2005-02-02 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
f23631e4 3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
990a07ab
AC
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005 Free
5 Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "value.h"
29#include "gdbcore.h"
c906108c
SS
30#include "command.h"
31#include "gdbcmd.h"
32#include "target.h"
33#include "language.h"
34#include "scm-lang.h"
35#include "demangle.h"
d16aafd8 36#include "doublest.h"
5ae326fa 37#include "gdb_assert.h"
36160dc4 38#include "regcache.h"
fe898f56 39#include "block.h"
c906108c
SS
40
41/* Prototypes for exported functions. */
42
a14ed312 43void _initialize_values (void);
c906108c
SS
44
45/* Prototypes for local functions. */
46
a14ed312 47static void show_values (char *, int);
c906108c 48
a14ed312 49static void show_convenience (char *, int);
c906108c 50
c906108c
SS
51
52/* The value-history records all the values printed
53 by print commands during this session. Each chunk
54 records 60 consecutive values. The first chunk on
55 the chain records the most recent values.
56 The total number of values is in value_history_count. */
57
58#define VALUE_HISTORY_CHUNK 60
59
60struct value_history_chunk
c5aa993b
JM
61 {
62 struct value_history_chunk *next;
f23631e4 63 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 64 };
c906108c
SS
65
66/* Chain of chunks now in use. */
67
68static struct value_history_chunk *value_history_chain;
69
70static int value_history_count; /* Abs number of last entry stored */
71\f
72/* List of all value objects currently allocated
73 (except for those released by calls to release_value)
74 This is so they can be freed after each command. */
75
f23631e4 76static struct value *all_values;
c906108c
SS
77
78/* Allocate a value that has the correct length for type TYPE. */
79
f23631e4 80struct value *
fba45db2 81allocate_value (struct type *type)
c906108c 82{
f23631e4 83 struct value *val;
c906108c
SS
84 struct type *atype = check_typedef (type);
85
86 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
df407dfe 87 val->next = all_values;
c906108c 88 all_values = val;
df407dfe 89 val->type = type;
4754a64e 90 val->enclosing_type = type;
c906108c
SS
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
1df6926e 93 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
94 val->offset = 0;
95 val->bitpos = 0;
96 val->bitsize = 0;
9ee8fc9d 97 VALUE_REGNUM (val) = -1;
c906108c
SS
98 VALUE_LAZY (val) = 0;
99 VALUE_OPTIMIZED_OUT (val) = 0;
c906108c
SS
100 VALUE_EMBEDDED_OFFSET (val) = 0;
101 VALUE_POINTED_TO_OFFSET (val) = 0;
102 val->modifiable = 1;
103 return val;
104}
105
106/* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
f23631e4 109struct value *
fba45db2 110allocate_repeat_value (struct type *type, int count)
c906108c 111{
c5aa993b 112 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
113 /* FIXME-type-allocation: need a way to free this type when we are
114 done with it. */
115 struct type *range_type
c5aa993b
JM
116 = create_range_type ((struct type *) NULL, builtin_type_int,
117 low_bound, count + low_bound - 1);
c906108c
SS
118 /* FIXME-type-allocation: need a way to free this type when we are
119 done with it. */
120 return allocate_value (create_array_type ((struct type *) NULL,
121 type, range_type));
122}
123
df407dfe
AC
124/* Accessor methods. */
125
126struct type *
127value_type (struct value *value)
128{
129 return value->type;
130}
131
132int
133value_offset (struct value *value)
134{
135 return value->offset;
136}
137
138int
139value_bitpos (struct value *value)
140{
141 return value->bitpos;
142}
143
144int
145value_bitsize (struct value *value)
146{
147 return value->bitsize;
148}
149
990a07ab
AC
150bfd_byte *
151value_contents_raw (struct value *value)
152{
153 return value->aligner.contents + value->embedded_offset;
154}
155
156bfd_byte *
157value_contents_all_raw (struct value *value)
158{
159 return value->aligner.contents;
160}
161
4754a64e
AC
162struct type *
163value_enclosing_type (struct value *value)
164{
165 return value->enclosing_type;
166}
167
46615f07
AC
168const bfd_byte *
169value_contents_all (struct value *value)
170{
171 if (value->lazy)
172 value_fetch_lazy (value);
173 return value->aligner.contents;
174}
175
990a07ab 176\f
c906108c
SS
177/* Return a mark in the value chain. All values allocated after the
178 mark is obtained (except for those released) are subject to being freed
179 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 180struct value *
fba45db2 181value_mark (void)
c906108c
SS
182{
183 return all_values;
184}
185
186/* Free all values allocated since MARK was obtained by value_mark
187 (except for those released). */
188void
f23631e4 189value_free_to_mark (struct value *mark)
c906108c 190{
f23631e4
AC
191 struct value *val;
192 struct value *next;
c906108c
SS
193
194 for (val = all_values; val && val != mark; val = next)
195 {
df407dfe 196 next = val->next;
c906108c
SS
197 value_free (val);
198 }
199 all_values = val;
200}
201
202/* Free all the values that have been allocated (except for those released).
