)
904 mark_value_bytes_unavailable (dst,
905 dst_offset + (l - src_offset),
906 h - l);
907 }
908}
909
29976f3f
PA
910/* Copy LENGTH bytes of SRC value's (all) contents
911 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
912 (all) contents, starting at DST_OFFSET. If unavailable contents
913 are being copied from SRC, the corresponding DST contents are
914 marked unavailable accordingly. DST must not be lazy. If SRC is
915 lazy, it will be fetched now. If SRC is not valid (is optimized
916 out), an error is thrown.
917
918 It is assumed the contents of DST in the [DST_OFFSET,
919 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
920
921void
922value_contents_copy (struct value *dst, int dst_offset,
923 struct value *src, int src_offset, int length)
924{
925 require_not_optimized_out (src);
926
927 if (src->lazy)
928 value_fetch_lazy (src);
929
930 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
931}
932
d69fe07e
AC
933int
934value_lazy (struct value *value)
935{
936 return value->lazy;
937}
938
dfa52d88
AC
939void
940set_value_lazy (struct value *value, int val)
941{
942 value->lazy = val;
943}
944
4e5d721f
DE
945int
946value_stack (struct value *value)
947{
948 return value->stack;
949}
950
951void
952set_value_stack (struct value *value, int val)
953{
954 value->stack = val;
955}
956
fc1a4b47 957const gdb_byte *
0fd88904
AC
958value_contents (struct value *value)
959{
0e03807e
TT
960 const gdb_byte *result = value_contents_writeable (value);
961 require_not_optimized_out (value);
4e07d55f 962 require_available (value);
0e03807e 963 return result;
0fd88904
AC
964}
965
fc1a4b47 966gdb_byte *
0fd88904
AC
967value_contents_writeable (struct value *value)
968{
969 if (value->lazy)
970 value_fetch_lazy (value);
fc0c53a0 971 return value_contents_raw (value);
0fd88904
AC
972}
973
a6c442d8
MK
974/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
975 this function is different from value_equal; in C the operator ==
976 can return 0 even if the two values being compared are equal. */
977
978int
979value_contents_equal (struct value *val1, struct value *val2)
980{
981 struct type *type1;
982 struct type *type2;
983 int len;
984
985 type1 = check_typedef (value_type (val1));
986 type2 = check_typedef (value_type (val2));
987 len = TYPE_LENGTH (type1);
988 if (len != TYPE_LENGTH (type2))
989 return 0;
990
991 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
992}
993
feb13ab0
AC
994int
995value_optimized_out (struct value *value)
996{
997 return value->optimized_out;
998}
999
1000void
1001set_value_optimized_out (struct value *value, int val)
1002{
1003 value->optimized_out = val;
1004}
13c3b5f5 1005
0e03807e
TT
1006int
1007value_entirely_optimized_out (const struct value *value)
1008{
1009 if (!value->optimized_out)
1010 return 0;
1011 if (value->lval != lval_computed
ba19bb4d 1012 || !value->location.computed.funcs->check_any_valid)
0e03807e 1013 return 1;
b65c7efe 1014 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
1015}
1016
1017int
1018value_bits_valid (const struct value *value, int offset, int length)
1019{
e7303042 1020 if (!value->optimized_out)
0e03807e
TT
1021 return 1;
1022 if (value->lval != lval_computed
1023 || !value->location.computed.funcs->check_validity)
1024 return 0;
1025 return value->location.computed.funcs->check_validity (value, offset,
1026 length);
1027}
1028
8cf6f0b1
TT
1029int
1030value_bits_synthetic_pointer (const struct value *value,
1031 int offset, int length)
1032{
e7303042 1033 if (value->lval != lval_computed
8cf6f0b1
TT
1034 || !value->location.computed.funcs->check_synthetic_pointer)
1035 return 0;
1036 return value->location.computed.funcs->check_synthetic_pointer (value,
1037 offset,
1038 length);
1039}
1040
13c3b5f5
AC
1041int
1042value_embedded_offset (struct value *value)
1043{
1044 return value->embedded_offset;
1045}
1046
1047void
1048set_value_embedded_offset (struct value *value, int val)
1049{
1050 value->embedded_offset = val;
1051}
b44d461b
AC
1052
1053int
1054value_pointed_to_offset (struct value *value)
1055{
1056 return value->pointed_to_offset;
1057}
1058
1059void
1060set_value_pointed_to_offset (struct value *value, int val)
1061{
1062 value->pointed_to_offset = val;
1063}
13bb5560 1064
c8f2448a 1065const struct lval_funcs *
a471c594 1066value_computed_funcs (const struct value *v)
5f5233d4 1067{
a471c594 1068 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1069
1070 return v->location.computed.funcs;
1071}
1072
1073void *
0e03807e 1074value_computed_closure (const struct value *v)
5f5233d4 1075{
0e03807e 1076 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1077
1078 return v->location.computed.closure;
1079}
1080
13bb5560
AC
1081enum lval_type *
1082deprecated_value_lval_hack (struct value *value)
1083{
1084 return &value->lval;
1085}
1086
a471c594
JK
1087enum lval_type
1088value_lval_const (const struct value *value)
1089{
1090 return value->lval;
1091}
1092
42ae5230 1093CORE_ADDR
de4127a3 1094value_address (const struct value *value)
42ae5230
TT
1095{
1096 if (value->lval == lval_internalvar
1097 || value->lval == lval_internalvar_component)
1098 return 0;
1099 return value->location.address + value->offset;
1100}
1101
1102CORE_ADDR
1103value_raw_address (struct value *value)
1104{
1105 if (value->lval == lval_internalvar
1106 || value->lval == lval_internalvar_component)
1107 return 0;
1108 return value->location.address;
1109}
1110
1111void
1112set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1113{
42ae5230
TT
1114 gdb_assert (value->lval != lval_internalvar
1115 && value->lval != lval_internalvar_component);
1116 value->location.address = addr;
13bb5560
AC
1117}
1118
1119struct internalvar **
1120deprecated_value_internalvar_hack (struct value *value)
1121{
1122 return &value->location.internalvar;
1123}
1124
1125struct frame_id *
1126deprecated_value_frame_id_hack (struct value *value)
1127{
1128 return &value->frame_id;
1129}
1130
1131short *
1132deprecated_value_regnum_hack (struct value *value)
1133{
1134 return &value->regnum;
1135}
88e3b34b
AC
1136
1137int
1138deprecated_value_modifiable (struct value *value)
1139{
1140 return value->modifiable;
1141}
1142void
1143deprecated_set_value_modifiable (struct value *value, int modifiable)
1144{
1145 value->modifiable = modifiable;
1146}
990a07ab 1147\f
c906108c
SS
1148/* Return a mark in the value chain. All values allocated after the
1149 mark is obtained (except for those released) are subject to being freed
1150 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1151struct value *
fba45db2 1152value_mark (void)
c906108c
SS
1153{
1154 return all_values;
1155}
1156
828d3400
DJ
1157/* Take a reference to VAL. VAL will not be deallocated until all
1158 references are released. */
1159
1160void
1161value_incref (struct value *val)
1162{
1163 val->reference_count++;
1164}
1165
1166/* Release a reference to VAL, which was acquired with value_incref.
1167 This function is also called to deallocate values from the value
1168 chain. */
1169
3e3d7139
JG
1170void
1171value_free (struct value *val)
1172{
1173 if (val)
5f5233d4 1174 {
828d3400
DJ
1175 gdb_assert (val->reference_count > 0);
1176 val->reference_count--;
1177 if (val->reference_count > 0)
1178 return;
1179
4ea48cc1
DJ
1180 /* If there's an associated parent value, drop our reference to
1181 it. */
1182 if (val->parent != NULL)
1183 value_free (val->parent);
1184
5f5233d4
PA
1185 if (VALUE_LVAL (val) == lval_computed)
1186 {
c8f2448a 1187 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1188
1189 if (funcs->free_closure)
1190 funcs->free_closure (val);
1191 }
1192
1193 xfree (val->contents);
4e07d55f 1194 VEC_free (range_s, val->unavailable);
5f5233d4 1195 }
3e3d7139
JG
1196 xfree (val);
1197}
1198
c906108c
SS
1199/* Free all values allocated since MARK was obtained by value_mark
1200 (except for those released). */
1201void
f23631e4 1202value_free_to_mark (struct value *mark)
c906108c 1203{
f23631e4
AC
1204 struct value *val;
1205 struct value *next;
c906108c
SS
1206
1207 for (val = all_values; val && val != mark; val = next)
1208 {
df407dfe 1209 next = val->next;
c906108c
SS
1210 value_free (val);
1211 }
1212 all_values = val;
1213}
1214
1215/* Free all the values that have been allocated (except for those released).
