Adjust comments with example in it
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
ecd75fc8 3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
d16aafd8 31#include "doublest.h"
36160dc4 32#include "regcache.h"
fe898f56 33#include "block.h"
27bc4d80 34#include "dfp.h"
bccdca4a 35#include "objfiles.h"
79a45b7d 36#include "valprint.h"
bc3b79fd 37#include "cli/cli-decode.h"
8af8e3bc 38#include "exceptions.h"
6dddc817 39#include "extension.h"
3bd0f5ef 40#include <ctype.h>
0914bcdb 41#include "tracepoint.h"
be335936 42#include "cp-abi.h"
a58e2656 43#include "user-regs.h"
0914bcdb 44
581e13c1 45/* Prototypes for exported functions. */
c906108c 46
a14ed312 47void _initialize_values (void);
c906108c 48
bc3b79fd
TJB
49/* Definition of a user function. */
50struct internal_function
51{
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62};
63
4e07d55f
PA
64/* Defines an [OFFSET, OFFSET + LENGTH) range. */
65
66struct range
67{
68 /* Lowest offset in the range. */
69 int offset;
70
71 /* Length of the range. */
72 int length;
73};
74
75typedef struct range range_s;
76
77DEF_VEC_O(range_s);
78
79/* Returns true if the ranges defined by [offset1, offset1+len1) and
80 [offset2, offset2+len2) overlap. */
81
82static int
83ranges_overlap (int offset1, int len1,
84 int offset2, int len2)
85{
86 ULONGEST h, l;
87
88 l = max (offset1, offset2);
89 h = min (offset1 + len1, offset2 + len2);
90 return (l < h);
91}
92
93/* Returns true if the first argument is strictly less than the
94 second, useful for VEC_lower_bound. We keep ranges sorted by
95 offset and coalesce overlapping and contiguous ranges, so this just
96 compares the starting offset. */
97
98static int
99range_lessthan (const range_s *r1, const range_s *r2)
100{
101 return r1->offset < r2->offset;
102}
103
104/* Returns true if RANGES contains any range that overlaps [OFFSET,
105 OFFSET+LENGTH). */
106
107static int
108ranges_contain (VEC(range_s) *ranges, int offset, int length)
109{
110 range_s what;
111 int i;
112
113 what.offset = offset;
114 what.length = length;
115
116 /* We keep ranges sorted by offset and coalesce overlapping and
117 contiguous ranges, so to check if a range list contains a given
118 range, we can do a binary search for the position the given range
119 would be inserted if we only considered the starting OFFSET of
120 ranges. We call that position I. Since we also have LENGTH to
121 care for (this is a range afterall), we need to check if the
122 _previous_ range overlaps the I range. E.g.,
123
124 R
125 |---|
126 |---| |---| |------| ... |--|
127 0 1 2 N
128
129 I=1
130
131 In the case above, the binary search would return `I=1', meaning,
132 this OFFSET should be inserted at position 1, and the current
133 position 1 should be pushed further (and before 2). But, `0'
134 overlaps with R.
135
136 Then we need to check if the I range overlaps the I range itself.
137 E.g.,
138
139 R
140 |---|
141 |---| |---| |-------| ... |--|
142 0 1 2 N
143
144 I=1
145 */
146
147 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
148
149 if (i > 0)
150 {
151 struct range *bef = VEC_index (range_s, ranges, i - 1);
152
153 if (ranges_overlap (bef->offset, bef->length, offset, length))
154 return 1;
155 }
156
157 if (i < VEC_length (range_s, ranges))
158 {
159 struct range *r = VEC_index (range_s, ranges, i);
160
161 if (ranges_overlap (r->offset, r->length, offset, length))
162 return 1;
163 }
164
165 return 0;
166}
167
bc3b79fd
TJB
168static struct cmd_list_element *functionlist;
169
87784a47
TT
170/* Note that the fields in this structure are arranged to save a bit
171 of memory. */
172
91294c83
AC
173struct value
174{
175 /* Type of value; either not an lval, or one of the various
176 different possible kinds of lval. */
177 enum lval_type lval;
178
179 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
180 unsigned int modifiable : 1;
181
182 /* If zero, contents of this value are in the contents field. If
183 nonzero, contents are in inferior. If the lval field is lval_memory,
184 the contents are in inferior memory at location.address plus offset.
185 The lval field may also be lval_register.
186
187 WARNING: This field is used by the code which handles watchpoints
188 (see breakpoint.c) to decide whether a particular value can be
189 watched by hardware watchpoints. If the lazy flag is set for
190 some member of a value chain, it is assumed that this member of
191 the chain doesn't need to be watched as part of watching the
192 value itself. This is how GDB avoids watching the entire struct
193 or array when the user wants to watch a single struct member or
194 array element. If you ever change the way lazy flag is set and
195 reset, be sure to consider this use as well! */
196 unsigned int lazy : 1;
197
87784a47
TT
198 /* If value is a variable, is it initialized or not. */
199 unsigned int initialized : 1;
200
201 /* If value is from the stack. If this is set, read_stack will be
202 used instead of read_memory to enable extra caching. */
203 unsigned int stack : 1;
91294c83 204
e848a8a5
TT
205 /* If the value has been released. */
206 unsigned int released : 1;
207
98b1cfdc
TT
208 /* Register number if the value is from a register. */
209 short regnum;
210
91294c83
AC
211 /* Location of value (if lval). */
212 union
213 {
214 /* If lval == lval_memory, this is the address in the inferior.
215 If lval == lval_register, this is the byte offset into the
216 registers structure. */
217 CORE_ADDR address;
218
219 /* Pointer to internal variable. */
220 struct internalvar *internalvar;
5f5233d4 221
e81e7f5e
SC
222 /* Pointer to xmethod worker. */
223 struct xmethod_worker *xm_worker;
224
5f5233d4
PA
225 /* If lval == lval_computed, this is a set of function pointers
226 to use to access and describe the value, and a closure pointer
227 for them to use. */
228 struct
229 {
c8f2448a
JK
230 /* Functions to call. */
231 const struct lval_funcs *funcs;
232
233 /* Closure for those functions to use. */
234 void *closure;
5f5233d4 235 } computed;
91294c83
AC
236 } location;
237
238 /* Describes offset of a value within lval of a structure in bytes.
239 If lval == lval_memory, this is an offset to the address. If
240 lval == lval_register, this is a further offset from
241 location.address within the registers structure. Note also the
242 member embedded_offset below. */
243 int offset;
244
245 /* Only used for bitfields; number of bits contained in them. */
246 int bitsize;
247
248 /* Only used for bitfields; position of start of field. For
32c9a795 249 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 250 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
251 int bitpos;
252
87784a47
TT
253 /* The number of references to this value. When a value is created,
254 the value chain holds a reference, so REFERENCE_COUNT is 1. If
255 release_value is called, this value is removed from the chain but
256 the caller of release_value now has a reference to this value.
257 The caller must arrange for a call to value_free later. */
258 int reference_count;
259
4ea48cc1
DJ
260 /* Only used for bitfields; the containing value. This allows a
261 single read from the target when displaying multiple
262 bitfields. */
263 struct value *parent;
264
91294c83
AC
265 /* Frame register value is relative to. This will be described in
266 the lval enum above as "lval_register". */
267 struct frame_id frame_id;
268
269 /* Type of the value. */
270 struct type *type;
271
272 /* If a value represents a C++ object, then the `type' field gives
273 the object's compile-time type. If the object actually belongs
274 to some class derived from `type', perhaps with other base
275 classes and additional members, then `type' is just a subobject
276 of the real thing, and the full object is probably larger than
277 `type' would suggest.
278
279 If `type' is a dynamic class (i.e. one with a vtable), then GDB
280 can actually determine the object's run-time type by looking at
281 the run-time type information in the vtable. When this
282 information is available, we may elect to read in the entire
283 object, for several reasons:
284
285 - When printing the value, the user would probably rather see the
286 full object, not just the limited portion apparent from the
287 compile-time type.
288
289 - If `type' has virtual base classes, then even printing `type'
290 alone may require reaching outside the `type' portion of the
291 object to wherever the virtual base class has been stored.
292
293 When we store the entire object, `enclosing_type' is the run-time
294 type -- the complete object -- and `embedded_offset' is the
295 offset of `type' within that larger type, in bytes. The
296 value_contents() macro takes `embedded_offset' into account, so
297 most GDB code continues to see the `type' portion of the value,
298 just as the inferior would.
299
300 If `type' is a pointer to an object, then `enclosing_type' is a
301 pointer to the object's run-time type, and `pointed_to_offset' is
302 the offset in bytes from the full object to the pointed-to object
303 -- that is, the value `embedded_offset' would have if we followed
304 the pointer and fetched the complete object. (I don't really see
305 the point. Why not just determine the run-time type when you
306 indirect, and avoid the special case? The contents don't matter
307 until you indirect anyway.)
308
309 If we're not doing anything fancy, `enclosing_type' is equal to
310 `type', and `embedded_offset' is zero, so everything works
311 normally. */
312 struct type *enclosing_type;
313 int embedded_offset;
314 int pointed_to_offset;
315
316 /* Values are stored in a chain, so that they can be deleted easily
317 over calls to the inferior. Values assigned to internal
a08702d6
TJB
318 variables, put into the value history or exposed to Python are
319 taken off this list. */
91294c83
AC
320 struct value *next;
321
3e3d7139
JG
322 /* Actual contents of the value. Target byte-order. NULL or not
323 valid if lazy is nonzero. */
324 gdb_byte *contents;
828d3400 325
4e07d55f
PA
326 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
327 rather than available, since the common and default case is for a
9a0dc9e3
PA
328 value to be available. This is filled in at value read time.
329 The unavailable ranges are tracked in bits. Note that a contents
330 bit that has been optimized out doesn't really exist in the
331 program, so it can't be marked unavailable either. */
4e07d55f 332 VEC(range_s) *unavailable;
9a0dc9e3
PA
333
334 /* Likewise, but for optimized out contents (a chunk of the value of
335 a variable that does not actually exist in the program). If LVAL
336 is lval_register, this is a register ($pc, $sp, etc., never a
337 program variable) that has not been saved in the frame. Not
338 saved registers and optimized-out program variables values are
339 treated pretty much the same, except not-saved registers have a
340 different string representation and related error strings. */
341 VEC(range_s) *optimized_out;
91294c83
AC
342};
343
4e07d55f 344int
bdf22206 345value_bits_available (const struct value *value, int offset, int length)
4e07d55f
PA
346{
347 gdb_assert (!value->lazy);
348
349 return !ranges_contain (value->unavailable, offset, length);
350}
351
bdf22206
AB
352int
353value_bytes_available (const struct value *value, int offset, int length)
354{
355 return value_bits_available (value,
356 offset * TARGET_CHAR_BIT,
357 length * TARGET_CHAR_BIT);
358}
359
9a0dc9e3
PA
360int
361value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
362{
363 gdb_assert (!value->lazy);
364
365 return ranges_contain (value->optimized_out, bit_offset, bit_length);
366}
367
ec0a52e1
PA
368int
369value_entirely_available (struct value *value)
370{
371 /* We can only tell whether the whole value is available when we try
372 to read it. */
373 if (value->lazy)
374 value_fetch_lazy (value);
375
376 if (VEC_empty (range_s, value->unavailable))
377 return 1;
378 return 0;
379}
380
9a0dc9e3
PA
381/* Returns true if VALUE is entirely covered by RANGES. If the value
382 is lazy, it'll be read now. Note that RANGE is a pointer to
383 pointer because reading the value might change *RANGE. */
384
385static int
386value_entirely_covered_by_range_vector (struct value *value,
387 VEC(range_s) **ranges)
6211c335 388{
9a0dc9e3
PA
389 /* We can only tell whether the whole value is optimized out /
390 unavailable when we try to read it. */
6211c335
YQ
391 if (value->lazy)
392 value_fetch_lazy (value);
393
9a0dc9e3 394 if (VEC_length (range_s, *ranges) == 1)
6211c335 395 {
9a0dc9e3 396 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
397
398 if (t->offset == 0
64c46ce4
JB
399 && t->length == (TARGET_CHAR_BIT
400 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
401 return 1;
402 }
403
404 return 0;
405}
406
9a0dc9e3
PA
407int
408value_entirely_unavailable (struct value *value)
409{
410 return value_entirely_covered_by_range_vector (value, &value->unavailable);
411}
412
413int
414value_entirely_optimized_out (struct value *value)
415{
416 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
417}
418
419/* Insert into the vector pointed to by VECTORP the bit range starting of
420 OFFSET bits, and extending for the next LENGTH bits. */
421
422static void
423insert_into_bit_range_vector (VEC(range_s) **vectorp, int offset, int length)
4e07d55f
PA
424{
425 range_s newr;
426 int i;
427
428 /* Insert the range sorted. If there's overlap or the new range
429 would be contiguous with an existing range, merge. */
430
431 newr.offset = offset;
432 newr.length = length;
433
434 /* Do a binary search for the position the given range would be
435 inserted if we only considered the starting OFFSET of ranges.
436 Call that position I. Since we also have LENGTH to care for
437 (this is a range afterall), we need to check if the _previous_
438 range overlaps the I range. E.g., calling R the new range:
439
440 #1 - overlaps with previous
441
442 R
443 |-...-|
444 |---| |---| |------| ... |--|
445 0 1 2 N
446
447 I=1
448
449 In the case #1 above, the binary search would return `I=1',
450 meaning, this OFFSET should be inserted at position 1, and the
451 current position 1 should be pushed further (and become 2). But,
452 note that `0' overlaps with R, so we want to merge them.
453
454 A similar consideration needs to be taken if the new range would
455 be contiguous with the previous range:
456
457 #2 - contiguous with previous
458
459 R
460 |-...-|
461 |--| |---| |------| ... |--|
462 0 1 2 N
463
464 I=1
465
466 If there's no overlap with the previous range, as in:
467
468 #3 - not overlapping and not contiguous
469
470 R
471 |-...-|
472 |--| |---| |------| ... |--|
473 0 1 2 N
474
475 I=1
476
477 or if I is 0:
478
479 #4 - R is the range with lowest offset
480
481 R
482 |-...-|
483 |--| |---| |------| ... |--|
484 0 1 2 N
485
486 I=0
487
488 ... we just push the new range to I.
