'struct expression *' -> gdb::unique_xmalloc_ptr<expression>
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
618f726f 3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
d16aafd8 31#include "doublest.h"
36160dc4 32#include "regcache.h"
fe898f56 33#include "block.h"
27bc4d80 34#include "dfp.h"
bccdca4a 35#include "objfiles.h"
79a45b7d 36#include "valprint.h"
bc3b79fd 37#include "cli/cli-decode.h"
6dddc817 38#include "extension.h"
3bd0f5ef 39#include <ctype.h>
0914bcdb 40#include "tracepoint.h"
be335936 41#include "cp-abi.h"
a58e2656 42#include "user-regs.h"
325fac50 43#include <algorithm>
0914bcdb 44
581e13c1 45/* Prototypes for exported functions. */
c906108c 46
a14ed312 47void _initialize_values (void);
c906108c 48
bc3b79fd
TJB
49/* Definition of a user function. */
50struct internal_function
51{
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62};
63
4e07d55f
PA
64/* Defines an [OFFSET, OFFSET + LENGTH) range. */
65
66struct range
67{
68 /* Lowest offset in the range. */
6b850546 69 LONGEST offset;
4e07d55f
PA
70
71 /* Length of the range. */
6b850546 72 LONGEST length;
4e07d55f
PA
73};
74
75typedef struct range range_s;
76
77DEF_VEC_O(range_s);
78
79/* Returns true if the ranges defined by [offset1, offset1+len1) and
80 [offset2, offset2+len2) overlap. */
81
82static int
6b850546
DT
83ranges_overlap (LONGEST offset1, LONGEST len1,
84 LONGEST offset2, LONGEST len2)
4e07d55f
PA
85{
86 ULONGEST h, l;
87
325fac50
PA
88 l = std::max (offset1, offset2);
89 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
90 return (l < h);
91}
92
93/* Returns true if the first argument is strictly less than the
94 second, useful for VEC_lower_bound. We keep ranges sorted by
95 offset and coalesce overlapping and contiguous ranges, so this just
96 compares the starting offset. */
97
98static int
99range_lessthan (const range_s *r1, const range_s *r2)
100{
101 return r1->offset < r2->offset;
102}
103
104/* Returns true if RANGES contains any range that overlaps [OFFSET,
105 OFFSET+LENGTH). */
106
107static int
6b850546 108ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
4e07d55f
PA
109{
110 range_s what;
6b850546 111 LONGEST i;
4e07d55f
PA
112
113 what.offset = offset;
114 what.length = length;
115
116 /* We keep ranges sorted by offset and coalesce overlapping and
117 contiguous ranges, so to check if a range list contains a given
118 range, we can do a binary search for the position the given range
119 would be inserted if we only considered the starting OFFSET of
120 ranges. We call that position I. Since we also have LENGTH to
121 care for (this is a range afterall), we need to check if the
122 _previous_ range overlaps the I range. E.g.,
123
124 R
125 |---|
126 |---| |---| |------| ... |--|
127 0 1 2 N
128
129 I=1
130
131 In the case above, the binary search would return `I=1', meaning,
132 this OFFSET should be inserted at position 1, and the current
133 position 1 should be pushed further (and before 2). But, `0'
134 overlaps with R.
135
136 Then we need to check if the I range overlaps the I range itself.
137 E.g.,
138
139 R
140 |---|
141 |---| |---| |-------| ... |--|
142 0 1 2 N
143
144 I=1
145 */
146
147 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
148
149 if (i > 0)
150 {
151 struct range *bef = VEC_index (range_s, ranges, i - 1);
152
153 if (ranges_overlap (bef->offset, bef->length, offset, length))
154 return 1;
155 }
156
157 if (i < VEC_length (range_s, ranges))
158 {
159 struct range *r = VEC_index (range_s, ranges, i);
160
161 if (ranges_overlap (r->offset, r->length, offset, length))
162 return 1;
163 }
164
165 return 0;
166}
167
bc3b79fd
TJB
168static struct cmd_list_element *functionlist;
169
87784a47
TT
170/* Note that the fields in this structure are arranged to save a bit
171 of memory. */
172
91294c83
AC
173struct value
174{
175 /* Type of value; either not an lval, or one of the various
176 different possible kinds of lval. */
177 enum lval_type lval;
178
179 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
180 unsigned int modifiable : 1;
181
182 /* If zero, contents of this value are in the contents field. If
183 nonzero, contents are in inferior. If the lval field is lval_memory,
184 the contents are in inferior memory at location.address plus offset.
185 The lval field may also be lval_register.
186
187 WARNING: This field is used by the code which handles watchpoints
188 (see breakpoint.c) to decide whether a particular value can be
189 watched by hardware watchpoints. If the lazy flag is set for
190 some member of a value chain, it is assumed that this member of
191 the chain doesn't need to be watched as part of watching the
192 value itself. This is how GDB avoids watching the entire struct
193 or array when the user wants to watch a single struct member or
194 array element. If you ever change the way lazy flag is set and
195 reset, be sure to consider this use as well! */
196 unsigned int lazy : 1;
197
87784a47
TT
198 /* If value is a variable, is it initialized or not. */
199 unsigned int initialized : 1;
200
201 /* If value is from the stack. If this is set, read_stack will be
202 used instead of read_memory to enable extra caching. */
203 unsigned int stack : 1;
91294c83 204
e848a8a5
TT
205 /* If the value has been released. */
206 unsigned int released : 1;
207
98b1cfdc
TT
208 /* Register number if the value is from a register. */
209 short regnum;
210
91294c83
AC
211 /* Location of value (if lval). */
212 union
213 {
214 /* If lval == lval_memory, this is the address in the inferior.
215 If lval == lval_register, this is the byte offset into the
216 registers structure. */
217 CORE_ADDR address;
218
219 /* Pointer to internal variable. */
220 struct internalvar *internalvar;
5f5233d4 221
e81e7f5e
SC
222 /* Pointer to xmethod worker. */
223 struct xmethod_worker *xm_worker;
224
5f5233d4
PA
225 /* If lval == lval_computed, this is a set of function pointers
226 to use to access and describe the value, and a closure pointer
227 for them to use. */
228 struct
229 {
c8f2448a
JK
230 /* Functions to call. */
231 const struct lval_funcs *funcs;
232
233 /* Closure for those functions to use. */
234 void *closure;
5f5233d4 235 } computed;
91294c83
AC
236 } location;
237
3723fda8
SM
238 /* Describes offset of a value within lval of a structure in target
239 addressable memory units. If lval == lval_memory, this is an offset to
240 the address. If lval == lval_register, this is a further offset from
241 location.address within the registers structure. Note also the member
242 embedded_offset below. */
6b850546 243 LONGEST offset;
91294c83
AC
244
245 /* Only used for bitfields; number of bits contained in them. */
6b850546 246 LONGEST bitsize;
91294c83
AC
247
248 /* Only used for bitfields; position of start of field. For
32c9a795 249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
6b850546 251 LONGEST bitpos;
91294c83 252
87784a47
TT
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
4ea48cc1
DJ
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
91294c83
AC
265 /* Frame register value is relative to. This will be described in
266 the lval enum above as "lval_register". */
267 struct frame_id frame_id;
268
269 /* Type of the value. */
270 struct type *type;
271
272 /* If a value represents a C++ object, then the `type' field gives
273 the object's compile-time type. If the object actually belongs
274 to some class derived from `type', perhaps with other base
275 classes and additional members, then `type' is just a subobject
276 of the real thing, and the full object is probably larger than
277 `type' would suggest.
278
279 If `type' is a dynamic class (i.e. one with a vtable), then GDB
280 can actually determine the object's run-time type by looking at
281 the run-time type information in the vtable. When this
282 information is available, we may elect to read in the entire
283 object, for several reasons:
284
285 - When printing the value, the user would probably rather see the
286 full object, not just the limited portion apparent from the
287 compile-time type.
288
289 - If `type' has virtual base classes, then even printing `type'
290 alone may require reaching outside the `type' portion of the
291 object to wherever the virtual base class has been stored.
292
293 When we store the entire object, `enclosing_type' is the run-time
294 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
295 offset of `type' within that larger type, in target addressable memory
296 units. The value_contents() macro takes `embedded_offset' into account,
297 so most GDB code continues to see the `type' portion of the value, just
298 as the inferior would.
91294c83
AC
299
300 If `type' is a pointer to an object, then `enclosing_type' is a
301 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
302 the offset in target addressable memory units from the full object
303 to the pointed-to object -- that is, the value `embedded_offset' would
304 have if we followed the pointer and fetched the complete object.
305 (I don't really see the point. Why not just determine the
306 run-time type when you indirect, and avoid the special case? The
307 contents don't matter until you indirect anyway.)
91294c83
AC
308
309 If we're not doing anything fancy, `enclosing_type' is equal to
310 `type', and `embedded_offset' is zero, so everything works
311 normally. */
312 struct type *enclosing_type;
6b850546
DT
313 LONGEST embedded_offset;
314 LONGEST pointed_to_offset;
91294c83
AC
315
316 /* Values are stored in a chain, so that they can be deleted easily
317 over calls to the inferior. Values assigned to internal
a08702d6
TJB
318 variables, put into the value history or exposed to Python are
319 taken off this list. */
91294c83
AC
320 struct value *next;
321
3e3d7139
JG
322 /* Actual contents of the value. Target byte-order. NULL or not
323 valid if lazy is nonzero. */
324 gdb_byte *contents;
828d3400 325
4e07d55f
PA
326 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
327 rather than available, since the common and default case is for a
9a0dc9e3
PA
328 value to be available. This is filled in at value read time.
329 The unavailable ranges are tracked in bits. Note that a contents
330 bit that has been optimized out doesn't really exist in the
331 program, so it can't be marked unavailable either. */
4e07d55f 332 VEC(range_s) *unavailable;
9a0dc9e3
PA
333
334 /* Likewise, but for optimized out contents (a chunk of the value of
335 a variable that does not actually exist in the program). If LVAL
336 is lval_register, this is a register ($pc, $sp, etc., never a
337 program variable) that has not been saved in the frame. Not
338 saved registers and optimized-out program variables values are
339 treated pretty much the same, except not-saved registers have a
340 different string representation and related error strings. */
341 VEC(range_s) *optimized_out;
91294c83
AC
342};
343
e512cdbd
SM
344/* See value.h. */
345
346struct gdbarch *
347get_value_arch (const struct value *value)
348{
349 return get_type_arch (value_type (value));
350}
351
4e07d55f 352int
6b850546 353value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
354{
355 gdb_assert (!value->lazy);
356
357 return !ranges_contain (value->unavailable, offset, length);
358}
359
bdf22206 360int
6b850546
DT
361value_bytes_available (const struct value *value,
362 LONGEST offset, LONGEST length)
bdf22206
AB
363{
364 return value_bits_available (value,
365 offset * TARGET_CHAR_BIT,
366 length * TARGET_CHAR_BIT);
367}
368
9a0dc9e3
PA
369int
370value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
371{
372 gdb_assert (!value->lazy);
373
374 return ranges_contain (value->optimized_out, bit_offset, bit_length);
375}
376
ec0a52e1
PA
377int
378value_entirely_available (struct value *value)
379{
380 /* We can only tell whether the whole value is available when we try
381 to read it. */
382 if (value->lazy)
383 value_fetch_lazy (value);
384
385 if (VEC_empty (range_s, value->unavailable))
386 return 1;
387 return 0;
388}
389
9a0dc9e3
PA
390/* Returns true if VALUE is entirely covered by RANGES. If the value
391 is lazy, it'll be read now. Note that RANGE is a pointer to
392 pointer because reading the value might change *RANGE. */
393
394static int
395value_entirely_covered_by_range_vector (struct value *value,
396 VEC(range_s) **ranges)
6211c335 397{
9a0dc9e3
PA
398 /* We can only tell whether the whole value is optimized out /
399 unavailable when we try to read it. */
6211c335
YQ
400 if (value->lazy)
401 value_fetch_lazy (value);
402
9a0dc9e3 403 if (VEC_length (range_s, *ranges) == 1)
6211c335 404 {
9a0dc9e3 405 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
406
407 if (t->offset == 0
64c46ce4
JB
408 && t->length == (TARGET_CHAR_BIT
409 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
410 return 1;
411 }
412
413 return 0;
414}
415
9a0dc9e3
PA
416int
417value_entirely_unavailable (struct value *value)
418{
419 return value_entirely_covered_by_range_vector (value, &value->unavailable);
420}
421
422int
423value_entirely_optimized_out (struct value *value)
424{
425 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
426}
427
428/* Insert into the vector pointed to by VECTORP the bit range starting of
429 OFFSET bits, and extending for the next LENGTH bits. */
430
431static void
6b850546
DT
432insert_into_bit_range_vector (VEC(range_s) **vectorp,
433 LONGEST offset, LONGEST length)
4e07d55f
PA
434{
435 range_s newr;
436 int i;
437
438 /* Insert the range sorted. If there's overlap or the new range
439 would be contiguous with an existing range, merge. */
440
441 newr.offset = offset;
442 newr.length = length;
443
444 /* Do a binary search for the position the given range would be
445 inserted if we only considered the starting OFFSET of ranges.
446 Call that position I. Since we also have LENGTH to care for
447 (this is a range afterall), we need to check if the _previous_
448 range overlaps the I range. E.g., calling R the new range:
449
450 #1 - overlaps with previous
451
452 R
453 |-...-|
454 |---| |---| |------| ... |--|
455 0 1 2 N
456
457 I=1
458
459 In the case #1 above, the binary search would return `I=1',
460 meaning, this OFFSET should be inserted at position 1, and the
461 current position 1 should be pushed further (and become 2). But,
462 note that `0' overlaps with R, so we want to merge them.
463
464 A similar consideration needs to be taken if the new range would
465 be contiguous with the previous range:
466
467 #2 - contiguous with previous
468
469 R
470 |-...-|
471 |--| |---| |------| ... |--|
472 0 1 2 N
473
474 I=1
475
476 If there's no overlap with the previous range, as in:
477
478 #3 - not overlapping and not contiguous
479
480 R
481 |-...-|
482 |--| |---| |------| ... |--|
483 0 1 2 N
484
485 I=1
486
487 or if I is 0:
488
489 #4 - R is the range with lowest offset
490
491 R
492 |-...-|
493 |--| |---| |------| ... |--|
494 0 1 2 N
495
496 I=0
497
498 ... we just push the new range to I.
499
500 All the 4 cases above need to consider that the new range may
501 also overlap several of the ranges that follow, or that R may be
502 contiguous with the following range, and merge. E.g.,
503
504 #5 - overlapping following ranges
505
506 R
507 |------------------------|
508 |--| |---| |------| ... |--|
509 0 1 2 N
510
511 I=0
512
513 or:
514
515 R
516 |-------|
517 |--| |---| |------| ... |--|
518 0 1 2 N
519
520 I=1
521
522 */
523
9a0dc9e3 524 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
525 if (i > 0)
526 {
9a0dc9e3 527 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
528
529 if (ranges_overlap (bef->offset, bef->length, offset, length))
530 {
531 /* #1 */
325fac50
PA
532 ULONGEST l = std::min (bef->offset, offset);
533 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
4e07d55f
PA
534
535 bef->offset = l;
536 bef->length = h - l;
537 i--;
538 }
539 else if (offset == bef->offset + bef->length)
540 {
541 /* #2 */
542 bef->length += length;
543 i--;
544 }
545 else
546 {
547 /* #3 */
9a0dc9e3 548 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
549 }
550 }
551 else
552 {
553 /* #4 */
9a0dc9e3 554 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
555 }
556
557 /* Check whether the ranges following the one we've just added or
558 touched can be folded in (#5 above). */
9a0dc9e3 559 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
560 {
561 struct range *t;
562 struct range *r;
563 int removed = 0;
564 int next = i + 1;
565
566 /* Get the range we just touched. */
9a0dc9e3 567 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
568 removed = 0;
569
570 i = next;
9a0dc9e3 571 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
572 if (r->offset <= t->offset + t->length)
573 {
574 ULONGEST l, h;
575
325fac50
PA
576 l = std::min (t->offset, r->offset);
577 h = std::max (t->offset + t->length, r->offset + r->length);
4e07d55f
PA
578
579 t->offset = l;
580 t->length = h - l;
581
582 removed++;
583 }
584 else
585 {
586 /* If we couldn't merge this one, we won't be able to
587 merge following ones either, since the ranges are
588 always sorted by OFFSET. */
589 break;
590 }
591
592 if (removed != 0)
9a0dc9e3 593 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
594 }
595}
596
9a0dc9e3 597void
6b850546
DT
598mark_value_bits_unavailable (struct value *value,
599 LONGEST offset, LONGEST length)
9a0dc9e3
PA
600{
601 insert_into_bit_range_vector (&value->unavailable, offset, length);
602}
603
bdf22206 604void
6b850546
DT
605mark_value_bytes_unavailable (struct value *value,
606 LONGEST offset, LONGEST length)
bdf22206
AB
607{
608 mark_value_bits_unavailable (value,
609 offset * TARGET_CHAR_BIT,
610 length * TARGET_CHAR_BIT);
611}
612
c8c1c22f
PA
613/* Find the first range in RANGES that overlaps the range defined by
614 OFFSET and LENGTH, starting at element POS in the RANGES vector,
615 Returns the index into RANGES where such overlapping range was
616 found, or -1 if none was found. */
617
618static int
619find_first_range_overlap (VEC(range_s) *ranges, int pos,
6b850546 620 LONGEST offset, LONGEST length)
c8c1c22f
PA
621{
622 range_s *r;
623 int i;
624
625 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
626 if (ranges_overlap (r->offset, r->length, offset, length))
627 return i;
628
629 return -1;
630}
631
bdf22206
AB
632/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
633 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
634 return non-zero.