203 Called after each command, successful or not. */
204
205void
fba45db2 206free_all_values (void)
c906108c 207{
f23631e4
AC
208 struct value *val;
209 struct value *next;
c906108c
SS
210
211 for (val = all_values; val; val = next)
212 {
df407dfe 213 next = val->next;
c906108c
SS
214 value_free (val);
215 }
216
217 all_values = 0;
218}
219
220/* Remove VAL from the chain all_values
221 so it will not be freed automatically. */
222
223void
f23631e4 224release_value (struct value *val)
c906108c 225{
f23631e4 226 struct value *v;
c906108c
SS
227
228 if (all_values == val)
229 {
230 all_values = val->next;
231 return;
232 }
233
234 for (v = all_values; v; v = v->next)
235 {
236 if (v->next == val)
237 {
238 v->next = val->next;
239 break;
240 }
241 }
242}
243
244/* Release all values up to mark */
f23631e4
AC
245struct value *
246value_release_to_mark (struct value *mark)
c906108c 247{
f23631e4
AC
248 struct value *val;
249 struct value *next;
c906108c 250
df407dfe
AC
251 for (val = next = all_values; next; next = next->next)
252 if (next->next == mark)
c906108c 253 {
df407dfe
AC
254 all_values = next->next;
255 next->next = NULL;
c906108c
SS
256 return val;
257 }
258 all_values = 0;
259 return val;
260}
261
262/* Return a copy of the value ARG.
263 It contains the same contents, for same memory address,
264 but it's a different block of storage. */
265
f23631e4
AC
266struct value *
267value_copy (struct value *arg)
c906108c 268{
4754a64e 269 struct type *encl_type = value_enclosing_type (arg);
f23631e4 270 struct value *val = allocate_value (encl_type);
df407dfe 271 val->type = arg->type;
c906108c
SS
272 VALUE_LVAL (val) = VALUE_LVAL (arg);
273 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
df407dfe
AC
274 val->offset = arg->offset;
275 val->bitpos = arg->bitpos;
276 val->bitsize = arg->bitsize;
1df6926e 277 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 278 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
c906108c
SS
279 VALUE_LAZY (val) = VALUE_LAZY (arg);
280 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
281 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
282 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
c906108c
SS
283 val->modifiable = arg->modifiable;
284 if (!VALUE_LAZY (val))
285 {
990a07ab 286 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 287 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
288
289 }
290 return val;
291}
292\f
293/* Access to the value history. */
294
295/* Record a new value in the value history.
296 Returns the absolute history index of the entry.
297 Result of -1 indicates the value was not saved; otherwise it is the
298 value history index of this new item. */
299
300int
f23631e4 301record_latest_value (struct value *val)
c906108c
SS
302{
303 int i;
304
305 /* We don't want this value to have anything to do with the inferior anymore.
306 In particular, "set $1 = 50" should not affect the variable from which
307 the value was taken, and fast watchpoints should be able to assume that
308 a value on the value history never changes. */
309 if (VALUE_LAZY (val))
310 value_fetch_lazy (val);
311 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
312 from. This is a bit dubious, because then *&$1 does not just return $1
313 but the current contents of that location. c'est la vie... */
314 val->modifiable = 0;
315 release_value (val);
316
317 /* Here we treat value_history_count as origin-zero
318 and applying to the value being stored now. */
319
320 i = value_history_count % VALUE_HISTORY_CHUNK;
321 if (i == 0)
322 {
f23631e4 323 struct value_history_chunk *new
c5aa993b
JM
324 = (struct value_history_chunk *)
325 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
326 memset (new->values, 0, sizeof new->values);
327 new->next = value_history_chain;
328 value_history_chain = new;
329 }
330
331 value_history_chain->values[i] = val;
332
333 /* Now we regard value_history_count as origin-one
334 and applying to the value just stored. */
335
336 return ++value_history_count;
337}
338
339/* Return a copy of the value in the history with sequence number NUM. */
340
f23631e4 341struct value *
fba45db2 342access_value_history (int num)
c906108c 343{
f23631e4 344 struct value_history_chunk *chunk;
52f0bd74
AC
345 int i;
346 int absnum = num;
c906108c
SS
347
348 if (absnum <= 0)
349 absnum += value_history_count;
350
351 if (absnum <= 0)
352 {
353 if (num == 0)
354 error ("The history is empty.");
355 else if (num == 1)
356 error ("There is only one value in the history.");
357 else
358 error ("History does not go back to $$%d.", -num);
359 }
360 if (absnum > value_history_count)
361 error ("History has not yet reached $%d.", absnum);
362
363 absnum--;
364
365 /* Now absnum is always absolute and origin zero. */
366
367 chunk = value_history_chain;
368 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
369 i > 0; i--)
370 chunk = chunk->next;
371
372 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
373}
374
375/* Clear the value history entirely.
376 Must be done when new symbol tables are loaded,
377 because the type pointers become invalid. */
378
379void
fba45db2 380clear_value_history (void)
c906108c 381{
f23631e4 382 struct value_history_chunk *next;
52f0bd74 383 int i;
f23631e4 384 struct value *val;
c906108c
SS
385
386 while (value_history_chain)
387 {
388 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
389 if ((val = value_history_chain->values[i]) != NULL)
b8c9b27d 390 xfree (val);
c906108c 391 next = value_history_chain->next;
b8c9b27d 392 xfree (value_history_chain);
c906108c
SS
393 value_history_chain = next;
394 }
395 value_history_count = 0;
396}
397
398static void
fba45db2 399show_values (char *num_exp, int from_tty)
c906108c 400{
52f0bd74 401 int i;
f23631e4 402 struct value *val;
c906108c
SS
403 static int num = 1;
404
405 if (num_exp)
406 {
c5aa993b
JM
407 /* "info history +" should print from the stored position.
