2010-07-07 Sergio Durigan Junior <sergiodj@linux.vnet.ibm.com>
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75 4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 5 2009, 2010 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
c906108c
SS
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
c906108c
SS
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
c906108c 33#include "demangle.h"
d16aafd8 34#include "doublest.h"
5ae326fa 35#include "gdb_assert.h"
36160dc4 36#include "regcache.h"
fe898f56 37#include "block.h"
27bc4d80 38#include "dfp.h"
bccdca4a 39#include "objfiles.h"
79a45b7d 40#include "valprint.h"
bc3b79fd 41#include "cli/cli-decode.h"
c906108c 42
a08702d6
TJB
43#include "python/python.h"
44
c906108c
SS
45/* Prototypes for exported functions. */
46
a14ed312 47void _initialize_values (void);
c906108c 48
bc3b79fd
TJB
49/* Definition of a user function. */
50struct internal_function
51{
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62};
63
64static struct cmd_list_element *functionlist;
65
91294c83
AC
66struct value
67{
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
5f5233d4
PA
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
91294c83
AC
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
32c9a795
MD
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
109 int bitpos;
110
4ea48cc1
DJ
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
91294c83
AC
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
a08702d6
TJB
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
91294c83
AC
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
91294c83
AC
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
42be36b3
CT
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
4e5d721f
DE
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
201 int stack;
202
3e3d7139
JG
203 /* Actual contents of the value. Target byte-order. NULL or not
204 valid if lazy is nonzero. */
205 gdb_byte *contents;
828d3400
DJ
206
207 /* The number of references to this value. When a value is created,
208 the value chain holds a reference, so REFERENCE_COUNT is 1. If
209 release_value is called, this value is removed from the chain but
210 the caller of release_value now has a reference to this value.
211 The caller must arrange for a call to value_free later. */
212 int reference_count;
91294c83
AC
213};
214
c906108c
SS
215/* Prototypes for local functions. */
216
a14ed312 217static void show_values (char *, int);
c906108c 218
a14ed312 219static void show_convenience (char *, int);
c906108c 220
c906108c
SS
221
222/* The value-history records all the values printed
223 by print commands during this session. Each chunk
224 records 60 consecutive values. The first chunk on
225 the chain records the most recent values.
226 The total number of values is in value_history_count. */
227
228#define VALUE_HISTORY_CHUNK 60
229
230struct value_history_chunk
c5aa993b
JM
231 {
232 struct value_history_chunk *next;
f23631e4 233 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 234 };
c906108c
SS
235
236/* Chain of chunks now in use. */
237
238static struct value_history_chunk *value_history_chain;
239
240static int value_history_count; /* Abs number of last entry stored */
bc3b79fd 241
c906108c
SS
242\f
243/* List of all value objects currently allocated
244 (except for those released by calls to release_value)
245 This is so they can be freed after each command. */
246
f23631e4 247static struct value *all_values;
c906108c 248
3e3d7139
JG
249/* Allocate a lazy value for type TYPE. Its actual content is
250 "lazily" allocated too: the content field of the return value is
251 NULL; it will be allocated when it is fetched from the target. */
c906108c 252
f23631e4 253struct value *
3e3d7139 254allocate_value_lazy (struct type *type)
c906108c 255{
f23631e4 256 struct value *val;
c54eabfa
JK
257
258 /* Call check_typedef on our type to make sure that, if TYPE
259 is a TYPE_CODE_TYPEDEF, its length is set to the length
260 of the target type instead of zero. However, we do not
261 replace the typedef type by the target type, because we want
262 to keep the typedef in order to be able to set the VAL's type
263 description correctly. */
264 check_typedef (type);
c906108c 265
3e3d7139
JG
266 val = (struct value *) xzalloc (sizeof (struct value));
267 val->contents = NULL;
df407dfe 268 val->next = all_values;
c906108c 269 all_values = val;
df407dfe 270 val->type = type;
4754a64e 271 val->enclosing_type = type;
c906108c 272 VALUE_LVAL (val) = not_lval;
42ae5230 273 val->location.address = 0;
1df6926e 274 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
275 val->offset = 0;
276 val->bitpos = 0;
277 val->bitsize = 0;
9ee8fc9d 278 VALUE_REGNUM (val) = -1;
3e3d7139 279 val->lazy = 1;
feb13ab0 280 val->optimized_out = 0;
13c3b5f5 281 val->embedded_offset = 0;
b44d461b 282 val->pointed_to_offset = 0;
c906108c 283 val->modifiable = 1;
42be36b3 284 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
285
286 /* Values start out on the all_values chain. */
287 val->reference_count = 1;
288
c906108c
SS
289 return val;
290}
291
3e3d7139
JG
292/* Allocate the contents of VAL if it has not been allocated yet. */
293
294void
295allocate_value_contents (struct value *val)
296{
297 if (!val->contents)
298 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
299}
300
301/* Allocate a value and its contents for type TYPE. */
302
303struct value *
304allocate_value (struct type *type)
305{
306 struct value *val = allocate_value_lazy (type);
a109c7c1 307
3e3d7139
JG
308 allocate_value_contents (val);
309 val->lazy = 0;
310 return val;
311}
312
c906108c 313/* Allocate a value that has the correct length
938f5214 314 for COUNT repetitions of type TYPE. */
c906108c 315
f23631e4 316struct value *
fba45db2 317allocate_repeat_value (struct type *type, int count)
c906108c 318{
c5aa993b 319 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
320 /* FIXME-type-allocation: need a way to free this type when we are
321 done with it. */
e3506a9f
UW
322 struct type *array_type
323 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 324
e3506a9f 325 return allocate_value (array_type);
c906108c
SS
326}
327
5f5233d4
PA
328struct value *
329allocate_computed_value (struct type *type,
330 struct lval_funcs *funcs,
331 void *closure)
332{
333 struct value *v = allocate_value (type);
a109c7c1 334
5f5233d4
PA
335 VALUE_LVAL (v) = lval_computed;
336 v->location.computed.funcs = funcs;
337 v->location.computed.closure = closure;
338 set_value_lazy (v, 1);
339
340 return v;
341}
342
df407dfe
AC
343/* Accessor methods. */
344
17cf0ecd
AC
345struct value *
346value_next (struct value *value)
347{
348 return value->next;
349}
350
df407dfe 351struct type *
0e03807e 352value_type (const struct value *value)
df407dfe
AC
353{
354 return value->type;
355}
04624583
AC
356void
357deprecated_set_value_type (struct value *value, struct type *type)
358{
359 value->type = type;
360}
df407dfe
AC
361
362int
0e03807e 363value_offset (const struct value *value)
df407dfe
AC
364{
365 return value->offset;
366}
f5cf64a7
AC
367void
368set_value_offset (struct value *value, int offset)
369{
370 value->offset = offset;
371}
df407dfe
AC
372
373int
0e03807e 374value_bitpos (const struct value *value)
df407dfe
AC
375{
376 return value->bitpos;
377}
9bbda503
AC
378void
379set_value_bitpos (struct value *value, int bit)
380{
381 value->bitpos = bit;
382}
df407dfe
AC
383
384int
0e03807e 385value_bitsize (const struct value *value)
df407dfe
AC
386{
387 return value->bitsize;
388}
9bbda503
AC
389void
390set_value_bitsize (struct value *value, int bit)
391{
392 value->bitsize = bit;
393}
df407dfe 394
4ea48cc1
DJ
395struct value *
396value_parent (struct value *value)
397{
398 return value->parent;
399}
400
fc1a4b47 401gdb_byte *
990a07ab
AC
402value_contents_raw (struct value *value)
403{
3e3d7139
JG
404 allocate_value_contents (value);
405 return value->contents + value->embedded_offset;
990a07ab
AC
406}
407
fc1a4b47 408gdb_byte *
990a07ab
AC
409value_contents_all_raw (struct value *value)
410{
3e3d7139
JG
411 allocate_value_contents (value);
412 return value->contents;
990a07ab
AC
413}
414
4754a64e
AC
415struct type *
416value_enclosing_type (struct value *value)
417{
418 return value->enclosing_type;
419}
420
0e03807e
TT
421static void
422require_not_optimized_out (struct value *value)
423{
424 if (value->optimized_out)
425 error (_("value has been optimized out"));
426}
427
fc1a4b47 428const gdb_byte *
0e03807e 429value_contents_for_printing (struct value *value)
46615f07
AC
430{
431 if (value->lazy)
432 value_fetch_lazy (value);
3e3d7139 433 return value->contents;
46615f07
AC
434}
435
0e03807e
TT
436const gdb_byte *
437value_contents_all (struct value *value)
438{
439 const gdb_byte *result = value_contents_for_printing (value);
440 require_not_optimized_out (value);
441 return result;
442}
443
d69fe07e
AC
444int
445value_lazy (struct value *value)
446{
447 return value->lazy;
448}
449
dfa52d88
AC
450void
451set_value_lazy (struct value *value, int val)
452{
453 value->lazy = val;
454}
455
4e5d721f
DE
456int
457value_stack (struct value *value)
458{
459 return value->stack;
460}
461
462void
463set_value_stack (struct value *value, int val)
464{
465 value->stack = val;
466}
467
fc1a4b47 468const gdb_byte *
0fd88904
AC
469value_contents (struct value *value)
470{
0e03807e
TT
471 const gdb_byte *result = value_contents_writeable (value);
472 require_not_optimized_out (value);
473 return result;
0fd88904
AC
474}
475
fc1a4b47 476gdb_byte *
0fd88904
AC
477value_contents_writeable (struct value *value)
478{
479 if (value->lazy)
