gdb: New set/show max-value-size command.
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
618f726f 3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
d16aafd8 31#include "doublest.h"
36160dc4 32#include "regcache.h"
fe898f56 33#include "block.h"
27bc4d80 34#include "dfp.h"
bccdca4a 35#include "objfiles.h"
79a45b7d 36#include "valprint.h"
bc3b79fd 37#include "cli/cli-decode.h"
6dddc817 38#include "extension.h"
3bd0f5ef 39#include <ctype.h>
0914bcdb 40#include "tracepoint.h"
be335936 41#include "cp-abi.h"
a58e2656 42#include "user-regs.h"
0914bcdb 43
581e13c1 44/* Prototypes for exported functions. */
c906108c 45
a14ed312 46void _initialize_values (void);
c906108c 47
bc3b79fd
TJB
48/* Definition of a user function. */
49struct internal_function
50{
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61};
62
4e07d55f
PA
63/* Defines an [OFFSET, OFFSET + LENGTH) range. */
64
65struct range
66{
67 /* Lowest offset in the range. */
68 int offset;
69
70 /* Length of the range. */
71 int length;
72};
73
74typedef struct range range_s;
75
76DEF_VEC_O(range_s);
77
78/* Returns true if the ranges defined by [offset1, offset1+len1) and
79 [offset2, offset2+len2) overlap. */
80
81static int
82ranges_overlap (int offset1, int len1,
83 int offset2, int len2)
84{
85 ULONGEST h, l;
86
87 l = max (offset1, offset2);
88 h = min (offset1 + len1, offset2 + len2);
89 return (l < h);
90}
91
92/* Returns true if the first argument is strictly less than the
93 second, useful for VEC_lower_bound. We keep ranges sorted by
94 offset and coalesce overlapping and contiguous ranges, so this just
95 compares the starting offset. */
96
97static int
98range_lessthan (const range_s *r1, const range_s *r2)
99{
100 return r1->offset < r2->offset;
101}
102
103/* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106static int
107ranges_contain (VEC(range_s) *ranges, int offset, int length)
108{
109 range_s what;
110 int i;
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
146 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
147
148 if (i > 0)
149 {
150 struct range *bef = VEC_index (range_s, ranges, i - 1);
151
152 if (ranges_overlap (bef->offset, bef->length, offset, length))
153 return 1;
154 }
155
156 if (i < VEC_length (range_s, ranges))
157 {
158 struct range *r = VEC_index (range_s, ranges, i);
159
160 if (ranges_overlap (r->offset, r->length, offset, length))
161 return 1;
162 }
163
164 return 0;
165}
166
bc3b79fd
TJB
167static struct cmd_list_element *functionlist;
168
87784a47
TT
169/* Note that the fields in this structure are arranged to save a bit
170 of memory. */
171
91294c83
AC
172struct value
173{
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
179 unsigned int modifiable : 1;
180
181 /* If zero, contents of this value are in the contents field. If
182 nonzero, contents are in inferior. If the lval field is lval_memory,
183 the contents are in inferior memory at location.address plus offset.
184 The lval field may also be lval_register.
185
186 WARNING: This field is used by the code which handles watchpoints
187 (see breakpoint.c) to decide whether a particular value can be
188 watched by hardware watchpoints. If the lazy flag is set for
189 some member of a value chain, it is assumed that this member of
190 the chain doesn't need to be watched as part of watching the
191 value itself. This is how GDB avoids watching the entire struct
192 or array when the user wants to watch a single struct member or
193 array element. If you ever change the way lazy flag is set and
194 reset, be sure to consider this use as well! */
195 unsigned int lazy : 1;
196
87784a47
TT
197 /* If value is a variable, is it initialized or not. */
198 unsigned int initialized : 1;
199
200 /* If value is from the stack. If this is set, read_stack will be
201 used instead of read_memory to enable extra caching. */
202 unsigned int stack : 1;
91294c83 203
e848a8a5
TT
204 /* If the value has been released. */
205 unsigned int released : 1;
206
98b1cfdc
TT
207 /* Register number if the value is from a register. */
208 short regnum;
209
91294c83
AC
210 /* Location of value (if lval). */
211 union
212 {
213 /* If lval == lval_memory, this is the address in the inferior.