489
490 All the 4 cases above need to consider that the new range may
491 also overlap several of the ranges that follow, or that R may be
492 contiguous with the following range, and merge. E.g.,
493
494 #5 - overlapping following ranges
495
496 R
497 |------------------------|
498 |--| |---| |------| ... |--|
499 0 1 2 N
500
501 I=0
502
503 or:
504
505 R
506 |-------|
507 |--| |---| |------| ... |--|
508 0 1 2 N
509
510 I=1
511
512 */
513
9a0dc9e3 514 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
515 if (i > 0)
516 {
9a0dc9e3 517 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
518
519 if (ranges_overlap (bef->offset, bef->length, offset, length))
520 {
521 /* #1 */
522 ULONGEST l = min (bef->offset, offset);
523 ULONGEST h = max (bef->offset + bef->length, offset + length);
524
525 bef->offset = l;
526 bef->length = h - l;
527 i--;
528 }
529 else if (offset == bef->offset + bef->length)
530 {
531 /* #2 */
532 bef->length += length;
533 i--;
534 }
535 else
536 {
537 /* #3 */
9a0dc9e3 538 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
539 }
540 }
541 else
542 {
543 /* #4 */
9a0dc9e3 544 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
545 }
546
547 /* Check whether the ranges following the one we've just added or
548 touched can be folded in (#5 above). */
9a0dc9e3 549 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
550 {
551 struct range *t;
552 struct range *r;
553 int removed = 0;
554 int next = i + 1;
555
556 /* Get the range we just touched. */
9a0dc9e3 557 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
558 removed = 0;
559
560 i = next;
9a0dc9e3 561 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
562 if (r->offset <= t->offset + t->length)
563 {
564 ULONGEST l, h;
565
566 l = min (t->offset, r->offset);
567 h = max (t->offset + t->length, r->offset + r->length);
568
569 t->offset = l;
570 t->length = h - l;
571
572 removed++;
573 }
574 else
575 {
576 /* If we couldn't merge this one, we won't be able to
577 merge following ones either, since the ranges are
578 always sorted by OFFSET. */
579 break;
580 }
581
582 if (removed != 0)
9a0dc9e3 583 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
584 }
585}
586
9a0dc9e3
PA
587void
588mark_value_bits_unavailable (struct value *value, int offset, int length)
589{
590 insert_into_bit_range_vector (&value->unavailable, offset, length);
591}
592
bdf22206
AB
593void
594mark_value_bytes_unavailable (struct value *value, int offset, int length)
595{
596 mark_value_bits_unavailable (value,
597 offset * TARGET_CHAR_BIT,
598 length * TARGET_CHAR_BIT);
599}
600
c8c1c22f
PA
601/* Find the first range in RANGES that overlaps the range defined by
602 OFFSET and LENGTH, starting at element POS in the RANGES vector,
603 Returns the index into RANGES where such overlapping range was
604 found, or -1 if none was found. */
605
606static int
607find_first_range_overlap (VEC(range_s) *ranges, int pos,
608 int offset, int length)
609{
610 range_s *r;
611 int i;
612
613 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
614 if (ranges_overlap (r->offset, r->length, offset, length))
615 return i;
616
617 return -1;
618}
619
bdf22206
AB
620/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
621 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
622 return non-zero.
623
624 It must always be the case that:
625 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
626
627 It is assumed that memory can be accessed from:
628 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
629 to:
630 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
631 / TARGET_CHAR_BIT) */
632static int
633memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
634 const gdb_byte *ptr2, size_t offset2_bits,
635 size_t length_bits)
636{
637 gdb_assert (offset1_bits % TARGET_CHAR_BIT
638 == offset2_bits % TARGET_CHAR_BIT);
639
640 if (offset1_bits % TARGET_CHAR_BIT != 0)
641 {
642 size_t bits;
643 gdb_byte mask, b1, b2;
644
645 /* The offset from the base pointers PTR1 and PTR2 is not a complete
646 number of bytes. A number of bits up to either the next exact
647 byte boundary, or LENGTH_BITS (which ever is sooner) will be
648 compared. */
649 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
650 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
651 mask = (1 << bits) - 1;
652
653 if (length_bits < bits)
654 {
655 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
656 bits = length_bits;
657 }
658
659 /* Now load the two bytes and mask off the bits we care about. */
660 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
661 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
662
663 if (b1 != b2)
664 return 1;
665
666 /* Now update the length and offsets to take account of the bits
667 we've just compared. */
668 length_bits -= bits;
669 offset1_bits += bits;
670 offset2_bits += bits;
671 }
672
673 if (length_bits % TARGET_CHAR_BIT != 0)
674 {
675 size_t bits;
676 size_t o1, o2;
677 gdb_byte mask, b1, b2;
678
679 /* The length is not an exact number of bytes. After the previous
680 IF.. block then the offsets are byte aligned, or the
681 length is zero (in which case this code is not reached). Compare
682 a number of bits at the end of the region, starting from an exact
683 byte boundary. */
684 bits = length_bits % TARGET_CHAR_BIT;
685 o1 = offset1_bits + length_bits - bits;
686 o2 = offset2_bits + length_bits - bits;
687
688 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
689 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
690
691 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
692 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
693
694 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
695 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
696
697 if (b1 != b2)
698 return 1;
699
700 length_bits -= bits;
701 }
702
703 if (length_bits > 0)
704 {
705 /* We've now taken care of any stray "bits" at the start, or end of
706 the region to compare, the remainder can be covered with a simple
707 memcmp. */
708 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
709 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
710 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
711
712 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
713 ptr2 + offset2_bits / TARGET_CHAR_BIT,
714 length_bits / TARGET_CHAR_BIT);
715 }
716
717 /* Length is zero, regions match. */
718 return 0;
719}
720
9a0dc9e3
PA
721/* Helper struct for find_first_range_overlap_and_match and
722 value_contents_bits_eq. Keep track of which slot of a given ranges
723 vector have we last looked at. */
bdf22206 724
9a0dc9e3
PA
725struct ranges_and_idx
726{
727 /* The ranges. */
728 VEC(range_s) *ranges;
729
730 /* The range we've last found in RANGES. Given ranges are sorted,
731 we can start the next lookup here. */
732 int idx;
733};
734
735/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
736 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
737 ranges starting at OFFSET2 bits. Return true if the ranges match
738 and fill in *L and *H with the overlapping window relative to
739 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
740
741static int
9a0dc9e3
PA
742find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
743 struct ranges_and_idx *rp2,
744 int offset1, int offset2,
745 int length, ULONGEST *l, ULONGEST *h)
c8c1c22f 746{
9a0dc9e3
PA
747 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
748 offset1, length);
749 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
750 offset2, length);
c8c1c22f 751
9a0dc9e3
PA
752 if (rp1->idx == -1 && rp2->idx == -1)
753 {
754 *l = length;
755 *h = length;
756 return 1;
757 }
758 else if (rp1->idx == -1 || rp2->idx == -1)
759 return 0;
760 else
c8c1c22f
PA
761 {
762 range_s *r1, *r2;
763 ULONGEST l1, h1;
764 ULONGEST l2, h2;
765
9a0dc9e3
PA
766 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
767 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
768
769 /* Get the unavailable windows intersected by the incoming
770 ranges. The first and last ranges that overlap the argument
771 range may be wider than said incoming arguments ranges. */
772 l1 = max (offset1, r1->offset);
773 h1 = min (offset1 + length, r1->offset + r1->length);
774
775 l2 = max (offset2, r2->offset);
9a0dc9e3 776 h2 = min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
777
778 /* Make them relative to the respective start offsets, so we can
779 compare them for equality. */
780 l1 -= offset1;
781 h1 -= offset1;
782
783 l2 -= offset2;
784 h2 -= offset2;
785
9a0dc9e3 786 /* Different ranges, no match. */
c8c1c22f
PA
787 if (l1 != l2 || h1 != h2)
788 return 0;
789
9a0dc9e3
PA
790 *h = h1;
791 *l = l1;
792 return 1;
793 }
794}
795
796/* Helper function for value_contents_eq. The only difference is that
797 this function is bit rather than byte based.
798
799 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
800 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
801 Return true if the available bits match. */
802
803static int
804value_contents_bits_eq (const struct value *val1, int offset1,
805 const struct value *val2, int offset2,
806 int length)
807{
808 /* Each array element corresponds to a ranges source (unavailable,
809 optimized out). '1' is for VAL1, '2' for VAL2. */
810 struct ranges_and_idx rp1[2], rp2[2];
811
812 /* See function description in value.h. */
813 gdb_assert (!val1->lazy && !val2->lazy);
814
815 /* We shouldn't be trying to compare past the end of the values. */
816 gdb_assert (offset1 + length
817 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
818 gdb_assert (offset2 + length
819 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
820
821 memset (&rp1, 0, sizeof (rp1));
822 memset (&rp2, 0, sizeof (rp2));
823 rp1[0].ranges = val1->unavailable;
824 rp2[0].ranges = val2->unavailable;
825 rp1[1].ranges = val1->optimized_out;
826 rp2[1].ranges = val2->optimized_out;
827
828 while (length > 0)
829 {
830 ULONGEST l, h;
831 int i;
832
833 for (i = 0; i < 2; i++)
834 {
835 ULONGEST l_tmp, h_tmp;
836
837 /* The contents only match equal if the invalid/unavailable
838 contents ranges match as well. */
839 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
840 offset1, offset2, length,
841 &l_tmp, &h_tmp))
842 return 0;
843
844 /* We're interested in the lowest/first range found. */
845 if (i == 0 || l_tmp < l)
846 {
847 l = l_tmp;
848 h = h_tmp;
849 }
850 }
851
852 /* Compare the available/valid contents. */
bdf22206 853 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 854 val2->contents, offset2, l) != 0)
c8c1c22f
PA
855 return 0;
856
9a0dc9e3
PA
857 length -= h;
858 offset1 += h;
859 offset2 += h;
c8c1c22f
PA
860 }
861
862 return 1;
863}
864
bdf22206 865int
9a0dc9e3
PA
866value_contents_eq (const struct value *val1, int offset1,
867 const struct value *val2, int offset2,
868 int length)
bdf22206 869{
9a0dc9e3
PA
870 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
871 val2, offset2 * TARGET_CHAR_BIT,
872 length * TARGET_CHAR_BIT);
bdf22206
AB
873}
874
581e13c1 875/* Prototypes for local functions. */
c906108c 876
a14ed312 877static void show_values (char *, int);
c906108c 878
a14ed312 879static void show_convenience (char *, int);
c906108c 880
c906108c
SS
881
882/* The value-history records all the values printed
883 by print commands during this session. Each chunk
884 records 60 consecutive values. The first chunk on
885 the chain records the most recent values.
886 The total number of values is in value_history_count. */
887
888#define VALUE_HISTORY_CHUNK 60
889
890struct value_history_chunk
c5aa993b
JM
891 {
892 struct value_history_chunk *next;
f23631e4 893 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 894 };
c906108c
SS
895
896/* Chain of chunks now in use. */
897
898static struct value_history_chunk *value_history_chain;
899
581e13c1 900static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 901
c906108c
SS
902\f
903/* List of all value objects currently allocated
904 (except for those released by calls to release_value)
905 This is so they can be freed after each command. */
906
f23631e4 907static struct value *all_values;
c906108c 908
3e3d7139
JG
909/* Allocate a lazy value for type TYPE. Its actual content is
910 "lazily" allocated too: the content field of the return value is
911 NULL; it will be allocated when it is fetched from the target. */
c906108c 912
f23631e4 913struct value *
3e3d7139 914allocate_value_lazy (struct type *type)
c906108c 915{
f23631e4 916 struct value *val;
c54eabfa
JK
917
918 /* Call check_typedef on our type to make sure that, if TYPE
919 is a TYPE_CODE_TYPEDEF, its length is set to the length
920 of the target type instead of zero. However, we do not
921 replace the typedef type by the target type, because we want
922 to keep the typedef in order to be able to set the VAL's type
923 description correctly. */
924 check_typedef (type);
c906108c 925
3e3d7139
JG
926 val = (struct value *) xzalloc (sizeof (struct value));
927 val->contents = NULL;
df407dfe 928 val->next = all_values;
c906108c 929 all_values = val;
df407dfe 930 val->type = type;
4754a64e 931 val->enclosing_type = type;
c906108c 932 VALUE_LVAL (val) = not_lval;
42ae5230 933 val->location.address = 0;
1df6926e 934 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
935 val->offset = 0;
936 val->bitpos = 0;
937 val->bitsize = 0;
9ee8fc9d 938 VALUE_REGNUM (val) = -1;
3e3d7139 939 val->lazy = 1;
13c3b5f5 940 val->embedded_offset = 0;
b44d461b 941 val->pointed_to_offset = 0;
c906108c 942 val->modifiable = 1;
42be36b3 943 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
944
945 /* Values start out on the all_values chain. */
946 val->reference_count = 1;
947
c906108c
SS
948 return val;
949}
950
3e3d7139
JG
951/* Allocate the contents of VAL if it has not been allocated yet. */
952
548b762d 953static void
3e3d7139
JG
954allocate_value_contents (struct value *val)
955{
956 if (!val->contents)
957 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
958}
959
960/* Allocate a value and its contents for type TYPE. */
961
962struct value *
963allocate_value (struct type *type)
964{
965 struct value *val = allocate_value_lazy (type);
a109c7c1 966
3e3d7139
JG
967 allocate_value_contents (val);
968 val->lazy = 0;
969 return val;
970}
971
c906108c 972/* Allocate a value that has the correct length
938f5214 973 for COUNT repetitions of type TYPE. */
c906108c 974
f23631e4 975struct value *
fba45db2 976allocate_repeat_value (struct type *type, int count)
c906108c 977{
c5aa993b 978 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
979 /* FIXME-type-allocation: need a way to free this type when we are
980 done with it. */
e3506a9f
UW
981 struct type *array_type
982 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 983
e3506a9f 984 return allocate_value (array_type);
c906108c
SS
985}
986
5f5233d4
PA
987struct value *
988allocate_computed_value (struct type *type,
c8f2448a 989 const struct lval_funcs *funcs,
5f5233d4
PA
990 void *closure)
991{
41e8491f 992 struct value *v = allocate_value_lazy (type);
a109c7c1 993
5f5233d4
PA
994 VALUE_LVAL (v) = lval_computed;
995 v->location.computed.funcs = funcs;
996 v->location.computed.closure = closure;
5f5233d4
PA
997
998 return v;
999}
1000
a7035dbb
JK
1001/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1002
1003struct value *
1004allocate_optimized_out_value (struct type *type)
1005{
1006 struct value *retval = allocate_value_lazy (type);
1007
9a0dc9e3
PA
1008 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1009 set_value_lazy (retval, 0);
a7035dbb
JK
1010 return retval;
1011}
1012
df407dfe
AC
1013/* Accessor methods. */
1014
17cf0ecd
AC
1015struct value *
1016value_next (struct value *value)
1017{
1018 return value->next;
1019}
1020
df407dfe 1021struct type *
0e03807e 1022value_type (const struct value *value)
df407dfe
AC
1023{
1024 return value->type;
1025}
04624583
AC
1026void
1027deprecated_set_value_type (struct value *value, struct type *type)
1028{
1029 value->type = type;
1030}
df407dfe
AC
1031
1032int
0e03807e 1033value_offset (const struct value *value)
df407dfe
AC
1034{
1035 return value->offset;
1036}
f5cf64a7
AC
1037void
1038set_value_offset (struct value *value, int offset)
1039{
1040 value->offset = offset;
1041}
df407dfe
AC
1042
1043int
0e03807e 1044value_bitpos (const struct value *value)
df407dfe
AC
1045{
1046 return value->bitpos;
1047}
9bbda503
AC
1048void
1049set_value_bitpos (struct value *value, int bit)
1050{
1051 value->bitpos = bit;
1052}
df407dfe
AC
1053
1054int
0e03807e 1055value_bitsize (const struct value *value)
df407dfe
AC
1056{
1057 return value->bitsize;
1058}
9bbda503
AC
1059void
1060set_value_bitsize (struct value *value, int bit)
1061{
1062 value->bitsize = bit;
1063}
df407dfe 1064
4ea48cc1
DJ
1065struct value *
1066value_parent (struct value *value)
1067{
1068 return value->parent;
1069}
1070
53ba8333
JB
1071/* See value.h. */
1072
1073void
1074set_value_parent (struct value *value, struct value *parent)
1075{
40501e00
TT
1076 struct value *old = value->parent;
1077
53ba8333 1078 value->parent = parent;
40501e00
TT
1079 if (parent != NULL)
1080 value_incref (parent);
1081 value_free (old);
53ba8333
JB
1082}
1083
fc1a4b47 1084gdb_byte *
990a07ab
AC
1085value_contents_raw (struct value *value)
1086{
3e3d7139
JG
1087 allocate_value_contents (value);
1088 return value->contents + value->embedded_offset;
990a07ab
AC
1089}
1090
fc1a4b47 1091gdb_byte *
990a07ab
AC
1092value_contents_all_raw (struct value *value)
1093{
3e3d7139
JG
1094 allocate_value_contents (value);
1095 return value->contents;
990a07ab
AC
1096}
1097
4754a64e
AC
1098struct type *
1099value_enclosing_type (struct value *value)
1100{
1101 return value->enclosing_type;
1102}
1103
8264ba82
AG
1104/* Look at value.h for description. */
1105
1106struct type *
1107value_actual_type (struct value *value, int resolve_simple_types,
1108 int *real_type_found)
1109{
1110 struct value_print_options opts;
8264ba82
AG
1111 struct type *result;
1112
1113 get_user_print_options (&opts);
1114
1115 if (real_type_found)
1116 *real_type_found = 0;
1117 result = value_type (value);
1118 if (opts.objectprint)
1119 {
5e34c6c3
LM
1120 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1121 fetch its rtti type. */
1122 if ((TYPE_CODE (result) == TYPE_CODE_PTR
8264ba82 1123 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3
LM
1124 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1125 == TYPE_CODE_STRUCT)
8264ba82
AG
1126 {
1127 struct type *real_type;
1128
1129 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1130 if (real_type)
1131 {
1132 if (real_type_found)
1133 *real_type_found = 1;
1134 result = real_type;
1135 }
1136 }
1137 else if (resolve_simple_types)
1138 {
1139 if (real_type_found)
1140 *real_type_found = 1;
1141 result = value_enclosing_type (value);
1142 }
1143 }
1144
1145 return result;
1146}
1147
901461f8
PA
1148void
1149error_value_optimized_out (void)
1150{
1151 error (_("value has been optimized out"));
1152}
1153
0e03807e 1154static void
4e07d55f 1155require_not_optimized_out (const struct value *value)
0e03807e 1156{
9a0dc9e3 1157 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1158 {
1159 if (value->lval == lval_register)
1160 error (_("register has not been saved in frame"));
1161 else
1162 error_value_optimized_out ();
1163 }
0e03807e
TT
1164}
1165
4e07d55f
PA
1166static void
1167require_available (const struct value *value)
1168{
1169 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1170 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1171}
1172
fc1a4b47 1173const gdb_byte *
0e03807e 1174value_contents_for_printing (struct value *value)
46615f07
AC
1175{
1176 if (value->lazy)
1177 value_fetch_lazy (value);
3e3d7139 1178 return value->contents;
46615f07
AC
1179}
1180
de4127a3
PA
1181const gdb_byte *
1182value_contents_for_printing_const (const struct value *value)
1183{
1184 gdb_assert (!value->lazy);
1185 return value->contents;
1186}
1187
0e03807e
TT
1188const gdb_byte *
1189value_contents_all (struct value *value)
1190{
1191 const gdb_byte *result = value_contents_for_printing (value);
1192 require_not_optimized_out (value);
4e07d55f 1193 require_available (value);
0e03807e
TT
1194 return result;
1195}
1196
9a0dc9e3
PA
1197/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1198 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1199
1200static void
1201ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1202 VEC (range_s) *src_range, int src_bit_offset,
1203 int bit_length)
1204{
1205 range_s *r;
1206 int i;
1207
1208 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1209 {
1210 ULONGEST h, l;
1211
1212 l = max (r->offset, src_bit_offset);
1213 h = min (r->offset + r->length, src_bit_offset + bit_length);
1214
1215 if (l < h)
1216 insert_into_bit_range_vector (dst_range,
1217 dst_bit_offset + (l - src_bit_offset),
1218 h - l);
1219 }
1220}
1221
29976f3f
PA
1222/* Copy LENGTH bytes of SRC value's (all) contents
1223 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1224 contents, starting at DST_OFFSET. If unavailable contents are
1225 being copied from SRC, the corresponding DST contents are marked
1226 unavailable accordingly. Neither DST nor SRC may be lazy
1227 values.