725e88af
DE
1216 Call after each command, successful or not.
1217 In practice this is called before each command, which is sufficient. */
c906108c
SS
1218
1219void
fba45db2 1220free_all_values (void)
c906108c 1221{
f23631e4
AC
1222 struct value *val;
1223 struct value *next;
c906108c
SS
1224
1225 for (val = all_values; val; val = next)
1226 {
df407dfe 1227 next = val->next;
c906108c
SS
1228 value_free (val);
1229 }
1230
1231 all_values = 0;
1232}
1233
0cf6dd15
TJB
1234/* Frees all the elements in a chain of values. */
1235
1236void
1237free_value_chain (struct value *v)
1238{
1239 struct value *next;
1240
1241 for (; v; v = next)
1242 {
1243 next = value_next (v);
1244 value_free (v);
1245 }
1246}
1247
c906108c
SS
1248/* Remove VAL from the chain all_values
1249 so it will not be freed automatically. */
1250
1251void
f23631e4 1252release_value (struct value *val)
c906108c 1253{
f23631e4 1254 struct value *v;
c906108c
SS
1255
1256 if (all_values == val)
1257 {
1258 all_values = val->next;
06a64a0b 1259 val->next = NULL;
c906108c
SS
1260 return;
1261 }
1262
1263 for (v = all_values; v; v = v->next)
1264 {
1265 if (v->next == val)
1266 {
1267 v->next = val->next;
06a64a0b 1268 val->next = NULL;
c906108c
SS
1269 break;
1270 }
1271 }
1272}
1273
1274/* Release all values up to mark */
f23631e4
AC
1275struct value *
1276value_release_to_mark (struct value *mark)
c906108c 1277{
f23631e4
AC
1278 struct value *val;
1279 struct value *next;
c906108c 1280
df407dfe
AC
1281 for (val = next = all_values; next; next = next->next)
1282 if (next->next == mark)
c906108c 1283 {
df407dfe
AC
1284 all_values = next->next;
1285 next->next = NULL;
c906108c
SS
1286 return val;
1287 }
1288 all_values = 0;
1289 return val;
1290}
1291
1292/* Return a copy of the value ARG.
1293 It contains the same contents, for same memory address,
1294 but it's a different block of storage. */
1295
f23631e4
AC
1296struct value *
1297value_copy (struct value *arg)
c906108c 1298{
4754a64e 1299 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1300 struct value *val;
1301
1302 if (value_lazy (arg))
1303 val = allocate_value_lazy (encl_type);
1304 else
1305 val = allocate_value (encl_type);
df407dfe 1306 val->type = arg->type;
c906108c 1307 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1308 val->location = arg->location;
df407dfe
AC
1309 val->offset = arg->offset;
1310 val->bitpos = arg->bitpos;
1311 val->bitsize = arg->bitsize;
1df6926e 1312 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1313 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1314 val->lazy = arg->lazy;
feb13ab0 1315 val->optimized_out = arg->optimized_out;
13c3b5f5 1316 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1317 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1318 val->modifiable = arg->modifiable;
d69fe07e 1319 if (!value_lazy (val))
c906108c 1320 {
990a07ab 1321 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1322 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1323
1324 }
4e07d55f 1325 val->unavailable = VEC_copy (range_s, arg->unavailable);
4ea48cc1
DJ
1326 val->parent = arg->parent;
1327 if (val->parent)
1328 value_incref (val->parent);
5f5233d4
PA
1329 if (VALUE_LVAL (val) == lval_computed)
1330 {
c8f2448a 1331 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1332
1333 if (funcs->copy_closure)
1334 val->location.computed.closure = funcs->copy_closure (val);
1335 }
c906108c
SS
1336 return val;
1337}
74bcbdf3 1338
c37f7098
KW
1339/* Return a version of ARG that is non-lvalue. */
1340
1341struct value *
1342value_non_lval (struct value *arg)
1343{
1344 if (VALUE_LVAL (arg) != not_lval)
1345 {
1346 struct type *enc_type = value_enclosing_type (arg);
1347 struct value *val = allocate_value (enc_type);
1348
1349 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1350 TYPE_LENGTH (enc_type));
1351 val->type = arg->type;
1352 set_value_embedded_offset (val, value_embedded_offset (arg));
1353 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1354 return val;
1355 }
1356 return arg;
1357}
1358
74bcbdf3 1359void
0e03807e
TT
1360set_value_component_location (struct value *component,
1361 const struct value *whole)
74bcbdf3 1362{
0e03807e 1363 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1364 VALUE_LVAL (component) = lval_internalvar_component;
1365 else
0e03807e 1366 VALUE_LVAL (component) = whole->lval;
5f5233d4 1367
74bcbdf3 1368 component->location = whole->location;
0e03807e 1369 if (whole->lval == lval_computed)
5f5233d4 1370 {
c8f2448a 1371 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1372
1373 if (funcs->copy_closure)
1374 component->location.computed.closure = funcs->copy_closure (whole);
1375 }
74bcbdf3
PA
1376}
1377
c906108c
SS
1378\f
1379/* Access to the value history. */
1380
1381/* Record a new value in the value history.
1382 Returns the absolute history index of the entry.
1383 Result of -1 indicates the value was not saved; otherwise it is the
1384 value history index of this new item. */
1385
1386int
f23631e4 1387record_latest_value (struct value *val)
c906108c
SS
1388{
1389 int i;
1390
1391 /* We don't want this value to have anything to do with the inferior anymore.
1392 In particular, "set $1 = 50" should not affect the variable from which
1393 the value was taken, and fast watchpoints should be able to assume that
1394 a value on the value history never changes. */
d69fe07e 1395 if (value_lazy (val))
c906108c
SS
1396 value_fetch_lazy (val);
1397 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1398 from. This is a bit dubious, because then *&$1 does not just return $1
1399 but the current contents of that location. c'est la vie... */
1400 val->modifiable = 0;
1401 release_value (val);
1402
1403 /* Here we treat value_history_count as origin-zero
1404 and applying to the value being stored now. */
1405
1406 i = value_history_count % VALUE_HISTORY_CHUNK;
1407 if (i == 0)
1408 {
f23631e4 1409 struct value_history_chunk *new
a109c7c1
MS
1410 = (struct value_history_chunk *)
1411
c5aa993b 1412 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
1413 memset (new->values, 0, sizeof new->values);
1414 new->next = value_history_chain;
1415 value_history_chain = new;
1416 }
1417
1418 value_history_chain->values[i] = val;
1419
1420 /* Now we regard value_history_count as origin-one
1421 and applying to the value just stored. */
1422
1423 return ++value_history_count;
1424}
1425
1426/* Return a copy of the value in the history with sequence number NUM. */
1427
f23631e4 1428struct value *
fba45db2 1429access_value_history (int num)
c906108c 1430{
f23631e4 1431 struct value_history_chunk *chunk;
52f0bd74
AC
1432 int i;
1433 int absnum = num;
c906108c
SS
1434
1435 if (absnum <= 0)
1436 absnum += value_history_count;
1437
1438 if (absnum <= 0)
1439 {
1440 if (num == 0)
8a3fe4f8 1441 error (_("The history is empty."));
c906108c 1442 else if (num == 1)
8a3fe4f8 1443 error (_("There is only one value in the history."));
c906108c 1444 else
8a3fe4f8 1445 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1446 }
1447 if (absnum > value_history_count)
8a3fe4f8 1448 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1449
1450 absnum--;
1451
1452 /* Now absnum is always absolute and origin zero. */
1453
1454 chunk = value_history_chain;
3e43a32a
MS
1455 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1456 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1457 i > 0; i--)
1458 chunk = chunk->next;
1459
1460 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1461}
1462
c906108c 1463static void
fba45db2 1464show_values (char *num_exp, int from_tty)
c906108c 1465{
52f0bd74 1466 int i;
f23631e4 1467 struct value *val;
c906108c
SS
1468 static int num = 1;
1469
1470 if (num_exp)
1471 {
f132ba9d
TJB
1472 /* "show values +" should print from the stored position.
1473 "show values <exp>" should print around value number <exp>. */
c906108c 1474 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1475 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1476 }
1477 else
1478 {
f132ba9d 1479 /* "show values" means print the last 10 values. */
c906108c
SS
1480 num = value_history_count - 9;
1481 }
1482
1483 if (num <= 0)
1484 num = 1;
1485
1486 for (i = num; i < num + 10 && i <= value_history_count; i++)
1487 {
79a45b7d 1488 struct value_print_options opts;
a109c7c1 1489
c906108c 1490 val = access_value_history (i);
a3f17187 1491 printf_filtered (("$%d = "), i);
79a45b7d
TT
1492 get_user_print_options (&opts);
1493 value_print (val, gdb_stdout, &opts);
a3f17187 1494 printf_filtered (("\n"));
c906108c
SS
1495 }
1496
f132ba9d 1497 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1498 num += 10;
1499
1500 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1501 "show values +". If num_exp is null, this is unnecessary, since
1502 "show values +" is not useful after "show values". */
c906108c
SS
1503 if (from_tty && num_exp)
1504 {
1505 num_exp[0] = '+';
1506 num_exp[1] = '\0';
1507 }
1508}
1509\f
1510/* Internal variables. These are variables within the debugger
1511 that hold values assigned by debugger commands.
1512 The user refers to them with a '$' prefix
1513 that does not appear in the variable names stored internally. */
1514
4fa62494
UW
1515struct internalvar
1516{
1517 struct internalvar *next;
1518 char *name;
4fa62494 1519
78267919
UW
1520 /* We support various different kinds of content of an internal variable.