480 value_fetch_lazy (value);
fc0c53a0 481 return value_contents_raw (value);
0fd88904
AC
482}
483
a6c442d8
MK
484/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
485 this function is different from value_equal; in C the operator ==
486 can return 0 even if the two values being compared are equal. */
487
488int
489value_contents_equal (struct value *val1, struct value *val2)
490{
491 struct type *type1;
492 struct type *type2;
493 int len;
494
495 type1 = check_typedef (value_type (val1));
496 type2 = check_typedef (value_type (val2));
497 len = TYPE_LENGTH (type1);
498 if (len != TYPE_LENGTH (type2))
499 return 0;
500
501 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
502}
503
feb13ab0
AC
504int
505value_optimized_out (struct value *value)
506{
507 return value->optimized_out;
508}
509
510void
511set_value_optimized_out (struct value *value, int val)
512{
513 value->optimized_out = val;
514}
13c3b5f5 515
0e03807e
TT
516int
517value_entirely_optimized_out (const struct value *value)
518{
519 if (!value->optimized_out)
520 return 0;
521 if (value->lval != lval_computed
522 || !value->location.computed.funcs->check_validity)
523 return 1;
b65c7efe 524 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
525}
526
527int
528value_bits_valid (const struct value *value, int offset, int length)
529{
530 if (value == NULL || !value->optimized_out)
531 return 1;
532 if (value->lval != lval_computed
533 || !value->location.computed.funcs->check_validity)
534 return 0;
535 return value->location.computed.funcs->check_validity (value, offset,
536 length);
537}
538
13c3b5f5
AC
539int
540value_embedded_offset (struct value *value)
541{
542 return value->embedded_offset;
543}
544
545void
546set_value_embedded_offset (struct value *value, int val)
547{
548 value->embedded_offset = val;
549}
b44d461b
AC
550
551int
552value_pointed_to_offset (struct value *value)
553{
554 return value->pointed_to_offset;
555}
556
557void
558set_value_pointed_to_offset (struct value *value, int val)
559{
560 value->pointed_to_offset = val;
561}
13bb5560 562
5f5233d4
PA
563struct lval_funcs *
564value_computed_funcs (struct value *v)
565{
566 gdb_assert (VALUE_LVAL (v) == lval_computed);
567
568 return v->location.computed.funcs;
569}
570
571void *
0e03807e 572value_computed_closure (const struct value *v)
5f5233d4 573{
0e03807e 574 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
575
576 return v->location.computed.closure;
577}
578
13bb5560
AC
579enum lval_type *
580deprecated_value_lval_hack (struct value *value)
581{
582 return &value->lval;
583}
584
42ae5230
TT
585CORE_ADDR
586value_address (struct value *value)
587{
588 if (value->lval == lval_internalvar
589 || value->lval == lval_internalvar_component)
590 return 0;
591 return value->location.address + value->offset;
592}
593
594CORE_ADDR
595value_raw_address (struct value *value)
596{
597 if (value->lval == lval_internalvar
598 || value->lval == lval_internalvar_component)
599 return 0;
600 return value->location.address;
601}
602
603void
604set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 605{
42ae5230
TT
606 gdb_assert (value->lval != lval_internalvar
607 && value->lval != lval_internalvar_component);
608 value->location.address = addr;
13bb5560
AC
609}
610
611struct internalvar **
612deprecated_value_internalvar_hack (struct value *value)
613{
614 return &value->location.internalvar;
615}
616
617struct frame_id *
618deprecated_value_frame_id_hack (struct value *value)
619{
620 return &value->frame_id;
621}
622
623short *
624deprecated_value_regnum_hack (struct value *value)
625{
626 return &value->regnum;
627}
88e3b34b
AC
628
629int
630deprecated_value_modifiable (struct value *value)
631{
632 return value->modifiable;
633}
634void
635deprecated_set_value_modifiable (struct value *value, int modifiable)
636{
637 value->modifiable = modifiable;
638}
990a07ab 639\f
c906108c
SS
640/* Return a mark in the value chain. All values allocated after the
641 mark is obtained (except for those released) are subject to being freed
642 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 643struct value *
fba45db2 644value_mark (void)
c906108c
SS
645{
646 return all_values;
647}
648
828d3400
DJ
649/* Take a reference to VAL. VAL will not be deallocated until all
650 references are released. */
651
652void
653value_incref (struct value *val)
654{
655 val->reference_count++;
656}
657
658/* Release a reference to VAL, which was acquired with value_incref.
659 This function is also called to deallocate values from the value
660 chain. */
661
3e3d7139
JG
662void
663value_free (struct value *val)
664{
665 if (val)
5f5233d4 666 {
828d3400
DJ
667 gdb_assert (val->reference_count > 0);
668 val->reference_count--;
669 if (val->reference_count > 0)
670 return;
671
4ea48cc1
DJ
672 /* If there's an associated parent value, drop our reference to
673 it. */
674 if (val->parent != NULL)
675 value_free (val->parent);
676
5f5233d4
PA
677 if (VALUE_LVAL (val) == lval_computed)
678 {
679 struct lval_funcs *funcs = val->location.computed.funcs;
680
681 if (funcs->free_closure)
682 funcs->free_closure (val);
683 }
684
685 xfree (val->contents);
686 }
3e3d7139
JG
687 xfree (val);
688}
689
c906108c
SS
690/* Free all values allocated since MARK was obtained by value_mark
691 (except for those released). */
692void
f23631e4 693value_free_to_mark (struct value *mark)
c906108c 694{
f23631e4
AC
695 struct value *val;
696 struct value *next;
c906108c
SS
697
698 for (val = all_values; val && val != mark; val = next)
699 {
df407dfe 700 next = val->next;
c906108c
SS
701 value_free (val);
702 }
703 all_values = val;
704}
705
706/* Free all the values that have been allocated (except for those released).
725e88af
DE
707 Call after each command, successful or not.
708 In practice this is called before each command, which is sufficient. */
c906108c
SS
709
710void
fba45db2 711free_all_values (void)
c906108c 712{
f23631e4
AC
713 struct value *val;
714 struct value *next;
c906108c
SS
715
716 for (val = all_values; val; val = next)
717 {
df407dfe 718 next = val->next;
c906108c
SS
719 value_free (val);
720 }
721
722 all_values = 0;
723}
724
0cf6dd15
TJB
725/* Frees all the elements in a chain of values. */
726
727void
728free_value_chain (struct value *v)
729{
730 struct value *next;
731
732 for (; v; v = next)
733 {
734 next = value_next (v);
735 value_free (v);
736 }
737}
738
c906108c
SS
739/* Remove VAL from the chain all_values
740 so it will not be freed automatically. */
741
742void
f23631e4 743release_value (struct value *val)
c906108c 744{
f23631e4 745 struct value *v;
c906108c
SS
746
747 if (all_values == val)
748 {
749 all_values = val->next;
750 return;
751 }
752
753 for (v = all_values; v; v = v->next)
754 {
755 if (v->next == val)
756 {
757 v->next = val->next;
758 break;
759 }
760 }
761}
762
763/* Release all values up to mark */
f23631e4
AC
764struct value *
765value_release_to_mark (struct value *mark)
c906108c 766{
f23631e4
AC
767 struct value *val;
768 struct value *next;
c906108c 769
df407dfe
AC
770 for (val = next = all_values; next; next = next->next)
771 if (next->next == mark)
c906108c 772 {
df407dfe
AC
773 all_values = next->next;
774 next->next = NULL;
c906108c
SS
775 return val;
776 }
777 all_values = 0;
778 return val;
779}
780
781/* Return a copy of the value ARG.
782 It contains the same contents, for same memory address,
783 but it's a different block of storage. */
784
f23631e4
AC
785struct value *
786value_copy (struct value *arg)
c906108c 787{
4754a64e 788 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
789 struct value *val;
790
791 if (value_lazy (arg))
792 val = allocate_value_lazy (encl_type);
793 else
794 val = allocate_value (encl_type);
df407dfe 795 val->type = arg->type;
c906108c 796 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 797 val->location = arg->location;
df407dfe
AC
798 val->offset = arg->offset;
799 val->bitpos = arg->bitpos;
800 val->bitsize = arg->bitsize;
1df6926e 801 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 802 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 803 val->lazy = arg->lazy;
feb13ab0 804 val->optimized_out = arg->optimized_out;
13c3b5f5 805 val->embedded_offset = value_embedded_offset (arg);
b44d461b 806 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 807 val->modifiable = arg->modifiable;
d69fe07e 808 if (!value_lazy (val))
c906108c 809 {
990a07ab 810 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 811 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
812
813 }
4ea48cc1
DJ
814 val->parent = arg->parent;
815 if (val->parent)
816 value_incref (val->parent);
5f5233d4
PA
817 if (VALUE_LVAL (val) == lval_computed)
818 {
819 struct lval_funcs *funcs = val->location.computed.funcs;
820
821 if (funcs->copy_closure)
822 val->location.computed.closure = funcs->copy_closure (val);
823 }
c906108c
SS
824 return val;
825}
74bcbdf3
PA
826
827void
0e03807e
TT
828set_value_component_location (struct value *component,
829 const struct value *whole)
74bcbdf3 830{
0e03807e 831 if (whole->lval == lval_internalvar)
74bcbdf3
PA
832 VALUE_LVAL (component) = lval_internalvar_component;
833 else
0e03807e 834 VALUE_LVAL (component) = whole->lval;
5f5233d4 835
74bcbdf3 836 component->location = whole->location;
0e03807e 837 if (whole->lval == lval_computed)
5f5233d4
PA
838 {
839 struct lval_funcs *funcs = whole->location.computed.funcs;
840
841 if (funcs->copy_closure)
842 component->location.computed.closure = funcs->copy_closure (whole);
843 }
74bcbdf3
PA
844}
845
c906108c
SS
846\f
847/* Access to the value history. */
848
849/* Record a new value in the value history.
