Commit | Line | Data |
---|---|---|
c906108c | 1 | /* Low level packing and unpacking of values for GDB, the GNU Debugger. |
1bac305b | 2 | |
6aba47ca | 3 | Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995, |
9b254dd1 | 4 | 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008 |
4f2aea11 | 5 | Free Software Foundation, Inc. |
c906108c | 6 | |
c5aa993b | 7 | This file is part of GDB. |
c906108c | 8 | |
c5aa993b JM |
9 | This program is free software; you can redistribute it and/or modify |
10 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 11 | the Free Software Foundation; either version 3 of the License, or |
c5aa993b | 12 | (at your option) any later version. |
c906108c | 13 | |
c5aa993b JM |
14 | This program is distributed in the hope that it will be useful, |
15 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
16 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
17 | GNU General Public License for more details. | |
c906108c | 18 | |
c5aa993b | 19 | You should have received a copy of the GNU General Public License |
a9762ec7 | 20 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
c906108c SS |
21 | |
22 | #include "defs.h" | |
23 | #include "gdb_string.h" | |
24 | #include "symtab.h" | |
25 | #include "gdbtypes.h" | |
26 | #include "value.h" | |
27 | #include "gdbcore.h" | |
c906108c SS |
28 | #include "command.h" |
29 | #include "gdbcmd.h" | |
30 | #include "target.h" | |
31 | #include "language.h" | |
c906108c | 32 | #include "demangle.h" |
d16aafd8 | 33 | #include "doublest.h" |
5ae326fa | 34 | #include "gdb_assert.h" |
36160dc4 | 35 | #include "regcache.h" |
fe898f56 | 36 | #include "block.h" |
27bc4d80 | 37 | #include "dfp.h" |
bccdca4a | 38 | #include "objfiles.h" |
c906108c SS |
39 | |
40 | /* Prototypes for exported functions. */ | |
41 | ||
a14ed312 | 42 | void _initialize_values (void); |
c906108c | 43 | |
91294c83 AC |
44 | struct value |
45 | { | |
46 | /* Type of value; either not an lval, or one of the various | |
47 | different possible kinds of lval. */ | |
48 | enum lval_type lval; | |
49 | ||
50 | /* Is it modifiable? Only relevant if lval != not_lval. */ | |
51 | int modifiable; | |
52 | ||
53 | /* Location of value (if lval). */ | |
54 | union | |
55 | { | |
56 | /* If lval == lval_memory, this is the address in the inferior. | |
57 | If lval == lval_register, this is the byte offset into the | |
58 | registers structure. */ | |
59 | CORE_ADDR address; | |
60 | ||
61 | /* Pointer to internal variable. */ | |
62 | struct internalvar *internalvar; | |
63 | } location; | |
64 | ||
65 | /* Describes offset of a value within lval of a structure in bytes. | |
66 | If lval == lval_memory, this is an offset to the address. If | |
67 | lval == lval_register, this is a further offset from | |
68 | location.address within the registers structure. Note also the | |
69 | member embedded_offset below. */ | |
70 | int offset; | |
71 | ||
72 | /* Only used for bitfields; number of bits contained in them. */ | |
73 | int bitsize; | |
74 | ||
75 | /* Only used for bitfields; position of start of field. For | |
32c9a795 MD |
76 | gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For |
77 | gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */ | |
91294c83 AC |
78 | int bitpos; |
79 | ||
80 | /* Frame register value is relative to. This will be described in | |
81 | the lval enum above as "lval_register". */ | |
82 | struct frame_id frame_id; | |
83 | ||
84 | /* Type of the value. */ | |
85 | struct type *type; | |
86 | ||
87 | /* If a value represents a C++ object, then the `type' field gives | |
88 | the object's compile-time type. If the object actually belongs | |
89 | to some class derived from `type', perhaps with other base | |
90 | classes and additional members, then `type' is just a subobject | |
91 | of the real thing, and the full object is probably larger than | |
92 | `type' would suggest. | |
93 | ||
94 | If `type' is a dynamic class (i.e. one with a vtable), then GDB | |
95 | can actually determine the object's run-time type by looking at | |
96 | the run-time type information in the vtable. When this | |
97 | information is available, we may elect to read in the entire | |
98 | object, for several reasons: | |
99 | ||
100 | - When printing the value, the user would probably rather see the | |
101 | full object, not just the limited portion apparent from the | |
102 | compile-time type. | |
103 | ||
104 | - If `type' has virtual base classes, then even printing `type' | |
105 | alone may require reaching outside the `type' portion of the | |
106 | object to wherever the virtual base class has been stored. | |
107 | ||
108 | When we store the entire object, `enclosing_type' is the run-time | |
109 | type -- the complete object -- and `embedded_offset' is the | |
110 | offset of `type' within that larger type, in bytes. The | |
111 | value_contents() macro takes `embedded_offset' into account, so | |
112 | most GDB code continues to see the `type' portion of the value, | |
113 | just as the inferior would. | |
114 | ||
115 | If `type' is a pointer to an object, then `enclosing_type' is a | |
116 | pointer to the object's run-time type, and `pointed_to_offset' is | |
117 | the offset in bytes from the full object to the pointed-to object | |
118 | -- that is, the value `embedded_offset' would have if we followed | |
119 | the pointer and fetched the complete object. (I don't really see | |
120 | the point. Why not just determine the run-time type when you | |
121 | indirect, and avoid the special case? The contents don't matter | |
122 | until you indirect anyway.) | |
123 | ||
124 | If we're not doing anything fancy, `enclosing_type' is equal to | |
125 | `type', and `embedded_offset' is zero, so everything works | |
126 | normally. */ | |
127 | struct type *enclosing_type; | |
128 | int embedded_offset; | |
129 | int pointed_to_offset; | |
130 | ||
131 | /* Values are stored in a chain, so that they can be deleted easily | |
132 | over calls to the inferior. Values assigned to internal | |
133 | variables or put into the value history are taken off this | |
134 | list. */ | |
135 | struct value *next; | |
136 | ||
137 | /* Register number if the value is from a register. */ | |
138 | short regnum; | |
139 | ||
140 | /* If zero, contents of this value are in the contents field. If | |
9214ee5f DJ |
141 | nonzero, contents are in inferior. If the lval field is lval_memory, |
142 | the contents are in inferior memory at location.address plus offset. | |
143 | The lval field may also be lval_register. | |
91294c83 AC |
144 | |
145 | WARNING: This field is used by the code which handles watchpoints | |
146 | (see breakpoint.c) to decide whether a particular value can be | |
147 | watched by hardware watchpoints. If the lazy flag is set for | |
148 | some member of a value chain, it is assumed that this member of | |
149 | the chain doesn't need to be watched as part of watching the | |
150 | value itself. This is how GDB avoids watching the entire struct | |
151 | or array when the user wants to watch a single struct member or | |
152 | array element. If you ever change the way lazy flag is set and | |
153 | reset, be sure to consider this use as well! */ | |
154 | char lazy; | |
155 | ||
156 | /* If nonzero, this is the value of a variable which does not | |
157 | actually exist in the program. */ | |
158 | char optimized_out; | |
159 | ||
42be36b3 CT |
160 | /* If value is a variable, is it initialized or not. */ |
161 | int initialized; | |
162 | ||
91294c83 AC |
163 | /* Actual contents of the value. For use of this value; setting it |
164 | uses the stuff above. Not valid if lazy is nonzero. Target | |
165 | byte-order. We force it to be aligned properly for any possible | |
166 | value. Note that a value therefore extends beyond what is | |
167 | declared here. */ | |
168 | union | |
169 | { | |
fc1a4b47 | 170 | gdb_byte contents[1]; |
91294c83 AC |
171 | DOUBLEST force_doublest_align; |
172 | LONGEST force_longest_align; | |
173 | CORE_ADDR force_core_addr_align; | |
174 | void *force_pointer_align; | |
175 | } aligner; | |
176 | /* Do not add any new members here -- contents above will trash | |
177 | them. */ | |
178 | }; | |
179 | ||
c906108c SS |
180 | /* Prototypes for local functions. */ |
181 | ||
a14ed312 | 182 | static void show_values (char *, int); |
c906108c | 183 | |
a14ed312 | 184 | static void show_convenience (char *, int); |
c906108c | 185 | |
c906108c SS |
186 | |
187 | /* The value-history records all the values printed | |
188 | by print commands during this session. Each chunk | |
189 | records 60 consecutive values. The first chunk on | |
190 | the chain records the most recent values. | |
191 | The total number of values is in value_history_count. */ | |
192 | ||
193 | #define VALUE_HISTORY_CHUNK 60 | |
194 | ||
195 | struct value_history_chunk | |
c5aa993b JM |
196 | { |
197 | struct value_history_chunk *next; | |
f23631e4 | 198 | struct value *values[VALUE_HISTORY_CHUNK]; |
c5aa993b | 199 | }; |
