Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
1bac305b | 2 | |
61baf725 | 3 | Copyright (C) 1986-2017 Free Software Foundation, Inc. |
c906108c | 4 | |
c5aa993b | 5 | This file is part of GDB. |
c906108c | 6 | |
c5aa993b JM |
7 | This program is free software; you can redistribute it and/or modify |
8 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 9 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 10 | (at your option) any later version. |
c906108c | 11 | |
c5aa993b JM |
12 | This program is distributed in the hope that it will be useful, |
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
15 | GNU General Public License for more details. | |
c906108c | 16 | |
c5aa993b | 17 | You should have received a copy of the GNU General Public License |
a9762ec7 | 18 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
19 | |
20 | #include "defs.h" | |
e17c207e | 21 | #include "arch-utils.h" |
c906108c SS |
22 | #include "symtab.h" |
23 | #include "gdbtypes.h" | |
24 | #include "value.h" | |
25 | #include "gdbcore.h" | |
c906108c SS |
26 | #include "command.h" |
27 | #include "gdbcmd.h" | |
28 | #include "target.h" | |
29 | #include "language.h" | |
c906108c | 30 | #include "demangle.h" |
d16aafd8 | 31 | #include "doublest.h" |
36160dc4 | 32 | #include "regcache.h" |
fe898f56 | 33 | #include "block.h" |
27bc4d80 | 34 | #include "dfp.h" |
bccdca4a | 35 | #include "objfiles.h" |
79a45b7d | 36 | #include "valprint.h" |
bc3b79fd | 37 | #include "cli/cli-decode.h" |
6dddc817 | 38 | #include "extension.h" |
3bd0f5ef | 39 | #include <ctype.h> |
0914bcdb | 40 | #include "tracepoint.h" |
be335936 | 41 | #include "cp-abi.h" |
a58e2656 | 42 | #include "user-regs.h" |
325fac50 | 43 | #include <algorithm> |
eb3ff9a5 | 44 | #include "completer.h" |
0914bcdb | 45 | |
581e13c1 | 46 | /* Prototypes for exported functions. */ |
c906108c | 47 | |
a14ed312 | 48 | void _initialize_values (void); |
c906108c | 49 | |
bc3b79fd TJB |
50 | /* Definition of a user function. */ |
51 | struct internal_function | |
52 | { | |
53 | /* The name of the function. It is a bit odd to have this in the | |
54 | function itself -- the user might use a differently-named | |
55 | convenience variable to hold the function. */ | |
56 | char *name; | |
57 | ||
58 | /* The handler. */ | |
59 | internal_function_fn handler; | |
60 | ||
61 | /* User data for the handler. */ | |
62 | void *cookie; | |
63 | }; | |
64 | ||
4e07d55f PA |
65 | /* Defines an [OFFSET, OFFSET + LENGTH) range. */ |
66 | ||
67 | struct range | |
68 | { | |
69 | /* Lowest offset in the range. */ | |
6b850546 | 70 | LONGEST offset; |
4e07d55f PA |
71 | |
72 | /* Length of the range. */ | |
6b850546 | 73 | LONGEST length; |
4e07d55f PA |
74 | }; |
75 | ||
76 | typedef struct range range_s; | |
77 | ||
78 | DEF_VEC_O(range_s); | |
79 | ||
80 | /* Returns true if the ranges defined by [offset1, offset1+len1) and | |
81 | [offset2, offset2+len2) overlap. */ | |
82 | ||
83 | static int | |
6b850546 DT |
84 | ranges_overlap (LONGEST offset1, LONGEST len1, |
85 | LONGEST offset2, LONGEST len2) | |
4e07d55f PA |
86 | { |
87 | ULONGEST h, l; | |
88 | ||
325fac50 PA |
89 | l = std::max (offset1, offset2); |
90 | h = std::min (offset1 + len1, offset2 + len2); | |
4e07d55f PA |
91 | return (l < h); |
92 | } | |
93 | ||
94 | /* Returns true if the first argument is strictly less than the | |
95 | second, useful for VEC_lower_bound. We keep ranges sorted by | |
96 | offset and coalesce overlapping and contiguous ranges, so this just | |
97 | compares the starting offset. */ | |
98 | ||
99 | static int | |
100 | range_lessthan (const range_s *r1, const range_s *r2) | |
101 | { | |
102 | return r1->offset < r2->offset; | |
103 | } | |
104 | ||
105 | /* Returns true if RANGES contains any range that overlaps [OFFSET, | |
106 | OFFSET+LENGTH). */ | |
107 | ||
108 | static int | |
6b850546 | 109 | ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length) |
4e07d55f PA |
110 | { |
111 | range_s what; | |
6b850546 | 112 | LONGEST i; |
4e07d55f PA |
113 | |
114 | what.offset = offset; | |
115 | what.length = length; | |
116 | ||
117 | /* We keep ranges sorted by offset and coalesce overlapping and | |
118 | contiguous ranges, so to check if a range list contains a given | |
119 | range, we can do a binary search for the position the given range | |
120 | would be inserted if we only considered the starting OFFSET of | |
121 | ranges. We call that position I. Since we also have LENGTH to | |
122 | care for (this is a range afterall), we need to check if the | |
123 | _previous_ range overlaps the I range. E.g., | |
124 | ||
125 | R | |
126 | |---| | |
127 | |---| |---| |------| ... |--| | |
128 | 0 1 2 N | |
129 | ||
130 | I=1 | |
131 | ||
132 | In the case above, the binary search would return `I=1', meaning, | |
133 | this OFFSET should be inserted at position 1, and the current | |
134 | position 1 should be pushed further (and before 2). But, `0' | |
135 | overlaps with R. | |
136 | ||
137 | Then we need to check if the I range overlaps the I range itself. | |
138 | E.g., | |
139 | ||
140 | R | |
141 | |---| | |
142 | |---| |---| |-------| ... |--| | |
143 | 0 1 2 N | |
144 | ||
145 | I=1 | |
146 | */ | |
147 | ||
148 | i = VEC_lower_bound (range_s, ranges, &what, range_lessthan); | |
149 | ||
150 | if (i > 0) | |
151 | { | |
152 | struct range *bef = VEC_index (range_s, ranges, i - 1); | |
153 | ||
154 | if (ranges_overlap (bef->offset, bef->length, offset, length)) | |
155 | return 1; | |
156 | } | |
157 | ||
158 | if (i < VEC_length (range_s, ranges)) | |
159 | { | |
160 | struct range *r = VEC_index (range_s, ranges, i); | |
161 | ||
162 | if (ranges_overlap (r->offset, r->length, offset, length)) | |
163 | return 1; | |
164 | } | |
165 | ||
166 | return 0; | |
167 | } | |
168 | ||
bc3b79fd TJB |
169 | static struct cmd_list_element *functionlist; |
170 | ||
87784a47 TT |
171 | /* Note that the fields in this structure are arranged to save a bit |
172 | of memory. */ | |
173 | ||
91294c83 AC |
174 | struct value |
175 | { | |
176 | /* Type of value; either not an lval, or one of the various | |
177 | different possible kinds of lval. */ | |
178 | enum lval_type lval; | |
179 | ||
180 | /* Is it modifiable? Only relevant if lval != not_lval. */ | |
87784a47 TT |
181 | unsigned int modifiable : 1; |
182 | ||
183 | /* If zero, contents of this value are in the contents field. If | |
184 | nonzero, contents are in inferior. If the lval field is lval_memory, | |
185 | the contents are in inferior memory at location.address plus offset. | |
186 | The lval field may also be lval_register. | |
187 | ||
188 | WARNING: This field is used by the code which handles watchpoints | |
189 | (see breakpoint.c) to decide whether a particular value can be | |
190 | watched by hardware watchpoints. If the lazy flag is set for | |
191 | some member of a value chain, it is assumed that this member of | |
192 | the chain doesn't need to be watched as part of watching the | |
193 | value itself. This is how GDB avoids watching the entire struct | |
194 | or array when the user wants to watch a single struct member or | |
195 | array element. If you ever change the way lazy flag is set and | |
196 | reset, be sure to consider this use as well! */ | |
197 | unsigned int lazy : 1; | |
198 | ||
87784a47 TT |
199 | /* If value is a variable, is it initialized or not. */ |
200 | unsigned int initialized : 1; | |
201 | ||
202 | /* If value is from the stack. If this is set, read_stack will be | |
203 | used instead of read_memory to enable extra caching. */ | |
204 | unsigned int stack : 1; | |
91294c83 | 205 | |
e848a8a5 TT |
206 | /* If the value has been released. */ |
207 | unsigned int released : 1; | |
208 | ||
91294c83 AC |
209 | /* Location of value (if lval). */ |
210 | union | |
211 | { | |
7dc54575 | 212 | /* If lval == lval_memory, this is the address in the inferior */ |
91294c83 AC |
213 | CORE_ADDR address; |
214 | ||
7dc54575 YQ |
215 | /*If lval == lval_register, the value is from a register. */ |
216 | struct | |
217 | { | |
218 | /* Register number. */ | |
219 | int regnum; | |
220 | /* Frame ID of "next" frame to which a register value is relative. | |
221 | If the register value is found relative to frame F, then the | |
222 | frame id of F->next will be stored in next_frame_id. */ | |
223 | struct frame_id next_frame_id; | |
224 | } reg; | |
225 | ||
91294c83 AC |
226 | /* Pointer to internal variable. */ |
227 | struct internalvar *internalvar; | |
5f5233d4 | 228 | |
e81e7f5e SC |
229 | /* Pointer to xmethod worker. */ |
230 | struct xmethod_worker *xm_worker; | |
231 | ||
5f5233d4 PA |
232 | /* If lval == lval_computed, this is a set of function pointers |
233 | to use to access and describe the value, and a closure pointer | |
234 | for them to use. */ | |
235 | struct | |
236 | { | |
c8f2448a JK |
237 | /* Functions to call. */ |
238 | const struct lval_funcs *funcs; | |
239 | ||
240 | /* Closure for those functions to use. */ | |
241 | void *closure; | |
5f5233d4 | 242 | } computed; |
91294c83 AC |
243 | } location; |
244 | ||
3723fda8 | 245 | /* Describes offset of a value within lval of a structure in target |
7dc54575 YQ |
246 | addressable memory units. Note also the member embedded_offset |
247 | below. */ | |
6b850546 | 248 | LONGEST offset; |
91294c83 AC |
249 | |
250 | /* Only used for bitfields; number of bits contained in them. */ | |
6b850546 | 251 | LONGEST bitsize; |
91294c83 AC |
252 | |
253 | /* Only used for bitfields; position of start of field. For | |
32c9a795 | 254 | gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For |
581e13c1 | 255 | gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */ |
6b850546 | 256 | LONGEST bitpos; |
91294c83 | 257 | |
87784a47 TT |
258 | /* The number of references to this value. When a value is created, |
259 | the value chain holds a reference, so REFERENCE_COUNT is 1. If | |
260 | release_value is called, this value is removed from the chain but | |
261 | the caller of release_value now has a reference to this value. | |
262 | The caller must arrange for a call to value_free later. */ | |
263 | int reference_count; | |
264 | ||
4ea48cc1 DJ |
265 | /* Only used for bitfields; the containing value. This allows a |
266 | single read from the target when displaying multiple | |
267 | bitfields. */ | |
268 | struct value *parent; | |
269 | ||
91294c83 AC |
270 | /* Type of the value. */ |
271 | struct type *type; | |
272 | ||
273 | /* If a value represents a C++ object, then the `type' field gives | |
274 | the object's compile-time type. If the object actually belongs | |
275 | to some class derived from `type', perhaps with other base | |
276 | classes and additional members, then `type' is just a subobject | |
277 | of the real thing, and the full object is probably larger than | |
278 | `type' would suggest. | |
279 | ||
280 | If `type' is a dynamic class (i.e. one with a vtable), then GDB | |
281 | can actually determine the object's run-time type by looking at | |
282 | the run-time type information in the vtable. When this | |
283 | information is available, we may elect to read in the entire | |
284 | object, for several reasons: | |
285 | ||
286 | - When printing the value, the user would probably rather see the | |
287 | full object, not just the limited portion apparent from the | |
288 | compile-time type. | |
289 | ||
290 | - If `type' has virtual base classes, then even printing `type' | |
291 | alone may require reaching outside the `type' portion of the | |
292 | object to wherever the virtual base class has been stored. | |
293 | ||
294 | When we store the entire object, `enclosing_type' is the run-time | |
295 | type -- the complete object -- and `embedded_offset' is the | |
3723fda8 SM |
296 | offset of `type' within that larger type, in target addressable memory |
297 | units. The value_contents() macro takes `embedded_offset' into account, | |
298 | so most GDB code continues to see the `type' portion of the value, just | |
299 | as the inferior would. | |
91294c83 AC |
300 | |
301 | If `type' is a pointer to an object, then `enclosing_type' is a | |
302 | pointer to the object's run-time type, and `pointed_to_offset' is | |
3723fda8 SM |
303 | the offset in target addressable memory units from the full object |
304 | to the pointed-to object -- that is, the value `embedded_offset' would | |
305 | have if we followed the pointer and fetched the complete object. | |
306 | (I don't really see the point. Why not just determine the | |
307 | run-time type when you indirect, and avoid the special case? The | |
308 | contents don't matter until you indirect anyway.) | |
91294c83 AC |
309 | |
310 | If we're not doing anything fancy, `enclosing_type' is equal to | |
311 | `type', and `embedded_offset' is zero, so everything works | |
312 | normally. */ | |
313 | struct type *enclosing_type; | |
6b850546 DT |
314 | LONGEST embedded_offset; |
315 | LONGEST pointed_to_offset; | |
91294c83 AC |
316 | |
317 | /* Values are stored in a chain, so that they can be deleted easily | |
318 | over calls to the inferior. Values assigned to internal | |
a08702d6 TJB |
319 | variables, put into the value history or exposed to Python are |
320 | taken off this list. */ | |
91294c83 AC |
321 | struct value *next; |
322 | ||
3e3d7139 JG |
323 | /* Actual contents of the value. Target byte-order. NULL or not |
324 | valid if lazy is nonzero. */ | |
325 | gdb_byte *contents; | |
828d3400 | 326 | |
4e07d55f PA |
327 | /* Unavailable ranges in CONTENTS. We mark unavailable ranges, |
328 | rather than available, since the common and default case is for a | |
9a0dc9e3 PA |
329 | value to be available. This is filled in at value read time. |
330 | The unavailable ranges are tracked in bits. Note that a contents | |
331 | bit that has been optimized out doesn't really exist in the | |
332 | program, so it can't be marked unavailable either. */ | |
4e07d55f | 333 | VEC(range_s) *unavailable; |
9a0dc9e3 PA |
334 | |
335 | /* Likewise, but for optimized out contents (a chunk of the value of | |
336 | a variable that does not actually exist in the program). If LVAL | |
337 | is lval_register, this is a register ($pc, $sp, etc., never a | |
338 | program variable) that has not been saved in the frame. Not | |
339 | saved registers and optimized-out program variables values are | |
340 | treated pretty much the same, except not-saved registers have a | |
341 | different string representation and related error strings. */ | |
342 | VEC(range_s) *optimized_out; | |
91294c83 AC |
343 | }; |
344 | ||
e512cdbd SM |
345 | /* See value.h. */ |
346 | ||
347 | struct gdbarch * | |
348 | get_value_arch (const struct value *value) | |
349 | { | |
350 | return get_type_arch (value_type (value)); | |
351 | } | |
352 | ||
4e07d55f | 353 | int |
6b850546 | 354 | value_bits_available (const struct value *value, LONGEST offset, LONGEST length) |
4e07d55f PA |
355 | { |
356 | gdb_assert (!value->lazy); | |
357 | ||
358 | return !ranges_contain (value->unavailable, offset, length); | |
359 | } | |
360 | ||
bdf22206 | 361 | int |
6b850546 DT |
362 | value_bytes_available (const struct value *value, |
363 | LONGEST offset, LONGEST length) | |
bdf22206 AB |
364 | { |
365 | return value_bits_available (value, | |
366 | offset * TARGET_CHAR_BIT, | |
367 | length * TARGET_CHAR_BIT); | |
368 | } | |
369 | ||
9a0dc9e3 PA |
370 | int |
371 | value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length) | |
372 | { | |
373 | gdb_assert (!value->lazy); | |
374 | ||
375 | return ranges_contain (value->optimized_out, bit_offset, bit_length); | |
376 | } | |
377 | ||
ec0a52e1 PA |
378 | int |
379 | value_entirely_available (struct value *value) | |
380 | { | |
381 | /* We can only tell whether the whole value is available when we try | |
382 | to read it. */ | |
383 | if (value->lazy) | |
384 | value_fetch_lazy (value); | |
385 | ||
386 | if (VEC_empty (range_s, value->unavailable)) | |
387 | return 1; | |
388 | return 0; | |
389 | } | |
390 | ||
9a0dc9e3 PA |
391 | /* Returns true if VALUE is entirely covered by RANGES. If the value |
392 | is lazy, it'll be read now. Note that RANGE is a pointer to | |
393 | pointer because reading the value might change *RANGE. */ | |
394 | ||
395 | static int | |
396 | value_entirely_covered_by_range_vector (struct value *value, | |
397 | VEC(range_s) **ranges) | |
6211c335 | 398 | { |
9a0dc9e3 PA |
399 | /* We can only tell whether the whole value is optimized out / |
400 | unavailable when we try to read it. */ | |
6211c335 YQ |
401 | if (value->lazy) |
402 | value_fetch_lazy (value); | |
403 | ||
9a0dc9e3 | 404 | if (VEC_length (range_s, *ranges) == 1) |
6211c335 | 405 | { |
9a0dc9e3 | 406 | struct range *t = VEC_index (range_s, *ranges, 0); |
6211c335 YQ |
407 | |
408 | if (t->offset == 0 | |
64c46ce4 JB |
409 | && t->length == (TARGET_CHAR_BIT |
410 | * TYPE_LENGTH (value_enclosing_type (value)))) | |
6211c335 YQ |
411 | return 1; |
412 | } | |
413 | ||
414 | return 0; | |
415 | } | |
416 | ||
9a0dc9e3 PA |
417 | int |
418 | value_entirely_unavailable (struct value *value) | |
419 | { | |
420 | return value_entirely_covered_by_range_vector (value, &value->unavailable); | |
421 | } | |
422 | ||
423 | int | |
424 | value_entirely_optimized_out (struct value *value) | |
425 | { | |
426 | return value_entirely_covered_by_range_vector (value, &value->optimized_out); | |
427 | } | |
428 | ||
429 | /* Insert into the vector pointed to by VECTORP the bit range starting of | |
430 | OFFSET bits, and extending for the next LENGTH bits. */ | |
431 | ||
432 | static void | |
6b850546 DT |
433 | insert_into_bit_range_vector (VEC(range_s) **vectorp, |
434 | LONGEST offset, LONGEST length) | |
4e07d55f PA |
435 | { |
436 | range_s newr; | |
437 | int i; | |
438 | ||
439 | /* Insert the range sorted. If there's overlap or the new range | |
440 | would be contiguous with an existing range, merge. */ | |
441 | ||
442 | newr.offset = offset; | |
443 | newr.length = length; | |
444 | ||
445 | /* Do a binary search for the position the given range would be | |
446 | inserted if we only considered the starting OFFSET of ranges. | |
447 | Call that position I. Since we also have LENGTH to care for | |
448 | (this is a range afterall), we need to check if the _previous_ | |
449 | range overlaps the I range. E.g., calling R the new range: | |
450 | ||
451 | #1 - overlaps with previous | |
452 | ||
453 | R | |
454 | |-...-| | |
455 | |---| |---| |------| ... |--| | |
456 | 0 1 2 N | |
457 | ||
458 | I=1 | |
459 | ||
460 | In the case #1 above, the binary search would return `I=1', | |
461 | meaning, this OFFSET should be inserted at position 1, and the | |
462 | current position 1 should be pushed further (and become 2). But, | |
463 | note that `0' overlaps with R, so we want to merge them. | |
464 | ||
465 | A similar consideration needs to be taken if the new range would | |
466 | be contiguous with the previous range: | |
467 | ||
468 | #2 - contiguous with previous | |
469 | ||
470 | R | |
471 | |-...-| | |
472 | |--| |---| |------| ... |--| | |
473 | 0 1 2 N | |
474 | ||
475 | I=1 | |
476 | ||
477 | If there's no overlap with the previous range, as in: | |
478 | ||
479 | #3 - not overlapping and not contiguous | |
480 | ||
481 | R | |
482 | |-...-| | |
483 | |--| |---| |------| ... |--| | |
484 | 0 1 2 N | |
485 | ||
486 | I=1 | |
487 | ||
488 | or if I is 0: | |
489 | ||
490 | #4 - R is the range with lowest offset | |
491 | ||
492 | R | |
493 | |-...-| | |
494 | |--| |---| |------| ... |--| | |
495 | 0 1 2 N | |
496 | ||
497 | I=0 | |
498 | ||
499 | ... we just push the new range to I. | |
500 | ||
501 | All the 4 cases above need to consider that the new range may | |
502 | also overlap several of the ranges that follow, or that R may be | |
503 | contiguous with the following range, and merge. E.g., | |
504 | ||
505 | #5 - overlapping following ranges | |
506 | ||
507 | R | |
508 | |------------------------| | |
509 | |--| |---| |------| ... |--| | |
510 | 0 1 2 N | |
511 | ||
512 | I=0 | |
513 | ||
514 | or: | |
515 | ||
516 | R | |
517 | |-------| | |
518 | |--| |---| |------| ... |--| | |
519 | 0 1 2 N | |
520 | ||
521 | I=1 | |
522 | ||
523 | */ | |
524 | ||
9a0dc9e3 | 525 | i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan); |
4e07d55f PA |
526 | if (i > 0) |
527 | { | |
9a0dc9e3 | 528 | struct range *bef = VEC_index (range_s, *vectorp, i - 1); |
4e07d55f PA |
529 | |
530 | if (ranges_overlap (bef->offset, bef->length, offset, length)) | |
531 | { | |
532 | /* #1 */ | |
325fac50 PA |
533 | ULONGEST l = std::min (bef->offset, offset); |
534 | ULONGEST h = std::max (bef->offset + bef->length, offset + length); | |
4e07d55f PA |
535 | |
536 | bef->offset = l; | |
537 | bef->length = h - l; | |
538 | i--; | |
539 | } | |
540 | else if (offset == bef->offset + bef->length) | |