635
636 It must always be the case that:
637 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
638
639 It is assumed that memory can be accessed from:
640 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
641 to:
642 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
643 / TARGET_CHAR_BIT) */
644static int
645memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
646 const gdb_byte *ptr2, size_t offset2_bits,
647 size_t length_bits)
648{
649 gdb_assert (offset1_bits % TARGET_CHAR_BIT
650 == offset2_bits % TARGET_CHAR_BIT);
651
652 if (offset1_bits % TARGET_CHAR_BIT != 0)
653 {
654 size_t bits;
655 gdb_byte mask, b1, b2;
656
657 /* The offset from the base pointers PTR1 and PTR2 is not a complete
658 number of bytes. A number of bits up to either the next exact
659 byte boundary, or LENGTH_BITS (which ever is sooner) will be
660 compared. */
661 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
662 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
663 mask = (1 << bits) - 1;
664
665 if (length_bits < bits)
666 {
667 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
668 bits = length_bits;
669 }
670
671 /* Now load the two bytes and mask off the bits we care about. */
672 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
673 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
674
675 if (b1 != b2)
676 return 1;
677
678 /* Now update the length and offsets to take account of the bits
679 we've just compared. */
680 length_bits -= bits;
681 offset1_bits += bits;
682 offset2_bits += bits;
683 }
684
685 if (length_bits % TARGET_CHAR_BIT != 0)
686 {
687 size_t bits;
688 size_t o1, o2;
689 gdb_byte mask, b1, b2;
690
691 /* The length is not an exact number of bytes. After the previous
692 IF.. block then the offsets are byte aligned, or the
693 length is zero (in which case this code is not reached). Compare
694 a number of bits at the end of the region, starting from an exact
695 byte boundary. */
696 bits = length_bits % TARGET_CHAR_BIT;
697 o1 = offset1_bits + length_bits - bits;
698 o2 = offset2_bits + length_bits - bits;
699
700 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
701 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
702
703 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
704 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
705
706 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
707 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
708
709 if (b1 != b2)
710 return 1;
711
712 length_bits -= bits;
713 }
714
715 if (length_bits > 0)
716 {
717 /* We've now taken care of any stray "bits" at the start, or end of
718 the region to compare, the remainder can be covered with a simple
719 memcmp. */
720 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
721 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
722 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
723
724 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
725 ptr2 + offset2_bits / TARGET_CHAR_BIT,
726 length_bits / TARGET_CHAR_BIT);
727 }
728
729 /* Length is zero, regions match. */
730 return 0;
731}
732
9a0dc9e3
PA
733/* Helper struct for find_first_range_overlap_and_match and
734 value_contents_bits_eq. Keep track of which slot of a given ranges
735 vector have we last looked at. */
bdf22206 736
9a0dc9e3
PA
737struct ranges_and_idx
738{
739 /* The ranges. */
740 VEC(range_s) *ranges;
741
742 /* The range we've last found in RANGES. Given ranges are sorted,
743 we can start the next lookup here. */
744 int idx;
745};
746
747/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
748 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
749 ranges starting at OFFSET2 bits. Return true if the ranges match
750 and fill in *L and *H with the overlapping window relative to
751 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
752
753static int
9a0dc9e3
PA
754find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
755 struct ranges_and_idx *rp2,
6b850546
DT
756 LONGEST offset1, LONGEST offset2,
757 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 758{
9a0dc9e3
PA
759 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
760 offset1, length);
761 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
762 offset2, length);
c8c1c22f 763
9a0dc9e3
PA
764 if (rp1->idx == -1 && rp2->idx == -1)
765 {
766 *l = length;
767 *h = length;
768 return 1;
769 }
770 else if (rp1->idx == -1 || rp2->idx == -1)
771 return 0;
772 else
c8c1c22f
PA
773 {
774 range_s *r1, *r2;
775 ULONGEST l1, h1;
776 ULONGEST l2, h2;
777
9a0dc9e3
PA
778 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
779 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
780
781 /* Get the unavailable windows intersected by the incoming
782 ranges. The first and last ranges that overlap the argument
783 range may be wider than said incoming arguments ranges. */
325fac50
PA
784 l1 = std::max (offset1, r1->offset);
785 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 786
325fac50
PA
787 l2 = std::max (offset2, r2->offset);
788 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
789
790 /* Make them relative to the respective start offsets, so we can
791 compare them for equality. */
792 l1 -= offset1;
793 h1 -= offset1;
794
795 l2 -= offset2;
796 h2 -= offset2;
797
9a0dc9e3 798 /* Different ranges, no match. */
c8c1c22f
PA
799 if (l1 != l2 || h1 != h2)
800 return 0;
801
9a0dc9e3
PA
802 *h = h1;
803 *l = l1;
804 return 1;
805 }
806}
807
808/* Helper function for value_contents_eq. The only difference is that
809 this function is bit rather than byte based.
810
811 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
812 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
813 Return true if the available bits match. */
814
815static int
816value_contents_bits_eq (const struct value *val1, int offset1,
817 const struct value *val2, int offset2,
818 int length)
819{
820 /* Each array element corresponds to a ranges source (unavailable,
821 optimized out). '1' is for VAL1, '2' for VAL2. */
822 struct ranges_and_idx rp1[2], rp2[2];
823
824 /* See function description in value.h. */
825 gdb_assert (!val1->lazy && !val2->lazy);
826
827 /* We shouldn't be trying to compare past the end of the values. */
828 gdb_assert (offset1 + length
829 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
830 gdb_assert (offset2 + length
831 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
832
833 memset (&rp1, 0, sizeof (rp1));
834 memset (&rp2, 0, sizeof (rp2));
835 rp1[0].ranges = val1->unavailable;
836 rp2[0].ranges = val2->unavailable;
837 rp1[1].ranges = val1->optimized_out;
838 rp2[1].ranges = val2->optimized_out;
839
840 while (length > 0)
841 {
000339af 842 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
843 int i;
844
845 for (i = 0; i < 2; i++)
846 {
847 ULONGEST l_tmp, h_tmp;
848
849 /* The contents only match equal if the invalid/unavailable
850 contents ranges match as well. */
851 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
852 offset1, offset2, length,
853 &l_tmp, &h_tmp))
854 return 0;
855
856 /* We're interested in the lowest/first range found. */
857 if (i == 0 || l_tmp < l)
858 {
859 l = l_tmp;
860 h = h_tmp;
861 }
862 }
863
864 /* Compare the available/valid contents. */
bdf22206 865 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 866 val2->contents, offset2, l) != 0)
c8c1c22f
PA
867 return 0;
868
9a0dc9e3
PA
869 length -= h;
870 offset1 += h;
871 offset2 += h;
c8c1c22f
PA
872 }
873
874 return 1;
875}
876
bdf22206 877int
6b850546
DT
878value_contents_eq (const struct value *val1, LONGEST offset1,
879 const struct value *val2, LONGEST offset2,
880 LONGEST length)
bdf22206 881{
9a0dc9e3
PA
882 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
883 val2, offset2 * TARGET_CHAR_BIT,
884 length * TARGET_CHAR_BIT);
bdf22206
AB
885}
886
581e13c1 887/* Prototypes for local functions. */
c906108c 888
a14ed312 889static void show_values (char *, int);
c906108c 890
a14ed312 891static void show_convenience (char *, int);
c906108c 892
c906108c
SS
893
894/* The value-history records all the values printed
895 by print commands during this session. Each chunk
896 records 60 consecutive values. The first chunk on
897 the chain records the most recent values.
898 The total number of values is in value_history_count. */
899
900#define VALUE_HISTORY_CHUNK 60
901
902struct value_history_chunk
c5aa993b
JM
903 {
904 struct value_history_chunk *next;
f23631e4 905 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 906 };
c906108c
SS
907
908/* Chain of chunks now in use. */
909
910static struct value_history_chunk *value_history_chain;
911
581e13c1 912static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 913
c906108c
SS
914\f
915/* List of all value objects currently allocated
916 (except for those released by calls to release_value)
917 This is so they can be freed after each command. */
918
f23631e4 919static struct value *all_values;
c906108c 920
3e3d7139
JG
921/* Allocate a lazy value for type TYPE. Its actual content is
922 "lazily" allocated too: the content field of the return value is
923 NULL; it will be allocated when it is fetched from the target. */
c906108c 924
f23631e4 925struct value *
3e3d7139 926allocate_value_lazy (struct type *type)
c906108c 927{
f23631e4 928 struct value *val;
c54eabfa
JK
929
930 /* Call check_typedef on our type to make sure that, if TYPE
931 is a TYPE_CODE_TYPEDEF, its length is set to the length
932 of the target type instead of zero. However, we do not
933 replace the typedef type by the target type, because we want
934 to keep the typedef in order to be able to set the VAL's type
935 description correctly. */
936 check_typedef (type);
c906108c 937
8d749320 938 val = XCNEW (struct value);
3e3d7139 939 val->contents = NULL;
df407dfe 940 val->next = all_values;
c906108c 941 all_values = val;
df407dfe 942 val->type = type;
4754a64e 943 val->enclosing_type = type;
c906108c 944 VALUE_LVAL (val) = not_lval;
42ae5230 945 val->location.address = 0;
1df6926e 946 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
947 val->offset = 0;
948 val->bitpos = 0;
949 val->bitsize = 0;
9ee8fc9d 950 VALUE_REGNUM (val) = -1;
3e3d7139 951 val->lazy = 1;
13c3b5f5 952 val->embedded_offset = 0;
b44d461b 953 val->pointed_to_offset = 0;
c906108c 954 val->modifiable = 1;
42be36b3 955 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
956
957 /* Values start out on the all_values chain. */
958 val->reference_count = 1;
959
c906108c
SS
960 return val;
961}
962
5fdf6324
AB
963/* The maximum size, in bytes, that GDB will try to allocate for a value.
964 The initial value of 64k was not selected for any specific reason, it is
965 just a reasonable starting point. */
966
967static int max_value_size = 65536; /* 64k bytes */
968
969/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
970 LONGEST, otherwise GDB will not be able to parse integer values from the
971 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
972 be unable to parse "set max-value-size 2".