214 If lval == lval_register, this is the byte offset into the
215 registers structure. */
216 CORE_ADDR address;
217
218 /* Pointer to internal variable. */
219 struct internalvar *internalvar;
5f5233d4 220
e81e7f5e
SC
221 /* Pointer to xmethod worker. */
222 struct xmethod_worker *xm_worker;
223
5f5233d4
PA
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
c8f2448a
JK
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
5f5233d4 234 } computed;
91294c83
AC
235 } location;
236
3723fda8
SM
237 /* Describes offset of a value within lval of a structure in target
238 addressable memory units. If lval == lval_memory, this is an offset to
239 the address. If lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the member
241 embedded_offset below. */
91294c83
AC
242 int offset;
243
244 /* Only used for bitfields; number of bits contained in them. */
245 int bitsize;
246
247 /* Only used for bitfields; position of start of field. For
32c9a795 248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
250 int bitpos;
251
87784a47
TT
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
4ea48cc1
DJ
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
91294c83
AC
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
294 offset of `type' within that larger type, in target addressable memory
295 units. The value_contents() macro takes `embedded_offset' into account,
296 so most GDB code continues to see the `type' portion of the value, just
297 as the inferior would.
91294c83
AC
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
301 the offset in target addressable memory units from the full object
302 to the pointed-to object -- that is, the value `embedded_offset' would
303 have if we followed the pointer and fetched the complete object.
304 (I don't really see the point. Why not just determine the
305 run-time type when you indirect, and avoid the special case? The
306 contents don't matter until you indirect anyway.)
91294c83
AC
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
312 int embedded_offset;
313 int pointed_to_offset;
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
a08702d6
TJB
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
91294c83
AC
319 struct value *next;
320
3e3d7139
JG
321 /* Actual contents of the value. Target byte-order. NULL or not
322 valid if lazy is nonzero. */
323 gdb_byte *contents;
828d3400 324
4e07d55f
PA
325 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
326 rather than available, since the common and default case is for a
9a0dc9e3
PA
327 value to be available. This is filled in at value read time.
328 The unavailable ranges are tracked in bits. Note that a contents
329 bit that has been optimized out doesn't really exist in the
330 program, so it can't be marked unavailable either. */
4e07d55f 331 VEC(range_s) *unavailable;
9a0dc9e3
PA
332
333 /* Likewise, but for optimized out contents (a chunk of the value of
334 a variable that does not actually exist in the program). If LVAL
335 is lval_register, this is a register ($pc, $sp, etc., never a
336 program variable) that has not been saved in the frame. Not
337 saved registers and optimized-out program variables values are
338 treated pretty much the same, except not-saved registers have a
339 different string representation and related error strings. */
340 VEC(range_s) *optimized_out;
91294c83
AC
341};
342
e512cdbd
SM
343/* See value.h. */
344
345struct gdbarch *
346get_value_arch (const struct value *value)
347{
348 return get_type_arch (value_type (value));
349}
350
4e07d55f 351int
bdf22206 352value_bits_available (const struct value *value, int offset, int length)
4e07d55f
PA
353{
354 gdb_assert (!value->lazy);
355
356 return !ranges_contain (value->unavailable, offset, length);
357}
358
bdf22206
AB
359int
360value_bytes_available (const struct value *value, int offset, int length)
361{
362 return value_bits_available (value,
363 offset * TARGET_CHAR_BIT,
364 length * TARGET_CHAR_BIT);
365}
366
9a0dc9e3
PA
367int
368value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
369{
370 gdb_assert (!value->lazy);
371
372 return ranges_contain (value->optimized_out, bit_offset, bit_length);
373}
374
ec0a52e1
PA
375int
376value_entirely_available (struct value *value)
377{
378 /* We can only tell whether the whole value is available when we try
379 to read it. */
380 if (value->lazy)
381 value_fetch_lazy (value);
382
383 if (VEC_empty (range_s, value->unavailable))
384 return 1;
385 return 0;
386}
387
9a0dc9e3
PA
388/* Returns true if VALUE is entirely covered by RANGES. If the value
389 is lazy, it'll be read now. Note that RANGE is a pointer to
390 pointer because reading the value might change *RANGE. */
391
392static int
393value_entirely_covered_by_range_vector (struct value *value,
394 VEC(range_s) **ranges)
6211c335 395{
9a0dc9e3
PA
396 /* We can only tell whether the whole value is optimized out /
397 unavailable when we try to read it. */
6211c335
YQ
398 if (value->lazy)
399 value_fetch_lazy (value);
400
9a0dc9e3 401 if (VEC_length (range_s, *ranges) == 1)
6211c335 402 {
9a0dc9e3 403 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
404
405 if (t->offset == 0
64c46ce4
JB
406 && t->length == (TARGET_CHAR_BIT
407 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
408 return 1;
409 }
410
411 return 0;
412}
413
9a0dc9e3
PA
414int
415value_entirely_unavailable (struct value *value)
416{
417 return value_entirely_covered_by_range_vector (value, &value->unavailable);
418}
419
420int
421value_entirely_optimized_out (struct value *value)
422{
423 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
424}
425
426/* Insert into the vector pointed to by VECTORP the bit range starting of
427 OFFSET bits, and extending for the next LENGTH bits. */
428
429static void
430insert_into_bit_range_vector (VEC(range_s) **vectorp, int offset, int length)
4e07d55f
PA
431{
432 range_s newr;
433 int i;
434
435 /* Insert the range sorted. If there's overlap or the new range
436 would be contiguous with an existing range, merge. */
437
438 newr.offset = offset;
439 newr.length = length;
440
441 /* Do a binary search for the position the given range would be
442 inserted if we only considered the starting OFFSET of ranges.