541 | { | |
542 | /* #2 */ | |
543 | bef->length += length; | |
544 | i--; | |
545 | } | |
546 | else | |
547 | { | |
548 | /* #3 */ | |
9a0dc9e3 | 549 | VEC_safe_insert (range_s, *vectorp, i, &newr); |
4e07d55f PA |
550 | } |
551 | } | |
552 | else | |
553 | { | |
554 | /* #4 */ | |
9a0dc9e3 | 555 | VEC_safe_insert (range_s, *vectorp, i, &newr); |
4e07d55f PA |
556 | } |
557 | ||
558 | /* Check whether the ranges following the one we've just added or | |
559 | touched can be folded in (#5 above). */ | |
9a0dc9e3 | 560 | if (i + 1 < VEC_length (range_s, *vectorp)) |
4e07d55f PA |
561 | { |
562 | struct range *t; | |
563 | struct range *r; | |
564 | int removed = 0; | |
565 | int next = i + 1; | |
566 | ||
567 | /* Get the range we just touched. */ | |
9a0dc9e3 | 568 | t = VEC_index (range_s, *vectorp, i); |
4e07d55f PA |
569 | removed = 0; |
570 | ||
571 | i = next; | |
9a0dc9e3 | 572 | for (; VEC_iterate (range_s, *vectorp, i, r); i++) |
4e07d55f PA |
573 | if (r->offset <= t->offset + t->length) |
574 | { | |
575 | ULONGEST l, h; | |
576 | ||
325fac50 PA |
577 | l = std::min (t->offset, r->offset); |
578 | h = std::max (t->offset + t->length, r->offset + r->length); | |
4e07d55f PA |
579 | |
580 | t->offset = l; | |
581 | t->length = h - l; | |
582 | ||
583 | removed++; | |
584 | } | |
585 | else | |
586 | { | |
587 | /* If we couldn't merge this one, we won't be able to | |
588 | merge following ones either, since the ranges are | |
589 | always sorted by OFFSET. */ | |
590 | break; | |
591 | } | |
592 | ||
593 | if (removed != 0) | |
9a0dc9e3 | 594 | VEC_block_remove (range_s, *vectorp, next, removed); |
4e07d55f PA |
595 | } |
596 | } | |
597 | ||
9a0dc9e3 | 598 | void |
6b850546 DT |
599 | mark_value_bits_unavailable (struct value *value, |
600 | LONGEST offset, LONGEST length) | |
9a0dc9e3 PA |
601 | { |
602 | insert_into_bit_range_vector (&value->unavailable, offset, length); | |
603 | } | |
604 | ||
bdf22206 | 605 | void |
6b850546 DT |
606 | mark_value_bytes_unavailable (struct value *value, |
607 | LONGEST offset, LONGEST length) | |
bdf22206 AB |
608 | { |
609 | mark_value_bits_unavailable (value, | |
610 | offset * TARGET_CHAR_BIT, | |
611 | length * TARGET_CHAR_BIT); | |
612 | } | |
613 | ||
c8c1c22f PA |
614 | /* Find the first range in RANGES that overlaps the range defined by |
615 | OFFSET and LENGTH, starting at element POS in the RANGES vector, | |
616 | Returns the index into RANGES where such overlapping range was | |
617 | found, or -1 if none was found. */ | |
618 | ||
619 | static int | |
620 | find_first_range_overlap (VEC(range_s) *ranges, int pos, | |
6b850546 | 621 | LONGEST offset, LONGEST length) |
c8c1c22f PA |
622 | { |
623 | range_s *r; | |
624 | int i; | |
625 | ||
626 | for (i = pos; VEC_iterate (range_s, ranges, i, r); i++) | |
627 | if (ranges_overlap (r->offset, r->length, offset, length)) | |
628 | return i; | |
629 | ||
630 | return -1; | |
631 | } | |
632 | ||
bdf22206 AB |
633 | /* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at |
634 | PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise | |
635 | return non-zero. | |
636 | ||
637 | It must always be the case that: | |
638 | OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT | |
639 | ||
640 | It is assumed that memory can be accessed from: | |
641 | PTR + (OFFSET_BITS / TARGET_CHAR_BIT) | |
642 | to: | |
643 | PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1) | |
644 | / TARGET_CHAR_BIT) */ | |
645 | static int | |
646 | memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits, | |
647 | const gdb_byte *ptr2, size_t offset2_bits, | |
648 | size_t length_bits) | |
649 | { | |
650 | gdb_assert (offset1_bits % TARGET_CHAR_BIT | |
651 | == offset2_bits % TARGET_CHAR_BIT); | |
652 | ||
653 | if (offset1_bits % TARGET_CHAR_BIT != 0) | |
654 | { | |
655 | size_t bits; | |
656 | gdb_byte mask, b1, b2; | |
657 | ||
658 | /* The offset from the base pointers PTR1 and PTR2 is not a complete | |
659 | number of bytes. A number of bits up to either the next exact | |
660 | byte boundary, or LENGTH_BITS (which ever is sooner) will be | |
661 | compared. */ | |
662 | bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT; | |
663 | gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT); | |
664 | mask = (1 << bits) - 1; | |
665 | ||
666 | if (length_bits < bits) | |
667 | { | |
668 | mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1); | |
669 | bits = length_bits; | |
670 | } | |
671 | ||
672 | /* Now load the two bytes and mask off the bits we care about. */ | |
673 | b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask; | |
674 | b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask; | |
675 | ||
676 | if (b1 != b2) | |
677 | return 1; | |
678 | ||
679 | /* Now update the length and offsets to take account of the bits | |
680 | we've just compared. */ | |
681 | length_bits -= bits; | |
682 | offset1_bits += bits; | |
683 | offset2_bits += bits; | |
684 | } | |
685 | ||
686 | if (length_bits % TARGET_CHAR_BIT != 0) | |
687 | { | |
688 | size_t bits; | |
689 | size_t o1, o2; | |
690 | gdb_byte mask, b1, b2; | |
691 | ||
692 | /* The length is not an exact number of bytes. After the previous | |
693 | IF.. block then the offsets are byte aligned, or the | |
694 | length is zero (in which case this code is not reached). Compare | |
695 | a number of bits at the end of the region, starting from an exact | |
696 | byte boundary. */ | |
697 | bits = length_bits % TARGET_CHAR_BIT; | |
698 | o1 = offset1_bits + length_bits - bits; | |
699 | o2 = offset2_bits + length_bits - bits; | |
700 | ||
701 | gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT); | |
702 | mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits); | |
703 | ||
704 | gdb_assert (o1 % TARGET_CHAR_BIT == 0); | |
705 | gdb_assert (o2 % TARGET_CHAR_BIT == 0); | |
706 | ||
707 | b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask; | |
708 | b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask; | |
709 | ||
710 | if (b1 != b2) | |
711 | return 1; | |
712 | ||
713 | length_bits -= bits; | |
714 | } | |
715 | ||
716 | if (length_bits > 0) | |
717 | { | |
718 | /* We've now taken care of any stray "bits" at the start, or end of | |
719 | the region to compare, the remainder can be covered with a simple | |
720 | memcmp. */ | |
721 | gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0); | |
722 | gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0); | |
723 | gdb_assert (length_bits % TARGET_CHAR_BIT == 0); | |
724 | ||
725 | return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT, | |
726 | ptr2 + offset2_bits / TARGET_CHAR_BIT, | |
727 | length_bits / TARGET_CHAR_BIT); | |
728 | } | |
729 | ||
730 | /* Length is zero, regions match. */ | |
731 | return 0; | |
732 | } | |
733 | ||
9a0dc9e3 PA |
734 | /* Helper struct for find_first_range_overlap_and_match and |
735 | value_contents_bits_eq. Keep track of which slot of a given ranges | |
736 | vector have we last looked at. */ | |
bdf22206 | 737 | |
9a0dc9e3 PA |
738 | struct ranges_and_idx |
739 | { | |
740 | /* The ranges. */ | |
741 | VEC(range_s) *ranges; | |
742 | ||
743 | /* The range we've last found in RANGES. Given ranges are sorted, | |
744 | we can start the next lookup here. */ | |
745 | int idx; | |
746 | }; | |
747 | ||
748 | /* Helper function for value_contents_bits_eq. Compare LENGTH bits of | |
749 | RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's | |
750 | ranges starting at OFFSET2 bits. Return true if the ranges match | |
751 | and fill in *L and *H with the overlapping window relative to | |
752 | (both) OFFSET1 or OFFSET2. */ | |
bdf22206 AB |
753 | |
754 | static int | |
9a0dc9e3 PA |
755 | find_first_range_overlap_and_match (struct ranges_and_idx *rp1, |
756 | struct ranges_and_idx *rp2, | |
6b850546 DT |
757 | LONGEST offset1, LONGEST offset2, |
758 | LONGEST length, ULONGEST *l, ULONGEST *h) | |
c8c1c22f | 759 | { |
9a0dc9e3 PA |
760 | rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx, |
761 | offset1, length); | |
762 | rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx, | |
763 | offset2, length); | |
c8c1c22f | 764 | |
9a0dc9e3 PA |
765 | if (rp1->idx == -1 && rp2->idx == -1) |
766 | { | |
767 | *l = length; | |
768 | *h = length; | |
769 | return 1; | |
770 | } | |
771 | else if (rp1->idx == -1 || rp2->idx == -1) | |
772 | return 0; | |
773 | else | |
c8c1c22f PA |
774 | { |
775 | range_s *r1, *r2; | |
776 | ULONGEST l1, h1; | |
777 | ULONGEST l2, h2; | |
778 | ||
9a0dc9e3 PA |
779 | r1 = VEC_index (range_s, rp1->ranges, rp1->idx); |
780 | r2 = VEC_index (range_s, rp2->ranges, rp2->idx); | |
c8c1c22f PA |
781 | |
782 | /* Get the unavailable windows intersected by the incoming | |
783 | ranges. The first and last ranges that overlap the argument | |
784 | range may be wider than said incoming arguments ranges. */ | |
325fac50 PA |
785 | l1 = std::max (offset1, r1->offset); |
786 | h1 = std::min (offset1 + length, r1->offset + r1->length); | |
c8c1c22f | 787 | |
325fac50 PA |
788 | l2 = std::max (offset2, r2->offset); |
789 | h2 = std::min (offset2 + length, offset2 + r2->length); | |
c8c1c22f PA |
790 | |
791 | /* Make them relative to the respective start offsets, so we can | |
792 | compare them for equality. */ | |
793 | l1 -= offset1; | |
794 | h1 -= offset1; | |
795 | ||
796 | l2 -= offset2; | |
797 | h2 -= offset2; | |
798 | ||
9a0dc9e3 | 799 | /* Different ranges, no match. */ |
c8c1c22f PA |
800 | if (l1 != l2 || h1 != h2) |
801 | return 0; | |
802 | ||
9a0dc9e3 PA |
803 | *h = h1; |
804 | *l = l1; | |
805 | return 1; | |
806 | } | |
807 | } | |
808 | ||
809 | /* Helper function for value_contents_eq. The only difference is that | |
810 | this function is bit rather than byte based. | |
811 | ||
812 | Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits | |
813 | with LENGTH bits of VAL2's contents starting at OFFSET2 bits. | |
814 | Return true if the available bits match. */ | |
815 | ||
816 | static int | |
817 | value_contents_bits_eq (const struct value *val1, int offset1, | |
818 | const struct value *val2, int offset2, | |
819 | int length) | |
820 | { | |
821 | /* Each array element corresponds to a ranges source (unavailable, | |
822 | optimized out). '1' is for VAL1, '2' for VAL2. */ | |
823 | struct ranges_and_idx rp1[2], rp2[2]; | |
824 | ||
825 | /* See function description in value.h. */ | |
826 | gdb_assert (!val1->lazy && !val2->lazy); | |
827 | ||
828 | /* We shouldn't be trying to compare past the end of the values. */ | |
829 | gdb_assert (offset1 + length | |
830 | <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT); | |
831 | gdb_assert (offset2 + length | |
832 | <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT); | |
833 | ||
834 | memset (&rp1, 0, sizeof (rp1)); | |
835 | memset (&rp2, 0, sizeof (rp2)); | |
836 | rp1[0].ranges = val1->unavailable; | |
837 | rp2[0].ranges = val2->unavailable; | |
838 | rp1[1].ranges = val1->optimized_out; | |
839 | rp2[1].ranges = val2->optimized_out; | |
840 | ||
841 | while (length > 0) | |
842 | { | |
000339af | 843 | ULONGEST l = 0, h = 0; /* init for gcc -Wall */ |
9a0dc9e3 PA |
844 | int i; |
845 | ||
846 | for (i = 0; i < 2; i++) | |
847 | { | |
848 | ULONGEST l_tmp, h_tmp; | |
849 | ||
850 | /* The contents only match equal if the invalid/unavailable | |
851 | contents ranges match as well. */ | |
852 | if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i], | |
853 | offset1, offset2, length, | |
854 | &l_tmp, &h_tmp)) | |
855 | return 0; | |
856 | ||
857 | /* We're interested in the lowest/first range found. */ | |
858 | if (i == 0 || l_tmp < l) | |
859 | { | |
860 | l = l_tmp; | |
861 | h = h_tmp; | |
862 | } | |
863 | } | |
864 | ||
865 | /* Compare the available/valid contents. */ | |
bdf22206 | 866 | if (memcmp_with_bit_offsets (val1->contents, offset1, |
9a0dc9e3 | 867 | val2->contents, offset2, l) != 0) |
c8c1c22f PA |
868 | return 0; |
869 | ||
9a0dc9e3 PA |
870 | length -= h; |
871 | offset1 += h; | |
872 | offset2 += h; | |
c8c1c22f PA |
873 | } |
874 | ||
875 | return 1; | |
876 | } | |
877 | ||
bdf22206 | 878 | int |
6b850546 DT |
879 | value_contents_eq (const struct value *val1, LONGEST offset1, |
880 | const struct value *val2, LONGEST offset2, | |
881 | LONGEST length) | |
bdf22206 | 882 | { |
9a0dc9e3 PA |
883 | return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT, |
884 | val2, offset2 * TARGET_CHAR_BIT, | |
885 | length * TARGET_CHAR_BIT); | |
bdf22206 AB |
886 | } |
887 | ||
581e13c1 | 888 | /* Prototypes for local functions. */ |
c906108c | 889 | |
a14ed312 | 890 | static void show_values (char *, int); |
c906108c | 891 | |
a14ed312 | 892 | static void show_convenience (char *, int); |
c906108c | 893 | |
c906108c SS |
894 | |
895 | /* The value-history records all the values printed | |
896 | by print commands during this session. Each chunk | |
897 | records 60 consecutive values. The first chunk on | |
898 | the chain records the most recent values. | |
899 | The total number of values is in value_history_count. */ | |
900 | ||
901 | #define VALUE_HISTORY_CHUNK 60 | |
902 | ||
903 | struct value_history_chunk | |
c5aa993b JM |
904 | { |
905 | struct value_history_chunk *next; | |
f23631e4 | 906 | struct value *values[VALUE_HISTORY_CHUNK]; |
c5aa993b | 907 | }; |
c906108c SS |
908 | |
909 | /* Chain of chunks now in use. */ | |
910 | ||
911 | static struct value_history_chunk *value_history_chain; | |
912 | ||
581e13c1 | 913 | static int value_history_count; /* Abs number of last entry stored. */ |
bc3b79fd | 914 | |
c906108c SS |
915 | \f |
916 | /* List of all value objects currently allocated | |
917 | (except for those released by calls to release_value) | |
918 | This is so they can be freed after each command. */ | |
919 | ||
f23631e4 | 920 | static struct value *all_values; |
c906108c | 921 | |
3e3d7139 JG |
922 | /* Allocate a lazy value for type TYPE. Its actual content is |
923 | "lazily" allocated too: the content field of the return value is | |
924 | NULL; it will be allocated when it is fetched from the target. */ | |
c906108c | 925 | |
f23631e4 | 926 | struct value * |
3e3d7139 | 927 | allocate_value_lazy (struct type *type) |
c906108c | 928 | { |
f23631e4 | 929 | struct value *val; |
c54eabfa JK |
930 | |
931 | /* Call check_typedef on our type to make sure that, if TYPE | |
932 | is a TYPE_CODE_TYPEDEF, its length is set to the length | |
933 | of the target type instead of zero. However, we do not | |
934 | replace the typedef type by the target type, because we want | |
935 | to keep the typedef in order to be able to set the VAL's type | |
936 | description correctly. */ | |
937 | check_typedef (type); | |
c906108c | 938 | |
8d749320 | 939 | val = XCNEW (struct value); |
3e3d7139 | 940 | val->contents = NULL; |
df407dfe | 941 | val->next = all_values; |
c906108c | 942 | all_values = val; |
df407dfe | 943 | val->type = type; |
4754a64e | 944 | val->enclosing_type = type; |
c906108c | 945 | VALUE_LVAL (val) = not_lval; |
42ae5230 | 946 | val->location.address = 0; |
df407dfe AC |
947 | val->offset = 0; |
948 | val->bitpos = 0; | |
949 | val->bitsize = 0; | |
3e3d7139 | 950 | val->lazy = 1; |
13c3b5f5 | 951 | val->embedded_offset = 0; |
b44d461b | 952 | val->pointed_to_offset = 0; |
c906108c | 953 | val->modifiable = 1; |
42be36b3 | 954 | val->initialized = 1; /* Default to initialized. */ |
828d3400 DJ |
955 | |
956 | /* Values start out on the all_values chain. */ | |
957 | val->reference_count = 1; | |
958 | ||
c906108c SS |
959 | return val; |
960 | } | |
961 | ||
5fdf6324 AB |
962 | /* The maximum size, in bytes, that GDB will try to allocate for a value. |
963 | The initial value of 64k was not selected for any specific reason, it is | |
964 | just a reasonable starting point. */ | |
965 | ||
966 | static int max_value_size = 65536; /* 64k bytes */ | |
967 | ||
968 | /* It is critical that the MAX_VALUE_SIZE is at least as big as the size of | |
969 | LONGEST, otherwise GDB will not be able to parse integer values from the | |
970 | CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would | |
971 | be unable to parse "set max-value-size 2". | |
972 | ||
973 | As we want a consistent GDB experience across hosts with different sizes | |
974 | of LONGEST, this arbitrary minimum value was selected, so long as this | |
975 | is bigger than LONGEST on all GDB supported hosts we're fine. */ | |
976 | ||
977 | #define MIN_VALUE_FOR_MAX_VALUE_SIZE 16 | |
978 | gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE); | |
979 | ||
980 | /* Implement the "set max-value-size" command. */ | |
981 | ||
982 | static void | |
983 | set_max_value_size (char *args, int from_tty, | |
984 | struct cmd_list_element *c) | |
985 | { | |
986 | gdb_assert (max_value_size == -1 || max_value_size >= 0); | |
987 | ||
988 | if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE) | |
989 | { | |
990 | max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE; | |
991 | error (_("max-value-size set too low, increasing to %d bytes"), | |
992 | max_value_size); | |
993 | } | |
994 | } | |
995 | ||
996 | /* Implement the "show max-value-size" command. */ | |
997 | ||
998 | static void | |
999 | show_max_value_size (struct ui_file *file, int from_tty, | |
1000 | struct cmd_list_element *c, const char *value) | |
1001 | { | |
1002 | if (max_value_size == -1) | |
1003 | fprintf_filtered (file, _("Maximum value size is unlimited.\n")); | |
1004 | else | |
1005 | fprintf_filtered (file, _("Maximum value size is %d bytes.\n"), | |
1006 | max_value_size); | |
1007 | } | |
1008 | ||
1009 | /* Called before we attempt to allocate or reallocate a buffer for the | |
1010 | contents of a value. TYPE is the type of the value for which we are | |
1011 | allocating the buffer. If the buffer is too large (based on the user | |
1012 | controllable setting) then throw an error. If this function returns | |
1013 | then we should attempt to allocate the buffer. */ | |
1014 | ||
1015 | static void | |
1016 | check_type_length_before_alloc (const struct type *type) | |
1017 | { | |
1018 | unsigned int length = TYPE_LENGTH (type); | |
1019 | ||
1020 | if (max_value_size > -1 && length > max_value_size) | |
1021 | { | |
1022 | if (TYPE_NAME (type) != NULL) | |
1023 | error (_("value of type `%s' requires %u bytes, which is more " | |
1024 | "than max-value-size"), TYPE_NAME (type), length); | |
1025 | else | |
1026 | error (_("value requires %u bytes, which is more than " | |
1027 | "max-value-size"), length); | |
1028 | } | |
1029 | } | |
1030 | ||
3e3d7139 JG |
1031 | /* Allocate the contents of VAL if it has not been allocated yet. */ |
1032 | ||
548b762d | 1033 | static void |
3e3d7139 JG |
1034 | allocate_value_contents (struct value *val) |
1035 | { | |
1036 | if (!val->contents) | |
5fdf6324 AB |
1037 | { |
1038 | check_type_length_before_alloc (val->enclosing_type); | |
1039 | val->contents | |
1040 | = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type)); | |
1041 | } | |
3e3d7139 JG |
1042 | } |
1043 | ||
1044 | /* Allocate a value and its contents for type TYPE. */ | |
1045 | ||
1046 | struct value * | |
1047 | allocate_value (struct type *type) | |
1048 | { | |
1049 | struct value *val = allocate_value_lazy (type); | |
a109c7c1 | 1050 | |
3e3d7139 JG |
1051 | allocate_value_contents (val); |
1052 | val->lazy = 0; | |
1053 | return val; | |
1054 | } | |
1055 | ||
c906108c | 1056 | /* Allocate a value that has the correct length |
938f5214 | 1057 | for COUNT repetitions of type TYPE. */ |
c906108c | 1058 | |
f23631e4 | 1059 | struct value * |
fba45db2 | 1060 | allocate_repeat_value (struct type *type, int count) |
c906108c | 1061 | { |
c5aa993b | 1062 | int low_bound = current_language->string_lower_bound; /* ??? */ |
c906108c SS |
1063 | /* FIXME-type-allocation: need a way to free this type when we are |
1064 | done with it. */ | |
e3506a9f UW |
1065 | struct type *array_type |
1066 | = lookup_array_range_type (type, low_bound, count + low_bound - 1); | |
a109c7c1 | 1067 | |
e3506a9f | 1068 | return allocate_value (array_type); |
c906108c SS |
1069 | } |
1070 | ||
5f5233d4 PA |
1071 | struct value * |
1072 | allocate_computed_value (struct type *type, | |
c8f2448a | 1073 | const struct lval_funcs *funcs, |
5f5233d4 PA |
1074 | void *closure) |
1075 | { | |
41e8491f | 1076 | struct value *v = allocate_value_lazy (type); |
a109c7c1 | 1077 | |
5f5233d4 PA |
1078 | VALUE_LVAL (v) = lval_computed; |
1079 | v->location.computed.funcs = funcs; | |
1080 | v->location.computed.closure = closure; | |
5f5233d4 PA |
1081 | |
1082 | return v; | |
1083 | } | |
1084 | ||
a7035dbb JK |
1085 | /* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */ |
1086 | ||
1087 | struct value * | |
1088 | allocate_optimized_out_value (struct type *type) | |
1089 | { | |
1090 | struct value *retval = allocate_value_lazy (type); | |
1091 | ||
9a0dc9e3 PA |