1521 enum internalvar_kind specifies the kind, and union internalvar_data
1522 provides the data associated with this particular kind. */
1523
1524 enum internalvar_kind
1525 {
1526 /* The internal variable is empty. */
1527 INTERNALVAR_VOID,
1528
1529 /* The value of the internal variable is provided directly as
1530 a GDB value object. */
1531 INTERNALVAR_VALUE,
1532
1533 /* A fresh value is computed via a call-back routine on every
1534 access to the internal variable. */
1535 INTERNALVAR_MAKE_VALUE,
4fa62494 1536
78267919
UW
1537 /* The internal variable holds a GDB internal convenience function. */
1538 INTERNALVAR_FUNCTION,
1539
cab0c772
UW
1540 /* The variable holds an integer value. */
1541 INTERNALVAR_INTEGER,
1542
78267919
UW
1543 /* The variable holds a GDB-provided string. */
1544 INTERNALVAR_STRING,
1545
1546 } kind;
4fa62494 1547
4fa62494
UW
1548 union internalvar_data
1549 {
78267919
UW
1550 /* A value object used with INTERNALVAR_VALUE. */
1551 struct value *value;
1552
1553 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1554 internalvar_make_value make_value;
1555
1556 /* The internal function used with INTERNALVAR_FUNCTION. */
1557 struct
1558 {
1559 struct internal_function *function;
1560 /* True if this is the canonical name for the function. */
1561 int canonical;
1562 } fn;
1563
cab0c772 1564 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1565 struct
1566 {
1567 /* If type is non-NULL, it will be used as the type to generate
1568 a value for this internal variable. If type is NULL, a default
1569 integer type for the architecture is used. */
1570 struct type *type;
cab0c772
UW
1571 LONGEST val;
1572 } integer;
1573
78267919
UW
1574 /* A string value used with INTERNALVAR_STRING. */
1575 char *string;
4fa62494
UW
1576 } u;
1577};
1578
c906108c
SS
1579static struct internalvar *internalvars;
1580
3e43a32a
MS
1581/* If the variable does not already exist create it and give it the
1582 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1583static void
1584init_if_undefined_command (char* args, int from_tty)
1585{
1586 struct internalvar* intvar;
1587
1588 /* Parse the expression - this is taken from set_command(). */
1589 struct expression *expr = parse_expression (args);
1590 register struct cleanup *old_chain =
1591 make_cleanup (free_current_contents, &expr);
1592
1593 /* Validate the expression.
1594 Was the expression an assignment?
1595 Or even an expression at all? */
1596 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1597 error (_("Init-if-undefined requires an assignment expression."));
1598
1599 /* Extract the variable from the parsed expression.
1600 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1601 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1602 error (_("The first parameter to init-if-undefined "
1603 "should be a GDB variable."));
53e5f3cf
AS
1604 intvar = expr->elts[2].internalvar;
1605
1606 /* Only evaluate the expression if the lvalue is void.
1607 This may still fail if the expresssion is invalid. */
78267919 1608 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1609 evaluate_expression (expr);
1610
1611 do_cleanups (old_chain);
1612}
1613
1614
c906108c
SS
1615/* Look up an internal variable with name NAME. NAME should not
1616 normally include a dollar sign.
1617
1618 If the specified internal variable does not exist,
c4a3d09a 1619 the return value is NULL. */
c906108c
SS
1620
1621struct internalvar *
bc3b79fd 1622lookup_only_internalvar (const char *name)
c906108c 1623{
52f0bd74 1624 struct internalvar *var;
c906108c
SS
1625
1626 for (var = internalvars; var; var = var->next)
5cb316ef 1627 if (strcmp (var->name, name) == 0)
c906108c
SS
1628 return var;
1629
c4a3d09a
MF
1630 return NULL;
1631}
1632
1633
1634/* Create an internal variable with name NAME and with a void value.
1635 NAME should not normally include a dollar sign. */
1636
1637struct internalvar *
bc3b79fd 1638create_internalvar (const char *name)
c4a3d09a
MF
1639{
1640 struct internalvar *var;
a109c7c1 1641
c906108c 1642 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1643 var->name = concat (name, (char *)NULL);
78267919 1644 var->kind = INTERNALVAR_VOID;
c906108c
SS
1645 var->next = internalvars;
1646 internalvars = var;
1647 return var;
1648}
1649
4aa995e1
PA
1650/* Create an internal variable with name NAME and register FUN as the
1651 function that value_of_internalvar uses to create a value whenever
1652 this variable is referenced. NAME should not normally include a
1653 dollar sign. */
1654
1655struct internalvar *
1656create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1657{
4fa62494 1658 struct internalvar *var = create_internalvar (name);
a109c7c1 1659
78267919
UW
1660 var->kind = INTERNALVAR_MAKE_VALUE;
1661 var->u.make_value = fun;
4aa995e1
PA
1662 return var;
1663}
c4a3d09a
MF
1664
1665/* Look up an internal variable with name NAME. NAME should not
1666 normally include a dollar sign.
1667
1668 If the specified internal variable does not exist,
1669 one is created, with a void value. */
1670
1671struct internalvar *
bc3b79fd 1672lookup_internalvar (const char *name)
c4a3d09a
MF
1673{
1674 struct internalvar *var;
1675
1676 var = lookup_only_internalvar (name);
1677 if (var)
1678 return var;
1679
1680 return create_internalvar (name);
1681}
1682
78267919
UW
1683/* Return current value of internal variable VAR. For variables that
1684 are not inherently typed, use a value type appropriate for GDBARCH. */
1685
f23631e4 1686struct value *
78267919 1687value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1688{
f23631e4 1689 struct value *val;
0914bcdb
SS
1690 struct trace_state_variable *tsv;
1691
1692 /* If there is a trace state variable of the same name, assume that
1693 is what we really want to see. */
1694 tsv = find_trace_state_variable (var->name);
1695 if (tsv)
1696 {
1697 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1698 &(tsv->value));
1699 if (tsv->value_known)
1700 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1701 tsv->value);
1702 else
1703 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1704 return val;
1705 }
c906108c 1706
78267919 1707 switch (var->kind)
5f5233d4 1708 {
78267919
UW
1709 case INTERNALVAR_VOID:
1710 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1711 break;
4fa62494 1712
78267919
UW
1713 case INTERNALVAR_FUNCTION:
1714 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1715 break;
4fa62494 1716
cab0c772
UW
1717 case INTERNALVAR_INTEGER:
1718 if (!var->u.integer.type)
78267919 1719 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 1720 var->u.integer.val);
78267919 1721 else
cab0c772
UW
1722 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1723 break;
1724
78267919
UW
1725 case INTERNALVAR_STRING:
1726 val = value_cstring (var->u.string, strlen (var->u.string),
1727 builtin_type (gdbarch)->builtin_char);
1728 break;
4fa62494 1729
78267919
UW
1730 case INTERNALVAR_VALUE:
1731 val = value_copy (var->u.value);
4aa995e1
PA
1732 if (value_lazy (val))
1733 value_fetch_lazy (val);
78267919 1734 break;
4aa995e1 1735
78267919
UW
1736 case INTERNALVAR_MAKE_VALUE:
1737 val = (*var->u.make_value) (gdbarch, var);
1738 break;
1739
1740 default:
9b20d036 1741 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
1742 }
1743
1744 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1745 on this value go back to affect the original internal variable.
1746
1747 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1748 no underlying modifyable state in the internal variable.
1749
1750 Likewise, if the variable's value is a computed lvalue, we want
1751 references to it to produce another computed lvalue, where
1752 references and assignments actually operate through the
1753 computed value's functions.