408 "info history <exp>" should print around value number <exp>. */
c906108c 409 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 410 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
411 }
412 else
413 {
414 /* "info history" means print the last 10 values. */
415 num = value_history_count - 9;
416 }
417
418 if (num <= 0)
419 num = 1;
420
421 for (i = num; i < num + 10 && i <= value_history_count; i++)
422 {
423 val = access_value_history (i);
424 printf_filtered ("$%d = ", i);
425 value_print (val, gdb_stdout, 0, Val_pretty_default);
426 printf_filtered ("\n");
427 }
428
429 /* The next "info history +" should start after what we just printed. */
430 num += 10;
431
432 /* Hitting just return after this command should do the same thing as
433 "info history +". If num_exp is null, this is unnecessary, since
434 "info history +" is not useful after "info history". */
435 if (from_tty && num_exp)
436 {
437 num_exp[0] = '+';
438 num_exp[1] = '\0';
439 }
440}
441\f
442/* Internal variables. These are variables within the debugger
443 that hold values assigned by debugger commands.
444 The user refers to them with a '$' prefix
445 that does not appear in the variable names stored internally. */
446
447static struct internalvar *internalvars;
448
449/* Look up an internal variable with name NAME. NAME should not
450 normally include a dollar sign.
451
452 If the specified internal variable does not exist,
453 one is created, with a void value. */
454
455struct internalvar *
fba45db2 456lookup_internalvar (char *name)
c906108c 457{
52f0bd74 458 struct internalvar *var;
c906108c
SS
459
460 for (var = internalvars; var; var = var->next)
5cb316ef 461 if (strcmp (var->name, name) == 0)
c906108c
SS
462 return var;
463
464 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
465 var->name = concat (name, NULL);
466 var->value = allocate_value (builtin_type_void);
467 release_value (var->value);
468 var->next = internalvars;
469 internalvars = var;
470 return var;
471}
472
f23631e4 473struct value *
fba45db2 474value_of_internalvar (struct internalvar *var)
c906108c 475{
f23631e4 476 struct value *val;
c906108c 477
c906108c
SS
478 val = value_copy (var->value);
479 if (VALUE_LAZY (val))
480 value_fetch_lazy (val);
481 VALUE_LVAL (val) = lval_internalvar;
482 VALUE_INTERNALVAR (val) = var;
483 return val;
484}
485
486void
fba45db2 487set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 488 int bitsize, struct value *newval)
c906108c 489{
52f0bd74 490 char *addr = VALUE_CONTENTS (var->value) + offset;
c906108c 491
c906108c
SS
492 if (bitsize)
493 modify_field (addr, value_as_long (newval),
494 bitpos, bitsize);
495 else
df407dfe 496 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (value_type (newval)));
c906108c
SS
497}
498
499void
f23631e4 500set_internalvar (struct internalvar *var, struct value *val)
c906108c 501{
f23631e4 502 struct value *newval;
c906108c 503
c906108c
SS
504 newval = value_copy (val);
505 newval->modifiable = 1;
506
507 /* Force the value to be fetched from the target now, to avoid problems
508 later when this internalvar is referenced and the target is gone or
509 has changed. */
510 if (VALUE_LAZY (newval))
511 value_fetch_lazy (newval);
512
513 /* Begin code which must not call error(). If var->value points to
514 something free'd, an error() obviously leaves a dangling pointer.
515 But we also get a danling pointer if var->value points to
516 something in the value chain (i.e., before release_value is
517 called), because after the error free_all_values will get called before
518 long. */
b8c9b27d 519 xfree (var->value);
c906108c
SS
520 var->value = newval;
521 release_value (newval);
522 /* End code which must not call error(). */
523}
524
525char *
fba45db2 526internalvar_name (struct internalvar *var)
c906108c
SS
527{
528 return var->name;
529}
530
531/* Free all internalvars. Done when new symtabs are loaded,
532 because that makes the values invalid. */
533
534void
fba45db2 535clear_internalvars (void)
c906108c 536{
52f0bd74 537 struct internalvar *var;
c906108c
SS
538
539 while (internalvars)
540 {
541 var = internalvars;
542 internalvars = var->next;
b8c9b27d
KB
543 xfree (var->name);
544 xfree (var->value);
545 xfree (var);
c906108c
SS
546 }
547}
548
549static void
fba45db2 550show_convenience (char *ignore, int from_tty)
c906108c 551{
52f0bd74 552 struct internalvar *var;
c906108c
SS
553 int varseen = 0;
554
555 for (var = internalvars; var; var = var->next)
556 {
c906108c
SS
557 if (!varseen)
558 {
559 varseen = 1;
560 }
561 printf_filtered ("$%s = ", var->name);
562 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
563 printf_filtered ("\n");
564 }
565 if (!varseen)
566 printf_unfiltered ("No debugger convenience variables now defined.\n\
567Convenience variables have names starting with \"$\";\n\
568use \"set\" as in \"set $foo = 5\" to define them.\n");
569}
570\f
571/* Extract a value as a C number (either long or double).
572 Knows how to convert fixed values to double, or
573 floating values to long.
574 Does not deallocate the value. */
575
576LONGEST
f23631e4 577value_as_long (struct value *val)
c906108c
SS
578{
579 /* This coerces arrays and functions, which is necessary (e.g.