1092 | mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type)); |
1093 | set_value_lazy (retval, 0); | |
a7035dbb JK |
1094 | return retval; |
1095 | } | |
1096 | ||
df407dfe AC |
1097 | /* Accessor methods. */ |
1098 | ||
17cf0ecd | 1099 | struct value * |
4bf7b526 | 1100 | value_next (const struct value *value) |
17cf0ecd AC |
1101 | { |
1102 | return value->next; | |
1103 | } | |
1104 | ||
df407dfe | 1105 | struct type * |
0e03807e | 1106 | value_type (const struct value *value) |
df407dfe AC |
1107 | { |
1108 | return value->type; | |
1109 | } | |
04624583 AC |
1110 | void |
1111 | deprecated_set_value_type (struct value *value, struct type *type) | |
1112 | { | |
1113 | value->type = type; | |
1114 | } | |
df407dfe | 1115 | |
6b850546 | 1116 | LONGEST |
0e03807e | 1117 | value_offset (const struct value *value) |
df407dfe AC |
1118 | { |
1119 | return value->offset; | |
1120 | } | |
f5cf64a7 | 1121 | void |
6b850546 | 1122 | set_value_offset (struct value *value, LONGEST offset) |
f5cf64a7 AC |
1123 | { |
1124 | value->offset = offset; | |
1125 | } | |
df407dfe | 1126 | |
6b850546 | 1127 | LONGEST |
0e03807e | 1128 | value_bitpos (const struct value *value) |
df407dfe AC |
1129 | { |
1130 | return value->bitpos; | |
1131 | } | |
9bbda503 | 1132 | void |
6b850546 | 1133 | set_value_bitpos (struct value *value, LONGEST bit) |
9bbda503 AC |
1134 | { |
1135 | value->bitpos = bit; | |
1136 | } | |
df407dfe | 1137 | |
6b850546 | 1138 | LONGEST |
0e03807e | 1139 | value_bitsize (const struct value *value) |
df407dfe AC |
1140 | { |
1141 | return value->bitsize; | |
1142 | } | |
9bbda503 | 1143 | void |
6b850546 | 1144 | set_value_bitsize (struct value *value, LONGEST bit) |
9bbda503 AC |
1145 | { |
1146 | value->bitsize = bit; | |
1147 | } | |
df407dfe | 1148 | |
4ea48cc1 | 1149 | struct value * |
4bf7b526 | 1150 | value_parent (const struct value *value) |
4ea48cc1 DJ |
1151 | { |
1152 | return value->parent; | |
1153 | } | |
1154 | ||
53ba8333 JB |
1155 | /* See value.h. */ |
1156 | ||
1157 | void | |
1158 | set_value_parent (struct value *value, struct value *parent) | |
1159 | { | |
40501e00 TT |
1160 | struct value *old = value->parent; |
1161 | ||
53ba8333 | 1162 | value->parent = parent; |
40501e00 TT |
1163 | if (parent != NULL) |
1164 | value_incref (parent); | |
1165 | value_free (old); | |
53ba8333 JB |
1166 | } |
1167 | ||
fc1a4b47 | 1168 | gdb_byte * |
990a07ab AC |
1169 | value_contents_raw (struct value *value) |
1170 | { | |
3ae385af SM |
1171 | struct gdbarch *arch = get_value_arch (value); |
1172 | int unit_size = gdbarch_addressable_memory_unit_size (arch); | |
1173 | ||
3e3d7139 | 1174 | allocate_value_contents (value); |
3ae385af | 1175 | return value->contents + value->embedded_offset * unit_size; |
990a07ab AC |
1176 | } |
1177 | ||
fc1a4b47 | 1178 | gdb_byte * |
990a07ab AC |
1179 | value_contents_all_raw (struct value *value) |
1180 | { | |
3e3d7139 JG |
1181 | allocate_value_contents (value); |
1182 | return value->contents; | |
990a07ab AC |
1183 | } |
1184 | ||
4754a64e | 1185 | struct type * |
4bf7b526 | 1186 | value_enclosing_type (const struct value *value) |
4754a64e AC |
1187 | { |
1188 | return value->enclosing_type; | |
1189 | } | |
1190 | ||
8264ba82 AG |
1191 | /* Look at value.h for description. */ |
1192 | ||
1193 | struct type * | |
1194 | value_actual_type (struct value *value, int resolve_simple_types, | |
1195 | int *real_type_found) | |
1196 | { | |
1197 | struct value_print_options opts; | |
8264ba82 AG |
1198 | struct type *result; |
1199 | ||
1200 | get_user_print_options (&opts); | |
1201 | ||
1202 | if (real_type_found) | |
1203 | *real_type_found = 0; | |
1204 | result = value_type (value); | |
1205 | if (opts.objectprint) | |
1206 | { | |
5e34c6c3 LM |
1207 | /* If result's target type is TYPE_CODE_STRUCT, proceed to |
1208 | fetch its rtti type. */ | |
aa006118 | 1209 | if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result)) |
5e34c6c3 | 1210 | && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result))) |
ecf2e90c DB |
1211 | == TYPE_CODE_STRUCT |
1212 | && !value_optimized_out (value)) | |
8264ba82 AG |
1213 | { |
1214 | struct type *real_type; | |
1215 | ||
1216 | real_type = value_rtti_indirect_type (value, NULL, NULL, NULL); | |
1217 | if (real_type) | |
1218 | { | |
1219 | if (real_type_found) | |
1220 | *real_type_found = 1; | |
1221 | result = real_type; | |
1222 | } | |
1223 | } | |
1224 | else if (resolve_simple_types) | |
1225 | { | |
1226 | if (real_type_found) | |
1227 | *real_type_found = 1; | |
1228 | result = value_enclosing_type (value); | |
1229 | } | |
1230 | } | |
1231 | ||
1232 | return result; | |
1233 | } | |
1234 | ||
901461f8 PA |
1235 | void |
1236 | error_value_optimized_out (void) | |
1237 | { | |
1238 | error (_("value has been optimized out")); | |
1239 | } | |
1240 | ||
0e03807e | 1241 | static void |
4e07d55f | 1242 | require_not_optimized_out (const struct value *value) |
0e03807e | 1243 | { |
9a0dc9e3 | 1244 | if (!VEC_empty (range_s, value->optimized_out)) |
901461f8 PA |
1245 | { |
1246 | if (value->lval == lval_register) | |
1247 | error (_("register has not been saved in frame")); | |
1248 | else | |
1249 | error_value_optimized_out (); | |
1250 | } | |
0e03807e TT |
1251 | } |
1252 | ||
4e07d55f PA |
1253 | static void |
1254 | require_available (const struct value *value) | |
1255 | { | |
1256 | if (!VEC_empty (range_s, value->unavailable)) | |
8af8e3bc | 1257 | throw_error (NOT_AVAILABLE_ERROR, _("value is not available")); |
4e07d55f PA |
1258 | } |
1259 | ||
fc1a4b47 | 1260 | const gdb_byte * |
0e03807e | 1261 | value_contents_for_printing (struct value *value) |
46615f07 AC |
1262 | { |
1263 | if (value->lazy) | |
1264 | value_fetch_lazy (value); | |
3e3d7139 | 1265 | return value->contents; |
46615f07 AC |
1266 | } |
1267 | ||
de4127a3 PA |
1268 | const gdb_byte * |
1269 | value_contents_for_printing_const (const struct value *value) | |
1270 | { | |
1271 | gdb_assert (!value->lazy); | |
1272 | return value->contents; | |
1273 | } | |
1274 | ||
0e03807e TT |
1275 | const gdb_byte * |
1276 | value_contents_all (struct value *value) | |
1277 | { | |
1278 | const gdb_byte *result = value_contents_for_printing (value); | |
1279 | require_not_optimized_out (value); | |
4e07d55f | 1280 | require_available (value); |
0e03807e TT |
1281 | return result; |
1282 | } | |
1283 | ||
9a0dc9e3 PA |
1284 | /* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET, |
1285 | SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */ | |
1286 | ||
1287 | static void | |
1288 | ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset, | |
1289 | VEC (range_s) *src_range, int src_bit_offset, | |
1290 | int bit_length) | |
1291 | { | |
1292 | range_s *r; | |
1293 | int i; | |
1294 | ||
1295 | for (i = 0; VEC_iterate (range_s, src_range, i, r); i++) | |
1296 | { | |
1297 | ULONGEST h, l; | |
1298 | ||
325fac50 PA |
1299 | l = std::max (r->offset, (LONGEST) src_bit_offset); |
1300 | h = std::min (r->offset + r->length, | |
1301 | (LONGEST) src_bit_offset + bit_length); | |
9a0dc9e3 PA |
1302 | |
1303 | if (l < h) | |
1304 | insert_into_bit_range_vector (dst_range, | |
1305 | dst_bit_offset + (l - src_bit_offset), | |
1306 | h - l); | |
1307 | } | |
1308 | } | |
1309 | ||
4875ffdb PA |
1310 | /* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET, |
1311 | SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */ | |
1312 | ||
1313 | static void | |
1314 | value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset, | |
1315 | const struct value *src, int src_bit_offset, | |
1316 | int bit_length) | |
1317 | { | |
1318 | ranges_copy_adjusted (&dst->unavailable, dst_bit_offset, | |
1319 | src->unavailable, src_bit_offset, | |
1320 | bit_length); | |
1321 | ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset, | |
1322 | src->optimized_out, src_bit_offset, | |
1323 | bit_length); | |
1324 | } | |
1325 | ||
3ae385af | 1326 | /* Copy LENGTH target addressable memory units of SRC value's (all) contents |
29976f3f PA |
1327 | (value_contents_all) starting at SRC_OFFSET, into DST value's (all) |
1328 | contents, starting at DST_OFFSET. If unavailable contents are | |
1329 | being copied from SRC, the corresponding DST contents are marked | |
1330 | unavailable accordingly. Neither DST nor SRC may be lazy | |
1331 | values. | |
1332 | ||
1333 | It is assumed the contents of DST in the [DST_OFFSET, | |
1334 | DST_OFFSET+LENGTH) range are wholly available. */ | |
39d37385 PA |
1335 | |
1336 | void | |
6b850546 DT |
1337 | value_contents_copy_raw (struct value *dst, LONGEST dst_offset, |
1338 | struct value *src, LONGEST src_offset, LONGEST length) | |
39d37385 | 1339 | { |
6b850546 | 1340 | LONGEST src_bit_offset, dst_bit_offset, bit_length; |
3ae385af SM |
1341 | struct gdbarch *arch = get_value_arch (src); |
1342 | int unit_size = gdbarch_addressable_memory_unit_size (arch); | |
39d37385 PA |
1343 | |
1344 | /* A lazy DST would make that this copy operation useless, since as | |
1345 | soon as DST's contents were un-lazied (by a later value_contents | |
1346 | call, say), the contents would be overwritten. A lazy SRC would | |
1347 | mean we'd be copying garbage. */ | |
1348 | gdb_assert (!dst->lazy && !src->lazy); | |
1349 | ||
29976f3f PA |
1350 | /* The overwritten DST range gets unavailability ORed in, not |
1351 | replaced. Make sure to remember to implement replacing if it | |
1352 | turns out actually necessary. */ | |
1353 | gdb_assert (value_bytes_available (dst, dst_offset, length)); | |
9a0dc9e3 PA |
1354 | gdb_assert (!value_bits_any_optimized_out (dst, |
1355 | TARGET_CHAR_BIT * dst_offset, | |
1356 | TARGET_CHAR_BIT * length)); | |
29976f3f | 1357 | |
39d37385 | 1358 | /* Copy the data. */ |
3ae385af SM |
1359 | memcpy (value_contents_all_raw (dst) + dst_offset * unit_size, |
1360 | value_contents_all_raw (src) + src_offset * unit_size, | |
1361 | length * unit_size); | |
39d37385 PA |
1362 | |
1363 | /* Copy the meta-data, adjusted. */ | |
3ae385af SM |
1364 | src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT; |
1365 | dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT; | |
1366 | bit_length = length * unit_size * HOST_CHAR_BIT; | |
39d37385 | 1367 | |
4875ffdb PA |
1368 | value_ranges_copy_adjusted (dst, dst_bit_offset, |
1369 | src, src_bit_offset, | |
1370 | bit_length); | |
39d37385 PA |
1371 | } |
1372 | ||
29976f3f PA |
1373 | /* Copy LENGTH bytes of SRC value's (all) contents |
1374 | (value_contents_all) starting at SRC_OFFSET byte, into DST value's | |
1375 | (all) contents, starting at DST_OFFSET. If unavailable contents | |
1376 | are being copied from SRC, the corresponding DST contents are | |
1377 | marked unavailable accordingly. DST must not be lazy. If SRC is | |
9a0dc9e3 | 1378 | lazy, it will be fetched now. |
29976f3f PA |
1379 | |
1380 | It is assumed the contents of DST in the [DST_OFFSET, | |
1381 | DST_OFFSET+LENGTH) range are wholly available. */ | |
39d37385 PA |
1382 | |
1383 | void | |
6b850546 DT |
1384 | value_contents_copy (struct value *dst, LONGEST dst_offset, |
1385 | struct value *src, LONGEST src_offset, LONGEST length) | |
39d37385 | 1386 | { |
39d37385 PA |
1387 | if (src->lazy) |
1388 | value_fetch_lazy (src); | |
1389 | ||
1390 | value_contents_copy_raw (dst, dst_offset, src, src_offset, length); | |
1391 | } | |
1392 | ||
d69fe07e | 1393 | int |
4bf7b526 | 1394 | value_lazy (const struct value *value) |
d69fe07e AC |
1395 | { |
1396 | return value->lazy; | |
1397 | } | |
1398 | ||
dfa52d88 AC |
1399 | void |
1400 | set_value_lazy (struct value *value, int val) | |
1401 | { | |
1402 | value->lazy = val; | |
1403 | } | |
1404 | ||
4e5d721f | 1405 | int |
4bf7b526 | 1406 | value_stack (const struct value *value) |
4e5d721f DE |
1407 | { |
1408 | return value->stack; | |
1409 | } | |
1410 | ||
1411 | void | |
1412 | set_value_stack (struct value *value, int val) | |
1413 | { | |
1414 | value->stack = val; | |
1415 | } | |
1416 | ||
fc1a4b47 | 1417 | const gdb_byte * |
0fd88904 AC |
1418 | value_contents (struct value *value) |
1419 | { | |
0e03807e TT |
1420 | const gdb_byte *result = value_contents_writeable (value); |
1421 | require_not_optimized_out (value); | |
4e07d55f | 1422 | require_available (value); |
0e03807e | 1423 | return result; |
0fd88904 AC |
1424 | } |
1425 | ||
fc1a4b47 | 1426 | gdb_byte * |
0fd88904 AC |
1427 | value_contents_writeable (struct value *value) |
1428 | { | |
1429 | if (value->lazy) | |
1430 | value_fetch_lazy (value); | |
fc0c53a0 | 1431 | return value_contents_raw (value); |
0fd88904 AC |
1432 | } |
1433 | ||
feb13ab0 AC |
1434 | int |
1435 | value_optimized_out (struct value *value) | |
1436 | { | |
691a26f5 AB |
1437 | /* We can only know if a value is optimized out once we have tried to |
1438 | fetch it. */ | |
9a0dc9e3 | 1439 | if (VEC_empty (range_s, value->optimized_out) && value->lazy) |
ecf2e90c DB |
1440 | { |
1441 | TRY | |
1442 | { | |
1443 | value_fetch_lazy (value); | |
1444 | } | |
1445 | CATCH (ex, RETURN_MASK_ERROR) | |
1446 | { | |
1447 | /* Fall back to checking value->optimized_out. */ | |
1448 | } | |
1449 | END_CATCH | |
1450 | } | |
691a26f5 | 1451 | |
9a0dc9e3 | 1452 | return !VEC_empty (range_s, value->optimized_out); |
feb13ab0 AC |
1453 | } |
1454 | ||
9a0dc9e3 PA |
1455 | /* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and |
1456 | the following LENGTH bytes. */ | |
eca07816 | 1457 | |
feb13ab0 | 1458 | void |
9a0dc9e3 | 1459 | mark_value_bytes_optimized_out (struct value *value, int offset, int length) |
feb13ab0 | 1460 | { |
9a0dc9e3 PA |
1461 | mark_value_bits_optimized_out (value, |
1462 | offset * TARGET_CHAR_BIT, | |
1463 | length * TARGET_CHAR_BIT); | |
feb13ab0 | 1464 | } |
13c3b5f5 | 1465 | |
9a0dc9e3 | 1466 | /* See value.h. */ |
0e03807e | 1467 | |
9a0dc9e3 | 1468 | void |
6b850546 DT |
1469 | mark_value_bits_optimized_out (struct value *value, |
1470 | LONGEST offset, LONGEST length) | |
0e03807e | 1471 | { |
9a0dc9e3 | 1472 | insert_into_bit_range_vector (&value->optimized_out, offset, length); |
0e03807e TT |
1473 | } |
1474 | ||
8cf6f0b1 TT |
1475 | int |
1476 | value_bits_synthetic_pointer (const struct value *value, | |
6b850546 | 1477 | LONGEST offset, LONGEST length) |
8cf6f0b1 | 1478 | { |
e7303042 | 1479 | if (value->lval != lval_computed |
8cf6f0b1 TT |
1480 | || !value->location.computed.funcs->check_synthetic_pointer) |
1481 | return 0; | |
1482 | return value->location.computed.funcs->check_synthetic_pointer (value, | |
1483 | offset, | |
1484 | length); | |
1485 | } | |
1486 | ||
6b850546 | 1487 | LONGEST |
4bf7b526 | 1488 | value_embedded_offset (const struct value *value) |
13c3b5f5 AC |
1489 | { |
1490 | return value->embedded_offset; | |
1491 | } | |
1492 | ||
1493 | void | |
6b850546 | 1494 | set_value_embedded_offset (struct value *value, LONGEST val) |
13c3b5f5 AC |
1495 | { |
1496 | value->embedded_offset = val; | |
1497 | } | |
b44d461b | 1498 | |
6b850546 | 1499 | LONGEST |
4bf7b526 | 1500 | value_pointed_to_offset (const struct value *value) |
b44d461b AC |
1501 | { |
1502 | return value->pointed_to_offset; | |
1503 | } | |
1504 | ||
1505 | void | |
6b850546 | 1506 | set_value_pointed_to_offset (struct value *value, LONGEST val) |
b44d461b AC |
1507 | { |
1508 | value->pointed_to_offset = val; | |
1509 | } | |
13bb5560 | 1510 | |
c8f2448a | 1511 | const struct lval_funcs * |
a471c594 | 1512 | value_computed_funcs (const struct value *v) |
5f5233d4 | 1513 | { |
a471c594 | 1514 | gdb_assert (value_lval_const (v) == lval_computed); |
5f5233d4 PA |
1515 | |
1516 | return v->location.computed.funcs; | |
1517 | } | |
1518 | ||
1519 | void * | |
0e03807e | 1520 | value_computed_closure (const struct value *v) |
5f5233d4 | 1521 | { |
0e03807e | 1522 | gdb_assert (v->lval == lval_computed); |
5f5233d4 PA |
1523 | |
1524 | return v->location.computed.closure; | |
1525 | } | |
1526 | ||
13bb5560 AC |
1527 | enum lval_type * |
1528 | deprecated_value_lval_hack (struct value *value) | |
1529 | { | |
1530 | return &value->lval; | |
1531 | } | |
1532 | ||
a471c594 JK |
1533 | enum lval_type |
1534 | value_lval_const (const struct value *value) | |
1535 | { | |
1536 | return value->lval; | |
1537 | } | |
1538 | ||
42ae5230 | 1539 | CORE_ADDR |
de4127a3 | 1540 | value_address (const struct value *value) |
42ae5230 | 1541 | { |
1a088441 | 1542 | if (value->lval != lval_memory) |
42ae5230 | 1543 | return 0; |
53ba8333 JB |
1544 | if (value->parent != NULL) |
1545 | return value_address (value->parent) + value->offset; | |
9920b434 BH |
1546 | if (NULL != TYPE_DATA_LOCATION (value_type (value))) |
1547 | { | |
1548 | gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value))); | |
1549 | return TYPE_DATA_LOCATION_ADDR (value_type (value)); | |
1550 | } | |
1551 | ||
1552 | return value->location.address + value->offset; | |
42ae5230 TT |
1553 | } |
1554 | ||
1555 | CORE_ADDR | |
4bf7b526 | 1556 | value_raw_address (const struct value *value) |
42ae5230 | 1557 | { |
1a088441 | 1558 | if (value->lval != lval_memory) |
42ae5230 TT |
1559 | return 0; |
1560 | return value->location.address; | |
1561 | } | |
1562 | ||
1563 | void | |
1564 | set_value_address (struct value *value, CORE_ADDR addr) | |
13bb5560 | 1565 | { |
1a088441 | 1566 | gdb_assert (value->lval == lval_memory); |
42ae5230 | 1567 | value->location.address = addr; |
13bb5560 AC |
1568 | } |
1569 | ||
1570 | struct internalvar ** | |
1571 | deprecated_value_internalvar_hack (struct value *value) | |
1572 | { | |
1573 | return &value->location.internalvar; | |
1574 | } | |
1575 | ||
1576 | struct frame_id * | |
41b56feb | 1577 | deprecated_value_next_frame_id_hack (struct value *value) |
13bb5560 | 1578 | { |
7c2ba67e | 1579 | gdb_assert (value->lval == lval_register); |
7dc54575 | 1580 | return &value->location.reg.next_frame_id; |
13bb5560 AC |
1581 | } |
1582 | ||
7dc54575 | 1583 | int * |
13bb5560 AC |
1584 | deprecated_value_regnum_hack (struct value *value) |
1585 | { | |
7c2ba67e | 1586 | gdb_assert (value->lval == lval_register); |
7dc54575 | 1587 | return &value->location.reg.regnum; |
13bb5560 | 1588 | } |
88e3b34b AC |
1589 | |
1590 | int | |
4bf7b526 | 1591 | deprecated_value_modifiable (const struct value *value) |
88e3b34b AC |
1592 | { |
1593 | return value->modifiable; | |
1594 | } | |
990a07ab | 1595 | \f |
c906108c SS |
1596 | /* Return a mark in the value chain. All values allocated after the |
1597 | mark is obtained (except for those released) are subject to being freed | |
1598 | if a subsequent value_free_to_mark is passed the mark. */ | |
f23631e4 | 1599 | struct value * |
fba45db2 | 1600 | value_mark (void) |
c906108c SS |
1601 | { |
1602 | return all_values; | |
1603 | } | |
1604 | ||
828d3400 DJ |
1605 | /* Take a reference to VAL. VAL will not be deallocated until all |
1606 | references are released. */ | |
1607 | ||
1608 | void | |
1609 | value_incref (struct value *val) | |
1610 | { | |
1611 | val->reference_count++; | |
1612 | } | |
1613 | ||
1614 | /* Release a reference to VAL, which was acquired with value_incref. | |
1615 | This function is also called to deallocate values from the value | |
1616 | chain. */ | |
1617 | ||
3e3d7139 JG |
1618 | void |
1619 | value_free (struct value *val) | |
1620 | { | |
1621 | if (val) | |
5f5233d4 | 1622 | { |
828d3400 DJ |
1623 | gdb_assert (val->reference_count > 0); |
1624 | val->reference_count--; | |
1625 | if (val->reference_count > 0) | |
1626 | return; | |
1627 | ||
4ea48cc1 DJ |
1628 | /* If there's an associated parent value, drop our reference to |
1629 | it. */ | |
1630 | if (val->parent != NULL) | |
1631 | value_free (val->parent); | |
1632 | ||
5f5233d4 PA |
1633 | if (VALUE_LVAL (val) == lval_computed) |
1634 | { | |
c8f2448a | 1635 | const struct lval_funcs *funcs = val->location.computed.funcs; |
5f5233d4 PA |
1636 | |
1637 | if (funcs->free_closure) | |
1638 | funcs->free_closure (val); | |
1639 | } | |
e81e7f5e SC |
1640 | else if (VALUE_LVAL (val) == lval_xcallable) |
1641 | free_xmethod_worker (val->location.xm_worker); | |
5f5233d4 PA |
1642 | |
1643 | xfree (val->contents); | |
4e07d55f | 1644 | VEC_free (range_s, val->unavailable); |
5f5233d4 | 1645 | } |
3e3d7139 JG |
1646 | xfree (val); |
1647 | } | |
1648 | ||
c906108c SS |
1649 | /* Free all values allocated since MARK was obtained by value_mark |
1650 | (except for those released). */ | |
1651 | void | |
4bf7b526 | 1652 | value_free_to_mark (const struct value *mark) |
c906108c | 1653 | { |
f23631e4 AC |
1654 | struct value *val; |
1655 | struct value *next; | |
c906108c SS |
1656 | |
1657 | for (val = all_values; val && val != mark; val = next) | |
1658 | { | |
df407dfe | 1659 | next = val->next; |
e848a8a5 | 1660 | val->released = 1; |
c906108c SS |
1661 | value_free (val); |
1662 | } | |
1663 | all_values = val; | |
1664 | } | |
1665 | ||
1666 | /* Free all the values that have been allocated (except for those released). | |
