* value.h (allocate_value_lazy): New function declaration.
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
9b254dd1 4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008
4f2aea11 5 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
c906108c
SS
28#include "command.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "language.h"
c906108c 32#include "demangle.h"
d16aafd8 33#include "doublest.h"
5ae326fa 34#include "gdb_assert.h"
36160dc4 35#include "regcache.h"
fe898f56 36#include "block.h"
27bc4d80 37#include "dfp.h"
bccdca4a 38#include "objfiles.h"
79a45b7d 39#include "valprint.h"
c906108c 40
a08702d6
TJB
41#include "python/python.h"
42
c906108c
SS
43/* Prototypes for exported functions. */
44
a14ed312 45void _initialize_values (void);
c906108c 46
91294c83
AC
47struct value
48{
49 /* Type of value; either not an lval, or one of the various
50 different possible kinds of lval. */
51 enum lval_type lval;
52
53 /* Is it modifiable? Only relevant if lval != not_lval. */
54 int modifiable;
55
56 /* Location of value (if lval). */
57 union
58 {
59 /* If lval == lval_memory, this is the address in the inferior.
60 If lval == lval_register, this is the byte offset into the
61 registers structure. */
62 CORE_ADDR address;
63
64 /* Pointer to internal variable. */
65 struct internalvar *internalvar;
66 } location;
67
68 /* Describes offset of a value within lval of a structure in bytes.
69 If lval == lval_memory, this is an offset to the address. If
70 lval == lval_register, this is a further offset from
71 location.address within the registers structure. Note also the
72 member embedded_offset below. */
73 int offset;
74
75 /* Only used for bitfields; number of bits contained in them. */
76 int bitsize;
77
78 /* Only used for bitfields; position of start of field. For
32c9a795
MD
79 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
80 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
81 int bitpos;
82
83 /* Frame register value is relative to. This will be described in
84 the lval enum above as "lval_register". */
85 struct frame_id frame_id;
86
87 /* Type of the value. */
88 struct type *type;
89
90 /* If a value represents a C++ object, then the `type' field gives
91 the object's compile-time type. If the object actually belongs
92 to some class derived from `type', perhaps with other base
93 classes and additional members, then `type' is just a subobject
94 of the real thing, and the full object is probably larger than
95 `type' would suggest.
96
97 If `type' is a dynamic class (i.e. one with a vtable), then GDB
98 can actually determine the object's run-time type by looking at
99 the run-time type information in the vtable. When this
100 information is available, we may elect to read in the entire
101 object, for several reasons:
102
103 - When printing the value, the user would probably rather see the
104 full object, not just the limited portion apparent from the
105 compile-time type.
106
107 - If `type' has virtual base classes, then even printing `type'
108 alone may require reaching outside the `type' portion of the
109 object to wherever the virtual base class has been stored.
110
111 When we store the entire object, `enclosing_type' is the run-time
112 type -- the complete object -- and `embedded_offset' is the
113 offset of `type' within that larger type, in bytes. The
114 value_contents() macro takes `embedded_offset' into account, so
115 most GDB code continues to see the `type' portion of the value,
116 just as the inferior would.
117
118 If `type' is a pointer to an object, then `enclosing_type' is a
119 pointer to the object's run-time type, and `pointed_to_offset' is
120 the offset in bytes from the full object to the pointed-to object
121 -- that is, the value `embedded_offset' would have if we followed
122 the pointer and fetched the complete object. (I don't really see
123 the point. Why not just determine the run-time type when you
124 indirect, and avoid the special case? The contents don't matter
125 until you indirect anyway.)
126
127 If we're not doing anything fancy, `enclosing_type' is equal to
128 `type', and `embedded_offset' is zero, so everything works
129 normally. */
130 struct type *enclosing_type;
131 int embedded_offset;
132 int pointed_to_offset;
133
134 /* Values are stored in a chain, so that they can be deleted easily
135 over calls to the inferior. Values assigned to internal
a08702d6
TJB
136 variables, put into the value history or exposed to Python are
137 taken off this list. */
91294c83
AC
138 struct value *next;
139
140 /* Register number if the value is from a register. */
141 short regnum;
142
143 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
144 nonzero, contents are in inferior. If the lval field is lval_memory,
145 the contents are in inferior memory at location.address plus offset.
146 The lval field may also be lval_register.
91294c83
AC
147
148 WARNING: This field is used by the code which handles watchpoints
149 (see breakpoint.c) to decide whether a particular value can be
150 watched by hardware watchpoints. If the lazy flag is set for
151 some member of a value chain, it is assumed that this member of
152 the chain doesn't need to be watched as part of watching the
153 value itself. This is how GDB avoids watching the entire struct
154 or array when the user wants to watch a single struct member or
155 array element. If you ever change the way lazy flag is set and
156 reset, be sure to consider this use as well! */
157 char lazy;
158
159 /* If nonzero, this is the value of a variable which does not
160 actually exist in the program. */
161 char optimized_out;
162
42be36b3
CT
163 /* If value is a variable, is it initialized or not. */
164 int initialized;
165
3e3d7139
JG
166 /* Actual contents of the value. Target byte-order. NULL or not
167 valid if lazy is nonzero. */
168 gdb_byte *contents;
91294c83
AC
169};
170
c906108c
SS
171/* Prototypes for local functions. */
172
a14ed312 173static void show_values (char *, int);
c906108c 174
a14ed312 175static void show_convenience (char *, int);
c906108c 176
c906108c
SS
177
178/* The value-history records all the values printed
179 by print commands during this session. Each chunk
180 records 60 consecutive values. The first chunk on
181 the chain records the most recent values.