c906108c SS |
200 | |
201 | /* Chain of chunks now in use. */ | |
202 | ||
203 | static struct value_history_chunk *value_history_chain; | |
204 | ||
205 | static int value_history_count; /* Abs number of last entry stored */ | |
206 | \f | |
207 | /* List of all value objects currently allocated | |
208 | (except for those released by calls to release_value) | |
209 | This is so they can be freed after each command. */ | |
210 | ||
f23631e4 | 211 | static struct value *all_values; |
c906108c SS |
212 | |
213 | /* Allocate a value that has the correct length for type TYPE. */ | |
214 | ||
f23631e4 | 215 | struct value * |
fba45db2 | 216 | allocate_value (struct type *type) |
c906108c | 217 | { |
f23631e4 | 218 | struct value *val; |
c906108c SS |
219 | struct type *atype = check_typedef (type); |
220 | ||
5b90c7b5 | 221 | val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype)); |
df407dfe | 222 | val->next = all_values; |
c906108c | 223 | all_values = val; |
df407dfe | 224 | val->type = type; |
4754a64e | 225 | val->enclosing_type = type; |
c906108c SS |
226 | VALUE_LVAL (val) = not_lval; |
227 | VALUE_ADDRESS (val) = 0; | |
1df6926e | 228 | VALUE_FRAME_ID (val) = null_frame_id; |
df407dfe AC |
229 | val->offset = 0; |
230 | val->bitpos = 0; | |
231 | val->bitsize = 0; | |
9ee8fc9d | 232 | VALUE_REGNUM (val) = -1; |
d69fe07e | 233 | val->lazy = 0; |
feb13ab0 | 234 | val->optimized_out = 0; |
13c3b5f5 | 235 | val->embedded_offset = 0; |
b44d461b | 236 | val->pointed_to_offset = 0; |
c906108c | 237 | val->modifiable = 1; |
42be36b3 | 238 | val->initialized = 1; /* Default to initialized. */ |
c906108c SS |
239 | return val; |
240 | } | |
241 | ||
242 | /* Allocate a value that has the correct length | |
938f5214 | 243 | for COUNT repetitions of type TYPE. */ |
c906108c | 244 | |
f23631e4 | 245 | struct value * |
fba45db2 | 246 | allocate_repeat_value (struct type *type, int count) |
c906108c | 247 | { |
c5aa993b | 248 | int low_bound = current_language->string_lower_bound; /* ??? */ |
c906108c SS |
249 | /* FIXME-type-allocation: need a way to free this type when we are |
250 | done with it. */ | |
251 | struct type *range_type | |
6d84d3d8 | 252 | = create_range_type ((struct type *) NULL, builtin_type_int32, |
c5aa993b | 253 | low_bound, count + low_bound - 1); |
c906108c SS |
254 | /* FIXME-type-allocation: need a way to free this type when we are |
255 | done with it. */ | |
256 | return allocate_value (create_array_type ((struct type *) NULL, | |
257 | type, range_type)); | |
258 | } | |
259 | ||
df407dfe AC |
260 | /* Accessor methods. */ |
261 | ||
17cf0ecd AC |
262 | struct value * |
263 | value_next (struct value *value) | |
264 | { | |
265 | return value->next; | |
266 | } | |
267 | ||
df407dfe AC |
268 | struct type * |
269 | value_type (struct value *value) | |
270 | { | |
271 | return value->type; | |
272 | } | |
04624583 AC |
273 | void |
274 | deprecated_set_value_type (struct value *value, struct type *type) | |
275 | { | |
276 | value->type = type; | |
277 | } | |
df407dfe AC |
278 | |
279 | int | |
280 | value_offset (struct value *value) | |
281 | { | |
282 | return value->offset; | |
283 | } | |
f5cf64a7 AC |
284 | void |
285 | set_value_offset (struct value *value, int offset) | |
286 | { | |
287 | value->offset = offset; | |
288 | } | |
df407dfe AC |
289 | |
290 | int | |
291 | value_bitpos (struct value *value) | |
292 | { | |
293 | return value->bitpos; | |
294 | } | |
9bbda503 AC |
295 | void |
296 | set_value_bitpos (struct value *value, int bit) | |
297 | { | |
298 | value->bitpos = bit; | |
299 | } | |
df407dfe AC |
300 | |
301 | int | |
302 | value_bitsize (struct value *value) | |
303 | { | |
304 | return value->bitsize; | |
305 | } | |
9bbda503 AC |
306 | void |
307 | set_value_bitsize (struct value *value, int bit) | |
308 | { | |
309 | value->bitsize = bit; | |
310 | } | |
df407dfe | 311 | |
fc1a4b47 | 312 | gdb_byte * |
990a07ab AC |
313 | value_contents_raw (struct value *value) |
314 | { | |
315 | return value->aligner.contents + value->embedded_offset; | |
316 | } | |
317 | ||
fc1a4b47 | 318 | gdb_byte * |
990a07ab AC |
319 | value_contents_all_raw (struct value *value) |
320 | { | |
321 | return value->aligner.contents; | |
322 | } | |
323 | ||
4754a64e AC |
324 | struct type * |
325 | value_enclosing_type (struct value *value) | |
326 | { | |
327 | return value->enclosing_type; | |
328 | } | |
329 | ||
fc1a4b47 | 330 | const gdb_byte * |
46615f07 AC |
331 | value_contents_all (struct value *value) |
332 | { | |
333 | if (value->lazy) | |
334 | value_fetch_lazy (value); | |
335 | return value->aligner.contents; | |
336 | } | |
337 | ||
d69fe07e AC |
338 | int |
339 | value_lazy (struct value *value) | |
340 | { | |
341 | return value->lazy; | |
342 | } | |
343 | ||
dfa52d88 AC |
344 | void |
345 | set_value_lazy (struct value *value, int val) | |
346 | { | |
347 | value->lazy = val; | |
348 | } | |
349 | ||
fc1a4b47 | 350 | const gdb_byte * |
0fd88904 AC |
351 | value_contents (struct value *value) |
352 | { | |
353 | return value_contents_writeable (value); | |
354 | } | |
355 | ||
fc1a4b47 | 356 | gdb_byte * |
0fd88904 AC |
357 | value_contents_writeable (struct value *value) |
358 | { | |
359 | if (value->lazy) | |
360 | value_fetch_lazy (value); | |
fc0c53a0 | 361 | return value_contents_raw (value); |
0fd88904 AC |
362 | } |
363 | ||
a6c442d8 MK |
364 | /* Return non-zero if VAL1 and VAL2 have the same contents. Note that |
365 | this function is different from value_equal; in C the operator == | |
366 | can return 0 even if the two values being compared are equal. */ | |
367 | ||
368 | int | |
369 | value_contents_equal (struct value *val1, struct value *val2) | |
370 | { | |
371 | struct type *type1; | |
372 | struct type *type2; | |
373 | int len; | |
374 | ||
375 | type1 = check_typedef (value_type (val1)); | |
376 | type2 = check_typedef (value_type (val2)); | |
377 | len = TYPE_LENGTH (type1); | |
378 | if (len != TYPE_LENGTH (type2)) | |
379 | return 0; | |
380 | ||
381 | return (memcmp (value_contents (val1), value_contents (val2), len) == 0); | |
382 | } | |
383 | ||
feb13ab0 AC |
384 | int |
385 | value_optimized_out (struct value *value) | |
386 | { | |
387 | return value->optimized_out; | |
388 | } | |
389 | ||
390 | void | |
391 | set_value_optimized_out (struct value *value, int val) | |
392 | { | |
393 | value->optimized_out = val; | |
394 | } | |
13c3b5f5 AC |
395 | |
396 | int | |
397 | value_embedded_offset (struct value *value) | |
398 | { | |
399 | return value->embedded_offset; | |
400 | } | |
401 | ||
402 | void | |
403 | set_value_embedded_offset (struct value *value, int val) | |
404 | { | |
405 | value->embedded_offset = val; | |
406 | } | |
b44d461b AC |
407 | |
408 | int | |
409 | value_pointed_to_offset (struct value *value) | |
410 | { | |
411 | return value->pointed_to_offset; | |
412 | } | |
413 | ||
414 | void | |
415 | set_value_pointed_to_offset (struct value *value, int val) | |
416 | { | |
417 | value->pointed_to_offset = val; | |
418 | } | |
13bb5560 AC |
419 | |
420 | enum lval_type * | |
421 | deprecated_value_lval_hack (struct value *value) | |
422 | { | |
423 | return &value->lval; | |
424 | } | |
425 | ||
426 | CORE_ADDR * | |
427 | deprecated_value_address_hack (struct value *value) | |
428 | { | |
429 | return &value->location.address; | |
430 | } | |
431 | ||
432 | struct internalvar ** | |
433 | deprecated_value_internalvar_hack (struct value *value) | |
434 | { | |
435 | return &value->location.internalvar; | |
436 | } | |
437 | ||
438 | struct frame_id * | |
439 | deprecated_value_frame_id_hack (struct value *value) | |
440 | { | |
441 | return &value->frame_id; | |
442 | } | |
443 | ||
444 | short * | |
445 | deprecated_value_regnum_hack (struct value *value) | |
446 | { | |
447 | return &value->regnum; | |
448 | } | |
88e3b34b AC |
449 | |
450 | int | |
451 | deprecated_value_modifiable (struct value *value) | |
452 | { | |
453 | return value->modifiable; | |
454 | } | |
455 | void | |
456 | deprecated_set_value_modifiable (struct value *value, int modifiable) | |
457 | { | |
458 | value->modifiable = modifiable; | |
459 | } | |
990a07ab | 460 | \f |
c906108c SS |
461 | /* Return a mark in the value chain. All values allocated after the |
462 | mark is obtained (except for those released) are subject to being freed | |
463 | if a subsequent value_free_to_mark is passed the mark. */ | |
f23631e4 | 464 | struct value * |
fba45db2 | 465 | value_mark (void) |
c906108c SS |
466 | { |
467 | return all_values; | |
468 | } | |
469 | ||
470 | /* Free all values allocated since MARK was obtained by value_mark | |
471 | (except for those released). */ | |
472 | void | |
f23631e4 | 473 | value_free_to_mark (struct value *mark) |
c906108c | 474 | { |
f23631e4 AC |
475 | struct value *val; |
476 | struct value *next; | |
c906108c SS |
477 | |
478 | for (val = all_values; val && val != mark; val = next) | |
479 | { | |
df407dfe | 480 | next = val->next; |
c906108c SS |
481 | value_free (val); |