1228
1229 It is assumed the contents of DST in the [DST_OFFSET,
1230 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1231
1232void
1233value_contents_copy_raw (struct value *dst, int dst_offset,
1234 struct value *src, int src_offset, int length)
1235{
1236 range_s *r;
1237 int i;
bdf22206 1238 int src_bit_offset, dst_bit_offset, bit_length;
39d37385
PA
1239
1240 /* A lazy DST would make that this copy operation useless, since as
1241 soon as DST's contents were un-lazied (by a later value_contents
1242 call, say), the contents would be overwritten. A lazy SRC would
1243 mean we'd be copying garbage. */
1244 gdb_assert (!dst->lazy && !src->lazy);
1245
29976f3f
PA
1246 /* The overwritten DST range gets unavailability ORed in, not
1247 replaced. Make sure to remember to implement replacing if it
1248 turns out actually necessary. */
1249 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1250 gdb_assert (!value_bits_any_optimized_out (dst,
1251 TARGET_CHAR_BIT * dst_offset,
1252 TARGET_CHAR_BIT * length));
29976f3f 1253
39d37385
PA
1254 /* Copy the data. */
1255 memcpy (value_contents_all_raw (dst) + dst_offset,
1256 value_contents_all_raw (src) + src_offset,
1257 length);
1258
1259 /* Copy the meta-data, adjusted. */
bdf22206
AB
1260 src_bit_offset = src_offset * TARGET_CHAR_BIT;
1261 dst_bit_offset = dst_offset * TARGET_CHAR_BIT;
1262 bit_length = length * TARGET_CHAR_BIT;
39d37385 1263
9a0dc9e3
PA
1264 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1265 src->unavailable, src_bit_offset,
1266 bit_length);
39d37385 1267
9a0dc9e3
PA
1268 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1269 src->optimized_out, src_bit_offset,
1270 bit_length);
39d37385
PA
1271}
1272
29976f3f
PA
1273/* Copy LENGTH bytes of SRC value's (all) contents
1274 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1275 (all) contents, starting at DST_OFFSET. If unavailable contents
1276 are being copied from SRC, the corresponding DST contents are
1277 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1278 lazy, it will be fetched now.
29976f3f
PA
1279
1280 It is assumed the contents of DST in the [DST_OFFSET,
1281 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1282
1283void
1284value_contents_copy (struct value *dst, int dst_offset,
1285 struct value *src, int src_offset, int length)
1286{
39d37385
PA
1287 if (src->lazy)
1288 value_fetch_lazy (src);
1289
1290 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1291}
1292
d69fe07e
AC
1293int
1294value_lazy (struct value *value)
1295{
1296 return value->lazy;
1297}
1298
dfa52d88
AC
1299void
1300set_value_lazy (struct value *value, int val)
1301{
1302 value->lazy = val;
1303}
1304
4e5d721f
DE
1305int
1306value_stack (struct value *value)
1307{
1308 return value->stack;
1309}
1310
1311void
1312set_value_stack (struct value *value, int val)
1313{
1314 value->stack = val;
1315}
1316
fc1a4b47 1317const gdb_byte *
0fd88904
AC
1318value_contents (struct value *value)
1319{
0e03807e
TT
1320 const gdb_byte *result = value_contents_writeable (value);
1321 require_not_optimized_out (value);
4e07d55f 1322 require_available (value);
0e03807e 1323 return result;
0fd88904
AC
1324}
1325
fc1a4b47 1326gdb_byte *
0fd88904
AC
1327value_contents_writeable (struct value *value)
1328{
1329 if (value->lazy)
1330 value_fetch_lazy (value);
fc0c53a0 1331 return value_contents_raw (value);
0fd88904
AC
1332}
1333
feb13ab0
AC
1334int
1335value_optimized_out (struct value *value)
1336{
691a26f5
AB
1337 /* We can only know if a value is optimized out once we have tried to
1338 fetch it. */
9a0dc9e3 1339 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
691a26f5
AB
1340 value_fetch_lazy (value);
1341
9a0dc9e3 1342 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1343}
1344
9a0dc9e3
PA
1345/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1346 the following LENGTH bytes. */
eca07816 1347
feb13ab0 1348void
9a0dc9e3 1349mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1350{
9a0dc9e3
PA
1351 mark_value_bits_optimized_out (value,
1352 offset * TARGET_CHAR_BIT,
1353 length * TARGET_CHAR_BIT);
feb13ab0 1354}
13c3b5f5 1355
9a0dc9e3 1356/* See value.h. */
0e03807e 1357
9a0dc9e3
PA
1358void
1359mark_value_bits_optimized_out (struct value *value, int offset, int length)
0e03807e 1360{
9a0dc9e3 1361 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1362}
1363
8cf6f0b1
TT
1364int
1365value_bits_synthetic_pointer (const struct value *value,
1366 int offset, int length)
1367{
e7303042 1368 if (value->lval != lval_computed
8cf6f0b1
TT
1369 || !value->location.computed.funcs->check_synthetic_pointer)
1370 return 0;
1371 return value->location.computed.funcs->check_synthetic_pointer (value,
1372 offset,
1373 length);
1374}
1375
13c3b5f5
AC
1376int
1377value_embedded_offset (struct value *value)
1378{
1379 return value->embedded_offset;
1380}
1381
1382void
1383set_value_embedded_offset (struct value *value, int val)
1384{
1385 value->embedded_offset = val;
1386}
b44d461b
AC
1387
1388int
1389value_pointed_to_offset (struct value *value)
1390{
1391 return value->pointed_to_offset;
1392}
1393
1394void
1395set_value_pointed_to_offset (struct value *value, int val)
1396{
1397 value->pointed_to_offset = val;
1398}
13bb5560 1399
c8f2448a 1400const struct lval_funcs *
a471c594 1401value_computed_funcs (const struct value *v)
5f5233d4 1402{
a471c594 1403 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1404
1405 return v->location.computed.funcs;
1406}
1407
1408void *
0e03807e 1409value_computed_closure (const struct value *v)
5f5233d4 1410{
0e03807e 1411 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1412
1413 return v->location.computed.closure;
1414}
1415
13bb5560
AC
1416enum lval_type *
1417deprecated_value_lval_hack (struct value *value)
1418{
1419 return &value->lval;
1420}
1421
a471c594
JK
1422enum lval_type
1423value_lval_const (const struct value *value)
1424{
1425 return value->lval;
1426}
1427
42ae5230 1428CORE_ADDR
de4127a3 1429value_address (const struct value *value)
42ae5230
TT
1430{
1431 if (value->lval == lval_internalvar
e81e7f5e
SC
1432 || value->lval == lval_internalvar_component
1433 || value->lval == lval_xcallable)
42ae5230 1434 return 0;
53ba8333
JB
1435 if (value->parent != NULL)
1436 return value_address (value->parent) + value->offset;
1437 else
1438 return value->location.address + value->offset;
42ae5230
TT
1439}
1440
1441CORE_ADDR
1442value_raw_address (struct value *value)
1443{
1444 if (value->lval == lval_internalvar
e81e7f5e
SC
1445 || value->lval == lval_internalvar_component
1446 || value->lval == lval_xcallable)
42ae5230
TT
1447 return 0;
1448 return value->location.address;
1449}
1450
1451void
1452set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1453{
42ae5230 1454 gdb_assert (value->lval != lval_internalvar
e81e7f5e
SC
1455 && value->lval != lval_internalvar_component
1456 && value->lval != lval_xcallable);
42ae5230 1457 value->location.address = addr;
13bb5560
AC
1458}
1459
1460struct internalvar **
1461deprecated_value_internalvar_hack (struct value *value)
1462{
1463 return &value->location.internalvar;
1464}
1465
1466struct frame_id *
1467deprecated_value_frame_id_hack (struct value *value)
1468{
1469 return &value->frame_id;
1470}
1471
1472short *
1473deprecated_value_regnum_hack (struct value *value)
1474{
1475 return &value->regnum;
1476}
88e3b34b
AC
1477
1478int
1479deprecated_value_modifiable (struct value *value)
1480{
1481 return value->modifiable;
1482}
990a07ab 1483\f
c906108c
SS
1484/* Return a mark in the value chain. All values allocated after the
1485 mark is obtained (except for those released) are subject to being freed
1486 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1487struct value *
fba45db2 1488value_mark (void)
c906108c
SS
1489{
1490 return all_values;
1491}
1492
828d3400
DJ
1493/* Take a reference to VAL. VAL will not be deallocated until all
1494 references are released. */
1495
1496void
1497value_incref (struct value *val)
1498{
1499 val->reference_count++;
1500}
1501
1502/* Release a reference to VAL, which was acquired with value_incref.
1503 This function is also called to deallocate values from the value
1504 chain. */
1505
3e3d7139
JG
1506void
1507value_free (struct value *val)
1508{
1509 if (val)
5f5233d4 1510 {
828d3400
DJ
1511 gdb_assert (val->reference_count > 0);
1512 val->reference_count--;
1513 if (val->reference_count > 0)
1514 return;
1515
4ea48cc1
DJ
1516 /* If there's an associated parent value, drop our reference to
1517 it. */
1518 if (val->parent != NULL)
1519 value_free (val->parent);
1520
5f5233d4
PA
1521 if (VALUE_LVAL (val) == lval_computed)
1522 {
c8f2448a 1523 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1524
1525 if (funcs->free_closure)
1526 funcs->free_closure (val);
1527 }
e81e7f5e
SC
1528 else if (VALUE_LVAL (val) == lval_xcallable)
1529 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1530
1531 xfree (val->contents);
4e07d55f 1532 VEC_free (range_s, val->unavailable);
5f5233d4 1533 }
3e3d7139
JG
1534 xfree (val);
1535}
1536
c906108c
SS
1537/* Free all values allocated since MARK was obtained by value_mark
1538 (except for those released). */
1539void
f23631e4 1540value_free_to_mark (struct value *mark)
c906108c 1541{
f23631e4
AC
1542 struct value *val;
1543 struct value *next;
c906108c
SS
1544
1545 for (val = all_values; val && val != mark; val = next)
1546 {
df407dfe 1547 next = val->next;
e848a8a5 1548 val->released = 1;
c906108c
SS
1549 value_free (val);
1550 }
1551 all_values = val;
1552}
1553
1554/* Free all the values that have been allocated (except for those released).
725e88af
DE
1555 Call after each command, successful or not.
1556 In practice this is called before each command, which is sufficient. */
c906108c
SS
1557
1558void
fba45db2 1559free_all_values (void)
c906108c 1560{
f23631e4
AC
1561 struct value *val;
1562 struct value *next;
c906108c
SS
1563
1564 for (val = all_values; val; val = next)
1565 {
df407dfe 1566 next = val->next;
e848a8a5 1567 val->released = 1;
c906108c
SS
1568 value_free (val);
1569 }
1570
1571 all_values = 0;
1572}
1573
0cf6dd15
TJB
1574/* Frees all the elements in a chain of values. */
1575
1576void
1577free_value_chain (struct value *v)
1578{
1579 struct value *next;
1580
1581 for (; v; v = next)
1582 {
1583 next = value_next (v);
1584 value_free (v);
1585 }
1586}
1587
c906108c
SS
1588/* Remove VAL from the chain all_values
1589 so it will not be freed automatically. */
1590
1591void
f23631e4 1592release_value (struct value *val)
c906108c 1593{
f23631e4 1594 struct value *v;
c906108c
SS
1595
1596 if (all_values == val)
1597 {
1598 all_values = val->next;
06a64a0b 1599 val->next = NULL;
e848a8a5 1600 val->released = 1;
c906108c
SS
1601 return;
1602 }
1603
1604 for (v = all_values; v; v = v->next)
1605 {
1606 if (v->next == val)
1607 {
1608 v->next = val->next;
06a64a0b 1609 val->next = NULL;
e848a8a5 1610 val->released = 1;
c906108c
SS
1611 break;
1612 }
1613 }
1614}
1615
e848a8a5
TT
1616/* If the value is not already released, release it.