973
974 As we want a consistent GDB experience across hosts with different sizes
975 of LONGEST, this arbitrary minimum value was selected, so long as this
976 is bigger than LONGEST on all GDB supported hosts we're fine. */
977
978#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
979gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
980
981/* Implement the "set max-value-size" command. */
982
983static void
984set_max_value_size (char *args, int from_tty,
985 struct cmd_list_element *c)
986{
987 gdb_assert (max_value_size == -1 || max_value_size >= 0);
988
989 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
990 {
991 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
992 error (_("max-value-size set too low, increasing to %d bytes"),
993 max_value_size);
994 }
995}
996
997/* Implement the "show max-value-size" command. */
998
999static void
1000show_max_value_size (struct ui_file *file, int from_tty,
1001 struct cmd_list_element *c, const char *value)
1002{
1003 if (max_value_size == -1)
1004 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
1005 else
1006 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
1007 max_value_size);
1008}
1009
1010/* Called before we attempt to allocate or reallocate a buffer for the
1011 contents of a value. TYPE is the type of the value for which we are
1012 allocating the buffer. If the buffer is too large (based on the user
1013 controllable setting) then throw an error. If this function returns
1014 then we should attempt to allocate the buffer. */
1015
1016static void
1017check_type_length_before_alloc (const struct type *type)
1018{
1019 unsigned int length = TYPE_LENGTH (type);
1020
1021 if (max_value_size > -1 && length > max_value_size)
1022 {
1023 if (TYPE_NAME (type) != NULL)
1024 error (_("value of type `%s' requires %u bytes, which is more "
1025 "than max-value-size"), TYPE_NAME (type), length);
1026 else
1027 error (_("value requires %u bytes, which is more than "
1028 "max-value-size"), length);
1029 }
1030}
1031
3e3d7139
JG
1032/* Allocate the contents of VAL if it has not been allocated yet. */
1033
548b762d 1034static void
3e3d7139
JG
1035allocate_value_contents (struct value *val)
1036{
1037 if (!val->contents)
5fdf6324
AB
1038 {
1039 check_type_length_before_alloc (val->enclosing_type);
1040 val->contents
1041 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1042 }
3e3d7139
JG
1043}
1044
1045/* Allocate a value and its contents for type TYPE. */
1046
1047struct value *
1048allocate_value (struct type *type)
1049{
1050 struct value *val = allocate_value_lazy (type);
a109c7c1 1051
3e3d7139
JG
1052 allocate_value_contents (val);
1053 val->lazy = 0;
1054 return val;
1055}
1056
c906108c 1057/* Allocate a value that has the correct length
938f5214 1058 for COUNT repetitions of type TYPE. */
c906108c 1059
f23631e4 1060struct value *
fba45db2 1061allocate_repeat_value (struct type *type, int count)
c906108c 1062{
c5aa993b 1063 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1064 /* FIXME-type-allocation: need a way to free this type when we are
1065 done with it. */
e3506a9f
UW
1066 struct type *array_type
1067 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1068
e3506a9f 1069 return allocate_value (array_type);
c906108c
SS
1070}
1071
5f5233d4
PA
1072struct value *
1073allocate_computed_value (struct type *type,
c8f2448a 1074 const struct lval_funcs *funcs,
5f5233d4
PA
1075 void *closure)
1076{
41e8491f 1077 struct value *v = allocate_value_lazy (type);
a109c7c1 1078
5f5233d4
PA
1079 VALUE_LVAL (v) = lval_computed;
1080 v->location.computed.funcs = funcs;
1081 v->location.computed.closure = closure;
5f5233d4
PA
1082
1083 return v;
1084}
1085
a7035dbb
JK
1086/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1087
1088struct value *
1089allocate_optimized_out_value (struct type *type)
1090{
1091 struct value *retval = allocate_value_lazy (type);
1092
9a0dc9e3
PA
1093 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1094 set_value_lazy (retval, 0);
a7035dbb
JK
1095 return retval;
1096}
1097
df407dfe
AC
1098/* Accessor methods. */
1099
17cf0ecd 1100struct value *
4bf7b526 1101value_next (const struct value *value)
17cf0ecd
AC
1102{
1103 return value->next;
1104}
1105
df407dfe 1106struct type *
0e03807e 1107value_type (const struct value *value)
df407dfe
AC
1108{
1109 return value->type;
1110}
04624583
AC
1111void
1112deprecated_set_value_type (struct value *value, struct type *type)
1113{
1114 value->type = type;
1115}
df407dfe 1116
6b850546 1117LONGEST
0e03807e 1118value_offset (const struct value *value)
df407dfe
AC
1119{
1120 return value->offset;
1121}
f5cf64a7 1122void
6b850546 1123set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1124{
1125 value->offset = offset;
1126}
df407dfe 1127
6b850546 1128LONGEST
0e03807e 1129value_bitpos (const struct value *value)
df407dfe
AC
1130{
1131 return value->bitpos;
1132}
9bbda503 1133void
6b850546 1134set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1135{
1136 value->bitpos = bit;
1137}
df407dfe 1138
6b850546 1139LONGEST
0e03807e 1140value_bitsize (const struct value *value)
df407dfe
AC
1141{
1142 return value->bitsize;
1143}
9bbda503 1144void
6b850546 1145set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1146{
1147 value->bitsize = bit;
1148}
df407dfe 1149
4ea48cc1 1150struct value *
4bf7b526 1151value_parent (const struct value *value)
4ea48cc1
DJ
1152{
1153 return value->parent;
1154}
1155
53ba8333
JB
1156/* See value.h. */
1157
1158void
1159set_value_parent (struct value *value, struct value *parent)
1160{
40501e00
TT
1161 struct value *old = value->parent;
1162
53ba8333 1163 value->parent = parent;
40501e00
TT
1164 if (parent != NULL)
1165 value_incref (parent);
1166 value_free (old);
53ba8333
JB
1167}
1168
fc1a4b47 1169gdb_byte *
990a07ab
AC
1170value_contents_raw (struct value *value)
1171{
3ae385af
SM
1172 struct gdbarch *arch = get_value_arch (value);
1173 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1174
3e3d7139 1175 allocate_value_contents (value);
3ae385af 1176 return value->contents + value->embedded_offset * unit_size;
990a07ab
AC
1177}
1178
fc1a4b47 1179gdb_byte *
990a07ab
AC
1180value_contents_all_raw (struct value *value)
1181{
3e3d7139
JG
1182 allocate_value_contents (value);
1183 return value->contents;
990a07ab
AC
1184}
1185
4754a64e 1186struct type *
4bf7b526 1187value_enclosing_type (const struct value *value)
4754a64e
AC
1188{
1189 return value->enclosing_type;
1190}
1191
8264ba82
AG
1192/* Look at value.h for description. */
1193
1194struct type *
1195value_actual_type (struct value *value, int resolve_simple_types,
1196 int *real_type_found)
1197{
1198 struct value_print_options opts;
8264ba82
AG
1199 struct type *result;
1200
1201 get_user_print_options (&opts);
1202
1203 if (real_type_found)
1204 *real_type_found = 0;
1205 result = value_type (value);
1206 if (opts.objectprint)
1207 {
5e34c6c3
LM
1208 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1209 fetch its rtti type. */
1210 if ((TYPE_CODE (result) == TYPE_CODE_PTR
444bca65 1211 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3 1212 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1213 == TYPE_CODE_STRUCT
1214 && !value_optimized_out (value))
8264ba82
AG
1215 {
1216 struct type *real_type;
1217
1218 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1219 if (real_type)
1220 {
1221 if (real_type_found)
1222 *real_type_found = 1;
1223 result = real_type;
1224 }
1225 }
1226 else if (resolve_simple_types)
1227 {
1228 if (real_type_found)
1229 *real_type_found = 1;
1230 result = value_enclosing_type (value);
1231 }
1232 }
1233
1234 return result;
1235}
1236
901461f8
PA
1237void
1238error_value_optimized_out (void)
1239{
1240 error (_("value has been optimized out"));
1241}
1242
0e03807e 1243static void
4e07d55f 1244require_not_optimized_out (const struct value *value)
0e03807e 1245{
9a0dc9e3 1246 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1247 {
1248 if (value->lval == lval_register)
1249 error (_("register has not been saved in frame"));
1250 else
1251 error_value_optimized_out ();
1252 }
0e03807e
TT
1253}
1254
4e07d55f
PA
1255static void
1256require_available (const struct value *value)
1257{
1258 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1259 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1260}
1261
fc1a4b47 1262const gdb_byte *
0e03807e 1263value_contents_for_printing (struct value *value)
46615f07
AC
1264{
1265 if (value->lazy)
1266 value_fetch_lazy (value);
3e3d7139 1267 return value->contents;
46615f07
AC
1268}
1269
de4127a3
PA
1270const gdb_byte *
1271value_contents_for_printing_const (const struct value *value)
1272{
1273 gdb_assert (!value->lazy);
1274 return value->contents;
1275}
1276
0e03807e
TT
1277const gdb_byte *
1278value_contents_all (struct value *value)
1279{
1280 const gdb_byte *result = value_contents_for_printing (value);
1281 require_not_optimized_out (value);
4e07d55f 1282 require_available (value);
0e03807e
TT
1283 return result;
1284}
1285
9a0dc9e3
PA
1286/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1287 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1288
1289static void
1290ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1291 VEC (range_s) *src_range, int src_bit_offset,
1292 int bit_length)
1293{
1294 range_s *r;
1295 int i;
1296
1297 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1298 {
1299 ULONGEST h, l;
1300
325fac50
PA
1301 l = std::max (r->offset, (LONGEST) src_bit_offset);
1302 h = std::min (r->offset + r->length,
1303 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1304
1305 if (l < h)
1306 insert_into_bit_range_vector (dst_range,
1307 dst_bit_offset + (l - src_bit_offset),
1308 h - l);
1309 }
1310}
1311
4875ffdb
PA
1312/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1313 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1314
1315static void
1316value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1317 const struct value *src, int src_bit_offset,
1318 int bit_length)
1319{
1320 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1321 src->unavailable, src_bit_offset,
1322 bit_length);
1323 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1324 src->optimized_out, src_bit_offset,
1325 bit_length);
1326}
1327
3ae385af 1328/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1329 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1330 contents, starting at DST_OFFSET. If unavailable contents are
1331 being copied from SRC, the corresponding DST contents are marked
1332 unavailable accordingly. Neither DST nor SRC may be lazy
1333 values.
1334
1335 It is assumed the contents of DST in the [DST_OFFSET,
1336 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1337
1338void
6b850546
DT
1339value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1340 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1341{
6b850546 1342 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1343 struct gdbarch *arch = get_value_arch (src);
1344 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1345
1346 /* A lazy DST would make that this copy operation useless, since as
1347 soon as DST's contents were un-lazied (by a later value_contents
1348 call, say), the contents would be overwritten. A lazy SRC would
1349 mean we'd be copying garbage. */
1350 gdb_assert (!dst->lazy && !src->lazy);
1351
29976f3f
PA
1352 /* The overwritten DST range gets unavailability ORed in, not
1353 replaced. Make sure to remember to implement replacing if it
1354 turns out actually necessary. */
1355 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1356 gdb_assert (!value_bits_any_optimized_out (dst,
1357 TARGET_CHAR_BIT * dst_offset,
1358 TARGET_CHAR_BIT * length));
29976f3f 1359
39d37385 1360 /* Copy the data. */
3ae385af
SM
1361 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1362 value_contents_all_raw (src) + src_offset * unit_size,
1363 length * unit_size);
39d37385
PA
1364
1365 /* Copy the meta-data, adjusted. */
3ae385af
SM
1366 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1367 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1368 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1369
4875ffdb
PA
1370 value_ranges_copy_adjusted (dst, dst_bit_offset,
1371 src, src_bit_offset,
1372 bit_length);
39d37385
PA
1373}
1374
29976f3f
PA
1375/* Copy LENGTH bytes of SRC value's (all) contents
1376 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1377 (all) contents, starting at DST_OFFSET. If unavailable contents
1378 are being copied from SRC, the corresponding DST contents are
1379 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1380 lazy, it will be fetched now.
29976f3f
PA
1381
1382 It is assumed the contents of DST in the [DST_OFFSET,
1383 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1384
1385void
6b850546
DT
1386value_contents_copy (struct value *dst, LONGEST dst_offset,
1387 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1388{
39d37385
PA
1389 if (src->lazy)
1390 value_fetch_lazy (src);
1391
1392 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1393}
1394
d69fe07e 1395int
4bf7b526 1396value_lazy (const struct value *value)
d69fe07e
AC
1397{
1398 return value->lazy;
1399}
1400
dfa52d88
AC
1401void
1402set_value_lazy (struct value *value, int val)
1403{
1404 value->lazy = val;
1405}
1406
4e5d721f 1407int
4bf7b526 1408value_stack (const struct value *value)
4e5d721f
DE
1409{
1410 return value->stack;
1411}
1412
1413void
1414set_value_stack (struct value *value, int val)
1415{
1416 value->stack = val;
1417}
1418
fc1a4b47 1419const gdb_byte *
0fd88904
AC
1420value_contents (struct value *value)
1421{
0e03807e
TT
1422 const gdb_byte *result = value_contents_writeable (value);
1423 require_not_optimized_out (value);
4e07d55f 1424 require_available (value);
0e03807e 1425 return result;
0fd88904
AC
1426}
1427
fc1a4b47 1428gdb_byte *
0fd88904
AC
1429value_contents_writeable (struct value *value)
1430{
1431 if (value->lazy)
1432 value_fetch_lazy (value);
fc0c53a0 1433 return value_contents_raw (value);
0fd88904
AC
1434}
1435
feb13ab0
AC
1436int
1437value_optimized_out (struct value *value)
1438{
691a26f5
AB
1439 /* We can only know if a value is optimized out once we have tried to
1440 fetch it. */
9a0dc9e3 1441 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
ecf2e90c
DB
1442 {
1443 TRY
1444 {
1445 value_fetch_lazy (value);
1446 }
1447 CATCH (ex, RETURN_MASK_ERROR)
1448 {
1449 /* Fall back to checking value->optimized_out. */
1450 }
1451 END_CATCH
1452 }
691a26f5 1453
9a0dc9e3 1454 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1455}
1456
9a0dc9e3
PA
1457/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1458 the following LENGTH bytes. */
eca07816 1459
feb13ab0 1460void
9a0dc9e3 1461mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1462{
9a0dc9e3
PA
1463 mark_value_bits_optimized_out (value,
1464 offset * TARGET_CHAR_BIT,
1465 length * TARGET_CHAR_BIT);
feb13ab0 1466}
13c3b5f5 1467
9a0dc9e3 1468/* See value.h. */
0e03807e 1469
9a0dc9e3 1470void
6b850546
DT
1471mark_value_bits_optimized_out (struct value *value,
1472 LONGEST offset, LONGEST length)
0e03807e 1473{
9a0dc9e3 1474 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1475}
1476
8cf6f0b1
TT
1477int
1478value_bits_synthetic_pointer (const struct value *value,
6b850546 1479 LONGEST offset, LONGEST length)
8cf6f0b1 1480{
e7303042 1481 if (value->lval != lval_computed
8cf6f0b1
TT
1482 || !value->location.computed.funcs->check_synthetic_pointer)
1483 return 0;
1484 return value->location.computed.funcs->check_synthetic_pointer (value,
1485 offset,
1486 length);
1487}
1488
6b850546 1489LONGEST
4bf7b526 1490value_embedded_offset (const struct value *value)
13c3b5f5
AC
1491{
1492 return value->embedded_offset;
1493}
1494
1495void
6b850546 1496set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1497{
1498 value->embedded_offset = val;
1499}
b44d461b 1500
6b850546 1501LONGEST
4bf7b526 1502value_pointed_to_offset (const struct value *value)
b44d461b
AC
1503{
1504 return value->pointed_to_offset;
1505}
1506
1507void
6b850546 1508set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1509{
1510 value->pointed_to_offset = val;
1511}
13bb5560 1512
c8f2448a 1513const struct lval_funcs *
a471c594 1514value_computed_funcs (const struct value *v)
5f5233d4 1515{
a471c594 1516 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1517
1518 return v->location.computed.funcs;
1519}
1520
1521void *
0e03807e 1522value_computed_closure (const struct value *v)
5f5233d4 1523{
0e03807e 1524 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1525
1526 return v->location.computed.closure;
1527}
1528
13bb5560
AC
1529enum lval_type *
1530deprecated_value_lval_hack (struct value *value)
1531{
1532 return &value->lval;
1533}
1534
a471c594
JK
1535enum lval_type
1536value_lval_const (const struct value *value)
1537{
1538 return value->lval;
1539}
1540
42ae5230 1541CORE_ADDR
de4127a3 1542value_address (const struct value *value)
42ae5230
TT
1543{
1544 if (value->lval == lval_internalvar
e81e7f5e
SC
1545 || value->lval == lval_internalvar_component
1546 || value->lval == lval_xcallable)
42ae5230 1547 return 0;
53ba8333
JB
1548 if (value->parent != NULL)
1549 return value_address (value->parent) + value->offset;
9920b434
BH
1550 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1551 {
1552 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1553 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1554 }
1555
1556 return value->location.address + value->offset;
42ae5230
TT
1557}
1558
1559CORE_ADDR
4bf7b526 1560value_raw_address (const struct value *value)
42ae5230
TT
1561{
1562 if (value->lval == lval_internalvar
e81e7f5e
SC
1563 || value->lval == lval_internalvar_component
1564 || value->lval == lval_xcallable)
42ae5230
TT
1565 return 0;
1566 return value->location.address;
1567}
1568
1569void
1570set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1571{
42ae5230 1572 gdb_assert (value->lval != lval_internalvar
e81e7f5e
SC
1573 && value->lval != lval_internalvar_component
1574 && value->lval != lval_xcallable);
42ae5230 1575 value->location.address = addr;
13bb5560
AC
1576}
1577
1578struct internalvar **
1579deprecated_value_internalvar_hack (struct value *value)
1580{
1581 return &value->location.internalvar;
1582}
1583
1584struct frame_id *
1585deprecated_value_frame_id_hack (struct value *value)
1586{
1587 return &value->frame_id;
1588}
1589
1590short *
1591deprecated_value_regnum_hack (struct value *value)
1592{
1593 return &value->regnum;
1594}
88e3b34b
AC
1595
1596int
4bf7b526 1597deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1598{
1599 return value->modifiable;
1600}
990a07ab 1601\f
c906108c
SS
1602/* Return a mark in the value chain. All values allocated after the
1603 mark is obtained (except for those released) are subject to being freed
1604 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1605struct value *
fba45db2 1606value_mark (void)
c906108c
SS
1607{
1608 return all_values;
1609}
1610
828d3400
DJ
1611/* Take a reference to VAL. VAL will not be deallocated until all
1612 references are released. */
1613
1614void
1615value_incref (struct value *val)
1616{
1617 val->reference_count++;
1618}
1619
1620/* Release a reference to VAL, which was acquired with value_incref.
1621 This function is also called to deallocate values from the value
1622 chain. */
1623
3e3d7139
JG
1624void
1625value_free (struct value *val)
1626{
1627 if (val)
5f5233d4 1628 {
828d3400
DJ
1629 gdb_assert (val->reference_count > 0);
1630 val->reference_count--;
1631 if (val->reference_count > 0)
1632 return;
1633
4ea48cc1
DJ
1634 /* If there's an associated parent value, drop our reference to
1635 it. */
1636 if (val->parent != NULL)
1637 value_free (val->parent);
1638
5f5233d4
PA
1639 if (VALUE_LVAL (val) == lval_computed)
1640 {
c8f2448a 1641 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1642
1643 if (funcs->free_closure)
1644 funcs->free_closure (val);
1645 }
e81e7f5e
SC
1646 else if (VALUE_LVAL (val) == lval_xcallable)
1647 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1648
1649 xfree (val->contents);
4e07d55f 1650 VEC_free (range_s, val->unavailable);
5f5233d4 1651 }
3e3d7139
JG
1652 xfree (val);
1653}
1654
c906108c
SS
1655/* Free all values allocated since MARK was obtained by value_mark
1656 (except for those released). */
1657void
4bf7b526 1658value_free_to_mark (const struct value *mark)
c906108c 1659{
f23631e4
AC
1660 struct value *val;
1661 struct value *next;
c906108c
SS
1662
1663 for (val = all_values; val && val != mark; val = next)
1664 {
df407dfe 1665 next = val->next;
e848a8a5 1666 val->released = 1;
c906108c
SS
1667 value_free (val);
1668 }
1669 all_values = val;
1670}
1671
1672/* Free all the values that have been allocated (except for those released).