182 The total number of values is in value_history_count. */
183
184#define VALUE_HISTORY_CHUNK 60
185
186struct value_history_chunk
c5aa993b
JM
187 {
188 struct value_history_chunk *next;
f23631e4 189 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 190 };
c906108c
SS
191
192/* Chain of chunks now in use. */
193
194static struct value_history_chunk *value_history_chain;
195
196static int value_history_count; /* Abs number of last entry stored */
197\f
198/* List of all value objects currently allocated
199 (except for those released by calls to release_value)
200 This is so they can be freed after each command. */
201
f23631e4 202static struct value *all_values;
c906108c 203
3e3d7139
JG
204/* Allocate a lazy value for type TYPE. Its actual content is
205 "lazily" allocated too: the content field of the return value is
206 NULL; it will be allocated when it is fetched from the target. */
c906108c 207
f23631e4 208struct value *
3e3d7139 209allocate_value_lazy (struct type *type)
c906108c 210{
f23631e4 211 struct value *val;
c906108c
SS
212 struct type *atype = check_typedef (type);
213
3e3d7139
JG
214 val = (struct value *) xzalloc (sizeof (struct value));
215 val->contents = NULL;
df407dfe 216 val->next = all_values;
c906108c 217 all_values = val;
df407dfe 218 val->type = type;
4754a64e 219 val->enclosing_type = type;
c906108c
SS
220 VALUE_LVAL (val) = not_lval;
221 VALUE_ADDRESS (val) = 0;
1df6926e 222 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
223 val->offset = 0;
224 val->bitpos = 0;
225 val->bitsize = 0;
9ee8fc9d 226 VALUE_REGNUM (val) = -1;
3e3d7139 227 val->lazy = 1;
feb13ab0 228 val->optimized_out = 0;
13c3b5f5 229 val->embedded_offset = 0;
b44d461b 230 val->pointed_to_offset = 0;
c906108c 231 val->modifiable = 1;
42be36b3 232 val->initialized = 1; /* Default to initialized. */
c906108c
SS
233 return val;
234}
235
3e3d7139
JG
236/* Allocate the contents of VAL if it has not been allocated yet. */
237
238void
239allocate_value_contents (struct value *val)
240{
241 if (!val->contents)
242 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
243}
244
245/* Allocate a value and its contents for type TYPE. */
246
247struct value *
248allocate_value (struct type *type)
249{
250 struct value *val = allocate_value_lazy (type);
251 allocate_value_contents (val);
252 val->lazy = 0;
253 return val;
254}
255
c906108c 256/* Allocate a value that has the correct length
938f5214 257 for COUNT repetitions of type TYPE. */
c906108c 258
f23631e4 259struct value *
fba45db2 260allocate_repeat_value (struct type *type, int count)
c906108c 261{
c5aa993b 262 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
263 /* FIXME-type-allocation: need a way to free this type when we are
264 done with it. */
265 struct type *range_type
6d84d3d8 266 = create_range_type ((struct type *) NULL, builtin_type_int32,
c5aa993b 267 low_bound, count + low_bound - 1);
c906108c
SS
268 /* FIXME-type-allocation: need a way to free this type when we are
269 done with it. */
270 return allocate_value (create_array_type ((struct type *) NULL,
271 type, range_type));
272}
273
a08702d6
TJB
274/* Needed if another module needs to maintain its on list of values. */
275void
276value_prepend_to_list (struct value **head, struct value *val)
277{
278 val->next = *head;
279 *head = val;
280}
281
282/* Needed if another module needs to maintain its on list of values. */
283void
284value_remove_from_list (struct value **head, struct value *val)
285{
286 struct value *prev;
287
288 if (*head == val)
289 *head = (*head)->next;
290 else
291 for (prev = *head; prev->next; prev = prev->next)
292 if (prev->next == val)
293 {
294 prev->next = val->next;
295 break;
296 }
297}
298
df407dfe
AC
299/* Accessor methods. */
300
17cf0ecd
AC
301struct value *
302value_next (struct value *value)
303{
304 return value->next;
305}
306
df407dfe
AC
307struct type *
308value_type (struct value *value)
309{
310 return value->type;
311}
04624583
AC
312void
313deprecated_set_value_type (struct value *value, struct type *type)
314{
315 value->type = type;
316}
df407dfe
AC
317
318int
319value_offset (struct value *value)
320{
321 return value->offset;
322}
f5cf64a7
AC
323void
324set_value_offset (struct value *value, int offset)
325{
326 value->offset = offset;
327}
df407dfe
AC
328
329int
330value_bitpos (struct value *value)
331{
332 return value->bitpos;
333}
9bbda503
AC
334void
335set_value_bitpos (struct value *value, int bit)
336{
337 value->bitpos = bit;
338}
df407dfe
AC
339
340int
341value_bitsize (struct value *value)
342{
343 return value->bitsize;
344}
9bbda503
AC
345void
346set_value_bitsize (struct value *value, int bit)
347{
348 value->bitsize = bit;
349}
df407dfe 350
fc1a4b47 351gdb_byte *
990a07ab
AC
352value_contents_raw (struct value *value)
353{
3e3d7139
JG
354 allocate_value_contents (value);
355 return value->contents + value->embedded_offset;
990a07ab
AC
356}
357
fc1a4b47 358gdb_byte *
990a07ab
AC
359value_contents_all_raw (struct value *value)
360{
3e3d7139
JG
361 allocate_value_contents (value);
362 return value->contents;
990a07ab
AC
363}
364
4754a64e
AC
365struct type *
366value_enclosing_type (struct value *value)
367{
368 return value->enclosing_type;
369}
370
fc1a4b47 371const gdb_byte *
46615f07
AC
372value_contents_all (struct value *value)
373{
374 if (value->lazy)
375 value_fetch_lazy (value);
3e3d7139 376 return value->contents;
46615f07
AC
377}
378
d69fe07e
AC
379int
380value_lazy (struct value *value)
381{
382 return value->lazy;
383}
384
dfa52d88
AC
385void
386set_value_lazy (struct value *value, int val)
387{
388 value->lazy = val;
389}
390
fc1a4b47 391const gdb_byte *
0fd88904
AC
392value_contents (struct value *value)
393{
394 return value_contents_writeable (value);
395}
396
fc1a4b47 397gdb_byte *
0fd88904
AC
398value_contents_writeable (struct value *value)
399{
400 if (value->lazy)
401 value_fetch_lazy (value);
fc0c53a0 402 return value_contents_raw (value);
0fd88904
AC
403}
404
a6c442d8
MK
405/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
406 this function is different from value_equal; in C the operator ==
407 can return 0 even if the two values being compared are equal. */
408
409int
410value_contents_equal (struct value *val1, struct value *val2)
411{
412 struct type *type1;
413 struct type *type2;
414 int len;
415
416 type1 = check_typedef (value_type (val1));
417 type2 = check_typedef (value_type (val2));
418 len = TYPE_LENGTH (type1);
419 if (len != TYPE_LENGTH (type2))
420 return 0;
421
422 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
423}
424
feb13ab0
AC
425int
426value_optimized_out (struct value *value)
427{
428 return value->optimized_out;
429}
430
431void
432set_value_optimized_out (struct value *value, int val)
433{
434 value->optimized_out = val;
435}
13c3b5f5
AC
436
437int
438value_embedded_offset (struct value *value)
439{
440 return value->embedded_offset;
441}
442
443void
444set_value_embedded_offset (struct value *value, int val)
445{
446 value->embedded_offset = val;
447}
b44d461b
AC
448
449int
450value_pointed_to_offset (struct value *value)
451{
452 return value->pointed_to_offset;
453}
454
455void
456set_value_pointed_to_offset (struct value *value, int val)
457{
458 value->pointed_to_offset = val;
459}
13bb5560
AC
460
461enum lval_type *
462deprecated_value_lval_hack (struct value *value)
463{
464 return &value->lval;
465}
466
467CORE_ADDR *
468deprecated_value_address_hack (struct value *value)
469{
470 return &value->location.address;
471}
472
473struct internalvar **
474deprecated_value_internalvar_hack (struct value *value)
475{
476 return &value->location.internalvar;
477}
478
479struct frame_id *
480deprecated_value_frame_id_hack (struct value *value)
481{
482 return &value->frame_id;
483}
484
485short *
486deprecated_value_regnum_hack (struct value *value)
487{
488 return &value->regnum;
489}
88e3b34b
AC
490
491int
492deprecated_value_modifiable (struct value *value)
493{
494 return value->modifiable;
495}
496void
497deprecated_set_value_modifiable (struct value *value, int modifiable)
498{
499 value->modifiable = modifiable;
500}
990a07ab 501\f
c906108c
SS
502/* Return a mark in the value chain. All values allocated after the
503 mark is obtained (except for those released) are subject to being freed
504 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 505struct value *
fba45db2 506value_mark (void)
c906108c
SS
507{
508 return all_values;
509}
510
3e3d7139
JG
511void
512value_free (struct value *val)
513{
514 if (val)
515 xfree (val->contents);
516 xfree (val);
517}
518
c906108c
SS
519/* Free all values allocated since MARK was obtained by value_mark
520 (except for those released). */
521void
f23631e4 522value_free_to_mark (struct value *mark)
c906108c 523{
f23631e4
AC
524 struct value *val;
525 struct value *next;
c906108c
SS
526
527 for (val = all_values; val && val != mark; val = next)
528 {
df407dfe 529 next = val->next;
c906108c
SS
530 value_free (val);
531 }
532 all_values = val;
533}
534
535/* Free all the values that have been allocated (except for those released).