725e88af DE |
1667 | Call after each command, successful or not. |
1668 | In practice this is called before each command, which is sufficient. */ | |
c906108c SS |
1669 | |
1670 | void | |
fba45db2 | 1671 | free_all_values (void) |
c906108c | 1672 | { |
f23631e4 AC |
1673 | struct value *val; |
1674 | struct value *next; | |
c906108c SS |
1675 | |
1676 | for (val = all_values; val; val = next) | |
1677 | { | |
df407dfe | 1678 | next = val->next; |
e848a8a5 | 1679 | val->released = 1; |
c906108c SS |
1680 | value_free (val); |
1681 | } | |
1682 | ||
1683 | all_values = 0; | |
1684 | } | |
1685 | ||
0cf6dd15 TJB |
1686 | /* Frees all the elements in a chain of values. */ |
1687 | ||
1688 | void | |
1689 | free_value_chain (struct value *v) | |
1690 | { | |
1691 | struct value *next; | |
1692 | ||
1693 | for (; v; v = next) | |
1694 | { | |
1695 | next = value_next (v); | |
1696 | value_free (v); | |
1697 | } | |
1698 | } | |
1699 | ||
c906108c SS |
1700 | /* Remove VAL from the chain all_values |
1701 | so it will not be freed automatically. */ | |
1702 | ||
1703 | void | |
f23631e4 | 1704 | release_value (struct value *val) |
c906108c | 1705 | { |
f23631e4 | 1706 | struct value *v; |
c906108c SS |
1707 | |
1708 | if (all_values == val) | |
1709 | { | |
1710 | all_values = val->next; | |
06a64a0b | 1711 | val->next = NULL; |
e848a8a5 | 1712 | val->released = 1; |
c906108c SS |
1713 | return; |
1714 | } | |
1715 | ||
1716 | for (v = all_values; v; v = v->next) | |
1717 | { | |
1718 | if (v->next == val) | |
1719 | { | |
1720 | v->next = val->next; | |
06a64a0b | 1721 | val->next = NULL; |
e848a8a5 | 1722 | val->released = 1; |
c906108c SS |
1723 | break; |
1724 | } | |
1725 | } | |
1726 | } | |
1727 | ||
e848a8a5 TT |
1728 | /* If the value is not already released, release it. |
1729 | If the value is already released, increment its reference count. | |
1730 | That is, this function ensures that the value is released from the | |
1731 | value chain and that the caller owns a reference to it. */ | |
1732 | ||
1733 | void | |
1734 | release_value_or_incref (struct value *val) | |
1735 | { | |
1736 | if (val->released) | |
1737 | value_incref (val); | |
1738 | else | |
1739 | release_value (val); | |
1740 | } | |
1741 | ||
c906108c | 1742 | /* Release all values up to mark */ |
f23631e4 | 1743 | struct value * |
4bf7b526 | 1744 | value_release_to_mark (const struct value *mark) |
c906108c | 1745 | { |
f23631e4 AC |
1746 | struct value *val; |
1747 | struct value *next; | |
c906108c | 1748 | |
df407dfe | 1749 | for (val = next = all_values; next; next = next->next) |
e848a8a5 TT |
1750 | { |
1751 | if (next->next == mark) | |
1752 | { | |
1753 | all_values = next->next; | |
1754 | next->next = NULL; | |
1755 | return val; | |
1756 | } | |
1757 | next->released = 1; | |
1758 | } | |
c906108c SS |
1759 | all_values = 0; |
1760 | return val; | |
1761 | } | |
1762 | ||
1763 | /* Return a copy of the value ARG. | |
1764 | It contains the same contents, for same memory address, | |
1765 | but it's a different block of storage. */ | |
1766 | ||
f23631e4 AC |
1767 | struct value * |
1768 | value_copy (struct value *arg) | |
c906108c | 1769 | { |
4754a64e | 1770 | struct type *encl_type = value_enclosing_type (arg); |
3e3d7139 JG |
1771 | struct value *val; |
1772 | ||
1773 | if (value_lazy (arg)) | |
1774 | val = allocate_value_lazy (encl_type); | |
1775 | else | |
1776 | val = allocate_value (encl_type); | |
df407dfe | 1777 | val->type = arg->type; |
c906108c | 1778 | VALUE_LVAL (val) = VALUE_LVAL (arg); |
6f7c8fc2 | 1779 | val->location = arg->location; |
df407dfe AC |
1780 | val->offset = arg->offset; |
1781 | val->bitpos = arg->bitpos; | |
1782 | val->bitsize = arg->bitsize; | |
d69fe07e | 1783 | val->lazy = arg->lazy; |
13c3b5f5 | 1784 | val->embedded_offset = value_embedded_offset (arg); |
b44d461b | 1785 | val->pointed_to_offset = arg->pointed_to_offset; |
c906108c | 1786 | val->modifiable = arg->modifiable; |
d69fe07e | 1787 | if (!value_lazy (val)) |
c906108c | 1788 | { |
990a07ab | 1789 | memcpy (value_contents_all_raw (val), value_contents_all_raw (arg), |
4754a64e | 1790 | TYPE_LENGTH (value_enclosing_type (arg))); |
c906108c SS |
1791 | |
1792 | } | |
4e07d55f | 1793 | val->unavailable = VEC_copy (range_s, arg->unavailable); |
9a0dc9e3 | 1794 | val->optimized_out = VEC_copy (range_s, arg->optimized_out); |
40501e00 | 1795 | set_value_parent (val, arg->parent); |
5f5233d4 PA |
1796 | if (VALUE_LVAL (val) == lval_computed) |
1797 | { | |
c8f2448a | 1798 | const struct lval_funcs *funcs = val->location.computed.funcs; |
5f5233d4 PA |
1799 | |
1800 | if (funcs->copy_closure) | |
1801 | val->location.computed.closure = funcs->copy_closure (val); | |
1802 | } | |
c906108c SS |
1803 | return val; |
1804 | } | |
74bcbdf3 | 1805 | |
4c082a81 SC |
1806 | /* Return a "const" and/or "volatile" qualified version of the value V. |
1807 | If CNST is true, then the returned value will be qualified with | |
1808 | "const". | |
1809 | if VOLTL is true, then the returned value will be qualified with | |
1810 | "volatile". */ | |
1811 | ||
1812 | struct value * | |
1813 | make_cv_value (int cnst, int voltl, struct value *v) | |
1814 | { | |
1815 | struct type *val_type = value_type (v); | |
1816 | struct type *enclosing_type = value_enclosing_type (v); | |
1817 | struct value *cv_val = value_copy (v); | |
1818 | ||
1819 | deprecated_set_value_type (cv_val, | |
1820 | make_cv_type (cnst, voltl, val_type, NULL)); | |
1821 | set_value_enclosing_type (cv_val, | |
1822 | make_cv_type (cnst, voltl, enclosing_type, NULL)); | |
1823 | ||
1824 | return cv_val; | |
1825 | } | |
1826 | ||
c37f7098 KW |
1827 | /* Return a version of ARG that is non-lvalue. */ |
1828 | ||
1829 | struct value * | |
1830 | value_non_lval (struct value *arg) | |
1831 | { | |
1832 | if (VALUE_LVAL (arg) != not_lval) | |
1833 | { | |
1834 | struct type *enc_type = value_enclosing_type (arg); | |
1835 | struct value *val = allocate_value (enc_type); | |
1836 | ||
1837 | memcpy (value_contents_all_raw (val), value_contents_all (arg), | |
1838 | TYPE_LENGTH (enc_type)); | |
1839 | val->type = arg->type; | |
1840 | set_value_embedded_offset (val, value_embedded_offset (arg)); | |
1841 | set_value_pointed_to_offset (val, value_pointed_to_offset (arg)); | |
1842 | return val; | |
1843 | } | |
1844 | return arg; | |
1845 | } | |
1846 | ||
6c659fc2 SC |
1847 | /* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */ |
1848 | ||
1849 | void | |
1850 | value_force_lval (struct value *v, CORE_ADDR addr) | |
1851 | { | |
1852 | gdb_assert (VALUE_LVAL (v) == not_lval); | |
1853 | ||
1854 | write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v))); | |
1855 | v->lval = lval_memory; | |
1856 | v->location.address = addr; | |
1857 | } | |
1858 | ||
74bcbdf3 | 1859 | void |
0e03807e TT |
1860 | set_value_component_location (struct value *component, |
1861 | const struct value *whole) | |
74bcbdf3 | 1862 | { |
9920b434 BH |
1863 | struct type *type; |
1864 | ||
e81e7f5e SC |
1865 | gdb_assert (whole->lval != lval_xcallable); |
1866 | ||
0e03807e | 1867 | if (whole->lval == lval_internalvar) |
74bcbdf3 PA |
1868 | VALUE_LVAL (component) = lval_internalvar_component; |
1869 | else | |
0e03807e | 1870 | VALUE_LVAL (component) = whole->lval; |
5f5233d4 | 1871 | |
74bcbdf3 | 1872 | component->location = whole->location; |
0e03807e | 1873 | if (whole->lval == lval_computed) |
5f5233d4 | 1874 | { |
c8f2448a | 1875 | const struct lval_funcs *funcs = whole->location.computed.funcs; |
5f5233d4 PA |
1876 | |
1877 | if (funcs->copy_closure) | |
1878 | component->location.computed.closure = funcs->copy_closure (whole); | |
1879 | } | |
9920b434 BH |
1880 | |
1881 | /* If type has a dynamic resolved location property | |
1882 | update it's value address. */ | |
1883 | type = value_type (whole); | |
1884 | if (NULL != TYPE_DATA_LOCATION (type) | |
1885 | && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST) | |
1886 | set_value_address (component, TYPE_DATA_LOCATION_ADDR (type)); | |
74bcbdf3 PA |
1887 | } |
1888 | ||
c906108c SS |
1889 | /* Access to the value history. */ |
1890 | ||
1891 | /* Record a new value in the value history. | |
eddf0bae | 1892 | Returns the absolute history index of the entry. */ |
c906108c SS |
1893 | |
1894 | int | |
f23631e4 | 1895 | record_latest_value (struct value *val) |
c906108c SS |
1896 | { |
1897 | int i; | |
1898 | ||
1899 | /* We don't want this value to have anything to do with the inferior anymore. | |
1900 | In particular, "set $1 = 50" should not affect the variable from which | |
1901 | the value was taken, and fast watchpoints should be able to assume that | |
1902 | a value on the value history never changes. */ | |
d69fe07e | 1903 | if (value_lazy (val)) |
c906108c SS |
1904 | value_fetch_lazy (val); |
1905 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched | |
1906 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
1907 | but the current contents of that location. c'est la vie... */ | |
1908 | val->modifiable = 0; | |
350e1a76 DE |
1909 | |
1910 | /* The value may have already been released, in which case we're adding a | |
1911 | new reference for its entry in the history. That is why we call | |
1912 | release_value_or_incref here instead of release_value. */ | |
1913 | release_value_or_incref (val); | |
c906108c SS |
1914 | |
1915 | /* Here we treat value_history_count as origin-zero | |
1916 | and applying to the value being stored now. */ | |
1917 | ||
1918 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
1919 | if (i == 0) | |
1920 | { | |
8d749320 | 1921 | struct value_history_chunk *newobj = XCNEW (struct value_history_chunk); |
a109c7c1 | 1922 | |
fe978cb0 PA |
1923 | newobj->next = value_history_chain; |
1924 | value_history_chain = newobj; | |
c906108c SS |
1925 | } |
1926 | ||
1927 | value_history_chain->values[i] = val; | |
1928 | ||
1929 | /* Now we regard value_history_count as origin-one | |
1930 | and applying to the value just stored. */ | |
1931 | ||
1932 | return ++value_history_count; | |
1933 | } | |
1934 | ||
1935 | /* Return a copy of the value in the history with sequence number NUM. */ | |
1936 | ||
f23631e4 | 1937 | struct value * |
fba45db2 | 1938 | access_value_history (int num) |
c906108c | 1939 | { |
f23631e4 | 1940 | struct value_history_chunk *chunk; |
52f0bd74 AC |
1941 | int i; |
1942 | int absnum = num; | |
c906108c SS |
1943 | |
1944 | if (absnum <= 0) | |
1945 | absnum += value_history_count; | |
1946 | ||
1947 | if (absnum <= 0) | |
1948 | { | |
1949 | if (num == 0) | |
8a3fe4f8 | 1950 | error (_("The history is empty.")); |
c906108c | 1951 | else if (num == 1) |
8a3fe4f8 | 1952 | error (_("There is only one value in the history.")); |
c906108c | 1953 | else |
8a3fe4f8 | 1954 | error (_("History does not go back to $$%d."), -num); |
c906108c SS |
1955 | } |
1956 | if (absnum > value_history_count) | |
8a3fe4f8 | 1957 | error (_("History has not yet reached $%d."), absnum); |
c906108c SS |
1958 | |
1959 | absnum--; | |
1960 | ||
1961 | /* Now absnum is always absolute and origin zero. */ | |
1962 | ||
1963 | chunk = value_history_chain; | |
3e43a32a MS |
1964 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK |
1965 | - absnum / VALUE_HISTORY_CHUNK; | |
c906108c SS |
1966 | i > 0; i--) |
1967 | chunk = chunk->next; | |
1968 | ||
1969 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
1970 | } | |
1971 | ||
c906108c | 1972 | static void |
fba45db2 | 1973 | show_values (char *num_exp, int from_tty) |
c906108c | 1974 | { |
52f0bd74 | 1975 | int i; |
f23631e4 | 1976 | struct value *val; |
c906108c SS |
1977 | static int num = 1; |
1978 | ||
1979 | if (num_exp) | |
1980 | { | |
f132ba9d TJB |
1981 | /* "show values +" should print from the stored position. |
1982 | "show values <exp>" should print around value number <exp>. */ | |
c906108c | 1983 | if (num_exp[0] != '+' || num_exp[1] != '\0') |
bb518678 | 1984 | num = parse_and_eval_long (num_exp) - 5; |
c906108c SS |
1985 | } |
1986 | else | |
1987 | { | |
f132ba9d | 1988 | /* "show values" means print the last 10 values. */ |
c906108c SS |
1989 | num = value_history_count - 9; |
1990 | } | |
1991 | ||
1992 | if (num <= 0) | |
1993 | num = 1; | |
1994 | ||
1995 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
1996 | { | |
79a45b7d | 1997 | struct value_print_options opts; |
a109c7c1 | 1998 | |
c906108c | 1999 | val = access_value_history (i); |
a3f17187 | 2000 | printf_filtered (("$%d = "), i); |
79a45b7d TT |
2001 | get_user_print_options (&opts); |
2002 | value_print (val, gdb_stdout, &opts); | |
a3f17187 | 2003 | printf_filtered (("\n")); |
c906108c SS |
2004 | } |
2005 | ||
f132ba9d | 2006 | /* The next "show values +" should start after what we just printed. */ |
c906108c SS |
2007 | num += 10; |
2008 | ||
2009 | /* Hitting just return after this command should do the same thing as | |
f132ba9d TJB |
2010 | "show values +". If num_exp is null, this is unnecessary, since |
2011 | "show values +" is not useful after "show values". */ | |
c906108c SS |
2012 | if (from_tty && num_exp) |
2013 | { | |
2014 | num_exp[0] = '+'; | |
2015 | num_exp[1] = '\0'; | |
2016 | } | |
2017 | } | |
2018 | \f | |
52059ffd TT |
2019 | enum internalvar_kind |
2020 | { | |
2021 | /* The internal variable is empty. */ | |
2022 | INTERNALVAR_VOID, | |
2023 | ||
2024 | /* The value of the internal variable is provided directly as | |
2025 | a GDB value object. */ | |
2026 | INTERNALVAR_VALUE, | |
2027 | ||
2028 | /* A fresh value is computed via a call-back routine on every | |
2029 | access to the internal variable. */ | |
2030 | INTERNALVAR_MAKE_VALUE, | |
2031 | ||
2032 | /* The internal variable holds a GDB internal convenience function. */ | |
2033 | INTERNALVAR_FUNCTION, | |
2034 | ||
2035 | /* The variable holds an integer value. */ | |
2036 | INTERNALVAR_INTEGER, | |
2037 | ||
2038 | /* The variable holds a GDB-provided string. */ | |
2039 | INTERNALVAR_STRING, | |
2040 | }; | |
2041 | ||
2042 | union internalvar_data | |
2043 | { | |
2044 | /* A value object used with INTERNALVAR_VALUE. */ | |
2045 | struct value *value; | |
2046 | ||
2047 | /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */ | |
2048 | struct | |
2049 | { | |
2050 | /* The functions to call. */ | |
2051 | const struct internalvar_funcs *functions; | |
2052 | ||
2053 | /* The function's user-data. */ | |
2054 | void *data; | |
2055 | } make_value; | |
2056 | ||
2057 | /* The internal function used with INTERNALVAR_FUNCTION. */ | |
2058 | struct | |
2059 | { | |
2060 | struct internal_function *function; | |
2061 | /* True if this is the canonical name for the function. */ | |
2062 | int canonical; | |
2063 | } fn; | |
2064 | ||
2065 | /* An integer value used with INTERNALVAR_INTEGER. */ | |
2066 | struct | |
2067 | { | |
2068 | /* If type is non-NULL, it will be used as the type to generate | |
2069 | a value for this internal variable. If type is NULL, a default | |
2070 | integer type for the architecture is used. */ | |
2071 | struct type *type; | |
2072 | LONGEST val; | |
2073 | } integer; | |
2074 | ||
2075 | /* A string value used with INTERNALVAR_STRING. */ | |
2076 | char *string; | |
2077 | }; | |
2078 | ||
c906108c SS |
2079 | /* Internal variables. These are variables within the debugger |
2080 | that hold values assigned by debugger commands. | |
2081 | The user refers to them with a '$' prefix | |
2082 | that does not appear in the variable names stored internally. */ | |
2083 | ||
4fa62494 UW |
2084 | struct internalvar |
2085 | { | |
2086 | struct internalvar *next; | |
2087 | char *name; | |
4fa62494 | 2088 | |
78267919 UW |
2089 | /* We support various different kinds of content of an internal variable. |
2090 | enum internalvar_kind specifies the kind, and union internalvar_data | |
2091 | provides the data associated with this particular kind. */ | |
2092 | ||
52059ffd | 2093 | enum internalvar_kind kind; |
4fa62494 | 2094 | |
52059ffd | 2095 | union internalvar_data u; |
4fa62494 UW |
2096 | }; |
2097 | ||
c906108c SS |
2098 | static struct internalvar *internalvars; |
2099 | ||
3e43a32a MS |
2100 | /* If the variable does not already exist create it and give it the |
2101 | value given. If no value is given then the default is zero. */ | |
53e5f3cf AS |
2102 | static void |
2103 | init_if_undefined_command (char* args, int from_tty) | |
2104 | { | |
2105 | struct internalvar* intvar; | |
2106 | ||
2107 | /* Parse the expression - this is taken from set_command(). */ | |
4d01a485 | 2108 | expression_up expr = parse_expression (args); |
53e5f3cf AS |
2109 | |
2110 | /* Validate the expression. | |
2111 | Was the expression an assignment? | |
2112 | Or even an expression at all? */ | |
2113 | if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN) | |
2114 | error (_("Init-if-undefined requires an assignment expression.")); | |
2115 | ||
2116 | /* Extract the variable from the parsed expression. | |
2117 | In the case of an assign the lvalue will be in elts[1] and elts[2]. */ | |
2118 | if (expr->elts[1].opcode != OP_INTERNALVAR) | |
3e43a32a MS |
2119 | error (_("The first parameter to init-if-undefined " |
2120 | "should be a GDB variable.")); | |
53e5f3cf AS |
2121 | intvar = expr->elts[2].internalvar; |
2122 | ||
2123 | /* Only evaluate the expression if the lvalue is void. | |
2124 | This may still fail if the expresssion is invalid. */ | |
78267919 | 2125 | if (intvar->kind == INTERNALVAR_VOID) |
4d01a485 | 2126 | evaluate_expression (expr.get ()); |
53e5f3cf AS |
2127 | } |
2128 | ||
2129 | ||
c906108c SS |
2130 | /* Look up an internal variable with name NAME. NAME should not |
2131 | normally include a dollar sign. | |
2132 | ||
2133 | If the specified internal variable does not exist, | |
c4a3d09a | 2134 | the return value is NULL. */ |
c906108c SS |
2135 | |
2136 | struct internalvar * | |
bc3b79fd | 2137 | lookup_only_internalvar (const char *name) |
c906108c | 2138 | { |
52f0bd74 | 2139 | struct internalvar *var; |
c906108c SS |
2140 | |
2141 | for (var = internalvars; var; var = var->next) | |
5cb316ef | 2142 | if (strcmp (var->name, name) == 0) |
c906108c SS |
2143 | return var; |
2144 | ||
c4a3d09a MF |
2145 | return NULL; |
2146 | } | |
2147 | ||
eb3ff9a5 PA |
2148 | /* Complete NAME by comparing it to the names of internal |
2149 | variables. */ | |
d55637df | 2150 | |
eb3ff9a5 PA |
2151 | void |
2152 | complete_internalvar (completion_tracker &tracker, const char *name) | |
d55637df | 2153 | { |
d55637df TT |
2154 | struct internalvar *var; |
2155 | int len; | |
2156 | ||
2157 | len = strlen (name); | |
2158 | ||
2159 | for (var = internalvars; var; var = var->next) | |
2160 | if (strncmp (var->name, name, len) == 0) | |
2161 | { | |
eb3ff9a5 | 2162 | gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name)); |
d55637df | 2163 | |
eb3ff9a5 | 2164 | tracker.add_completion (std::move (copy)); |
d55637df | 2165 | } |
d55637df | 2166 | } |
c4a3d09a MF |
2167 | |
2168 | /* Create an internal variable with name NAME and with a void value. | |
2169 | NAME should not normally include a dollar sign. */ | |
2170 | ||
2171 | struct internalvar * | |
bc3b79fd | 2172 | create_internalvar (const char *name) |
c4a3d09a | 2173 | { |
8d749320 | 2174 | struct internalvar *var = XNEW (struct internalvar); |
a109c7c1 | 2175 | |
1754f103 | 2176 | var->name = concat (name, (char *)NULL); |
78267919 | 2177 | var->kind = INTERNALVAR_VOID; |
c906108c SS |
2178 | var->next = internalvars; |
2179 | internalvars = var; | |
2180 | return var; | |
2181 | } | |
2182 | ||
4aa995e1 PA |
2183 | /* Create an internal variable with name NAME and register FUN as the |
2184 | function that value_of_internalvar uses to create a value whenever | |
2185 | this variable is referenced. NAME should not normally include a | |
22d2b532 SDJ |
2186 | dollar sign. DATA is passed uninterpreted to FUN when it is |
2187 | called. CLEANUP, if not NULL, is called when the internal variable | |
2188 | is destroyed. It is passed DATA as its only argument. */ | |
4aa995e1 PA |
2189 | |
2190 | struct internalvar * | |
22d2b532 SDJ |
2191 | create_internalvar_type_lazy (const char *name, |
2192 | const struct internalvar_funcs *funcs, | |
2193 | void *data) | |
4aa995e1 | 2194 | { |
4fa62494 | 2195 | struct internalvar *var = create_internalvar (name); |
a109c7c1 | 2196 | |
78267919 | 2197 | var->kind = INTERNALVAR_MAKE_VALUE; |
22d2b532 SDJ |
2198 | var->u.make_value.functions = funcs; |
2199 | var->u.make_value.data = data; | |
4aa995e1 PA |
2200 | return var; |
2201 | } | |
c4a3d09a | 2202 | |
22d2b532 SDJ |
2203 | /* See documentation in value.h. */ |
2204 | ||
2205 | int | |
2206 | compile_internalvar_to_ax (struct internalvar *var, | |
2207 | struct agent_expr *expr, | |
2208 | struct axs_value *value) | |
2209 | { | |
2210 | if (var->kind != INTERNALVAR_MAKE_VALUE | |