580 in disassemble_command). It also dereferences references, which
581 I suspect is the most logical thing to do. */
994b9211 582 val = coerce_array (val);
df407dfe 583 return unpack_long (value_type (val), VALUE_CONTENTS (val));
c906108c
SS
584}
585
586DOUBLEST
f23631e4 587value_as_double (struct value *val)
c906108c
SS
588{
589 DOUBLEST foo;
590 int inv;
c5aa993b 591
df407dfe 592 foo = unpack_double (value_type (val), VALUE_CONTENTS (val), &inv);
c906108c
SS
593 if (inv)
594 error ("Invalid floating value found in program.");
595 return foo;
596}
4478b372
JB
597/* Extract a value as a C pointer. Does not deallocate the value.
598 Note that val's type may not actually be a pointer; value_as_long
599 handles all the cases. */
c906108c 600CORE_ADDR
f23631e4 601value_as_address (struct value *val)
c906108c
SS
602{
603 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
604 whether we want this to be true eventually. */
605#if 0
606 /* ADDR_BITS_REMOVE is wrong if we are being called for a
607 non-address (e.g. argument to "signal", "info break", etc.), or
608 for pointers to char, in which the low bits *are* significant. */
c5aa993b 609 return ADDR_BITS_REMOVE (value_as_long (val));
c906108c 610#else
f312f057
JB
611
612 /* There are several targets (IA-64, PowerPC, and others) which
613 don't represent pointers to functions as simply the address of
614 the function's entry point. For example, on the IA-64, a
615 function pointer points to a two-word descriptor, generated by
616 the linker, which contains the function's entry point, and the
617 value the IA-64 "global pointer" register should have --- to
618 support position-independent code. The linker generates
619 descriptors only for those functions whose addresses are taken.
620
621 On such targets, it's difficult for GDB to convert an arbitrary
622 function address into a function pointer; it has to either find
623 an existing descriptor for that function, or call malloc and
624 build its own. On some targets, it is impossible for GDB to
625 build a descriptor at all: the descriptor must contain a jump
626 instruction; data memory cannot be executed; and code memory
627 cannot be modified.
628
629 Upon entry to this function, if VAL is a value of type `function'
630 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
631 VALUE_ADDRESS (val) is the address of the function. This is what
632 you'll get if you evaluate an expression like `main'. The call
633 to COERCE_ARRAY below actually does all the usual unary
634 conversions, which includes converting values of type `function'
635 to `pointer to function'. This is the challenging conversion
636 discussed above. Then, `unpack_long' will convert that pointer
637 back into an address.
638
639 So, suppose the user types `disassemble foo' on an architecture
640 with a strange function pointer representation, on which GDB
641 cannot build its own descriptors, and suppose further that `foo'
642 has no linker-built descriptor. The address->pointer conversion
643 will signal an error and prevent the command from running, even
644 though the next step would have been to convert the pointer
645 directly back into the same address.
646
647 The following shortcut avoids this whole mess. If VAL is a
648 function, just return its address directly. */
df407dfe
AC
649 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
650 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
f312f057
JB
651 return VALUE_ADDRESS (val);
652
994b9211 653 val = coerce_array (val);
fc0c74b1
AC
654
655 /* Some architectures (e.g. Harvard), map instruction and data
656 addresses onto a single large unified address space. For
657 instance: An architecture may consider a large integer in the
658 range 0x10000000 .. 0x1000ffff to already represent a data
659 addresses (hence not need a pointer to address conversion) while
660 a small integer would still need to be converted integer to
661 pointer to address. Just assume such architectures handle all
662 integer conversions in a single function. */
663
664 /* JimB writes:
665
666 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
667 must admonish GDB hackers to make sure its behavior matches the
668 compiler's, whenever possible.
669
670 In general, I think GDB should evaluate expressions the same way
671 the compiler does. When the user copies an expression out of
672 their source code and hands it to a `print' command, they should
673 get the same value the compiler would have computed. Any
674 deviation from this rule can cause major confusion and annoyance,
675 and needs to be justified carefully. In other words, GDB doesn't
676 really have the freedom to do these conversions in clever and
677 useful ways.
678
679 AndrewC pointed out that users aren't complaining about how GDB
680 casts integers to pointers; they are complaining that they can't
681 take an address from a disassembly listing and give it to `x/i'.
682 This is certainly important.
683
79dd2d24 684 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
685 makes it possible for GDB to "get it right" in all circumstances
686 --- the target has complete control over how things get done, so
687 people can Do The Right Thing for their target without breaking
688 anyone else. The standard doesn't specify how integers get
689 converted to pointers; usually, the ABI doesn't either, but
690 ABI-specific code is a more reasonable place to handle it. */
691
df407dfe
AC
692 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
693 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
79dd2d24
AC
694 && gdbarch_integer_to_address_p (current_gdbarch))
695 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
696 VALUE_CONTENTS (val));
fc0c74b1 697
df407dfe 698 return unpack_long (value_type (val), VALUE_CONTENTS (val));
c906108c
SS
699#endif
700}
701\f
702/* Unpack raw data (copied from debugee, target byte order) at VALADDR
703 as a long, or as a double, assuming the raw data is described
704 by type TYPE. Knows how to convert different sizes of values
705 and can convert between fixed and floating point. We don't assume
706 any alignment for the raw data. Return value is in host byte order.
707
708 If you want functions and arrays to be coerced to pointers, and
709 references to be dereferenced, call value_as_long() instead.