725e88af
DE
1673 Call after each command, successful or not.
1674 In practice this is called before each command, which is sufficient. */
c906108c
SS
1675
1676void
fba45db2 1677free_all_values (void)
c906108c 1678{
f23631e4
AC
1679 struct value *val;
1680 struct value *next;
c906108c
SS
1681
1682 for (val = all_values; val; val = next)
1683 {
df407dfe 1684 next = val->next;
e848a8a5 1685 val->released = 1;
c906108c
SS
1686 value_free (val);
1687 }
1688
1689 all_values = 0;
1690}
1691
0cf6dd15
TJB
1692/* Frees all the elements in a chain of values. */
1693
1694void
1695free_value_chain (struct value *v)
1696{
1697 struct value *next;
1698
1699 for (; v; v = next)
1700 {
1701 next = value_next (v);
1702 value_free (v);
1703 }
1704}
1705
c906108c
SS
1706/* Remove VAL from the chain all_values
1707 so it will not be freed automatically. */
1708
1709void
f23631e4 1710release_value (struct value *val)
c906108c 1711{
f23631e4 1712 struct value *v;
c906108c
SS
1713
1714 if (all_values == val)
1715 {
1716 all_values = val->next;
06a64a0b 1717 val->next = NULL;
e848a8a5 1718 val->released = 1;
c906108c
SS
1719 return;
1720 }
1721
1722 for (v = all_values; v; v = v->next)
1723 {
1724 if (v->next == val)
1725 {
1726 v->next = val->next;
06a64a0b 1727 val->next = NULL;
e848a8a5 1728 val->released = 1;
c906108c
SS
1729 break;
1730 }
1731 }
1732}
1733
e848a8a5
TT
1734/* If the value is not already released, release it.
1735 If the value is already released, increment its reference count.
1736 That is, this function ensures that the value is released from the
1737 value chain and that the caller owns a reference to it. */
1738
1739void
1740release_value_or_incref (struct value *val)
1741{
1742 if (val->released)
1743 value_incref (val);
1744 else
1745 release_value (val);
1746}
1747
c906108c 1748/* Release all values up to mark */
f23631e4 1749struct value *
4bf7b526 1750value_release_to_mark (const struct value *mark)
c906108c 1751{
f23631e4
AC
1752 struct value *val;
1753 struct value *next;
c906108c 1754
df407dfe 1755 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1756 {
1757 if (next->next == mark)
1758 {
1759 all_values = next->next;
1760 next->next = NULL;
1761 return val;
1762 }
1763 next->released = 1;
1764 }
c906108c
SS
1765 all_values = 0;
1766 return val;
1767}
1768
1769/* Return a copy of the value ARG.
1770 It contains the same contents, for same memory address,
1771 but it's a different block of storage. */
1772
f23631e4
AC
1773struct value *
1774value_copy (struct value *arg)
c906108c 1775{
4754a64e 1776 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1777 struct value *val;
1778
1779 if (value_lazy (arg))
1780 val = allocate_value_lazy (encl_type);
1781 else
1782 val = allocate_value (encl_type);
df407dfe 1783 val->type = arg->type;
c906108c 1784 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1785 val->location = arg->location;
df407dfe
AC
1786 val->offset = arg->offset;
1787 val->bitpos = arg->bitpos;
1788 val->bitsize = arg->bitsize;
1df6926e 1789 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1790 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1791 val->lazy = arg->lazy;
13c3b5f5 1792 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1793 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1794 val->modifiable = arg->modifiable;
d69fe07e 1795 if (!value_lazy (val))
c906108c 1796 {
990a07ab 1797 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1798 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1799
1800 }
4e07d55f 1801 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1802 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1803 set_value_parent (val, arg->parent);
5f5233d4
PA
1804 if (VALUE_LVAL (val) == lval_computed)
1805 {
c8f2448a 1806 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1807
1808 if (funcs->copy_closure)
1809 val->location.computed.closure = funcs->copy_closure (val);
1810 }
c906108c
SS
1811 return val;
1812}
74bcbdf3 1813
4c082a81
SC
1814/* Return a "const" and/or "volatile" qualified version of the value V.
1815 If CNST is true, then the returned value will be qualified with
1816 "const".
1817 if VOLTL is true, then the returned value will be qualified with
1818 "volatile". */
1819
1820struct value *
1821make_cv_value (int cnst, int voltl, struct value *v)
1822{
1823 struct type *val_type = value_type (v);
1824 struct type *enclosing_type = value_enclosing_type (v);
1825 struct value *cv_val = value_copy (v);
1826
1827 deprecated_set_value_type (cv_val,
1828 make_cv_type (cnst, voltl, val_type, NULL));
1829 set_value_enclosing_type (cv_val,
1830 make_cv_type (cnst, voltl, enclosing_type, NULL));
1831
1832 return cv_val;
1833}
1834
c37f7098
KW
1835/* Return a version of ARG that is non-lvalue. */
1836
1837struct value *
1838value_non_lval (struct value *arg)
1839{
1840 if (VALUE_LVAL (arg) != not_lval)
1841 {
1842 struct type *enc_type = value_enclosing_type (arg);
1843 struct value *val = allocate_value (enc_type);
1844
1845 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1846 TYPE_LENGTH (enc_type));
1847 val->type = arg->type;
1848 set_value_embedded_offset (val, value_embedded_offset (arg));
1849 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1850 return val;
1851 }
1852 return arg;
1853}
1854
6c659fc2
SC
1855/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1856
1857void
1858value_force_lval (struct value *v, CORE_ADDR addr)
1859{
1860 gdb_assert (VALUE_LVAL (v) == not_lval);
1861
1862 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1863 v->lval = lval_memory;
1864 v->location.address = addr;
1865}
1866
74bcbdf3 1867void
0e03807e
TT
1868set_value_component_location (struct value *component,
1869 const struct value *whole)
74bcbdf3 1870{
9920b434
BH
1871 struct type *type;
1872
e81e7f5e
SC
1873 gdb_assert (whole->lval != lval_xcallable);
1874
0e03807e 1875 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1876 VALUE_LVAL (component) = lval_internalvar_component;
1877 else
0e03807e 1878 VALUE_LVAL (component) = whole->lval;
5f5233d4 1879
74bcbdf3 1880 component->location = whole->location;
0e03807e 1881 if (whole->lval == lval_computed)
5f5233d4 1882 {
c8f2448a 1883 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1884
1885 if (funcs->copy_closure)
1886 component->location.computed.closure = funcs->copy_closure (whole);
1887 }
9920b434
BH
1888
1889 /* If type has a dynamic resolved location property
1890 update it's value address. */
1891 type = value_type (whole);
1892 if (NULL != TYPE_DATA_LOCATION (type)
1893 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1894 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1895}
1896
c906108c
SS
1897/* Access to the value history. */
1898
1899/* Record a new value in the value history.
eddf0bae 1900 Returns the absolute history index of the entry. */
c906108c
SS
1901
1902int
f23631e4 1903record_latest_value (struct value *val)
c906108c
SS
1904{
1905 int i;
1906
1907 /* We don't want this value to have anything to do with the inferior anymore.
1908 In particular, "set $1 = 50" should not affect the variable from which
1909 the value was taken, and fast watchpoints should be able to assume that
1910 a value on the value history never changes. */
d69fe07e 1911 if (value_lazy (val))
c906108c
SS
1912 value_fetch_lazy (val);
1913 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1914 from. This is a bit dubious, because then *&$1 does not just return $1
1915 but the current contents of that location. c'est la vie... */
1916 val->modifiable = 0;
350e1a76
DE
1917
1918 /* The value may have already been released, in which case we're adding a
1919 new reference for its entry in the history. That is why we call
1920 release_value_or_incref here instead of release_value. */
1921 release_value_or_incref (val);
c906108c
SS
1922
1923 /* Here we treat value_history_count as origin-zero
1924 and applying to the value being stored now. */
1925
1926 i = value_history_count % VALUE_HISTORY_CHUNK;
1927 if (i == 0)
1928 {
8d749320 1929 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
a109c7c1 1930
fe978cb0
PA
1931 newobj->next = value_history_chain;
1932 value_history_chain = newobj;
c906108c
SS
1933 }
1934
1935 value_history_chain->values[i] = val;
1936
1937 /* Now we regard value_history_count as origin-one
1938 and applying to the value just stored. */
1939
1940 return ++value_history_count;
1941}
1942
1943/* Return a copy of the value in the history with sequence number NUM. */
1944
f23631e4 1945struct value *
fba45db2 1946access_value_history (int num)
c906108c 1947{
f23631e4 1948 struct value_history_chunk *chunk;
52f0bd74
AC
1949 int i;
1950 int absnum = num;
c906108c
SS
1951
1952 if (absnum <= 0)
1953 absnum += value_history_count;
1954
1955 if (absnum <= 0)
1956 {
1957 if (num == 0)
8a3fe4f8 1958 error (_("The history is empty."));
c906108c 1959 else if (num == 1)
8a3fe4f8 1960 error (_("There is only one value in the history."));
c906108c 1961 else
8a3fe4f8 1962 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1963 }
1964 if (absnum > value_history_count)
8a3fe4f8 1965 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1966
1967 absnum--;
1968
1969 /* Now absnum is always absolute and origin zero. */
1970
1971 chunk = value_history_chain;
3e43a32a
MS
1972 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1973 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1974 i > 0; i--)
1975 chunk = chunk->next;
1976
1977 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1978}
1979
c906108c 1980static void
fba45db2 1981show_values (char *num_exp, int from_tty)
c906108c 1982{
52f0bd74 1983 int i;
f23631e4 1984 struct value *val;
c906108c
SS
1985 static int num = 1;
1986
1987 if (num_exp)
1988 {
f132ba9d
TJB
1989 /* "show values +" should print from the stored position.
1990 "show values <exp>" should print around value number <exp>. */
c906108c 1991 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1992 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1993 }
1994 else
1995 {
f132ba9d 1996 /* "show values" means print the last 10 values. */
c906108c
SS
1997 num = value_history_count - 9;
1998 }
1999
2000 if (num <= 0)
2001 num = 1;
2002
2003 for (i = num; i < num + 10 && i <= value_history_count; i++)
2004 {
79a45b7d 2005 struct value_print_options opts;
a109c7c1 2006
c906108c 2007 val = access_value_history (i);
a3f17187 2008 printf_filtered (("$%d = "), i);
79a45b7d
TT
2009 get_user_print_options (&opts);
2010 value_print (val, gdb_stdout, &opts);
a3f17187 2011 printf_filtered (("\n"));
c906108c
SS
2012 }
2013
f132ba9d 2014 /* The next "show values +" should start after what we just printed. */
c906108c
SS
2015 num += 10;
2016
2017 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
2018 "show values +". If num_exp is null, this is unnecessary, since
2019 "show values +" is not useful after "show values". */
c906108c
SS
2020 if (from_tty && num_exp)
2021 {
2022 num_exp[0] = '+';
2023 num_exp[1] = '\0';
2024 }
2025}
2026\f
52059ffd
TT
2027enum internalvar_kind
2028{
2029 /* The internal variable is empty. */
2030 INTERNALVAR_VOID,
2031
2032 /* The value of the internal variable is provided directly as
2033 a GDB value object. */
2034 INTERNALVAR_VALUE,
2035
2036 /* A fresh value is computed via a call-back routine on every
2037 access to the internal variable. */
2038 INTERNALVAR_MAKE_VALUE,
2039
2040 /* The internal variable holds a GDB internal convenience function. */
2041 INTERNALVAR_FUNCTION,
2042
2043 /* The variable holds an integer value. */
2044 INTERNALVAR_INTEGER,
2045
2046 /* The variable holds a GDB-provided string. */
2047 INTERNALVAR_STRING,
2048};
2049
2050union internalvar_data
2051{
2052 /* A value object used with INTERNALVAR_VALUE. */
2053 struct value *value;
2054
2055 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2056 struct
2057 {
2058 /* The functions to call. */
2059 const struct internalvar_funcs *functions;
2060
2061 /* The function's user-data. */
2062 void *data;
2063 } make_value;
2064
2065 /* The internal function used with INTERNALVAR_FUNCTION. */
2066 struct
2067 {
2068 struct internal_function *function;
2069 /* True if this is the canonical name for the function. */
2070 int canonical;
2071 } fn;
2072
2073 /* An integer value used with INTERNALVAR_INTEGER. */
2074 struct
2075 {
2076 /* If type is non-NULL, it will be used as the type to generate
2077 a value for this internal variable. If type is NULL, a default
2078 integer type for the architecture is used. */
2079 struct type *type;
2080 LONGEST val;
2081 } integer;
2082
2083 /* A string value used with INTERNALVAR_STRING. */
2084 char *string;
2085};
2086
c906108c
SS
2087/* Internal variables. These are variables within the debugger
2088 that hold values assigned by debugger commands.
2089 The user refers to them with a '$' prefix
2090 that does not appear in the variable names stored internally. */
2091
4fa62494
UW
2092struct internalvar
2093{
2094 struct internalvar *next;
2095 char *name;
4fa62494 2096
78267919
UW
2097 /* We support various different kinds of content of an internal variable.
2098 enum internalvar_kind specifies the kind, and union internalvar_data
2099 provides the data associated with this particular kind. */
2100
52059ffd 2101 enum internalvar_kind kind;
4fa62494 2102
52059ffd 2103 union internalvar_data u;
4fa62494
UW
2104};
2105
c906108c
SS
2106static struct internalvar *internalvars;
2107
3e43a32a
MS
2108/* If the variable does not already exist create it and give it the
2109 value given. If no value is given then the default is zero. */
53e5f3cf
AS
2110static void
2111init_if_undefined_command (char* args, int from_tty)
2112{
2113 struct internalvar* intvar;
2114
2115 /* Parse the expression - this is taken from set_command(). */
4d01a485 2116 expression_up expr = parse_expression (args);
53e5f3cf
AS
2117
2118 /* Validate the expression.
2119 Was the expression an assignment?
2120 Or even an expression at all? */
2121 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2122 error (_("Init-if-undefined requires an assignment expression."));
2123
2124 /* Extract the variable from the parsed expression.
2125 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2126 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2127 error (_("The first parameter to init-if-undefined "
2128 "should be a GDB variable."));
53e5f3cf
AS
2129 intvar = expr->elts[2].internalvar;
2130
2131 /* Only evaluate the expression if the lvalue is void.
2132 This may still fail if the expresssion is invalid. */
78267919 2133 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 2134 evaluate_expression (expr.get ());
53e5f3cf
AS
2135}
2136
2137
c906108c
SS
2138/* Look up an internal variable with name NAME. NAME should not
2139 normally include a dollar sign.
2140
2141 If the specified internal variable does not exist,
c4a3d09a 2142 the return value is NULL. */
c906108c
SS
2143
2144struct internalvar *
bc3b79fd 2145lookup_only_internalvar (const char *name)
c906108c 2146{
52f0bd74 2147 struct internalvar *var;
c906108c
SS
2148
2149 for (var = internalvars; var; var = var->next)
5cb316ef 2150 if (strcmp (var->name, name) == 0)
c906108c
SS
2151 return var;
2152
c4a3d09a
MF
2153 return NULL;
2154}
2155
d55637df
TT
2156/* Complete NAME by comparing it to the names of internal variables.
2157 Returns a vector of newly allocated strings, or NULL if no matches
2158 were found. */
2159
2160VEC (char_ptr) *
2161complete_internalvar (const char *name)
2162{
2163 VEC (char_ptr) *result = NULL;
2164 struct internalvar *var;
2165 int len;
2166
2167 len = strlen (name);
2168
2169 for (var = internalvars; var; var = var->next)
2170 if (strncmp (var->name, name, len) == 0)
2171 {
2172 char *r = xstrdup (var->name);
2173
2174 VEC_safe_push (char_ptr, result, r);
2175 }
2176
2177 return result;
2178}
c4a3d09a
MF
2179
2180/* Create an internal variable with name NAME and with a void value.