2211 | || var->u.make_value.functions->compile_to_ax == NULL) | |
2212 | return 0; | |
2213 | ||
2214 | var->u.make_value.functions->compile_to_ax (var, expr, value, | |
2215 | var->u.make_value.data); | |
2216 | return 1; | |
2217 | } | |
2218 | ||
c4a3d09a MF |
2219 | /* Look up an internal variable with name NAME. NAME should not |
2220 | normally include a dollar sign. | |
2221 | ||
2222 | If the specified internal variable does not exist, | |
2223 | one is created, with a void value. */ | |
2224 | ||
2225 | struct internalvar * | |
bc3b79fd | 2226 | lookup_internalvar (const char *name) |
c4a3d09a MF |
2227 | { |
2228 | struct internalvar *var; | |
2229 | ||
2230 | var = lookup_only_internalvar (name); | |
2231 | if (var) | |
2232 | return var; | |
2233 | ||
2234 | return create_internalvar (name); | |
2235 | } | |
2236 | ||
78267919 UW |
2237 | /* Return current value of internal variable VAR. For variables that |
2238 | are not inherently typed, use a value type appropriate for GDBARCH. */ | |
2239 | ||
f23631e4 | 2240 | struct value * |
78267919 | 2241 | value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var) |
c906108c | 2242 | { |
f23631e4 | 2243 | struct value *val; |
0914bcdb SS |
2244 | struct trace_state_variable *tsv; |
2245 | ||
2246 | /* If there is a trace state variable of the same name, assume that | |
2247 | is what we really want to see. */ | |
2248 | tsv = find_trace_state_variable (var->name); | |
2249 | if (tsv) | |
2250 | { | |
2251 | tsv->value_known = target_get_trace_state_variable_value (tsv->number, | |
2252 | &(tsv->value)); | |
2253 | if (tsv->value_known) | |
2254 | val = value_from_longest (builtin_type (gdbarch)->builtin_int64, | |
2255 | tsv->value); | |
2256 | else | |
2257 | val = allocate_value (builtin_type (gdbarch)->builtin_void); | |
2258 | return val; | |
2259 | } | |
c906108c | 2260 | |
78267919 | 2261 | switch (var->kind) |
5f5233d4 | 2262 | { |
78267919 UW |
2263 | case INTERNALVAR_VOID: |
2264 | val = allocate_value (builtin_type (gdbarch)->builtin_void); | |
2265 | break; | |
4fa62494 | 2266 | |
78267919 UW |
2267 | case INTERNALVAR_FUNCTION: |
2268 | val = allocate_value (builtin_type (gdbarch)->internal_fn); | |
2269 | break; | |
4fa62494 | 2270 | |
cab0c772 UW |
2271 | case INTERNALVAR_INTEGER: |
2272 | if (!var->u.integer.type) | |
78267919 | 2273 | val = value_from_longest (builtin_type (gdbarch)->builtin_int, |
cab0c772 | 2274 | var->u.integer.val); |
78267919 | 2275 | else |
cab0c772 UW |
2276 | val = value_from_longest (var->u.integer.type, var->u.integer.val); |
2277 | break; | |
2278 | ||
78267919 UW |
2279 | case INTERNALVAR_STRING: |
2280 | val = value_cstring (var->u.string, strlen (var->u.string), | |
2281 | builtin_type (gdbarch)->builtin_char); | |
2282 | break; | |
4fa62494 | 2283 | |
78267919 UW |
2284 | case INTERNALVAR_VALUE: |
2285 | val = value_copy (var->u.value); | |
4aa995e1 PA |
2286 | if (value_lazy (val)) |
2287 | value_fetch_lazy (val); | |
78267919 | 2288 | break; |
4aa995e1 | 2289 | |
78267919 | 2290 | case INTERNALVAR_MAKE_VALUE: |
22d2b532 SDJ |
2291 | val = (*var->u.make_value.functions->make_value) (gdbarch, var, |
2292 | var->u.make_value.data); | |
78267919 UW |
2293 | break; |
2294 | ||
2295 | default: | |
9b20d036 | 2296 | internal_error (__FILE__, __LINE__, _("bad kind")); |
78267919 UW |
2297 | } |
2298 | ||
2299 | /* Change the VALUE_LVAL to lval_internalvar so that future operations | |
2300 | on this value go back to affect the original internal variable. | |
2301 | ||
2302 | Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have | |
2303 | no underlying modifyable state in the internal variable. | |
2304 | ||
2305 | Likewise, if the variable's value is a computed lvalue, we want | |
2306 | references to it to produce another computed lvalue, where | |
2307 | references and assignments actually operate through the | |
2308 | computed value's functions. | |
2309 | ||
2310 | This means that internal variables with computed values | |
2311 | behave a little differently from other internal variables: | |
2312 | assignments to them don't just replace the previous value | |
2313 | altogether. At the moment, this seems like the behavior we | |
2314 | want. */ | |
2315 | ||
2316 | if (var->kind != INTERNALVAR_MAKE_VALUE | |
2317 | && val->lval != lval_computed) | |
2318 | { | |
2319 | VALUE_LVAL (val) = lval_internalvar; | |
2320 | VALUE_INTERNALVAR (val) = var; | |
5f5233d4 | 2321 | } |
d3c139e9 | 2322 | |
4fa62494 UW |
2323 | return val; |
2324 | } | |
d3c139e9 | 2325 | |
4fa62494 UW |
2326 | int |
2327 | get_internalvar_integer (struct internalvar *var, LONGEST *result) | |
2328 | { | |
3158c6ed | 2329 | if (var->kind == INTERNALVAR_INTEGER) |
4fa62494 | 2330 | { |
cab0c772 UW |
2331 | *result = var->u.integer.val; |
2332 | return 1; | |
3158c6ed | 2333 | } |
d3c139e9 | 2334 | |
3158c6ed PA |
2335 | if (var->kind == INTERNALVAR_VALUE) |
2336 | { | |
2337 | struct type *type = check_typedef (value_type (var->u.value)); | |
2338 | ||
2339 | if (TYPE_CODE (type) == TYPE_CODE_INT) | |
2340 | { | |
2341 | *result = value_as_long (var->u.value); | |
2342 | return 1; | |
2343 | } | |
4fa62494 | 2344 | } |
3158c6ed PA |
2345 | |
2346 | return 0; | |
4fa62494 | 2347 | } |
d3c139e9 | 2348 | |
4fa62494 UW |
2349 | static int |
2350 | get_internalvar_function (struct internalvar *var, | |
2351 | struct internal_function **result) | |
2352 | { | |
78267919 | 2353 | switch (var->kind) |
d3c139e9 | 2354 | { |
78267919 UW |
2355 | case INTERNALVAR_FUNCTION: |
2356 | *result = var->u.fn.function; | |
4fa62494 | 2357 | return 1; |
d3c139e9 | 2358 | |
4fa62494 UW |
2359 | default: |
2360 | return 0; | |
2361 | } | |
c906108c SS |
2362 | } |
2363 | ||
2364 | void | |
6b850546 DT |
2365 | set_internalvar_component (struct internalvar *var, |
2366 | LONGEST offset, LONGEST bitpos, | |
2367 | LONGEST bitsize, struct value *newval) | |
c906108c | 2368 | { |
4fa62494 | 2369 | gdb_byte *addr; |
3ae385af SM |
2370 | struct gdbarch *arch; |
2371 | int unit_size; | |
c906108c | 2372 | |
78267919 | 2373 | switch (var->kind) |
4fa62494 | 2374 | { |
78267919 UW |
2375 | case INTERNALVAR_VALUE: |
2376 | addr = value_contents_writeable (var->u.value); | |
3ae385af SM |
2377 | arch = get_value_arch (var->u.value); |
2378 | unit_size = gdbarch_addressable_memory_unit_size (arch); | |
4fa62494 UW |
2379 | |
2380 | if (bitsize) | |
50810684 | 2381 | modify_field (value_type (var->u.value), addr + offset, |
4fa62494 UW |
2382 | value_as_long (newval), bitpos, bitsize); |
2383 | else | |
3ae385af | 2384 | memcpy (addr + offset * unit_size, value_contents (newval), |
4fa62494 UW |
2385 | TYPE_LENGTH (value_type (newval))); |
2386 | break; | |
78267919 UW |
2387 | |
2388 | default: | |
2389 | /* We can never get a component of any other kind. */ | |
9b20d036 | 2390 | internal_error (__FILE__, __LINE__, _("set_internalvar_component")); |
4fa62494 | 2391 | } |
c906108c SS |
2392 | } |
2393 | ||
2394 | void | |
f23631e4 | 2395 | set_internalvar (struct internalvar *var, struct value *val) |
c906108c | 2396 | { |
78267919 | 2397 | enum internalvar_kind new_kind; |
4fa62494 | 2398 | union internalvar_data new_data = { 0 }; |
c906108c | 2399 | |
78267919 | 2400 | if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical) |
bc3b79fd TJB |
2401 | error (_("Cannot overwrite convenience function %s"), var->name); |
2402 | ||
4fa62494 | 2403 | /* Prepare new contents. */ |
78267919 | 2404 | switch (TYPE_CODE (check_typedef (value_type (val)))) |
4fa62494 UW |
2405 | { |
2406 | case TYPE_CODE_VOID: | |
78267919 | 2407 | new_kind = INTERNALVAR_VOID; |
4fa62494 UW |
2408 | break; |
2409 | ||
2410 | case TYPE_CODE_INTERNAL_FUNCTION: | |
2411 | gdb_assert (VALUE_LVAL (val) == lval_internalvar); | |
78267919 UW |
2412 | new_kind = INTERNALVAR_FUNCTION; |
2413 | get_internalvar_function (VALUE_INTERNALVAR (val), | |
2414 | &new_data.fn.function); | |
2415 | /* Copies created here are never canonical. */ | |
4fa62494 UW |
2416 | break; |
2417 | ||
4fa62494 | 2418 | default: |
78267919 UW |
2419 | new_kind = INTERNALVAR_VALUE; |
2420 | new_data.value = value_copy (val); | |
2421 | new_data.value->modifiable = 1; | |
4fa62494 UW |
2422 | |
2423 | /* Force the value to be fetched from the target now, to avoid problems | |
2424 | later when this internalvar is referenced and the target is gone or | |
2425 | has changed. */ | |
78267919 UW |
2426 | if (value_lazy (new_data.value)) |
2427 | value_fetch_lazy (new_data.value); | |
4fa62494 UW |
2428 | |
2429 | /* Release the value from the value chain to prevent it from being | |
2430 | deleted by free_all_values. From here on this function should not | |
2431 | call error () until new_data is installed into the var->u to avoid | |
2432 | leaking memory. */ | |
78267919 | 2433 | release_value (new_data.value); |
9920b434 BH |
2434 | |
2435 | /* Internal variables which are created from values with a dynamic | |
2436 | location don't need the location property of the origin anymore. | |
2437 | The resolved dynamic location is used prior then any other address | |
2438 | when accessing the value. | |
2439 | If we keep it, we would still refer to the origin value. | |
2440 | Remove the location property in case it exist. */ | |
2441 | remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value)); | |
2442 | ||
4fa62494 UW |
2443 | break; |
2444 | } | |
2445 | ||
2446 | /* Clean up old contents. */ | |
2447 | clear_internalvar (var); | |
2448 | ||
2449 | /* Switch over. */ | |
78267919 | 2450 | var->kind = new_kind; |
4fa62494 | 2451 | var->u = new_data; |
c906108c SS |
2452 | /* End code which must not call error(). */ |
2453 | } | |
2454 | ||
4fa62494 UW |
2455 | void |
2456 | set_internalvar_integer (struct internalvar *var, LONGEST l) | |
2457 | { | |
2458 | /* Clean up old contents. */ | |
2459 | clear_internalvar (var); | |
2460 | ||
cab0c772 UW |
2461 | var->kind = INTERNALVAR_INTEGER; |
2462 | var->u.integer.type = NULL; | |
2463 | var->u.integer.val = l; | |
78267919 UW |
2464 | } |
2465 | ||
2466 | void | |
2467 | set_internalvar_string (struct internalvar *var, const char *string) | |
2468 | { | |
2469 | /* Clean up old contents. */ | |
2470 | clear_internalvar (var); | |
2471 | ||
2472 | var->kind = INTERNALVAR_STRING; | |
2473 | var->u.string = xstrdup (string); | |
4fa62494 UW |
2474 | } |
2475 | ||
2476 | static void | |
2477 | set_internalvar_function (struct internalvar *var, struct internal_function *f) | |
2478 | { | |
2479 | /* Clean up old contents. */ | |
2480 | clear_internalvar (var); | |
2481 | ||
78267919 UW |
2482 | var->kind = INTERNALVAR_FUNCTION; |
2483 | var->u.fn.function = f; | |
2484 | var->u.fn.canonical = 1; | |
2485 | /* Variables installed here are always the canonical version. */ | |
4fa62494 UW |
2486 | } |
2487 | ||
2488 | void | |
2489 | clear_internalvar (struct internalvar *var) | |
2490 | { | |
2491 | /* Clean up old contents. */ | |
78267919 | 2492 | switch (var->kind) |
4fa62494 | 2493 | { |
78267919 UW |
2494 | case INTERNALVAR_VALUE: |
2495 | value_free (var->u.value); | |
2496 | break; | |
2497 | ||
2498 | case INTERNALVAR_STRING: | |
2499 | xfree (var->u.string); | |
4fa62494 UW |
2500 | break; |
2501 | ||
22d2b532 SDJ |
2502 | case INTERNALVAR_MAKE_VALUE: |
2503 | if (var->u.make_value.functions->destroy != NULL) | |
2504 | var->u.make_value.functions->destroy (var->u.make_value.data); | |
2505 | break; | |
2506 | ||
4fa62494 | 2507 | default: |
4fa62494 UW |
2508 | break; |
2509 | } | |
2510 | ||
78267919 UW |
2511 | /* Reset to void kind. */ |
2512 | var->kind = INTERNALVAR_VOID; | |
4fa62494 UW |
2513 | } |
2514 | ||
c906108c | 2515 | char * |
4bf7b526 | 2516 | internalvar_name (const struct internalvar *var) |
c906108c SS |
2517 | { |
2518 | return var->name; | |
2519 | } | |
2520 | ||
4fa62494 UW |
2521 | static struct internal_function * |
2522 | create_internal_function (const char *name, | |
2523 | internal_function_fn handler, void *cookie) | |
bc3b79fd | 2524 | { |
bc3b79fd | 2525 | struct internal_function *ifn = XNEW (struct internal_function); |
a109c7c1 | 2526 | |
bc3b79fd TJB |
2527 | ifn->name = xstrdup (name); |
2528 | ifn->handler = handler; | |
2529 | ifn->cookie = cookie; | |
4fa62494 | 2530 | return ifn; |
bc3b79fd TJB |
2531 | } |
2532 | ||
2533 | char * | |
2534 | value_internal_function_name (struct value *val) | |
2535 | { | |
4fa62494 UW |
2536 | struct internal_function *ifn; |
2537 | int result; | |
2538 | ||
2539 | gdb_assert (VALUE_LVAL (val) == lval_internalvar); | |
2540 | result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn); | |
2541 | gdb_assert (result); | |
2542 | ||
bc3b79fd TJB |
2543 | return ifn->name; |
2544 | } | |
2545 | ||
2546 | struct value * | |
d452c4bc UW |
2547 | call_internal_function (struct gdbarch *gdbarch, |
2548 | const struct language_defn *language, | |
2549 | struct value *func, int argc, struct value **argv) | |
bc3b79fd | 2550 | { |
4fa62494 UW |
2551 | struct internal_function *ifn; |
2552 | int result; | |
2553 | ||
2554 | gdb_assert (VALUE_LVAL (func) == lval_internalvar); | |
2555 | result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn); | |
2556 | gdb_assert (result); | |
2557 | ||
d452c4bc | 2558 | return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv); |
bc3b79fd TJB |
2559 | } |
2560 | ||
2561 | /* The 'function' command. This does nothing -- it is just a | |
2562 | placeholder to let "help function NAME" work. This is also used as | |
2563 | the implementation of the sub-command that is created when | |
2564 | registering an internal function. */ | |
2565 | static void | |
2566 | function_command (char *command, int from_tty) | |
2567 | { | |
2568 | /* Do nothing. */ | |
2569 | } | |
2570 | ||
2571 | /* Clean up if an internal function's command is destroyed. */ | |
2572 | static void | |
2573 | function_destroyer (struct cmd_list_element *self, void *ignore) | |
2574 | { | |
6f937416 | 2575 | xfree ((char *) self->name); |
1947513d | 2576 | xfree ((char *) self->doc); |
bc3b79fd TJB |
2577 | } |
2578 | ||
2579 | /* Add a new internal function. NAME is the name of the function; DOC | |
2580 | is a documentation string describing the function. HANDLER is | |
2581 | called when the function is invoked. COOKIE is an arbitrary | |
2582 | pointer which is passed to HANDLER and is intended for "user | |
2583 | data". */ | |
2584 | void | |
2585 | add_internal_function (const char *name, const char *doc, | |
2586 | internal_function_fn handler, void *cookie) | |
2587 | { | |
2588 | struct cmd_list_element *cmd; | |
4fa62494 | 2589 | struct internal_function *ifn; |
bc3b79fd | 2590 | struct internalvar *var = lookup_internalvar (name); |
4fa62494 UW |
2591 | |
2592 | ifn = create_internal_function (name, handler, cookie); | |
2593 | set_internalvar_function (var, ifn); | |
bc3b79fd TJB |
2594 | |
2595 | cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc, | |
2596 | &functionlist); | |
2597 | cmd->destroyer = function_destroyer; | |
2598 | } | |
2599 | ||
ae5a43e0 DJ |
2600 | /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to |
2601 | prevent cycles / duplicates. */ | |
2602 | ||
4e7a5ef5 | 2603 | void |
ae5a43e0 DJ |
2604 | preserve_one_value (struct value *value, struct objfile *objfile, |
2605 | htab_t copied_types) | |
2606 | { | |
2607 | if (TYPE_OBJFILE (value->type) == objfile) | |
2608 | value->type = copy_type_recursive (objfile, value->type, copied_types); | |
2609 | ||
2610 | if (TYPE_OBJFILE (value->enclosing_type) == objfile) | |
2611 | value->enclosing_type = copy_type_recursive (objfile, | |
2612 | value->enclosing_type, | |
2613 | copied_types); | |
2614 | } | |
2615 | ||
78267919 UW |
2616 | /* Likewise for internal variable VAR. */ |
2617 | ||
2618 | static void | |
2619 | preserve_one_internalvar (struct internalvar *var, struct objfile *objfile, | |
2620 | htab_t copied_types) | |
2621 | { | |
2622 | switch (var->kind) | |
2623 | { | |
cab0c772 UW |
2624 | case INTERNALVAR_INTEGER: |
2625 | if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile) | |
2626 | var->u.integer.type | |
2627 | = copy_type_recursive (objfile, var->u.integer.type, copied_types); | |
2628 | break; | |
2629 | ||
78267919 UW |
2630 | case INTERNALVAR_VALUE: |
2631 | preserve_one_value (var->u.value, objfile, copied_types); | |
2632 | break; | |
2633 | } | |
2634 | } | |
2635 | ||
ae5a43e0 DJ |
2636 | /* Update the internal variables and value history when OBJFILE is |
2637 | discarded; we must copy the types out of the objfile. New global types | |
2638 | will be created for every convenience variable which currently points to | |
2639 | this objfile's types, and the convenience variables will be adjusted to | |
2640 | use the new global types. */ | |
c906108c SS |
2641 | |
2642 | void | |
ae5a43e0 | 2643 | preserve_values (struct objfile *objfile) |
c906108c | 2644 | { |
ae5a43e0 DJ |
2645 | htab_t copied_types; |
2646 | struct value_history_chunk *cur; | |
52f0bd74 | 2647 | struct internalvar *var; |
ae5a43e0 | 2648 | int i; |
c906108c | 2649 | |
ae5a43e0 DJ |
2650 | /* Create the hash table. We allocate on the objfile's obstack, since |
2651 | it is soon to be deleted. */ | |
2652 | copied_types = create_copied_types_hash (objfile); | |
2653 | ||
2654 | for (cur = value_history_chain; cur; cur = cur->next) | |
2655 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
2656 | if (cur->values[i]) | |
2657 | preserve_one_value (cur->values[i], objfile, copied_types); | |
2658 | ||
2659 | for (var = internalvars; var; var = var->next) | |
78267919 | 2660 | preserve_one_internalvar (var, objfile, copied_types); |
ae5a43e0 | 2661 | |
6dddc817 | 2662 | preserve_ext_lang_values (objfile, copied_types); |
a08702d6 | 2663 | |
ae5a43e0 | 2664 | htab_delete (copied_types); |
c906108c SS |
2665 | } |
2666 | ||
2667 | static void | |
fba45db2 | 2668 | show_convenience (char *ignore, int from_tty) |
c906108c | 2669 | { |
e17c207e | 2670 | struct gdbarch *gdbarch = get_current_arch (); |
52f0bd74 | 2671 | struct internalvar *var; |
c906108c | 2672 | int varseen = 0; |
79a45b7d | 2673 | struct value_print_options opts; |
c906108c | 2674 | |
79a45b7d | 2675 | get_user_print_options (&opts); |
c906108c SS |
2676 | for (var = internalvars; var; var = var->next) |
2677 | { | |
c709acd1 | 2678 | |
c906108c SS |
2679 | if (!varseen) |
2680 | { | |
2681 | varseen = 1; | |
2682 | } | |
a3f17187 | 2683 | printf_filtered (("$%s = "), var->name); |
c709acd1 | 2684 | |
492d29ea | 2685 | TRY |
c709acd1 PA |
2686 | { |
2687 | struct value *val; | |
2688 | ||
2689 | val = value_of_internalvar (gdbarch, var); | |
2690 | value_print (val, gdb_stdout, &opts); | |
2691 | } | |
492d29ea PA |
2692 | CATCH (ex, RETURN_MASK_ERROR) |
2693 | { | |
2694 | fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message); | |
2695 | } | |
2696 | END_CATCH | |
2697 | ||
a3f17187 | 2698 | printf_filtered (("\n")); |
c906108c SS |
2699 | } |
2700 | if (!varseen) | |
f47f77df DE |
2701 | { |
2702 | /* This text does not mention convenience functions on purpose. | |
2703 | The user can't create them except via Python, and if Python support | |
2704 | is installed this message will never be printed ($_streq will | |
2705 | exist). */ | |
2706 | printf_unfiltered (_("No debugger convenience variables now defined.\n" | |
2707 | "Convenience variables have " | |
2708 | "names starting with \"$\";\n" | |
2709 | "use \"set\" as in \"set " | |
2710 | "$foo = 5\" to define them.\n")); | |
2711 | } | |
c906108c SS |
2712 | } |
2713 | \f | |
e81e7f5e SC |
2714 | /* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */ |
2715 | ||
2716 | struct value * | |
2717 | value_of_xmethod (struct xmethod_worker *worker) | |
2718 | { | |
2719 | if (worker->value == NULL) | |
2720 | { | |
2721 | struct value *v; | |
2722 | ||
2723 | v = allocate_value (builtin_type (target_gdbarch ())->xmethod); | |
2724 | v->lval = lval_xcallable; | |
2725 | v->location.xm_worker = worker; | |
2726 | v->modifiable = 0; | |
2727 | worker->value = v; | |
2728 | } | |
2729 | ||
2730 | return worker->value; | |
2731 | } | |
2732 | ||
2ce1cdbf DE |
2733 | /* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */ |
2734 | ||
2735 | struct type * | |
2736 | result_type_of_xmethod (struct value *method, int argc, struct value **argv) | |
2737 | { | |
2738 | gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD | |
2739 | && method->lval == lval_xcallable && argc > 0); | |
2740 | ||
2741 | return get_xmethod_result_type (method->location.xm_worker, | |
2742 | argv[0], argv + 1, argc - 1); | |
2743 | } | |
2744 | ||
e81e7f5e SC |
2745 | /* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */ |
2746 | ||
2747 | struct value * | |
2748 | call_xmethod (struct value *method, int argc, struct value **argv) | |
2749 | { | |
2750 | gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD | |
2751 | && method->lval == lval_xcallable && argc > 0); | |