850 Returns the absolute history index of the entry.
851 Result of -1 indicates the value was not saved; otherwise it is the
852 value history index of this new item. */
853
854int
f23631e4 855record_latest_value (struct value *val)
c906108c
SS
856{
857 int i;
858
859 /* We don't want this value to have anything to do with the inferior anymore.
860 In particular, "set $1 = 50" should not affect the variable from which
861 the value was taken, and fast watchpoints should be able to assume that
862 a value on the value history never changes. */
d69fe07e 863 if (value_lazy (val))
c906108c
SS
864 value_fetch_lazy (val);
865 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
866 from. This is a bit dubious, because then *&$1 does not just return $1
867 but the current contents of that location. c'est la vie... */
868 val->modifiable = 0;
869 release_value (val);
870
871 /* Here we treat value_history_count as origin-zero
872 and applying to the value being stored now. */
873
874 i = value_history_count % VALUE_HISTORY_CHUNK;
875 if (i == 0)
876 {
f23631e4 877 struct value_history_chunk *new
a109c7c1
MS
878 = (struct value_history_chunk *)
879
c5aa993b 880 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
881 memset (new->values, 0, sizeof new->values);
882 new->next = value_history_chain;
883 value_history_chain = new;
884 }
885
886 value_history_chain->values[i] = val;
887
888 /* Now we regard value_history_count as origin-one
889 and applying to the value just stored. */
890
891 return ++value_history_count;
892}
893
894/* Return a copy of the value in the history with sequence number NUM. */
895
f23631e4 896struct value *
fba45db2 897access_value_history (int num)
c906108c 898{
f23631e4 899 struct value_history_chunk *chunk;
52f0bd74
AC
900 int i;
901 int absnum = num;
c906108c
SS
902
903 if (absnum <= 0)
904 absnum += value_history_count;
905
906 if (absnum <= 0)
907 {
908 if (num == 0)
8a3fe4f8 909 error (_("The history is empty."));
c906108c 910 else if (num == 1)
8a3fe4f8 911 error (_("There is only one value in the history."));
c906108c 912 else
8a3fe4f8 913 error (_("History does not go back to $$%d."), -num);
c906108c
SS
914 }
915 if (absnum > value_history_count)
8a3fe4f8 916 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
917
918 absnum--;
919
920 /* Now absnum is always absolute and origin zero. */
921
922 chunk = value_history_chain;
923 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
924 i > 0; i--)
925 chunk = chunk->next;
926
927 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
928}
929
c906108c 930static void
fba45db2 931show_values (char *num_exp, int from_tty)
c906108c 932{
52f0bd74 933 int i;
f23631e4 934 struct value *val;
c906108c
SS
935 static int num = 1;
936
937 if (num_exp)
938 {
f132ba9d
TJB
939 /* "show values +" should print from the stored position.
940 "show values <exp>" should print around value number <exp>. */
c906108c 941 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 942 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
943 }
944 else
945 {
f132ba9d 946 /* "show values" means print the last 10 values. */
c906108c
SS
947 num = value_history_count - 9;
948 }
949
950 if (num <= 0)
951 num = 1;
952
953 for (i = num; i < num + 10 && i <= value_history_count; i++)
954 {
79a45b7d 955 struct value_print_options opts;
a109c7c1 956
c906108c 957 val = access_value_history (i);
a3f17187 958 printf_filtered (("$%d = "), i);
79a45b7d
TT
959 get_user_print_options (&opts);
960 value_print (val, gdb_stdout, &opts);
a3f17187 961 printf_filtered (("\n"));
c906108c
SS
962 }
963
f132ba9d 964 /* The next "show values +" should start after what we just printed. */
c906108c
SS
965 num += 10;
966
967 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
968 "show values +". If num_exp is null, this is unnecessary, since
969 "show values +" is not useful after "show values". */
c906108c
SS
970 if (from_tty && num_exp)
971 {
972 num_exp[0] = '+';
973 num_exp[1] = '\0';
974 }
975}
976\f
977/* Internal variables. These are variables within the debugger
978 that hold values assigned by debugger commands.
979 The user refers to them with a '$' prefix
980 that does not appear in the variable names stored internally. */
981
4fa62494
UW
982struct internalvar
983{
984 struct internalvar *next;
985 char *name;
4fa62494 986
78267919
UW
987 /* We support various different kinds of content of an internal variable.
988 enum internalvar_kind specifies the kind, and union internalvar_data
989 provides the data associated with this particular kind. */
990
991 enum internalvar_kind
992 {
993 /* The internal variable is empty. */
994 INTERNALVAR_VOID,
995
996 /* The value of the internal variable is provided directly as
997 a GDB value object. */
998 INTERNALVAR_VALUE,
999
1000 /* A fresh value is computed via a call-back routine on every
1001 access to the internal variable. */
1002 INTERNALVAR_MAKE_VALUE,
4fa62494 1003
78267919
UW
1004 /* The internal variable holds a GDB internal convenience function. */
1005 INTERNALVAR_FUNCTION,
1006
cab0c772
UW
1007 /* The variable holds an integer value. */
1008 INTERNALVAR_INTEGER,
1009
1010 /* The variable holds a pointer value. */
1011 INTERNALVAR_POINTER,
78267919
UW
1012
1013 /* The variable holds a GDB-provided string. */
1014 INTERNALVAR_STRING,
1015
1016 } kind;
4fa62494 1017
4fa62494
UW
1018 union internalvar_data
1019 {
78267919
UW
1020 /* A value object used with INTERNALVAR_VALUE. */
1021 struct value *value;
1022
1023 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1024 internalvar_make_value make_value;
1025
1026 /* The internal function used with INTERNALVAR_FUNCTION. */
1027 struct
1028 {
1029 struct internal_function *function;
1030 /* True if this is the canonical name for the function. */
1031 int canonical;
1032 } fn;
1033
cab0c772 1034 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1035 struct
1036 {
1037 /* If type is non-NULL, it will be used as the type to generate
1038 a value for this internal variable. If type is NULL, a default
1039 integer type for the architecture is used. */
1040 struct type *type;
cab0c772
UW
1041 LONGEST val;
1042 } integer;
1043
1044 /* A pointer value used with INTERNALVAR_POINTER. */
1045 struct
1046 {
1047 struct type *type;
1048 CORE_ADDR val;
1049 } pointer;
78267919
UW
1050
1051 /* A string value used with INTERNALVAR_STRING. */
1052 char *string;
4fa62494
UW
1053 } u;
1054};
1055
c906108c
SS
1056static struct internalvar *internalvars;
1057
53e5f3cf
AS
1058/* If the variable does not already exist create it and give it the value given.
1059 If no value is given then the default is zero. */
1060static void
1061init_if_undefined_command (char* args, int from_tty)
1062{
1063 struct internalvar* intvar;
1064
1065 /* Parse the expression - this is taken from set_command(). */
1066 struct expression *expr = parse_expression (args);
1067 register struct cleanup *old_chain =
1068 make_cleanup (free_current_contents, &expr);
1069
1070 /* Validate the expression.
1071 Was the expression an assignment?
1072 Or even an expression at all? */
1073 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1074 error (_("Init-if-undefined requires an assignment expression."));
1075
1076 /* Extract the variable from the parsed expression.
1077 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1078 if (expr->elts[1].opcode != OP_INTERNALVAR)
1079 error (_("The first parameter to init-if-undefined should be a GDB variable."));
1080 intvar = expr->elts[2].internalvar;
1081
1082 /* Only evaluate the expression if the lvalue is void.
1083 This may still fail if the expresssion is invalid. */
78267919 1084 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1085 evaluate_expression (expr);
1086
1087 do_cleanups (old_chain);
1088}
1089
1090
c906108c
SS
1091/* Look up an internal variable with name NAME. NAME should not
1092 normally include a dollar sign.
1093
1094 If the specified internal variable does not exist,
c4a3d09a 1095 the return value is NULL. */
c906108c
SS
1096
1097struct internalvar *
bc3b79fd 1098lookup_only_internalvar (const char *name)
c906108c 1099{
52f0bd74 1100 struct internalvar *var;
c906108c
SS
1101
1102 for (var = internalvars; var; var = var->next)
5cb316ef 1103 if (strcmp (var->name, name) == 0)
c906108c
SS
1104 return var;
1105
c4a3d09a
MF
1106 return NULL;
1107}
1108
1109
1110/* Create an internal variable with name NAME and with a void value.