536 Called after each command, successful or not. */
537
538void
fba45db2 539free_all_values (void)
c906108c 540{
f23631e4
AC
541 struct value *val;
542 struct value *next;
c906108c
SS
543
544 for (val = all_values; val; val = next)
545 {
df407dfe 546 next = val->next;
c906108c
SS
547 value_free (val);
548 }
549
550 all_values = 0;
551}
552
553/* Remove VAL from the chain all_values
554 so it will not be freed automatically. */
555
556void
f23631e4 557release_value (struct value *val)
c906108c 558{
f23631e4 559 struct value *v;
c906108c
SS
560
561 if (all_values == val)
562 {
563 all_values = val->next;
564 return;
565 }
566
567 for (v = all_values; v; v = v->next)
568 {
569 if (v->next == val)
570 {
571 v->next = val->next;
572 break;
573 }
574 }
575}
576
577/* Release all values up to mark */
f23631e4
AC
578struct value *
579value_release_to_mark (struct value *mark)
c906108c 580{
f23631e4
AC
581 struct value *val;
582 struct value *next;
c906108c 583
df407dfe
AC
584 for (val = next = all_values; next; next = next->next)
585 if (next->next == mark)
c906108c 586 {
df407dfe
AC
587 all_values = next->next;
588 next->next = NULL;
c906108c
SS
589 return val;
590 }
591 all_values = 0;
592 return val;
593}
594
595/* Return a copy of the value ARG.
596 It contains the same contents, for same memory address,
597 but it's a different block of storage. */
598
f23631e4
AC
599struct value *
600value_copy (struct value *arg)
c906108c 601{
4754a64e 602 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
603 struct value *val;
604
605 if (value_lazy (arg))
606 val = allocate_value_lazy (encl_type);
607 else
608 val = allocate_value (encl_type);
df407dfe 609 val->type = arg->type;
c906108c 610 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 611 val->location = arg->location;
df407dfe
AC
612 val->offset = arg->offset;
613 val->bitpos = arg->bitpos;
614 val->bitsize = arg->bitsize;
1df6926e 615 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 616 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 617 val->lazy = arg->lazy;
feb13ab0 618 val->optimized_out = arg->optimized_out;
13c3b5f5 619 val->embedded_offset = value_embedded_offset (arg);
b44d461b 620 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 621 val->modifiable = arg->modifiable;
d69fe07e 622 if (!value_lazy (val))
c906108c 623 {
990a07ab 624 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 625 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
626
627 }
628 return val;
629}
630\f
631/* Access to the value history. */
632
633/* Record a new value in the value history.
634 Returns the absolute history index of the entry.
635 Result of -1 indicates the value was not saved; otherwise it is the
636 value history index of this new item. */
637
638int
f23631e4 639record_latest_value (struct value *val)
c906108c
SS
640{
641 int i;
642
643 /* We don't want this value to have anything to do with the inferior anymore.
644 In particular, "set $1 = 50" should not affect the variable from which
645 the value was taken, and fast watchpoints should be able to assume that
646 a value on the value history never changes. */
d69fe07e 647 if (value_lazy (val))
c906108c
SS
648 value_fetch_lazy (val);
649 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
650 from. This is a bit dubious, because then *&$1 does not just return $1
651 but the current contents of that location. c'est la vie... */
652 val->modifiable = 0;
653 release_value (val);
654
655 /* Here we treat value_history_count as origin-zero
656 and applying to the value being stored now. */
657
658 i = value_history_count % VALUE_HISTORY_CHUNK;
659 if (i == 0)
660 {
f23631e4 661 struct value_history_chunk *new
c5aa993b
JM
662 = (struct value_history_chunk *)
663 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
664 memset (new->values, 0, sizeof new->values);
665 new->next = value_history_chain;
666 value_history_chain = new;
667 }
668
669 value_history_chain->values[i] = val;
670
671 /* Now we regard value_history_count as origin-one
672 and applying to the value just stored. */
673
674 return ++value_history_count;
675}
676
677/* Return a copy of the value in the history with sequence number NUM. */
678
f23631e4 679struct value *
fba45db2 680access_value_history (int num)
c906108c 681{
f23631e4 682 struct value_history_chunk *chunk;
52f0bd74
AC
683 int i;
684 int absnum = num;
c906108c
SS
685
686 if (absnum <= 0)
687 absnum += value_history_count;
688
689 if (absnum <= 0)
690 {
691 if (num == 0)
8a3fe4f8 692 error (_("The history is empty."));
c906108c 693 else if (num == 1)
8a3fe4f8 694 error (_("There is only one value in the history."));
c906108c 695 else
8a3fe4f8 696 error (_("History does not go back to $$%d."), -num);
c906108c
SS
697 }
698 if (absnum > value_history_count)
8a3fe4f8 699 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
700
701 absnum--;
702
703 /* Now absnum is always absolute and origin zero. */
704
705 chunk = value_history_chain;
706 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
707 i > 0; i--)
708 chunk = chunk->next;
709
710 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
711}
712
c906108c 713static void
fba45db2 714show_values (char *num_exp, int from_tty)
c906108c 715{
52f0bd74 716 int i;
f23631e4 717 struct value *val;
c906108c
SS
718 static int num = 1;
719
720 if (num_exp)
721 {
f132ba9d
TJB
722 /* "show values +" should print from the stored position.
723 "show values <exp>" should print around value number <exp>. */
c906108c 724 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 725 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
726 }
727 else
728 {
f132ba9d 729 /* "show values" means print the last 10 values. */
c906108c
SS
730 num = value_history_count - 9;
731 }
732
733 if (num <= 0)
734 num = 1;
735
736 for (i = num; i < num + 10 && i <= value_history_count; i++)
737 {
79a45b7d 738 struct value_print_options opts;
c906108c 739 val = access_value_history (i);
a3f17187 740 printf_filtered (("$%d = "), i);
79a45b7d
TT
741 get_user_print_options (&opts);
742 value_print (val, gdb_stdout, &opts);
a3f17187 743 printf_filtered (("\n"));
c906108c
SS
744 }
745
f132ba9d 746 /* The next "show values +" should start after what we just printed. */
c906108c
SS
747 num += 10;
748
749 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
750 "show values +". If num_exp is null, this is unnecessary, since
751 "show values +" is not useful after "show values". */
c906108c
SS
752 if (from_tty && num_exp)
753 {
754 num_exp[0] = '+';
755 num_exp[1] = '\0';
756 }
757}
758\f
759/* Internal variables. These are variables within the debugger
760 that hold values assigned by debugger commands.
761 The user refers to them with a '$' prefix
762 that does not appear in the variable names stored internally. */
763
764static struct internalvar *internalvars;
765
53e5f3cf
AS
766/* If the variable does not already exist create it and give it the value given.
767 If no value is given then the default is zero. */
768static void
769init_if_undefined_command (char* args, int from_tty)
770{
771 struct internalvar* intvar;
772
773 /* Parse the expression - this is taken from set_command(). */
774 struct expression *expr = parse_expression (args);
775 register struct cleanup *old_chain =
776 make_cleanup (free_current_contents, &expr);
777
778 /* Validate the expression.