482 | } | |
483 | all_values = val; | |
484 | } | |
485 | ||
486 | /* Free all the values that have been allocated (except for those released). | |
487 | Called after each command, successful or not. */ | |
488 | ||
489 | void | |
fba45db2 | 490 | free_all_values (void) |
c906108c | 491 | { |
f23631e4 AC |
492 | struct value *val; |
493 | struct value *next; | |
c906108c SS |
494 | |
495 | for (val = all_values; val; val = next) | |
496 | { | |
df407dfe | 497 | next = val->next; |
c906108c SS |
498 | value_free (val); |
499 | } | |
500 | ||
501 | all_values = 0; | |
502 | } | |
503 | ||
504 | /* Remove VAL from the chain all_values | |
505 | so it will not be freed automatically. */ | |
506 | ||
507 | void | |
f23631e4 | 508 | release_value (struct value *val) |
c906108c | 509 | { |
f23631e4 | 510 | struct value *v; |
c906108c SS |
511 | |
512 | if (all_values == val) | |
513 | { | |
514 | all_values = val->next; | |
515 | return; | |
516 | } | |
517 | ||
518 | for (v = all_values; v; v = v->next) | |
519 | { | |
520 | if (v->next == val) | |
521 | { | |
522 | v->next = val->next; | |
523 | break; | |
524 | } | |
525 | } | |
526 | } | |
527 | ||
528 | /* Release all values up to mark */ | |
f23631e4 AC |
529 | struct value * |
530 | value_release_to_mark (struct value *mark) | |
c906108c | 531 | { |
f23631e4 AC |
532 | struct value *val; |
533 | struct value *next; | |
c906108c | 534 | |
df407dfe AC |
535 | for (val = next = all_values; next; next = next->next) |
536 | if (next->next == mark) | |
c906108c | 537 | { |
df407dfe AC |
538 | all_values = next->next; |
539 | next->next = NULL; | |
c906108c SS |
540 | return val; |
541 | } | |
542 | all_values = 0; | |
543 | return val; | |
544 | } | |
545 | ||
546 | /* Return a copy of the value ARG. | |
547 | It contains the same contents, for same memory address, | |
548 | but it's a different block of storage. */ | |
549 | ||
f23631e4 AC |
550 | struct value * |
551 | value_copy (struct value *arg) | |
c906108c | 552 | { |
4754a64e | 553 | struct type *encl_type = value_enclosing_type (arg); |
f23631e4 | 554 | struct value *val = allocate_value (encl_type); |
df407dfe | 555 | val->type = arg->type; |
c906108c | 556 | VALUE_LVAL (val) = VALUE_LVAL (arg); |
6f7c8fc2 | 557 | val->location = arg->location; |
df407dfe AC |
558 | val->offset = arg->offset; |
559 | val->bitpos = arg->bitpos; | |
560 | val->bitsize = arg->bitsize; | |
1df6926e | 561 | VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg); |
9ee8fc9d | 562 | VALUE_REGNUM (val) = VALUE_REGNUM (arg); |
d69fe07e | 563 | val->lazy = arg->lazy; |
feb13ab0 | 564 | val->optimized_out = arg->optimized_out; |
13c3b5f5 | 565 | val->embedded_offset = value_embedded_offset (arg); |
b44d461b | 566 | val->pointed_to_offset = arg->pointed_to_offset; |
c906108c | 567 | val->modifiable = arg->modifiable; |
d69fe07e | 568 | if (!value_lazy (val)) |
c906108c | 569 | { |
990a07ab | 570 | memcpy (value_contents_all_raw (val), value_contents_all_raw (arg), |
4754a64e | 571 | TYPE_LENGTH (value_enclosing_type (arg))); |
c906108c SS |
572 | |
573 | } | |
574 | return val; | |
575 | } | |
576 | \f | |
577 | /* Access to the value history. */ | |
578 | ||
579 | /* Record a new value in the value history. | |
580 | Returns the absolute history index of the entry. | |
581 | Result of -1 indicates the value was not saved; otherwise it is the | |
582 | value history index of this new item. */ | |
583 | ||
584 | int | |
f23631e4 | 585 | record_latest_value (struct value *val) |
c906108c SS |
586 | { |
587 | int i; | |
588 | ||
589 | /* We don't want this value to have anything to do with the inferior anymore. | |
590 | In particular, "set $1 = 50" should not affect the variable from which | |
591 | the value was taken, and fast watchpoints should be able to assume that | |
592 | a value on the value history never changes. */ | |
d69fe07e | 593 | if (value_lazy (val)) |
c906108c SS |
594 | value_fetch_lazy (val); |
595 | /* We preserve VALUE_LVAL so that the user can find out where it was fetched | |
596 | from. This is a bit dubious, because then *&$1 does not just return $1 | |
597 | but the current contents of that location. c'est la vie... */ | |
598 | val->modifiable = 0; | |
599 | release_value (val); | |
600 | ||
601 | /* Here we treat value_history_count as origin-zero | |
602 | and applying to the value being stored now. */ | |
603 | ||
604 | i = value_history_count % VALUE_HISTORY_CHUNK; | |
605 | if (i == 0) | |
606 | { | |
f23631e4 | 607 | struct value_history_chunk *new |
c5aa993b JM |
608 | = (struct value_history_chunk *) |
609 | xmalloc (sizeof (struct value_history_chunk)); | |
c906108c SS |
610 | memset (new->values, 0, sizeof new->values); |
611 | new->next = value_history_chain; | |
612 | value_history_chain = new; | |
613 | } | |
614 | ||
615 | value_history_chain->values[i] = val; | |
616 | ||
617 | /* Now we regard value_history_count as origin-one | |
618 | and applying to the value just stored. */ | |
619 | ||
620 | return ++value_history_count; | |
621 | } | |
622 | ||
623 | /* Return a copy of the value in the history with sequence number NUM. */ | |
624 | ||
f23631e4 | 625 | struct value * |
fba45db2 | 626 | access_value_history (int num) |
c906108c | 627 | { |
f23631e4 | 628 | struct value_history_chunk *chunk; |
52f0bd74 AC |
629 | int i; |
630 | int absnum = num; | |
c906108c SS |
631 | |
632 | if (absnum <= 0) | |
633 | absnum += value_history_count; | |
634 | ||
635 | if (absnum <= 0) | |
636 | { | |
637 | if (num == 0) | |
8a3fe4f8 | 638 | error (_("The history is empty.")); |
c906108c | 639 | else if (num == 1) |
8a3fe4f8 | 640 | error (_("There is only one value in the history.")); |
c906108c | 641 | else |
8a3fe4f8 | 642 | error (_("History does not go back to $$%d."), -num); |
c906108c SS |
643 | } |
644 | if (absnum > value_history_count) | |
8a3fe4f8 | 645 | error (_("History has not yet reached $%d."), absnum); |
c906108c SS |
646 | |
647 | absnum--; | |
648 | ||
649 | /* Now absnum is always absolute and origin zero. */ | |
650 | ||
651 | chunk = value_history_chain; | |
652 | for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK; | |
653 | i > 0; i--) | |
654 | chunk = chunk->next; | |
655 | ||
656 | return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]); | |
657 | } | |
658 | ||
c906108c | 659 | static void |
fba45db2 | 660 | show_values (char *num_exp, int from_tty) |
c906108c | 661 | { |
52f0bd74 | 662 | int i; |
f23631e4 | 663 | struct value *val; |
c906108c SS |
664 | static int num = 1; |
665 | ||
666 | if (num_exp) | |
667 | { | |
f132ba9d TJB |
668 | /* "show values +" should print from the stored position. |
669 | "show values <exp>" should print around value number <exp>. */ | |
c906108c | 670 | if (num_exp[0] != '+' || num_exp[1] != '\0') |
bb518678 | 671 | num = parse_and_eval_long (num_exp) - 5; |
c906108c SS |
672 | } |
673 | else | |
674 | { | |
f132ba9d | 675 | /* "show values" means print the last 10 values. */ |
c906108c SS |
676 | num = value_history_count - 9; |
677 | } | |
678 | ||
679 | if (num <= 0) | |
680 | num = 1; | |
681 | ||
682 | for (i = num; i < num + 10 && i <= value_history_count; i++) | |
683 | { | |
684 | val = access_value_history (i); | |
a3f17187 | 685 | printf_filtered (("$%d = "), i); |
c906108c | 686 | value_print (val, gdb_stdout, 0, Val_pretty_default); |
a3f17187 | 687 | printf_filtered (("\n")); |
c906108c SS |
688 | } |
689 | ||
f132ba9d | 690 | /* The next "show values +" should start after what we just printed. */ |
c906108c SS |
691 | num += 10; |
692 | ||
693 | /* Hitting just return after this command should do the same thing as | |
f132ba9d TJB |
694 | "show values +". If num_exp is null, this is unnecessary, since |
695 | "show values +" is not useful after "show values". */ | |
c906108c SS |
696 | if (from_tty && num_exp) |
697 | { | |
698 | num_exp[0] = '+'; | |
699 | num_exp[1] = '\0'; | |
700 | } | |
701 | } | |
702 | \f | |
703 | /* Internal variables. These are variables within the debugger | |
704 | that hold values assigned by debugger commands. | |
705 | The user refers to them with a '$' prefix | |
706 | that does not appear in the variable names stored internally. */ | |
707 | ||
708 | static struct internalvar *internalvars; | |
709 | ||
53e5f3cf AS |
710 | /* If the variable does not already exist create it and give it the value given. |
711 | If no value is given then the default is zero. */ | |
712 | static void | |
713 | init_if_undefined_command (char* args, int from_tty) | |
714 | { | |
715 | struct internalvar* intvar; | |
716 | ||
717 | /* Parse the expression - this is taken from set_command(). */ | |
718 | struct expression *expr = parse_expression (args); | |
719 | register struct cleanup *old_chain = | |
720 | make_cleanup (free_current_contents, &expr); | |
721 | ||
722 | /* Validate the expression. | |
723 | Was the expression an assignment? | |
724 | Or even an expression at all? */ | |
725 | if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN) | |