1111 NAME should not normally include a dollar sign. */
1112
1113struct internalvar *
bc3b79fd 1114create_internalvar (const char *name)
c4a3d09a
MF
1115{
1116 struct internalvar *var;
a109c7c1 1117
c906108c 1118 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1119 var->name = concat (name, (char *)NULL);
78267919 1120 var->kind = INTERNALVAR_VOID;
c906108c
SS
1121 var->next = internalvars;
1122 internalvars = var;
1123 return var;
1124}
1125
4aa995e1
PA
1126/* Create an internal variable with name NAME and register FUN as the
1127 function that value_of_internalvar uses to create a value whenever
1128 this variable is referenced. NAME should not normally include a
1129 dollar sign. */
1130
1131struct internalvar *
1132create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1133{
4fa62494 1134 struct internalvar *var = create_internalvar (name);
a109c7c1 1135
78267919
UW
1136 var->kind = INTERNALVAR_MAKE_VALUE;
1137 var->u.make_value = fun;
4aa995e1
PA
1138 return var;
1139}
c4a3d09a
MF
1140
1141/* Look up an internal variable with name NAME. NAME should not
1142 normally include a dollar sign.
1143
1144 If the specified internal variable does not exist,
1145 one is created, with a void value. */
1146
1147struct internalvar *
bc3b79fd 1148lookup_internalvar (const char *name)
c4a3d09a
MF
1149{
1150 struct internalvar *var;
1151
1152 var = lookup_only_internalvar (name);
1153 if (var)
1154 return var;
1155
1156 return create_internalvar (name);
1157}
1158
78267919
UW
1159/* Return current value of internal variable VAR. For variables that
1160 are not inherently typed, use a value type appropriate for GDBARCH. */
1161
f23631e4 1162struct value *
78267919 1163value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1164{
f23631e4 1165 struct value *val;
c906108c 1166
78267919 1167 switch (var->kind)
5f5233d4 1168 {
78267919
UW
1169 case INTERNALVAR_VOID:
1170 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1171 break;
4fa62494 1172
78267919
UW
1173 case INTERNALVAR_FUNCTION:
1174 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1175 break;
4fa62494 1176
cab0c772
UW
1177 case INTERNALVAR_INTEGER:
1178 if (!var->u.integer.type)
78267919 1179 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 1180 var->u.integer.val);
78267919 1181 else
cab0c772
UW
1182 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1183 break;
1184
1185 case INTERNALVAR_POINTER:
1186 val = value_from_pointer (var->u.pointer.type, var->u.pointer.val);
78267919 1187 break;
4fa62494 1188
78267919
UW
1189 case INTERNALVAR_STRING:
1190 val = value_cstring (var->u.string, strlen (var->u.string),
1191 builtin_type (gdbarch)->builtin_char);
1192 break;
4fa62494 1193
78267919
UW
1194 case INTERNALVAR_VALUE:
1195 val = value_copy (var->u.value);
4aa995e1
PA
1196 if (value_lazy (val))
1197 value_fetch_lazy (val);
78267919 1198 break;
4aa995e1 1199
78267919
UW
1200 case INTERNALVAR_MAKE_VALUE:
1201 val = (*var->u.make_value) (gdbarch, var);
1202 break;
1203
1204 default:
1205 internal_error (__FILE__, __LINE__, "bad kind");
1206 }
1207
1208 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1209 on this value go back to affect the original internal variable.
1210
1211 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1212 no underlying modifyable state in the internal variable.
1213
1214 Likewise, if the variable's value is a computed lvalue, we want
1215 references to it to produce another computed lvalue, where
1216 references and assignments actually operate through the
1217 computed value's functions.
1218
1219 This means that internal variables with computed values
1220 behave a little differently from other internal variables:
1221 assignments to them don't just replace the previous value
1222 altogether. At the moment, this seems like the behavior we
1223 want. */
1224
1225 if (var->kind != INTERNALVAR_MAKE_VALUE
1226 && val->lval != lval_computed)
1227 {
1228 VALUE_LVAL (val) = lval_internalvar;
1229 VALUE_INTERNALVAR (val) = var;
5f5233d4 1230 }
d3c139e9 1231
4fa62494
UW
1232 return val;
1233}
d3c139e9 1234
4fa62494
UW
1235int
1236get_internalvar_integer (struct internalvar *var, LONGEST *result)
1237{
78267919 1238 switch (var->kind)
4fa62494 1239 {
cab0c772
UW
1240 case INTERNALVAR_INTEGER:
1241 *result = var->u.integer.val;
1242 return 1;
d3c139e9 1243
4fa62494
UW
1244 default:
1245 return 0;
1246 }
1247}
d3c139e9 1248
4fa62494
UW
1249static int
1250get_internalvar_function (struct internalvar *var,
1251 struct internal_function **result)
1252{
78267919 1253 switch (var->kind)
d3c139e9 1254 {
78267919
UW
1255 case INTERNALVAR_FUNCTION:
1256 *result = var->u.fn.function;
4fa62494 1257 return 1;
d3c139e9 1258
4fa62494
UW
1259 default:
1260 return 0;
1261 }
c906108c
SS
1262}
1263
1264void
fba45db2 1265set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1266 int bitsize, struct value *newval)
c906108c 1267{
4fa62494 1268 gdb_byte *addr;
c906108c 1269
78267919 1270 switch (var->kind)
4fa62494 1271 {
78267919
UW
1272 case INTERNALVAR_VALUE:
1273 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1274
1275 if (bitsize)
50810684 1276 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1277 value_as_long (newval), bitpos, bitsize);
1278 else
1279 memcpy (addr + offset, value_contents (newval),
1280 TYPE_LENGTH (value_type (newval)));
1281 break;
78267919
UW
1282
1283 default:
1284 /* We can never get a component of any other kind. */
1285 internal_error (__FILE__, __LINE__, "set_internalvar_component");
4fa62494 1286 }
c906108c
SS
1287}
1288
1289void
f23631e4 1290set_internalvar (struct internalvar *var, struct value *val)
c906108c 1291{
78267919 1292 enum internalvar_kind new_kind;
4fa62494 1293 union internalvar_data new_data = { 0 };
c906108c 1294
78267919 1295 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1296 error (_("Cannot overwrite convenience function %s"), var->name);
1297
4fa62494 1298 /* Prepare new contents. */
78267919 1299 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1300 {
1301 case TYPE_CODE_VOID:
78267919 1302 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1303 break;
1304
1305 case TYPE_CODE_INTERNAL_FUNCTION:
1306 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1307 new_kind = INTERNALVAR_FUNCTION;
1308 get_internalvar_function (VALUE_INTERNALVAR (val),
1309 &new_data.fn.function);
1310 /* Copies created here are never canonical. */
4fa62494
UW
1311 break;
1312
1313 case TYPE_CODE_INT:
cab0c772
UW
1314 new_kind = INTERNALVAR_INTEGER;
1315 new_data.integer.type = value_type (val);
1316 new_data.integer.val = value_as_long (val);
4fa62494
UW
1317 break;
1318
1319 case TYPE_CODE_PTR:
cab0c772
UW
1320 new_kind = INTERNALVAR_POINTER;
1321 new_data.pointer.type = value_type (val);
1322 new_data.pointer.val = value_as_address (val);
4fa62494
UW
1323 break;
1324
1325 default:
78267919
UW
1326 new_kind = INTERNALVAR_VALUE;
1327 new_data.value = value_copy (val);
1328 new_data.value->modifiable = 1;
4fa62494
UW
1329
1330 /* Force the value to be fetched from the target now, to avoid problems
1331 later when this internalvar is referenced and the target is gone or
1332 has changed. */
78267919
UW
1333 if (value_lazy (new_data.value))
1334 value_fetch_lazy (new_data.value);
4fa62494
UW
1335
1336 /* Release the value from the value chain to prevent it from being
1337 deleted by free_all_values. From here on this function should not
1338 call error () until new_data is installed into the var->u to avoid
1339 leaking memory. */
78267919 1340 release_value (new_data.value);
4fa62494
UW
1341 break;
1342 }
1343
1344 /* Clean up old contents. */
1345 clear_internalvar (var);
1346
1347 /* Switch over. */
78267919 1348 var->kind = new_kind;
4fa62494 1349 var->u = new_data;
c906108c
SS
1350 /* End code which must not call error(). */
1351}
1352
4fa62494
UW
1353void
1354set_internalvar_integer (struct internalvar *var, LONGEST l)
1355{
1356 /* Clean up old contents. */
1357 clear_internalvar (var);
1358
cab0c772
UW
1359 var->kind = INTERNALVAR_INTEGER;
1360 var->u.integer.type = NULL;
1361 var->u.integer.val = l;
78267919
UW
1362}
1363
1364void
1365set_internalvar_string (struct internalvar *var, const char *string)
1366{
1367 /* Clean up old contents. */
1368 clear_internalvar (var);
1369
1370 var->kind = INTERNALVAR_STRING;
1371 var->u.string = xstrdup (string);
4fa62494
UW
1372}
1373
1374static void
1375set_internalvar_function (struct internalvar *var, struct internal_function *f)
1376{
1377 /* Clean up old contents. */
1378 clear_internalvar (var);
1379
78267919
UW
1380 var->kind = INTERNALVAR_FUNCTION;
1381 var->u.fn.function = f;
1382 var->u.fn.canonical = 1;
1383 /* Variables installed here are always the canonical version. */
4fa62494
UW
1384}
1385
1386void
1387clear_internalvar (struct internalvar *var)
1388{
1389 /* Clean up old contents. */
78267919 1390 switch (var->kind)
4fa62494 1391 {
78267919
UW
1392 case INTERNALVAR_VALUE:
1393 value_free (var->u.value);
1394 break;
1395
1396 case INTERNALVAR_STRING:
1397 xfree (var->u.string);
4fa62494
UW
1398 break;
1399
1400 default:
4fa62494
UW
1401 break;
1402 }
1403
78267919
UW
1404 /* Reset to void kind. */
1405 var->kind = INTERNALVAR_VOID;
4fa62494
UW
1406}
1407
c906108c 1408char *
fba45db2 1409internalvar_name (struct internalvar *var)
c906108c
SS
1410{