2752 | ||
2753 | return invoke_xmethod (method->location.xm_worker, | |
2754 | argv[0], argv + 1, argc - 1); | |
2755 | } | |
2756 | \f | |
c906108c SS |
2757 | /* Extract a value as a C number (either long or double). |
2758 | Knows how to convert fixed values to double, or | |
2759 | floating values to long. | |
2760 | Does not deallocate the value. */ | |
2761 | ||
2762 | LONGEST | |
f23631e4 | 2763 | value_as_long (struct value *val) |
c906108c SS |
2764 | { |
2765 | /* This coerces arrays and functions, which is necessary (e.g. | |
2766 | in disassemble_command). It also dereferences references, which | |
2767 | I suspect is the most logical thing to do. */ | |
994b9211 | 2768 | val = coerce_array (val); |
0fd88904 | 2769 | return unpack_long (value_type (val), value_contents (val)); |
c906108c SS |
2770 | } |
2771 | ||
2772 | DOUBLEST | |
f23631e4 | 2773 | value_as_double (struct value *val) |
c906108c SS |
2774 | { |
2775 | DOUBLEST foo; | |
2776 | int inv; | |
c5aa993b | 2777 | |
0fd88904 | 2778 | foo = unpack_double (value_type (val), value_contents (val), &inv); |
c906108c | 2779 | if (inv) |
8a3fe4f8 | 2780 | error (_("Invalid floating value found in program.")); |
c906108c SS |
2781 | return foo; |
2782 | } | |
4ef30785 | 2783 | |
581e13c1 | 2784 | /* Extract a value as a C pointer. Does not deallocate the value. |
4478b372 JB |
2785 | Note that val's type may not actually be a pointer; value_as_long |
2786 | handles all the cases. */ | |
c906108c | 2787 | CORE_ADDR |
f23631e4 | 2788 | value_as_address (struct value *val) |
c906108c | 2789 | { |
50810684 UW |
2790 | struct gdbarch *gdbarch = get_type_arch (value_type (val)); |
2791 | ||
c906108c SS |
2792 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
2793 | whether we want this to be true eventually. */ | |
2794 | #if 0 | |
bf6ae464 | 2795 | /* gdbarch_addr_bits_remove is wrong if we are being called for a |
c906108c SS |
2796 | non-address (e.g. argument to "signal", "info break", etc.), or |
2797 | for pointers to char, in which the low bits *are* significant. */ | |
50810684 | 2798 | return gdbarch_addr_bits_remove (gdbarch, value_as_long (val)); |
c906108c | 2799 | #else |
f312f057 JB |
2800 | |
2801 | /* There are several targets (IA-64, PowerPC, and others) which | |
2802 | don't represent pointers to functions as simply the address of | |
2803 | the function's entry point. For example, on the IA-64, a | |
2804 | function pointer points to a two-word descriptor, generated by | |
2805 | the linker, which contains the function's entry point, and the | |
2806 | value the IA-64 "global pointer" register should have --- to | |
2807 | support position-independent code. The linker generates | |
2808 | descriptors only for those functions whose addresses are taken. | |
2809 | ||
2810 | On such targets, it's difficult for GDB to convert an arbitrary | |
2811 | function address into a function pointer; it has to either find | |
2812 | an existing descriptor for that function, or call malloc and | |
2813 | build its own. On some targets, it is impossible for GDB to | |
2814 | build a descriptor at all: the descriptor must contain a jump | |
2815 | instruction; data memory cannot be executed; and code memory | |
2816 | cannot be modified. | |
2817 | ||
2818 | Upon entry to this function, if VAL is a value of type `function' | |
2819 | (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then | |
42ae5230 | 2820 | value_address (val) is the address of the function. This is what |
f312f057 JB |
2821 | you'll get if you evaluate an expression like `main'. The call |
2822 | to COERCE_ARRAY below actually does all the usual unary | |
2823 | conversions, which includes converting values of type `function' | |
2824 | to `pointer to function'. This is the challenging conversion | |
2825 | discussed above. Then, `unpack_long' will convert that pointer | |
2826 | back into an address. | |
2827 | ||
2828 | So, suppose the user types `disassemble foo' on an architecture | |
2829 | with a strange function pointer representation, on which GDB | |
2830 | cannot build its own descriptors, and suppose further that `foo' | |
2831 | has no linker-built descriptor. The address->pointer conversion | |
2832 | will signal an error and prevent the command from running, even | |
2833 | though the next step would have been to convert the pointer | |
2834 | directly back into the same address. | |
2835 | ||
2836 | The following shortcut avoids this whole mess. If VAL is a | |
2837 | function, just return its address directly. */ | |
df407dfe AC |
2838 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC |
2839 | || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD) | |
42ae5230 | 2840 | return value_address (val); |
f312f057 | 2841 | |
994b9211 | 2842 | val = coerce_array (val); |
fc0c74b1 AC |
2843 | |
2844 | /* Some architectures (e.g. Harvard), map instruction and data | |
2845 | addresses onto a single large unified address space. For | |
2846 | instance: An architecture may consider a large integer in the | |
2847 | range 0x10000000 .. 0x1000ffff to already represent a data | |
2848 | addresses (hence not need a pointer to address conversion) while | |
2849 | a small integer would still need to be converted integer to | |
2850 | pointer to address. Just assume such architectures handle all | |
2851 | integer conversions in a single function. */ | |
2852 | ||
2853 | /* JimB writes: | |
2854 | ||
2855 | I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we | |
2856 | must admonish GDB hackers to make sure its behavior matches the | |
2857 | compiler's, whenever possible. | |
2858 | ||
2859 | In general, I think GDB should evaluate expressions the same way | |
2860 | the compiler does. When the user copies an expression out of | |
2861 | their source code and hands it to a `print' command, they should | |
2862 | get the same value the compiler would have computed. Any | |
2863 | deviation from this rule can cause major confusion and annoyance, | |
2864 | and needs to be justified carefully. In other words, GDB doesn't | |
2865 | really have the freedom to do these conversions in clever and | |
2866 | useful ways. | |
2867 | ||
2868 | AndrewC pointed out that users aren't complaining about how GDB | |
2869 | casts integers to pointers; they are complaining that they can't | |
2870 | take an address from a disassembly listing and give it to `x/i'. | |
2871 | This is certainly important. | |
2872 | ||
79dd2d24 | 2873 | Adding an architecture method like integer_to_address() certainly |
fc0c74b1 AC |
2874 | makes it possible for GDB to "get it right" in all circumstances |
2875 | --- the target has complete control over how things get done, so | |
2876 | people can Do The Right Thing for their target without breaking | |
2877 | anyone else. The standard doesn't specify how integers get | |
2878 | converted to pointers; usually, the ABI doesn't either, but | |
2879 | ABI-specific code is a more reasonable place to handle it. */ | |
2880 | ||
df407dfe | 2881 | if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR |
aa006118 | 2882 | && !TYPE_IS_REFERENCE (value_type (val)) |
50810684 UW |
2883 | && gdbarch_integer_to_address_p (gdbarch)) |
2884 | return gdbarch_integer_to_address (gdbarch, value_type (val), | |
0fd88904 | 2885 | value_contents (val)); |
fc0c74b1 | 2886 | |
0fd88904 | 2887 | return unpack_long (value_type (val), value_contents (val)); |
c906108c SS |
2888 | #endif |
2889 | } | |
2890 | \f | |
2891 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
2892 | as a long, or as a double, assuming the raw data is described | |
2893 | by type TYPE. Knows how to convert different sizes of values | |
2894 | and can convert between fixed and floating point. We don't assume | |
2895 | any alignment for the raw data. Return value is in host byte order. | |
2896 | ||
2897 | If you want functions and arrays to be coerced to pointers, and | |
2898 | references to be dereferenced, call value_as_long() instead. | |
2899 | ||
2900 | C++: It is assumed that the front-end has taken care of | |
2901 | all matters concerning pointers to members. A pointer | |
2902 | to member which reaches here is considered to be equivalent | |
2903 | to an INT (or some size). After all, it is only an offset. */ | |
2904 | ||
2905 | LONGEST | |
fc1a4b47 | 2906 | unpack_long (struct type *type, const gdb_byte *valaddr) |
c906108c | 2907 | { |
e17a4113 | 2908 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
52f0bd74 AC |
2909 | enum type_code code = TYPE_CODE (type); |
2910 | int len = TYPE_LENGTH (type); | |
2911 | int nosign = TYPE_UNSIGNED (type); | |
c906108c | 2912 | |
c906108c SS |
2913 | switch (code) |
2914 | { | |
2915 | case TYPE_CODE_TYPEDEF: | |
2916 | return unpack_long (check_typedef (type), valaddr); | |
2917 | case TYPE_CODE_ENUM: | |
4f2aea11 | 2918 | case TYPE_CODE_FLAGS: |
c906108c SS |
2919 | case TYPE_CODE_BOOL: |
2920 | case TYPE_CODE_INT: | |
2921 | case TYPE_CODE_CHAR: | |
2922 | case TYPE_CODE_RANGE: | |
0d5de010 | 2923 | case TYPE_CODE_MEMBERPTR: |
c906108c | 2924 | if (nosign) |
e17a4113 | 2925 | return extract_unsigned_integer (valaddr, len, byte_order); |
c906108c | 2926 | else |
e17a4113 | 2927 | return extract_signed_integer (valaddr, len, byte_order); |
c906108c SS |
2928 | |
2929 | case TYPE_CODE_FLT: | |
aebf07fc | 2930 | return (LONGEST) extract_typed_floating (valaddr, type); |
c906108c | 2931 | |
4ef30785 TJB |
2932 | case TYPE_CODE_DECFLOAT: |
2933 | /* libdecnumber has a function to convert from decimal to integer, but | |
2934 | it doesn't work when the decimal number has a fractional part. */ | |
aebf07fc | 2935 | return (LONGEST) decimal_to_doublest (valaddr, len, byte_order); |
4ef30785 | 2936 | |
c906108c SS |
2937 | case TYPE_CODE_PTR: |
2938 | case TYPE_CODE_REF: | |
aa006118 | 2939 | case TYPE_CODE_RVALUE_REF: |
c906108c | 2940 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure |
c5aa993b | 2941 | whether we want this to be true eventually. */ |
4478b372 | 2942 | return extract_typed_address (valaddr, type); |
c906108c | 2943 | |
c906108c | 2944 | default: |
8a3fe4f8 | 2945 | error (_("Value can't be converted to integer.")); |
c906108c | 2946 | } |
c5aa993b | 2947 | return 0; /* Placate lint. */ |
c906108c SS |
2948 | } |
2949 | ||
2950 | /* Return a double value from the specified type and address. | |
2951 | INVP points to an int which is set to 0 for valid value, | |
2952 | 1 for invalid value (bad float format). In either case, | |
2953 | the returned double is OK to use. Argument is in target | |
2954 | format, result is in host format. */ | |
2955 | ||
2956 | DOUBLEST | |
fc1a4b47 | 2957 | unpack_double (struct type *type, const gdb_byte *valaddr, int *invp) |
c906108c | 2958 | { |
e17a4113 | 2959 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
c906108c SS |
2960 | enum type_code code; |
2961 | int len; | |
2962 | int nosign; | |
2963 | ||
581e13c1 | 2964 | *invp = 0; /* Assume valid. */ |
f168693b | 2965 | type = check_typedef (type); |
c906108c SS |
2966 | code = TYPE_CODE (type); |
2967 | len = TYPE_LENGTH (type); | |
2968 | nosign = TYPE_UNSIGNED (type); | |
2969 | if (code == TYPE_CODE_FLT) | |
2970 | { | |
75bc7ddf AC |
2971 | /* NOTE: cagney/2002-02-19: There was a test here to see if the |
2972 | floating-point value was valid (using the macro | |
2973 | INVALID_FLOAT). That test/macro have been removed. | |
2974 | ||
2975 | It turns out that only the VAX defined this macro and then | |
2976 | only in a non-portable way. Fixing the portability problem | |
2977 | wouldn't help since the VAX floating-point code is also badly | |
2978 | bit-rotten. The target needs to add definitions for the | |
ea06eb3d | 2979 | methods gdbarch_float_format and gdbarch_double_format - these |
75bc7ddf AC |
2980 | exactly describe the target floating-point format. The |
2981 | problem here is that the corresponding floatformat_vax_f and | |
2982 | floatformat_vax_d values these methods should be set to are | |
2983 | also not defined either. Oops! | |
2984 | ||
2985 | Hopefully someone will add both the missing floatformat | |
ac79b88b DJ |
2986 | definitions and the new cases for floatformat_is_valid (). */ |
2987 | ||
2988 | if (!floatformat_is_valid (floatformat_from_type (type), valaddr)) | |
2989 | { | |
2990 | *invp = 1; | |
2991 | return 0.0; | |
2992 | } | |
2993 | ||
96d2f608 | 2994 | return extract_typed_floating (valaddr, type); |
c906108c | 2995 | } |
4ef30785 | 2996 | else if (code == TYPE_CODE_DECFLOAT) |
e17a4113 | 2997 | return decimal_to_doublest (valaddr, len, byte_order); |
c906108c SS |
2998 | else if (nosign) |
2999 | { | |
3000 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
c906108c | 3001 | return (ULONGEST) unpack_long (type, valaddr); |
c906108c SS |
3002 | } |
3003 | else | |
3004 | { | |
3005 | /* Signed -- we are OK with unpack_long. */ | |
3006 | return unpack_long (type, valaddr); | |
3007 | } | |
3008 | } | |
3009 | ||
3010 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
3011 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
3012 | We don't assume any alignment for the raw data. Return value is in | |
3013 | host byte order. | |
3014 | ||
3015 | If you want functions and arrays to be coerced to pointers, and | |
1aa20aa8 | 3016 | references to be dereferenced, call value_as_address() instead. |
c906108c SS |
3017 | |
3018 | C++: It is assumed that the front-end has taken care of | |
3019 | all matters concerning pointers to members. A pointer | |
3020 | to member which reaches here is considered to be equivalent | |
3021 | to an INT (or some size). After all, it is only an offset. */ | |
3022 | ||
3023 | CORE_ADDR | |
fc1a4b47 | 3024 | unpack_pointer (struct type *type, const gdb_byte *valaddr) |
c906108c SS |
3025 | { |
3026 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
3027 | whether we want this to be true eventually. */ | |
3028 | return unpack_long (type, valaddr); | |
3029 | } | |
4478b372 | 3030 | |
c906108c | 3031 | \f |
1596cb5d | 3032 | /* Get the value of the FIELDNO'th field (which must be static) of |
686d4def | 3033 | TYPE. */ |
c906108c | 3034 | |
f23631e4 | 3035 | struct value * |
fba45db2 | 3036 | value_static_field (struct type *type, int fieldno) |
c906108c | 3037 | { |
948e66d9 DJ |
3038 | struct value *retval; |
3039 | ||
1596cb5d | 3040 | switch (TYPE_FIELD_LOC_KIND (type, fieldno)) |
c906108c | 3041 | { |
1596cb5d | 3042 | case FIELD_LOC_KIND_PHYSADDR: |
52e9fde8 SS |
3043 | retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno), |
3044 | TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); | |
1596cb5d DE |
3045 | break; |
3046 | case FIELD_LOC_KIND_PHYSNAME: | |
c906108c | 3047 | { |
ff355380 | 3048 | const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); |
581e13c1 | 3049 | /* TYPE_FIELD_NAME (type, fieldno); */ |
d12307c1 | 3050 | struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0); |
94af9270 | 3051 | |
d12307c1 | 3052 | if (sym.symbol == NULL) |
c906108c | 3053 | { |
a109c7c1 | 3054 | /* With some compilers, e.g. HP aCC, static data members are |
581e13c1 | 3055 | reported as non-debuggable symbols. */ |
3b7344d5 TT |
3056 | struct bound_minimal_symbol msym |
3057 | = lookup_minimal_symbol (phys_name, NULL, NULL); | |
a109c7c1 | 3058 | |
3b7344d5 | 3059 | if (!msym.minsym) |
686d4def | 3060 | return allocate_optimized_out_value (type); |
c906108c | 3061 | else |
c5aa993b | 3062 | { |
52e9fde8 | 3063 | retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno), |
77e371c0 | 3064 | BMSYMBOL_VALUE_ADDRESS (msym)); |
c906108c SS |
3065 | } |
3066 | } | |
3067 | else | |
d12307c1 | 3068 | retval = value_of_variable (sym.symbol, sym.block); |
1596cb5d | 3069 | break; |
c906108c | 3070 | } |
1596cb5d | 3071 | default: |
f3574227 | 3072 | gdb_assert_not_reached ("unexpected field location kind"); |
1596cb5d DE |
3073 | } |
3074 | ||
948e66d9 | 3075 | return retval; |
c906108c SS |
3076 | } |
3077 | ||
4dfea560 DE |
3078 | /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE. |
3079 | You have to be careful here, since the size of the data area for the value | |
3080 | is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger | |
3081 | than the old enclosing type, you have to allocate more space for the | |
3082 | data. */ | |
2b127877 | 3083 | |
4dfea560 DE |
3084 | void |
3085 | set_value_enclosing_type (struct value *val, struct type *new_encl_type) | |
2b127877 | 3086 | { |
5fdf6324 AB |
3087 | if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val))) |
3088 | { | |
3089 | check_type_length_before_alloc (new_encl_type); | |
3090 | val->contents | |
3091 | = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type)); | |
3092 | } | |
3e3d7139 JG |
3093 | |
3094 | val->enclosing_type = new_encl_type; | |
2b127877 DB |
3095 | } |
3096 | ||
c906108c SS |
3097 | /* Given a value ARG1 (offset by OFFSET bytes) |
3098 | of a struct or union type ARG_TYPE, | |
3099 | extract and return the value of one of its (non-static) fields. | |
581e13c1 | 3100 | FIELDNO says which field. */ |
c906108c | 3101 | |
f23631e4 | 3102 | struct value * |
6b850546 | 3103 | value_primitive_field (struct value *arg1, LONGEST offset, |
aa1ee363 | 3104 | int fieldno, struct type *arg_type) |
c906108c | 3105 | { |
f23631e4 | 3106 | struct value *v; |
52f0bd74 | 3107 | struct type *type; |
3ae385af SM |
3108 | struct gdbarch *arch = get_value_arch (arg1); |
3109 | int unit_size = gdbarch_addressable_memory_unit_size (arch); | |
c906108c | 3110 | |
f168693b | 3111 | arg_type = check_typedef (arg_type); |
c906108c | 3112 | type = TYPE_FIELD_TYPE (arg_type, fieldno); |
c54eabfa JK |
3113 | |
3114 | /* Call check_typedef on our type to make sure that, if TYPE | |
3115 | is a TYPE_CODE_TYPEDEF, its length is set to the length | |
3116 | of the target type instead of zero. However, we do not | |
3117 | replace the typedef type by the target type, because we want | |
3118 | to keep the typedef in order to be able to print the type | |
3119 | description correctly. */ | |
3120 | check_typedef (type); | |
c906108c | 3121 | |
691a26f5 | 3122 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) |
c906108c | 3123 | { |
22c05d8a JK |
3124 | /* Handle packed fields. |
3125 | ||
3126 | Create a new value for the bitfield, with bitpos and bitsize | |
4ea48cc1 DJ |
3127 | set. If possible, arrange offset and bitpos so that we can |
3128 | do a single aligned read of the size of the containing type. | |
3129 | Otherwise, adjust offset to the byte containing the first | |
3130 | bit. Assume that the address, offset, and embedded offset | |
3131 | are sufficiently aligned. */ | |
22c05d8a | 3132 | |
6b850546 DT |
3133 | LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno); |
3134 | LONGEST container_bitsize = TYPE_LENGTH (type) * 8; | |
4ea48cc1 | 3135 | |
9a0dc9e3 PA |
3136 | v = allocate_value_lazy (type); |
3137 | v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
3138 | if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize | |
3139 | && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)) | |
3140 | v->bitpos = bitpos % container_bitsize; | |
4ea48cc1 | 3141 | else |
9a0dc9e3 PA |
3142 | v->bitpos = bitpos % 8; |
3143 | v->offset = (value_embedded_offset (arg1) | |
3144 | + offset | |
3145 | + (bitpos - v->bitpos) / 8); | |
3146 | set_value_parent (v, arg1); | |
3147 | if (!value_lazy (arg1)) | |
3148 | value_fetch_lazy (v); | |
c906108c SS |
3149 | } |
3150 | else if (fieldno < TYPE_N_BASECLASSES (arg_type)) | |
3151 | { | |
3152 | /* This field is actually a base subobject, so preserve the | |
39d37385 PA |
3153 | entire object's contents for later references to virtual |
3154 | bases, etc. */ | |
6b850546 | 3155 | LONGEST boffset; |
a4e2ee12 DJ |
3156 | |
3157 | /* Lazy register values with offsets are not supported. */ | |
3158 | if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) | |
3159 | value_fetch_lazy (arg1); | |
3160 | ||
9a0dc9e3 PA |
3161 | /* We special case virtual inheritance here because this |
3162 | requires access to the contents, which we would rather avoid | |
3163 | for references to ordinary fields of unavailable values. */ | |
3164 | if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno)) | |
3165 | boffset = baseclass_offset (arg_type, fieldno, | |
3166 | value_contents (arg1), | |
3167 | value_embedded_offset (arg1), | |
3168 | value_address (arg1), | |
3169 | arg1); | |
c906108c | 3170 | else |
9a0dc9e3 | 3171 | boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; |
691a26f5 | 3172 | |
9a0dc9e3 PA |
3173 | if (value_lazy (arg1)) |
3174 | v = allocate_value_lazy (value_enclosing_type (arg1)); | |
3175 | else | |
3176 | { | |
3177 | v = allocate_value (value_enclosing_type (arg1)); | |
3178 | value_contents_copy_raw (v, 0, arg1, 0, | |
3179 | TYPE_LENGTH (value_enclosing_type (arg1))); | |
3e3d7139 | 3180 | } |
9a0dc9e3 PA |