726 | error (_("Init-if-undefined requires an assignment expression.")); | |
727 | ||
728 | /* Extract the variable from the parsed expression. | |
729 | In the case of an assign the lvalue will be in elts[1] and elts[2]. */ | |
730 | if (expr->elts[1].opcode != OP_INTERNALVAR) | |
731 | error (_("The first parameter to init-if-undefined should be a GDB variable.")); | |
732 | intvar = expr->elts[2].internalvar; | |
733 | ||
734 | /* Only evaluate the expression if the lvalue is void. | |
735 | This may still fail if the expresssion is invalid. */ | |
736 | if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID) | |
737 | evaluate_expression (expr); | |
738 | ||
739 | do_cleanups (old_chain); | |
740 | } | |
741 | ||
742 | ||
c906108c SS |
743 | /* Look up an internal variable with name NAME. NAME should not |
744 | normally include a dollar sign. | |
745 | ||
746 | If the specified internal variable does not exist, | |
c4a3d09a | 747 | the return value is NULL. */ |
c906108c SS |
748 | |
749 | struct internalvar * | |
c4a3d09a | 750 | lookup_only_internalvar (char *name) |
c906108c | 751 | { |
52f0bd74 | 752 | struct internalvar *var; |
c906108c SS |
753 | |
754 | for (var = internalvars; var; var = var->next) | |
5cb316ef | 755 | if (strcmp (var->name, name) == 0) |
c906108c SS |
756 | return var; |
757 | ||
c4a3d09a MF |
758 | return NULL; |
759 | } | |
760 | ||
761 | ||
762 | /* Create an internal variable with name NAME and with a void value. | |
763 | NAME should not normally include a dollar sign. */ | |
764 | ||
765 | struct internalvar * | |
766 | create_internalvar (char *name) | |
767 | { | |
768 | struct internalvar *var; | |
c906108c | 769 | var = (struct internalvar *) xmalloc (sizeof (struct internalvar)); |
1754f103 | 770 | var->name = concat (name, (char *)NULL); |
c906108c | 771 | var->value = allocate_value (builtin_type_void); |
0d20ae72 | 772 | var->endian = gdbarch_byte_order (current_gdbarch); |
c906108c SS |
773 | release_value (var->value); |
774 | var->next = internalvars; | |
775 | internalvars = var; | |
776 | return var; | |
777 | } | |
778 | ||
c4a3d09a MF |
779 | |
780 | /* Look up an internal variable with name NAME. NAME should not | |
781 | normally include a dollar sign. | |
782 | ||
783 | If the specified internal variable does not exist, | |
784 | one is created, with a void value. */ | |
785 | ||
786 | struct internalvar * | |
787 | lookup_internalvar (char *name) | |
788 | { | |
789 | struct internalvar *var; | |
790 | ||
791 | var = lookup_only_internalvar (name); | |
792 | if (var) | |
793 | return var; | |
794 | ||
795 | return create_internalvar (name); | |
796 | } | |
797 | ||
f23631e4 | 798 | struct value * |
fba45db2 | 799 | value_of_internalvar (struct internalvar *var) |
c906108c | 800 | { |
f23631e4 | 801 | struct value *val; |
d3c139e9 AS |
802 | int i, j; |
803 | gdb_byte temp; | |
c906108c | 804 | |
c906108c | 805 | val = value_copy (var->value); |
d69fe07e | 806 | if (value_lazy (val)) |
c906108c SS |
807 | value_fetch_lazy (val); |
808 | VALUE_LVAL (val) = lval_internalvar; | |
809 | VALUE_INTERNALVAR (val) = var; | |
d3c139e9 AS |
810 | |
811 | /* Values are always stored in the target's byte order. When connected to a | |
812 | target this will most likely always be correct, so there's normally no | |
813 | need to worry about it. | |
814 | ||
815 | However, internal variables can be set up before the target endian is | |
816 | known and so may become out of date. Fix it up before anybody sees. | |
817 | ||
818 | Internal variables usually hold simple scalar values, and we can | |
819 | correct those. More complex values (e.g. structures and floating | |
820 | point types) are left alone, because they would be too complicated | |
821 | to correct. */ | |
822 | ||
0d20ae72 | 823 | if (var->endian != gdbarch_byte_order (current_gdbarch)) |
d3c139e9 AS |
824 | { |
825 | gdb_byte *array = value_contents_raw (val); | |
826 | struct type *type = check_typedef (value_enclosing_type (val)); | |
827 | switch (TYPE_CODE (type)) | |
828 | { | |
829 | case TYPE_CODE_INT: | |
830 | case TYPE_CODE_PTR: | |
831 | /* Reverse the bytes. */ | |
832 | for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--) | |
833 | { | |
834 | temp = array[j]; | |
835 | array[j] = array[i]; | |
836 | array[i] = temp; | |
837 | } | |
838 | break; | |
839 | } | |
840 | } | |
841 | ||
c906108c SS |
842 | return val; |
843 | } | |
844 | ||
845 | void | |
fba45db2 | 846 | set_internalvar_component (struct internalvar *var, int offset, int bitpos, |
f23631e4 | 847 | int bitsize, struct value *newval) |
c906108c | 848 | { |
fc1a4b47 | 849 | gdb_byte *addr = value_contents_writeable (var->value) + offset; |
c906108c | 850 | |
c906108c SS |
851 | if (bitsize) |
852 | modify_field (addr, value_as_long (newval), | |
853 | bitpos, bitsize); | |
854 | else | |
0fd88904 | 855 | memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval))); |
c906108c SS |
856 | } |
857 | ||
858 | void | |
f23631e4 | 859 | set_internalvar (struct internalvar *var, struct value *val) |
c906108c | 860 | { |
f23631e4 | 861 | struct value *newval; |
c906108c | 862 | |
c906108c SS |
863 | newval = value_copy (val); |
864 | newval->modifiable = 1; | |
865 | ||
866 | /* Force the value to be fetched from the target now, to avoid problems | |
867 | later when this internalvar is referenced and the target is gone or | |
868 | has changed. */ | |
d69fe07e | 869 | if (value_lazy (newval)) |
c906108c SS |
870 | value_fetch_lazy (newval); |
871 | ||
872 | /* Begin code which must not call error(). If var->value points to | |
873 | something free'd, an error() obviously leaves a dangling pointer. | |
874 | But we also get a danling pointer if var->value points to | |
875 | something in the value chain (i.e., before release_value is | |
876 | called), because after the error free_all_values will get called before | |
877 | long. */ | |
b8c9b27d | 878 | xfree (var->value); |
c906108c | 879 | var->value = newval; |
0d20ae72 | 880 | var->endian = gdbarch_byte_order (current_gdbarch); |
c906108c SS |
881 | release_value (newval); |
882 | /* End code which must not call error(). */ | |
883 | } | |
884 | ||
885 | char * | |
fba45db2 | 886 | internalvar_name (struct internalvar *var) |
c906108c SS |
887 | { |
888 | return var->name; | |
889 | } | |
890 | ||
ae5a43e0 DJ |
891 | /* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to |
892 | prevent cycles / duplicates. */ | |
893 | ||
894 | static void | |
895 | preserve_one_value (struct value *value, struct objfile *objfile, | |
896 | htab_t copied_types) | |
897 | { | |
898 | if (TYPE_OBJFILE (value->type) == objfile) | |
899 | value->type = copy_type_recursive (objfile, value->type, copied_types); | |
900 | ||
901 | if (TYPE_OBJFILE (value->enclosing_type) == objfile) | |
902 | value->enclosing_type = copy_type_recursive (objfile, | |
903 | value->enclosing_type, | |
904 | copied_types); | |
905 | } | |
906 | ||
907 | /* Update the internal variables and value history when OBJFILE is | |
908 | discarded; we must copy the types out of the objfile. New global types | |
909 | will be created for every convenience variable which currently points to | |
910 | this objfile's types, and the convenience variables will be adjusted to | |
911 | use the new global types. */ | |
c906108c SS |
912 | |
913 | void | |
ae5a43e0 | 914 | preserve_values (struct objfile *objfile) |
c906108c | 915 | { |
ae5a43e0 DJ |
916 | htab_t copied_types; |
917 | struct value_history_chunk *cur; | |
52f0bd74 | 918 | struct internalvar *var; |
ae5a43e0 | 919 | int i; |
c906108c | 920 | |
ae5a43e0 DJ |
921 | /* Create the hash table. We allocate on the objfile's obstack, since |
922 | it is soon to be deleted. */ | |
923 | copied_types = create_copied_types_hash (objfile); | |
924 | ||
925 | for (cur = value_history_chain; cur; cur = cur->next) | |
926 | for (i = 0; i < VALUE_HISTORY_CHUNK; i++) | |
927 | if (cur->values[i]) | |
928 | preserve_one_value (cur->values[i], objfile, copied_types); | |
929 | ||
930 | for (var = internalvars; var; var = var->next) | |
931 | preserve_one_value (var->value, objfile, copied_types); | |
932 | ||
933 | htab_delete (copied_types); | |
c906108c SS |
934 | } |
935 | ||
936 | static void | |
fba45db2 | 937 | show_convenience (char *ignore, int from_tty) |
c906108c | 938 | { |
52f0bd74 | 939 | struct internalvar *var; |
c906108c SS |
940 | int varseen = 0; |
941 | ||
942 | for (var = internalvars; var; var = var->next) | |
943 | { | |
c906108c SS |
944 | if (!varseen) |
945 | { | |
946 | varseen = 1; | |
947 | } | |
a3f17187 | 948 | printf_filtered (("$%s = "), var->name); |
d3c139e9 AS |
949 | value_print (value_of_internalvar (var), gdb_stdout, |
950 | 0, Val_pretty_default); | |
a3f17187 | 951 | printf_filtered (("\n")); |
c906108c SS |
952 | } |
953 | if (!varseen) | |
a3f17187 AC |
954 | printf_unfiltered (_("\ |
955 | No debugger convenience variables now defined.\n\ | |
c906108c | 956 | Convenience variables have names starting with \"$\";\n\ |