1411 return var->name;
1412}
1413
4fa62494
UW
1414static struct internal_function *
1415create_internal_function (const char *name,
1416 internal_function_fn handler, void *cookie)
bc3b79fd 1417{
bc3b79fd 1418 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 1419
bc3b79fd
TJB
1420 ifn->name = xstrdup (name);
1421 ifn->handler = handler;
1422 ifn->cookie = cookie;
4fa62494 1423 return ifn;
bc3b79fd
TJB
1424}
1425
1426char *
1427value_internal_function_name (struct value *val)
1428{
4fa62494
UW
1429 struct internal_function *ifn;
1430 int result;
1431
1432 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1433 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1434 gdb_assert (result);
1435
bc3b79fd
TJB
1436 return ifn->name;
1437}
1438
1439struct value *
d452c4bc
UW
1440call_internal_function (struct gdbarch *gdbarch,
1441 const struct language_defn *language,
1442 struct value *func, int argc, struct value **argv)
bc3b79fd 1443{
4fa62494
UW
1444 struct internal_function *ifn;
1445 int result;
1446
1447 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1448 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1449 gdb_assert (result);
1450
d452c4bc 1451 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
1452}
1453
1454/* The 'function' command. This does nothing -- it is just a
1455 placeholder to let "help function NAME" work. This is also used as
1456 the implementation of the sub-command that is created when
1457 registering an internal function. */
1458static void
1459function_command (char *command, int from_tty)
1460{
1461 /* Do nothing. */
1462}
1463
1464/* Clean up if an internal function's command is destroyed. */
1465static void
1466function_destroyer (struct cmd_list_element *self, void *ignore)
1467{
1468 xfree (self->name);
1469 xfree (self->doc);
1470}
1471
1472/* Add a new internal function. NAME is the name of the function; DOC
1473 is a documentation string describing the function. HANDLER is
1474 called when the function is invoked. COOKIE is an arbitrary
1475 pointer which is passed to HANDLER and is intended for "user
1476 data". */
1477void
1478add_internal_function (const char *name, const char *doc,
1479 internal_function_fn handler, void *cookie)
1480{
1481 struct cmd_list_element *cmd;
4fa62494 1482 struct internal_function *ifn;
bc3b79fd 1483 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
1484
1485 ifn = create_internal_function (name, handler, cookie);
1486 set_internalvar_function (var, ifn);
bc3b79fd
TJB
1487
1488 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1489 &functionlist);
1490 cmd->destroyer = function_destroyer;
1491}
1492
ae5a43e0
DJ
1493/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1494 prevent cycles / duplicates. */
1495
4e7a5ef5 1496void
ae5a43e0
DJ
1497preserve_one_value (struct value *value, struct objfile *objfile,
1498 htab_t copied_types)
1499{
1500 if (TYPE_OBJFILE (value->type) == objfile)
1501 value->type = copy_type_recursive (objfile, value->type, copied_types);
1502
1503 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1504 value->enclosing_type = copy_type_recursive (objfile,
1505 value->enclosing_type,
1506 copied_types);
1507}
1508
78267919
UW
1509/* Likewise for internal variable VAR. */
1510
1511static void
1512preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1513 htab_t copied_types)
1514{
1515 switch (var->kind)
1516 {
cab0c772
UW
1517 case INTERNALVAR_INTEGER:
1518 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
1519 var->u.integer.type
1520 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
1521 break;
1522
1523 case INTERNALVAR_POINTER:
1524 if (TYPE_OBJFILE (var->u.pointer.type) == objfile)
1525 var->u.pointer.type
1526 = copy_type_recursive (objfile, var->u.pointer.type, copied_types);
78267919
UW
1527 break;
1528
1529 case INTERNALVAR_VALUE:
1530 preserve_one_value (var->u.value, objfile, copied_types);
1531 break;
1532 }
1533}
1534
ae5a43e0
DJ
1535/* Update the internal variables and value history when OBJFILE is
1536 discarded; we must copy the types out of the objfile. New global types
1537 will be created for every convenience variable which currently points to
1538 this objfile's types, and the convenience variables will be adjusted to
1539 use the new global types. */
c906108c
SS
1540
1541void
ae5a43e0 1542preserve_values (struct objfile *objfile)
c906108c 1543{
ae5a43e0
DJ
1544 htab_t copied_types;
1545 struct value_history_chunk *cur;
52f0bd74 1546 struct internalvar *var;
ae5a43e0 1547 int i;
c906108c 1548
ae5a43e0
DJ
1549 /* Create the hash table. We allocate on the objfile's obstack, since
1550 it is soon to be deleted. */
1551 copied_types = create_copied_types_hash (objfile);
1552
1553 for (cur = value_history_chain; cur; cur = cur->next)
1554 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1555 if (cur->values[i])
1556 preserve_one_value (cur->values[i], objfile, copied_types);
1557
1558 for (var = internalvars; var; var = var->next)
78267919 1559 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 1560
4e7a5ef5 1561 preserve_python_values (objfile, copied_types);
a08702d6 1562
ae5a43e0 1563 htab_delete (copied_types);
c906108c
SS
1564}
1565
1566static void
fba45db2 1567show_convenience (char *ignore, int from_tty)
c906108c 1568{
e17c207e 1569 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 1570 struct internalvar *var;
c906108c 1571 int varseen = 0;
79a45b7d 1572 struct value_print_options opts;
c906108c 1573
79a45b7d 1574 get_user_print_options (&opts);
c906108c
SS
1575 for (var = internalvars; var; var = var->next)
1576 {
c906108c
SS
1577 if (!varseen)
1578 {
1579 varseen = 1;
1580 }
a3f17187 1581 printf_filtered (("$%s = "), var->name);
78267919 1582 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
79a45b7d 1583 &opts);
a3f17187 1584 printf_filtered (("\n"));
c906108c
SS
1585 }
1586 if (!varseen)
a3f17187
AC
1587 printf_unfiltered (_("\
1588No debugger convenience variables now defined.\n\
c906108c 1589Convenience variables have names starting with \"$\";\n\
a3f17187 1590use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
1591}
1592\f
1593/* Extract a value as a C number (either long or double).
1594 Knows how to convert fixed values to double, or
1595 floating values to long.
1596 Does not deallocate the value. */
1597
1598LONGEST
f23631e4 1599value_as_long (struct value *val)
c906108c
SS
1600{
1601 /* This coerces arrays and functions, which is necessary (e.g.
1602 in disassemble_command). It also dereferences references, which
1603 I suspect is the most logical thing to do. */
994b9211 1604 val = coerce_array (val);
0fd88904 1605 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1606}
1607
1608DOUBLEST
f23631e4 1609value_as_double (struct value *val)
c906108c
SS
1610{
1611 DOUBLEST foo;
1612 int inv;
c5aa993b 1613
0fd88904 1614 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1615 if (inv)
8a3fe4f8 1616 error (_("Invalid floating value found in program."));
c906108c
SS
1617 return foo;
1618}
4ef30785 1619
4478b372
JB
1620/* Extract a value as a C pointer. Does not deallocate the value.
1621 Note that val's type may not actually be a pointer; value_as_long
1622 handles all the cases. */
c906108c 1623CORE_ADDR
f23631e4 1624value_as_address (struct value *val)
c906108c 1625{
50810684
UW
1626 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1627
c906108c
SS
1628 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1629 whether we want this to be true eventually. */
1630#if 0
bf6ae464 1631 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1632 non-address (e.g. argument to "signal", "info break", etc.), or
1633 for pointers to char, in which the low bits *are* significant. */
50810684 1634 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 1635#else
f312f057
JB
1636
1637 /* There are several targets (IA-64, PowerPC, and others) which
1638 don't represent pointers to functions as simply the address of
1639 the function's entry point. For example, on the IA-64, a
1640 function pointer points to a two-word descriptor, generated by
1641 the linker, which contains the function's entry point, and the
1642 value the IA-64 "global pointer" register should have --- to
1643 support position-independent code. The linker generates
1644 descriptors only for those functions whose addresses are taken.
1645
1646 On such targets, it's difficult for GDB to convert an arbitrary
1647 function address into a function pointer; it has to either find
1648 an existing descriptor for that function, or call malloc and
1649 build its own. On some targets, it is impossible for GDB to
1650 build a descriptor at all: the descriptor must contain a jump
1651 instruction; data memory cannot be executed; and code memory
1652 cannot be modified.
1653
1654 Upon entry to this function, if VAL is a value of type `function'
1655 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 1656 value_address (val) is the address of the function. This is what
f312f057
JB
1657 you'll get if you evaluate an expression like `main'. The call
1658 to COERCE_ARRAY below actually does all the usual unary
1659 conversions, which includes converting values of type `function'
1660 to `pointer to function'. This is the challenging conversion
1661 discussed above. Then, `unpack_long' will convert that pointer
1662 back into an address.