3181 | v->type = type; |
3182 | v->offset = value_offset (arg1); | |
3183 | v->embedded_offset = offset + value_embedded_offset (arg1) + boffset; | |
c906108c | 3184 | } |
9920b434 BH |
3185 | else if (NULL != TYPE_DATA_LOCATION (type)) |
3186 | { | |
3187 | /* Field is a dynamic data member. */ | |
3188 | ||
3189 | gdb_assert (0 == offset); | |
3190 | /* We expect an already resolved data location. */ | |
3191 | gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type)); | |
3192 | /* For dynamic data types defer memory allocation | |
3193 | until we actual access the value. */ | |
3194 | v = allocate_value_lazy (type); | |
3195 | } | |
c906108c SS |
3196 | else |
3197 | { | |
3198 | /* Plain old data member */ | |
3ae385af SM |
3199 | offset += (TYPE_FIELD_BITPOS (arg_type, fieldno) |
3200 | / (HOST_CHAR_BIT * unit_size)); | |
a4e2ee12 DJ |
3201 | |
3202 | /* Lazy register values with offsets are not supported. */ | |
3203 | if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) | |
3204 | value_fetch_lazy (arg1); | |
3205 | ||
9a0dc9e3 | 3206 | if (value_lazy (arg1)) |
3e3d7139 | 3207 | v = allocate_value_lazy (type); |
c906108c | 3208 | else |
3e3d7139 JG |
3209 | { |
3210 | v = allocate_value (type); | |
39d37385 PA |
3211 | value_contents_copy_raw (v, value_embedded_offset (v), |
3212 | arg1, value_embedded_offset (arg1) + offset, | |
3ae385af | 3213 | type_length_units (type)); |
3e3d7139 | 3214 | } |
df407dfe | 3215 | v->offset = (value_offset (arg1) + offset |
13c3b5f5 | 3216 | + value_embedded_offset (arg1)); |
c906108c | 3217 | } |
74bcbdf3 | 3218 | set_value_component_location (v, arg1); |
c906108c SS |
3219 | return v; |
3220 | } | |
3221 | ||
3222 | /* Given a value ARG1 of a struct or union type, | |
3223 | extract and return the value of one of its (non-static) fields. | |
581e13c1 | 3224 | FIELDNO says which field. */ |
c906108c | 3225 | |
f23631e4 | 3226 | struct value * |
aa1ee363 | 3227 | value_field (struct value *arg1, int fieldno) |
c906108c | 3228 | { |
df407dfe | 3229 | return value_primitive_field (arg1, 0, fieldno, value_type (arg1)); |
c906108c SS |
3230 | } |
3231 | ||
3232 | /* Return a non-virtual function as a value. | |
3233 | F is the list of member functions which contains the desired method. | |
0478d61c FF |
3234 | J is an index into F which provides the desired method. |
3235 | ||
3236 | We only use the symbol for its address, so be happy with either a | |
581e13c1 | 3237 | full symbol or a minimal symbol. */ |
c906108c | 3238 | |
f23631e4 | 3239 | struct value * |
3e43a32a MS |
3240 | value_fn_field (struct value **arg1p, struct fn_field *f, |
3241 | int j, struct type *type, | |
6b850546 | 3242 | LONGEST offset) |
c906108c | 3243 | { |
f23631e4 | 3244 | struct value *v; |
52f0bd74 | 3245 | struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
1d06ead6 | 3246 | const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); |
c906108c | 3247 | struct symbol *sym; |
7c7b6655 | 3248 | struct bound_minimal_symbol msym; |
c906108c | 3249 | |
d12307c1 | 3250 | sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol; |
5ae326fa | 3251 | if (sym != NULL) |
0478d61c | 3252 | { |
7c7b6655 | 3253 | memset (&msym, 0, sizeof (msym)); |
5ae326fa AC |
3254 | } |
3255 | else | |
3256 | { | |
3257 | gdb_assert (sym == NULL); | |
7c7b6655 TT |
3258 | msym = lookup_bound_minimal_symbol (physname); |
3259 | if (msym.minsym == NULL) | |
5ae326fa | 3260 | return NULL; |
0478d61c FF |
3261 | } |
3262 | ||
c906108c | 3263 | v = allocate_value (ftype); |
1a088441 | 3264 | VALUE_LVAL (v) = lval_memory; |
0478d61c FF |
3265 | if (sym) |
3266 | { | |
42ae5230 | 3267 | set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym))); |
0478d61c FF |
3268 | } |
3269 | else | |
3270 | { | |
bccdca4a UW |
3271 | /* The minimal symbol might point to a function descriptor; |
3272 | resolve it to the actual code address instead. */ | |
7c7b6655 | 3273 | struct objfile *objfile = msym.objfile; |
bccdca4a UW |
3274 | struct gdbarch *gdbarch = get_objfile_arch (objfile); |
3275 | ||
42ae5230 TT |
3276 | set_value_address (v, |
3277 | gdbarch_convert_from_func_ptr_addr | |
77e371c0 | 3278 | (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), ¤t_target)); |
0478d61c | 3279 | } |
c906108c SS |
3280 | |
3281 | if (arg1p) | |
c5aa993b | 3282 | { |
df407dfe | 3283 | if (type != value_type (*arg1p)) |
c5aa993b JM |
3284 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), |
3285 | value_addr (*arg1p))); | |
3286 | ||
070ad9f0 | 3287 | /* Move the `this' pointer according to the offset. |
581e13c1 | 3288 | VALUE_OFFSET (*arg1p) += offset; */ |
c906108c SS |
3289 | } |
3290 | ||
3291 | return v; | |
3292 | } | |
3293 | ||
c906108c | 3294 | \f |
c906108c | 3295 | |
4875ffdb PA |
3296 | /* Unpack a bitfield of the specified FIELD_TYPE, from the object at |
3297 | VALADDR, and store the result in *RESULT. | |
3298 | The bitfield starts at BITPOS bits and contains BITSIZE bits. | |
c906108c | 3299 | |
4875ffdb PA |
3300 | Extracting bits depends on endianness of the machine. Compute the |
3301 | number of least significant bits to discard. For big endian machines, | |
3302 | we compute the total number of bits in the anonymous object, subtract | |
3303 | off the bit count from the MSB of the object to the MSB of the | |
3304 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
3305 | count. For little endian machines, the discard count is simply the | |
3306 | number of bits from the LSB of the anonymous object to the LSB of the | |
3307 | bitfield. | |
3308 | ||
3309 | If the field is signed, we also do sign extension. */ | |
3310 | ||
3311 | static LONGEST | |
3312 | unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr, | |
6b850546 | 3313 | LONGEST bitpos, LONGEST bitsize) |
c906108c | 3314 | { |
4ea48cc1 | 3315 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type)); |
c906108c SS |
3316 | ULONGEST val; |
3317 | ULONGEST valmask; | |
c906108c | 3318 | int lsbcount; |
6b850546 DT |
3319 | LONGEST bytes_read; |
3320 | LONGEST read_offset; | |
c906108c | 3321 | |
4a76eae5 DJ |
3322 | /* Read the minimum number of bytes required; there may not be |
3323 | enough bytes to read an entire ULONGEST. */ | |
f168693b | 3324 | field_type = check_typedef (field_type); |
4a76eae5 DJ |
3325 | if (bitsize) |
3326 | bytes_read = ((bitpos % 8) + bitsize + 7) / 8; | |
3327 | else | |
3328 | bytes_read = TYPE_LENGTH (field_type); | |
3329 | ||
5467c6c8 PA |
3330 | read_offset = bitpos / 8; |
3331 | ||
4875ffdb | 3332 | val = extract_unsigned_integer (valaddr + read_offset, |
4a76eae5 | 3333 | bytes_read, byte_order); |
c906108c | 3334 | |
581e13c1 | 3335 | /* Extract bits. See comment above. */ |
c906108c | 3336 | |
4ea48cc1 | 3337 | if (gdbarch_bits_big_endian (get_type_arch (field_type))) |
4a76eae5 | 3338 | lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize); |
c906108c SS |
3339 | else |
3340 | lsbcount = (bitpos % 8); | |
3341 | val >>= lsbcount; | |
3342 | ||
3343 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
581e13c1 | 3344 | If the field is signed, and is negative, then sign extend. */ |
c906108c SS |
3345 | |
3346 | if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) | |
3347 | { | |
3348 | valmask = (((ULONGEST) 1) << bitsize) - 1; | |
3349 | val &= valmask; | |
3350 | if (!TYPE_UNSIGNED (field_type)) | |
3351 | { | |
3352 | if (val & (valmask ^ (valmask >> 1))) | |
3353 | { | |
3354 | val |= ~valmask; | |
3355 | } | |
3356 | } | |
3357 | } | |
5467c6c8 | 3358 | |
4875ffdb | 3359 | return val; |
5467c6c8 PA |
3360 | } |
3361 | ||
3362 | /* Unpack a field FIELDNO of the specified TYPE, from the object at | |
3363 | VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of | |
3364 | ORIGINAL_VALUE, which must not be NULL. See | |
3365 | unpack_value_bits_as_long for more details. */ | |
3366 | ||
3367 | int | |
3368 | unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr, | |
6b850546 | 3369 | LONGEST embedded_offset, int fieldno, |
5467c6c8 PA |
3370 | const struct value *val, LONGEST *result) |
3371 | { | |
4875ffdb PA |
3372 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); |
3373 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
3374 | struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); | |
3375 | int bit_offset; | |
3376 | ||
5467c6c8 PA |
3377 | gdb_assert (val != NULL); |
3378 | ||
4875ffdb PA |
3379 | bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos; |
3380 | if (value_bits_any_optimized_out (val, bit_offset, bitsize) | |
3381 | || !value_bits_available (val, bit_offset, bitsize)) | |
3382 | return 0; | |
3383 | ||
3384 | *result = unpack_bits_as_long (field_type, valaddr + embedded_offset, | |
3385 | bitpos, bitsize); | |
3386 | return 1; | |
5467c6c8 PA |
3387 | } |
3388 | ||
3389 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous | |
4875ffdb | 3390 | object at VALADDR. See unpack_bits_as_long for more details. */ |
5467c6c8 PA |
3391 | |
3392 | LONGEST | |
3393 | unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno) | |
3394 | { | |
4875ffdb PA |
3395 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); |
3396 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
3397 | struct type *field_type = TYPE_FIELD_TYPE (type, fieldno); | |
5467c6c8 | 3398 | |
4875ffdb PA |
3399 | return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize); |
3400 | } | |
3401 | ||
3402 | /* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at | |
3403 | VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store | |
3404 | the contents in DEST_VAL, zero or sign extending if the type of | |
3405 | DEST_VAL is wider than BITSIZE. VALADDR points to the contents of | |
3406 | VAL. If the VAL's contents required to extract the bitfield from | |
3407 | are unavailable/optimized out, DEST_VAL is correspondingly | |
3408 | marked unavailable/optimized out. */ | |
3409 | ||
bb9d5f81 | 3410 | void |
4875ffdb | 3411 | unpack_value_bitfield (struct value *dest_val, |
6b850546 DT |
3412 | LONGEST bitpos, LONGEST bitsize, |
3413 | const gdb_byte *valaddr, LONGEST embedded_offset, | |
4875ffdb PA |
3414 | const struct value *val) |
3415 | { | |
3416 | enum bfd_endian byte_order; | |
3417 | int src_bit_offset; | |
3418 | int dst_bit_offset; | |
4875ffdb PA |
3419 | struct type *field_type = value_type (dest_val); |
3420 | ||
4875ffdb | 3421 | byte_order = gdbarch_byte_order (get_type_arch (field_type)); |
e5ca03b4 PA |
3422 | |
3423 | /* First, unpack and sign extend the bitfield as if it was wholly | |
3424 | valid. Optimized out/unavailable bits are read as zero, but | |
3425 | that's OK, as they'll end up marked below. If the VAL is | |
3426 | wholly-invalid we may have skipped allocating its contents, | |
3427 | though. See allocate_optimized_out_value. */ | |
3428 | if (valaddr != NULL) | |
3429 | { | |
3430 | LONGEST num; | |
3431 | ||
3432 | num = unpack_bits_as_long (field_type, valaddr + embedded_offset, | |
3433 | bitpos, bitsize); | |
3434 | store_signed_integer (value_contents_raw (dest_val), | |
3435 | TYPE_LENGTH (field_type), byte_order, num); | |
3436 | } | |
4875ffdb PA |
3437 | |
3438 | /* Now copy the optimized out / unavailability ranges to the right | |
3439 | bits. */ | |
3440 | src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos; | |
3441 | if (byte_order == BFD_ENDIAN_BIG) | |
3442 | dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize; | |
3443 | else | |
3444 | dst_bit_offset = 0; | |
3445 | value_ranges_copy_adjusted (dest_val, dst_bit_offset, | |
3446 | val, src_bit_offset, bitsize); | |
5467c6c8 PA |
3447 | } |
3448 | ||
3449 | /* Return a new value with type TYPE, which is FIELDNO field of the | |
3450 | object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents | |
3451 | of VAL. If the VAL's contents required to extract the bitfield | |
4875ffdb PA |
3452 | from are unavailable/optimized out, the new value is |
3453 | correspondingly marked unavailable/optimized out. */ | |
5467c6c8 PA |
3454 | |
3455 | struct value * | |
3456 | value_field_bitfield (struct type *type, int fieldno, | |
3457 | const gdb_byte *valaddr, | |
6b850546 | 3458 | LONGEST embedded_offset, const struct value *val) |
5467c6c8 | 3459 | { |
4875ffdb PA |
3460 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); |
3461 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
3462 | struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno)); | |
5467c6c8 | 3463 | |
4875ffdb PA |
3464 | unpack_value_bitfield (res_val, bitpos, bitsize, |
3465 | valaddr, embedded_offset, val); | |
3466 | ||
3467 | return res_val; | |
4ea48cc1 DJ |
3468 | } |
3469 | ||
c906108c SS |
3470 | /* Modify the value of a bitfield. ADDR points to a block of memory in |
3471 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
3472 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
581e13c1 | 3473 | indicate which bits (in target bit order) comprise the bitfield. |
19f220c3 | 3474 | Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and |
f4e88c8e | 3475 | 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */ |
c906108c SS |
3476 | |
3477 | void | |
50810684 | 3478 | modify_field (struct type *type, gdb_byte *addr, |
6b850546 | 3479 | LONGEST fieldval, LONGEST bitpos, LONGEST bitsize) |
c906108c | 3480 | { |
e17a4113 | 3481 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
f4e88c8e PH |
3482 | ULONGEST oword; |
3483 | ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize); | |
6b850546 | 3484 | LONGEST bytesize; |
19f220c3 JK |
3485 | |
3486 | /* Normalize BITPOS. */ | |
3487 | addr += bitpos / 8; | |
3488 | bitpos %= 8; | |
c906108c SS |
3489 | |
3490 | /* If a negative fieldval fits in the field in question, chop | |
3491 | off the sign extension bits. */ | |
f4e88c8e PH |
3492 | if ((~fieldval & ~(mask >> 1)) == 0) |
3493 | fieldval &= mask; | |
c906108c SS |
3494 | |
3495 | /* Warn if value is too big to fit in the field in question. */ | |
f4e88c8e | 3496 | if (0 != (fieldval & ~mask)) |
c906108c SS |
3497 | { |
3498 | /* FIXME: would like to include fieldval in the message, but | |
c5aa993b | 3499 | we don't have a sprintf_longest. */ |
6b850546 | 3500 | warning (_("Value does not fit in %s bits."), plongest (bitsize)); |
c906108c SS |
3501 | |
3502 | /* Truncate it, otherwise adjoining fields may be corrupted. */ | |
f4e88c8e | 3503 | fieldval &= mask; |
c906108c SS |
3504 | } |
3505 | ||
19f220c3 JK |
3506 | /* Ensure no bytes outside of the modified ones get accessed as it may cause |
3507 | false valgrind reports. */ | |
3508 | ||
3509 | bytesize = (bitpos + bitsize + 7) / 8; | |
3510 | oword = extract_unsigned_integer (addr, bytesize, byte_order); | |
c906108c SS |
3511 | |
3512 | /* Shifting for bit field depends on endianness of the target machine. */ | |
50810684 | 3513 | if (gdbarch_bits_big_endian (get_type_arch (type))) |
19f220c3 | 3514 | bitpos = bytesize * 8 - bitpos - bitsize; |
c906108c | 3515 | |
f4e88c8e | 3516 | oword &= ~(mask << bitpos); |
c906108c SS |
3517 | oword |= fieldval << bitpos; |
3518 | ||
19f220c3 | 3519 | store_unsigned_integer (addr, bytesize, byte_order, oword); |
c906108c SS |
3520 | } |
3521 | \f | |
14d06750 | 3522 | /* Pack NUM into BUF using a target format of TYPE. */ |
c906108c | 3523 | |
14d06750 DJ |
3524 | void |
3525 | pack_long (gdb_byte *buf, struct type *type, LONGEST num) | |
c906108c | 3526 | { |
e17a4113 | 3527 | enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type)); |
6b850546 | 3528 | LONGEST len; |
14d06750 DJ |
3529 | |
3530 | type = check_typedef (type); | |
c906108c SS |
3531 | len = TYPE_LENGTH (type); |
3532 | ||
14d06750 | 3533 | switch (TYPE_CODE (type)) |
c906108c | 3534 | { |
c906108c SS |
3535 | case TYPE_CODE_INT: |
3536 | case TYPE_CODE_CHAR: | |
3537 | case TYPE_CODE_ENUM: | |
4f2aea11 | 3538 | case TYPE_CODE_FLAGS: |
c906108c SS |
3539 | case TYPE_CODE_BOOL: |
3540 | case TYPE_CODE_RANGE: | |
0d5de010 | 3541 | case TYPE_CODE_MEMBERPTR: |
e17a4113 | 3542 | store_signed_integer (buf, len, byte_order, num); |
c906108c | 3543 | break; |
c5aa993b | 3544 | |
c906108c | 3545 | case TYPE_CODE_REF: |
aa006118 | 3546 | case TYPE_CODE_RVALUE_REF: |
c906108c | 3547 | case TYPE_CODE_PTR: |
14d06750 | 3548 | store_typed_address (buf, type, (CORE_ADDR) num); |
c906108c | 3549 | break; |
c5aa993b | 3550 | |
c906108c | 3551 | default: |
14d06750 DJ |
3552 | error (_("Unexpected type (%d) encountered for integer constant."), |
3553 | TYPE_CODE (type)); | |
c906108c | 3554 | } |
14d06750 DJ |
3555 | } |
3556 | ||
3557 | ||
595939de PM |
3558 | /* Pack NUM into BUF using a target format of TYPE. */ |
3559 | ||
70221824 | 3560 | static void |
595939de PM |
3561 | pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num) |
3562 | { | |
6b850546 | 3563 | LONGEST len; |
595939de PM |
3564 | enum bfd_endian byte_order; |
3565 | ||
3566 | type = check_typedef (type); | |
3567 | len = TYPE_LENGTH (type); | |
3568 | byte_order = gdbarch_byte_order (get_type_arch (type)); | |
3569 | ||
3570 | switch (TYPE_CODE (type)) | |
3571 | { | |
3572 | case TYPE_CODE_INT: | |
3573 | case TYPE_CODE_CHAR: | |
3574 | case TYPE_CODE_ENUM: | |
3575 | case TYPE_CODE_FLAGS: | |
3576 | case TYPE_CODE_BOOL: | |
3577 | case TYPE_CODE_RANGE: | |
3578 | case TYPE_CODE_MEMBERPTR: | |
3579 | store_unsigned_integer (buf, len, byte_order, num); | |
3580 | break; | |
3581 | ||
3582 | case TYPE_CODE_REF: | |
aa006118 | 3583 | case TYPE_CODE_RVALUE_REF: |
595939de PM |
3584 | case TYPE_CODE_PTR: |
3585 | store_typed_address (buf, type, (CORE_ADDR) num); | |
3586 | break; | |
3587 | ||
3588 | default: | |
3e43a32a MS |
3589 | error (_("Unexpected type (%d) encountered " |
3590 | "for unsigned integer constant."), | |
595939de PM |
3591 | TYPE_CODE (type)); |
3592 | } | |
3593 | } | |
3594 | ||
3595 | ||
14d06750 DJ |
3596 | /* Convert C numbers into newly allocated values. */ |
3597 | ||
3598 | struct value * | |
3599 | value_from_longest (struct type *type, LONGEST num) | |
3600 | { | |
3601 | struct value *val = allocate_value (type); | |
3602 | ||
3603 | pack_long (value_contents_raw (val), type, num); | |
c906108c SS |
3604 | return val; |
3605 | } | |
3606 | ||
4478b372 | 3607 | |
595939de PM |
3608 | /* Convert C unsigned numbers into newly allocated values. */ |
3609 | ||
3610 | struct value * | |
3611 | value_from_ulongest (struct type *type, ULONGEST num) | |
3612 | { | |
3613 | struct value *val = allocate_value (type); | |
3614 | ||
3615 | pack_unsigned_long (value_contents_raw (val), type, num); | |
3616 | ||
3617 | return val; | |
3618 | } | |
3619 | ||
3620 | ||
4478b372 | 3621 | /* Create a value representing a pointer of type TYPE to the address |
cb417230 | 3622 | ADDR. */ |
80180f79 | 3623 | |
f23631e4 | 3624 | struct value * |
4478b372 JB |
3625 | value_from_pointer (struct type *type, CORE_ADDR addr) |
3626 | { | |
cb417230 | 3627 | struct value *val = allocate_value (type); |
a109c7c1 | 3628 | |
80180f79 | 3629 | store_typed_address (value_contents_raw (val), |
cb417230 | 3630 | check_typedef (type), addr); |
4478b372 JB |
3631 | return val; |
3632 | } | |
3633 | ||
3634 | ||
012370f6 TT |
3635 | /* Create a value of type TYPE whose contents come from VALADDR, if it |
3636 | is non-null, and whose memory address (in the inferior) is | |
3637 | ADDRESS. The type of the created value may differ from the passed | |
3638 | type TYPE. Make sure to retrieve values new type after this call. | |
3639 | Note that TYPE is not passed through resolve_dynamic_type; this is | |
3640 | a special API intended for use only by Ada. */ | |
3641 | ||
3642 | struct value * | |
3643 | value_from_contents_and_address_unresolved (struct type *type, | |
3644 | const gdb_byte *valaddr, | |
3645 | CORE_ADDR address) | |
3646 | { | |
3647 | struct value *v; | |
3648 | ||
3649 | if (valaddr == NULL) | |
3650 | v = allocate_value_lazy (type); | |
3651 | else | |
3652 | v = value_from_contents (type, valaddr); | |
012370f6 | 3653 | VALUE_LVAL (v) = lval_memory; |
1a088441 | 3654 | set_value_address (v, address); |
012370f6 TT |
3655 | return v; |
3656 | } | |
3657 | ||
8acb6b92 TT |
3658 | /* Create a value of type TYPE whose contents come from VALADDR, if it |
3659 | is non-null, and whose memory address (in the inferior) is | |
80180f79 SA |
3660 | ADDRESS. The type of the created value may differ from the passed |
3661 | type TYPE. Make sure to retrieve values new type after this call. */ | |
8acb6b92 TT |
3662 | |
3663 | struct value * | |
3664 | value_from_contents_and_address (struct type *type, | |
3665 | const gdb_byte *valaddr, | |
3666 | CORE_ADDR address) | |
3667 | { | |
c3345124 | 3668 | struct type *resolved_type = resolve_dynamic_type (type, valaddr, address); |
d36430db | 3669 | struct type *resolved_type_no_typedef = check_typedef (resolved_type); |
41e8491f | 3670 | struct value *v; |
a109c7c1 | 3671 | |
8acb6b92 | 3672 | if (valaddr == NULL) |