1754
1755 This means that internal variables with computed values
1756 behave a little differently from other internal variables:
1757 assignments to them don't just replace the previous value
1758 altogether. At the moment, this seems like the behavior we
1759 want. */
1760
1761 if (var->kind != INTERNALVAR_MAKE_VALUE
1762 && val->lval != lval_computed)
1763 {
1764 VALUE_LVAL (val) = lval_internalvar;
1765 VALUE_INTERNALVAR (val) = var;
5f5233d4 1766 }
d3c139e9 1767
4fa62494
UW
1768 return val;
1769}
d3c139e9 1770
4fa62494
UW
1771int
1772get_internalvar_integer (struct internalvar *var, LONGEST *result)
1773{
3158c6ed 1774 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 1775 {
cab0c772
UW
1776 *result = var->u.integer.val;
1777 return 1;
3158c6ed 1778 }
d3c139e9 1779
3158c6ed
PA
1780 if (var->kind == INTERNALVAR_VALUE)
1781 {
1782 struct type *type = check_typedef (value_type (var->u.value));
1783
1784 if (TYPE_CODE (type) == TYPE_CODE_INT)
1785 {
1786 *result = value_as_long (var->u.value);
1787 return 1;
1788 }
4fa62494 1789 }
3158c6ed
PA
1790
1791 return 0;
4fa62494 1792}
d3c139e9 1793
4fa62494
UW
1794static int
1795get_internalvar_function (struct internalvar *var,
1796 struct internal_function **result)
1797{
78267919 1798 switch (var->kind)
d3c139e9 1799 {
78267919
UW
1800 case INTERNALVAR_FUNCTION:
1801 *result = var->u.fn.function;
4fa62494 1802 return 1;
d3c139e9 1803
4fa62494
UW
1804 default:
1805 return 0;
1806 }
c906108c
SS
1807}
1808
1809void
fba45db2 1810set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1811 int bitsize, struct value *newval)
c906108c 1812{
4fa62494 1813 gdb_byte *addr;
c906108c 1814
78267919 1815 switch (var->kind)
4fa62494 1816 {
78267919
UW
1817 case INTERNALVAR_VALUE:
1818 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1819
1820 if (bitsize)
50810684 1821 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1822 value_as_long (newval), bitpos, bitsize);
1823 else
1824 memcpy (addr + offset, value_contents (newval),
1825 TYPE_LENGTH (value_type (newval)));
1826 break;
78267919
UW
1827
1828 default:
1829 /* We can never get a component of any other kind. */
9b20d036 1830 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 1831 }
c906108c
SS
1832}
1833
1834void
f23631e4 1835set_internalvar (struct internalvar *var, struct value *val)
c906108c 1836{
78267919 1837 enum internalvar_kind new_kind;
4fa62494 1838 union internalvar_data new_data = { 0 };
c906108c 1839
78267919 1840 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1841 error (_("Cannot overwrite convenience function %s"), var->name);
1842
4fa62494 1843 /* Prepare new contents. */
78267919 1844 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1845 {
1846 case TYPE_CODE_VOID:
78267919 1847 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1848 break;
1849
1850 case TYPE_CODE_INTERNAL_FUNCTION:
1851 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1852 new_kind = INTERNALVAR_FUNCTION;
1853 get_internalvar_function (VALUE_INTERNALVAR (val),
1854 &new_data.fn.function);
1855 /* Copies created here are never canonical. */
4fa62494
UW
1856 break;
1857
4fa62494 1858 default:
78267919
UW
1859 new_kind = INTERNALVAR_VALUE;
1860 new_data.value = value_copy (val);
1861 new_data.value->modifiable = 1;
4fa62494
UW
1862
1863 /* Force the value to be fetched from the target now, to avoid problems
1864 later when this internalvar is referenced and the target is gone or
1865 has changed. */
78267919
UW
1866 if (value_lazy (new_data.value))
1867 value_fetch_lazy (new_data.value);
4fa62494
UW
1868
1869 /* Release the value from the value chain to prevent it from being
1870 deleted by free_all_values. From here on this function should not
1871 call error () until new_data is installed into the var->u to avoid
1872 leaking memory. */
78267919 1873 release_value (new_data.value);
4fa62494
UW
1874 break;
1875 }
1876
1877 /* Clean up old contents. */
1878 clear_internalvar (var);
1879
1880 /* Switch over. */
78267919 1881 var->kind = new_kind;
4fa62494 1882 var->u = new_data;
c906108c
SS
1883 /* End code which must not call error(). */
1884}
1885
4fa62494
UW
1886void
1887set_internalvar_integer (struct internalvar *var, LONGEST l)
1888{
1889 /* Clean up old contents. */
1890 clear_internalvar (var);
1891
cab0c772
UW
1892 var->kind = INTERNALVAR_INTEGER;
1893 var->u.integer.type = NULL;
1894 var->u.integer.val = l;
78267919
UW
1895}
1896
1897void
1898set_internalvar_string (struct internalvar *var, const char *string)
1899{
1900 /* Clean up old contents. */
1901 clear_internalvar (var);
1902
1903 var->kind = INTERNALVAR_STRING;
1904 var->u.string = xstrdup (string);
4fa62494
UW
1905}
1906
1907static void
1908set_internalvar_function (struct internalvar *var, struct internal_function *f)
1909{
1910 /* Clean up old contents. */
1911 clear_internalvar (var);
1912
78267919
UW
1913 var->kind = INTERNALVAR_FUNCTION;
1914 var->u.fn.function = f;
1915 var->u.fn.canonical = 1;
1916 /* Variables installed here are always the canonical version. */
4fa62494
UW
1917}
1918
1919void
1920clear_internalvar (struct internalvar *var)
1921{
1922 /* Clean up old contents. */
78267919 1923 switch (var->kind)
4fa62494 1924 {
78267919
UW
1925 case INTERNALVAR_VALUE:
1926 value_free (var->u.value);
1927 break;
1928
1929 case INTERNALVAR_STRING:
1930 xfree (var->u.string);
4fa62494
UW
1931 break;
1932
1933 default:
4fa62494
UW
1934 break;
1935 }
1936
78267919
UW
1937 /* Reset to void kind. */
1938 var->kind = INTERNALVAR_VOID;
4fa62494
UW
1939}
1940
c906108c 1941char *
fba45db2 1942internalvar_name (struct internalvar *var)
c906108c
SS
1943{
1944 return var->name;
1945}
1946
4fa62494
UW
1947static struct internal_function *
1948create_internal_function (const char *name,
1949 internal_function_fn handler, void *cookie)
bc3b79fd 1950{
bc3b79fd 1951 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 1952
bc3b79fd
TJB
1953 ifn->name = xstrdup (name);
1954 ifn->handler = handler;
1955 ifn->cookie = cookie;
4fa62494 1956 return ifn;
bc3b79fd
TJB
1957}
1958
1959char *
1960value_internal_function_name (struct value *val)
1961{
4fa62494
UW
1962 struct internal_function *ifn;
1963 int result;
1964
1965 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1966 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1967 gdb_assert (result);
1968
bc3b79fd
TJB
1969 return ifn->name;
1970}
1971
1972struct value *
d452c4bc
UW
1973call_internal_function (struct gdbarch *gdbarch,
1974 const struct language_defn *language,
1975 struct value *func, int argc, struct value **argv)
bc3b79fd 1976{
4fa62494
UW
1977 struct internal_function *ifn;
1978 int result;
1979
1980 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1981 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1982 gdb_assert (result);
1983
d452c4bc 1984 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
1985}
1986
1987/* The 'function' command. This does nothing -- it is just a
1988 placeholder to let "help function NAME" work. This is also used as
1989 the implementation of the sub-command that is created when
1990 registering an internal function. */
1991static void
1992function_command (char *command, int from_tty)
1993{
1994 /* Do nothing. */
1995}
1996
1997/* Clean up if an internal function's command is destroyed. */
1998static void
1999function_destroyer (struct cmd_list_element *self, void *ignore)
2000{
2001 xfree (self->name);
2002 xfree (self->doc);
2003}
2004
2005/* Add a new internal function. NAME is the name of the function; DOC
2006 is a documentation string describing the function. HANDLER is
2007 called when the function is invoked. COOKIE is an arbitrary
2008 pointer which is passed to HANDLER and is intended for "user
2009 data". */
2010void
2011add_internal_function (const char *name, const char *doc,
2012 internal_function_fn handler, void *cookie)
2013{
2014 struct cmd_list_element *cmd;
4fa62494 2015 struct internal_function *ifn;
bc3b79fd 2016 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2017
2018 ifn = create_internal_function (name, handler, cookie);
2019 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2020
2021 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2022 &functionlist);
2023 cmd->destroyer = function_destroyer;
2024}
2025
ae5a43e0
DJ
2026/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2027 prevent cycles / duplicates. */
2028
4e7a5ef5 2029void
ae5a43e0
DJ
2030preserve_one_value (struct value *value, struct objfile *objfile,
2031 htab_t copied_types)
2032{
2033 if (TYPE_OBJFILE (value->type) == objfile)
2034 value->type = copy_type_recursive (objfile, value->type, copied_types);
2035
2036 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2037 value->enclosing_type = copy_type_recursive (objfile,
2038 value->enclosing_type,
2039 copied_types);
2040}
2041
78267919
UW
2042/* Likewise for internal variable VAR. */
2043
2044static void
2045preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2046 htab_t copied_types)
2047{
2048 switch (var->kind)
2049 {
cab0c772
UW
2050 case INTERNALVAR_INTEGER:
2051 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2052 var->u.integer.type
2053 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2054 break;
2055
78267919
UW
2056 case INTERNALVAR_VALUE:
2057 preserve_one_value (var->u.value, objfile, copied_types);
2058 break;
2059 }
2060}
2061
ae5a43e0
DJ
2062/* Update the internal variables and value history when OBJFILE is
2063 discarded; we must copy the types out of the objfile. New global types
2064 will be created for every convenience variable which currently points to
2065 this objfile's types, and the convenience variables will be adjusted to
2066 use the new global types. */
c906108c
SS
2067
2068void
ae5a43e0 2069preserve_values (struct objfile *objfile)
c906108c 2070{
ae5a43e0
DJ
2071 htab_t copied_types;
2072 struct value_history_chunk *cur;
52f0bd74 2073 struct internalvar *var;
ae5a43e0 2074 int i;
c906108c 2075
ae5a43e0
DJ
2076 /* Create the hash table. We allocate on the objfile's obstack, since
2077 it is soon to be deleted. */
2078 copied_types = create_copied_types_hash (objfile);
2079
2080 for (cur = value_history_chain; cur; cur = cur->next)
2081 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2082 if (cur->values[i])
2083 preserve_one_value (cur->values[i], objfile, copied_types);
2084
2085 for (var = internalvars; var; var = var->next)
78267919 2086 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2087
4e7a5ef5 2088 preserve_python_values (objfile, copied_types);
a08702d6 2089
ae5a43e0 2090 htab_delete (copied_types);
c906108c
SS
2091}
2092
2093static void
fba45db2 2094show_convenience (char *ignore, int from_tty)
c906108c 2095{
e17c207e 2096 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2097 struct internalvar *var;
c906108c 2098 int varseen = 0;
79a45b7d 2099 struct value_print_options opts;
c906108c 2100
79a45b7d 2101 get_user_print_options (&opts);
c906108c
SS
2102 for (var = internalvars; var; var = var->next)
2103 {
c709acd1
PA
2104 volatile struct gdb_exception ex;
2105
c906108c
SS
2106 if (!varseen)
2107 {
2108 varseen = 1;
2109 }
a3f17187 2110 printf_filtered (("$%s = "), var->name);
c709acd1
PA
2111
2112 TRY_CATCH (ex, RETURN_MASK_ERROR)
2113 {
2114 struct value *val;
2115
2116 val = value_of_internalvar (gdbarch, var);
2117 value_print (val, gdb_stdout, &opts);
2118 }
2119 if (ex.reason < 0)
2120 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
a3f17187 2121 printf_filtered (("\n"));
c906108c
SS
2122 }
2123 if (!varseen)
3e43a32a
MS
2124 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2125 "Convenience variables have "
2126 "names starting with \"$\";\n"
2127 "use \"set\" as in \"set "
2128 "$foo = 5\" to define them.\n"));
c906108c
SS
2129}
2130\f
2131/* Extract a value as a C number (either long or double).