1617 If the value is already released, increment its reference count.
1618 That is, this function ensures that the value is released from the
1619 value chain and that the caller owns a reference to it. */
1620
1621void
1622release_value_or_incref (struct value *val)
1623{
1624 if (val->released)
1625 value_incref (val);
1626 else
1627 release_value (val);
1628}
1629
c906108c 1630/* Release all values up to mark */
f23631e4
AC
1631struct value *
1632value_release_to_mark (struct value *mark)
c906108c 1633{
f23631e4
AC
1634 struct value *val;
1635 struct value *next;
c906108c 1636
df407dfe 1637 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1638 {
1639 if (next->next == mark)
1640 {
1641 all_values = next->next;
1642 next->next = NULL;
1643 return val;
1644 }
1645 next->released = 1;
1646 }
c906108c
SS
1647 all_values = 0;
1648 return val;
1649}
1650
1651/* Return a copy of the value ARG.
1652 It contains the same contents, for same memory address,
1653 but it's a different block of storage. */
1654
f23631e4
AC
1655struct value *
1656value_copy (struct value *arg)
c906108c 1657{
4754a64e 1658 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1659 struct value *val;
1660
1661 if (value_lazy (arg))
1662 val = allocate_value_lazy (encl_type);
1663 else
1664 val = allocate_value (encl_type);
df407dfe 1665 val->type = arg->type;
c906108c 1666 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1667 val->location = arg->location;
df407dfe
AC
1668 val->offset = arg->offset;
1669 val->bitpos = arg->bitpos;
1670 val->bitsize = arg->bitsize;
1df6926e 1671 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1672 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1673 val->lazy = arg->lazy;
13c3b5f5 1674 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1675 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1676 val->modifiable = arg->modifiable;
d69fe07e 1677 if (!value_lazy (val))
c906108c 1678 {
990a07ab 1679 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1680 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1681
1682 }
4e07d55f 1683 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1684 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1685 set_value_parent (val, arg->parent);
5f5233d4
PA
1686 if (VALUE_LVAL (val) == lval_computed)
1687 {
c8f2448a 1688 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1689
1690 if (funcs->copy_closure)
1691 val->location.computed.closure = funcs->copy_closure (val);
1692 }
c906108c
SS
1693 return val;
1694}
74bcbdf3 1695
c37f7098
KW
1696/* Return a version of ARG that is non-lvalue. */
1697
1698struct value *
1699value_non_lval (struct value *arg)
1700{
1701 if (VALUE_LVAL (arg) != not_lval)
1702 {
1703 struct type *enc_type = value_enclosing_type (arg);
1704 struct value *val = allocate_value (enc_type);
1705
1706 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1707 TYPE_LENGTH (enc_type));
1708 val->type = arg->type;
1709 set_value_embedded_offset (val, value_embedded_offset (arg));
1710 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1711 return val;
1712 }
1713 return arg;
1714}
1715
74bcbdf3 1716void
0e03807e
TT
1717set_value_component_location (struct value *component,
1718 const struct value *whole)
74bcbdf3 1719{
e81e7f5e
SC
1720 gdb_assert (whole->lval != lval_xcallable);
1721
0e03807e 1722 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1723 VALUE_LVAL (component) = lval_internalvar_component;
1724 else
0e03807e 1725 VALUE_LVAL (component) = whole->lval;
5f5233d4 1726
74bcbdf3 1727 component->location = whole->location;
0e03807e 1728 if (whole->lval == lval_computed)
5f5233d4 1729 {
c8f2448a 1730 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1731
1732 if (funcs->copy_closure)
1733 component->location.computed.closure = funcs->copy_closure (whole);
1734 }
74bcbdf3
PA
1735}
1736
c906108c
SS
1737\f
1738/* Access to the value history. */
1739
1740/* Record a new value in the value history.
eddf0bae 1741 Returns the absolute history index of the entry. */
c906108c
SS
1742
1743int
f23631e4 1744record_latest_value (struct value *val)
c906108c
SS
1745{
1746 int i;
1747
1748 /* We don't want this value to have anything to do with the inferior anymore.
1749 In particular, "set $1 = 50" should not affect the variable from which
1750 the value was taken, and fast watchpoints should be able to assume that
1751 a value on the value history never changes. */
d69fe07e 1752 if (value_lazy (val))
c906108c
SS
1753 value_fetch_lazy (val);
1754 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1755 from. This is a bit dubious, because then *&$1 does not just return $1
1756 but the current contents of that location. c'est la vie... */
1757 val->modifiable = 0;
350e1a76
DE
1758
1759 /* The value may have already been released, in which case we're adding a
1760 new reference for its entry in the history. That is why we call
1761 release_value_or_incref here instead of release_value. */
1762 release_value_or_incref (val);
c906108c
SS
1763
1764 /* Here we treat value_history_count as origin-zero
1765 and applying to the value being stored now. */
1766
1767 i = value_history_count % VALUE_HISTORY_CHUNK;
1768 if (i == 0)
1769 {
f23631e4 1770 struct value_history_chunk *new
a109c7c1
MS
1771 = (struct value_history_chunk *)
1772
c5aa993b 1773 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
1774 memset (new->values, 0, sizeof new->values);
1775 new->next = value_history_chain;
1776 value_history_chain = new;
1777 }
1778
1779 value_history_chain->values[i] = val;
1780
1781 /* Now we regard value_history_count as origin-one
1782 and applying to the value just stored. */
1783
1784 return ++value_history_count;
1785}
1786
1787/* Return a copy of the value in the history with sequence number NUM. */
1788
f23631e4 1789struct value *
fba45db2 1790access_value_history (int num)
c906108c 1791{
f23631e4 1792 struct value_history_chunk *chunk;
52f0bd74
AC
1793 int i;
1794 int absnum = num;
c906108c
SS
1795
1796 if (absnum <= 0)
1797 absnum += value_history_count;
1798
1799 if (absnum <= 0)
1800 {
1801 if (num == 0)
8a3fe4f8 1802 error (_("The history is empty."));
c906108c 1803 else if (num == 1)
8a3fe4f8 1804 error (_("There is only one value in the history."));
c906108c 1805 else
8a3fe4f8 1806 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1807 }
1808 if (absnum > value_history_count)
8a3fe4f8 1809 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1810
1811 absnum--;
1812
1813 /* Now absnum is always absolute and origin zero. */
1814
1815 chunk = value_history_chain;
3e43a32a
MS
1816 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1817 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1818 i > 0; i--)
1819 chunk = chunk->next;
1820
1821 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1822}
1823
c906108c 1824static void
fba45db2 1825show_values (char *num_exp, int from_tty)
c906108c 1826{
52f0bd74 1827 int i;
f23631e4 1828 struct value *val;
c906108c
SS
1829 static int num = 1;
1830
1831 if (num_exp)
1832 {
f132ba9d
TJB
1833 /* "show values +" should print from the stored position.
1834 "show values <exp>" should print around value number <exp>. */
c906108c 1835 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1836 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1837 }
1838 else
1839 {
f132ba9d 1840 /* "show values" means print the last 10 values. */
c906108c
SS
1841 num = value_history_count - 9;
1842 }
1843
1844 if (num <= 0)
1845 num = 1;
1846
1847 for (i = num; i < num + 10 && i <= value_history_count; i++)
1848 {
79a45b7d 1849 struct value_print_options opts;
a109c7c1 1850
c906108c 1851 val = access_value_history (i);
a3f17187 1852 printf_filtered (("$%d = "), i);
79a45b7d
TT
1853 get_user_print_options (&opts);
1854 value_print (val, gdb_stdout, &opts);
a3f17187 1855 printf_filtered (("\n"));
c906108c
SS
1856 }
1857
f132ba9d 1858 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1859 num += 10;
1860
1861 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1862 "show values +". If num_exp is null, this is unnecessary, since
1863 "show values +" is not useful after "show values". */
c906108c
SS
1864 if (from_tty && num_exp)
1865 {
1866 num_exp[0] = '+';
1867 num_exp[1] = '\0';
1868 }
1869}
1870\f
1871/* Internal variables. These are variables within the debugger
1872 that hold values assigned by debugger commands.
1873 The user refers to them with a '$' prefix
1874 that does not appear in the variable names stored internally. */
1875
4fa62494
UW
1876struct internalvar
1877{
1878 struct internalvar *next;
1879 char *name;
4fa62494 1880
78267919
UW
1881 /* We support various different kinds of content of an internal variable.
1882 enum internalvar_kind specifies the kind, and union internalvar_data
1883 provides the data associated with this particular kind. */
1884
1885 enum internalvar_kind
1886 {
1887 /* The internal variable is empty. */
1888 INTERNALVAR_VOID,
1889
1890 /* The value of the internal variable is provided directly as
1891 a GDB value object. */
1892 INTERNALVAR_VALUE,
1893
1894 /* A fresh value is computed via a call-back routine on every
1895 access to the internal variable. */
1896 INTERNALVAR_MAKE_VALUE,
4fa62494 1897
78267919
UW
1898 /* The internal variable holds a GDB internal convenience function. */
1899 INTERNALVAR_FUNCTION,
1900
cab0c772
UW
1901 /* The variable holds an integer value. */
1902 INTERNALVAR_INTEGER,
1903
78267919
UW
1904 /* The variable holds a GDB-provided string. */
1905 INTERNALVAR_STRING,
1906
1907 } kind;
4fa62494 1908
4fa62494
UW
1909 union internalvar_data
1910 {
78267919
UW
1911 /* A value object used with INTERNALVAR_VALUE. */
1912 struct value *value;
1913
1914 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
22d2b532
SDJ
1915 struct
1916 {
1917 /* The functions to call. */
1918 const struct internalvar_funcs *functions;
1919
1920 /* The function's user-data. */
1921 void *data;
1922 } make_value;
78267919
UW
1923
1924 /* The internal function used with INTERNALVAR_FUNCTION. */
1925 struct
1926 {
1927 struct internal_function *function;
1928 /* True if this is the canonical name for the function. */
1929 int canonical;
1930 } fn;
1931
cab0c772 1932 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1933 struct
1934 {
1935 /* If type is non-NULL, it will be used as the type to generate
1936 a value for this internal variable. If type is NULL, a default
1937 integer type for the architecture is used. */
1938 struct type *type;
cab0c772
UW
1939 LONGEST val;
1940 } integer;
1941
78267919
UW
1942 /* A string value used with INTERNALVAR_STRING. */
1943 char *string;
4fa62494
UW
1944 } u;
1945};
1946
c906108c
SS
1947static struct internalvar *internalvars;
1948
3e43a32a
MS
1949/* If the variable does not already exist create it and give it the
1950 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1951static void
1952init_if_undefined_command (char* args, int from_tty)
1953{
1954 struct internalvar* intvar;
1955
1956 /* Parse the expression - this is taken from set_command(). */
1957 struct expression *expr = parse_expression (args);
1958 register struct cleanup *old_chain =
1959 make_cleanup (free_current_contents, &expr);
1960
1961 /* Validate the expression.
1962 Was the expression an assignment?
1963 Or even an expression at all? */
1964 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1965 error (_("Init-if-undefined requires an assignment expression."));
1966
1967 /* Extract the variable from the parsed expression.
1968 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1969 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1970 error (_("The first parameter to init-if-undefined "
1971 "should be a GDB variable."));
53e5f3cf
AS
1972 intvar = expr->elts[2].internalvar;
1973
1974 /* Only evaluate the expression if the lvalue is void.
1975 This may still fail if the expresssion is invalid. */
78267919 1976 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1977 evaluate_expression (expr);
1978
1979 do_cleanups (old_chain);
1980}
1981
1982
c906108c
SS
1983/* Look up an internal variable with name NAME. NAME should not
1984 normally include a dollar sign.
1985
1986 If the specified internal variable does not exist,
c4a3d09a 1987 the return value is NULL. */
c906108c
SS
1988
1989struct internalvar *
bc3b79fd 1990lookup_only_internalvar (const char *name)
c906108c 1991{
52f0bd74 1992 struct internalvar *var;
c906108c
SS
1993
1994 for (var = internalvars; var; var = var->next)
5cb316ef 1995 if (strcmp (var->name, name) == 0)
c906108c
SS
1996 return var;
1997
c4a3d09a
MF
1998 return NULL;
1999}
2000
d55637df
TT
2001/* Complete NAME by comparing it to the names of internal variables.
2002 Returns a vector of newly allocated strings, or NULL if no matches
2003 were found. */
2004
2005VEC (char_ptr) *
2006complete_internalvar (const char *name)
2007{
2008 VEC (char_ptr) *result = NULL;
2009 struct internalvar *var;
2010 int len;
2011
2012 len = strlen (name);
2013
2014 for (var = internalvars; var; var = var->next)
2015 if (strncmp (var->name, name, len) == 0)
2016 {
2017 char *r = xstrdup (var->name);
2018
2019 VEC_safe_push (char_ptr, result, r);
2020 }
2021
2022 return result;
2023}
c4a3d09a
MF
2024
2025/* Create an internal variable with name NAME and with a void value.
2026 NAME should not normally include a dollar sign. */
2027
2028struct internalvar *
bc3b79fd 2029create_internalvar (const char *name)
c4a3d09a
MF
2030{
2031 struct internalvar *var;
a109c7c1 2032
c906108c 2033 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 2034 var->name = concat (name, (char *)NULL);
78267919 2035 var->kind = INTERNALVAR_VOID;
c906108c
SS
2036 var->next = internalvars;
2037 internalvars = var;
2038 return var;
2039}
2040
4aa995e1
PA
2041/* Create an internal variable with name NAME and register FUN as the
2042 function that value_of_internalvar uses to create a value whenever
2043 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2044 dollar sign. DATA is passed uninterpreted to FUN when it is
2045 called. CLEANUP, if not NULL, is called when the internal variable
2046 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2047
2048struct internalvar *
22d2b532
SDJ
2049create_internalvar_type_lazy (const char *name,
2050 const struct internalvar_funcs *funcs,
2051 void *data)
4aa995e1 2052{
4fa62494 2053 struct internalvar *var = create_internalvar (name);
a109c7c1 2054
78267919 2055 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2056 var->u.make_value.functions = funcs;
2057 var->u.make_value.data = data;
4aa995e1
PA
2058 return var;
2059}
c4a3d09a 2060
22d2b532
SDJ
2061/* See documentation in value.h. */
2062
2063int
2064compile_internalvar_to_ax (struct internalvar *var,
2065 struct agent_expr *expr,
2066 struct axs_value *value)
2067{
2068 if (var->kind != INTERNALVAR_MAKE_VALUE
2069 || var->u.make_value.functions->compile_to_ax == NULL)
2070 return 0;
2071
2072 var->u.make_value.functions->compile_to_ax (var, expr, value,
2073 var->u.make_value.data);
2074 return 1;
2075}
2076
c4a3d09a
MF
2077/* Look up an internal variable with name NAME. NAME should not
2078 normally include a dollar sign.