779 Was the expression an assignment?
780 Or even an expression at all? */
781 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
782 error (_("Init-if-undefined requires an assignment expression."));
783
784 /* Extract the variable from the parsed expression.
785 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
786 if (expr->elts[1].opcode != OP_INTERNALVAR)
787 error (_("The first parameter to init-if-undefined should be a GDB variable."));
788 intvar = expr->elts[2].internalvar;
789
790 /* Only evaluate the expression if the lvalue is void.
791 This may still fail if the expresssion is invalid. */
792 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
793 evaluate_expression (expr);
794
795 do_cleanups (old_chain);
796}
797
798
c906108c
SS
799/* Look up an internal variable with name NAME. NAME should not
800 normally include a dollar sign.
801
802 If the specified internal variable does not exist,
c4a3d09a 803 the return value is NULL. */
c906108c
SS
804
805struct internalvar *
c4a3d09a 806lookup_only_internalvar (char *name)
c906108c 807{
52f0bd74 808 struct internalvar *var;
c906108c
SS
809
810 for (var = internalvars; var; var = var->next)
5cb316ef 811 if (strcmp (var->name, name) == 0)
c906108c
SS
812 return var;
813
c4a3d09a
MF
814 return NULL;
815}
816
817
818/* Create an internal variable with name NAME and with a void value.
819 NAME should not normally include a dollar sign. */
820
821struct internalvar *
822create_internalvar (char *name)
823{
824 struct internalvar *var;
c906108c 825 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 826 var->name = concat (name, (char *)NULL);
c906108c 827 var->value = allocate_value (builtin_type_void);
0d20ae72 828 var->endian = gdbarch_byte_order (current_gdbarch);
c906108c
SS
829 release_value (var->value);
830 var->next = internalvars;
831 internalvars = var;
832 return var;
833}
834
c4a3d09a
MF
835
836/* Look up an internal variable with name NAME. NAME should not
837 normally include a dollar sign.
838
839 If the specified internal variable does not exist,
840 one is created, with a void value. */
841
842struct internalvar *
843lookup_internalvar (char *name)
844{
845 struct internalvar *var;
846
847 var = lookup_only_internalvar (name);
848 if (var)
849 return var;
850
851 return create_internalvar (name);
852}
853
f23631e4 854struct value *
fba45db2 855value_of_internalvar (struct internalvar *var)
c906108c 856{
f23631e4 857 struct value *val;
d3c139e9
AS
858 int i, j;
859 gdb_byte temp;
c906108c 860
c906108c 861 val = value_copy (var->value);
d69fe07e 862 if (value_lazy (val))
c906108c
SS
863 value_fetch_lazy (val);
864 VALUE_LVAL (val) = lval_internalvar;
865 VALUE_INTERNALVAR (val) = var;
d3c139e9
AS
866
867 /* Values are always stored in the target's byte order. When connected to a
868 target this will most likely always be correct, so there's normally no
869 need to worry about it.
870
871 However, internal variables can be set up before the target endian is
872 known and so may become out of date. Fix it up before anybody sees.
873
874 Internal variables usually hold simple scalar values, and we can
875 correct those. More complex values (e.g. structures and floating
876 point types) are left alone, because they would be too complicated
877 to correct. */
878
0d20ae72 879 if (var->endian != gdbarch_byte_order (current_gdbarch))
d3c139e9
AS
880 {
881 gdb_byte *array = value_contents_raw (val);
882 struct type *type = check_typedef (value_enclosing_type (val));
883 switch (TYPE_CODE (type))
884 {
885 case TYPE_CODE_INT:
886 case TYPE_CODE_PTR:
887 /* Reverse the bytes. */
888 for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
889 {
890 temp = array[j];
891 array[j] = array[i];
892 array[i] = temp;
893 }
894 break;
895 }
896 }
897
c906108c
SS
898 return val;
899}
900
901void
fba45db2 902set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 903 int bitsize, struct value *newval)
c906108c 904{
fc1a4b47 905 gdb_byte *addr = value_contents_writeable (var->value) + offset;
c906108c 906
c906108c
SS
907 if (bitsize)
908 modify_field (addr, value_as_long (newval),
909 bitpos, bitsize);
910 else
0fd88904 911 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
c906108c
SS
912}
913
914void
f23631e4 915set_internalvar (struct internalvar *var, struct value *val)
c906108c 916{
f23631e4 917 struct value *newval;
c906108c 918
c906108c
SS
919 newval = value_copy (val);
920 newval->modifiable = 1;
921
922 /* Force the value to be fetched from the target now, to avoid problems
923 later when this internalvar is referenced and the target is gone or
924 has changed. */
d69fe07e 925 if (value_lazy (newval))
c906108c
SS
926 value_fetch_lazy (newval);
927
928 /* Begin code which must not call error(). If var->value points to
929 something free'd, an error() obviously leaves a dangling pointer.
930 But we also get a danling pointer if var->value points to
931 something in the value chain (i.e., before release_value is
932 called), because after the error free_all_values will get called before
933 long. */
b8c9b27d 934 xfree (var->value);
c906108c 935 var->value = newval;
0d20ae72 936 var->endian = gdbarch_byte_order (current_gdbarch);
c906108c
SS
937 release_value (newval);
938 /* End code which must not call error(). */
939}
940
941char *
fba45db2 942internalvar_name (struct internalvar *var)
c906108c
SS
943{
944 return var->name;
945}
946
ae5a43e0
DJ
947/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
948 prevent cycles / duplicates. */
949
950static void
951preserve_one_value (struct value *value, struct objfile *objfile,
952 htab_t copied_types)
953{
954 if (TYPE_OBJFILE (value->type) == objfile)
955 value->type = copy_type_recursive (objfile, value->type, copied_types);
956
957 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
958 value->enclosing_type = copy_type_recursive (objfile,
959 value->enclosing_type,
960 copied_types);
961}
962
963/* Update the internal variables and value history when OBJFILE is
964 discarded; we must copy the types out of the objfile. New global types
965 will be created for every convenience variable which currently points to
966 this objfile's types, and the convenience variables will be adjusted to
967 use the new global types. */
c906108c
SS
968
969void
ae5a43e0 970preserve_values (struct objfile *objfile)
c906108c 971{
ae5a43e0
DJ
972 htab_t copied_types;
973 struct value_history_chunk *cur;
52f0bd74 974 struct internalvar *var;
a08702d6 975 struct value *val;
ae5a43e0 976 int i;
c906108c 977
ae5a43e0
DJ
978 /* Create the hash table. We allocate on the objfile's obstack, since
979 it is soon to be deleted. */
980 copied_types = create_copied_types_hash (objfile);
981
982 for (cur = value_history_chain; cur; cur = cur->next)
983 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
984 if (cur->values[i])
985 preserve_one_value (cur->values[i], objfile, copied_types);
986
987 for (var = internalvars; var; var = var->next)
988 preserve_one_value (var->value, objfile, copied_types);
989
a08702d6
TJB
990 for (val = values_in_python; val; val = val->next)
991 preserve_one_value (val, objfile, copied_types);
992
ae5a43e0 993 htab_delete (copied_types);
c906108c
SS
994}
995
996static void
fba45db2 997show_convenience (char *ignore, int from_tty)
c906108c 998{
52f0bd74 999 struct internalvar *var;
c906108c 1000 int varseen = 0;
79a45b7d 1001 struct value_print_options opts;
c906108c 1002
79a45b7d 1003 get_user_print_options (&opts);
c906108c
SS
1004 for (var = internalvars; var; var = var->next)
1005 {
c906108c
SS
1006 if (!varseen)
1007 {
1008 varseen = 1;
1009 }
a3f17187 1010 printf_filtered (("$%s = "), var->name);
d3c139e9 1011 value_print (value_of_internalvar (var), gdb_stdout,
79a45b7d 1012 &opts);
a3f17187 1013 printf_filtered (("\n"));
c906108c
SS
1014 }
1015 if (!varseen)
a3f17187
AC
1016 printf_unfiltered (_("\
1017No debugger convenience variables now defined.\n\
c906108c 1018Convenience variables have names starting with \"$\";\n\
a3f17187 1019use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
1020}
1021\f
1022/* Extract a value as a C number (either long or double).