a3f17187 | 957 | use \"set\" as in \"set $foo = 5\" to define them.\n")); |
c906108c SS |
958 | } |
959 | \f | |
960 | /* Extract a value as a C number (either long or double). | |
961 | Knows how to convert fixed values to double, or | |
962 | floating values to long. | |
963 | Does not deallocate the value. */ | |
964 | ||
965 | LONGEST | |
f23631e4 | 966 | value_as_long (struct value *val) |
c906108c SS |
967 | { |
968 | /* This coerces arrays and functions, which is necessary (e.g. | |
969 | in disassemble_command). It also dereferences references, which | |
970 | I suspect is the most logical thing to do. */ | |
994b9211 | 971 | val = coerce_array (val); |
0fd88904 | 972 | return unpack_long (value_type (val), value_contents (val)); |
c906108c SS |
973 | } |
974 | ||
975 | DOUBLEST | |
f23631e4 | 976 | value_as_double (struct value *val) |
c906108c SS |
977 | { |
978 | DOUBLEST foo; | |
979 | int inv; | |
c5aa993b | 980 | |
0fd88904 | 981 | foo = unpack_double (value_type (val), value_contents (val), &inv); |
c906108c | 982 | if (inv) |
8a3fe4f8 | 983 | error (_("Invalid floating value found in program.")); |
c906108c SS |
984 | return foo; |
985 | } | |
4ef30785 | 986 | |
4478b372 JB |
987 | /* Extract a value as a C pointer. Does not deallocate the value. |
988 | Note that val's type may not actually be a pointer; value_as_long | |
989 | handles all the cases. */ | |
c906108c | 990 | CORE_ADDR |
f23631e4 | 991 | value_as_address (struct value *val) |
c906108c SS |
992 | { |
993 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
994 | whether we want this to be true eventually. */ | |
995 | #if 0 | |
bf6ae464 | 996 | /* gdbarch_addr_bits_remove is wrong if we are being called for a |
c906108c SS |
997 | non-address (e.g. argument to "signal", "info break", etc.), or |
998 | for pointers to char, in which the low bits *are* significant. */ | |
bf6ae464 | 999 | return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val)); |
c906108c | 1000 | #else |
f312f057 JB |
1001 | |
1002 | /* There are several targets (IA-64, PowerPC, and others) which | |
1003 | don't represent pointers to functions as simply the address of | |
1004 | the function's entry point. For example, on the IA-64, a | |
1005 | function pointer points to a two-word descriptor, generated by | |
1006 | the linker, which contains the function's entry point, and the | |
1007 | value the IA-64 "global pointer" register should have --- to | |
1008 | support position-independent code. The linker generates | |
1009 | descriptors only for those functions whose addresses are taken. | |
1010 | ||
1011 | On such targets, it's difficult for GDB to convert an arbitrary | |
1012 | function address into a function pointer; it has to either find | |
1013 | an existing descriptor for that function, or call malloc and | |
1014 | build its own. On some targets, it is impossible for GDB to | |
1015 | build a descriptor at all: the descriptor must contain a jump | |
1016 | instruction; data memory cannot be executed; and code memory | |
1017 | cannot be modified. | |
1018 | ||
1019 | Upon entry to this function, if VAL is a value of type `function' | |
1020 | (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then | |
1021 | VALUE_ADDRESS (val) is the address of the function. This is what | |
1022 | you'll get if you evaluate an expression like `main'. The call | |
1023 | to COERCE_ARRAY below actually does all the usual unary | |
1024 | conversions, which includes converting values of type `function' | |
1025 | to `pointer to function'. This is the challenging conversion | |
1026 | discussed above. Then, `unpack_long' will convert that pointer | |
1027 | back into an address. | |
1028 | ||
1029 | So, suppose the user types `disassemble foo' on an architecture | |
1030 | with a strange function pointer representation, on which GDB | |
1031 | cannot build its own descriptors, and suppose further that `foo' | |
1032 | has no linker-built descriptor. The address->pointer conversion | |
1033 | will signal an error and prevent the command from running, even | |
1034 | though the next step would have been to convert the pointer | |
1035 | directly back into the same address. | |
1036 | ||
1037 | The following shortcut avoids this whole mess. If VAL is a | |
1038 | function, just return its address directly. */ | |
df407dfe AC |
1039 | if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC |
1040 | || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD) | |
f312f057 JB |
1041 | return VALUE_ADDRESS (val); |
1042 | ||
994b9211 | 1043 | val = coerce_array (val); |
fc0c74b1 AC |
1044 | |
1045 | /* Some architectures (e.g. Harvard), map instruction and data | |
1046 | addresses onto a single large unified address space. For | |
1047 | instance: An architecture may consider a large integer in the | |
1048 | range 0x10000000 .. 0x1000ffff to already represent a data | |
1049 | addresses (hence not need a pointer to address conversion) while | |
1050 | a small integer would still need to be converted integer to | |
1051 | pointer to address. Just assume such architectures handle all | |
1052 | integer conversions in a single function. */ | |
1053 | ||
1054 | /* JimB writes: | |
1055 | ||
1056 | I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we | |
1057 | must admonish GDB hackers to make sure its behavior matches the | |
1058 | compiler's, whenever possible. | |
1059 | ||
1060 | In general, I think GDB should evaluate expressions the same way | |
1061 | the compiler does. When the user copies an expression out of | |
1062 | their source code and hands it to a `print' command, they should | |
1063 | get the same value the compiler would have computed. Any | |
1064 | deviation from this rule can cause major confusion and annoyance, | |
1065 | and needs to be justified carefully. In other words, GDB doesn't | |
1066 | really have the freedom to do these conversions in clever and | |
1067 | useful ways. | |
1068 | ||
1069 | AndrewC pointed out that users aren't complaining about how GDB | |
1070 | casts integers to pointers; they are complaining that they can't | |
1071 | take an address from a disassembly listing and give it to `x/i'. | |
1072 | This is certainly important. | |
1073 | ||
79dd2d24 | 1074 | Adding an architecture method like integer_to_address() certainly |
fc0c74b1 AC |
1075 | makes it possible for GDB to "get it right" in all circumstances |
1076 | --- the target has complete control over how things get done, so | |
1077 | people can Do The Right Thing for their target without breaking | |
1078 | anyone else. The standard doesn't specify how integers get | |
1079 | converted to pointers; usually, the ABI doesn't either, but | |
1080 | ABI-specific code is a more reasonable place to handle it. */ | |
1081 | ||
df407dfe AC |
1082 | if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR |
1083 | && TYPE_CODE (value_type (val)) != TYPE_CODE_REF | |
79dd2d24 AC |
1084 | && gdbarch_integer_to_address_p (current_gdbarch)) |
1085 | return gdbarch_integer_to_address (current_gdbarch, value_type (val), | |
0fd88904 | 1086 | value_contents (val)); |
fc0c74b1 | 1087 | |
0fd88904 | 1088 | return unpack_long (value_type (val), value_contents (val)); |
c906108c SS |
1089 | #endif |
1090 | } | |
1091 | \f | |
1092 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
1093 | as a long, or as a double, assuming the raw data is described | |
1094 | by type TYPE. Knows how to convert different sizes of values | |
1095 | and can convert between fixed and floating point. We don't assume | |
1096 | any alignment for the raw data. Return value is in host byte order. | |
1097 | ||
1098 | If you want functions and arrays to be coerced to pointers, and | |
1099 | references to be dereferenced, call value_as_long() instead. | |
1100 | ||
1101 | C++: It is assumed that the front-end has taken care of | |
1102 | all matters concerning pointers to members. A pointer | |
1103 | to member which reaches here is considered to be equivalent | |
1104 | to an INT (or some size). After all, it is only an offset. */ | |
1105 | ||
1106 | LONGEST | |
fc1a4b47 | 1107 | unpack_long (struct type *type, const gdb_byte *valaddr) |
c906108c | 1108 | { |
52f0bd74 AC |
1109 | enum type_code code = TYPE_CODE (type); |
1110 | int len = TYPE_LENGTH (type); | |
1111 | int nosign = TYPE_UNSIGNED (type); | |
c906108c | 1112 | |
c906108c SS |
1113 | switch (code) |
1114 | { | |
1115 | case TYPE_CODE_TYPEDEF: | |
1116 | return unpack_long (check_typedef (type), valaddr); | |
1117 | case TYPE_CODE_ENUM: | |
4f2aea11 | 1118 | case TYPE_CODE_FLAGS: |
c906108c SS |
1119 | case TYPE_CODE_BOOL: |
1120 | case TYPE_CODE_INT: | |
1121 | case TYPE_CODE_CHAR: | |
1122 | case TYPE_CODE_RANGE: | |
0d5de010 | 1123 | case TYPE_CODE_MEMBERPTR: |
c906108c SS |
1124 | if (nosign) |
1125 | return extract_unsigned_integer (valaddr, len); | |
1126 | else | |
1127 | return extract_signed_integer (valaddr, len); | |
1128 | ||
1129 | case TYPE_CODE_FLT: | |