2079
2080 If the specified internal variable does not exist,
2081 one is created, with a void value. */
2082
2083struct internalvar *
bc3b79fd 2084lookup_internalvar (const char *name)
c4a3d09a
MF
2085{
2086 struct internalvar *var;
2087
2088 var = lookup_only_internalvar (name);
2089 if (var)
2090 return var;
2091
2092 return create_internalvar (name);
2093}
2094
78267919
UW
2095/* Return current value of internal variable VAR. For variables that
2096 are not inherently typed, use a value type appropriate for GDBARCH. */
2097
f23631e4 2098struct value *
78267919 2099value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2100{
f23631e4 2101 struct value *val;
0914bcdb
SS
2102 struct trace_state_variable *tsv;
2103
2104 /* If there is a trace state variable of the same name, assume that
2105 is what we really want to see. */
2106 tsv = find_trace_state_variable (var->name);
2107 if (tsv)
2108 {
2109 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2110 &(tsv->value));
2111 if (tsv->value_known)
2112 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2113 tsv->value);
2114 else
2115 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2116 return val;
2117 }
c906108c 2118
78267919 2119 switch (var->kind)
5f5233d4 2120 {
78267919
UW
2121 case INTERNALVAR_VOID:
2122 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2123 break;
4fa62494 2124
78267919
UW
2125 case INTERNALVAR_FUNCTION:
2126 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2127 break;
4fa62494 2128
cab0c772
UW
2129 case INTERNALVAR_INTEGER:
2130 if (!var->u.integer.type)
78267919 2131 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2132 var->u.integer.val);
78267919 2133 else
cab0c772
UW
2134 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2135 break;
2136
78267919
UW
2137 case INTERNALVAR_STRING:
2138 val = value_cstring (var->u.string, strlen (var->u.string),
2139 builtin_type (gdbarch)->builtin_char);
2140 break;
4fa62494 2141
78267919
UW
2142 case INTERNALVAR_VALUE:
2143 val = value_copy (var->u.value);
4aa995e1
PA
2144 if (value_lazy (val))
2145 value_fetch_lazy (val);
78267919 2146 break;
4aa995e1 2147
78267919 2148 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2149 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2150 var->u.make_value.data);
78267919
UW
2151 break;
2152
2153 default:
9b20d036 2154 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2155 }
2156
2157 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2158 on this value go back to affect the original internal variable.
2159
2160 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2161 no underlying modifyable state in the internal variable.
2162
2163 Likewise, if the variable's value is a computed lvalue, we want
2164 references to it to produce another computed lvalue, where
2165 references and assignments actually operate through the
2166 computed value's functions.
2167
2168 This means that internal variables with computed values
2169 behave a little differently from other internal variables:
2170 assignments to them don't just replace the previous value
2171 altogether. At the moment, this seems like the behavior we
2172 want. */
2173
2174 if (var->kind != INTERNALVAR_MAKE_VALUE
2175 && val->lval != lval_computed)
2176 {
2177 VALUE_LVAL (val) = lval_internalvar;
2178 VALUE_INTERNALVAR (val) = var;
5f5233d4 2179 }
d3c139e9 2180
4fa62494
UW
2181 return val;
2182}
d3c139e9 2183
4fa62494
UW
2184int
2185get_internalvar_integer (struct internalvar *var, LONGEST *result)
2186{
3158c6ed 2187 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2188 {
cab0c772
UW
2189 *result = var->u.integer.val;
2190 return 1;
3158c6ed 2191 }
d3c139e9 2192
3158c6ed
PA
2193 if (var->kind == INTERNALVAR_VALUE)
2194 {
2195 struct type *type = check_typedef (value_type (var->u.value));
2196
2197 if (TYPE_CODE (type) == TYPE_CODE_INT)
2198 {
2199 *result = value_as_long (var->u.value);
2200 return 1;
2201 }
4fa62494 2202 }
3158c6ed
PA
2203
2204 return 0;
4fa62494 2205}
d3c139e9 2206
4fa62494
UW
2207static int
2208get_internalvar_function (struct internalvar *var,
2209 struct internal_function **result)
2210{
78267919 2211 switch (var->kind)
d3c139e9 2212 {
78267919
UW
2213 case INTERNALVAR_FUNCTION:
2214 *result = var->u.fn.function;
4fa62494 2215 return 1;
d3c139e9 2216
4fa62494
UW
2217 default:
2218 return 0;
2219 }
c906108c
SS
2220}
2221
2222void
fba45db2 2223set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 2224 int bitsize, struct value *newval)
c906108c 2225{
4fa62494 2226 gdb_byte *addr;
c906108c 2227
78267919 2228 switch (var->kind)
4fa62494 2229 {
78267919
UW
2230 case INTERNALVAR_VALUE:
2231 addr = value_contents_writeable (var->u.value);
4fa62494
UW
2232
2233 if (bitsize)
50810684 2234 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2235 value_as_long (newval), bitpos, bitsize);
2236 else
2237 memcpy (addr + offset, value_contents (newval),
2238 TYPE_LENGTH (value_type (newval)));
2239 break;
78267919
UW
2240
2241 default:
2242 /* We can never get a component of any other kind. */
9b20d036 2243 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2244 }
c906108c
SS
2245}
2246
2247void
f23631e4 2248set_internalvar (struct internalvar *var, struct value *val)
c906108c 2249{
78267919 2250 enum internalvar_kind new_kind;
4fa62494 2251 union internalvar_data new_data = { 0 };
c906108c 2252
78267919 2253 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2254 error (_("Cannot overwrite convenience function %s"), var->name);
2255
4fa62494 2256 /* Prepare new contents. */
78267919 2257 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2258 {
2259 case TYPE_CODE_VOID:
78267919 2260 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2261 break;
2262
2263 case TYPE_CODE_INTERNAL_FUNCTION:
2264 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2265 new_kind = INTERNALVAR_FUNCTION;
2266 get_internalvar_function (VALUE_INTERNALVAR (val),
2267 &new_data.fn.function);
2268 /* Copies created here are never canonical. */
4fa62494
UW
2269 break;
2270
4fa62494 2271 default:
78267919
UW
2272 new_kind = INTERNALVAR_VALUE;
2273 new_data.value = value_copy (val);
2274 new_data.value->modifiable = 1;
4fa62494
UW
2275
2276 /* Force the value to be fetched from the target now, to avoid problems
2277 later when this internalvar is referenced and the target is gone or
2278 has changed. */
78267919
UW
2279 if (value_lazy (new_data.value))
2280 value_fetch_lazy (new_data.value);
4fa62494
UW
2281
2282 /* Release the value from the value chain to prevent it from being
2283 deleted by free_all_values. From here on this function should not
2284 call error () until new_data is installed into the var->u to avoid
2285 leaking memory. */
78267919 2286 release_value (new_data.value);
4fa62494
UW
2287 break;
2288 }
2289
2290 /* Clean up old contents. */
2291 clear_internalvar (var);
2292
2293 /* Switch over. */
78267919 2294 var->kind = new_kind;
4fa62494 2295 var->u = new_data;
c906108c
SS
2296 /* End code which must not call error(). */
2297}
2298
4fa62494
UW
2299void
2300set_internalvar_integer (struct internalvar *var, LONGEST l)
2301{
2302 /* Clean up old contents. */
2303 clear_internalvar (var);
2304
cab0c772
UW
2305 var->kind = INTERNALVAR_INTEGER;
2306 var->u.integer.type = NULL;
2307 var->u.integer.val = l;
78267919
UW
2308}
2309
2310void
2311set_internalvar_string (struct internalvar *var, const char *string)
2312{
2313 /* Clean up old contents. */
2314 clear_internalvar (var);
2315
2316 var->kind = INTERNALVAR_STRING;
2317 var->u.string = xstrdup (string);
4fa62494
UW
2318}
2319
2320static void
2321set_internalvar_function (struct internalvar *var, struct internal_function *f)
2322{
2323 /* Clean up old contents. */
2324 clear_internalvar (var);
2325
78267919
UW
2326 var->kind = INTERNALVAR_FUNCTION;
2327 var->u.fn.function = f;
2328 var->u.fn.canonical = 1;
2329 /* Variables installed here are always the canonical version. */
4fa62494
UW
2330}
2331
2332void
2333clear_internalvar (struct internalvar *var)
2334{
2335 /* Clean up old contents. */
78267919 2336 switch (var->kind)
4fa62494 2337 {
78267919
UW
2338 case INTERNALVAR_VALUE:
2339 value_free (var->u.value);
2340 break;
2341
2342 case INTERNALVAR_STRING:
2343 xfree (var->u.string);
4fa62494
UW
2344 break;
2345
22d2b532
SDJ
2346 case INTERNALVAR_MAKE_VALUE:
2347 if (var->u.make_value.functions->destroy != NULL)
2348 var->u.make_value.functions->destroy (var->u.make_value.data);
2349 break;
2350
4fa62494 2351 default:
4fa62494
UW
2352 break;
2353 }
2354
78267919
UW
2355 /* Reset to void kind. */
2356 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2357}
2358
c906108c 2359char *
fba45db2 2360internalvar_name (struct internalvar *var)
c906108c
SS
2361{
2362 return var->name;
2363}
2364
4fa62494
UW
2365static struct internal_function *
2366create_internal_function (const char *name,
2367 internal_function_fn handler, void *cookie)
bc3b79fd 2368{
bc3b79fd 2369 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2370
bc3b79fd
TJB
2371 ifn->name = xstrdup (name);
2372 ifn->handler = handler;
2373 ifn->cookie = cookie;
4fa62494 2374 return ifn;
bc3b79fd
TJB
2375}
2376
2377char *
2378value_internal_function_name (struct value *val)
2379{
4fa62494
UW
2380 struct internal_function *ifn;
2381 int result;
2382
2383 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2384 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2385 gdb_assert (result);
2386
bc3b79fd
TJB
2387 return ifn->name;
2388}
2389
2390struct value *
d452c4bc
UW
2391call_internal_function (struct gdbarch *gdbarch,
2392 const struct language_defn *language,
2393 struct value *func, int argc, struct value **argv)
bc3b79fd 2394{
4fa62494
UW
2395 struct internal_function *ifn;
2396 int result;
2397
2398 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2399 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2400 gdb_assert (result);
2401
d452c4bc 2402 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2403}
2404
2405/* The 'function' command. This does nothing -- it is just a
2406 placeholder to let "help function NAME" work. This is also used as
2407 the implementation of the sub-command that is created when
2408 registering an internal function. */
2409static void
2410function_command (char *command, int from_tty)
2411{
2412 /* Do nothing. */
2413}
2414
2415/* Clean up if an internal function's command is destroyed. */
2416static void
2417function_destroyer (struct cmd_list_element *self, void *ignore)
2418{
6f937416 2419 xfree ((char *) self->name);
1947513d 2420 xfree ((char *) self->doc);
bc3b79fd
TJB
2421}
2422
2423/* Add a new internal function. NAME is the name of the function; DOC
2424 is a documentation string describing the function. HANDLER is
2425 called when the function is invoked. COOKIE is an arbitrary
2426 pointer which is passed to HANDLER and is intended for "user
2427 data". */
2428void
2429add_internal_function (const char *name, const char *doc,
2430 internal_function_fn handler, void *cookie)
2431{
2432 struct cmd_list_element *cmd;
4fa62494 2433 struct internal_function *ifn;
bc3b79fd 2434 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2435
2436 ifn = create_internal_function (name, handler, cookie);
2437 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2438
2439 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2440 &functionlist);
2441 cmd->destroyer = function_destroyer;
2442}
2443
ae5a43e0
DJ
2444/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2445 prevent cycles / duplicates. */
2446
4e7a5ef5 2447void
ae5a43e0
DJ
2448preserve_one_value (struct value *value, struct objfile *objfile,
2449 htab_t copied_types)
2450{
2451 if (TYPE_OBJFILE (value->type) == objfile)
2452 value->type = copy_type_recursive (objfile, value->type, copied_types);
2453
2454 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2455 value->enclosing_type = copy_type_recursive (objfile,
2456 value->enclosing_type,
2457 copied_types);
2458}
2459
78267919
UW
2460/* Likewise for internal variable VAR. */
2461
2462static void
2463preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2464 htab_t copied_types)
2465{
2466 switch (var->kind)
2467 {
cab0c772
UW
2468 case INTERNALVAR_INTEGER:
2469 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2470 var->u.integer.type
2471 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2472 break;
2473
78267919
UW
2474 case INTERNALVAR_VALUE:
2475 preserve_one_value (var->u.value, objfile, copied_types);
2476 break;
2477 }
2478}
2479
ae5a43e0
DJ
2480/* Update the internal variables and value history when OBJFILE is
2481 discarded; we must copy the types out of the objfile. New global types
2482 will be created for every convenience variable which currently points to
2483 this objfile's types, and the convenience variables will be adjusted to
2484 use the new global types. */
c906108c
SS
2485
2486void
ae5a43e0 2487preserve_values (struct objfile *objfile)
c906108c 2488{
ae5a43e0
DJ
2489 htab_t copied_types;
2490 struct value_history_chunk *cur;
52f0bd74 2491 struct internalvar *var;
ae5a43e0 2492 int i;
c906108c 2493
ae5a43e0
DJ
2494 /* Create the hash table. We allocate on the objfile's obstack, since
2495 it is soon to be deleted. */
2496 copied_types = create_copied_types_hash (objfile);
2497
2498 for (cur = value_history_chain; cur; cur = cur->next)
2499 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2500 if (cur->values[i])
2501 preserve_one_value (cur->values[i], objfile, copied_types);
2502
2503 for (var = internalvars; var; var = var->next)
78267919 2504 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2505
6dddc817 2506 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2507
ae5a43e0 2508 htab_delete (copied_types);
c906108c
SS
2509}
2510
2511static void
fba45db2 2512show_convenience (char *ignore, int from_tty)
c906108c 2513{
e17c207e 2514 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2515 struct internalvar *var;
c906108c 2516 int varseen = 0;
79a45b7d 2517 struct value_print_options opts;
c906108c 2518
79a45b7d 2519 get_user_print_options (&opts);
c906108c
SS
2520 for (var = internalvars; var; var = var->next)
2521 {
c709acd1
PA
2522 volatile struct gdb_exception ex;
2523
c906108c
SS
2524 if (!varseen)
2525 {
2526 varseen = 1;
2527 }
a3f17187 2528 printf_filtered (("$%s = "), var->name);
c709acd1
PA
2529
2530 TRY_CATCH (ex, RETURN_MASK_ERROR)
2531 {
2532 struct value *val;
2533
2534 val = value_of_internalvar (gdbarch, var);
2535 value_print (val, gdb_stdout, &opts);
2536 }
2537 if (ex.reason < 0)
2538 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
a3f17187 2539 printf_filtered (("\n"));
c906108c
SS
2540 }
2541 if (!varseen)
f47f77df
DE
2542 {
2543 /* This text does not mention convenience functions on purpose.