710
711 C++: It is assumed that the front-end has taken care of
712 all matters concerning pointers to members. A pointer
713 to member which reaches here is considered to be equivalent
714 to an INT (or some size). After all, it is only an offset. */
715
716LONGEST
66140c26 717unpack_long (struct type *type, const char *valaddr)
c906108c 718{
52f0bd74
AC
719 enum type_code code = TYPE_CODE (type);
720 int len = TYPE_LENGTH (type);
721 int nosign = TYPE_UNSIGNED (type);
c906108c
SS
722
723 if (current_language->la_language == language_scm
724 && is_scmvalue_type (type))
725 return scm_unpack (type, valaddr, TYPE_CODE_INT);
726
727 switch (code)
728 {
729 case TYPE_CODE_TYPEDEF:
730 return unpack_long (check_typedef (type), valaddr);
731 case TYPE_CODE_ENUM:
732 case TYPE_CODE_BOOL:
733 case TYPE_CODE_INT:
734 case TYPE_CODE_CHAR:
735 case TYPE_CODE_RANGE:
736 if (nosign)
737 return extract_unsigned_integer (valaddr, len);
738 else
739 return extract_signed_integer (valaddr, len);
740
741 case TYPE_CODE_FLT:
96d2f608 742 return extract_typed_floating (valaddr, type);
c906108c
SS
743
744 case TYPE_CODE_PTR:
745 case TYPE_CODE_REF:
746 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 747 whether we want this to be true eventually. */
4478b372 748 return extract_typed_address (valaddr, type);
c906108c
SS
749
750 case TYPE_CODE_MEMBER:
751 error ("not implemented: member types in unpack_long");
752
753 default:
754 error ("Value can't be converted to integer.");
755 }
c5aa993b 756 return 0; /* Placate lint. */
c906108c
SS
757}
758
759/* Return a double value from the specified type and address.
760 INVP points to an int which is set to 0 for valid value,
761 1 for invalid value (bad float format). In either case,
762 the returned double is OK to use. Argument is in target
763 format, result is in host format. */
764
765DOUBLEST
66140c26 766unpack_double (struct type *type, const char *valaddr, int *invp)
c906108c
SS
767{
768 enum type_code code;
769 int len;
770 int nosign;
771
772 *invp = 0; /* Assume valid. */
773 CHECK_TYPEDEF (type);
774 code = TYPE_CODE (type);
775 len = TYPE_LENGTH (type);
776 nosign = TYPE_UNSIGNED (type);
777 if (code == TYPE_CODE_FLT)
778 {
75bc7ddf
AC
779 /* NOTE: cagney/2002-02-19: There was a test here to see if the
780 floating-point value was valid (using the macro
781 INVALID_FLOAT). That test/macro have been removed.
782
783 It turns out that only the VAX defined this macro and then
784 only in a non-portable way. Fixing the portability problem
785 wouldn't help since the VAX floating-point code is also badly
786 bit-rotten. The target needs to add definitions for the
787 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
788 exactly describe the target floating-point format. The
789 problem here is that the corresponding floatformat_vax_f and
790 floatformat_vax_d values these methods should be set to are
791 also not defined either. Oops!
792
793 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
794 definitions and the new cases for floatformat_is_valid (). */
795
796 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
797 {
798 *invp = 1;
799 return 0.0;
800 }
801
96d2f608 802 return extract_typed_floating (valaddr, type);
c906108c
SS
803 }
804 else if (nosign)
805 {
806 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 807 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
808 }
809 else
810 {
811 /* Signed -- we are OK with unpack_long. */
812 return unpack_long (type, valaddr);
813 }
814}
815
816/* Unpack raw data (copied from debugee, target byte order) at VALADDR
817 as a CORE_ADDR, assuming the raw data is described by type TYPE.
818 We don't assume any alignment for the raw data. Return value is in
819 host byte order.
820
821 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 822 references to be dereferenced, call value_as_address() instead.
c906108c
SS
823
824 C++: It is assumed that the front-end has taken care of
825 all matters concerning pointers to members. A pointer
826 to member which reaches here is considered to be equivalent
827 to an INT (or some size). After all, it is only an offset. */
828
829CORE_ADDR
66140c26 830unpack_pointer (struct type *type, const char *valaddr)
c906108c
SS
831{
832 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
833 whether we want this to be true eventually. */
834 return unpack_long (type, valaddr);
835}
4478b372 836
c906108c 837\f
2c2738a0
DC
838/* Get the value of the FIELDN'th field (which must be static) of
839 TYPE. Return NULL if the field doesn't exist or has been
840 optimized out. */
c906108c 841
f23631e4 842struct value *
fba45db2 843value_static_field (struct type *type, int fieldno)
c906108c 844{
948e66d9
DJ
845 struct value *retval;
846
c906108c
SS
847 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
848 {
948e66d9 849 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 850 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
851 }
852 else
853 {
854 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
176620f1 855 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
948e66d9 856 if (sym == NULL)
c906108c
SS
857 {
858 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
859 as non-debuggable symbols */
860 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
861 if (!msym)
862 return NULL;
863 else
c5aa993b 864 {
948e66d9 865 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 866 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
867 }
868 }
869 else
870 {
948e66d9
DJ
871 /* SYM should never have a SYMBOL_CLASS which will require
872 read_var_value to use the FRAME parameter. */
873 if (symbol_read_needs_frame (sym))
874 warning ("static field's value depends on the current "
875 "frame - bad debug info?");
876 retval = read_var_value (sym, NULL);
2b127877 877 }
948e66d9
DJ
878 if (retval && VALUE_LVAL (retval) == lval_memory)
879 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
880 VALUE_ADDRESS (retval));
c906108c 881 }
948e66d9 882 return retval;
c906108c
SS
883}
884
2b127877
DB
885/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
886 You have to be careful here, since the size of the data area for the value
887 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
888 than the old enclosing type, you have to allocate more space for the data.