2132 Knows how to convert fixed values to double, or
2133 floating values to long.
2134 Does not deallocate the value. */
2135
2136LONGEST
f23631e4 2137value_as_long (struct value *val)
c906108c
SS
2138{
2139 /* This coerces arrays and functions, which is necessary (e.g.
2140 in disassemble_command). It also dereferences references, which
2141 I suspect is the most logical thing to do. */
994b9211 2142 val = coerce_array (val);
0fd88904 2143 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2144}
2145
2146DOUBLEST
f23631e4 2147value_as_double (struct value *val)
c906108c
SS
2148{
2149 DOUBLEST foo;
2150 int inv;
c5aa993b 2151
0fd88904 2152 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2153 if (inv)
8a3fe4f8 2154 error (_("Invalid floating value found in program."));
c906108c
SS
2155 return foo;
2156}
4ef30785 2157
581e13c1 2158/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2159 Note that val's type may not actually be a pointer; value_as_long
2160 handles all the cases. */
c906108c 2161CORE_ADDR
f23631e4 2162value_as_address (struct value *val)
c906108c 2163{
50810684
UW
2164 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2165
c906108c
SS
2166 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2167 whether we want this to be true eventually. */
2168#if 0
bf6ae464 2169 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2170 non-address (e.g. argument to "signal", "info break", etc.), or
2171 for pointers to char, in which the low bits *are* significant. */
50810684 2172 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2173#else
f312f057
JB
2174
2175 /* There are several targets (IA-64, PowerPC, and others) which
2176 don't represent pointers to functions as simply the address of
2177 the function's entry point. For example, on the IA-64, a
2178 function pointer points to a two-word descriptor, generated by
2179 the linker, which contains the function's entry point, and the
2180 value the IA-64 "global pointer" register should have --- to
2181 support position-independent code. The linker generates
2182 descriptors only for those functions whose addresses are taken.
2183
2184 On such targets, it's difficult for GDB to convert an arbitrary
2185 function address into a function pointer; it has to either find
2186 an existing descriptor for that function, or call malloc and
2187 build its own. On some targets, it is impossible for GDB to
2188 build a descriptor at all: the descriptor must contain a jump
2189 instruction; data memory cannot be executed; and code memory
2190 cannot be modified.
2191
2192 Upon entry to this function, if VAL is a value of type `function'
2193 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2194 value_address (val) is the address of the function. This is what
f312f057
JB
2195 you'll get if you evaluate an expression like `main'. The call
2196 to COERCE_ARRAY below actually does all the usual unary
2197 conversions, which includes converting values of type `function'
2198 to `pointer to function'. This is the challenging conversion
2199 discussed above. Then, `unpack_long' will convert that pointer
2200 back into an address.
2201
2202 So, suppose the user types `disassemble foo' on an architecture
2203 with a strange function pointer representation, on which GDB
2204 cannot build its own descriptors, and suppose further that `foo'
2205 has no linker-built descriptor. The address->pointer conversion
2206 will signal an error and prevent the command from running, even
2207 though the next step would have been to convert the pointer
2208 directly back into the same address.
2209
2210 The following shortcut avoids this whole mess. If VAL is a
2211 function, just return its address directly. */
df407dfe
AC
2212 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2213 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2214 return value_address (val);
f312f057 2215
994b9211 2216 val = coerce_array (val);
fc0c74b1
AC
2217
2218 /* Some architectures (e.g. Harvard), map instruction and data
2219 addresses onto a single large unified address space. For
2220 instance: An architecture may consider a large integer in the
2221 range 0x10000000 .. 0x1000ffff to already represent a data
2222 addresses (hence not need a pointer to address conversion) while
2223 a small integer would still need to be converted integer to
2224 pointer to address. Just assume such architectures handle all
2225 integer conversions in a single function. */
2226
2227 /* JimB writes:
2228
2229 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2230 must admonish GDB hackers to make sure its behavior matches the
2231 compiler's, whenever possible.
2232
2233 In general, I think GDB should evaluate expressions the same way
2234 the compiler does. When the user copies an expression out of
2235 their source code and hands it to a `print' command, they should
2236 get the same value the compiler would have computed. Any
2237 deviation from this rule can cause major confusion and annoyance,
2238 and needs to be justified carefully. In other words, GDB doesn't
2239 really have the freedom to do these conversions in clever and
2240 useful ways.
2241
2242 AndrewC pointed out that users aren't complaining about how GDB
2243 casts integers to pointers; they are complaining that they can't
2244 take an address from a disassembly listing and give it to `x/i'.
2245 This is certainly important.
2246
79dd2d24 2247 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2248 makes it possible for GDB to "get it right" in all circumstances
2249 --- the target has complete control over how things get done, so
2250 people can Do The Right Thing for their target without breaking
2251 anyone else. The standard doesn't specify how integers get
2252 converted to pointers; usually, the ABI doesn't either, but
2253 ABI-specific code is a more reasonable place to handle it. */
2254
df407dfe
AC
2255 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2256 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2257 && gdbarch_integer_to_address_p (gdbarch))
2258 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2259 value_contents (val));
fc0c74b1 2260
0fd88904 2261 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2262#endif
2263}
2264\f
2265/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2266 as a long, or as a double, assuming the raw data is described
2267 by type TYPE. Knows how to convert different sizes of values
2268 and can convert between fixed and floating point. We don't assume
2269 any alignment for the raw data. Return value is in host byte order.
2270
2271 If you want functions and arrays to be coerced to pointers, and
2272 references to be dereferenced, call value_as_long() instead.
2273
2274 C++: It is assumed that the front-end has taken care of
2275 all matters concerning pointers to members. A pointer
2276 to member which reaches here is considered to be equivalent
2277 to an INT (or some size). After all, it is only an offset. */
2278
2279LONGEST
fc1a4b47 2280unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2281{
e17a4113 2282 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2283 enum type_code code = TYPE_CODE (type);
2284 int len = TYPE_LENGTH (type);
2285 int nosign = TYPE_UNSIGNED (type);
c906108c 2286
c906108c
SS
2287 switch (code)
2288 {
2289 case TYPE_CODE_TYPEDEF:
2290 return unpack_long (check_typedef (type), valaddr);
2291 case TYPE_CODE_ENUM:
4f2aea11 2292 case TYPE_CODE_FLAGS:
c906108c
SS
2293 case TYPE_CODE_BOOL:
2294 case TYPE_CODE_INT:
2295 case TYPE_CODE_CHAR:
2296 case TYPE_CODE_RANGE:
0d5de010 2297 case TYPE_CODE_MEMBERPTR:
c906108c 2298 if (nosign)
e17a4113 2299 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2300 else
e17a4113 2301 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2302
2303 case TYPE_CODE_FLT:
96d2f608 2304 return extract_typed_floating (valaddr, type);
c906108c 2305
4ef30785
TJB
2306 case TYPE_CODE_DECFLOAT:
2307 /* libdecnumber has a function to convert from decimal to integer, but
2308 it doesn't work when the decimal number has a fractional part. */
e17a4113 2309 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2310
c906108c
SS
2311 case TYPE_CODE_PTR:
2312 case TYPE_CODE_REF:
2313 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2314 whether we want this to be true eventually. */
4478b372 2315 return extract_typed_address (valaddr, type);
c906108c 2316
c906108c 2317 default:
8a3fe4f8 2318 error (_("Value can't be converted to integer."));
c906108c 2319 }
c5aa993b 2320 return 0; /* Placate lint. */
c906108c
SS
2321}
2322
2323/* Return a double value from the specified type and address.