1023 Knows how to convert fixed values to double, or
1024 floating values to long.
1025 Does not deallocate the value. */
1026
1027LONGEST
f23631e4 1028value_as_long (struct value *val)
c906108c
SS
1029{
1030 /* This coerces arrays and functions, which is necessary (e.g.
1031 in disassemble_command). It also dereferences references, which
1032 I suspect is the most logical thing to do. */
994b9211 1033 val = coerce_array (val);
0fd88904 1034 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1035}
1036
1037DOUBLEST
f23631e4 1038value_as_double (struct value *val)
c906108c
SS
1039{
1040 DOUBLEST foo;
1041 int inv;
c5aa993b 1042
0fd88904 1043 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1044 if (inv)
8a3fe4f8 1045 error (_("Invalid floating value found in program."));
c906108c
SS
1046 return foo;
1047}
4ef30785 1048
4478b372
JB
1049/* Extract a value as a C pointer. Does not deallocate the value.
1050 Note that val's type may not actually be a pointer; value_as_long
1051 handles all the cases. */
c906108c 1052CORE_ADDR
f23631e4 1053value_as_address (struct value *val)
c906108c
SS
1054{
1055 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1056 whether we want this to be true eventually. */
1057#if 0
bf6ae464 1058 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1059 non-address (e.g. argument to "signal", "info break", etc.), or
1060 for pointers to char, in which the low bits *are* significant. */
bf6ae464 1061 return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
c906108c 1062#else
f312f057
JB
1063
1064 /* There are several targets (IA-64, PowerPC, and others) which
1065 don't represent pointers to functions as simply the address of
1066 the function's entry point. For example, on the IA-64, a
1067 function pointer points to a two-word descriptor, generated by
1068 the linker, which contains the function's entry point, and the
1069 value the IA-64 "global pointer" register should have --- to
1070 support position-independent code. The linker generates
1071 descriptors only for those functions whose addresses are taken.
1072
1073 On such targets, it's difficult for GDB to convert an arbitrary
1074 function address into a function pointer; it has to either find
1075 an existing descriptor for that function, or call malloc and
1076 build its own. On some targets, it is impossible for GDB to
1077 build a descriptor at all: the descriptor must contain a jump
1078 instruction; data memory cannot be executed; and code memory
1079 cannot be modified.
1080
1081 Upon entry to this function, if VAL is a value of type `function'
1082 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1083 VALUE_ADDRESS (val) is the address of the function. This is what
1084 you'll get if you evaluate an expression like `main'. The call
1085 to COERCE_ARRAY below actually does all the usual unary
1086 conversions, which includes converting values of type `function'
1087 to `pointer to function'. This is the challenging conversion
1088 discussed above. Then, `unpack_long' will convert that pointer
1089 back into an address.
1090
1091 So, suppose the user types `disassemble foo' on an architecture
1092 with a strange function pointer representation, on which GDB
1093 cannot build its own descriptors, and suppose further that `foo'
1094 has no linker-built descriptor. The address->pointer conversion
1095 will signal an error and prevent the command from running, even
1096 though the next step would have been to convert the pointer
1097 directly back into the same address.
1098
1099 The following shortcut avoids this whole mess. If VAL is a
1100 function, just return its address directly. */
df407dfe
AC
1101 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1102 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
f312f057
JB
1103 return VALUE_ADDRESS (val);
1104
994b9211 1105 val = coerce_array (val);
fc0c74b1
AC
1106
1107 /* Some architectures (e.g. Harvard), map instruction and data
1108 addresses onto a single large unified address space. For
1109 instance: An architecture may consider a large integer in the
1110 range 0x10000000 .. 0x1000ffff to already represent a data
1111 addresses (hence not need a pointer to address conversion) while
1112 a small integer would still need to be converted integer to
1113 pointer to address. Just assume such architectures handle all
1114 integer conversions in a single function. */
1115
1116 /* JimB writes:
1117
1118 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1119 must admonish GDB hackers to make sure its behavior matches the
1120 compiler's, whenever possible.
1121
1122 In general, I think GDB should evaluate expressions the same way
1123 the compiler does. When the user copies an expression out of
1124 their source code and hands it to a `print' command, they should
1125 get the same value the compiler would have computed. Any
1126 deviation from this rule can cause major confusion and annoyance,
1127 and needs to be justified carefully. In other words, GDB doesn't
1128 really have the freedom to do these conversions in clever and
1129 useful ways.
1130
1131 AndrewC pointed out that users aren't complaining about how GDB
1132 casts integers to pointers; they are complaining that they can't
1133 take an address from a disassembly listing and give it to `x/i'.
1134 This is certainly important.
1135
79dd2d24 1136 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1137 makes it possible for GDB to "get it right" in all circumstances
1138 --- the target has complete control over how things get done, so
1139 people can Do The Right Thing for their target without breaking
1140 anyone else. The standard doesn't specify how integers get
1141 converted to pointers; usually, the ABI doesn't either, but
1142 ABI-specific code is a more reasonable place to handle it. */
1143
df407dfe
AC
1144 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1145 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
79dd2d24
AC
1146 && gdbarch_integer_to_address_p (current_gdbarch))
1147 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
0fd88904 1148 value_contents (val));
fc0c74b1 1149
0fd88904 1150 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1151#endif
1152}
1153\f
1154/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1155 as a long, or as a double, assuming the raw data is described
1156 by type TYPE. Knows how to convert different sizes of values
1157 and can convert between fixed and floating point. We don't assume
1158 any alignment for the raw data. Return value is in host byte order.
1159
1160 If you want functions and arrays to be coerced to pointers, and
1161 references to be dereferenced, call value_as_long() instead.