2181 NAME should not normally include a dollar sign. */
2182
2183struct internalvar *
bc3b79fd 2184create_internalvar (const char *name)
c4a3d09a 2185{
8d749320 2186 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2187
1754f103 2188 var->name = concat (name, (char *)NULL);
78267919 2189 var->kind = INTERNALVAR_VOID;
c906108c
SS
2190 var->next = internalvars;
2191 internalvars = var;
2192 return var;
2193}
2194
4aa995e1
PA
2195/* Create an internal variable with name NAME and register FUN as the
2196 function that value_of_internalvar uses to create a value whenever
2197 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2198 dollar sign. DATA is passed uninterpreted to FUN when it is
2199 called. CLEANUP, if not NULL, is called when the internal variable
2200 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2201
2202struct internalvar *
22d2b532
SDJ
2203create_internalvar_type_lazy (const char *name,
2204 const struct internalvar_funcs *funcs,
2205 void *data)
4aa995e1 2206{
4fa62494 2207 struct internalvar *var = create_internalvar (name);
a109c7c1 2208
78267919 2209 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2210 var->u.make_value.functions = funcs;
2211 var->u.make_value.data = data;
4aa995e1
PA
2212 return var;
2213}
c4a3d09a 2214
22d2b532
SDJ
2215/* See documentation in value.h. */
2216
2217int
2218compile_internalvar_to_ax (struct internalvar *var,
2219 struct agent_expr *expr,
2220 struct axs_value *value)
2221{
2222 if (var->kind != INTERNALVAR_MAKE_VALUE
2223 || var->u.make_value.functions->compile_to_ax == NULL)
2224 return 0;
2225
2226 var->u.make_value.functions->compile_to_ax (var, expr, value,
2227 var->u.make_value.data);
2228 return 1;
2229}
2230
c4a3d09a
MF
2231/* Look up an internal variable with name NAME. NAME should not
2232 normally include a dollar sign.
2233
2234 If the specified internal variable does not exist,
2235 one is created, with a void value. */
2236
2237struct internalvar *
bc3b79fd 2238lookup_internalvar (const char *name)
c4a3d09a
MF
2239{
2240 struct internalvar *var;
2241
2242 var = lookup_only_internalvar (name);
2243 if (var)
2244 return var;
2245
2246 return create_internalvar (name);
2247}
2248
78267919
UW
2249/* Return current value of internal variable VAR. For variables that
2250 are not inherently typed, use a value type appropriate for GDBARCH. */
2251
f23631e4 2252struct value *
78267919 2253value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2254{
f23631e4 2255 struct value *val;
0914bcdb
SS
2256 struct trace_state_variable *tsv;
2257
2258 /* If there is a trace state variable of the same name, assume that
2259 is what we really want to see. */
2260 tsv = find_trace_state_variable (var->name);
2261 if (tsv)
2262 {
2263 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2264 &(tsv->value));
2265 if (tsv->value_known)
2266 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2267 tsv->value);
2268 else
2269 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2270 return val;
2271 }
c906108c 2272
78267919 2273 switch (var->kind)
5f5233d4 2274 {
78267919
UW
2275 case INTERNALVAR_VOID:
2276 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2277 break;
4fa62494 2278
78267919
UW
2279 case INTERNALVAR_FUNCTION:
2280 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2281 break;
4fa62494 2282
cab0c772
UW
2283 case INTERNALVAR_INTEGER:
2284 if (!var->u.integer.type)
78267919 2285 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2286 var->u.integer.val);
78267919 2287 else
cab0c772
UW
2288 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2289 break;
2290
78267919
UW
2291 case INTERNALVAR_STRING:
2292 val = value_cstring (var->u.string, strlen (var->u.string),
2293 builtin_type (gdbarch)->builtin_char);
2294 break;
4fa62494 2295
78267919
UW
2296 case INTERNALVAR_VALUE:
2297 val = value_copy (var->u.value);
4aa995e1
PA
2298 if (value_lazy (val))
2299 value_fetch_lazy (val);
78267919 2300 break;
4aa995e1 2301
78267919 2302 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2303 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2304 var->u.make_value.data);
78267919
UW
2305 break;
2306
2307 default:
9b20d036 2308 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2309 }
2310
2311 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2312 on this value go back to affect the original internal variable.
2313
2314 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2315 no underlying modifyable state in the internal variable.
2316
2317 Likewise, if the variable's value is a computed lvalue, we want
2318 references to it to produce another computed lvalue, where
2319 references and assignments actually operate through the
2320 computed value's functions.
2321
2322 This means that internal variables with computed values
2323 behave a little differently from other internal variables:
2324 assignments to them don't just replace the previous value
2325 altogether. At the moment, this seems like the behavior we
2326 want. */
2327
2328 if (var->kind != INTERNALVAR_MAKE_VALUE
2329 && val->lval != lval_computed)
2330 {
2331 VALUE_LVAL (val) = lval_internalvar;
2332 VALUE_INTERNALVAR (val) = var;
5f5233d4 2333 }
d3c139e9 2334
4fa62494
UW
2335 return val;
2336}
d3c139e9 2337
4fa62494
UW
2338int
2339get_internalvar_integer (struct internalvar *var, LONGEST *result)
2340{
3158c6ed 2341 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2342 {
cab0c772
UW
2343 *result = var->u.integer.val;
2344 return 1;
3158c6ed 2345 }
d3c139e9 2346
3158c6ed
PA
2347 if (var->kind == INTERNALVAR_VALUE)
2348 {
2349 struct type *type = check_typedef (value_type (var->u.value));
2350
2351 if (TYPE_CODE (type) == TYPE_CODE_INT)
2352 {
2353 *result = value_as_long (var->u.value);
2354 return 1;
2355 }
4fa62494 2356 }
3158c6ed
PA
2357
2358 return 0;
4fa62494 2359}
d3c139e9 2360
4fa62494
UW
2361static int
2362get_internalvar_function (struct internalvar *var,
2363 struct internal_function **result)
2364{
78267919 2365 switch (var->kind)
d3c139e9 2366 {
78267919
UW
2367 case INTERNALVAR_FUNCTION:
2368 *result = var->u.fn.function;
4fa62494 2369 return 1;
d3c139e9 2370
4fa62494
UW
2371 default:
2372 return 0;
2373 }
c906108c
SS
2374}
2375
2376void
6b850546
DT
2377set_internalvar_component (struct internalvar *var,
2378 LONGEST offset, LONGEST bitpos,
2379 LONGEST bitsize, struct value *newval)
c906108c 2380{
4fa62494 2381 gdb_byte *addr;
3ae385af
SM
2382 struct gdbarch *arch;
2383 int unit_size;
c906108c 2384
78267919 2385 switch (var->kind)
4fa62494 2386 {
78267919
UW
2387 case INTERNALVAR_VALUE:
2388 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2389 arch = get_value_arch (var->u.value);
2390 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2391
2392 if (bitsize)
50810684 2393 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2394 value_as_long (newval), bitpos, bitsize);
2395 else
3ae385af 2396 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2397 TYPE_LENGTH (value_type (newval)));
2398 break;
78267919
UW
2399
2400 default:
2401 /* We can never get a component of any other kind. */
9b20d036 2402 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2403 }
c906108c
SS
2404}
2405
2406void
f23631e4 2407set_internalvar (struct internalvar *var, struct value *val)
c906108c 2408{
78267919 2409 enum internalvar_kind new_kind;
4fa62494 2410 union internalvar_data new_data = { 0 };
c906108c 2411
78267919 2412 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2413 error (_("Cannot overwrite convenience function %s"), var->name);
2414
4fa62494 2415 /* Prepare new contents. */
78267919 2416 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2417 {
2418 case TYPE_CODE_VOID:
78267919 2419 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2420 break;
2421
2422 case TYPE_CODE_INTERNAL_FUNCTION:
2423 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2424 new_kind = INTERNALVAR_FUNCTION;
2425 get_internalvar_function (VALUE_INTERNALVAR (val),
2426 &new_data.fn.function);
2427 /* Copies created here are never canonical. */
4fa62494
UW
2428 break;
2429
4fa62494 2430 default:
78267919
UW
2431 new_kind = INTERNALVAR_VALUE;
2432 new_data.value = value_copy (val);
2433 new_data.value->modifiable = 1;
4fa62494
UW
2434
2435 /* Force the value to be fetched from the target now, to avoid problems
2436 later when this internalvar is referenced and the target is gone or
2437 has changed. */
78267919
UW
2438 if (value_lazy (new_data.value))
2439 value_fetch_lazy (new_data.value);
4fa62494
UW
2440
2441 /* Release the value from the value chain to prevent it from being
2442 deleted by free_all_values. From here on this function should not
2443 call error () until new_data is installed into the var->u to avoid
2444 leaking memory. */
78267919 2445 release_value (new_data.value);
9920b434
BH
2446
2447 /* Internal variables which are created from values with a dynamic
2448 location don't need the location property of the origin anymore.
2449 The resolved dynamic location is used prior then any other address
2450 when accessing the value.
2451 If we keep it, we would still refer to the origin value.
2452 Remove the location property in case it exist. */
2453 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2454
4fa62494
UW
2455 break;
2456 }
2457
2458 /* Clean up old contents. */
2459 clear_internalvar (var);
2460
2461 /* Switch over. */
78267919 2462 var->kind = new_kind;
4fa62494 2463 var->u = new_data;
c906108c
SS
2464 /* End code which must not call error(). */
2465}
2466
4fa62494
UW
2467void
2468set_internalvar_integer (struct internalvar *var, LONGEST l)
2469{
2470 /* Clean up old contents. */
2471 clear_internalvar (var);
2472
cab0c772
UW
2473 var->kind = INTERNALVAR_INTEGER;
2474 var->u.integer.type = NULL;
2475 var->u.integer.val = l;
78267919
UW
2476}
2477
2478void
2479set_internalvar_string (struct internalvar *var, const char *string)
2480{
2481 /* Clean up old contents. */
2482 clear_internalvar (var);
2483
2484 var->kind = INTERNALVAR_STRING;
2485 var->u.string = xstrdup (string);
4fa62494
UW
2486}
2487
2488static void
2489set_internalvar_function (struct internalvar *var, struct internal_function *f)
2490{
2491 /* Clean up old contents. */
2492 clear_internalvar (var);
2493
78267919
UW
2494 var->kind = INTERNALVAR_FUNCTION;
2495 var->u.fn.function = f;
2496 var->u.fn.canonical = 1;
2497 /* Variables installed here are always the canonical version. */
4fa62494
UW
2498}
2499
2500void
2501clear_internalvar (struct internalvar *var)
2502{
2503 /* Clean up old contents. */
78267919 2504 switch (var->kind)
4fa62494 2505 {
78267919
UW
2506 case INTERNALVAR_VALUE:
2507 value_free (var->u.value);
2508 break;
2509
2510 case INTERNALVAR_STRING:
2511 xfree (var->u.string);
4fa62494
UW
2512 break;
2513
22d2b532
SDJ
2514 case INTERNALVAR_MAKE_VALUE:
2515 if (var->u.make_value.functions->destroy != NULL)
2516 var->u.make_value.functions->destroy (var->u.make_value.data);
2517 break;
2518
4fa62494 2519 default:
4fa62494
UW
2520 break;
2521 }
2522
78267919
UW
2523 /* Reset to void kind. */
2524 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2525}
2526
c906108c 2527char *
4bf7b526 2528internalvar_name (const struct internalvar *var)
c906108c
SS
2529{
2530 return var->name;
2531}
2532
4fa62494
UW
2533static struct internal_function *
2534create_internal_function (const char *name,
2535 internal_function_fn handler, void *cookie)
bc3b79fd 2536{
bc3b79fd 2537 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2538
bc3b79fd
TJB
2539 ifn->name = xstrdup (name);
2540 ifn->handler = handler;
2541 ifn->cookie = cookie;
4fa62494 2542 return ifn;
bc3b79fd
TJB
2543}
2544
2545char *
2546value_internal_function_name (struct value *val)
2547{
4fa62494
UW
2548 struct internal_function *ifn;
2549 int result;
2550
2551 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2552 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2553 gdb_assert (result);
2554
bc3b79fd
TJB
2555 return ifn->name;
2556}
2557
2558struct value *
d452c4bc
UW
2559call_internal_function (struct gdbarch *gdbarch,
2560 const struct language_defn *language,
2561 struct value *func, int argc, struct value **argv)
bc3b79fd 2562{
4fa62494
UW
2563 struct internal_function *ifn;
2564 int result;
2565
2566 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2567 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2568 gdb_assert (result);
2569
d452c4bc 2570 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2571}
2572
2573/* The 'function' command. This does nothing -- it is just a
2574 placeholder to let "help function NAME" work. This is also used as
2575 the implementation of the sub-command that is created when
2576 registering an internal function. */
2577static void
2578function_command (char *command, int from_tty)
2579{
2580 /* Do nothing. */
2581}
2582
2583/* Clean up if an internal function's command is destroyed. */
2584static void
2585function_destroyer (struct cmd_list_element *self, void *ignore)
2586{
6f937416 2587 xfree ((char *) self->name);
1947513d 2588 xfree ((char *) self->doc);
bc3b79fd
TJB
2589}
2590
2591/* Add a new internal function. NAME is the name of the function; DOC
2592 is a documentation string describing the function. HANDLER is
2593 called when the function is invoked. COOKIE is an arbitrary
2594 pointer which is passed to HANDLER and is intended for "user
2595 data". */
2596void
2597add_internal_function (const char *name, const char *doc,
2598 internal_function_fn handler, void *cookie)
2599{
2600 struct cmd_list_element *cmd;
4fa62494 2601 struct internal_function *ifn;
bc3b79fd 2602 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2603
2604 ifn = create_internal_function (name, handler, cookie);
2605 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2606
2607 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2608 &functionlist);
2609 cmd->destroyer = function_destroyer;
2610}
2611
ae5a43e0
DJ
2612/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2613 prevent cycles / duplicates. */
2614
4e7a5ef5 2615void
ae5a43e0
DJ
2616preserve_one_value (struct value *value, struct objfile *objfile,
2617 htab_t copied_types)
2618{
2619 if (TYPE_OBJFILE (value->type) == objfile)
2620 value->type = copy_type_recursive (objfile, value->type, copied_types);
2621
2622 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2623 value->enclosing_type = copy_type_recursive (objfile,
2624 value->enclosing_type,
2625 copied_types);
2626}
2627
78267919
UW
2628/* Likewise for internal variable VAR. */
2629
2630static void
2631preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2632 htab_t copied_types)
2633{
2634 switch (var->kind)
2635 {
cab0c772
UW
2636 case INTERNALVAR_INTEGER:
2637 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2638 var->u.integer.type
2639 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2640 break;
2641
78267919
UW
2642 case INTERNALVAR_VALUE:
2643 preserve_one_value (var->u.value, objfile, copied_types);
2644 break;
2645 }
2646}
2647
ae5a43e0
DJ
2648/* Update the internal variables and value history when OBJFILE is
2649 discarded; we must copy the types out of the objfile. New global types
2650 will be created for every convenience variable which currently points to
2651 this objfile's types, and the convenience variables will be adjusted to
2652 use the new global types. */
c906108c
SS
2653
2654void
ae5a43e0 2655preserve_values (struct objfile *objfile)
c906108c 2656{
ae5a43e0
DJ
2657 htab_t copied_types;
2658 struct value_history_chunk *cur;
52f0bd74 2659 struct internalvar *var;
ae5a43e0 2660 int i;
c906108c 2661
ae5a43e0
DJ
2662 /* Create the hash table. We allocate on the objfile's obstack, since
2663 it is soon to be deleted. */
2664 copied_types = create_copied_types_hash (objfile);
2665
2666 for (cur = value_history_chain; cur; cur = cur->next)
2667 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2668 if (cur->values[i])
2669 preserve_one_value (cur->values[i], objfile, copied_types);
2670
2671 for (var = internalvars; var; var = var->next)
78267919 2672 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2673
6dddc817 2674 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2675
ae5a43e0 2676 htab_delete (copied_types);
c906108c
SS
2677}
2678
2679static void
fba45db2 2680show_convenience (char *ignore, int from_tty)
c906108c 2681{
e17c207e 2682 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2683 struct internalvar *var;
c906108c 2684 int varseen = 0;
79a45b7d 2685 struct value_print_options opts;
c906108c 2686
79a45b7d 2687 get_user_print_options (&opts);
c906108c
SS
2688 for (var = internalvars; var; var = var->next)
2689 {
c709acd1 2690
c906108c
SS
2691 if (!varseen)
2692 {
2693 varseen = 1;
2694 }
a3f17187 2695 printf_filtered (("$%s = "), var->name);
c709acd1 2696
492d29ea 2697 TRY
c709acd1
PA
2698 {
2699 struct value *val;
2700
2701 val = value_of_internalvar (gdbarch, var);
2702 value_print (val, gdb_stdout, &opts);
2703 }
492d29ea
PA
2704 CATCH (ex, RETURN_MASK_ERROR)
2705 {
2706 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2707 }
2708 END_CATCH
2709
a3f17187 2710 printf_filtered (("\n"));
c906108c
SS
2711 }
2712 if (!varseen)
f47f77df
DE
2713 {
2714 /* This text does not mention convenience functions on purpose.