2324 INVP points to an int which is set to 0 for valid value,
2325 1 for invalid value (bad float format). In either case,
2326 the returned double is OK to use. Argument is in target
2327 format, result is in host format. */
2328
2329DOUBLEST
fc1a4b47 2330unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2331{
e17a4113 2332 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2333 enum type_code code;
2334 int len;
2335 int nosign;
2336
581e13c1 2337 *invp = 0; /* Assume valid. */
c906108c
SS
2338 CHECK_TYPEDEF (type);
2339 code = TYPE_CODE (type);
2340 len = TYPE_LENGTH (type);
2341 nosign = TYPE_UNSIGNED (type);
2342 if (code == TYPE_CODE_FLT)
2343 {
75bc7ddf
AC
2344 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2345 floating-point value was valid (using the macro
2346 INVALID_FLOAT). That test/macro have been removed.
2347
2348 It turns out that only the VAX defined this macro and then
2349 only in a non-portable way. Fixing the portability problem
2350 wouldn't help since the VAX floating-point code is also badly
2351 bit-rotten. The target needs to add definitions for the
ea06eb3d 2352 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2353 exactly describe the target floating-point format. The
2354 problem here is that the corresponding floatformat_vax_f and
2355 floatformat_vax_d values these methods should be set to are
2356 also not defined either. Oops!
2357
2358 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2359 definitions and the new cases for floatformat_is_valid (). */
2360
2361 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2362 {
2363 *invp = 1;
2364 return 0.0;
2365 }
2366
96d2f608 2367 return extract_typed_floating (valaddr, type);
c906108c 2368 }
4ef30785 2369 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2370 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2371 else if (nosign)
2372 {
2373 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2374 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2375 }
2376 else
2377 {
2378 /* Signed -- we are OK with unpack_long. */
2379 return unpack_long (type, valaddr);
2380 }
2381}
2382
2383/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2384 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2385 We don't assume any alignment for the raw data. Return value is in
2386 host byte order.
2387
2388 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2389 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2390
2391 C++: It is assumed that the front-end has taken care of
2392 all matters concerning pointers to members. A pointer
2393 to member which reaches here is considered to be equivalent
2394 to an INT (or some size). After all, it is only an offset. */
2395
2396CORE_ADDR
fc1a4b47 2397unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2398{
2399 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2400 whether we want this to be true eventually. */
2401 return unpack_long (type, valaddr);
2402}
4478b372 2403
c906108c 2404\f
1596cb5d 2405/* Get the value of the FIELDNO'th field (which must be static) of
2c2738a0 2406 TYPE. Return NULL if the field doesn't exist or has been
581e13c1 2407 optimized out. */
c906108c 2408
f23631e4 2409struct value *
fba45db2 2410value_static_field (struct type *type, int fieldno)
c906108c 2411{
948e66d9
DJ
2412 struct value *retval;
2413
1596cb5d 2414 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2415 {
1596cb5d 2416 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2417 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2418 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2419 break;
2420 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2421 {
ff355380 2422 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2423 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 2424 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2425
948e66d9 2426 if (sym == NULL)
c906108c 2427 {
a109c7c1 2428 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2429 reported as non-debuggable symbols. */
a109c7c1
MS
2430 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2431 NULL, NULL);
2432
c906108c
SS
2433 if (!msym)
2434 return NULL;
2435 else
c5aa993b 2436 {
52e9fde8
SS
2437 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2438 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2439 }
2440 }
2441 else
515ed532 2442 retval = value_of_variable (sym, NULL);
1596cb5d 2443 break;
c906108c 2444 }
1596cb5d 2445 default:
f3574227 2446 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2447 }
2448
948e66d9 2449 return retval;
c906108c
SS
2450}
2451
4dfea560
DE
2452/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2453 You have to be careful here, since the size of the data area for the value
2454 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2455 than the old enclosing type, you have to allocate more space for the
2456 data. */
2b127877 2457
4dfea560
DE
2458void
2459set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2460{
3e3d7139
JG
2461 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2462 val->contents =
2463 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2464
2465 val->enclosing_type = new_encl_type;
2b127877
DB
2466}
2467
c906108c
SS
2468/* Given a value ARG1 (offset by OFFSET bytes)
2469 of a struct or union type ARG_TYPE,
2470 extract and return the value of one of its (non-static) fields.
581e13c1 2471 FIELDNO says which field. */
c906108c 2472
f23631e4
AC
2473struct value *
2474value_primitive_field (struct value *arg1, int offset,
aa1ee363 2475 int fieldno, struct type *arg_type)
c906108c 2476{
f23631e4 2477 struct value *v;
52f0bd74 2478 struct type *type;
c906108c
SS
2479
2480 CHECK_TYPEDEF (arg_type);
2481 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2482
2483 /* Call check_typedef on our type to make sure that, if TYPE
2484 is a TYPE_CODE_TYPEDEF, its length is set to the length
2485 of the target type instead of zero. However, we do not
2486 replace the typedef type by the target type, because we want
2487 to keep the typedef in order to be able to print the type
2488 description correctly. */
2489 check_typedef (type);
c906108c 2490
22c05d8a
JK
2491 if (value_optimized_out (arg1))
2492 v = allocate_optimized_out_value (type);
2493 else if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2494 {
22c05d8a
JK
2495 /* Handle packed fields.
2496
2497 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2498 set. If possible, arrange offset and bitpos so that we can
2499 do a single aligned read of the size of the containing type.
2500 Otherwise, adjust offset to the byte containing the first
2501 bit. Assume that the address, offset, and embedded offset
2502 are sufficiently aligned. */
22c05d8a 2503
4ea48cc1
DJ
2504 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2505 int container_bitsize = TYPE_LENGTH (type) * 8;
2506
2507 v = allocate_value_lazy (type);
df407dfe 2508 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
4ea48cc1
DJ
2509 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2510 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2511 v->bitpos = bitpos % container_bitsize;
2512 else
2513 v->bitpos = bitpos % 8;
38f12cfc
TT
2514 v->offset = (value_embedded_offset (arg1)
2515 + offset
2516 + (bitpos - v->bitpos) / 8);
4ea48cc1
DJ
2517 v->parent = arg1;
2518 value_incref (v->parent);
2519 if (!value_lazy (arg1))
2520 value_fetch_lazy (v);
c906108c
SS
2521 }
2522 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2523 {
2524 /* This field is actually a base subobject, so preserve the
39d37385
PA
2525 entire object's contents for later references to virtual
2526 bases, etc. */
a4e2ee12
DJ
2527
2528 /* Lazy register values with offsets are not supported. */
2529 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2530 value_fetch_lazy (arg1);
2531
2532 if (value_lazy (arg1))
3e3d7139 2533 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 2534 else
3e3d7139
JG
2535 {
2536 v = allocate_value (value_enclosing_type (arg1));
39d37385
PA
2537 value_contents_copy_raw (v, 0, arg1, 0,
2538 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139
JG
2539 }
2540 v->type = type;
df407dfe 2541 v->offset = value_offset (arg1);
13c3b5f5
AC
2542 v->embedded_offset = (offset + value_embedded_offset (arg1)
2543 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
2544 }
2545 else
2546 {
2547 /* Plain old data member */
2548 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2549
2550 /* Lazy register values with offsets are not supported. */
2551 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2552 value_fetch_lazy (arg1);
2553
2554 if (value_lazy (arg1))
3e3d7139 2555 v = allocate_value_lazy (type);
c906108c 2556 else
3e3d7139
JG
2557 {
2558 v = allocate_value (type);
39d37385
PA
2559 value_contents_copy_raw (v, value_embedded_offset (v),
2560 arg1, value_embedded_offset (arg1) + offset,
2561 TYPE_LENGTH (type));
3e3d7139 2562 }
df407dfe 2563 v->offset = (value_offset (arg1) + offset
13c3b5f5 2564 + value_embedded_offset (arg1));
c906108c 2565 }
74bcbdf3 2566 set_value_component_location (v, arg1);
9ee8fc9d 2567 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2568 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2569 return v;
2570}
2571
2572/* Given a value ARG1 of a struct or union type,
2573 extract and return the value of one of its (non-static) fields.
581e13c1 2574 FIELDNO says which field. */
c906108c 2575
f23631e4 2576struct value *
aa1ee363 2577value_field (struct value *arg1, int fieldno)
c906108c 2578{
df407dfe 2579 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2580}
2581
2582/* Return a non-virtual function as a value.
2583 F is the list of member functions which contains the desired method.
0478d61c
FF
2584 J is an index into F which provides the desired method.
2585
2586 We only use the symbol for its address, so be happy with either a
581e13c1 2587 full symbol or a minimal symbol. */
c906108c 2588
f23631e4 2589struct value *
3e43a32a
MS
2590value_fn_field (struct value **arg1p, struct fn_field *f,
2591 int j, struct type *type,
fba45db2 2592 int offset)
c906108c 2593{
f23631e4 2594 struct value *v;
52f0bd74 2595 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 2596 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2597 struct symbol *sym;
0478d61c 2598 struct minimal_symbol *msym;
c906108c 2599
2570f2b7 2600 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2601 if (sym != NULL)
0478d61c 2602 {
5ae326fa
AC
2603 msym = NULL;
2604 }
2605 else
2606 {
2607 gdb_assert (sym == NULL);
0478d61c 2608 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
2609 if (msym == NULL)
2610 return NULL;
0478d61c
FF
2611 }
2612
c906108c 2613 v = allocate_value (ftype);
0478d61c
FF
2614 if (sym)
2615 {
42ae5230 2616 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2617 }
2618 else
2619 {
bccdca4a
UW
2620 /* The minimal symbol might point to a function descriptor;
2621 resolve it to the actual code address instead. */
2622 struct objfile *objfile = msymbol_objfile (msym);
2623 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2624
42ae5230
TT
2625 set_value_address (v,
2626 gdbarch_convert_from_func_ptr_addr
2627 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2628 }
c906108c
SS
2629
2630 if (arg1p)
c5aa993b 2631 {
df407dfe 2632 if (type != value_type (*arg1p))
c5aa993b
JM
2633 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2634 value_addr (*arg1p)));
2635
070ad9f0 2636 /* Move the `this' pointer according to the offset.