1162
1163 C++: It is assumed that the front-end has taken care of
1164 all matters concerning pointers to members. A pointer
1165 to member which reaches here is considered to be equivalent
1166 to an INT (or some size). After all, it is only an offset. */
1167
1168LONGEST
fc1a4b47 1169unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1170{
52f0bd74
AC
1171 enum type_code code = TYPE_CODE (type);
1172 int len = TYPE_LENGTH (type);
1173 int nosign = TYPE_UNSIGNED (type);
c906108c 1174
c906108c
SS
1175 switch (code)
1176 {
1177 case TYPE_CODE_TYPEDEF:
1178 return unpack_long (check_typedef (type), valaddr);
1179 case TYPE_CODE_ENUM:
4f2aea11 1180 case TYPE_CODE_FLAGS:
c906108c
SS
1181 case TYPE_CODE_BOOL:
1182 case TYPE_CODE_INT:
1183 case TYPE_CODE_CHAR:
1184 case TYPE_CODE_RANGE:
0d5de010 1185 case TYPE_CODE_MEMBERPTR:
c906108c
SS
1186 if (nosign)
1187 return extract_unsigned_integer (valaddr, len);
1188 else
1189 return extract_signed_integer (valaddr, len);
1190
1191 case TYPE_CODE_FLT:
96d2f608 1192 return extract_typed_floating (valaddr, type);
c906108c 1193
4ef30785
TJB
1194 case TYPE_CODE_DECFLOAT:
1195 /* libdecnumber has a function to convert from decimal to integer, but
1196 it doesn't work when the decimal number has a fractional part. */
ba759613 1197 return decimal_to_doublest (valaddr, len);
4ef30785 1198
c906108c
SS
1199 case TYPE_CODE_PTR:
1200 case TYPE_CODE_REF:
1201 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1202 whether we want this to be true eventually. */
4478b372 1203 return extract_typed_address (valaddr, type);
c906108c 1204
c906108c 1205 default:
8a3fe4f8 1206 error (_("Value can't be converted to integer."));
c906108c 1207 }
c5aa993b 1208 return 0; /* Placate lint. */
c906108c
SS
1209}
1210
1211/* Return a double value from the specified type and address.
1212 INVP points to an int which is set to 0 for valid value,
1213 1 for invalid value (bad float format). In either case,
1214 the returned double is OK to use. Argument is in target
1215 format, result is in host format. */
1216
1217DOUBLEST
fc1a4b47 1218unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c
SS
1219{
1220 enum type_code code;
1221 int len;
1222 int nosign;
1223
1224 *invp = 0; /* Assume valid. */
1225 CHECK_TYPEDEF (type);
1226 code = TYPE_CODE (type);
1227 len = TYPE_LENGTH (type);
1228 nosign = TYPE_UNSIGNED (type);
1229 if (code == TYPE_CODE_FLT)
1230 {
75bc7ddf
AC
1231 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1232 floating-point value was valid (using the macro
1233 INVALID_FLOAT). That test/macro have been removed.
1234
1235 It turns out that only the VAX defined this macro and then
1236 only in a non-portable way. Fixing the portability problem
1237 wouldn't help since the VAX floating-point code is also badly
1238 bit-rotten. The target needs to add definitions for the
ea06eb3d 1239 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1240 exactly describe the target floating-point format. The
1241 problem here is that the corresponding floatformat_vax_f and
1242 floatformat_vax_d values these methods should be set to are
1243 also not defined either. Oops!
1244
1245 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1246 definitions and the new cases for floatformat_is_valid (). */
1247
1248 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1249 {
1250 *invp = 1;
1251 return 0.0;
1252 }
1253
96d2f608 1254 return extract_typed_floating (valaddr, type);
c906108c 1255 }
4ef30785 1256 else if (code == TYPE_CODE_DECFLOAT)
ba759613 1257 return decimal_to_doublest (valaddr, len);
c906108c
SS
1258 else if (nosign)
1259 {
1260 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1261 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1262 }
1263 else
1264 {
1265 /* Signed -- we are OK with unpack_long. */
1266 return unpack_long (type, valaddr);
1267 }
1268}
1269
1270/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1271 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1272 We don't assume any alignment for the raw data. Return value is in
1273 host byte order.
1274
1275 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1276 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1277
1278 C++: It is assumed that the front-end has taken care of
1279 all matters concerning pointers to members. A pointer
1280 to member which reaches here is considered to be equivalent
1281 to an INT (or some size). After all, it is only an offset. */
1282
1283CORE_ADDR
fc1a4b47 1284unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1285{
1286 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1287 whether we want this to be true eventually. */
1288 return unpack_long (type, valaddr);
1289}
4478b372 1290
c906108c 1291\f
2c2738a0
DC
1292/* Get the value of the FIELDN'th field (which must be static) of
1293 TYPE. Return NULL if the field doesn't exist or has been
1294 optimized out. */
c906108c 1295
f23631e4 1296struct value *
fba45db2 1297value_static_field (struct type *type, int fieldno)
c906108c 1298{
948e66d9
DJ
1299 struct value *retval;
1300
d6a843b5 1301 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
c906108c 1302 {
948e66d9 1303 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1304 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
1305 }
1306 else
1307 {
1308 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2570f2b7 1309 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
948e66d9 1310 if (sym == NULL)
c906108c
SS
1311 {
1312 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
1313 as non-debuggable symbols */
1314 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
1315 if (!msym)
1316 return NULL;
1317 else
c5aa993b 1318 {
948e66d9 1319 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1320 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1321 }
1322 }
1323 else
1324 {
948e66d9
DJ
1325 /* SYM should never have a SYMBOL_CLASS which will require
1326 read_var_value to use the FRAME parameter. */
1327 if (symbol_read_needs_frame (sym))
8a3fe4f8
AC
1328 warning (_("static field's value depends on the current "
1329 "frame - bad debug info?"));
948e66d9 1330 retval = read_var_value (sym, NULL);
2b127877 1331 }
948e66d9
DJ
1332 if (retval && VALUE_LVAL (retval) == lval_memory)
1333 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1334 VALUE_ADDRESS (retval));
c906108c 1335 }
948e66d9 1336 return retval;
c906108c
SS
1337}
1338
2b127877
DB
1339/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1340 You have to be careful here, since the size of the data area for the value
1341 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1342 than the old enclosing type, you have to allocate more space for the data.
1343 The return value is a pointer to the new version of this value structure. */
1344
f23631e4
AC
1345struct value *
1346value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1347{
3e3d7139
JG
1348 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1349 val->contents =
1350 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1351
1352 val->enclosing_type = new_encl_type;
1353 return val;
2b127877
DB
1354}
1355
c906108c
SS
1356/* Given a value ARG1 (offset by OFFSET bytes)
1357 of a struct or union type ARG_TYPE,
1358 extract and return the value of one of its (non-static) fields.