443 Call that position I. Since we also have LENGTH to care for
444 (this is a range afterall), we need to check if the _previous_
445 range overlaps the I range. E.g., calling R the new range:
446
447 #1 - overlaps with previous
448
449 R
450 |-...-|
451 |---| |---| |------| ... |--|
452 0 1 2 N
453
454 I=1
455
456 In the case #1 above, the binary search would return `I=1',
457 meaning, this OFFSET should be inserted at position 1, and the
458 current position 1 should be pushed further (and become 2). But,
459 note that `0' overlaps with R, so we want to merge them.
460
461 A similar consideration needs to be taken if the new range would
462 be contiguous with the previous range:
463
464 #2 - contiguous with previous
465
466 R
467 |-...-|
468 |--| |---| |------| ... |--|
469 0 1 2 N
470
471 I=1
472
473 If there's no overlap with the previous range, as in:
474
475 #3 - not overlapping and not contiguous
476
477 R
478 |-...-|
479 |--| |---| |------| ... |--|
480 0 1 2 N
481
482 I=1
483
484 or if I is 0:
485
486 #4 - R is the range with lowest offset
487
488 R
489 |-...-|
490 |--| |---| |------| ... |--|
491 0 1 2 N
492
493 I=0
494
495 ... we just push the new range to I.
496
497 All the 4 cases above need to consider that the new range may
498 also overlap several of the ranges that follow, or that R may be
499 contiguous with the following range, and merge. E.g.,
500
501 #5 - overlapping following ranges
502
503 R
504 |------------------------|
505 |--| |---| |------| ... |--|
506 0 1 2 N
507
508 I=0
509
510 or:
511
512 R
513 |-------|
514 |--| |---| |------| ... |--|
515 0 1 2 N
516
517 I=1
518
519 */
520
9a0dc9e3 521 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
522 if (i > 0)
523 {
9a0dc9e3 524 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
525
526 if (ranges_overlap (bef->offset, bef->length, offset, length))
527 {
528 /* #1 */
529 ULONGEST l = min (bef->offset, offset);
530 ULONGEST h = max (bef->offset + bef->length, offset + length);
531
532 bef->offset = l;
533 bef->length = h - l;
534 i--;
535 }
536 else if (offset == bef->offset + bef->length)
537 {
538 /* #2 */
539 bef->length += length;
540 i--;
541 }
542 else
543 {
544 /* #3 */
9a0dc9e3 545 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
546 }
547 }
548 else
549 {
550 /* #4 */
9a0dc9e3 551 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
552 }
553
554 /* Check whether the ranges following the one we've just added or
555 touched can be folded in (#5 above). */
9a0dc9e3 556 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
557 {
558 struct range *t;
559 struct range *r;
560 int removed = 0;
561 int next = i + 1;
562
563 /* Get the range we just touched. */
9a0dc9e3 564 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
565 removed = 0;
566
567 i = next;
9a0dc9e3 568 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
569 if (r->offset <= t->offset + t->length)
570 {
571 ULONGEST l, h;
572
573 l = min (t->offset, r->offset);
574 h = max (t->offset + t->length, r->offset + r->length);
575
576 t->offset = l;
577 t->length = h - l;
578
579 removed++;
580 }
581 else
582 {
583 /* If we couldn't merge this one, we won't be able to
584 merge following ones either, since the ranges are
585 always sorted by OFFSET. */
586 break;
587 }
588
589 if (removed != 0)
9a0dc9e3 590 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
591 }
592}
593
9a0dc9e3
PA
594void
595mark_value_bits_unavailable (struct value *value, int offset, int length)
596{
597 insert_into_bit_range_vector (&value->unavailable, offset, length);
598}
599
bdf22206
AB
600void
601mark_value_bytes_unavailable (struct value *value, int offset, int length)
602{
603 mark_value_bits_unavailable (value,
604 offset * TARGET_CHAR_BIT,
605 length * TARGET_CHAR_BIT);
606}
607
c8c1c22f
PA
608/* Find the first range in RANGES that overlaps the range defined by
609 OFFSET and LENGTH, starting at element POS in the RANGES vector,
610 Returns the index into RANGES where such overlapping range was
611 found, or -1 if none was found. */
612
613static int
614find_first_range_overlap (VEC(range_s) *ranges, int pos,
615 int offset, int length)
616{
617 range_s *r;
618 int i;
619
620 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
621 if (ranges_overlap (r->offset, r->length, offset, length))
622 return i;
623
624 return -1;
625}
626
bdf22206
AB
627/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
628 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
629 return non-zero.