581e13c1 2637 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
2638 }
2639
2640 return v;
2641}
2642
c906108c 2643\f
c906108c 2644
5467c6c8
PA
2645/* Helper function for both unpack_value_bits_as_long and
2646 unpack_bits_as_long. See those functions for more details on the
2647 interface; the only difference is that this function accepts either
2648 a NULL or a non-NULL ORIGINAL_VALUE. */
c906108c 2649
5467c6c8
PA
2650static int
2651unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2652 int embedded_offset, int bitpos, int bitsize,
2653 const struct value *original_value,
2654 LONGEST *result)
c906108c 2655{
4ea48cc1 2656 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2657 ULONGEST val;
2658 ULONGEST valmask;
c906108c 2659 int lsbcount;
4a76eae5 2660 int bytes_read;
5467c6c8 2661 int read_offset;
c906108c 2662
4a76eae5
DJ
2663 /* Read the minimum number of bytes required; there may not be
2664 enough bytes to read an entire ULONGEST. */
c906108c 2665 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
2666 if (bitsize)
2667 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2668 else
2669 bytes_read = TYPE_LENGTH (field_type);
2670
5467c6c8
PA
2671 read_offset = bitpos / 8;
2672
2673 if (original_value != NULL
2674 && !value_bytes_available (original_value, embedded_offset + read_offset,
2675 bytes_read))
2676 return 0;
2677
2678 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
4a76eae5 2679 bytes_read, byte_order);
c906108c 2680
581e13c1 2681 /* Extract bits. See comment above. */
c906108c 2682
4ea48cc1 2683 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 2684 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
2685 else
2686 lsbcount = (bitpos % 8);
2687 val >>= lsbcount;
2688
2689 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 2690 If the field is signed, and is negative, then sign extend. */
c906108c
SS
2691
2692 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2693 {
2694 valmask = (((ULONGEST) 1) << bitsize) - 1;
2695 val &= valmask;
2696 if (!TYPE_UNSIGNED (field_type))
2697 {
2698 if (val & (valmask ^ (valmask >> 1)))
2699 {
2700 val |= ~valmask;
2701 }
2702 }
2703 }
5467c6c8
PA
2704
2705 *result = val;
2706 return 1;
c906108c
SS
2707}
2708
5467c6c8
PA
2709/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2710 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2711 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2712 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2713 bits.
4ea48cc1 2714
5467c6c8
PA
2715 Returns false if the value contents are unavailable, otherwise
2716 returns true, indicating a valid value has been stored in *RESULT.
2717
2718 Extracting bits depends on endianness of the machine. Compute the
2719 number of least significant bits to discard. For big endian machines,
2720 we compute the total number of bits in the anonymous object, subtract
2721 off the bit count from the MSB of the object to the MSB of the
2722 bitfield, then the size of the bitfield, which leaves the LSB discard
2723 count. For little endian machines, the discard count is simply the
2724 number of bits from the LSB of the anonymous object to the LSB of the
2725 bitfield.
2726
2727 If the field is signed, we also do sign extension. */
2728
2729int
2730unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2731 int embedded_offset, int bitpos, int bitsize,
2732 const struct value *original_value,
2733 LONGEST *result)
2734{
2735 gdb_assert (original_value != NULL);
2736
2737 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2738 bitpos, bitsize, original_value, result);
2739
2740}
2741
2742/* Unpack a field FIELDNO of the specified TYPE, from the object at
2743 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2744 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2745 details. */
2746
2747static int
2748unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2749 int embedded_offset, int fieldno,
2750 const struct value *val, LONGEST *result)
4ea48cc1
DJ
2751{
2752 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2753 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2754 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2755
5467c6c8
PA
2756 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2757 bitpos, bitsize, val,
2758 result);
2759}
2760
2761/* Unpack a field FIELDNO of the specified TYPE, from the object at
2762 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2763 ORIGINAL_VALUE, which must not be NULL. See
2764 unpack_value_bits_as_long for more details. */
2765
2766int
2767unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2768 int embedded_offset, int fieldno,
2769 const struct value *val, LONGEST *result)
2770{
2771 gdb_assert (val != NULL);
2772
2773 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2774 fieldno, val, result);
2775}
2776
2777/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2778 object at VALADDR. See unpack_value_bits_as_long for more details.
2779 This function differs from unpack_value_field_as_long in that it
2780 operates without a struct value object. */
2781
2782LONGEST
2783unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2784{
2785 LONGEST result;
2786
2787 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2788 return result;
2789}
2790
2791/* Return a new value with type TYPE, which is FIELDNO field of the
2792 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2793 of VAL. If the VAL's contents required to extract the bitfield
2794 from are unavailable, the new value is correspondingly marked as
2795 unavailable. */
2796
2797struct value *
2798value_field_bitfield (struct type *type, int fieldno,
2799 const gdb_byte *valaddr,
2800 int embedded_offset, const struct value *val)
2801{
2802 LONGEST l;
2803
2804 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2805 val, &l))
2806 {
2807 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2808 struct value *retval = allocate_value (field_type);
2809 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2810 return retval;
2811 }
2812 else
2813 {
2814 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2815 }
4ea48cc1
DJ
2816}
2817
c906108c
SS
2818/* Modify the value of a bitfield. ADDR points to a block of memory in
2819 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2820 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 2821 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 2822 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 2823 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2824
2825void
50810684
UW
2826modify_field (struct type *type, gdb_byte *addr,
2827 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2828{
e17a4113 2829 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2830 ULONGEST oword;
2831 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
2832 int bytesize;
2833
2834 /* Normalize BITPOS. */
2835 addr += bitpos / 8;
2836 bitpos %= 8;
c906108c
SS
2837
2838 /* If a negative fieldval fits in the field in question, chop
2839 off the sign extension bits. */
f4e88c8e
PH
2840 if ((~fieldval & ~(mask >> 1)) == 0)
2841 fieldval &= mask;
c906108c
SS
2842
2843 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2844 if (0 != (fieldval & ~mask))
c906108c
SS
2845 {
2846 /* FIXME: would like to include fieldval in the message, but
c5aa993b 2847 we don't have a sprintf_longest. */
8a3fe4f8 2848 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
2849
2850 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 2851 fieldval &= mask;
c906108c
SS
2852 }
2853
19f220c3
JK
2854 /* Ensure no bytes outside of the modified ones get accessed as it may cause
2855 false valgrind reports. */
2856
2857 bytesize = (bitpos + bitsize + 7) / 8;
2858 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
2859
2860 /* Shifting for bit field depends on endianness of the target machine. */
50810684 2861 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 2862 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 2863
f4e88c8e 2864 oword &= ~(mask << bitpos);
c906108c
SS
2865 oword |= fieldval << bitpos;
2866
19f220c3 2867 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
2868}
2869\f
14d06750 2870/* Pack NUM into BUF using a target format of TYPE. */
c906108c 2871
14d06750
DJ
2872void
2873pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 2874{
e17a4113 2875 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 2876 int len;
14d06750
DJ
2877
2878 type = check_typedef (type);
c906108c
SS
2879 len = TYPE_LENGTH (type);
2880
14d06750 2881 switch (TYPE_CODE (type))
c906108c 2882 {
c906108c
SS
2883 case TYPE_CODE_INT:
2884 case TYPE_CODE_CHAR:
2885 case TYPE_CODE_ENUM:
4f2aea11 2886 case TYPE_CODE_FLAGS:
c906108c
SS
2887 case TYPE_CODE_BOOL:
2888 case TYPE_CODE_RANGE:
0d5de010 2889 case TYPE_CODE_MEMBERPTR:
e17a4113 2890 store_signed_integer (buf, len, byte_order, num);
c906108c 2891 break;
c5aa993b 2892
c906108c
SS
2893 case TYPE_CODE_REF:
2894 case TYPE_CODE_PTR:
14d06750 2895 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 2896 break;
c5aa993b 2897
c906108c 2898 default:
14d06750
DJ
2899 error (_("Unexpected type (%d) encountered for integer constant."),
2900 TYPE_CODE (type));
c906108c 2901 }