2544 The user can't create them except via Python, and if Python support
2545 is installed this message will never be printed ($_streq will
2546 exist). */
2547 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2548 "Convenience variables have "
2549 "names starting with \"$\";\n"
2550 "use \"set\" as in \"set "
2551 "$foo = 5\" to define them.\n"));
2552 }
c906108c
SS
2553}
2554\f
e81e7f5e
SC
2555/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2556
2557struct value *
2558value_of_xmethod (struct xmethod_worker *worker)
2559{
2560 if (worker->value == NULL)
2561 {
2562 struct value *v;
2563
2564 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2565 v->lval = lval_xcallable;
2566 v->location.xm_worker = worker;
2567 v->modifiable = 0;
2568 worker->value = v;
2569 }
2570
2571 return worker->value;
2572}
2573
2574/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2575
2576struct value *
2577call_xmethod (struct value *method, int argc, struct value **argv)
2578{
2579 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2580 && method->lval == lval_xcallable && argc > 0);
2581
2582 return invoke_xmethod (method->location.xm_worker,
2583 argv[0], argv + 1, argc - 1);
2584}
2585\f
c906108c
SS
2586/* Extract a value as a C number (either long or double).
2587 Knows how to convert fixed values to double, or
2588 floating values to long.
2589 Does not deallocate the value. */
2590
2591LONGEST
f23631e4 2592value_as_long (struct value *val)
c906108c
SS
2593{
2594 /* This coerces arrays and functions, which is necessary (e.g.
2595 in disassemble_command). It also dereferences references, which
2596 I suspect is the most logical thing to do. */
994b9211 2597 val = coerce_array (val);
0fd88904 2598 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2599}
2600
2601DOUBLEST
f23631e4 2602value_as_double (struct value *val)
c906108c
SS
2603{
2604 DOUBLEST foo;
2605 int inv;
c5aa993b 2606
0fd88904 2607 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2608 if (inv)
8a3fe4f8 2609 error (_("Invalid floating value found in program."));
c906108c
SS
2610 return foo;
2611}
4ef30785 2612
581e13c1 2613/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2614 Note that val's type may not actually be a pointer; value_as_long
2615 handles all the cases. */
c906108c 2616CORE_ADDR
f23631e4 2617value_as_address (struct value *val)
c906108c 2618{
50810684
UW
2619 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2620
c906108c
SS
2621 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2622 whether we want this to be true eventually. */
2623#if 0
bf6ae464 2624 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2625 non-address (e.g. argument to "signal", "info break", etc.), or
2626 for pointers to char, in which the low bits *are* significant. */
50810684 2627 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2628#else
f312f057
JB
2629
2630 /* There are several targets (IA-64, PowerPC, and others) which
2631 don't represent pointers to functions as simply the address of
2632 the function's entry point. For example, on the IA-64, a
2633 function pointer points to a two-word descriptor, generated by
2634 the linker, which contains the function's entry point, and the
2635 value the IA-64 "global pointer" register should have --- to
2636 support position-independent code. The linker generates
2637 descriptors only for those functions whose addresses are taken.
2638
2639 On such targets, it's difficult for GDB to convert an arbitrary
2640 function address into a function pointer; it has to either find
2641 an existing descriptor for that function, or call malloc and
2642 build its own. On some targets, it is impossible for GDB to
2643 build a descriptor at all: the descriptor must contain a jump
2644 instruction; data memory cannot be executed; and code memory
2645 cannot be modified.
2646
2647 Upon entry to this function, if VAL is a value of type `function'
2648 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2649 value_address (val) is the address of the function. This is what
f312f057
JB
2650 you'll get if you evaluate an expression like `main'. The call
2651 to COERCE_ARRAY below actually does all the usual unary
2652 conversions, which includes converting values of type `function'
2653 to `pointer to function'. This is the challenging conversion
2654 discussed above. Then, `unpack_long' will convert that pointer
2655 back into an address.
2656
2657 So, suppose the user types `disassemble foo' on an architecture
2658 with a strange function pointer representation, on which GDB
2659 cannot build its own descriptors, and suppose further that `foo'
2660 has no linker-built descriptor. The address->pointer conversion
2661 will signal an error and prevent the command from running, even
2662 though the next step would have been to convert the pointer
2663 directly back into the same address.
2664
2665 The following shortcut avoids this whole mess. If VAL is a
2666 function, just return its address directly. */
df407dfe
AC
2667 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2668 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2669 return value_address (val);
f312f057 2670
994b9211 2671 val = coerce_array (val);
fc0c74b1
AC
2672
2673 /* Some architectures (e.g. Harvard), map instruction and data
2674 addresses onto a single large unified address space. For
2675 instance: An architecture may consider a large integer in the
2676 range 0x10000000 .. 0x1000ffff to already represent a data
2677 addresses (hence not need a pointer to address conversion) while
2678 a small integer would still need to be converted integer to
2679 pointer to address. Just assume such architectures handle all
2680 integer conversions in a single function. */
2681
2682 /* JimB writes:
2683
2684 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2685 must admonish GDB hackers to make sure its behavior matches the
2686 compiler's, whenever possible.
2687
2688 In general, I think GDB should evaluate expressions the same way
2689 the compiler does. When the user copies an expression out of
2690 their source code and hands it to a `print' command, they should
2691 get the same value the compiler would have computed. Any
2692 deviation from this rule can cause major confusion and annoyance,
2693 and needs to be justified carefully. In other words, GDB doesn't
2694 really have the freedom to do these conversions in clever and
2695 useful ways.
2696
2697 AndrewC pointed out that users aren't complaining about how GDB
2698 casts integers to pointers; they are complaining that they can't
2699 take an address from a disassembly listing and give it to `x/i'.
2700 This is certainly important.
2701
79dd2d24 2702 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2703 makes it possible for GDB to "get it right" in all circumstances
2704 --- the target has complete control over how things get done, so
2705 people can Do The Right Thing for their target without breaking
2706 anyone else. The standard doesn't specify how integers get
2707 converted to pointers; usually, the ABI doesn't either, but
2708 ABI-specific code is a more reasonable place to handle it. */
2709
df407dfe
AC
2710 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2711 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2712 && gdbarch_integer_to_address_p (gdbarch))
2713 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2714 value_contents (val));
fc0c74b1 2715
0fd88904 2716 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2717#endif
2718}
2719\f
2720/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2721 as a long, or as a double, assuming the raw data is described
2722 by type TYPE. Knows how to convert different sizes of values
2723 and can convert between fixed and floating point. We don't assume
2724 any alignment for the raw data. Return value is in host byte order.
2725
2726 If you want functions and arrays to be coerced to pointers, and
2727 references to be dereferenced, call value_as_long() instead.
2728
2729 C++: It is assumed that the front-end has taken care of
2730 all matters concerning pointers to members. A pointer
2731 to member which reaches here is considered to be equivalent
2732 to an INT (or some size). After all, it is only an offset. */
2733
2734LONGEST
fc1a4b47 2735unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2736{
e17a4113 2737 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2738 enum type_code code = TYPE_CODE (type);
2739 int len = TYPE_LENGTH (type);
2740 int nosign = TYPE_UNSIGNED (type);
c906108c 2741
c906108c
SS
2742 switch (code)
2743 {
2744 case TYPE_CODE_TYPEDEF:
2745 return unpack_long (check_typedef (type), valaddr);
2746 case TYPE_CODE_ENUM:
4f2aea11 2747 case TYPE_CODE_FLAGS:
c906108c
SS
2748 case TYPE_CODE_BOOL:
2749 case TYPE_CODE_INT:
2750 case TYPE_CODE_CHAR:
2751 case TYPE_CODE_RANGE:
0d5de010 2752 case TYPE_CODE_MEMBERPTR:
c906108c 2753 if (nosign)
e17a4113 2754 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2755 else
e17a4113 2756 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2757
2758 case TYPE_CODE_FLT:
96d2f608 2759 return extract_typed_floating (valaddr, type);
c906108c 2760
4ef30785
TJB
2761 case TYPE_CODE_DECFLOAT:
2762 /* libdecnumber has a function to convert from decimal to integer, but
2763 it doesn't work when the decimal number has a fractional part. */
e17a4113 2764 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2765
c906108c
SS
2766 case TYPE_CODE_PTR:
2767 case TYPE_CODE_REF:
2768 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2769 whether we want this to be true eventually. */
4478b372 2770 return extract_typed_address (valaddr, type);
c906108c 2771
c906108c 2772 default:
8a3fe4f8 2773 error (_("Value can't be converted to integer."));
c906108c 2774 }
c5aa993b 2775 return 0; /* Placate lint. */
c906108c
SS
2776}
2777
2778/* Return a double value from the specified type and address.
2779 INVP points to an int which is set to 0 for valid value,
2780 1 for invalid value (bad float format). In either case,
2781 the returned double is OK to use. Argument is in target
2782 format, result is in host format. */
2783
2784DOUBLEST
fc1a4b47 2785unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2786{
e17a4113 2787 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2788 enum type_code code;
2789 int len;
2790 int nosign;
2791
581e13c1 2792 *invp = 0; /* Assume valid. */
c906108c
SS
2793 CHECK_TYPEDEF (type);
2794 code = TYPE_CODE (type);
2795 len = TYPE_LENGTH (type);
2796 nosign = TYPE_UNSIGNED (type);
2797 if (code == TYPE_CODE_FLT)
2798 {
75bc7ddf
AC
2799 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2800 floating-point value was valid (using the macro
2801 INVALID_FLOAT). That test/macro have been removed.
2802
2803 It turns out that only the VAX defined this macro and then
2804 only in a non-portable way. Fixing the portability problem
2805 wouldn't help since the VAX floating-point code is also badly
2806 bit-rotten. The target needs to add definitions for the
ea06eb3d 2807 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2808 exactly describe the target floating-point format. The
2809 problem here is that the corresponding floatformat_vax_f and
2810 floatformat_vax_d values these methods should be set to are
2811 also not defined either. Oops!
2812
2813 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2814 definitions and the new cases for floatformat_is_valid (). */
2815
2816 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2817 {
2818 *invp = 1;
2819 return 0.0;
2820 }
2821
96d2f608 2822 return extract_typed_floating (valaddr, type);
c906108c 2823 }
4ef30785 2824 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2825 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2826 else if (nosign)
2827 {
2828 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2829 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2830 }
2831 else
2832 {
2833 /* Signed -- we are OK with unpack_long. */
2834 return unpack_long (type, valaddr);
2835 }
2836}
2837
2838/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2839 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2840 We don't assume any alignment for the raw data. Return value is in
2841 host byte order.
2842
2843 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2844 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2845
2846 C++: It is assumed that the front-end has taken care of
2847 all matters concerning pointers to members. A pointer
2848 to member which reaches here is considered to be equivalent
2849 to an INT (or some size). After all, it is only an offset. */
2850
2851CORE_ADDR
fc1a4b47 2852unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2853{
2854 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2855 whether we want this to be true eventually. */
2856 return unpack_long (type, valaddr);
2857}
4478b372 2858
c906108c 2859\f
1596cb5d 2860/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2861 TYPE. */
c906108c 2862
f23631e4 2863struct value *
fba45db2 2864value_static_field (struct type *type, int fieldno)
c906108c 2865{
948e66d9
DJ
2866 struct value *retval;
2867
1596cb5d 2868 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2869 {
1596cb5d 2870 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2871 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2872 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2873 break;
2874 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2875 {
ff355380 2876 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2877 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 2878 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2879
948e66d9 2880 if (sym == NULL)
c906108c 2881 {
a109c7c1 2882 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2883 reported as non-debuggable symbols. */
3b7344d5
TT
2884 struct bound_minimal_symbol msym
2885 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 2886
3b7344d5 2887 if (!msym.minsym)
686d4def 2888 return allocate_optimized_out_value (type);
c906108c 2889 else
c5aa993b 2890 {
52e9fde8 2891 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 2892 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2893 }
2894 }
2895 else
515ed532 2896 retval = value_of_variable (sym, NULL);
1596cb5d 2897 break;
c906108c 2898 }
1596cb5d 2899 default:
f3574227 2900 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2901 }
2902
948e66d9 2903 return retval;
c906108c
SS
2904}
2905
4dfea560
DE
2906/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2907 You have to be careful here, since the size of the data area for the value
2908 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2909 than the old enclosing type, you have to allocate more space for the
2910 data. */
2b127877 2911
4dfea560
DE
2912void
2913set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2914{
3e3d7139
JG
2915 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2916 val->contents =
2917 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2918
2919 val->enclosing_type = new_encl_type;
2b127877
DB
2920}
2921
c906108c
SS
2922/* Given a value ARG1 (offset by OFFSET bytes)
2923 of a struct or union type ARG_TYPE,
2924 extract and return the value of one of its (non-static) fields.
581e13c1 2925 FIELDNO says which field. */
c906108c 2926
f23631e4
AC
2927struct value *
2928value_primitive_field (struct value *arg1, int offset,
aa1ee363 2929 int fieldno, struct type *arg_type)
c906108c 2930{
f23631e4 2931 struct value *v;
52f0bd74 2932 struct type *type;
c906108c
SS
2933
2934 CHECK_TYPEDEF (arg_type);
2935 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2936
2937 /* Call check_typedef on our type to make sure that, if TYPE
2938 is a TYPE_CODE_TYPEDEF, its length is set to the length
2939 of the target type instead of zero. However, we do not
2940 replace the typedef type by the target type, because we want
2941 to keep the typedef in order to be able to print the type
2942 description correctly. */
2943 check_typedef (type);
c906108c 2944
691a26f5 2945 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2946 {
22c05d8a
JK
2947 /* Handle packed fields.
2948
2949 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2950 set. If possible, arrange offset and bitpos so that we can
2951 do a single aligned read of the size of the containing type.
2952 Otherwise, adjust offset to the byte containing the first
2953 bit. Assume that the address, offset, and embedded offset
2954 are sufficiently aligned. */
22c05d8a 2955
4ea48cc1
DJ
2956 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2957 int container_bitsize = TYPE_LENGTH (type) * 8;
2958
9a0dc9e3
PA
2959 v = allocate_value_lazy (type);
2960 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2961 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2962 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2963 v->bitpos = bitpos % container_bitsize;
4ea48cc1 2964 else
9a0dc9e3
PA
2965 v->bitpos = bitpos % 8;
2966 v->offset = (value_embedded_offset (arg1)
2967 + offset
2968 + (bitpos - v->bitpos) / 8);
2969 set_value_parent (v, arg1);
2970 if (!value_lazy (arg1))
2971 value_fetch_lazy (v);
c906108c
SS
2972 }
2973 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2974 {
2975 /* This field is actually a base subobject, so preserve the
39d37385
PA
2976 entire object's contents for later references to virtual
2977 bases, etc. */
be335936 2978 int boffset;
a4e2ee12
DJ
2979
2980 /* Lazy register values with offsets are not supported. */
2981 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2982 value_fetch_lazy (arg1);
2983
9a0dc9e3
PA
2984 /* We special case virtual inheritance here because this
2985 requires access to the contents, which we would rather avoid
2986 for references to ordinary fields of unavailable values. */
2987 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2988 boffset = baseclass_offset (arg_type, fieldno,
2989 value_contents (arg1),
2990 value_embedded_offset (arg1),
2991 value_address (arg1),
2992 arg1);
c906108c 2993 else
9a0dc9e3 2994 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 2995
9a0dc9e3
PA
2996 if (value_lazy (arg1))
2997 v = allocate_value_lazy (value_enclosing_type (arg1));
2998 else
2999 {
3000 v = allocate_value (value_enclosing_type (arg1));
3001 value_contents_copy_raw (v, 0, arg1, 0,
3002 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3003 }
9a0dc9e3
PA
3004 v->type = type;
3005 v->offset = value_offset (arg1);
3006 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c
SS
3007 }
3008 else
3009 {
3010 /* Plain old data member */
3011 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
3012
3013 /* Lazy register values with offsets are not supported. */
3014 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3015 value_fetch_lazy (arg1);
3016
9a0dc9e3 3017 if (value_lazy (arg1))
3e3d7139 3018 v = allocate_value_lazy (type);
c906108c 3019 else
3e3d7139
JG
3020 {
3021 v = allocate_value (type);
39d37385
PA
3022 value_contents_copy_raw (v, value_embedded_offset (v),
3023 arg1, value_embedded_offset (arg1) + offset,
3024 TYPE_LENGTH (type));
3e3d7139 3025 }
df407dfe 3026 v->offset = (value_offset (arg1) + offset
13c3b5f5 3027 + value_embedded_offset (arg1));
c906108c 3028 }
74bcbdf3 3029 set_value_component_location (v, arg1);
9ee8fc9d 3030 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 3031 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
3032 return v;
3033}
3034
3035/* Given a value ARG1 of a struct or union type,
3036 extract and return the value of one of its (non-static) fields.