1359 FIELDNO says which field. */
1360
f23631e4
AC
1361struct value *
1362value_primitive_field (struct value *arg1, int offset,
aa1ee363 1363 int fieldno, struct type *arg_type)
c906108c 1364{
f23631e4 1365 struct value *v;
52f0bd74 1366 struct type *type;
c906108c
SS
1367
1368 CHECK_TYPEDEF (arg_type);
1369 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1370
1371 /* Handle packed fields */
1372
1373 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1374 {
1375 v = value_from_longest (type,
1376 unpack_field_as_long (arg_type,
0fd88904 1377 value_contents (arg1)
c5aa993b 1378 + offset,
c906108c 1379 fieldno));
df407dfe
AC
1380 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1381 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1382 v->offset = value_offset (arg1) + offset
2e70b7b9 1383 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
1384 }
1385 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1386 {
1387 /* This field is actually a base subobject, so preserve the
1388 entire object's contents for later references to virtual
1389 bases, etc. */
a4e2ee12
DJ
1390
1391 /* Lazy register values with offsets are not supported. */
1392 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1393 value_fetch_lazy (arg1);
1394
1395 if (value_lazy (arg1))
3e3d7139 1396 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 1397 else
3e3d7139
JG
1398 {
1399 v = allocate_value (value_enclosing_type (arg1));
1400 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1401 TYPE_LENGTH (value_enclosing_type (arg1)));
1402 }
1403 v->type = type;
df407dfe 1404 v->offset = value_offset (arg1);
13c3b5f5
AC
1405 v->embedded_offset = (offset + value_embedded_offset (arg1)
1406 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
1407 }
1408 else
1409 {
1410 /* Plain old data member */
1411 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
1412
1413 /* Lazy register values with offsets are not supported. */
1414 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1415 value_fetch_lazy (arg1);
1416
1417 if (value_lazy (arg1))
3e3d7139 1418 v = allocate_value_lazy (type);
c906108c 1419 else
3e3d7139
JG
1420 {
1421 v = allocate_value (type);
1422 memcpy (value_contents_raw (v),
1423 value_contents_raw (arg1) + offset,
1424 TYPE_LENGTH (type));
1425 }
df407dfe 1426 v->offset = (value_offset (arg1) + offset
13c3b5f5 1427 + value_embedded_offset (arg1));
c906108c
SS
1428 }
1429 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1430 if (VALUE_LVAL (arg1) == lval_internalvar)
1431 VALUE_LVAL (v) = lval_internalvar_component;
7d85ee02 1432 v->location = arg1->location;
9ee8fc9d 1433 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 1434 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
1435 return v;
1436}
1437
1438/* Given a value ARG1 of a struct or union type,
1439 extract and return the value of one of its (non-static) fields.
1440 FIELDNO says which field. */
1441
f23631e4 1442struct value *
aa1ee363 1443value_field (struct value *arg1, int fieldno)
c906108c 1444{
df407dfe 1445 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
1446}
1447
1448/* Return a non-virtual function as a value.
1449 F is the list of member functions which contains the desired method.
0478d61c
FF
1450 J is an index into F which provides the desired method.
1451
1452 We only use the symbol for its address, so be happy with either a
1453 full symbol or a minimal symbol.
1454 */
c906108c 1455
f23631e4
AC
1456struct value *
1457value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 1458 int offset)
c906108c 1459{
f23631e4 1460 struct value *v;
52f0bd74 1461 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 1462 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 1463 struct symbol *sym;
0478d61c 1464 struct minimal_symbol *msym;
c906108c 1465
2570f2b7 1466 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 1467 if (sym != NULL)
0478d61c 1468 {
5ae326fa
AC
1469 msym = NULL;
1470 }
1471 else
1472 {
1473 gdb_assert (sym == NULL);
0478d61c 1474 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
1475 if (msym == NULL)
1476 return NULL;
0478d61c
FF
1477 }
1478
c906108c 1479 v = allocate_value (ftype);
0478d61c
FF
1480 if (sym)
1481 {
1482 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1483 }
1484 else
1485 {
bccdca4a
UW
1486 /* The minimal symbol might point to a function descriptor;
1487 resolve it to the actual code address instead. */
1488 struct objfile *objfile = msymbol_objfile (msym);
1489 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1490
1491 VALUE_ADDRESS (v)
1492 = gdbarch_convert_from_func_ptr_addr
1493 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target);
0478d61c 1494 }
c906108c
SS
1495
1496 if (arg1p)
c5aa993b 1497 {
df407dfe 1498 if (type != value_type (*arg1p))
c5aa993b
JM
1499 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1500 value_addr (*arg1p)));
1501
070ad9f0 1502 /* Move the `this' pointer according to the offset.
c5aa993b
JM
1503 VALUE_OFFSET (*arg1p) += offset;
1504 */
c906108c
SS
1505 }
1506
1507 return v;
1508}
1509
c906108c
SS
1510\f
1511/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1512 VALADDR.
1513
1514 Extracting bits depends on endianness of the machine. Compute the
1515 number of least significant bits to discard. For big endian machines,
1516 we compute the total number of bits in the anonymous object, subtract
1517 off the bit count from the MSB of the object to the MSB of the
1518 bitfield, then the size of the bitfield, which leaves the LSB discard
1519 count. For little endian machines, the discard count is simply the
1520 number of bits from the LSB of the anonymous object to the LSB of the
1521 bitfield.
1522
1523 If the field is signed, we also do sign extension. */
1524
1525LONGEST
fc1a4b47 1526unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
c906108c
SS
1527{
1528 ULONGEST val;
1529 ULONGEST valmask;
1530 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1531 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1532 int lsbcount;
1533 struct type *field_type;
1534
1535 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1536 field_type = TYPE_FIELD_TYPE (type, fieldno);
1537 CHECK_TYPEDEF (field_type);
1538
1539 /* Extract bits. See comment above. */
1540
32c9a795 1541 if (gdbarch_bits_big_endian (current_gdbarch))
c906108c
SS
1542 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1543 else
1544 lsbcount = (bitpos % 8);
1545 val >>= lsbcount;
1546
1547 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1548 If the field is signed, and is negative, then sign extend. */
1549
1550 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1551 {
1552 valmask = (((ULONGEST) 1) << bitsize) - 1;
1553 val &= valmask;
1554 if (!TYPE_UNSIGNED (field_type))
1555 {
1556 if (val & (valmask ^ (valmask >> 1)))
1557 {
1558 val |= ~valmask;
1559 }
1560 }
1561 }
1562 return (val);
1563}
1564
1565/* Modify the value of a bitfield. ADDR points to a block of memory in
1566 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1567 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
1568 indicate which bits (in target bit order) comprise the bitfield.