2715 The user can't create them except via Python, and if Python support
2716 is installed this message will never be printed ($_streq will
2717 exist). */
2718 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2719 "Convenience variables have "
2720 "names starting with \"$\";\n"
2721 "use \"set\" as in \"set "
2722 "$foo = 5\" to define them.\n"));
2723 }
c906108c
SS
2724}
2725\f
e81e7f5e
SC
2726/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2727
2728struct value *
2729value_of_xmethod (struct xmethod_worker *worker)
2730{
2731 if (worker->value == NULL)
2732 {
2733 struct value *v;
2734
2735 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2736 v->lval = lval_xcallable;
2737 v->location.xm_worker = worker;
2738 v->modifiable = 0;
2739 worker->value = v;
2740 }
2741
2742 return worker->value;
2743}
2744
2ce1cdbf
DE
2745/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2746
2747struct type *
2748result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2749{
2750 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2751 && method->lval == lval_xcallable && argc > 0);
2752
2753 return get_xmethod_result_type (method->location.xm_worker,
2754 argv[0], argv + 1, argc - 1);
2755}
2756
e81e7f5e
SC
2757/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2758
2759struct value *
2760call_xmethod (struct value *method, int argc, struct value **argv)
2761{
2762 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2763 && method->lval == lval_xcallable && argc > 0);
2764
2765 return invoke_xmethod (method->location.xm_worker,
2766 argv[0], argv + 1, argc - 1);
2767}
2768\f
c906108c
SS
2769/* Extract a value as a C number (either long or double).
2770 Knows how to convert fixed values to double, or
2771 floating values to long.
2772 Does not deallocate the value. */
2773
2774LONGEST
f23631e4 2775value_as_long (struct value *val)
c906108c
SS
2776{
2777 /* This coerces arrays and functions, which is necessary (e.g.
2778 in disassemble_command). It also dereferences references, which
2779 I suspect is the most logical thing to do. */
994b9211 2780 val = coerce_array (val);
0fd88904 2781 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2782}
2783
2784DOUBLEST
f23631e4 2785value_as_double (struct value *val)
c906108c
SS
2786{
2787 DOUBLEST foo;
2788 int inv;
c5aa993b 2789
0fd88904 2790 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2791 if (inv)
8a3fe4f8 2792 error (_("Invalid floating value found in program."));
c906108c
SS
2793 return foo;
2794}
4ef30785 2795
581e13c1 2796/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2797 Note that val's type may not actually be a pointer; value_as_long
2798 handles all the cases. */
c906108c 2799CORE_ADDR
f23631e4 2800value_as_address (struct value *val)
c906108c 2801{
50810684
UW
2802 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2803
c906108c
SS
2804 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2805 whether we want this to be true eventually. */
2806#if 0
bf6ae464 2807 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2808 non-address (e.g. argument to "signal", "info break", etc.), or
2809 for pointers to char, in which the low bits *are* significant. */
50810684 2810 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2811#else
f312f057
JB
2812
2813 /* There are several targets (IA-64, PowerPC, and others) which
2814 don't represent pointers to functions as simply the address of
2815 the function's entry point. For example, on the IA-64, a
2816 function pointer points to a two-word descriptor, generated by
2817 the linker, which contains the function's entry point, and the
2818 value the IA-64 "global pointer" register should have --- to
2819 support position-independent code. The linker generates
2820 descriptors only for those functions whose addresses are taken.
2821
2822 On such targets, it's difficult for GDB to convert an arbitrary
2823 function address into a function pointer; it has to either find
2824 an existing descriptor for that function, or call malloc and
2825 build its own. On some targets, it is impossible for GDB to
2826 build a descriptor at all: the descriptor must contain a jump
2827 instruction; data memory cannot be executed; and code memory
2828 cannot be modified.
2829
2830 Upon entry to this function, if VAL is a value of type `function'
2831 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2832 value_address (val) is the address of the function. This is what
f312f057
JB
2833 you'll get if you evaluate an expression like `main'. The call
2834 to COERCE_ARRAY below actually does all the usual unary
2835 conversions, which includes converting values of type `function'
2836 to `pointer to function'. This is the challenging conversion
2837 discussed above. Then, `unpack_long' will convert that pointer
2838 back into an address.
2839
2840 So, suppose the user types `disassemble foo' on an architecture
2841 with a strange function pointer representation, on which GDB
2842 cannot build its own descriptors, and suppose further that `foo'
2843 has no linker-built descriptor. The address->pointer conversion
2844 will signal an error and prevent the command from running, even
2845 though the next step would have been to convert the pointer
2846 directly back into the same address.
2847
2848 The following shortcut avoids this whole mess. If VAL is a
2849 function, just return its address directly. */
df407dfe
AC
2850 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2851 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2852 return value_address (val);
f312f057 2853
994b9211 2854 val = coerce_array (val);
fc0c74b1
AC
2855
2856 /* Some architectures (e.g. Harvard), map instruction and data
2857 addresses onto a single large unified address space. For
2858 instance: An architecture may consider a large integer in the
2859 range 0x10000000 .. 0x1000ffff to already represent a data
2860 addresses (hence not need a pointer to address conversion) while
2861 a small integer would still need to be converted integer to
2862 pointer to address. Just assume such architectures handle all
2863 integer conversions in a single function. */
2864
2865 /* JimB writes:
2866
2867 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2868 must admonish GDB hackers to make sure its behavior matches the
2869 compiler's, whenever possible.
2870
2871 In general, I think GDB should evaluate expressions the same way
2872 the compiler does. When the user copies an expression out of
2873 their source code and hands it to a `print' command, they should
2874 get the same value the compiler would have computed. Any
2875 deviation from this rule can cause major confusion and annoyance,
2876 and needs to be justified carefully. In other words, GDB doesn't
2877 really have the freedom to do these conversions in clever and
2878 useful ways.
2879
2880 AndrewC pointed out that users aren't complaining about how GDB
2881 casts integers to pointers; they are complaining that they can't
2882 take an address from a disassembly listing and give it to `x/i'.
2883 This is certainly important.
2884
79dd2d24 2885 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2886 makes it possible for GDB to "get it right" in all circumstances
2887 --- the target has complete control over how things get done, so
2888 people can Do The Right Thing for their target without breaking
2889 anyone else. The standard doesn't specify how integers get
2890 converted to pointers; usually, the ABI doesn't either, but
2891 ABI-specific code is a more reasonable place to handle it. */
2892
df407dfe
AC
2893 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2894 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2895 && gdbarch_integer_to_address_p (gdbarch))
2896 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2897 value_contents (val));
fc0c74b1 2898
0fd88904 2899 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2900#endif
2901}
2902\f
2903/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2904 as a long, or as a double, assuming the raw data is described
2905 by type TYPE. Knows how to convert different sizes of values
2906 and can convert between fixed and floating point. We don't assume
2907 any alignment for the raw data. Return value is in host byte order.
2908
2909 If you want functions and arrays to be coerced to pointers, and
2910 references to be dereferenced, call value_as_long() instead.
2911
2912 C++: It is assumed that the front-end has taken care of
2913 all matters concerning pointers to members. A pointer
2914 to member which reaches here is considered to be equivalent
2915 to an INT (or some size). After all, it is only an offset. */
2916
2917LONGEST
fc1a4b47 2918unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2919{
e17a4113 2920 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2921 enum type_code code = TYPE_CODE (type);
2922 int len = TYPE_LENGTH (type);
2923 int nosign = TYPE_UNSIGNED (type);
c906108c 2924
c906108c
SS
2925 switch (code)
2926 {
2927 case TYPE_CODE_TYPEDEF:
2928 return unpack_long (check_typedef (type), valaddr);
2929 case TYPE_CODE_ENUM:
4f2aea11 2930 case TYPE_CODE_FLAGS:
c906108c
SS
2931 case TYPE_CODE_BOOL:
2932 case TYPE_CODE_INT:
2933 case TYPE_CODE_CHAR:
2934 case TYPE_CODE_RANGE:
0d5de010 2935 case TYPE_CODE_MEMBERPTR:
c906108c 2936 if (nosign)
e17a4113 2937 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2938 else
e17a4113 2939 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2940
2941 case TYPE_CODE_FLT:
aebf07fc 2942 return (LONGEST) extract_typed_floating (valaddr, type);
c906108c 2943
4ef30785
TJB
2944 case TYPE_CODE_DECFLOAT:
2945 /* libdecnumber has a function to convert from decimal to integer, but
2946 it doesn't work when the decimal number has a fractional part. */
aebf07fc 2947 return (LONGEST) decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2948
c906108c
SS
2949 case TYPE_CODE_PTR:
2950 case TYPE_CODE_REF:
2951 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2952 whether we want this to be true eventually. */
4478b372 2953 return extract_typed_address (valaddr, type);
c906108c 2954
c906108c 2955 default:
8a3fe4f8 2956 error (_("Value can't be converted to integer."));
c906108c 2957 }
c5aa993b 2958 return 0; /* Placate lint. */
c906108c
SS
2959}
2960
2961/* Return a double value from the specified type and address.
2962 INVP points to an int which is set to 0 for valid value,
2963 1 for invalid value (bad float format). In either case,
2964 the returned double is OK to use. Argument is in target
2965 format, result is in host format. */
2966
2967DOUBLEST
fc1a4b47 2968unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2969{
e17a4113 2970 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2971 enum type_code code;
2972 int len;
2973 int nosign;
2974
581e13c1 2975 *invp = 0; /* Assume valid. */
f168693b 2976 type = check_typedef (type);
c906108c
SS
2977 code = TYPE_CODE (type);
2978 len = TYPE_LENGTH (type);
2979 nosign = TYPE_UNSIGNED (type);
2980 if (code == TYPE_CODE_FLT)
2981 {
75bc7ddf
AC
2982 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2983 floating-point value was valid (using the macro
2984 INVALID_FLOAT). That test/macro have been removed.
2985
2986 It turns out that only the VAX defined this macro and then
2987 only in a non-portable way. Fixing the portability problem
2988 wouldn't help since the VAX floating-point code is also badly
2989 bit-rotten. The target needs to add definitions for the
ea06eb3d 2990 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2991 exactly describe the target floating-point format. The
2992 problem here is that the corresponding floatformat_vax_f and
2993 floatformat_vax_d values these methods should be set to are
2994 also not defined either. Oops!
2995
2996 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2997 definitions and the new cases for floatformat_is_valid (). */
2998
2999 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
3000 {
3001 *invp = 1;
3002 return 0.0;
3003 }
3004
96d2f608 3005 return extract_typed_floating (valaddr, type);
c906108c 3006 }
4ef30785 3007 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 3008 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
3009 else if (nosign)
3010 {
3011 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 3012 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
3013 }
3014 else
3015 {
3016 /* Signed -- we are OK with unpack_long. */
3017 return unpack_long (type, valaddr);
3018 }
3019}
3020
3021/* Unpack raw data (copied from debugee, target byte order) at VALADDR
3022 as a CORE_ADDR, assuming the raw data is described by type TYPE.
3023 We don't assume any alignment for the raw data. Return value is in
3024 host byte order.
3025
3026 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 3027 references to be dereferenced, call value_as_address() instead.
c906108c
SS
3028
3029 C++: It is assumed that the front-end has taken care of
3030 all matters concerning pointers to members. A pointer
3031 to member which reaches here is considered to be equivalent
3032 to an INT (or some size). After all, it is only an offset. */
3033
3034CORE_ADDR
fc1a4b47 3035unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
3036{
3037 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
3038 whether we want this to be true eventually. */
3039 return unpack_long (type, valaddr);
3040}
4478b372 3041
c906108c 3042\f
1596cb5d 3043/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 3044 TYPE. */
c906108c 3045
f23631e4 3046struct value *
fba45db2 3047value_static_field (struct type *type, int fieldno)
c906108c 3048{
948e66d9
DJ
3049 struct value *retval;
3050
1596cb5d 3051 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 3052 {
1596cb5d 3053 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
3054 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3055 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
3056 break;
3057 case FIELD_LOC_KIND_PHYSNAME:
c906108c 3058 {
ff355380 3059 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 3060 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 3061 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 3062
d12307c1 3063 if (sym.symbol == NULL)
c906108c 3064 {
a109c7c1 3065 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 3066 reported as non-debuggable symbols. */
3b7344d5
TT
3067 struct bound_minimal_symbol msym
3068 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 3069
3b7344d5 3070 if (!msym.minsym)
686d4def 3071 return allocate_optimized_out_value (type);
c906108c 3072 else
c5aa993b 3073 {
52e9fde8 3074 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 3075 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
3076 }
3077 }
3078 else
d12307c1 3079 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 3080 break;
c906108c 3081 }
1596cb5d 3082 default:
f3574227 3083 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
3084 }
3085
948e66d9 3086 return retval;
c906108c
SS
3087}
3088
4dfea560
DE
3089/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3090 You have to be careful here, since the size of the data area for the value
3091 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3092 than the old enclosing type, you have to allocate more space for the
3093 data. */
2b127877 3094
4dfea560
DE
3095void
3096set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 3097{
5fdf6324
AB
3098 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3099 {
3100 check_type_length_before_alloc (new_encl_type);
3101 val->contents
3102 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3103 }
3e3d7139
JG
3104
3105 val->enclosing_type = new_encl_type;
2b127877
DB
3106}
3107
c906108c
SS
3108/* Given a value ARG1 (offset by OFFSET bytes)
3109 of a struct or union type ARG_TYPE,
3110 extract and return the value of one of its (non-static) fields.
581e13c1 3111 FIELDNO says which field. */
c906108c 3112
f23631e4 3113struct value *
6b850546 3114value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 3115 int fieldno, struct type *arg_type)
c906108c 3116{
f23631e4 3117 struct value *v;
52f0bd74 3118 struct type *type;
3ae385af
SM
3119 struct gdbarch *arch = get_value_arch (arg1);
3120 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 3121
f168693b 3122 arg_type = check_typedef (arg_type);
c906108c 3123 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
3124
3125 /* Call check_typedef on our type to make sure that, if TYPE
3126 is a TYPE_CODE_TYPEDEF, its length is set to the length
3127 of the target type instead of zero. However, we do not
3128 replace the typedef type by the target type, because we want
3129 to keep the typedef in order to be able to print the type
3130 description correctly. */
3131 check_typedef (type);
c906108c 3132
691a26f5 3133 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 3134 {
22c05d8a
JK
3135 /* Handle packed fields.
3136
3137 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3138 set. If possible, arrange offset and bitpos so that we can
3139 do a single aligned read of the size of the containing type.