889 The return value is a pointer to the new version of this value structure. */
890
f23631e4
AC
891struct value *
892value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 893{
4754a64e 894 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
2b127877 895 {
4754a64e 896 val->enclosing_type = new_encl_type;
2b127877
DB
897 return val;
898 }
899 else
900 {
f23631e4
AC
901 struct value *new_val;
902 struct value *prev;
2b127877 903
f23631e4 904 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
cc303028 905
4754a64e 906 new_val->enclosing_type = new_encl_type;
cc303028 907
2b127877
DB
908 /* We have to make sure this ends up in the same place in the value
909 chain as the original copy, so it's clean-up behavior is the same.
910 If the value has been released, this is a waste of time, but there
911 is no way to tell that in advance, so... */
912
913 if (val != all_values)
914 {
915 for (prev = all_values; prev != NULL; prev = prev->next)
916 {
917 if (prev->next == val)
918 {
919 prev->next = new_val;
920 break;
921 }
922 }
923 }
924
925 return new_val;
926 }
927}
928
c906108c
SS
929/* Given a value ARG1 (offset by OFFSET bytes)
930 of a struct or union type ARG_TYPE,
931 extract and return the value of one of its (non-static) fields.
932 FIELDNO says which field. */
933
f23631e4
AC
934struct value *
935value_primitive_field (struct value *arg1, int offset,
aa1ee363 936 int fieldno, struct type *arg_type)
c906108c 937{
f23631e4 938 struct value *v;
52f0bd74 939 struct type *type;
c906108c
SS
940
941 CHECK_TYPEDEF (arg_type);
942 type = TYPE_FIELD_TYPE (arg_type, fieldno);
943
944 /* Handle packed fields */
945
946 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
947 {
948 v = value_from_longest (type,
949 unpack_field_as_long (arg_type,
950 VALUE_CONTENTS (arg1)
c5aa993b 951 + offset,
c906108c 952 fieldno));
df407dfe
AC
953 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
954 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
955 v->offset = value_offset (arg1) + offset
2e70b7b9 956 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
957 }
958 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
959 {
960 /* This field is actually a base subobject, so preserve the
961 entire object's contents for later references to virtual
962 bases, etc. */
4754a64e 963 v = allocate_value (value_enclosing_type (arg1));
df407dfe 964 v->type = type;
c906108c
SS
965 if (VALUE_LAZY (arg1))
966 VALUE_LAZY (v) = 1;
967 else
990a07ab 968 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
4754a64e 969 TYPE_LENGTH (value_enclosing_type (arg1)));
df407dfe 970 v->offset = value_offset (arg1);
c906108c 971 VALUE_EMBEDDED_OFFSET (v)
c5aa993b
JM
972 = offset +
973 VALUE_EMBEDDED_OFFSET (arg1) +
974 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
975 }
976 else
977 {
978 /* Plain old data member */
979 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
980 v = allocate_value (type);
981 if (VALUE_LAZY (arg1))
982 VALUE_LAZY (v) = 1;
983 else
990a07ab
AC
984 memcpy (value_contents_raw (v),
985 value_contents_raw (arg1) + offset,
c906108c 986 TYPE_LENGTH (type));
df407dfe
AC
987 v->offset = (value_offset (arg1) + offset
988 + VALUE_EMBEDDED_OFFSET (arg1));
c906108c
SS
989 }
990 VALUE_LVAL (v) = VALUE_LVAL (arg1);
991 if (VALUE_LVAL (arg1) == lval_internalvar)
992 VALUE_LVAL (v) = lval_internalvar_component;
993 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
9ee8fc9d 994 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 995 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c 996/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
c5aa993b 997 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
c906108c
SS
998 return v;
999}
1000
1001/* Given a value ARG1 of a struct or union type,
1002 extract and return the value of one of its (non-static) fields.
1003 FIELDNO says which field. */
1004
f23631e4 1005struct value *
aa1ee363 1006value_field (struct value *arg1, int fieldno)
c906108c 1007{
df407dfe 1008 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
1009}
1010
1011/* Return a non-virtual function as a value.
1012 F is the list of member functions which contains the desired method.
0478d61c
FF
1013 J is an index into F which provides the desired method.
1014
1015 We only use the symbol for its address, so be happy with either a
1016 full symbol or a minimal symbol.
1017 */
c906108c 1018
f23631e4
AC
1019struct value *
1020value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 1021 int offset)
c906108c 1022{
f23631e4 1023 struct value *v;
52f0bd74 1024 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 1025 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 1026 struct symbol *sym;
0478d61c 1027 struct minimal_symbol *msym;
c906108c 1028
176620f1 1029 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
5ae326fa 1030 if (sym != NULL)
0478d61c 1031 {
5ae326fa
AC
1032 msym = NULL;
1033 }
1034 else
1035 {
1036 gdb_assert (sym == NULL);
0478d61c 1037 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
1038 if (msym == NULL)
1039 return NULL;
0478d61c
FF
1040 }
1041
c906108c 1042 v = allocate_value (ftype);
0478d61c
FF
1043 if (sym)
1044 {
1045 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1046 }
1047 else
1048 {
1049 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1050 }
c906108c
SS
1051
1052 if (arg1p)
c5aa993b 1053 {
df407dfe 1054 if (type != value_type (*arg1p))
c5aa993b
JM
1055 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1056 value_addr (*arg1p)));
1057
070ad9f0 1058 /* Move the `this' pointer according to the offset.
c5aa993b
JM
1059 VALUE_OFFSET (*arg1p) += offset;
1060 */
c906108c
SS
1061 }
1062
1063 return v;
1064}
1065
c906108c
SS
1066\f
1067/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1068 VALADDR.