1569 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1570 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
1571
1572void
fc1a4b47 1573modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
c906108c 1574{
f4e88c8e
PH
1575 ULONGEST oword;
1576 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
1577
1578 /* If a negative fieldval fits in the field in question, chop
1579 off the sign extension bits. */
f4e88c8e
PH
1580 if ((~fieldval & ~(mask >> 1)) == 0)
1581 fieldval &= mask;
c906108c
SS
1582
1583 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 1584 if (0 != (fieldval & ~mask))
c906108c
SS
1585 {
1586 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1587 we don't have a sprintf_longest. */
8a3fe4f8 1588 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
1589
1590 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 1591 fieldval &= mask;
c906108c
SS
1592 }
1593
f4e88c8e 1594 oword = extract_unsigned_integer (addr, sizeof oword);
c906108c
SS
1595
1596 /* Shifting for bit field depends on endianness of the target machine. */
32c9a795 1597 if (gdbarch_bits_big_endian (current_gdbarch))
c906108c
SS
1598 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1599
f4e88c8e 1600 oword &= ~(mask << bitpos);
c906108c
SS
1601 oword |= fieldval << bitpos;
1602
f4e88c8e 1603 store_unsigned_integer (addr, sizeof oword, oword);
c906108c
SS
1604}
1605\f
14d06750 1606/* Pack NUM into BUF using a target format of TYPE. */
c906108c 1607
14d06750
DJ
1608void
1609pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 1610{
52f0bd74 1611 int len;
14d06750
DJ
1612
1613 type = check_typedef (type);
c906108c
SS
1614 len = TYPE_LENGTH (type);
1615
14d06750 1616 switch (TYPE_CODE (type))
c906108c 1617 {
c906108c
SS
1618 case TYPE_CODE_INT:
1619 case TYPE_CODE_CHAR:
1620 case TYPE_CODE_ENUM:
4f2aea11 1621 case TYPE_CODE_FLAGS:
c906108c
SS
1622 case TYPE_CODE_BOOL:
1623 case TYPE_CODE_RANGE:
0d5de010 1624 case TYPE_CODE_MEMBERPTR:
14d06750 1625 store_signed_integer (buf, len, num);
c906108c 1626 break;
c5aa993b 1627
c906108c
SS
1628 case TYPE_CODE_REF:
1629 case TYPE_CODE_PTR:
14d06750 1630 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 1631 break;
c5aa993b 1632
c906108c 1633 default:
14d06750
DJ
1634 error (_("Unexpected type (%d) encountered for integer constant."),
1635 TYPE_CODE (type));
c906108c 1636 }
14d06750
DJ
1637}
1638
1639
1640/* Convert C numbers into newly allocated values. */
1641
1642struct value *
1643value_from_longest (struct type *type, LONGEST num)
1644{
1645 struct value *val = allocate_value (type);
1646
1647 pack_long (value_contents_raw (val), type, num);
1648
c906108c
SS
1649 return val;
1650}
1651
4478b372
JB
1652
1653/* Create a value representing a pointer of type TYPE to the address
1654 ADDR. */
f23631e4 1655struct value *
4478b372
JB
1656value_from_pointer (struct type *type, CORE_ADDR addr)
1657{
f23631e4 1658 struct value *val = allocate_value (type);
990a07ab 1659 store_typed_address (value_contents_raw (val), type, addr);
4478b372
JB
1660 return val;
1661}
1662
1663
0f71a2f6 1664/* Create a value for a string constant to be stored locally
070ad9f0 1665 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1666 This is analogous to value_from_longest, which also does not
1667 use inferior memory. String shall NOT contain embedded nulls. */
1668
f23631e4 1669struct value *
fba45db2 1670value_from_string (char *ptr)
0f71a2f6 1671{
f23631e4 1672 struct value *val;
c5aa993b 1673 int len = strlen (ptr);
0f71a2f6 1674 int lowbound = current_language->string_lower_bound;
f290d38e
AC
1675 struct type *string_char_type;
1676 struct type *rangetype;
1677 struct type *stringtype;
1678
1679 rangetype = create_range_type ((struct type *) NULL,
6d84d3d8 1680 builtin_type_int32,
f290d38e
AC
1681 lowbound, len + lowbound - 1);
1682 string_char_type = language_string_char_type (current_language,
1683 current_gdbarch);
1684 stringtype = create_array_type ((struct type *) NULL,
1685 string_char_type,
1686 rangetype);
0f71a2f6 1687 val = allocate_value (stringtype);
990a07ab 1688 memcpy (value_contents_raw (val), ptr, len);
0f71a2f6
JM
1689 return val;
1690}
1691
8acb6b92
TT
1692/* Create a value of type TYPE whose contents come from VALADDR, if it
1693 is non-null, and whose memory address (in the inferior) is
1694 ADDRESS. */
1695
1696struct value *
1697value_from_contents_and_address (struct type *type,
1698 const gdb_byte *valaddr,
1699 CORE_ADDR address)
1700{
1701 struct value *v = allocate_value (type);
1702 if (valaddr == NULL)
1703 set_value_lazy (v, 1);
1704 else
1705 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
1706 VALUE_ADDRESS (v) = address;
1707 if (address != 0)
1708 VALUE_LVAL (v) = lval_memory;
1709 return v;
1710}
1711
f23631e4 1712struct value *
fba45db2 1713value_from_double (struct type *type, DOUBLEST num)
c906108c 1714{
f23631e4 1715 struct value *val = allocate_value (type);
c906108c 1716 struct type *base_type = check_typedef (type);
52f0bd74
AC
1717 enum type_code code = TYPE_CODE (base_type);
1718 int len = TYPE_LENGTH (base_type);
c906108c
SS
1719
1720 if (code == TYPE_CODE_FLT)
1721 {
990a07ab 1722 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
1723 }
1724 else
8a3fe4f8 1725 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
1726
1727 return val;
1728}
994b9211 1729
27bc4d80 1730struct value *
4ef30785 1731value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
1732{
1733 struct value *val = allocate_value (type);
27bc4d80 1734
4ef30785 1735 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80 1736
27bc4d80
TJB
1737 return val;
1738}
1739
994b9211
AC
1740struct value *
1741coerce_ref (struct value *arg)
1742{
df407dfe 1743 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
994b9211
AC
1744 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1745 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 1746 unpack_pointer (value_type (arg),
0fd88904 1747 value_contents (arg)));
994b9211
AC
1748 return arg;
1749}
1750
1751struct value *
1752coerce_array (struct value *arg)
1753{
f3134b88
TT
1754 struct type *type;
1755
994b9211 1756 arg = coerce_ref (arg);
f3134b88
TT
1757 type = check_typedef (value_type (arg));
1758
1759 switch (TYPE_CODE (type))
1760 {
1761 case TYPE_CODE_ARRAY:
1762 if (current_language->c_style_arrays)
1763 arg = value_coerce_array (arg);
1764 break;
1765 case TYPE_CODE_FUNC:
1766 arg = value_coerce_function (arg);
1767 break;
1768 }
994b9211
AC
1769 return arg;
1770}
c906108c 1771\f
c906108c 1772
48436ce6
AC
1773/* Return true if the function returning the specified type is using
1774 the convention of returning structures in memory (passing in the
82585c72 1775 address as a hidden first parameter). */
c906108c
SS
1776
1777int
c055b101 1778using_struct_return (struct type *func_type, struct type *value_type)
c906108c 1779{
52f0bd74 1780 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
1781
1782 if (code == TYPE_CODE_ERROR)
8a3fe4f8 1783 error (_("Function return type unknown."));
c906108c 1784
667e784f
AC
1785 if (code == TYPE_CODE_VOID)
1786 /* A void return value is never in memory. See also corresponding
44e5158b 1787 code in "print_return_value". */
667e784f
AC
1788 return 0;
1789
92ad9cd9 1790 /* Probe the architecture for the return-value convention. */
c055b101 1791 return (gdbarch_return_value (current_gdbarch, func_type, value_type,
92ad9cd9 1792 NULL, NULL, NULL)
31db7b6c 1793 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
1794}
1795
42be36b3
CT
1796/* Set the initialized field in a value struct. */
1797
1798void
1799set_value_initialized (struct value *val, int status)
1800{
1801 val->initialized = status;
1802}
1803
1804/* Return the initialized field in a value struct. */
1805
1806int
1807value_initialized (struct value *val)
1808{
1809 return val->initialized;
1810}
1811
c906108c 1812void
fba45db2 1813_initialize_values (void)
c906108c 1814{
1a966eab
AC
1815 add_cmd ("convenience", no_class, show_convenience, _("\
1816Debugger convenience (\"$foo\") variables.\n\
c906108c 1817These variables are created when you assign them values;\n\
1a966eab
AC
1818thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1819\n\
c906108c
SS
1820A few convenience variables are given values automatically:\n\
1821\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 1822\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
1823 &showlist);
1824
1825 add_cmd ("values", no_class, show_values,
1a966eab 1826 _("Elements of value history around item number IDX (or last ten)."),
c906108c 1827 &showlist);
53e5f3cf
AS
1828
1829 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
1830Initialize a convenience variable if necessary.\n\
1831init-if-undefined VARIABLE = EXPRESSION\n\
1832Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
1833exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
1834VARIABLE is already initialized."));
c906108c 1835}
This page took 1.489098 seconds and 4 git commands to generate.