3140 Otherwise, adjust offset to the byte containing the first
3141 bit. Assume that the address, offset, and embedded offset
3142 are sufficiently aligned. */
22c05d8a 3143
6b850546
DT
3144 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3145 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 3146
9a0dc9e3
PA
3147 v = allocate_value_lazy (type);
3148 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3149 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3150 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3151 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3152 else
9a0dc9e3
PA
3153 v->bitpos = bitpos % 8;
3154 v->offset = (value_embedded_offset (arg1)
3155 + offset
3156 + (bitpos - v->bitpos) / 8);
3157 set_value_parent (v, arg1);
3158 if (!value_lazy (arg1))
3159 value_fetch_lazy (v);
c906108c
SS
3160 }
3161 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3162 {
3163 /* This field is actually a base subobject, so preserve the
39d37385
PA
3164 entire object's contents for later references to virtual
3165 bases, etc. */
6b850546 3166 LONGEST boffset;
a4e2ee12
DJ
3167
3168 /* Lazy register values with offsets are not supported. */
3169 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3170 value_fetch_lazy (arg1);
3171
9a0dc9e3
PA
3172 /* We special case virtual inheritance here because this
3173 requires access to the contents, which we would rather avoid
3174 for references to ordinary fields of unavailable values. */
3175 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3176 boffset = baseclass_offset (arg_type, fieldno,
3177 value_contents (arg1),
3178 value_embedded_offset (arg1),
3179 value_address (arg1),
3180 arg1);
c906108c 3181 else
9a0dc9e3 3182 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3183
9a0dc9e3
PA
3184 if (value_lazy (arg1))
3185 v = allocate_value_lazy (value_enclosing_type (arg1));
3186 else
3187 {
3188 v = allocate_value (value_enclosing_type (arg1));
3189 value_contents_copy_raw (v, 0, arg1, 0,
3190 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3191 }
9a0dc9e3
PA
3192 v->type = type;
3193 v->offset = value_offset (arg1);
3194 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 3195 }
9920b434
BH
3196 else if (NULL != TYPE_DATA_LOCATION (type))
3197 {
3198 /* Field is a dynamic data member. */
3199
3200 gdb_assert (0 == offset);
3201 /* We expect an already resolved data location. */
3202 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3203 /* For dynamic data types defer memory allocation
3204 until we actual access the value. */
3205 v = allocate_value_lazy (type);
3206 }
c906108c
SS
3207 else
3208 {
3209 /* Plain old data member */
3ae385af
SM
3210 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3211 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3212
3213 /* Lazy register values with offsets are not supported. */
3214 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3215 value_fetch_lazy (arg1);
3216
9a0dc9e3 3217 if (value_lazy (arg1))
3e3d7139 3218 v = allocate_value_lazy (type);
c906108c 3219 else
3e3d7139
JG
3220 {
3221 v = allocate_value (type);
39d37385
PA
3222 value_contents_copy_raw (v, value_embedded_offset (v),
3223 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3224 type_length_units (type));
3e3d7139 3225 }
df407dfe 3226 v->offset = (value_offset (arg1) + offset
13c3b5f5 3227 + value_embedded_offset (arg1));
c906108c 3228 }
74bcbdf3 3229 set_value_component_location (v, arg1);
9ee8fc9d 3230 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 3231 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
3232 return v;
3233}
3234
3235/* Given a value ARG1 of a struct or union type,
3236 extract and return the value of one of its (non-static) fields.
581e13c1 3237 FIELDNO says which field. */
c906108c 3238
f23631e4 3239struct value *
aa1ee363 3240value_field (struct value *arg1, int fieldno)
c906108c 3241{
df407dfe 3242 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3243}
3244
3245/* Return a non-virtual function as a value.
3246 F is the list of member functions which contains the desired method.
0478d61c
FF
3247 J is an index into F which provides the desired method.
3248
3249 We only use the symbol for its address, so be happy with either a
581e13c1 3250 full symbol or a minimal symbol. */
c906108c 3251
f23631e4 3252struct value *
3e43a32a
MS
3253value_fn_field (struct value **arg1p, struct fn_field *f,
3254 int j, struct type *type,
6b850546 3255 LONGEST offset)
c906108c 3256{
f23631e4 3257 struct value *v;
52f0bd74 3258 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3259 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3260 struct symbol *sym;
7c7b6655 3261 struct bound_minimal_symbol msym;
c906108c 3262
d12307c1 3263 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3264 if (sym != NULL)
0478d61c 3265 {
7c7b6655 3266 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3267 }
3268 else
3269 {
3270 gdb_assert (sym == NULL);
7c7b6655
TT
3271 msym = lookup_bound_minimal_symbol (physname);
3272 if (msym.minsym == NULL)
5ae326fa 3273 return NULL;
0478d61c
FF
3274 }
3275
c906108c 3276 v = allocate_value (ftype);
0478d61c
FF
3277 if (sym)
3278 {
42ae5230 3279 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3280 }
3281 else
3282 {
bccdca4a
UW
3283 /* The minimal symbol might point to a function descriptor;
3284 resolve it to the actual code address instead. */
7c7b6655 3285 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3286 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3287
42ae5230
TT
3288 set_value_address (v,
3289 gdbarch_convert_from_func_ptr_addr
77e371c0 3290 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3291 }
c906108c
SS
3292
3293 if (arg1p)
c5aa993b 3294 {
df407dfe 3295 if (type != value_type (*arg1p))
c5aa993b
JM
3296 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3297 value_addr (*arg1p)));
3298
070ad9f0 3299 /* Move the `this' pointer according to the offset.
581e13c1 3300 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3301 }
3302
3303 return v;
3304}
3305
c906108c 3306\f
c906108c 3307
4875ffdb
PA
3308/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3309 VALADDR, and store the result in *RESULT.
3310 The bitfield starts at BITPOS bits and contains BITSIZE bits.
c906108c 3311
4875ffdb
PA
3312 Extracting bits depends on endianness of the machine. Compute the
3313 number of least significant bits to discard. For big endian machines,
3314 we compute the total number of bits in the anonymous object, subtract
3315 off the bit count from the MSB of the object to the MSB of the
3316 bitfield, then the size of the bitfield, which leaves the LSB discard
3317 count. For little endian machines, the discard count is simply the
3318 number of bits from the LSB of the anonymous object to the LSB of the
3319 bitfield.
3320
3321 If the field is signed, we also do sign extension. */
3322
3323static LONGEST
3324unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3325 LONGEST bitpos, LONGEST bitsize)
c906108c 3326{
4ea48cc1 3327 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3328 ULONGEST val;
3329 ULONGEST valmask;
c906108c 3330 int lsbcount;
6b850546
DT
3331 LONGEST bytes_read;
3332 LONGEST read_offset;
c906108c 3333
4a76eae5
DJ
3334 /* Read the minimum number of bytes required; there may not be
3335 enough bytes to read an entire ULONGEST. */
f168693b 3336 field_type = check_typedef (field_type);
4a76eae5
DJ
3337 if (bitsize)
3338 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3339 else
3340 bytes_read = TYPE_LENGTH (field_type);
3341
5467c6c8
PA
3342 read_offset = bitpos / 8;
3343
4875ffdb 3344 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3345 bytes_read, byte_order);
c906108c 3346
581e13c1 3347 /* Extract bits. See comment above. */
c906108c 3348
4ea48cc1 3349 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3350 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3351 else
3352 lsbcount = (bitpos % 8);
3353 val >>= lsbcount;
3354
3355 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3356 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3357
3358 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3359 {
3360 valmask = (((ULONGEST) 1) << bitsize) - 1;
3361 val &= valmask;
3362 if (!TYPE_UNSIGNED (field_type))
3363 {
3364 if (val & (valmask ^ (valmask >> 1)))
3365 {
3366 val |= ~valmask;
3367 }
3368 }
3369 }
5467c6c8 3370
4875ffdb 3371 return val;
5467c6c8
PA
3372}
3373
3374/* Unpack a field FIELDNO of the specified TYPE, from the object at
3375 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3376 ORIGINAL_VALUE, which must not be NULL. See
3377 unpack_value_bits_as_long for more details. */
3378
3379int
3380unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3381 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3382 const struct value *val, LONGEST *result)
3383{
4875ffdb
PA
3384 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3385 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3386 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3387 int bit_offset;
3388
5467c6c8
PA
3389 gdb_assert (val != NULL);
3390
4875ffdb
PA
3391 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3392 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3393 || !value_bits_available (val, bit_offset, bitsize))
3394 return 0;
3395
3396 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3397 bitpos, bitsize);
3398 return 1;
5467c6c8
PA
3399}
3400
3401/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3402 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3403
3404LONGEST
3405unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3406{
4875ffdb
PA
3407 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3408 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3409 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3410
4875ffdb
PA
3411 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3412}
3413
3414/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3415 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3416 the contents in DEST_VAL, zero or sign extending if the type of
3417 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3418 VAL. If the VAL's contents required to extract the bitfield from
3419 are unavailable/optimized out, DEST_VAL is correspondingly
3420 marked unavailable/optimized out. */
3421
bb9d5f81 3422void
4875ffdb 3423unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3424 LONGEST bitpos, LONGEST bitsize,
3425 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3426 const struct value *val)
3427{
3428 enum bfd_endian byte_order;
3429 int src_bit_offset;
3430 int dst_bit_offset;
4875ffdb
PA
3431 struct type *field_type = value_type (dest_val);
3432
4875ffdb 3433 byte_order = gdbarch_byte_order (get_type_arch (field_type));
e5ca03b4
PA
3434
3435 /* First, unpack and sign extend the bitfield as if it was wholly
3436 valid. Optimized out/unavailable bits are read as zero, but
3437 that's OK, as they'll end up marked below. If the VAL is
3438 wholly-invalid we may have skipped allocating its contents,
3439 though. See allocate_optimized_out_value. */
3440 if (valaddr != NULL)
3441 {
3442 LONGEST num;
3443
3444 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3445 bitpos, bitsize);
3446 store_signed_integer (value_contents_raw (dest_val),
3447 TYPE_LENGTH (field_type), byte_order, num);
3448 }
4875ffdb
PA
3449
3450 /* Now copy the optimized out / unavailability ranges to the right
3451 bits. */
3452 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3453 if (byte_order == BFD_ENDIAN_BIG)
3454 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3455 else
3456 dst_bit_offset = 0;
3457 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3458 val, src_bit_offset, bitsize);
5467c6c8
PA
3459}
3460
3461/* Return a new value with type TYPE, which is FIELDNO field of the
3462 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3463 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3464 from are unavailable/optimized out, the new value is
3465 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3466
3467struct value *
3468value_field_bitfield (struct type *type, int fieldno,
3469 const gdb_byte *valaddr,
6b850546 3470 LONGEST embedded_offset, const struct value *val)
5467c6c8 3471{
4875ffdb
PA
3472 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3473 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3474 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3475
4875ffdb
PA
3476 unpack_value_bitfield (res_val, bitpos, bitsize,
3477 valaddr, embedded_offset, val);
3478
3479 return res_val;
4ea48cc1
DJ
3480}
3481
c906108c
SS
3482/* Modify the value of a bitfield. ADDR points to a block of memory in
3483 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3484 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3485 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3486 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3487 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3488
3489void
50810684 3490modify_field (struct type *type, gdb_byte *addr,
6b850546 3491 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3492{
e17a4113 3493 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3494 ULONGEST oword;
3495 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3496 LONGEST bytesize;
19f220c3
JK
3497
3498 /* Normalize BITPOS. */
3499 addr += bitpos / 8;
3500 bitpos %= 8;
c906108c
SS
3501
3502 /* If a negative fieldval fits in the field in question, chop
3503 off the sign extension bits. */
f4e88c8e
PH
3504 if ((~fieldval & ~(mask >> 1)) == 0)
3505 fieldval &= mask;
c906108c
SS
3506
3507 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3508 if (0 != (fieldval & ~mask))
c906108c
SS
3509 {
3510 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3511 we don't have a sprintf_longest. */
6b850546 3512 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3513
3514 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3515 fieldval &= mask;
c906108c
SS
3516 }
3517
19f220c3
JK
3518 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3519 false valgrind reports. */
3520
3521 bytesize = (bitpos + bitsize + 7) / 8;
3522 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3523
3524 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3525 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3526 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3527
f4e88c8e 3528 oword &= ~(mask << bitpos);
c906108c
SS
3529 oword |= fieldval << bitpos;
3530
19f220c3 3531 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3532}
3533\f
14d06750 3534/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3535
14d06750
DJ
3536void
3537pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3538{
e17a4113 3539 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
6b850546 3540 LONGEST len;
14d06750
DJ
3541
3542 type = check_typedef (type);
c906108c
SS
3543 len = TYPE_LENGTH (type);
3544
14d06750 3545 switch (TYPE_CODE (type))
c906108c 3546 {
c906108c
SS
3547 case TYPE_CODE_INT:
3548 case TYPE_CODE_CHAR:
3549 case TYPE_CODE_ENUM:
4f2aea11 3550 case TYPE_CODE_FLAGS:
c906108c
SS
3551 case TYPE_CODE_BOOL:
3552 case TYPE_CODE_RANGE:
0d5de010 3553 case TYPE_CODE_MEMBERPTR:
e17a4113 3554 store_signed_integer (buf, len, byte_order, num);
c906108c 3555 break;
c5aa993b 3556
c906108c
SS
3557 case TYPE_CODE_REF:
3558 case TYPE_CODE_PTR:
14d06750 3559 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3560 break;
c5aa993b 3561
c906108c 3562 default:
14d06750
DJ
3563 error (_("Unexpected type (%d) encountered for integer constant."),
3564 TYPE_CODE (type));
c906108c 3565 }
14d06750
DJ
3566}
3567
3568
595939de
PM
3569/* Pack NUM into BUF using a target format of TYPE. */
3570
70221824 3571static void
595939de
PM
3572pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3573{
6b850546 3574 LONGEST len;
595939de
PM
3575 enum bfd_endian byte_order;
3576
3577 type = check_typedef (type);
3578 len = TYPE_LENGTH (type);
3579 byte_order = gdbarch_byte_order (get_type_arch (type));
3580
3581 switch (TYPE_CODE (type))
3582 {
3583 case TYPE_CODE_INT:
3584 case TYPE_CODE_CHAR:
3585 case TYPE_CODE_ENUM:
3586 case TYPE_CODE_FLAGS:
3587 case TYPE_CODE_BOOL:
3588 case TYPE_CODE_RANGE:
3589 case TYPE_CODE_MEMBERPTR:
3590 store_unsigned_integer (buf, len, byte_order, num);
3591 break;
3592
3593 case TYPE_CODE_REF:
3594 case TYPE_CODE_PTR:
3595 store_typed_address (buf, type, (CORE_ADDR) num);
3596 break;
3597
3598 default:
3e43a32a
MS
3599 error (_("Unexpected type (%d) encountered "
3600 "for unsigned integer constant."),
595939de
PM
3601 TYPE_CODE (type));
3602 }
3603}
3604
3605
14d06750
DJ
3606/* Convert C numbers into newly allocated values. */
3607
3608struct value *
3609value_from_longest (struct type *type, LONGEST num)
3610{
3611 struct value *val = allocate_value (type);
3612
3613 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3614 return val;
3615}
3616
4478b372 3617
595939de
PM
3618/* Convert C unsigned numbers into newly allocated values. */
3619
3620struct value *
3621value_from_ulongest (struct type *type, ULONGEST num)
3622{
3623 struct value *val = allocate_value (type);
3624
3625 pack_unsigned_long (value_contents_raw (val), type, num);
3626
3627 return val;
3628}
3629
3630
4478b372 3631/* Create a value representing a pointer of type TYPE to the address
cb417230 3632 ADDR. */
80180f79 3633
f23631e4 3634struct value *
4478b372
JB
3635value_from_pointer (struct type *type, CORE_ADDR addr)
3636{
cb417230 3637 struct value *val = allocate_value (type);
a109c7c1 3638
80180f79 3639 store_typed_address (value_contents_raw (val),
cb417230 3640 check_typedef (type), addr);
4478b372
JB
3641 return val;
3642}
3643
3644
012370f6
TT
3645/* Create a value of type TYPE whose contents come from VALADDR, if it
3646 is non-null, and whose memory address (in the inferior) is
3647 ADDRESS. The type of the created value may differ from the passed
3648 type TYPE. Make sure to retrieve values new type after this call.
3649 Note that TYPE is not passed through resolve_dynamic_type; this is
3650 a special API intended for use only by Ada. */
3651
3652struct value *
3653value_from_contents_and_address_unresolved (struct type *type,
3654 const gdb_byte *valaddr,
3655 CORE_ADDR address)
3656{
3657 struct value *v;
3658
3659 if (valaddr == NULL)
3660 v = allocate_value_lazy (type);
3661 else
3662 v = value_from_contents (type, valaddr);
3663 set_value_address (v, address);
3664 VALUE_LVAL (v) = lval_memory;
3665 return v;
3666}
3667
8acb6b92
TT
3668/* Create a value of type TYPE whose contents come from VALADDR, if it
3669 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3670 ADDRESS. The type of the created value may differ from the passed
3671 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3672
3673struct value *
3674value_from_contents_and_address (struct type *type,
3675 const gdb_byte *valaddr,
3676 CORE_ADDR address)
3677{
c3345124 3678 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3679 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3680 struct value *v;
a109c7c1 3681
8acb6b92 3682 if (valaddr == NULL)
80180f79 3683 v = allocate_value_lazy (resolved_type);
8acb6b92 3684 else
80180f79 3685 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3686 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3687 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3688 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
42ae5230 3689 set_value_address (v, address);
33d502b4 3690 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3691 return v;
3692}
3693
8a9b8146
TT
3694/* Create a value of type TYPE holding the contents CONTENTS.