80180f79 | 3673 | v = allocate_value_lazy (resolved_type); |
8acb6b92 | 3674 | else |
80180f79 | 3675 | v = value_from_contents (resolved_type, valaddr); |
d36430db JB |
3676 | if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL |
3677 | && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST) | |
3678 | address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef); | |
33d502b4 | 3679 | VALUE_LVAL (v) = lval_memory; |
1a088441 | 3680 | set_value_address (v, address); |
8acb6b92 TT |
3681 | return v; |
3682 | } | |
3683 | ||
8a9b8146 TT |
3684 | /* Create a value of type TYPE holding the contents CONTENTS. |
3685 | The new value is `not_lval'. */ | |
3686 | ||
3687 | struct value * | |
3688 | value_from_contents (struct type *type, const gdb_byte *contents) | |
3689 | { | |
3690 | struct value *result; | |
3691 | ||
3692 | result = allocate_value (type); | |
3693 | memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type)); | |
3694 | return result; | |
3695 | } | |
3696 | ||
f23631e4 | 3697 | struct value * |
fba45db2 | 3698 | value_from_double (struct type *type, DOUBLEST num) |
c906108c | 3699 | { |
f23631e4 | 3700 | struct value *val = allocate_value (type); |
c906108c | 3701 | struct type *base_type = check_typedef (type); |
52f0bd74 | 3702 | enum type_code code = TYPE_CODE (base_type); |
c906108c SS |
3703 | |
3704 | if (code == TYPE_CODE_FLT) | |
3705 | { | |
990a07ab | 3706 | store_typed_floating (value_contents_raw (val), base_type, num); |
c906108c SS |
3707 | } |
3708 | else | |
8a3fe4f8 | 3709 | error (_("Unexpected type encountered for floating constant.")); |
c906108c SS |
3710 | |
3711 | return val; | |
3712 | } | |
994b9211 | 3713 | |
27bc4d80 | 3714 | struct value * |
4ef30785 | 3715 | value_from_decfloat (struct type *type, const gdb_byte *dec) |
27bc4d80 TJB |
3716 | { |
3717 | struct value *val = allocate_value (type); | |
27bc4d80 | 3718 | |
4ef30785 | 3719 | memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type)); |
27bc4d80 TJB |
3720 | return val; |
3721 | } | |
3722 | ||
3bd0f5ef MS |
3723 | /* Extract a value from the history file. Input will be of the form |
3724 | $digits or $$digits. See block comment above 'write_dollar_variable' | |
3725 | for details. */ | |
3726 | ||
3727 | struct value * | |
e799154c | 3728 | value_from_history_ref (const char *h, const char **endp) |
3bd0f5ef MS |
3729 | { |
3730 | int index, len; | |
3731 | ||
3732 | if (h[0] == '$') | |
3733 | len = 1; | |
3734 | else | |
3735 | return NULL; | |
3736 | ||
3737 | if (h[1] == '$') | |
3738 | len = 2; | |
3739 | ||
3740 | /* Find length of numeral string. */ | |
3741 | for (; isdigit (h[len]); len++) | |
3742 | ; | |
3743 | ||
3744 | /* Make sure numeral string is not part of an identifier. */ | |
3745 | if (h[len] == '_' || isalpha (h[len])) | |
3746 | return NULL; | |
3747 | ||
3748 | /* Now collect the index value. */ | |
3749 | if (h[1] == '$') | |
3750 | { | |
3751 | if (len == 2) | |
3752 | { | |
3753 | /* For some bizarre reason, "$$" is equivalent to "$$1", | |
3754 | rather than to "$$0" as it ought to be! */ | |
3755 | index = -1; | |
3756 | *endp += len; | |
3757 | } | |
3758 | else | |
e799154c TT |
3759 | { |
3760 | char *local_end; | |
3761 | ||
3762 | index = -strtol (&h[2], &local_end, 10); | |
3763 | *endp = local_end; | |
3764 | } | |
3bd0f5ef MS |
3765 | } |
3766 | else | |
3767 | { | |
3768 | if (len == 1) | |
3769 | { | |
3770 | /* "$" is equivalent to "$0". */ | |
3771 | index = 0; | |
3772 | *endp += len; | |
3773 | } | |
3774 | else | |
e799154c TT |
3775 | { |
3776 | char *local_end; | |
3777 | ||
3778 | index = strtol (&h[1], &local_end, 10); | |
3779 | *endp = local_end; | |
3780 | } | |
3bd0f5ef MS |
3781 | } |
3782 | ||
3783 | return access_value_history (index); | |
3784 | } | |
3785 | ||
3fff9862 YQ |
3786 | /* Get the component value (offset by OFFSET bytes) of a struct or |
3787 | union WHOLE. Component's type is TYPE. */ | |
3788 | ||
3789 | struct value * | |
3790 | value_from_component (struct value *whole, struct type *type, LONGEST offset) | |
3791 | { | |
3792 | struct value *v; | |
3793 | ||
3794 | if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole)) | |
3795 | v = allocate_value_lazy (type); | |
3796 | else | |
3797 | { | |
3798 | v = allocate_value (type); | |
3799 | value_contents_copy (v, value_embedded_offset (v), | |
3800 | whole, value_embedded_offset (whole) + offset, | |
3801 | type_length_units (type)); | |
3802 | } | |
3803 | v->offset = value_offset (whole) + offset + value_embedded_offset (whole); | |
3804 | set_value_component_location (v, whole); | |
3fff9862 YQ |
3805 | |
3806 | return v; | |
3807 | } | |
3808 | ||
a471c594 JK |
3809 | struct value * |
3810 | coerce_ref_if_computed (const struct value *arg) | |
3811 | { | |
3812 | const struct lval_funcs *funcs; | |
3813 | ||
aa006118 | 3814 | if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg)))) |
a471c594 JK |
3815 | return NULL; |
3816 | ||
3817 | if (value_lval_const (arg) != lval_computed) | |
3818 | return NULL; | |
3819 | ||
3820 | funcs = value_computed_funcs (arg); | |
3821 | if (funcs->coerce_ref == NULL) | |
3822 | return NULL; | |
3823 | ||
3824 | return funcs->coerce_ref (arg); | |
3825 | } | |
3826 | ||
dfcee124 AG |
3827 | /* Look at value.h for description. */ |
3828 | ||
3829 | struct value * | |
3830 | readjust_indirect_value_type (struct value *value, struct type *enc_type, | |
4bf7b526 MG |
3831 | const struct type *original_type, |
3832 | const struct value *original_value) | |
dfcee124 AG |
3833 | { |
3834 | /* Re-adjust type. */ | |
3835 | deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type)); | |
3836 | ||
3837 | /* Add embedding info. */ | |
3838 | set_value_enclosing_type (value, enc_type); | |
3839 | set_value_embedded_offset (value, value_pointed_to_offset (original_value)); | |
3840 | ||
3841 | /* We may be pointing to an object of some derived type. */ | |
3842 | return value_full_object (value, NULL, 0, 0, 0); | |
3843 | } | |
3844 | ||
994b9211 AC |
3845 | struct value * |
3846 | coerce_ref (struct value *arg) | |
3847 | { | |
df407dfe | 3848 | struct type *value_type_arg_tmp = check_typedef (value_type (arg)); |
a471c594 | 3849 | struct value *retval; |
dfcee124 | 3850 | struct type *enc_type; |
a109c7c1 | 3851 | |
a471c594 JK |
3852 | retval = coerce_ref_if_computed (arg); |
3853 | if (retval) | |
3854 | return retval; | |
3855 | ||
aa006118 | 3856 | if (!TYPE_IS_REFERENCE (value_type_arg_tmp)) |
a471c594 JK |
3857 | return arg; |
3858 | ||
dfcee124 AG |
3859 | enc_type = check_typedef (value_enclosing_type (arg)); |
3860 | enc_type = TYPE_TARGET_TYPE (enc_type); | |
3861 | ||
3862 | retval = value_at_lazy (enc_type, | |
3863 | unpack_pointer (value_type (arg), | |
3864 | value_contents (arg))); | |
9f1f738a | 3865 | enc_type = value_type (retval); |
dfcee124 AG |
3866 | return readjust_indirect_value_type (retval, enc_type, |
3867 | value_type_arg_tmp, arg); | |
994b9211 AC |
3868 | } |
3869 | ||
3870 | struct value * | |
3871 | coerce_array (struct value *arg) | |
3872 | { | |
f3134b88 TT |
3873 | struct type *type; |
3874 | ||
994b9211 | 3875 | arg = coerce_ref (arg); |
f3134b88 TT |
3876 | type = check_typedef (value_type (arg)); |
3877 | ||
3878 | switch (TYPE_CODE (type)) | |
3879 | { | |
3880 | case TYPE_CODE_ARRAY: | |
7346b668 | 3881 | if (!TYPE_VECTOR (type) && current_language->c_style_arrays) |
f3134b88 TT |
3882 | arg = value_coerce_array (arg); |
3883 | break; | |
3884 | case TYPE_CODE_FUNC: | |
3885 | arg = value_coerce_function (arg); | |
3886 | break; | |
3887 | } | |
994b9211 AC |
3888 | return arg; |
3889 | } | |
c906108c | 3890 | \f |
c906108c | 3891 | |
bbfdfe1c DM |
3892 | /* Return the return value convention that will be used for the |
3893 | specified type. */ | |
3894 | ||
3895 | enum return_value_convention | |
3896 | struct_return_convention (struct gdbarch *gdbarch, | |
3897 | struct value *function, struct type *value_type) | |
3898 | { | |
3899 | enum type_code code = TYPE_CODE (value_type); | |
3900 | ||
3901 | if (code == TYPE_CODE_ERROR) | |
3902 | error (_("Function return type unknown.")); | |
3903 | ||
3904 | /* Probe the architecture for the return-value convention. */ | |
3905 | return gdbarch_return_value (gdbarch, function, value_type, | |
3906 | NULL, NULL, NULL); | |
3907 | } | |
3908 | ||
48436ce6 AC |
3909 | /* Return true if the function returning the specified type is using |
3910 | the convention of returning structures in memory (passing in the | |
82585c72 | 3911 | address as a hidden first parameter). */ |
c906108c SS |
3912 | |
3913 | int | |
d80b854b | 3914 | using_struct_return (struct gdbarch *gdbarch, |
6a3a010b | 3915 | struct value *function, struct type *value_type) |
c906108c | 3916 | { |
bbfdfe1c | 3917 | if (TYPE_CODE (value_type) == TYPE_CODE_VOID) |
667e784f | 3918 | /* A void return value is never in memory. See also corresponding |
44e5158b | 3919 | code in "print_return_value". */ |
667e784f AC |
3920 | return 0; |
3921 | ||
bbfdfe1c | 3922 | return (struct_return_convention (gdbarch, function, value_type) |
31db7b6c | 3923 | != RETURN_VALUE_REGISTER_CONVENTION); |
c906108c SS |
3924 | } |
3925 | ||
42be36b3 CT |
3926 | /* Set the initialized field in a value struct. */ |
3927 | ||
3928 | void | |
3929 | set_value_initialized (struct value *val, int status) | |
3930 | { | |
3931 | val->initialized = status; | |
3932 | } | |
3933 | ||
3934 | /* Return the initialized field in a value struct. */ | |
3935 | ||
3936 | int | |
4bf7b526 | 3937 | value_initialized (const struct value *val) |
42be36b3 CT |
3938 | { |
3939 | return val->initialized; | |
3940 | } | |
3941 | ||
a844296a SM |
3942 | /* Load the actual content of a lazy value. Fetch the data from the |
3943 | user's process and clear the lazy flag to indicate that the data in | |
3944 | the buffer is valid. | |
a58e2656 AB |
3945 | |
3946 | If the value is zero-length, we avoid calling read_memory, which | |
3947 | would abort. We mark the value as fetched anyway -- all 0 bytes of | |
a844296a | 3948 | it. */ |
a58e2656 | 3949 | |
a844296a | 3950 | void |
a58e2656 AB |
3951 | value_fetch_lazy (struct value *val) |
3952 | { | |
3953 | gdb_assert (value_lazy (val)); | |
3954 | allocate_value_contents (val); | |
9a0dc9e3 PA |
3955 | /* A value is either lazy, or fully fetched. The |
3956 | availability/validity is only established as we try to fetch a | |
3957 | value. */ | |
3958 | gdb_assert (VEC_empty (range_s, val->optimized_out)); | |
3959 | gdb_assert (VEC_empty (range_s, val->unavailable)); | |
a58e2656 AB |
3960 | if (value_bitsize (val)) |
3961 | { | |
3962 | /* To read a lazy bitfield, read the entire enclosing value. This | |
3963 | prevents reading the same block of (possibly volatile) memory once | |
3964 | per bitfield. It would be even better to read only the containing | |
3965 | word, but we have no way to record that just specific bits of a | |
3966 | value have been fetched. */ | |
3967 | struct type *type = check_typedef (value_type (val)); | |
a58e2656 | 3968 | struct value *parent = value_parent (val); |
a58e2656 | 3969 | |
b0c54aa5 AB |
3970 | if (value_lazy (parent)) |
3971 | value_fetch_lazy (parent); | |
3972 | ||
4875ffdb PA |
3973 | unpack_value_bitfield (val, |
3974 | value_bitpos (val), value_bitsize (val), | |
3975 | value_contents_for_printing (parent), | |
3976 | value_offset (val), parent); | |
a58e2656 AB |
3977 | } |
3978 | else if (VALUE_LVAL (val) == lval_memory) | |
3979 | { | |
3980 | CORE_ADDR addr = value_address (val); | |
3981 | struct type *type = check_typedef (value_enclosing_type (val)); | |
3982 | ||
3983 | if (TYPE_LENGTH (type)) | |
3984 | read_value_memory (val, 0, value_stack (val), | |
3985 | addr, value_contents_all_raw (val), | |
3ae385af | 3986 | type_length_units (type)); |
a58e2656 AB |
3987 | } |
3988 | else if (VALUE_LVAL (val) == lval_register) | |
3989 | { | |
41b56feb | 3990 | struct frame_info *next_frame; |
a58e2656 AB |
3991 | int regnum; |
3992 | struct type *type = check_typedef (value_type (val)); | |
3993 | struct value *new_val = val, *mark = value_mark (); | |
3994 | ||
3995 | /* Offsets are not supported here; lazy register values must | |
3996 | refer to the entire register. */ | |
3997 | gdb_assert (value_offset (val) == 0); | |
3998 | ||
3999 | while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val)) | |
4000 | { | |
41b56feb | 4001 | struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val); |
6eeee81c | 4002 | |
41b56feb | 4003 | next_frame = frame_find_by_id (next_frame_id); |
a58e2656 AB |
4004 | regnum = VALUE_REGNUM (new_val); |
4005 | ||
41b56feb | 4006 | gdb_assert (next_frame != NULL); |
a58e2656 AB |
4007 | |
4008 | /* Convertible register routines are used for multi-register | |
4009 | values and for interpretation in different types | |
4010 | (e.g. float or int from a double register). Lazy | |
4011 | register values should have the register's natural type, | |
4012 | so they do not apply. */ | |
41b56feb | 4013 | gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame), |
a58e2656 AB |
4014 | regnum, type)); |
4015 | ||
41b56feb KB |
4016 | /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID. |
4017 | Since a "->next" operation was performed when setting | |
4018 | this field, we do not need to perform a "next" operation | |
4019 | again when unwinding the register. That's why | |
4020 | frame_unwind_register_value() is called here instead of | |
4021 | get_frame_register_value(). */ | |
4022 | new_val = frame_unwind_register_value (next_frame, regnum); | |
6eeee81c TT |
4023 | |
4024 | /* If we get another lazy lval_register value, it means the | |
41b56feb KB |
4025 | register is found by reading it from NEXT_FRAME's next frame. |
4026 | frame_unwind_register_value should never return a value with | |
4027 | the frame id pointing to NEXT_FRAME. If it does, it means we | |
6eeee81c TT |
4028 | either have two consecutive frames with the same frame id |
4029 | in the frame chain, or some code is trying to unwind | |
4030 | behind get_prev_frame's back (e.g., a frame unwind | |
4031 | sniffer trying to unwind), bypassing its validations. In | |
4032 | any case, it should always be an internal error to end up | |
4033 | in this situation. */ | |
4034 | if (VALUE_LVAL (new_val) == lval_register | |
4035 | && value_lazy (new_val) | |
41b56feb | 4036 | && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id)) |
6eeee81c TT |
4037 | internal_error (__FILE__, __LINE__, |
4038 | _("infinite loop while fetching a register")); | |
a58e2656 AB |
4039 | } |
4040 | ||
4041 | /* If it's still lazy (for instance, a saved register on the | |
4042 | stack), fetch it. */ | |
4043 | if (value_lazy (new_val)) | |
4044 | value_fetch_lazy (new_val); | |
4045 | ||
9a0dc9e3 PA |
4046 | /* Copy the contents and the unavailability/optimized-out |
4047 | meta-data from NEW_VAL to VAL. */ | |
4048 | set_value_lazy (val, 0); | |
4049 | value_contents_copy (val, value_embedded_offset (val), | |
4050 | new_val, value_embedded_offset (new_val), | |
3ae385af | 4051 | type_length_units (type)); |
a58e2656 AB |
4052 | |
4053 | if (frame_debug) | |
4054 | { | |
4055 | struct gdbarch *gdbarch; | |
41b56feb KB |
4056 | struct frame_info *frame; |
4057 | /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID, | |
4058 | so that the frame level will be shown correctly. */ | |
a58e2656 AB |
4059 | frame = frame_find_by_id (VALUE_FRAME_ID (val)); |
4060 | regnum = VALUE_REGNUM (val); | |
4061 | gdbarch = get_frame_arch (frame); | |
4062 | ||
4063 | fprintf_unfiltered (gdb_stdlog, | |
4064 | "{ value_fetch_lazy " | |
4065 | "(frame=%d,regnum=%d(%s),...) ", | |
4066 | frame_relative_level (frame), regnum, | |
4067 | user_reg_map_regnum_to_name (gdbarch, regnum)); | |
4068 | ||
4069 | fprintf_unfiltered (gdb_stdlog, "->"); | |
4070 | if (value_optimized_out (new_val)) | |
f6c01fc5 AB |
4071 | { |
4072 | fprintf_unfiltered (gdb_stdlog, " "); | |
4073 | val_print_optimized_out (new_val, gdb_stdlog); | |
4074 | } | |
a58e2656 AB |
4075 | else |
4076 | { | |
4077 | int i; | |
4078 | const gdb_byte *buf = value_contents (new_val); | |
4079 | ||
4080 | if (VALUE_LVAL (new_val) == lval_register) | |
4081 | fprintf_unfiltered (gdb_stdlog, " register=%d", | |
4082 | VALUE_REGNUM (new_val)); | |
4083 | else if (VALUE_LVAL (new_val) == lval_memory) | |
4084 | fprintf_unfiltered (gdb_stdlog, " address=%s", | |
4085 | paddress (gdbarch, | |
4086 | value_address (new_val))); | |
4087 | else | |
4088 | fprintf_unfiltered (gdb_stdlog, " computed"); | |
4089 | ||
4090 | fprintf_unfiltered (gdb_stdlog, " bytes="); | |
4091 | fprintf_unfiltered (gdb_stdlog, "["); | |
4092 | for (i = 0; i < register_size (gdbarch, regnum); i++) | |
4093 | fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]); | |
4094 | fprintf_unfiltered (gdb_stdlog, "]"); | |
4095 | } | |
4096 | ||
4097 | fprintf_unfiltered (gdb_stdlog, " }\n"); | |
4098 | } | |
4099 | ||
4100 | /* Dispose of the intermediate values. This prevents | |
4101 | watchpoints from trying to watch the saved frame pointer. */ | |
4102 | value_free_to_mark (mark); | |
4103 | } | |
4104 | else if (VALUE_LVAL (val) == lval_computed | |
4105 | && value_computed_funcs (val)->read != NULL) | |
4106 | value_computed_funcs (val)->read (val); | |
a58e2656 AB |
4107 | else |
4108 | internal_error (__FILE__, __LINE__, _("Unexpected lazy value type.")); | |
4109 | ||
4110 | set_value_lazy (val, 0); | |
a58e2656 AB |
4111 | } |
4112 | ||
a280dbd1 SDJ |
4113 | /* Implementation of the convenience function $_isvoid. */ |
4114 | ||
4115 | static struct value * | |
4116 | isvoid_internal_fn (struct gdbarch *gdbarch, | |
4117 | const struct language_defn *language, | |
4118 | void *cookie, int argc, struct value **argv) | |
4119 | { | |
4120 | int ret; | |
4121 | ||
4122 | if (argc != 1) | |
6bc305f5 | 4123 | error (_("You must provide one argument for $_isvoid.")); |
a280dbd1 SDJ |
4124 | |
4125 | ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID; | |
4126 | ||
4127 | return value_from_longest (builtin_type (gdbarch)->builtin_int, ret); | |
4128 | } | |
4129 | ||
c906108c | 4130 | void |
fba45db2 | 4131 | _initialize_values (void) |
c906108c | 4132 | { |
1a966eab | 4133 | add_cmd ("convenience", no_class, show_convenience, _("\ |
f47f77df DE |
4134 | Debugger convenience (\"$foo\") variables and functions.\n\ |
4135 | Convenience variables are created when you assign them values;\n\ | |
4136 | thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\ | |
1a966eab | 4137 | \n\ |
c906108c SS |
4138 | A few convenience variables are given values automatically:\n\ |
4139 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
f47f77df DE |
4140 | \"$__\" holds the contents of the last address examined with \"x\"." |
4141 | #ifdef HAVE_PYTHON | |
4142 | "\n\n\ | |
4143 | Convenience functions are defined via the Python API." | |
4144 | #endif | |
4145 | ), &showlist); | |
7e20dfcd | 4146 | add_alias_cmd ("conv", "convenience", no_class, 1, &showlist); |
c906108c | 4147 | |
db5f229b | 4148 | add_cmd ("values", no_set_class, show_values, _("\ |
3e43a32a | 4149 | Elements of value history around item number IDX (or last ten)."), |
c906108c | 4150 | &showlist); |
53e5f3cf AS |
4151 | |
4152 | add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\ | |
4153 | Initialize a convenience variable if necessary.\n\ | |
4154 | init-if-undefined VARIABLE = EXPRESSION\n\ | |
4155 | Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\ | |
4156 | exist or does not contain a value. The EXPRESSION is not evaluated if the\n\ | |
4157 | VARIABLE is already initialized.")); | |
bc3b79fd TJB |
4158 | |
4159 | add_prefix_cmd ("function", no_class, function_command, _("\ | |
4160 | Placeholder command for showing help on convenience functions."), | |
4161 | &functionlist, "function ", 0, &cmdlist); | |
a280dbd1 SDJ |
4162 | |
4163 | add_internal_function ("_isvoid", _("\ | |
4164 | Check whether an expression is void.\n\ | |
4165 | Usage: $_isvoid (expression)\n\ | |
4166 | Return 1 if the expression is void, zero otherwise."), | |
4167 | isvoid_internal_fn, NULL); | |
5fdf6324 AB |
4168 | |
4169 | add_setshow_zuinteger_unlimited_cmd ("max-value-size", | |
4170 | class_support, &max_value_size, _("\ | |
4171 | Set maximum sized value gdb will load from the inferior."), _("\ | |
4172 | Show maximum sized value gdb will load from the inferior."), _("\ | |
4173 | Use this to control the maximum size, in bytes, of a value that gdb\n\ | |
4174 | will load from the inferior. Setting this value to 'unlimited'\n\ | |
4175 | disables checking.\n\ | |
4176 | Setting this does not invalidate already allocated values, it only\n\ | |
4177 | prevents future values, larger than this size, from being allocated."), | |
4178 | set_max_value_size, | |
4179 | show_max_value_size, | |
4180 | &setlist, &showlist); | |
c906108c | 4181 | } |