1069
1070 Extracting bits depends on endianness of the machine. Compute the
1071 number of least significant bits to discard. For big endian machines,
1072 we compute the total number of bits in the anonymous object, subtract
1073 off the bit count from the MSB of the object to the MSB of the
1074 bitfield, then the size of the bitfield, which leaves the LSB discard
1075 count. For little endian machines, the discard count is simply the
1076 number of bits from the LSB of the anonymous object to the LSB of the
1077 bitfield.
1078
1079 If the field is signed, we also do sign extension. */
1080
1081LONGEST
66140c26 1082unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
c906108c
SS
1083{
1084 ULONGEST val;
1085 ULONGEST valmask;
1086 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1087 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1088 int lsbcount;
1089 struct type *field_type;
1090
1091 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1092 field_type = TYPE_FIELD_TYPE (type, fieldno);
1093 CHECK_TYPEDEF (field_type);
1094
1095 /* Extract bits. See comment above. */
1096
1097 if (BITS_BIG_ENDIAN)
1098 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1099 else
1100 lsbcount = (bitpos % 8);
1101 val >>= lsbcount;
1102
1103 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1104 If the field is signed, and is negative, then sign extend. */
1105
1106 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1107 {
1108 valmask = (((ULONGEST) 1) << bitsize) - 1;
1109 val &= valmask;
1110 if (!TYPE_UNSIGNED (field_type))
1111 {
1112 if (val & (valmask ^ (valmask >> 1)))
1113 {
1114 val |= ~valmask;
1115 }
1116 }
1117 }
1118 return (val);
1119}
1120
1121/* Modify the value of a bitfield. ADDR points to a block of memory in
1122 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1123 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
1124 indicate which bits (in target bit order) comprise the bitfield.
1125 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1126 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
1127
1128void
fba45db2 1129modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
c906108c 1130{
f4e88c8e
PH
1131 ULONGEST oword;
1132 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
1133
1134 /* If a negative fieldval fits in the field in question, chop
1135 off the sign extension bits. */
f4e88c8e
PH
1136 if ((~fieldval & ~(mask >> 1)) == 0)
1137 fieldval &= mask;
c906108c
SS
1138
1139 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 1140 if (0 != (fieldval & ~mask))
c906108c
SS
1141 {
1142 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1143 we don't have a sprintf_longest. */
c906108c
SS
1144 warning ("Value does not fit in %d bits.", bitsize);
1145
1146 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 1147 fieldval &= mask;
c906108c
SS
1148 }
1149
f4e88c8e 1150 oword = extract_unsigned_integer (addr, sizeof oword);
c906108c
SS
1151
1152 /* Shifting for bit field depends on endianness of the target machine. */
1153 if (BITS_BIG_ENDIAN)
1154 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1155
f4e88c8e 1156 oword &= ~(mask << bitpos);
c906108c
SS
1157 oword |= fieldval << bitpos;
1158
f4e88c8e 1159 store_unsigned_integer (addr, sizeof oword, oword);
c906108c
SS
1160}
1161\f
1162/* Convert C numbers into newly allocated values */
1163
f23631e4 1164struct value *
aa1ee363 1165value_from_longest (struct type *type, LONGEST num)
c906108c 1166{
f23631e4 1167 struct value *val = allocate_value (type);
52f0bd74
AC
1168 enum type_code code;
1169 int len;
c5aa993b 1170retry:
c906108c
SS
1171 code = TYPE_CODE (type);
1172 len = TYPE_LENGTH (type);
1173
1174 switch (code)
1175 {
1176 case TYPE_CODE_TYPEDEF:
1177 type = check_typedef (type);
1178 goto retry;
1179 case TYPE_CODE_INT:
1180 case TYPE_CODE_CHAR:
1181 case TYPE_CODE_ENUM:
1182 case TYPE_CODE_BOOL:
1183 case TYPE_CODE_RANGE:
990a07ab 1184 store_signed_integer (value_contents_raw (val), len, num);
c906108c 1185 break;
c5aa993b 1186
c906108c
SS
1187 case TYPE_CODE_REF:
1188 case TYPE_CODE_PTR:
990a07ab 1189 store_typed_address (value_contents_raw (val), type, (CORE_ADDR) num);
c906108c 1190 break;
c5aa993b 1191
c906108c
SS
1192 default:
1193 error ("Unexpected type (%d) encountered for integer constant.", code);
1194 }
1195 return val;
1196}
1197
4478b372
JB
1198
1199/* Create a value representing a pointer of type TYPE to the address
1200 ADDR. */
f23631e4 1201struct value *
4478b372
JB
1202value_from_pointer (struct type *type, CORE_ADDR addr)
1203{
f23631e4 1204 struct value *val = allocate_value (type);
990a07ab 1205 store_typed_address (value_contents_raw (val), type, addr);
4478b372
JB
1206 return val;
1207}
1208
1209
0f71a2f6 1210/* Create a value for a string constant to be stored locally
070ad9f0 1211 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1212 This is analogous to value_from_longest, which also does not
1213 use inferior memory. String shall NOT contain embedded nulls. */
1214
f23631e4 1215struct value *
fba45db2 1216value_from_string (char *ptr)
0f71a2f6 1217{
f23631e4 1218 struct value *val;
c5aa993b 1219 int len = strlen (ptr);
0f71a2f6 1220 int lowbound = current_language->string_lower_bound;