3695 The new value is `not_lval'. */
3696
3697struct value *
3698value_from_contents (struct type *type, const gdb_byte *contents)
3699{
3700 struct value *result;
3701
3702 result = allocate_value (type);
3703 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3704 return result;
3705}
3706
f23631e4 3707struct value *
fba45db2 3708value_from_double (struct type *type, DOUBLEST num)
c906108c 3709{
f23631e4 3710 struct value *val = allocate_value (type);
c906108c 3711 struct type *base_type = check_typedef (type);
52f0bd74 3712 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3713
3714 if (code == TYPE_CODE_FLT)
3715 {
990a07ab 3716 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3717 }
3718 else
8a3fe4f8 3719 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3720
3721 return val;
3722}
994b9211 3723
27bc4d80 3724struct value *
4ef30785 3725value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3726{
3727 struct value *val = allocate_value (type);
27bc4d80 3728
4ef30785 3729 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3730 return val;
3731}
3732
3bd0f5ef
MS
3733/* Extract a value from the history file. Input will be of the form
3734 $digits or $$digits. See block comment above 'write_dollar_variable'
3735 for details. */
3736
3737struct value *
e799154c 3738value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3739{
3740 int index, len;
3741
3742 if (h[0] == '$')
3743 len = 1;
3744 else
3745 return NULL;
3746
3747 if (h[1] == '$')
3748 len = 2;
3749
3750 /* Find length of numeral string. */
3751 for (; isdigit (h[len]); len++)
3752 ;
3753
3754 /* Make sure numeral string is not part of an identifier. */
3755 if (h[len] == '_' || isalpha (h[len]))
3756 return NULL;
3757
3758 /* Now collect the index value. */
3759 if (h[1] == '$')
3760 {
3761 if (len == 2)
3762 {
3763 /* For some bizarre reason, "$$" is equivalent to "$$1",
3764 rather than to "$$0" as it ought to be! */
3765 index = -1;
3766 *endp += len;
3767 }
3768 else
e799154c
TT
3769 {
3770 char *local_end;
3771
3772 index = -strtol (&h[2], &local_end, 10);
3773 *endp = local_end;
3774 }
3bd0f5ef
MS
3775 }
3776 else
3777 {
3778 if (len == 1)
3779 {
3780 /* "$" is equivalent to "$0". */
3781 index = 0;
3782 *endp += len;
3783 }
3784 else
e799154c
TT
3785 {
3786 char *local_end;
3787
3788 index = strtol (&h[1], &local_end, 10);
3789 *endp = local_end;
3790 }
3bd0f5ef
MS
3791 }
3792
3793 return access_value_history (index);
3794}
3795
a471c594
JK
3796struct value *
3797coerce_ref_if_computed (const struct value *arg)
3798{
3799 const struct lval_funcs *funcs;
3800
3801 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3802 return NULL;
3803
3804 if (value_lval_const (arg) != lval_computed)
3805 return NULL;
3806
3807 funcs = value_computed_funcs (arg);
3808 if (funcs->coerce_ref == NULL)
3809 return NULL;
3810
3811 return funcs->coerce_ref (arg);
3812}
3813
dfcee124
AG
3814/* Look at value.h for description. */
3815
3816struct value *
3817readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3818 const struct type *original_type,
3819 const struct value *original_value)
dfcee124
AG
3820{
3821 /* Re-adjust type. */
3822 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3823
3824 /* Add embedding info. */
3825 set_value_enclosing_type (value, enc_type);
3826 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3827
3828 /* We may be pointing to an object of some derived type. */
3829 return value_full_object (value, NULL, 0, 0, 0);
3830}
3831
994b9211
AC
3832struct value *
3833coerce_ref (struct value *arg)
3834{
df407dfe 3835 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3836 struct value *retval;
dfcee124 3837 struct type *enc_type;
a109c7c1 3838
a471c594
JK
3839 retval = coerce_ref_if_computed (arg);
3840 if (retval)
3841 return retval;
3842
3843 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3844 return arg;
3845
dfcee124
AG
3846 enc_type = check_typedef (value_enclosing_type (arg));
3847 enc_type = TYPE_TARGET_TYPE (enc_type);
3848
3849 retval = value_at_lazy (enc_type,
3850 unpack_pointer (value_type (arg),
3851 value_contents (arg)));
9f1f738a 3852 enc_type = value_type (retval);
dfcee124
AG
3853 return readjust_indirect_value_type (retval, enc_type,
3854 value_type_arg_tmp, arg);
994b9211
AC
3855}
3856
3857struct value *
3858coerce_array (struct value *arg)
3859{
f3134b88
TT
3860 struct type *type;
3861
994b9211 3862 arg = coerce_ref (arg);
f3134b88
TT
3863 type = check_typedef (value_type (arg));
3864
3865 switch (TYPE_CODE (type))
3866 {
3867 case TYPE_CODE_ARRAY:
7346b668 3868 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3869 arg = value_coerce_array (arg);
3870 break;
3871 case TYPE_CODE_FUNC:
3872 arg = value_coerce_function (arg);
3873 break;
3874 }
994b9211
AC
3875 return arg;
3876}
c906108c 3877\f
c906108c 3878
bbfdfe1c
DM
3879/* Return the return value convention that will be used for the
3880 specified type. */
3881
3882enum return_value_convention
3883struct_return_convention (struct gdbarch *gdbarch,
3884 struct value *function, struct type *value_type)
3885{
3886 enum type_code code = TYPE_CODE (value_type);
3887
3888 if (code == TYPE_CODE_ERROR)
3889 error (_("Function return type unknown."));
3890
3891 /* Probe the architecture for the return-value convention. */
3892 return gdbarch_return_value (gdbarch, function, value_type,
3893 NULL, NULL, NULL);
3894}
3895
48436ce6
AC
3896/* Return true if the function returning the specified type is using
3897 the convention of returning structures in memory (passing in the
82585c72 3898 address as a hidden first parameter). */
c906108c
SS
3899
3900int
d80b854b 3901using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3902 struct value *function, struct type *value_type)
c906108c 3903{
bbfdfe1c 3904 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3905 /* A void return value is never in memory. See also corresponding
44e5158b 3906 code in "print_return_value". */
667e784f
AC
3907 return 0;
3908
bbfdfe1c 3909 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3910 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3911}
3912
42be36b3
CT
3913/* Set the initialized field in a value struct. */
3914
3915void
3916set_value_initialized (struct value *val, int status)
3917{
3918 val->initialized = status;
3919}
3920
3921/* Return the initialized field in a value struct. */
3922
3923int
4bf7b526 3924value_initialized (const struct value *val)
42be36b3
CT
3925{
3926 return val->initialized;
3927}
3928
a844296a
SM
3929/* Load the actual content of a lazy value. Fetch the data from the
3930 user's process and clear the lazy flag to indicate that the data in
3931 the buffer is valid.
a58e2656
AB
3932
3933 If the value is zero-length, we avoid calling read_memory, which
3934 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3935 it. */
a58e2656 3936
a844296a 3937void
a58e2656
AB
3938value_fetch_lazy (struct value *val)
3939{
3940 gdb_assert (value_lazy (val));
3941 allocate_value_contents (val);
9a0dc9e3
PA
3942 /* A value is either lazy, or fully fetched. The
3943 availability/validity is only established as we try to fetch a
3944 value. */
3945 gdb_assert (VEC_empty (range_s, val->optimized_out));
3946 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3947 if (value_bitsize (val))
3948 {
3949 /* To read a lazy bitfield, read the entire enclosing value. This
3950 prevents reading the same block of (possibly volatile) memory once
3951 per bitfield. It would be even better to read only the containing
3952 word, but we have no way to record that just specific bits of a
3953 value have been fetched. */
3954 struct type *type = check_typedef (value_type (val));
a58e2656 3955 struct value *parent = value_parent (val);
a58e2656 3956
b0c54aa5
AB
3957 if (value_lazy (parent))
3958 value_fetch_lazy (parent);
3959
4875ffdb
PA
3960 unpack_value_bitfield (val,
3961 value_bitpos (val), value_bitsize (val),
3962 value_contents_for_printing (parent),
3963 value_offset (val), parent);
a58e2656
AB
3964 }
3965 else if (VALUE_LVAL (val) == lval_memory)
3966 {
3967 CORE_ADDR addr = value_address (val);
3968 struct type *type = check_typedef (value_enclosing_type (val));
3969
3970 if (TYPE_LENGTH (type))
3971 read_value_memory (val, 0, value_stack (val),
3972 addr, value_contents_all_raw (val),
3ae385af 3973 type_length_units (type));
a58e2656
AB
3974 }
3975 else if (VALUE_LVAL (val) == lval_register)
3976 {
3977 struct frame_info *frame;
3978 int regnum;
3979 struct type *type = check_typedef (value_type (val));
3980 struct value *new_val = val, *mark = value_mark ();
3981
3982 /* Offsets are not supported here; lazy register values must
3983 refer to the entire register. */
3984 gdb_assert (value_offset (val) == 0);
3985
3986 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3987 {
6eeee81c
TT
3988 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3989
3990 frame = frame_find_by_id (frame_id);
a58e2656
AB
3991 regnum = VALUE_REGNUM (new_val);
3992
3993 gdb_assert (frame != NULL);
3994
3995 /* Convertible register routines are used for multi-register
3996 values and for interpretation in different types
3997 (e.g. float or int from a double register). Lazy
3998 register values should have the register's natural type,
3999 so they do not apply. */
4000 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
4001 regnum, type));
4002
4003 new_val = get_frame_register_value (frame, regnum);
6eeee81c
TT
4004
4005 /* If we get another lazy lval_register value, it means the
4006 register is found by reading it from the next frame.
4007 get_frame_register_value should never return a value with
4008 the frame id pointing to FRAME. If it does, it means we
4009 either have two consecutive frames with the same frame id
4010 in the frame chain, or some code is trying to unwind
4011 behind get_prev_frame's back (e.g., a frame unwind
4012 sniffer trying to unwind), bypassing its validations. In
4013 any case, it should always be an internal error to end up
4014 in this situation. */
4015 if (VALUE_LVAL (new_val) == lval_register
4016 && value_lazy (new_val)
4017 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
4018 internal_error (__FILE__, __LINE__,
4019 _("infinite loop while fetching a register"));
a58e2656
AB
4020 }
4021
4022 /* If it's still lazy (for instance, a saved register on the
4023 stack), fetch it. */
4024 if (value_lazy (new_val))
4025 value_fetch_lazy (new_val);
4026
9a0dc9e3
PA
4027 /* Copy the contents and the unavailability/optimized-out
4028 meta-data from NEW_VAL to VAL. */
4029 set_value_lazy (val, 0);
4030 value_contents_copy (val, value_embedded_offset (val),
4031 new_val, value_embedded_offset (new_val),
3ae385af 4032 type_length_units (type));
a58e2656
AB
4033
4034 if (frame_debug)
4035 {
4036 struct gdbarch *gdbarch;
4037 frame = frame_find_by_id (VALUE_FRAME_ID (val));
4038 regnum = VALUE_REGNUM (val);
4039 gdbarch = get_frame_arch (frame);
4040
4041 fprintf_unfiltered (gdb_stdlog,
4042 "{ value_fetch_lazy "
4043 "(frame=%d,regnum=%d(%s),...) ",
4044 frame_relative_level (frame), regnum,
4045 user_reg_map_regnum_to_name (gdbarch, regnum));
4046
4047 fprintf_unfiltered (gdb_stdlog, "->");
4048 if (value_optimized_out (new_val))
f6c01fc5
AB
4049 {
4050 fprintf_unfiltered (gdb_stdlog, " ");
4051 val_print_optimized_out (new_val, gdb_stdlog);
4052 }
a58e2656
AB
4053 else
4054 {
4055 int i;
4056 const gdb_byte *buf = value_contents (new_val);
4057
4058 if (VALUE_LVAL (new_val) == lval_register)
4059 fprintf_unfiltered (gdb_stdlog, " register=%d",
4060 VALUE_REGNUM (new_val));
4061 else if (VALUE_LVAL (new_val) == lval_memory)
4062 fprintf_unfiltered (gdb_stdlog, " address=%s",
4063 paddress (gdbarch,
4064 value_address (new_val)));
4065 else
4066 fprintf_unfiltered (gdb_stdlog, " computed");
4067
4068 fprintf_unfiltered (gdb_stdlog, " bytes=");
4069 fprintf_unfiltered (gdb_stdlog, "[");
4070 for (i = 0; i < register_size (gdbarch, regnum); i++)
4071 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4072 fprintf_unfiltered (gdb_stdlog, "]");
4073 }
4074
4075 fprintf_unfiltered (gdb_stdlog, " }\n");
4076 }
4077
4078 /* Dispose of the intermediate values. This prevents
4079 watchpoints from trying to watch the saved frame pointer. */
4080 value_free_to_mark (mark);
4081 }
4082 else if (VALUE_LVAL (val) == lval_computed
4083 && value_computed_funcs (val)->read != NULL)
4084 value_computed_funcs (val)->read (val);
a58e2656
AB
4085 else
4086 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4087
4088 set_value_lazy (val, 0);
a58e2656
AB
4089}
4090
a280dbd1
SDJ
4091/* Implementation of the convenience function $_isvoid. */
4092
4093static struct value *
4094isvoid_internal_fn (struct gdbarch *gdbarch,
4095 const struct language_defn *language,
4096 void *cookie, int argc, struct value **argv)
4097{
4098 int ret;
4099
4100 if (argc != 1)
6bc305f5 4101 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
4102
4103 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4104
4105 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4106}
4107
c906108c 4108void
fba45db2 4109_initialize_values (void)
c906108c 4110{
1a966eab 4111 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4112Debugger convenience (\"$foo\") variables and functions.\n\
4113Convenience variables are created when you assign them values;\n\
4114thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4115\n\
c906108c
SS
4116A few convenience variables are given values automatically:\n\
4117\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4118\"$__\" holds the contents of the last address examined with \"x\"."
4119#ifdef HAVE_PYTHON
4120"\n\n\
4121Convenience functions are defined via the Python API."
4122#endif
4123 ), &showlist);
7e20dfcd 4124 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4125
db5f229b 4126 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4127Elements of value history around item number IDX (or last ten)."),
c906108c 4128 &showlist);
53e5f3cf
AS
4129
4130 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4131Initialize a convenience variable if necessary.\n\
4132init-if-undefined VARIABLE = EXPRESSION\n\
4133Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4134exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4135VARIABLE is already initialized."));
bc3b79fd
TJB
4136
4137 add_prefix_cmd ("function", no_class, function_command, _("\
4138Placeholder command for showing help on convenience functions."),
4139 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4140
4141 add_internal_function ("_isvoid", _("\
4142Check whether an expression is void.\n\
4143Usage: $_isvoid (expression)\n\
4144Return 1 if the expression is void, zero otherwise."),
4145 isvoid_internal_fn, NULL);
5fdf6324
AB
4146
4147 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4148 class_support, &max_value_size, _("\
4149Set maximum sized value gdb will load from the inferior."), _("\
4150Show maximum sized value gdb will load from the inferior."), _("\
4151Use this to control the maximum size, in bytes, of a value that gdb\n\
4152will load from the inferior. Setting this value to 'unlimited'\n\
4153disables checking.\n\
4154Setting this does not invalidate already allocated values, it only\n\
4155prevents future values, larger than this size, from being allocated."),
4156 set_max_value_size,
4157 show_max_value_size,
4158 &setlist, &showlist);
c906108c 4159}
This page took 5.847028 seconds and 4 git commands to generate.