14d06750
DJ
2902}
2903
2904
595939de
PM
2905/* Pack NUM into BUF using a target format of TYPE. */
2906
2907void
2908pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2909{
2910 int len;
2911 enum bfd_endian byte_order;
2912
2913 type = check_typedef (type);
2914 len = TYPE_LENGTH (type);
2915 byte_order = gdbarch_byte_order (get_type_arch (type));
2916
2917 switch (TYPE_CODE (type))
2918 {
2919 case TYPE_CODE_INT:
2920 case TYPE_CODE_CHAR:
2921 case TYPE_CODE_ENUM:
2922 case TYPE_CODE_FLAGS:
2923 case TYPE_CODE_BOOL:
2924 case TYPE_CODE_RANGE:
2925 case TYPE_CODE_MEMBERPTR:
2926 store_unsigned_integer (buf, len, byte_order, num);
2927 break;
2928
2929 case TYPE_CODE_REF:
2930 case TYPE_CODE_PTR:
2931 store_typed_address (buf, type, (CORE_ADDR) num);
2932 break;
2933
2934 default:
3e43a32a
MS
2935 error (_("Unexpected type (%d) encountered "
2936 "for unsigned integer constant."),
595939de
PM
2937 TYPE_CODE (type));
2938 }
2939}
2940
2941
14d06750
DJ
2942/* Convert C numbers into newly allocated values. */
2943
2944struct value *
2945value_from_longest (struct type *type, LONGEST num)
2946{
2947 struct value *val = allocate_value (type);
2948
2949 pack_long (value_contents_raw (val), type, num);
c906108c
SS
2950 return val;
2951}
2952
4478b372 2953
595939de
PM
2954/* Convert C unsigned numbers into newly allocated values. */
2955
2956struct value *
2957value_from_ulongest (struct type *type, ULONGEST num)
2958{
2959 struct value *val = allocate_value (type);
2960
2961 pack_unsigned_long (value_contents_raw (val), type, num);
2962
2963 return val;
2964}
2965
2966
4478b372
JB
2967/* Create a value representing a pointer of type TYPE to the address
2968 ADDR. */
f23631e4 2969struct value *
4478b372
JB
2970value_from_pointer (struct type *type, CORE_ADDR addr)
2971{
f23631e4 2972 struct value *val = allocate_value (type);
a109c7c1 2973
cab0c772 2974 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
2975 return val;
2976}
2977
2978
8acb6b92
TT
2979/* Create a value of type TYPE whose contents come from VALADDR, if it
2980 is non-null, and whose memory address (in the inferior) is
2981 ADDRESS. */
2982
2983struct value *
2984value_from_contents_and_address (struct type *type,
2985 const gdb_byte *valaddr,
2986 CORE_ADDR address)
2987{
41e8491f 2988 struct value *v;
a109c7c1 2989
8acb6b92 2990 if (valaddr == NULL)
41e8491f 2991 v = allocate_value_lazy (type);
8acb6b92 2992 else
41e8491f
JK
2993 {
2994 v = allocate_value (type);
2995 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2996 }
42ae5230 2997 set_value_address (v, address);
33d502b4 2998 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
2999 return v;
3000}
3001
8a9b8146
TT
3002/* Create a value of type TYPE holding the contents CONTENTS.
3003 The new value is `not_lval'. */
3004
3005struct value *
3006value_from_contents (struct type *type, const gdb_byte *contents)
3007{
3008 struct value *result;
3009
3010 result = allocate_value (type);
3011 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3012 return result;
3013}
3014
f23631e4 3015struct value *
fba45db2 3016value_from_double (struct type *type, DOUBLEST num)
c906108c 3017{
f23631e4 3018 struct value *val = allocate_value (type);
c906108c 3019 struct type *base_type = check_typedef (type);
52f0bd74 3020 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3021
3022 if (code == TYPE_CODE_FLT)
3023 {
990a07ab 3024 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3025 }
3026 else
8a3fe4f8 3027 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3028
3029 return val;
3030}
994b9211 3031
27bc4d80 3032struct value *
4ef30785 3033value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3034{
3035 struct value *val = allocate_value (type);
27bc4d80 3036
4ef30785 3037 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3038 return val;
3039}
3040
3bd0f5ef
MS
3041/* Extract a value from the history file. Input will be of the form
3042 $digits or $$digits. See block comment above 'write_dollar_variable'
3043 for details. */
3044
3045struct value *
3046value_from_history_ref (char *h, char **endp)
3047{
3048 int index, len;
3049
3050 if (h[0] == '$')
3051 len = 1;
3052 else
3053 return NULL;
3054
3055 if (h[1] == '$')
3056 len = 2;
3057
3058 /* Find length of numeral string. */
3059 for (; isdigit (h[len]); len++)
3060 ;
3061
3062 /* Make sure numeral string is not part of an identifier. */
3063 if (h[len] == '_' || isalpha (h[len]))
3064 return NULL;
3065
3066 /* Now collect the index value. */
3067 if (h[1] == '$')
3068 {
3069 if (len == 2)
3070 {
3071 /* For some bizarre reason, "$$" is equivalent to "$$1",
3072 rather than to "$$0" as it ought to be! */
3073 index = -1;
3074 *endp += len;
3075 }
3076 else
3077 index = -strtol (&h[2], endp, 10);
3078 }
3079 else
3080 {
3081 if (len == 1)
3082 {
3083 /* "$" is equivalent to "$0". */
3084 index = 0;
3085 *endp += len;
3086 }
3087 else
3088 index = strtol (&h[1], endp, 10);
3089 }
3090
3091 return access_value_history (index);
3092}
3093
a471c594
JK
3094struct value *
3095coerce_ref_if_computed (const struct value *arg)
3096{
3097 const struct lval_funcs *funcs;
3098
3099 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3100 return NULL;
3101
3102 if (value_lval_const (arg) != lval_computed)
3103 return NULL;
3104
3105 funcs = value_computed_funcs (arg);
3106 if (funcs->coerce_ref == NULL)
3107 return NULL;
3108
3109 return funcs->coerce_ref (arg);
3110}
3111
994b9211
AC
3112struct value *
3113coerce_ref (struct value *arg)
3114{
df407dfe 3115 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3116 struct value *retval;
a109c7c1 3117
a471c594
JK
3118 retval = coerce_ref_if_computed (arg);
3119 if (retval)
3120 return retval;
3121
3122 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3123 return arg;
3124
3125 return value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
3126 unpack_pointer (value_type (arg),
3127 value_contents (arg)));
994b9211
AC
3128}
3129
3130struct value *
3131coerce_array (struct value *arg)
3132{
f3134b88
TT
3133 struct type *type;
3134
994b9211 3135 arg = coerce_ref (arg);
f3134b88
TT
3136 type = check_typedef (value_type (arg));
3137
3138 switch (TYPE_CODE (type))
3139 {
3140 case TYPE_CODE_ARRAY:
7346b668 3141 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3142 arg = value_coerce_array (arg);
3143 break;
3144 case TYPE_CODE_FUNC:
3145 arg = value_coerce_function (arg);
3146 break;
3147 }
994b9211
AC
3148 return arg;
3149}
c906108c 3150\f
c906108c 3151
48436ce6
AC
3152/* Return true if the function returning the specified type is using
3153 the convention of returning structures in memory (passing in the
82585c72 3154 address as a hidden first parameter). */
c906108c
SS
3155
3156int
d80b854b
UW
3157using_struct_return (struct gdbarch *gdbarch,
3158 struct type *func_type, struct type *value_type)
c906108c 3159{
52f0bd74 3160 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
3161
3162 if (code == TYPE_CODE_ERROR)
8a3fe4f8 3163 error (_("Function return type unknown."));
c906108c 3164
667e784f
AC
3165 if (code == TYPE_CODE_VOID)
3166 /* A void return value is never in memory. See also corresponding
44e5158b 3167 code in "print_return_value". */
667e784f
AC
3168 return 0;
3169
92ad9cd9 3170 /* Probe the architecture for the return-value convention. */
d80b854b 3171 return (gdbarch_return_value (gdbarch, func_type, value_type,
92ad9cd9 3172 NULL, NULL, NULL)
31db7b6c 3173 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3174}
3175
42be36b3
CT
3176/* Set the initialized field in a value struct. */
3177
3178void
3179set_value_initialized (struct value *val, int status)
3180{
3181 val->initialized = status;
3182}
3183
3184/* Return the initialized field in a value struct. */
3185
3186int
3187value_initialized (struct value *val)
3188{
3189 return val->initialized;
3190}
3191
c906108c 3192void
fba45db2 3193_initialize_values (void)
c906108c 3194{
1a966eab
AC
3195 add_cmd ("convenience", no_class, show_convenience, _("\
3196Debugger convenience (\"$foo\") variables.\n\
c906108c 3197These variables are created when you assign them values;\n\
1a966eab
AC
3198thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3199\n\
c906108c
SS
3200A few convenience variables are given values automatically:\n\
3201\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 3202\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
3203 &showlist);
3204
db5f229b 3205 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3206Elements of value history around item number IDX (or last ten)."),
c906108c 3207 &showlist);
53e5f3cf
AS
3208
3209 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3210Initialize a convenience variable if necessary.\n\
3211init-if-undefined VARIABLE = EXPRESSION\n\
3212Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3213exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3214VARIABLE is already initialized."));
bc3b79fd
TJB
3215
3216 add_prefix_cmd ("function", no_class, function_command, _("\
3217Placeholder command for showing help on convenience functions."),
3218 &functionlist, "function ", 0, &cmdlist);
c906108c 3219}
This page took 1.866931 seconds and 4 git commands to generate.