96d2f608 | 1130 | return extract_typed_floating (valaddr, type); |
c906108c | 1131 | |
4ef30785 TJB |
1132 | case TYPE_CODE_DECFLOAT: |
1133 | /* libdecnumber has a function to convert from decimal to integer, but | |
1134 | it doesn't work when the decimal number has a fractional part. */ | |
ba759613 | 1135 | return decimal_to_doublest (valaddr, len); |
4ef30785 | 1136 | |
c906108c SS |
1137 | case TYPE_CODE_PTR: |
1138 | case TYPE_CODE_REF: | |
1139 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
c5aa993b | 1140 | whether we want this to be true eventually. */ |
4478b372 | 1141 | return extract_typed_address (valaddr, type); |
c906108c | 1142 | |
c906108c | 1143 | default: |
8a3fe4f8 | 1144 | error (_("Value can't be converted to integer.")); |
c906108c | 1145 | } |
c5aa993b | 1146 | return 0; /* Placate lint. */ |
c906108c SS |
1147 | } |
1148 | ||
1149 | /* Return a double value from the specified type and address. | |
1150 | INVP points to an int which is set to 0 for valid value, | |
1151 | 1 for invalid value (bad float format). In either case, | |
1152 | the returned double is OK to use. Argument is in target | |
1153 | format, result is in host format. */ | |
1154 | ||
1155 | DOUBLEST | |
fc1a4b47 | 1156 | unpack_double (struct type *type, const gdb_byte *valaddr, int *invp) |
c906108c SS |
1157 | { |
1158 | enum type_code code; | |
1159 | int len; | |
1160 | int nosign; | |
1161 | ||
1162 | *invp = 0; /* Assume valid. */ | |
1163 | CHECK_TYPEDEF (type); | |
1164 | code = TYPE_CODE (type); | |
1165 | len = TYPE_LENGTH (type); | |
1166 | nosign = TYPE_UNSIGNED (type); | |
1167 | if (code == TYPE_CODE_FLT) | |
1168 | { | |
75bc7ddf AC |
1169 | /* NOTE: cagney/2002-02-19: There was a test here to see if the |
1170 | floating-point value was valid (using the macro | |
1171 | INVALID_FLOAT). That test/macro have been removed. | |
1172 | ||
1173 | It turns out that only the VAX defined this macro and then | |
1174 | only in a non-portable way. Fixing the portability problem | |
1175 | wouldn't help since the VAX floating-point code is also badly | |
1176 | bit-rotten. The target needs to add definitions for the | |
ea06eb3d | 1177 | methods gdbarch_float_format and gdbarch_double_format - these |
75bc7ddf AC |
1178 | exactly describe the target floating-point format. The |
1179 | problem here is that the corresponding floatformat_vax_f and | |
1180 | floatformat_vax_d values these methods should be set to are | |
1181 | also not defined either. Oops! | |
1182 | ||
1183 | Hopefully someone will add both the missing floatformat | |
ac79b88b DJ |
1184 | definitions and the new cases for floatformat_is_valid (). */ |
1185 | ||
1186 | if (!floatformat_is_valid (floatformat_from_type (type), valaddr)) | |
1187 | { | |
1188 | *invp = 1; | |
1189 | return 0.0; | |
1190 | } | |
1191 | ||
96d2f608 | 1192 | return extract_typed_floating (valaddr, type); |
c906108c | 1193 | } |
4ef30785 | 1194 | else if (code == TYPE_CODE_DECFLOAT) |
ba759613 | 1195 | return decimal_to_doublest (valaddr, len); |
c906108c SS |
1196 | else if (nosign) |
1197 | { | |
1198 | /* Unsigned -- be sure we compensate for signed LONGEST. */ | |
c906108c | 1199 | return (ULONGEST) unpack_long (type, valaddr); |
c906108c SS |
1200 | } |
1201 | else | |
1202 | { | |
1203 | /* Signed -- we are OK with unpack_long. */ | |
1204 | return unpack_long (type, valaddr); | |
1205 | } | |
1206 | } | |
1207 | ||
1208 | /* Unpack raw data (copied from debugee, target byte order) at VALADDR | |
1209 | as a CORE_ADDR, assuming the raw data is described by type TYPE. | |
1210 | We don't assume any alignment for the raw data. Return value is in | |
1211 | host byte order. | |
1212 | ||
1213 | If you want functions and arrays to be coerced to pointers, and | |
1aa20aa8 | 1214 | references to be dereferenced, call value_as_address() instead. |
c906108c SS |
1215 | |
1216 | C++: It is assumed that the front-end has taken care of | |
1217 | all matters concerning pointers to members. A pointer | |
1218 | to member which reaches here is considered to be equivalent | |
1219 | to an INT (or some size). After all, it is only an offset. */ | |
1220 | ||
1221 | CORE_ADDR | |
fc1a4b47 | 1222 | unpack_pointer (struct type *type, const gdb_byte *valaddr) |
c906108c SS |
1223 | { |
1224 | /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure | |
1225 | whether we want this to be true eventually. */ | |
1226 | return unpack_long (type, valaddr); | |
1227 | } | |
4478b372 | 1228 | |
c906108c | 1229 | \f |
2c2738a0 DC |
1230 | /* Get the value of the FIELDN'th field (which must be static) of |
1231 | TYPE. Return NULL if the field doesn't exist or has been | |
1232 | optimized out. */ | |
c906108c | 1233 | |
f23631e4 | 1234 | struct value * |
fba45db2 | 1235 | value_static_field (struct type *type, int fieldno) |
c906108c | 1236 | { |
948e66d9 DJ |
1237 | struct value *retval; |
1238 | ||
c906108c SS |
1239 | if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno)) |
1240 | { | |
948e66d9 | 1241 | retval = value_at (TYPE_FIELD_TYPE (type, fieldno), |
00a4c844 | 1242 | TYPE_FIELD_STATIC_PHYSADDR (type, fieldno)); |
c906108c SS |
1243 | } |
1244 | else | |
1245 | { | |
1246 | char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno); | |
2570f2b7 | 1247 | struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0); |
948e66d9 | 1248 | if (sym == NULL) |
c906108c SS |
1249 | { |
1250 | /* With some compilers, e.g. HP aCC, static data members are reported | |
c5aa993b JM |
1251 | as non-debuggable symbols */ |
1252 | struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL); | |
c906108c SS |
1253 | if (!msym) |
1254 | return NULL; | |
1255 | else | |
c5aa993b | 1256 | { |
948e66d9 | 1257 | retval = value_at (TYPE_FIELD_TYPE (type, fieldno), |
00a4c844 | 1258 | SYMBOL_VALUE_ADDRESS (msym)); |
c906108c SS |
1259 | } |
1260 | } | |
1261 | else | |
1262 | { | |
948e66d9 DJ |
1263 | /* SYM should never have a SYMBOL_CLASS which will require |
1264 | read_var_value to use the FRAME parameter. */ | |
1265 | if (symbol_read_needs_frame (sym)) | |
8a3fe4f8 AC |
1266 | warning (_("static field's value depends on the current " |
1267 | "frame - bad debug info?")); | |
948e66d9 | 1268 | retval = read_var_value (sym, NULL); |
2b127877 | 1269 | } |
948e66d9 DJ |
1270 | if (retval && VALUE_LVAL (retval) == lval_memory) |
1271 | SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), | |
1272 | VALUE_ADDRESS (retval)); | |
c906108c | 1273 | } |
948e66d9 | 1274 | return retval; |
c906108c SS |
1275 | } |
1276 | ||
2b127877 DB |
1277 | /* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE. |
1278 | You have to be careful here, since the size of the data area for the value | |
1279 | is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger | |
1280 | than the old enclosing type, you have to allocate more space for the data. | |
1281 | The return value is a pointer to the new version of this value structure. */ | |
1282 | ||
f23631e4 AC |
1283 | struct value * |
1284 | value_change_enclosing_type (struct value *val, struct type *new_encl_type) | |
2b127877 | 1285 | { |
4754a64e | 1286 | if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val))) |
2b127877 | 1287 | { |
4754a64e | 1288 | val->enclosing_type = new_encl_type; |
2b127877 DB |
1289 | return val; |
1290 | } | |
1291 | else | |
1292 | { | |
f23631e4 AC |
1293 | struct value *new_val; |
1294 | struct value *prev; | |
2b127877 | 1295 | |
f23631e4 | 1296 | new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type)); |
cc303028 | 1297 | |
4754a64e | 1298 | new_val->enclosing_type = new_encl_type; |
cc303028 | 1299 | |
2b127877 DB |
1300 | /* We have to make sure this ends up in the same place in the value |
1301 | chain as the original copy, so it's clean-up behavior is the same. | |
1302 | If the value has been released, this is a waste of time, but there | |
1303 | is no way to tell that in advance, so... */ | |
1304 | ||
1305 | if (val != all_values) | |
1306 | { | |
1307 | for (prev = all_values; prev != NULL; prev = prev->next) | |
1308 | { | |
1309 | if (prev->next == val) | |
1310 | { | |
1311 | prev->next = new_val; | |
1312 | break; | |
1313 | } | |
1314 | } | |
1315 | } | |
1316 | ||
1317 | return new_val; | |
1318 | } | |
1319 | } | |
1320 | ||
c906108c SS |
1321 | /* Given a value ARG1 (offset by OFFSET bytes) |
1322 | of a struct or union type ARG_TYPE, | |
1323 | extract and return the value of one of its (non-static) fields. | |
1324 | FIELDNO says which field. */ | |
1325 | ||
f23631e4 AC |
1326 | struct value * |
1327 | value_primitive_field (struct value *arg1, int offset, | |
aa1ee363 | 1328 | int fieldno, struct type *arg_type) |
c906108c | 1329 | { |
f23631e4 | 1330 | struct value *v; |
52f0bd74 | 1331 | struct type *type; |
c906108c SS |
1332 | |
1333 | CHECK_TYPEDEF (arg_type); | |
1334 | type = TYPE_FIELD_TYPE (arg_type, fieldno); | |
1335 | ||
1336 | /* Handle packed fields */ | |
1337 | ||
1338 | if (TYPE_FIELD_BITSIZE (arg_type, fieldno)) | |
1339 | { | |