1663
1664 So, suppose the user types `disassemble foo' on an architecture
1665 with a strange function pointer representation, on which GDB
1666 cannot build its own descriptors, and suppose further that `foo'
1667 has no linker-built descriptor. The address->pointer conversion
1668 will signal an error and prevent the command from running, even
1669 though the next step would have been to convert the pointer
1670 directly back into the same address.
1671
1672 The following shortcut avoids this whole mess. If VAL is a
1673 function, just return its address directly. */
df407dfe
AC
1674 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1675 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 1676 return value_address (val);
f312f057 1677
994b9211 1678 val = coerce_array (val);
fc0c74b1
AC
1679
1680 /* Some architectures (e.g. Harvard), map instruction and data
1681 addresses onto a single large unified address space. For
1682 instance: An architecture may consider a large integer in the
1683 range 0x10000000 .. 0x1000ffff to already represent a data
1684 addresses (hence not need a pointer to address conversion) while
1685 a small integer would still need to be converted integer to
1686 pointer to address. Just assume such architectures handle all
1687 integer conversions in a single function. */
1688
1689 /* JimB writes:
1690
1691 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1692 must admonish GDB hackers to make sure its behavior matches the
1693 compiler's, whenever possible.
1694
1695 In general, I think GDB should evaluate expressions the same way
1696 the compiler does. When the user copies an expression out of
1697 their source code and hands it to a `print' command, they should
1698 get the same value the compiler would have computed. Any
1699 deviation from this rule can cause major confusion and annoyance,
1700 and needs to be justified carefully. In other words, GDB doesn't
1701 really have the freedom to do these conversions in clever and
1702 useful ways.
1703
1704 AndrewC pointed out that users aren't complaining about how GDB
1705 casts integers to pointers; they are complaining that they can't
1706 take an address from a disassembly listing and give it to `x/i'.
1707 This is certainly important.
1708
79dd2d24 1709 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1710 makes it possible for GDB to "get it right" in all circumstances
1711 --- the target has complete control over how things get done, so
1712 people can Do The Right Thing for their target without breaking
1713 anyone else. The standard doesn't specify how integers get
1714 converted to pointers; usually, the ABI doesn't either, but
1715 ABI-specific code is a more reasonable place to handle it. */
1716
df407dfe
AC
1717 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1718 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
1719 && gdbarch_integer_to_address_p (gdbarch))
1720 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 1721 value_contents (val));
fc0c74b1 1722
0fd88904 1723 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1724#endif
1725}
1726\f
1727/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1728 as a long, or as a double, assuming the raw data is described
1729 by type TYPE. Knows how to convert different sizes of values
1730 and can convert between fixed and floating point. We don't assume
1731 any alignment for the raw data. Return value is in host byte order.
1732
1733 If you want functions and arrays to be coerced to pointers, and
1734 references to be dereferenced, call value_as_long() instead.
1735
1736 C++: It is assumed that the front-end has taken care of
1737 all matters concerning pointers to members. A pointer
1738 to member which reaches here is considered to be equivalent
1739 to an INT (or some size). After all, it is only an offset. */
1740
1741LONGEST
fc1a4b47 1742unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1743{
e17a4113 1744 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
1745 enum type_code code = TYPE_CODE (type);
1746 int len = TYPE_LENGTH (type);
1747 int nosign = TYPE_UNSIGNED (type);
c906108c 1748
c906108c
SS
1749 switch (code)
1750 {
1751 case TYPE_CODE_TYPEDEF:
1752 return unpack_long (check_typedef (type), valaddr);
1753 case TYPE_CODE_ENUM:
4f2aea11 1754 case TYPE_CODE_FLAGS:
c906108c
SS
1755 case TYPE_CODE_BOOL:
1756 case TYPE_CODE_INT:
1757 case TYPE_CODE_CHAR:
1758 case TYPE_CODE_RANGE:
0d5de010 1759 case TYPE_CODE_MEMBERPTR:
c906108c 1760 if (nosign)
e17a4113 1761 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 1762 else
e17a4113 1763 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
1764
1765 case TYPE_CODE_FLT:
96d2f608 1766 return extract_typed_floating (valaddr, type);
c906108c 1767
4ef30785
TJB
1768 case TYPE_CODE_DECFLOAT:
1769 /* libdecnumber has a function to convert from decimal to integer, but
1770 it doesn't work when the decimal number has a fractional part. */
e17a4113 1771 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 1772
c906108c
SS
1773 case TYPE_CODE_PTR:
1774 case TYPE_CODE_REF:
1775 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1776 whether we want this to be true eventually. */
4478b372 1777 return extract_typed_address (valaddr, type);
c906108c 1778
c906108c 1779 default:
8a3fe4f8 1780 error (_("Value can't be converted to integer."));
c906108c 1781 }
c5aa993b 1782 return 0; /* Placate lint. */
c906108c
SS
1783}
1784
1785/* Return a double value from the specified type and address.
1786 INVP points to an int which is set to 0 for valid value,
1787 1 for invalid value (bad float format). In either case,
1788 the returned double is OK to use. Argument is in target
1789 format, result is in host format. */
1790
1791DOUBLEST
fc1a4b47 1792unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 1793{
e17a4113 1794 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
1795 enum type_code code;
1796 int len;
1797 int nosign;
1798
1799 *invp = 0; /* Assume valid. */
1800 CHECK_TYPEDEF (type);
1801 code = TYPE_CODE (type);
1802 len = TYPE_LENGTH (type);
1803 nosign = TYPE_UNSIGNED (type);
1804 if (code == TYPE_CODE_FLT)
1805 {
75bc7ddf
AC
1806 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1807 floating-point value was valid (using the macro
1808 INVALID_FLOAT). That test/macro have been removed.
1809
1810 It turns out that only the VAX defined this macro and then
1811 only in a non-portable way. Fixing the portability problem
1812 wouldn't help since the VAX floating-point code is also badly
1813 bit-rotten. The target needs to add definitions for the
ea06eb3d 1814 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1815 exactly describe the target floating-point format. The
1816 problem here is that the corresponding floatformat_vax_f and
1817 floatformat_vax_d values these methods should be set to are
1818 also not defined either. Oops!
1819
1820 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1821 definitions and the new cases for floatformat_is_valid (). */
1822
1823 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1824 {
1825 *invp = 1;
1826 return 0.0;
1827 }
1828
96d2f608 1829 return extract_typed_floating (valaddr, type);
c906108c 1830 }
4ef30785 1831 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 1832 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
1833 else if (nosign)
1834 {
1835 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1836 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1837 }
1838 else
1839 {
1840 /* Signed -- we are OK with unpack_long. */
1841 return unpack_long (type, valaddr);
1842 }
1843}
1844
1845/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1846 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1847 We don't assume any alignment for the raw data. Return value is in
1848 host byte order.
1849
1850 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1851 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1852
1853 C++: It is assumed that the front-end has taken care of
1854 all matters concerning pointers to members. A pointer
1855 to member which reaches here is considered to be equivalent
1856 to an INT (or some size). After all, it is only an offset. */
1857
1858CORE_ADDR
fc1a4b47 1859unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1860{
1861 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1862 whether we want this to be true eventually. */
1863 return unpack_long (type, valaddr);
1864}
4478b372 1865
c906108c 1866\f
1596cb5d 1867/* Get the value of the FIELDNO'th field (which must be static) of
2c2738a0
DC
1868 TYPE. Return NULL if the field doesn't exist or has been
1869 optimized out. */
c906108c 1870
f23631e4 1871struct value *
fba45db2 1872value_static_field (struct type *type, int fieldno)
c906108c 1873{
948e66d9
DJ
1874 struct value *retval;
1875
1596cb5d 1876 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 1877 {
1596cb5d 1878 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
1879 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1880 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
1881 break;
1882 case FIELD_LOC_KIND_PHYSNAME:
c906108c
SS
1883 {
1884 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
a109c7c1 1885 /*TYPE_FIELD_NAME (type, fieldno);*/
2570f2b7 1886 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 1887
948e66d9 1888 if (sym == NULL)
c906108c 1889 {
a109c7c1
MS
1890 /* With some compilers, e.g. HP aCC, static data members are
1891 reported as non-debuggable symbols */
1892 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
1893 NULL, NULL);
1894
c906108c
SS
1895 if (!msym)
1896 return NULL;
1897 else
c5aa993b 1898 {
52e9fde8
SS
1899 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
1900 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1901 }
1902 }
1903 else
1904 {
948e66d9
DJ
1905 /* SYM should never have a SYMBOL_CLASS which will require
1906 read_var_value to use the FRAME parameter. */
1907 if (symbol_read_needs_frame (sym))
8a3fe4f8
AC
1908 warning (_("static field's value depends on the current "
1909 "frame - bad debug info?"));
948e66d9 1910 retval = read_var_value (sym, NULL);
2b127877 1911 }
948e66d9
DJ
1912 if (retval && VALUE_LVAL (retval) == lval_memory)
1913 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
42ae5230 1914 value_address (retval));
1596cb5d 1915 break;
c906108c 1916 }
1596cb5d
DE
1917 default:
1918 gdb_assert (0);
1919 }
1920
948e66d9 1921 return retval;
c906108c
SS
1922}
1923
2b127877
DB
1924/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1925 You have to be careful here, since the size of the data area for the value
1926 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1927 than the old enclosing type, you have to allocate more space for the data.