f290d38e
AC
1221 struct type *string_char_type;
1222 struct type *rangetype;
1223 struct type *stringtype;
1224
1225 rangetype = create_range_type ((struct type *) NULL,
1226 builtin_type_int,
1227 lowbound, len + lowbound - 1);
1228 string_char_type = language_string_char_type (current_language,
1229 current_gdbarch);
1230 stringtype = create_array_type ((struct type *) NULL,
1231 string_char_type,
1232 rangetype);
0f71a2f6 1233 val = allocate_value (stringtype);
990a07ab 1234 memcpy (value_contents_raw (val), ptr, len);
0f71a2f6
JM
1235 return val;
1236}
1237
f23631e4 1238struct value *
fba45db2 1239value_from_double (struct type *type, DOUBLEST num)
c906108c 1240{
f23631e4 1241 struct value *val = allocate_value (type);
c906108c 1242 struct type *base_type = check_typedef (type);
52f0bd74
AC
1243 enum type_code code = TYPE_CODE (base_type);
1244 int len = TYPE_LENGTH (base_type);
c906108c
SS
1245
1246 if (code == TYPE_CODE_FLT)
1247 {
990a07ab 1248 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
1249 }
1250 else
1251 error ("Unexpected type encountered for floating constant.");
1252
1253 return val;
1254}
994b9211
AC
1255
1256struct value *
1257coerce_ref (struct value *arg)
1258{
df407dfe 1259 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
994b9211
AC
1260 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1261 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 1262 unpack_pointer (value_type (arg),
994b9211
AC
1263 VALUE_CONTENTS (arg)));
1264 return arg;
1265}
1266
1267struct value *
1268coerce_array (struct value *arg)
1269{
1270 arg = coerce_ref (arg);
1271 if (current_language->c_style_arrays
df407dfe 1272 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
994b9211 1273 arg = value_coerce_array (arg);
df407dfe 1274 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
994b9211
AC
1275 arg = value_coerce_function (arg);
1276 return arg;
1277}
1278
1279struct value *
1280coerce_number (struct value *arg)
1281{
1282 arg = coerce_array (arg);
1283 arg = coerce_enum (arg);
1284 return arg;
1285}
1286
1287struct value *
1288coerce_enum (struct value *arg)
1289{
df407dfe 1290 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
994b9211
AC
1291 arg = value_cast (builtin_type_unsigned_int, arg);
1292 return arg;
1293}
c906108c 1294\f
c906108c 1295
74055713
AC
1296/* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1297 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1298 is the type (which is known to be struct, union or array).
c906108c
SS
1299
1300 On most machines, the struct convention is used unless we are
1301 using gcc and the type is of a special size. */
1302/* As of about 31 Mar 93, GCC was changed to be compatible with the
1303 native compiler. GCC 2.3.3 was the last release that did it the
1304 old way. Since gcc2_compiled was not changed, we have no
1305 way to correctly win in all cases, so we just do the right thing
1306 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1307 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1308 would cause more chaos than dealing with some struct returns being
1309 handled wrong. */
bc87dfa0
AC
1310/* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1311 dead. */
c906108c
SS
1312
1313int
fba45db2 1314generic_use_struct_convention (int gcc_p, struct type *value_type)
c5aa993b 1315{
bc87dfa0
AC
1316 return !(TYPE_LENGTH (value_type) == 1
1317 || TYPE_LENGTH (value_type) == 2
1318 || TYPE_LENGTH (value_type) == 4
1319 || TYPE_LENGTH (value_type) == 8);
c906108c
SS
1320}
1321
48436ce6
AC
1322/* Return true if the function returning the specified type is using
1323 the convention of returning structures in memory (passing in the
1324 address as a hidden first parameter). GCC_P is nonzero if compiled
c906108c
SS
1325 with GCC. */
1326
1327int
48436ce6 1328using_struct_return (struct type *value_type, int gcc_p)
c906108c 1329{
52f0bd74 1330 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
1331
1332 if (code == TYPE_CODE_ERROR)
1333 error ("Function return type unknown.");
1334
667e784f
AC
1335 if (code == TYPE_CODE_VOID)
1336 /* A void return value is never in memory. See also corresponding
44e5158b 1337 code in "print_return_value". */
667e784f
AC
1338 return 0;
1339
92ad9cd9
AC
1340 /* Probe the architecture for the return-value convention. */
1341 return (gdbarch_return_value (current_gdbarch, value_type,
1342 NULL, NULL, NULL)
31db7b6c 1343 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
1344}
1345
c906108c 1346void
fba45db2 1347_initialize_values (void)
c906108c
SS
1348{
1349 add_cmd ("convenience", no_class, show_convenience,
c5aa993b 1350 "Debugger convenience (\"$foo\") variables.\n\
c906108c
SS
1351These variables are created when you assign them values;\n\
1352thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1353A few convenience variables are given values automatically:\n\
1354\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1355\"$__\" holds the contents of the last address examined with \"x\".",
1356 &showlist);
1357
1358 add_cmd ("values", no_class, show_values,
1359 "Elements of value history around item number IDX (or last ten).",
1360 &showlist);
1361}
This page took 1.66464 seconds and 4 git commands to generate.