581e13c1 3037 FIELDNO says which field. */
c906108c 3038
f23631e4 3039struct value *
aa1ee363 3040value_field (struct value *arg1, int fieldno)
c906108c 3041{
df407dfe 3042 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3043}
3044
3045/* Return a non-virtual function as a value.
3046 F is the list of member functions which contains the desired method.
0478d61c
FF
3047 J is an index into F which provides the desired method.
3048
3049 We only use the symbol for its address, so be happy with either a
581e13c1 3050 full symbol or a minimal symbol. */
c906108c 3051
f23631e4 3052struct value *
3e43a32a
MS
3053value_fn_field (struct value **arg1p, struct fn_field *f,
3054 int j, struct type *type,
fba45db2 3055 int offset)
c906108c 3056{
f23631e4 3057 struct value *v;
52f0bd74 3058 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3059 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3060 struct symbol *sym;
7c7b6655 3061 struct bound_minimal_symbol msym;
c906108c 3062
2570f2b7 3063 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 3064 if (sym != NULL)
0478d61c 3065 {
7c7b6655 3066 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3067 }
3068 else
3069 {
3070 gdb_assert (sym == NULL);
7c7b6655
TT
3071 msym = lookup_bound_minimal_symbol (physname);
3072 if (msym.minsym == NULL)
5ae326fa 3073 return NULL;
0478d61c
FF
3074 }
3075
c906108c 3076 v = allocate_value (ftype);
0478d61c
FF
3077 if (sym)
3078 {
42ae5230 3079 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3080 }
3081 else
3082 {
bccdca4a
UW
3083 /* The minimal symbol might point to a function descriptor;
3084 resolve it to the actual code address instead. */
7c7b6655 3085 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3086 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3087
42ae5230
TT
3088 set_value_address (v,
3089 gdbarch_convert_from_func_ptr_addr
77e371c0 3090 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3091 }
c906108c
SS
3092
3093 if (arg1p)
c5aa993b 3094 {
df407dfe 3095 if (type != value_type (*arg1p))
c5aa993b
JM
3096 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3097 value_addr (*arg1p)));
3098
070ad9f0 3099 /* Move the `this' pointer according to the offset.
581e13c1 3100 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3101 }
3102
3103 return v;
3104}
3105
c906108c 3106\f
c906108c 3107
5467c6c8
PA
3108/* Helper function for both unpack_value_bits_as_long and
3109 unpack_bits_as_long. See those functions for more details on the
3110 interface; the only difference is that this function accepts either
3111 a NULL or a non-NULL ORIGINAL_VALUE. */
c906108c 3112
5467c6c8
PA
3113static int
3114unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
3115 int embedded_offset, int bitpos, int bitsize,
3116 const struct value *original_value,
3117 LONGEST *result)
c906108c 3118{
4ea48cc1 3119 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3120 ULONGEST val;
3121 ULONGEST valmask;
c906108c 3122 int lsbcount;
4a76eae5 3123 int bytes_read;
5467c6c8 3124 int read_offset;
c906108c 3125
4a76eae5
DJ
3126 /* Read the minimum number of bytes required; there may not be
3127 enough bytes to read an entire ULONGEST. */
c906108c 3128 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
3129 if (bitsize)
3130 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3131 else
3132 bytes_read = TYPE_LENGTH (field_type);
3133
5467c6c8
PA
3134 read_offset = bitpos / 8;
3135
3136 if (original_value != NULL
bdf22206
AB
3137 && !value_bits_available (original_value, embedded_offset + bitpos,
3138 bitsize))
5467c6c8
PA
3139 return 0;
3140
3141 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
4a76eae5 3142 bytes_read, byte_order);
c906108c 3143
581e13c1 3144 /* Extract bits. See comment above. */
c906108c 3145
4ea48cc1 3146 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3147 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3148 else
3149 lsbcount = (bitpos % 8);
3150 val >>= lsbcount;
3151
3152 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3153 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3154
3155 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3156 {
3157 valmask = (((ULONGEST) 1) << bitsize) - 1;
3158 val &= valmask;
3159 if (!TYPE_UNSIGNED (field_type))
3160 {
3161 if (val & (valmask ^ (valmask >> 1)))
3162 {
3163 val |= ~valmask;
3164 }
3165 }
3166 }
5467c6c8
PA
3167
3168 *result = val;
3169 return 1;
c906108c
SS
3170}
3171
5467c6c8
PA
3172/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3173 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
3174 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
3175 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
3176 bits.
4ea48cc1 3177
5467c6c8
PA
3178 Returns false if the value contents are unavailable, otherwise
3179 returns true, indicating a valid value has been stored in *RESULT.
3180
3181 Extracting bits depends on endianness of the machine. Compute the
3182 number of least significant bits to discard. For big endian machines,
3183 we compute the total number of bits in the anonymous object, subtract
3184 off the bit count from the MSB of the object to the MSB of the
3185 bitfield, then the size of the bitfield, which leaves the LSB discard
3186 count. For little endian machines, the discard count is simply the
3187 number of bits from the LSB of the anonymous object to the LSB of the
3188 bitfield.
3189
3190 If the field is signed, we also do sign extension. */
3191
3192int
3193unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3194 int embedded_offset, int bitpos, int bitsize,
3195 const struct value *original_value,
3196 LONGEST *result)
3197{
3198 gdb_assert (original_value != NULL);
3199
3200 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3201 bitpos, bitsize, original_value, result);
3202
3203}
3204
3205/* Unpack a field FIELDNO of the specified TYPE, from the object at
3206 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3207 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
3208 details. */
3209
3210static int
3211unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
3212 int embedded_offset, int fieldno,
3213 const struct value *val, LONGEST *result)
4ea48cc1
DJ
3214{
3215 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3216 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3217 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3218
5467c6c8
PA
3219 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3220 bitpos, bitsize, val,
3221 result);
3222}
3223
3224/* Unpack a field FIELDNO of the specified TYPE, from the object at
3225 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3226 ORIGINAL_VALUE, which must not be NULL. See
3227 unpack_value_bits_as_long for more details. */
3228
3229int
3230unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3231 int embedded_offset, int fieldno,
3232 const struct value *val, LONGEST *result)
3233{
3234 gdb_assert (val != NULL);
3235
3236 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
3237 fieldno, val, result);
3238}
3239
3240/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3241 object at VALADDR. See unpack_value_bits_as_long for more details.
3242 This function differs from unpack_value_field_as_long in that it
3243 operates without a struct value object. */
3244
3245LONGEST
3246unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3247{
3248 LONGEST result;
3249
3250 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
3251 return result;
3252}
3253
3254/* Return a new value with type TYPE, which is FIELDNO field of the
3255 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3256 of VAL. If the VAL's contents required to extract the bitfield
3257 from are unavailable, the new value is correspondingly marked as
3258 unavailable. */
3259
3260struct value *
3261value_field_bitfield (struct type *type, int fieldno,
3262 const gdb_byte *valaddr,
3263 int embedded_offset, const struct value *val)
3264{
3265 LONGEST l;
3266
3267 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
3268 val, &l))
3269 {
3270 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3271 struct value *retval = allocate_value (field_type);
3272 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
3273 return retval;
3274 }
3275 else
3276 {
3277 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
3278 }
4ea48cc1
DJ
3279}
3280
c906108c
SS
3281/* Modify the value of a bitfield. ADDR points to a block of memory in
3282 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3283 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3284 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3285 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3286 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3287
3288void
50810684
UW
3289modify_field (struct type *type, gdb_byte *addr,
3290 LONGEST fieldval, int bitpos, int bitsize)
c906108c 3291{
e17a4113 3292 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3293 ULONGEST oword;
3294 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
3295 int bytesize;
3296
3297 /* Normalize BITPOS. */
3298 addr += bitpos / 8;
3299 bitpos %= 8;
c906108c
SS
3300
3301 /* If a negative fieldval fits in the field in question, chop
3302 off the sign extension bits. */
f4e88c8e
PH
3303 if ((~fieldval & ~(mask >> 1)) == 0)
3304 fieldval &= mask;
c906108c
SS
3305
3306 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3307 if (0 != (fieldval & ~mask))
c906108c
SS
3308 {
3309 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3310 we don't have a sprintf_longest. */
8a3fe4f8 3311 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
3312
3313 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3314 fieldval &= mask;
c906108c
SS
3315 }
3316
19f220c3
JK
3317 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3318 false valgrind reports. */
3319
3320 bytesize = (bitpos + bitsize + 7) / 8;
3321 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3322
3323 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3324 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3325 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3326
f4e88c8e 3327 oword &= ~(mask << bitpos);
c906108c
SS
3328 oword |= fieldval << bitpos;
3329
19f220c3 3330 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3331}
3332\f
14d06750 3333/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3334
14d06750
DJ
3335void
3336pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3337{
e17a4113 3338 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3339 int len;
14d06750
DJ
3340
3341 type = check_typedef (type);
c906108c
SS
3342 len = TYPE_LENGTH (type);
3343
14d06750 3344 switch (TYPE_CODE (type))
c906108c 3345 {
c906108c
SS
3346 case TYPE_CODE_INT:
3347 case TYPE_CODE_CHAR:
3348 case TYPE_CODE_ENUM:
4f2aea11 3349 case TYPE_CODE_FLAGS:
c906108c
SS
3350 case TYPE_CODE_BOOL:
3351 case TYPE_CODE_RANGE:
0d5de010 3352 case TYPE_CODE_MEMBERPTR:
e17a4113 3353 store_signed_integer (buf, len, byte_order, num);
c906108c 3354 break;
c5aa993b 3355
c906108c
SS
3356 case TYPE_CODE_REF:
3357 case TYPE_CODE_PTR:
14d06750 3358 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3359 break;
c5aa993b 3360
c906108c 3361 default:
14d06750
DJ
3362 error (_("Unexpected type (%d) encountered for integer constant."),
3363 TYPE_CODE (type));
c906108c 3364 }
14d06750
DJ
3365}
3366
3367
595939de
PM
3368/* Pack NUM into BUF using a target format of TYPE. */
3369
70221824 3370static void
595939de
PM
3371pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3372{
3373 int len;
3374 enum bfd_endian byte_order;
3375
3376 type = check_typedef (type);
3377 len = TYPE_LENGTH (type);
3378 byte_order = gdbarch_byte_order (get_type_arch (type));
3379
3380 switch (TYPE_CODE (type))
3381 {
3382 case TYPE_CODE_INT:
3383 case TYPE_CODE_CHAR:
3384 case TYPE_CODE_ENUM:
3385 case TYPE_CODE_FLAGS:
3386 case TYPE_CODE_BOOL:
3387 case TYPE_CODE_RANGE:
3388 case TYPE_CODE_MEMBERPTR:
3389 store_unsigned_integer (buf, len, byte_order, num);
3390 break;
3391
3392 case TYPE_CODE_REF:
3393 case TYPE_CODE_PTR:
3394 store_typed_address (buf, type, (CORE_ADDR) num);
3395 break;
3396
3397 default:
3e43a32a
MS
3398 error (_("Unexpected type (%d) encountered "
3399 "for unsigned integer constant."),
595939de
PM
3400 TYPE_CODE (type));
3401 }
3402}
3403
3404
14d06750
DJ
3405/* Convert C numbers into newly allocated values. */
3406
3407struct value *
3408value_from_longest (struct type *type, LONGEST num)
3409{
3410 struct value *val = allocate_value (type);
3411
3412 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3413 return val;
3414}
3415
4478b372 3416
595939de
PM
3417/* Convert C unsigned numbers into newly allocated values. */
3418
3419struct value *
3420value_from_ulongest (struct type *type, ULONGEST num)
3421{
3422 struct value *val = allocate_value (type);
3423
3424 pack_unsigned_long (value_contents_raw (val), type, num);
3425
3426 return val;
3427}
3428
3429
4478b372 3430/* Create a value representing a pointer of type TYPE to the address
cb417230 3431 ADDR. */
80180f79 3432
f23631e4 3433struct value *
4478b372
JB
3434value_from_pointer (struct type *type, CORE_ADDR addr)
3435{
cb417230 3436 struct value *val = allocate_value (type);
a109c7c1 3437
80180f79 3438 store_typed_address (value_contents_raw (val),
cb417230 3439 check_typedef (type), addr);
4478b372
JB
3440 return val;
3441}
3442
3443
012370f6
TT
3444/* Create a value of type TYPE whose contents come from VALADDR, if it
3445 is non-null, and whose memory address (in the inferior) is
3446 ADDRESS. The type of the created value may differ from the passed
3447 type TYPE. Make sure to retrieve values new type after this call.
3448 Note that TYPE is not passed through resolve_dynamic_type; this is
3449 a special API intended for use only by Ada. */
3450
3451struct value *
3452value_from_contents_and_address_unresolved (struct type *type,
3453 const gdb_byte *valaddr,
3454 CORE_ADDR address)
3455{
3456 struct value *v;
3457
3458 if (valaddr == NULL)
3459 v = allocate_value_lazy (type);
3460 else
3461 v = value_from_contents (type, valaddr);
3462 set_value_address (v, address);
3463 VALUE_LVAL (v) = lval_memory;
3464 return v;
3465}
3466
8acb6b92
TT
3467/* Create a value of type TYPE whose contents come from VALADDR, if it
3468 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3469 ADDRESS. The type of the created value may differ from the passed
3470 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3471
3472struct value *
3473value_from_contents_and_address (struct type *type,
3474 const gdb_byte *valaddr,
3475 CORE_ADDR address)
3476{
80180f79 3477 struct type *resolved_type = resolve_dynamic_type (type, address);
41e8491f 3478 struct value *v;
a109c7c1 3479
8acb6b92 3480 if (valaddr == NULL)
80180f79 3481 v = allocate_value_lazy (resolved_type);
8acb6b92 3482 else
80180f79 3483 v = value_from_contents (resolved_type, valaddr);
3cdcd0ce
JB
3484 if (TYPE_DATA_LOCATION (resolved_type) != NULL
3485 && TYPE_DATA_LOCATION_KIND (resolved_type) == PROP_CONST)
3486 address = TYPE_DATA_LOCATION_ADDR (resolved_type);
42ae5230 3487 set_value_address (v, address);
33d502b4 3488 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3489 return v;
3490}
3491
8a9b8146
TT
3492/* Create a value of type TYPE holding the contents CONTENTS.