1928 The return value is a pointer to the new version of this value structure. */
1929
f23631e4
AC
1930struct value *
1931value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1932{
3e3d7139
JG
1933 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1934 val->contents =
1935 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1936
1937 val->enclosing_type = new_encl_type;
1938 return val;
2b127877
DB
1939}
1940
c906108c
SS
1941/* Given a value ARG1 (offset by OFFSET bytes)
1942 of a struct or union type ARG_TYPE,
1943 extract and return the value of one of its (non-static) fields.
1944 FIELDNO says which field. */
1945
f23631e4
AC
1946struct value *
1947value_primitive_field (struct value *arg1, int offset,
aa1ee363 1948 int fieldno, struct type *arg_type)
c906108c 1949{
f23631e4 1950 struct value *v;
52f0bd74 1951 struct type *type;
c906108c
SS
1952
1953 CHECK_TYPEDEF (arg_type);
1954 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
1955
1956 /* Call check_typedef on our type to make sure that, if TYPE
1957 is a TYPE_CODE_TYPEDEF, its length is set to the length
1958 of the target type instead of zero. However, we do not
1959 replace the typedef type by the target type, because we want
1960 to keep the typedef in order to be able to print the type
1961 description correctly. */
1962 check_typedef (type);
c906108c
SS
1963
1964 /* Handle packed fields */
1965
1966 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1967 {
4ea48cc1
DJ
1968 /* Create a new value for the bitfield, with bitpos and bitsize
1969 set. If possible, arrange offset and bitpos so that we can
1970 do a single aligned read of the size of the containing type.
1971 Otherwise, adjust offset to the byte containing the first
1972 bit. Assume that the address, offset, and embedded offset
1973 are sufficiently aligned. */
1974 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1975 int container_bitsize = TYPE_LENGTH (type) * 8;
1976
1977 v = allocate_value_lazy (type);
df407dfe 1978 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
4ea48cc1
DJ
1979 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1980 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1981 v->bitpos = bitpos % container_bitsize;
1982 else
1983 v->bitpos = bitpos % 8;
4a76eae5 1984 v->offset = value_embedded_offset (arg1)
4ea48cc1
DJ
1985 + (bitpos - v->bitpos) / 8;
1986 v->parent = arg1;
1987 value_incref (v->parent);
1988 if (!value_lazy (arg1))
1989 value_fetch_lazy (v);
c906108c
SS
1990 }
1991 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1992 {
1993 /* This field is actually a base subobject, so preserve the
1994 entire object's contents for later references to virtual
1995 bases, etc. */
a4e2ee12
DJ
1996
1997 /* Lazy register values with offsets are not supported. */
1998 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1999 value_fetch_lazy (arg1);
2000
2001 if (value_lazy (arg1))
3e3d7139 2002 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 2003 else
3e3d7139
JG
2004 {
2005 v = allocate_value (value_enclosing_type (arg1));
2006 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
2007 TYPE_LENGTH (value_enclosing_type (arg1)));
2008 }
2009 v->type = type;
df407dfe 2010 v->offset = value_offset (arg1);
13c3b5f5
AC
2011 v->embedded_offset = (offset + value_embedded_offset (arg1)
2012 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
2013 }
2014 else
2015 {
2016 /* Plain old data member */
2017 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2018
2019 /* Lazy register values with offsets are not supported. */
2020 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2021 value_fetch_lazy (arg1);
2022
2023 if (value_lazy (arg1))
3e3d7139 2024 v = allocate_value_lazy (type);
c906108c 2025 else
3e3d7139
JG
2026 {
2027 v = allocate_value (type);
2028 memcpy (value_contents_raw (v),
2029 value_contents_raw (arg1) + offset,
2030 TYPE_LENGTH (type));
2031 }
df407dfe 2032 v->offset = (value_offset (arg1) + offset
13c3b5f5 2033 + value_embedded_offset (arg1));
c906108c 2034 }
74bcbdf3 2035 set_value_component_location (v, arg1);
9ee8fc9d 2036 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2037 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2038 return v;
2039}
2040
2041/* Given a value ARG1 of a struct or union type,
2042 extract and return the value of one of its (non-static) fields.
2043 FIELDNO says which field. */
2044
f23631e4 2045struct value *
aa1ee363 2046value_field (struct value *arg1, int fieldno)
c906108c 2047{
df407dfe 2048 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2049}
2050
2051/* Return a non-virtual function as a value.
2052 F is the list of member functions which contains the desired method.
0478d61c
FF
2053 J is an index into F which provides the desired method.
2054
2055 We only use the symbol for its address, so be happy with either a
2056 full symbol or a minimal symbol.
2057 */
c906108c 2058
f23631e4
AC
2059struct value *
2060value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 2061 int offset)
c906108c 2062{
f23631e4 2063 struct value *v;
52f0bd74 2064 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 2065 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2066 struct symbol *sym;
0478d61c 2067 struct minimal_symbol *msym;
c906108c 2068
2570f2b7 2069 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2070 if (sym != NULL)
0478d61c 2071 {
5ae326fa
AC
2072 msym = NULL;
2073 }
2074 else
2075 {
2076 gdb_assert (sym == NULL);
0478d61c 2077 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
2078 if (msym == NULL)
2079 return NULL;
0478d61c
FF
2080 }
2081
c906108c 2082 v = allocate_value (ftype);
0478d61c
FF
2083 if (sym)
2084 {
42ae5230 2085 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2086 }
2087 else
2088 {
bccdca4a
UW
2089 /* The minimal symbol might point to a function descriptor;
2090 resolve it to the actual code address instead. */
2091 struct objfile *objfile = msymbol_objfile (msym);
2092 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2093
42ae5230
TT
2094 set_value_address (v,
2095 gdbarch_convert_from_func_ptr_addr
2096 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2097 }
c906108c
SS
2098
2099 if (arg1p)
c5aa993b 2100 {
df407dfe 2101 if (type != value_type (*arg1p))
c5aa993b
JM
2102 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2103 value_addr (*arg1p)));
2104
070ad9f0 2105 /* Move the `this' pointer according to the offset.
c5aa993b
JM
2106 VALUE_OFFSET (*arg1p) += offset;
2107 */
c906108c
SS
2108 }
2109
2110 return v;
2111}
2112
c906108c 2113\f
4ea48cc1
DJ
2114/* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2115 object at VALADDR. The bitfield starts at BITPOS bits and contains
2116 BITSIZE bits.
c906108c
SS
2117
2118 Extracting bits depends on endianness of the machine. Compute the
2119 number of least significant bits to discard. For big endian machines,
2120 we compute the total number of bits in the anonymous object, subtract
2121 off the bit count from the MSB of the object to the MSB of the
2122 bitfield, then the size of the bitfield, which leaves the LSB discard
2123 count. For little endian machines, the discard count is simply the
2124 number of bits from the LSB of the anonymous object to the LSB of the
2125 bitfield.
2126
2127 If the field is signed, we also do sign extension. */
2128
2129LONGEST
4ea48cc1
DJ
2130unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2131 int bitpos, int bitsize)
c906108c 2132{
4ea48cc1 2133 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2134 ULONGEST val;
2135 ULONGEST valmask;
c906108c 2136 int lsbcount;
4a76eae5 2137 int bytes_read;
c906108c 2138
4a76eae5
DJ
2139 /* Read the minimum number of bytes required; there may not be
2140 enough bytes to read an entire ULONGEST. */
c906108c 2141 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
2142 if (bitsize)
2143 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2144 else
2145 bytes_read = TYPE_LENGTH (field_type);
2146
2147 val = extract_unsigned_integer (valaddr + bitpos / 8,
2148 bytes_read, byte_order);
c906108c
SS
2149
2150 /* Extract bits. See comment above. */
2151
4ea48cc1 2152 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 2153 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
2154 else
2155 lsbcount = (bitpos % 8);
2156 val >>= lsbcount;
2157
2158 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2159 If the field is signed, and is negative, then sign extend. */
2160
2161 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2162 {
2163 valmask = (((ULONGEST) 1) << bitsize) - 1;
2164 val &= valmask;
2165 if (!TYPE_UNSIGNED (field_type))
2166 {
2167 if (val & (valmask ^ (valmask >> 1)))
2168 {
2169 val |= ~valmask;
2170 }
2171 }
2172 }
2173 return (val);
2174}
2175
4ea48cc1
DJ
2176/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2177 VALADDR. See unpack_bits_as_long for more details. */
2178
2179LONGEST
2180unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2181{
2182 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2183 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2184 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2185
2186 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2187}
2188
c906108c
SS
2189/* Modify the value of a bitfield. ADDR points to a block of memory in
2190 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2191 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
2192 indicate which bits (in target bit order) comprise the bitfield.