1340 | v = value_from_longest (type, | |
1341 | unpack_field_as_long (arg_type, | |
0fd88904 | 1342 | value_contents (arg1) |
c5aa993b | 1343 | + offset, |
c906108c | 1344 | fieldno)); |
df407dfe AC |
1345 | v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8; |
1346 | v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno); | |
1347 | v->offset = value_offset (arg1) + offset | |
2e70b7b9 | 1348 | + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; |
c906108c SS |
1349 | } |
1350 | else if (fieldno < TYPE_N_BASECLASSES (arg_type)) | |
1351 | { | |
1352 | /* This field is actually a base subobject, so preserve the | |
1353 | entire object's contents for later references to virtual | |
1354 | bases, etc. */ | |
4754a64e | 1355 | v = allocate_value (value_enclosing_type (arg1)); |
df407dfe | 1356 | v->type = type; |
a4e2ee12 DJ |
1357 | |
1358 | /* Lazy register values with offsets are not supported. */ | |
1359 | if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) | |
1360 | value_fetch_lazy (arg1); | |
1361 | ||
1362 | if (value_lazy (arg1)) | |
dfa52d88 | 1363 | set_value_lazy (v, 1); |
c906108c | 1364 | else |
990a07ab | 1365 | memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1), |
4754a64e | 1366 | TYPE_LENGTH (value_enclosing_type (arg1))); |
df407dfe | 1367 | v->offset = value_offset (arg1); |
13c3b5f5 AC |
1368 | v->embedded_offset = (offset + value_embedded_offset (arg1) |
1369 | + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8); | |
c906108c SS |
1370 | } |
1371 | else | |
1372 | { | |
1373 | /* Plain old data member */ | |
1374 | offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; | |
1375 | v = allocate_value (type); | |
a4e2ee12 DJ |
1376 | |
1377 | /* Lazy register values with offsets are not supported. */ | |
1378 | if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1)) | |
1379 | value_fetch_lazy (arg1); | |
1380 | ||
1381 | if (value_lazy (arg1)) | |
dfa52d88 | 1382 | set_value_lazy (v, 1); |
c906108c | 1383 | else |
990a07ab AC |
1384 | memcpy (value_contents_raw (v), |
1385 | value_contents_raw (arg1) + offset, | |
c906108c | 1386 | TYPE_LENGTH (type)); |
df407dfe | 1387 | v->offset = (value_offset (arg1) + offset |
13c3b5f5 | 1388 | + value_embedded_offset (arg1)); |
c906108c SS |
1389 | } |
1390 | VALUE_LVAL (v) = VALUE_LVAL (arg1); | |
1391 | if (VALUE_LVAL (arg1) == lval_internalvar) | |
1392 | VALUE_LVAL (v) = lval_internalvar_component; | |
7d85ee02 | 1393 | v->location = arg1->location; |
9ee8fc9d | 1394 | VALUE_REGNUM (v) = VALUE_REGNUM (arg1); |
0c16dd26 | 1395 | VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1); |
c906108c SS |
1396 | return v; |
1397 | } | |
1398 | ||
1399 | /* Given a value ARG1 of a struct or union type, | |
1400 | extract and return the value of one of its (non-static) fields. | |
1401 | FIELDNO says which field. */ | |
1402 | ||
f23631e4 | 1403 | struct value * |
aa1ee363 | 1404 | value_field (struct value *arg1, int fieldno) |
c906108c | 1405 | { |
df407dfe | 1406 | return value_primitive_field (arg1, 0, fieldno, value_type (arg1)); |
c906108c SS |
1407 | } |
1408 | ||
1409 | /* Return a non-virtual function as a value. | |
1410 | F is the list of member functions which contains the desired method. | |
0478d61c FF |
1411 | J is an index into F which provides the desired method. |
1412 | ||
1413 | We only use the symbol for its address, so be happy with either a | |
1414 | full symbol or a minimal symbol. | |
1415 | */ | |
c906108c | 1416 | |
f23631e4 AC |
1417 | struct value * |
1418 | value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type, | |
fba45db2 | 1419 | int offset) |
c906108c | 1420 | { |
f23631e4 | 1421 | struct value *v; |
52f0bd74 | 1422 | struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); |
0478d61c | 1423 | char *physname = TYPE_FN_FIELD_PHYSNAME (f, j); |
c906108c | 1424 | struct symbol *sym; |
0478d61c | 1425 | struct minimal_symbol *msym; |
c906108c | 1426 | |
2570f2b7 | 1427 | sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0); |
5ae326fa | 1428 | if (sym != NULL) |
0478d61c | 1429 | { |
5ae326fa AC |
1430 | msym = NULL; |
1431 | } | |
1432 | else | |
1433 | { | |
1434 | gdb_assert (sym == NULL); | |
0478d61c | 1435 | msym = lookup_minimal_symbol (physname, NULL, NULL); |
5ae326fa AC |
1436 | if (msym == NULL) |
1437 | return NULL; | |
0478d61c FF |
1438 | } |
1439 | ||
c906108c | 1440 | v = allocate_value (ftype); |
0478d61c FF |
1441 | if (sym) |
1442 | { | |
1443 | VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym)); | |
1444 | } | |
1445 | else | |
1446 | { | |
bccdca4a UW |
1447 | /* The minimal symbol might point to a function descriptor; |
1448 | resolve it to the actual code address instead. */ | |
1449 | struct objfile *objfile = msymbol_objfile (msym); | |
1450 | struct gdbarch *gdbarch = get_objfile_arch (objfile); | |
1451 | ||
1452 | VALUE_ADDRESS (v) | |
1453 | = gdbarch_convert_from_func_ptr_addr | |
1454 | (gdbarch, SYMBOL_VALUE_ADDRESS (msym), ¤t_target); | |
0478d61c | 1455 | } |
c906108c SS |
1456 | |
1457 | if (arg1p) | |
c5aa993b | 1458 | { |
df407dfe | 1459 | if (type != value_type (*arg1p)) |
c5aa993b JM |
1460 | *arg1p = value_ind (value_cast (lookup_pointer_type (type), |
1461 | value_addr (*arg1p))); | |
1462 | ||
070ad9f0 | 1463 | /* Move the `this' pointer according to the offset. |
c5aa993b JM |
1464 | VALUE_OFFSET (*arg1p) += offset; |
1465 | */ | |
c906108c SS |
1466 | } |
1467 | ||
1468 | return v; | |
1469 | } | |
1470 | ||
c906108c SS |
1471 | \f |
1472 | /* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at | |
1473 | VALADDR. | |
1474 | ||
1475 | Extracting bits depends on endianness of the machine. Compute the | |
1476 | number of least significant bits to discard. For big endian machines, | |
1477 | we compute the total number of bits in the anonymous object, subtract | |
1478 | off the bit count from the MSB of the object to the MSB of the | |
1479 | bitfield, then the size of the bitfield, which leaves the LSB discard | |
1480 | count. For little endian machines, the discard count is simply the | |
1481 | number of bits from the LSB of the anonymous object to the LSB of the | |
1482 | bitfield. | |
1483 | ||
1484 | If the field is signed, we also do sign extension. */ | |
1485 | ||
1486 | LONGEST | |
fc1a4b47 | 1487 | unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno) |
c906108c SS |
1488 | { |
1489 | ULONGEST val; | |
1490 | ULONGEST valmask; | |
1491 | int bitpos = TYPE_FIELD_BITPOS (type, fieldno); | |
1492 | int bitsize = TYPE_FIELD_BITSIZE (type, fieldno); | |
1493 | int lsbcount; | |
1494 | struct type *field_type; | |
1495 | ||
1496 | val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val)); | |
1497 | field_type = TYPE_FIELD_TYPE (type, fieldno); | |
1498 | CHECK_TYPEDEF (field_type); | |
1499 | ||
1500 | /* Extract bits. See comment above. */ | |
1501 | ||
32c9a795 | 1502 | if (gdbarch_bits_big_endian (current_gdbarch)) |
c906108c SS |
1503 | lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize); |
1504 | else | |
1505 | lsbcount = (bitpos % 8); | |
1506 | val >>= lsbcount; | |
1507 | ||
1508 | /* If the field does not entirely fill a LONGEST, then zero the sign bits. | |
1509 | If the field is signed, and is negative, then sign extend. */ | |
1510 | ||
1511 | if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val))) | |
1512 | { | |
1513 | valmask = (((ULONGEST) 1) << bitsize) - 1; | |
1514 | val &= valmask; | |
1515 | if (!TYPE_UNSIGNED (field_type)) | |
1516 | { | |
1517 | if (val & (valmask ^ (valmask >> 1))) | |
1518 | { | |
1519 | val |= ~valmask; | |
1520 | } | |
1521 | } | |
1522 | } | |
1523 | return (val); | |
1524 | } | |
1525 | ||
1526 | /* Modify the value of a bitfield. ADDR points to a block of memory in | |
1527 | target byte order; the bitfield starts in the byte pointed to. FIELDVAL | |
1528 | is the desired value of the field, in host byte order. BITPOS and BITSIZE | |
f4e88c8e PH |
1529 | indicate which bits (in target bit order) comprise the bitfield. |
1530 | Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and | |
1531 | 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */ | |
c906108c SS |
1532 | |
1533 | void | |
fc1a4b47 | 1534 | modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize) |
c906108c | 1535 | { |
f4e88c8e PH |
1536 | ULONGEST oword; |
1537 | ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize); | |
c906108c SS |
1538 | |
1539 | /* If a negative fieldval fits in the field in question, chop | |
1540 | off the sign extension bits. */ | |
f4e88c8e PH |
1541 | if ((~fieldval & ~(mask >> 1)) == 0) |
1542 | fieldval &= mask; | |
c906108c SS |
1543 | |
1544 | /* Warn if value is too big to fit in the field in question. */ | |
f4e88c8e | 1545 | if (0 != (fieldval & ~mask)) |
c906108c SS |
1546 | { |
1547 | /* FIXME: would like to include fieldval in the message, but | |
c5aa993b | 1548 | we don't have a sprintf_longest. */ |
8a3fe4f8 | 1549 | warning (_("Value does not fit in %d bits."), bitsize); |
c906108c SS |