3493 The new value is `not_lval'. */
3494
3495struct value *
3496value_from_contents (struct type *type, const gdb_byte *contents)
3497{
3498 struct value *result;
3499
3500 result = allocate_value (type);
3501 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3502 return result;
3503}
3504
f23631e4 3505struct value *
fba45db2 3506value_from_double (struct type *type, DOUBLEST num)
c906108c 3507{
f23631e4 3508 struct value *val = allocate_value (type);
c906108c 3509 struct type *base_type = check_typedef (type);
52f0bd74 3510 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3511
3512 if (code == TYPE_CODE_FLT)
3513 {
990a07ab 3514 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3515 }
3516 else
8a3fe4f8 3517 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3518
3519 return val;
3520}
994b9211 3521
27bc4d80 3522struct value *
4ef30785 3523value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3524{
3525 struct value *val = allocate_value (type);
27bc4d80 3526
4ef30785 3527 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3528 return val;
3529}
3530
3bd0f5ef
MS
3531/* Extract a value from the history file. Input will be of the form
3532 $digits or $$digits. See block comment above 'write_dollar_variable'
3533 for details. */
3534
3535struct value *
e799154c 3536value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3537{
3538 int index, len;
3539
3540 if (h[0] == '$')
3541 len = 1;
3542 else
3543 return NULL;
3544
3545 if (h[1] == '$')
3546 len = 2;
3547
3548 /* Find length of numeral string. */
3549 for (; isdigit (h[len]); len++)
3550 ;
3551
3552 /* Make sure numeral string is not part of an identifier. */
3553 if (h[len] == '_' || isalpha (h[len]))
3554 return NULL;
3555
3556 /* Now collect the index value. */
3557 if (h[1] == '$')
3558 {
3559 if (len == 2)
3560 {
3561 /* For some bizarre reason, "$$" is equivalent to "$$1",
3562 rather than to "$$0" as it ought to be! */
3563 index = -1;
3564 *endp += len;
3565 }
3566 else
e799154c
TT
3567 {
3568 char *local_end;
3569
3570 index = -strtol (&h[2], &local_end, 10);
3571 *endp = local_end;
3572 }
3bd0f5ef
MS
3573 }
3574 else
3575 {
3576 if (len == 1)
3577 {
3578 /* "$" is equivalent to "$0". */
3579 index = 0;
3580 *endp += len;
3581 }
3582 else
e799154c
TT
3583 {
3584 char *local_end;
3585
3586 index = strtol (&h[1], &local_end, 10);
3587 *endp = local_end;
3588 }
3bd0f5ef
MS
3589 }
3590
3591 return access_value_history (index);
3592}
3593
a471c594
JK
3594struct value *
3595coerce_ref_if_computed (const struct value *arg)
3596{
3597 const struct lval_funcs *funcs;
3598
3599 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3600 return NULL;
3601
3602 if (value_lval_const (arg) != lval_computed)
3603 return NULL;
3604
3605 funcs = value_computed_funcs (arg);
3606 if (funcs->coerce_ref == NULL)
3607 return NULL;
3608
3609 return funcs->coerce_ref (arg);
3610}
3611
dfcee124
AG
3612/* Look at value.h for description. */
3613
3614struct value *
3615readjust_indirect_value_type (struct value *value, struct type *enc_type,
3616 struct type *original_type,
3617 struct value *original_value)
3618{
3619 /* Re-adjust type. */
3620 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3621
3622 /* Add embedding info. */
3623 set_value_enclosing_type (value, enc_type);
3624 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3625
3626 /* We may be pointing to an object of some derived type. */
3627 return value_full_object (value, NULL, 0, 0, 0);
3628}
3629
994b9211
AC
3630struct value *
3631coerce_ref (struct value *arg)
3632{
df407dfe 3633 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3634 struct value *retval;
dfcee124 3635 struct type *enc_type;
a109c7c1 3636
a471c594
JK
3637 retval = coerce_ref_if_computed (arg);
3638 if (retval)
3639 return retval;
3640
3641 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3642 return arg;
3643
dfcee124
AG
3644 enc_type = check_typedef (value_enclosing_type (arg));
3645 enc_type = TYPE_TARGET_TYPE (enc_type);
3646
3647 retval = value_at_lazy (enc_type,
3648 unpack_pointer (value_type (arg),
3649 value_contents (arg)));
9f1f738a 3650 enc_type = value_type (retval);
dfcee124
AG
3651 return readjust_indirect_value_type (retval, enc_type,
3652 value_type_arg_tmp, arg);
994b9211
AC
3653}
3654
3655struct value *
3656coerce_array (struct value *arg)
3657{
f3134b88
TT
3658 struct type *type;
3659
994b9211 3660 arg = coerce_ref (arg);
f3134b88
TT
3661 type = check_typedef (value_type (arg));
3662
3663 switch (TYPE_CODE (type))
3664 {
3665 case TYPE_CODE_ARRAY:
7346b668 3666 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3667 arg = value_coerce_array (arg);
3668 break;
3669 case TYPE_CODE_FUNC:
3670 arg = value_coerce_function (arg);
3671 break;
3672 }
994b9211
AC
3673 return arg;
3674}
c906108c 3675\f
c906108c 3676
bbfdfe1c
DM
3677/* Return the return value convention that will be used for the
3678 specified type. */
3679
3680enum return_value_convention
3681struct_return_convention (struct gdbarch *gdbarch,
3682 struct value *function, struct type *value_type)
3683{
3684 enum type_code code = TYPE_CODE (value_type);
3685
3686 if (code == TYPE_CODE_ERROR)
3687 error (_("Function return type unknown."));
3688
3689 /* Probe the architecture for the return-value convention. */
3690 return gdbarch_return_value (gdbarch, function, value_type,
3691 NULL, NULL, NULL);
3692}
3693
48436ce6
AC
3694/* Return true if the function returning the specified type is using
3695 the convention of returning structures in memory (passing in the
82585c72 3696 address as a hidden first parameter). */
c906108c
SS
3697
3698int
d80b854b 3699using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3700 struct value *function, struct type *value_type)
c906108c 3701{
bbfdfe1c 3702 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3703 /* A void return value is never in memory. See also corresponding
44e5158b 3704 code in "print_return_value". */
667e784f
AC
3705 return 0;
3706
bbfdfe1c 3707 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3708 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3709}
3710
42be36b3
CT
3711/* Set the initialized field in a value struct. */
3712
3713void
3714set_value_initialized (struct value *val, int status)
3715{
3716 val->initialized = status;
3717}
3718
3719/* Return the initialized field in a value struct. */
3720
3721int
3722value_initialized (struct value *val)
3723{
3724 return val->initialized;
3725}
3726
a58e2656
AB
3727/* Called only from the value_contents and value_contents_all()
3728 macros, if the current data for a variable needs to be loaded into
3729 value_contents(VAL). Fetches the data from the user's process, and
3730 clears the lazy flag to indicate that the data in the buffer is
3731 valid.
3732
3733 If the value is zero-length, we avoid calling read_memory, which
3734 would abort. We mark the value as fetched anyway -- all 0 bytes of
3735 it.
3736
3737 This function returns a value because it is used in the
3738 value_contents macro as part of an expression, where a void would
3739 not work. The value is ignored. */
3740
3741int
3742value_fetch_lazy (struct value *val)
3743{
3744 gdb_assert (value_lazy (val));
3745 allocate_value_contents (val);
9a0dc9e3
PA
3746 /* A value is either lazy, or fully fetched. The
3747 availability/validity is only established as we try to fetch a
3748 value. */
3749 gdb_assert (VEC_empty (range_s, val->optimized_out));
3750 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3751 if (value_bitsize (val))
3752 {
3753 /* To read a lazy bitfield, read the entire enclosing value. This
3754 prevents reading the same block of (possibly volatile) memory once
3755 per bitfield. It would be even better to read only the containing
3756 word, but we have no way to record that just specific bits of a
3757 value have been fetched. */
3758 struct type *type = check_typedef (value_type (val));
3759 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3760 struct value *parent = value_parent (val);
3761 LONGEST offset = value_offset (val);
3762 LONGEST num;
3763
b0c54aa5
AB
3764 if (value_lazy (parent))
3765 value_fetch_lazy (parent);
3766
9a0dc9e3
PA
3767 if (value_bits_any_optimized_out (parent,
3768 TARGET_CHAR_BIT * offset + value_bitpos (val),
3769 value_bitsize (val)))
3770 mark_value_bytes_optimized_out (val, value_embedded_offset (val),
3771 TYPE_LENGTH (type));
11b4b7cc 3772 else if (!unpack_value_bits_as_long (value_type (val),
a58e2656
AB
3773 value_contents_for_printing (parent),
3774 offset,
3775 value_bitpos (val),
3776 value_bitsize (val), parent, &num))
3777 mark_value_bytes_unavailable (val,
3778 value_embedded_offset (val),
3779 TYPE_LENGTH (type));
3780 else
3781 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3782 byte_order, num);
3783 }
3784 else if (VALUE_LVAL (val) == lval_memory)
3785 {
3786 CORE_ADDR addr = value_address (val);
3787 struct type *type = check_typedef (value_enclosing_type (val));
3788
3789 if (TYPE_LENGTH (type))
3790 read_value_memory (val, 0, value_stack (val),
3791 addr, value_contents_all_raw (val),
3792 TYPE_LENGTH (type));
3793 }
3794 else if (VALUE_LVAL (val) == lval_register)
3795 {
3796 struct frame_info *frame;
3797 int regnum;
3798 struct type *type = check_typedef (value_type (val));
3799 struct value *new_val = val, *mark = value_mark ();
3800
3801 /* Offsets are not supported here; lazy register values must
3802 refer to the entire register. */
3803 gdb_assert (value_offset (val) == 0);
3804
3805 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3806 {
6eeee81c
TT
3807 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3808
3809 frame = frame_find_by_id (frame_id);
a58e2656
AB
3810 regnum = VALUE_REGNUM (new_val);
3811
3812 gdb_assert (frame != NULL);
3813
3814 /* Convertible register routines are used for multi-register
3815 values and for interpretation in different types
3816 (e.g. float or int from a double register). Lazy
3817 register values should have the register's natural type,
3818 so they do not apply. */
3819 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3820 regnum, type));
3821
3822 new_val = get_frame_register_value (frame, regnum);
6eeee81c
TT
3823
3824 /* If we get another lazy lval_register value, it means the
3825 register is found by reading it from the next frame.
3826 get_frame_register_value should never return a value with
3827 the frame id pointing to FRAME. If it does, it means we
3828 either have two consecutive frames with the same frame id
3829 in the frame chain, or some code is trying to unwind
3830 behind get_prev_frame's back (e.g., a frame unwind
3831 sniffer trying to unwind), bypassing its validations. In
3832 any case, it should always be an internal error to end up
3833 in this situation. */
3834 if (VALUE_LVAL (new_val) == lval_register
3835 && value_lazy (new_val)
3836 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3837 internal_error (__FILE__, __LINE__,
3838 _("infinite loop while fetching a register"));
a58e2656
AB
3839 }
3840
3841 /* If it's still lazy (for instance, a saved register on the
3842 stack), fetch it. */
3843 if (value_lazy (new_val))
3844 value_fetch_lazy (new_val);
3845
9a0dc9e3
PA
3846 /* Copy the contents and the unavailability/optimized-out
3847 meta-data from NEW_VAL to VAL. */
3848 set_value_lazy (val, 0);
3849 value_contents_copy (val, value_embedded_offset (val),
3850 new_val, value_embedded_offset (new_val),
3851 TYPE_LENGTH (type));
a58e2656
AB
3852
3853 if (frame_debug)
3854 {
3855 struct gdbarch *gdbarch;
3856 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3857 regnum = VALUE_REGNUM (val);
3858 gdbarch = get_frame_arch (frame);
3859
3860 fprintf_unfiltered (gdb_stdlog,
3861 "{ value_fetch_lazy "
3862 "(frame=%d,regnum=%d(%s),...) ",
3863 frame_relative_level (frame), regnum,
3864 user_reg_map_regnum_to_name (gdbarch, regnum));
3865
3866 fprintf_unfiltered (gdb_stdlog, "->");
3867 if (value_optimized_out (new_val))
f6c01fc5
AB
3868 {
3869 fprintf_unfiltered (gdb_stdlog, " ");
3870 val_print_optimized_out (new_val, gdb_stdlog);
3871 }
a58e2656
AB
3872 else
3873 {
3874 int i;
3875 const gdb_byte *buf = value_contents (new_val);
3876
3877 if (VALUE_LVAL (new_val) == lval_register)
3878 fprintf_unfiltered (gdb_stdlog, " register=%d",
3879 VALUE_REGNUM (new_val));
3880 else if (VALUE_LVAL (new_val) == lval_memory)
3881 fprintf_unfiltered (gdb_stdlog, " address=%s",
3882 paddress (gdbarch,
3883 value_address (new_val)));
3884 else
3885 fprintf_unfiltered (gdb_stdlog, " computed");
3886
3887 fprintf_unfiltered (gdb_stdlog, " bytes=");
3888 fprintf_unfiltered (gdb_stdlog, "[");
3889 for (i = 0; i < register_size (gdbarch, regnum); i++)
3890 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3891 fprintf_unfiltered (gdb_stdlog, "]");
3892 }
3893
3894 fprintf_unfiltered (gdb_stdlog, " }\n");
3895 }
3896
3897 /* Dispose of the intermediate values. This prevents
3898 watchpoints from trying to watch the saved frame pointer. */
3899 value_free_to_mark (mark);
3900 }
3901 else if (VALUE_LVAL (val) == lval_computed
3902 && value_computed_funcs (val)->read != NULL)
3903 value_computed_funcs (val)->read (val);
a58e2656
AB
3904 else
3905 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3906
3907 set_value_lazy (val, 0);
3908 return 0;
3909}
3910
a280dbd1
SDJ
3911/* Implementation of the convenience function $_isvoid. */
3912
3913static struct value *
3914isvoid_internal_fn (struct gdbarch *gdbarch,
3915 const struct language_defn *language,
3916 void *cookie, int argc, struct value **argv)
3917{
3918 int ret;
3919
3920 if (argc != 1)
6bc305f5 3921 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
3922
3923 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3924
3925 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3926}
3927
c906108c 3928void
fba45db2 3929_initialize_values (void)
c906108c 3930{
1a966eab 3931 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
3932Debugger convenience (\"$foo\") variables and functions.\n\
3933Convenience variables are created when you assign them values;\n\
3934thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 3935\n\
c906108c
SS
3936A few convenience variables are given values automatically:\n\
3937\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
3938\"$__\" holds the contents of the last address examined with \"x\"."
3939#ifdef HAVE_PYTHON
3940"\n\n\
3941Convenience functions are defined via the Python API."
3942#endif
3943 ), &showlist);
7e20dfcd 3944 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 3945
db5f229b 3946 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3947Elements of value history around item number IDX (or last ten)."),
c906108c 3948 &showlist);
53e5f3cf
AS
3949
3950 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3951Initialize a convenience variable if necessary.\n\
3952init-if-undefined VARIABLE = EXPRESSION\n\
3953Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3954exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3955VARIABLE is already initialized."));
bc3b79fd
TJB
3956
3957 add_prefix_cmd ("function", no_class, function_command, _("\
3958Placeholder command for showing help on convenience functions."),
3959 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
3960
3961 add_internal_function ("_isvoid", _("\
3962Check whether an expression is void.\n\
3963Usage: $_isvoid (expression)\n\
3964Return 1 if the expression is void, zero otherwise."),
3965 isvoid_internal_fn, NULL);
c906108c 3966}
This page took 1.747663 seconds and 4 git commands to generate.