2193 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2194 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2195
2196void
50810684
UW
2197modify_field (struct type *type, gdb_byte *addr,
2198 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2199{
e17a4113 2200 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2201 ULONGEST oword;
2202 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
2203
2204 /* If a negative fieldval fits in the field in question, chop
2205 off the sign extension bits. */
f4e88c8e
PH
2206 if ((~fieldval & ~(mask >> 1)) == 0)
2207 fieldval &= mask;
c906108c
SS
2208
2209 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2210 if (0 != (fieldval & ~mask))
c906108c
SS
2211 {
2212 /* FIXME: would like to include fieldval in the message, but
c5aa993b 2213 we don't have a sprintf_longest. */
8a3fe4f8 2214 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
2215
2216 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 2217 fieldval &= mask;
c906108c
SS
2218 }
2219
e17a4113 2220 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
c906108c
SS
2221
2222 /* Shifting for bit field depends on endianness of the target machine. */
50810684 2223 if (gdbarch_bits_big_endian (get_type_arch (type)))
c906108c
SS
2224 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2225
f4e88c8e 2226 oword &= ~(mask << bitpos);
c906108c
SS
2227 oword |= fieldval << bitpos;
2228
e17a4113 2229 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
c906108c
SS
2230}
2231\f
14d06750 2232/* Pack NUM into BUF using a target format of TYPE. */
c906108c 2233
14d06750
DJ
2234void
2235pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 2236{
e17a4113 2237 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 2238 int len;
14d06750
DJ
2239
2240 type = check_typedef (type);
c906108c
SS
2241 len = TYPE_LENGTH (type);
2242
14d06750 2243 switch (TYPE_CODE (type))
c906108c 2244 {
c906108c
SS
2245 case TYPE_CODE_INT:
2246 case TYPE_CODE_CHAR:
2247 case TYPE_CODE_ENUM:
4f2aea11 2248 case TYPE_CODE_FLAGS:
c906108c
SS
2249 case TYPE_CODE_BOOL:
2250 case TYPE_CODE_RANGE:
0d5de010 2251 case TYPE_CODE_MEMBERPTR:
e17a4113 2252 store_signed_integer (buf, len, byte_order, num);
c906108c 2253 break;
c5aa993b 2254
c906108c
SS
2255 case TYPE_CODE_REF:
2256 case TYPE_CODE_PTR:
14d06750 2257 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 2258 break;
c5aa993b 2259
c906108c 2260 default:
14d06750
DJ
2261 error (_("Unexpected type (%d) encountered for integer constant."),
2262 TYPE_CODE (type));
c906108c 2263 }
14d06750
DJ
2264}
2265
2266
595939de
PM
2267/* Pack NUM into BUF using a target format of TYPE. */
2268
2269void
2270pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2271{
2272 int len;
2273 enum bfd_endian byte_order;
2274
2275 type = check_typedef (type);
2276 len = TYPE_LENGTH (type);
2277 byte_order = gdbarch_byte_order (get_type_arch (type));
2278
2279 switch (TYPE_CODE (type))
2280 {
2281 case TYPE_CODE_INT:
2282 case TYPE_CODE_CHAR:
2283 case TYPE_CODE_ENUM:
2284 case TYPE_CODE_FLAGS:
2285 case TYPE_CODE_BOOL:
2286 case TYPE_CODE_RANGE:
2287 case TYPE_CODE_MEMBERPTR:
2288 store_unsigned_integer (buf, len, byte_order, num);
2289 break;
2290
2291 case TYPE_CODE_REF:
2292 case TYPE_CODE_PTR:
2293 store_typed_address (buf, type, (CORE_ADDR) num);
2294 break;
2295
2296 default:
2297 error (_("\
2298Unexpected type (%d) encountered for unsigned integer constant."),
2299 TYPE_CODE (type));
2300 }
2301}
2302
2303
14d06750
DJ
2304/* Convert C numbers into newly allocated values. */
2305
2306struct value *
2307value_from_longest (struct type *type, LONGEST num)
2308{
2309 struct value *val = allocate_value (type);
2310
2311 pack_long (value_contents_raw (val), type, num);
c906108c
SS
2312 return val;
2313}
2314
4478b372 2315
595939de
PM
2316/* Convert C unsigned numbers into newly allocated values. */
2317
2318struct value *
2319value_from_ulongest (struct type *type, ULONGEST num)
2320{
2321 struct value *val = allocate_value (type);
2322
2323 pack_unsigned_long (value_contents_raw (val), type, num);
2324
2325 return val;
2326}
2327
2328
4478b372
JB
2329/* Create a value representing a pointer of type TYPE to the address
2330 ADDR. */
f23631e4 2331struct value *
4478b372
JB
2332value_from_pointer (struct type *type, CORE_ADDR addr)
2333{
f23631e4 2334 struct value *val = allocate_value (type);
a109c7c1 2335
cab0c772 2336 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
2337 return val;
2338}
2339
2340
8acb6b92
TT
2341/* Create a value of type TYPE whose contents come from VALADDR, if it
2342 is non-null, and whose memory address (in the inferior) is
2343 ADDRESS. */
2344
2345struct value *
2346value_from_contents_and_address (struct type *type,
2347 const gdb_byte *valaddr,
2348 CORE_ADDR address)
2349{
2350 struct value *v = allocate_value (type);
a109c7c1 2351
8acb6b92
TT
2352 if (valaddr == NULL)
2353 set_value_lazy (v, 1);
2354 else
2355 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
42ae5230 2356 set_value_address (v, address);
33d502b4 2357 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
2358 return v;
2359}
2360
f23631e4 2361struct value *
fba45db2 2362value_from_double (struct type *type, DOUBLEST num)
c906108c 2363{
f23631e4 2364 struct value *val = allocate_value (type);
c906108c 2365 struct type *base_type = check_typedef (type);
52f0bd74 2366 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
2367
2368 if (code == TYPE_CODE_FLT)
2369 {
990a07ab 2370 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
2371 }
2372 else
8a3fe4f8 2373 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
2374
2375 return val;
2376}
994b9211 2377
27bc4d80 2378struct value *
4ef30785 2379value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
2380{
2381 struct value *val = allocate_value (type);
27bc4d80 2382
4ef30785 2383 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
2384 return val;
2385}
2386
994b9211
AC
2387struct value *
2388coerce_ref (struct value *arg)
2389{
df407dfe 2390 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a109c7c1 2391
994b9211
AC
2392 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2393 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 2394 unpack_pointer (value_type (arg),
0fd88904 2395 value_contents (arg)));
994b9211
AC
2396 return arg;
2397}
2398
2399struct value *
2400coerce_array (struct value *arg)
2401{
f3134b88
TT
2402 struct type *type;
2403
994b9211 2404 arg = coerce_ref (arg);
f3134b88
TT
2405 type = check_typedef (value_type (arg));
2406
2407 switch (TYPE_CODE (type))
2408 {
2409 case TYPE_CODE_ARRAY:
2410 if (current_language->c_style_arrays)
2411 arg = value_coerce_array (arg);
2412 break;
2413 case TYPE_CODE_FUNC:
2414 arg = value_coerce_function (arg);
2415 break;
2416 }
994b9211
AC
2417 return arg;
2418}
c906108c 2419\f
c906108c 2420
48436ce6
AC
2421/* Return true if the function returning the specified type is using
2422 the convention of returning structures in memory (passing in the
82585c72 2423 address as a hidden first parameter). */
c906108c
SS
2424
2425int
d80b854b
UW
2426using_struct_return (struct gdbarch *gdbarch,
2427 struct type *func_type, struct type *value_type)
c906108c 2428{
52f0bd74 2429 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
2430
2431 if (code == TYPE_CODE_ERROR)
8a3fe4f8 2432 error (_("Function return type unknown."));
c906108c 2433
667e784f
AC
2434 if (code == TYPE_CODE_VOID)
2435 /* A void return value is never in memory. See also corresponding
44e5158b 2436 code in "print_return_value". */
667e784f
AC
2437 return 0;
2438
92ad9cd9 2439 /* Probe the architecture for the return-value convention. */
d80b854b 2440 return (gdbarch_return_value (gdbarch, func_type, value_type,
92ad9cd9 2441 NULL, NULL, NULL)
31db7b6c 2442 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
2443}
2444
42be36b3
CT
2445/* Set the initialized field in a value struct. */
2446
2447void
2448set_value_initialized (struct value *val, int status)
2449{
2450 val->initialized = status;
2451}
2452
2453/* Return the initialized field in a value struct. */
2454
2455int
2456value_initialized (struct value *val)
2457{
2458 return val->initialized;
2459}
2460
c906108c 2461void
fba45db2 2462_initialize_values (void)
c906108c 2463{
1a966eab
AC
2464 add_cmd ("convenience", no_class, show_convenience, _("\
2465Debugger convenience (\"$foo\") variables.\n\
c906108c 2466These variables are created when you assign them values;\n\
1a966eab
AC
2467thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2468\n\
c906108c
SS
2469A few convenience variables are given values automatically:\n\
2470\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 2471\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
2472 &showlist);
2473
2474 add_cmd ("values", no_class, show_values,
1a966eab 2475 _("Elements of value history around item number IDX (or last ten)."),
c906108c 2476 &showlist);
53e5f3cf
AS
2477
2478 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2479Initialize a convenience variable if necessary.\n\
2480init-if-undefined VARIABLE = EXPRESSION\n\
2481Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2482exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2483VARIABLE is already initialized."));
bc3b79fd
TJB
2484
2485 add_prefix_cmd ("function", no_class, function_command, _("\
2486Placeholder command for showing help on convenience functions."),
2487 &functionlist, "function ", 0, &cmdlist);
c906108c 2488}
This page took 1.162898 seconds and 4 git commands to generate.