1550 | |
1551 | /* Truncate it, otherwise adjoining fields may be corrupted. */ | |
f4e88c8e | 1552 | fieldval &= mask; |
c906108c SS |
1553 | } |
1554 | ||
f4e88c8e | 1555 | oword = extract_unsigned_integer (addr, sizeof oword); |
c906108c SS |
1556 | |
1557 | /* Shifting for bit field depends on endianness of the target machine. */ | |
32c9a795 | 1558 | if (gdbarch_bits_big_endian (current_gdbarch)) |
c906108c SS |
1559 | bitpos = sizeof (oword) * 8 - bitpos - bitsize; |
1560 | ||
f4e88c8e | 1561 | oword &= ~(mask << bitpos); |
c906108c SS |
1562 | oword |= fieldval << bitpos; |
1563 | ||
f4e88c8e | 1564 | store_unsigned_integer (addr, sizeof oword, oword); |
c906108c SS |
1565 | } |
1566 | \f | |
14d06750 | 1567 | /* Pack NUM into BUF using a target format of TYPE. */ |
c906108c | 1568 | |
14d06750 DJ |
1569 | void |
1570 | pack_long (gdb_byte *buf, struct type *type, LONGEST num) | |
c906108c | 1571 | { |
52f0bd74 | 1572 | int len; |
14d06750 DJ |
1573 | |
1574 | type = check_typedef (type); | |
c906108c SS |
1575 | len = TYPE_LENGTH (type); |
1576 | ||
14d06750 | 1577 | switch (TYPE_CODE (type)) |
c906108c | 1578 | { |
c906108c SS |
1579 | case TYPE_CODE_INT: |
1580 | case TYPE_CODE_CHAR: | |
1581 | case TYPE_CODE_ENUM: | |
4f2aea11 | 1582 | case TYPE_CODE_FLAGS: |
c906108c SS |
1583 | case TYPE_CODE_BOOL: |
1584 | case TYPE_CODE_RANGE: | |
0d5de010 | 1585 | case TYPE_CODE_MEMBERPTR: |
14d06750 | 1586 | store_signed_integer (buf, len, num); |
c906108c | 1587 | break; |
c5aa993b | 1588 | |
c906108c SS |
1589 | case TYPE_CODE_REF: |
1590 | case TYPE_CODE_PTR: | |
14d06750 | 1591 | store_typed_address (buf, type, (CORE_ADDR) num); |
c906108c | 1592 | break; |
c5aa993b | 1593 | |
c906108c | 1594 | default: |
14d06750 DJ |
1595 | error (_("Unexpected type (%d) encountered for integer constant."), |
1596 | TYPE_CODE (type)); | |
c906108c | 1597 | } |
14d06750 DJ |
1598 | } |
1599 | ||
1600 | ||
1601 | /* Convert C numbers into newly allocated values. */ | |
1602 | ||
1603 | struct value * | |
1604 | value_from_longest (struct type *type, LONGEST num) | |
1605 | { | |
1606 | struct value *val = allocate_value (type); | |
1607 | ||
1608 | pack_long (value_contents_raw (val), type, num); | |
1609 | ||
c906108c SS |
1610 | return val; |
1611 | } | |
1612 | ||
4478b372 JB |
1613 | |
1614 | /* Create a value representing a pointer of type TYPE to the address | |
1615 | ADDR. */ | |
f23631e4 | 1616 | struct value * |
4478b372 JB |
1617 | value_from_pointer (struct type *type, CORE_ADDR addr) |
1618 | { | |
f23631e4 | 1619 | struct value *val = allocate_value (type); |
990a07ab | 1620 | store_typed_address (value_contents_raw (val), type, addr); |
4478b372 JB |
1621 | return val; |
1622 | } | |
1623 | ||
1624 | ||
0f71a2f6 | 1625 | /* Create a value for a string constant to be stored locally |
070ad9f0 | 1626 | (not in the inferior's memory space, but in GDB memory). |
0f71a2f6 JM |
1627 | This is analogous to value_from_longest, which also does not |
1628 | use inferior memory. String shall NOT contain embedded nulls. */ | |
1629 | ||
f23631e4 | 1630 | struct value * |
fba45db2 | 1631 | value_from_string (char *ptr) |
0f71a2f6 | 1632 | { |
f23631e4 | 1633 | struct value *val; |
c5aa993b | 1634 | int len = strlen (ptr); |
0f71a2f6 | 1635 | int lowbound = current_language->string_lower_bound; |
f290d38e AC |
1636 | struct type *string_char_type; |
1637 | struct type *rangetype; | |
1638 | struct type *stringtype; | |
1639 | ||
1640 | rangetype = create_range_type ((struct type *) NULL, | |
6d84d3d8 | 1641 | builtin_type_int32, |
f290d38e AC |
1642 | lowbound, len + lowbound - 1); |
1643 | string_char_type = language_string_char_type (current_language, | |
1644 | current_gdbarch); | |
1645 | stringtype = create_array_type ((struct type *) NULL, | |
1646 | string_char_type, | |
1647 | rangetype); | |
0f71a2f6 | 1648 | val = allocate_value (stringtype); |
990a07ab | 1649 | memcpy (value_contents_raw (val), ptr, len); |
0f71a2f6 JM |
1650 | return val; |
1651 | } | |
1652 | ||
f23631e4 | 1653 | struct value * |
fba45db2 | 1654 | value_from_double (struct type *type, DOUBLEST num) |
c906108c | 1655 | { |
f23631e4 | 1656 | struct value *val = allocate_value (type); |
c906108c | 1657 | struct type *base_type = check_typedef (type); |
52f0bd74 AC |
1658 | enum type_code code = TYPE_CODE (base_type); |
1659 | int len = TYPE_LENGTH (base_type); | |
c906108c SS |
1660 | |
1661 | if (code == TYPE_CODE_FLT) | |
1662 | { | |
990a07ab | 1663 | store_typed_floating (value_contents_raw (val), base_type, num); |
c906108c SS |
1664 | } |
1665 | else | |
8a3fe4f8 | 1666 | error (_("Unexpected type encountered for floating constant.")); |
c906108c SS |
1667 | |
1668 | return val; | |
1669 | } | |
994b9211 | 1670 | |
27bc4d80 | 1671 | struct value * |
4ef30785 | 1672 | value_from_decfloat (struct type *type, const gdb_byte *dec) |
27bc4d80 TJB |
1673 | { |
1674 | struct value *val = allocate_value (type); | |
27bc4d80 | 1675 | |
4ef30785 | 1676 | memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type)); |
27bc4d80 | 1677 | |
27bc4d80 TJB |
1678 | return val; |
1679 | } | |
1680 | ||
994b9211 AC |
1681 | struct value * |
1682 | coerce_ref (struct value *arg) | |
1683 | { | |
df407dfe | 1684 | struct type *value_type_arg_tmp = check_typedef (value_type (arg)); |
994b9211 AC |
1685 | if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF) |
1686 | arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp), | |
df407dfe | 1687 | unpack_pointer (value_type (arg), |
0fd88904 | 1688 | value_contents (arg))); |
994b9211 AC |
1689 | return arg; |
1690 | } | |
1691 | ||
1692 | struct value * | |
1693 | coerce_array (struct value *arg) | |
1694 | { | |
1695 | arg = coerce_ref (arg); | |
1696 | if (current_language->c_style_arrays | |
df407dfe | 1697 | && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY) |
994b9211 | 1698 | arg = value_coerce_array (arg); |
df407dfe | 1699 | if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC) |
994b9211 | 1700 | arg = value_coerce_function (arg); |
994b9211 AC |
1701 | return arg; |
1702 | } | |
c906108c | 1703 | \f |
c906108c | 1704 | |
48436ce6 AC |
1705 | /* Return true if the function returning the specified type is using |
1706 | the convention of returning structures in memory (passing in the | |
82585c72 | 1707 | address as a hidden first parameter). */ |
c906108c SS |
1708 | |
1709 | int | |
c055b101 | 1710 | using_struct_return (struct type *func_type, struct type *value_type) |
c906108c | 1711 | { |
52f0bd74 | 1712 | enum type_code code = TYPE_CODE (value_type); |
c906108c SS |
1713 | |
1714 | if (code == TYPE_CODE_ERROR) | |
8a3fe4f8 | 1715 | error (_("Function return type unknown.")); |
c906108c | 1716 | |
667e784f AC |
1717 | if (code == TYPE_CODE_VOID) |
1718 | /* A void return value is never in memory. See also corresponding | |
44e5158b | 1719 | code in "print_return_value". */ |
667e784f AC |
1720 | return 0; |
1721 | ||
92ad9cd9 | 1722 | /* Probe the architecture for the return-value convention. */ |
c055b101 | 1723 | return (gdbarch_return_value (current_gdbarch, func_type, value_type, |
92ad9cd9 | 1724 | NULL, NULL, NULL) |
31db7b6c | 1725 | != RETURN_VALUE_REGISTER_CONVENTION); |
c906108c SS |
1726 | } |
1727 | ||
42be36b3 CT |
1728 | /* Set the initialized field in a value struct. */ |
1729 | ||
1730 | void | |
1731 | set_value_initialized (struct value *val, int status) | |
1732 | { | |
1733 | val->initialized = status; | |
1734 | } | |
1735 | ||
1736 | /* Return the initialized field in a value struct. */ | |
1737 | ||
1738 | int | |
1739 | value_initialized (struct value *val) | |
1740 | { | |
1741 | return val->initialized; | |
1742 | } | |
1743 | ||
c906108c | 1744 | void |
fba45db2 | 1745 | _initialize_values (void) |
c906108c | 1746 | { |
1a966eab AC |
1747 | add_cmd ("convenience", no_class, show_convenience, _("\ |
1748 | Debugger convenience (\"$foo\") variables.\n\ | |
c906108c | 1749 | These variables are created when you assign them values;\n\ |
1a966eab AC |
1750 | thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\ |
1751 | \n\ | |
c906108c SS |
1752 | A few convenience variables are given values automatically:\n\ |
1753 | \"$_\"holds the last address examined with \"x\" or \"info lines\",\n\ | |
1a966eab | 1754 | \"$__\" holds the contents of the last address examined with \"x\"."), |
c906108c SS |
1755 | &showlist); |
1756 | ||
1757 | add_cmd ("values", no_class, show_values, | |
1a966eab | 1758 | _("Elements of value history around item number IDX (or last ten)."), |
c906108c | 1759 | &showlist); |
53e5f3cf AS |
1760 | |
1761 | add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\ | |
1762 | Initialize a convenience variable if necessary.\n\ | |
1763 | init-if-undefined VARIABLE = EXPRESSION\n\ | |
1764 | Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\ | |
1765 | exist or does not contain a value. The EXPRESSION is not evaluated if the\n\ | |
1766 | VARIABLE is already initialized.")); | |
c906108c | 1767 | } |