630
631 It must always be the case that:
632 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
633
634 It is assumed that memory can be accessed from:
635 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
636 to:
637 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
638 / TARGET_CHAR_BIT) */
639static int
640memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
641 const gdb_byte *ptr2, size_t offset2_bits,
642 size_t length_bits)
643{
644 gdb_assert (offset1_bits % TARGET_CHAR_BIT
645 == offset2_bits % TARGET_CHAR_BIT);
646
647 if (offset1_bits % TARGET_CHAR_BIT != 0)
648 {
649 size_t bits;
650 gdb_byte mask, b1, b2;
651
652 /* The offset from the base pointers PTR1 and PTR2 is not a complete
653 number of bytes. A number of bits up to either the next exact
654 byte boundary, or LENGTH_BITS (which ever is sooner) will be
655 compared. */
656 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
657 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
658 mask = (1 << bits) - 1;
659
660 if (length_bits < bits)
661 {
662 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
663 bits = length_bits;
664 }
665
666 /* Now load the two bytes and mask off the bits we care about. */
667 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
668 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
669
670 if (b1 != b2)
671 return 1;
672
673 /* Now update the length and offsets to take account of the bits
674 we've just compared. */
675 length_bits -= bits;
676 offset1_bits += bits;
677 offset2_bits += bits;
678 }
679
680 if (length_bits % TARGET_CHAR_BIT != 0)
681 {
682 size_t bits;
683 size_t o1, o2;
684 gdb_byte mask, b1, b2;
685
686 /* The length is not an exact number of bytes. After the previous
687 IF.. block then the offsets are byte aligned, or the
688 length is zero (in which case this code is not reached). Compare
689 a number of bits at the end of the region, starting from an exact
690 byte boundary. */
691 bits = length_bits % TARGET_CHAR_BIT;
692 o1 = offset1_bits + length_bits - bits;
693 o2 = offset2_bits + length_bits - bits;
694
695 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
696 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
697
698 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
699 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
700
701 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
702 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
703
704 if (b1 != b2)
705 return 1;
706
707 length_bits -= bits;
708 }
709
710 if (length_bits > 0)
711 {
712 /* We've now taken care of any stray "bits" at the start, or end of
713 the region to compare, the remainder can be covered with a simple
714 memcmp. */
715 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
716 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
717 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
718
719 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
720 ptr2 + offset2_bits / TARGET_CHAR_BIT,
721 length_bits / TARGET_CHAR_BIT);
722 }
723
724 /* Length is zero, regions match. */
725 return 0;
726}
727
9a0dc9e3
PA
728/* Helper struct for find_first_range_overlap_and_match and
729 value_contents_bits_eq. Keep track of which slot of a given ranges
730 vector have we last looked at. */
bdf22206 731
9a0dc9e3
PA
732struct ranges_and_idx
733{
734 /* The ranges. */
735 VEC(range_s) *ranges;
736
737 /* The range we've last found in RANGES. Given ranges are sorted,
738 we can start the next lookup here. */
739 int idx;
740};
741
742/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
743 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
744 ranges starting at OFFSET2 bits. Return true if the ranges match
745 and fill in *L and *H with the overlapping window relative to
746 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
747
748static int
9a0dc9e3
PA
749find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
750 struct ranges_and_idx *rp2,
751 int offset1, int offset2,
752 int length, ULONGEST *l, ULONGEST *h)
c8c1c22f 753{
9a0dc9e3
PA
754 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
755 offset1, length);
756 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
757 offset2, length);
c8c1c22f 758
9a0dc9e3
PA
759 if (rp1->idx == -1 && rp2->idx == -1)
760 {
761 *l = length;
762 *h = length;
763 return 1;
764 }
765 else if (rp1->idx == -1 || rp2->idx == -1)
766 return 0;
767 else
c8c1c22f
PA
768 {
769 range_s *r1, *r2;
770 ULONGEST l1, h1;
771 ULONGEST l2, h2;
772
9a0dc9e3
PA
773 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
774 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
775
776 /* Get the unavailable windows intersected by the incoming
777 ranges. The first and last ranges that overlap the argument
778 range may be wider than said incoming arguments ranges. */
779 l1 = max (offset1, r1->offset);
780 h1 = min (offset1 + length, r1->offset + r1->length);
781
782 l2 = max (offset2, r2->offset);
9a0dc9e3 783 h2 = min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
784
785 /* Make them relative to the respective start offsets, so we can
786 compare them for equality. */
787 l1 -= offset1;
788 h1 -= offset1;
789
790 l2 -= offset2;
791 h2 -= offset2;
792
9a0dc9e3 793 /* Different ranges, no match. */
c8c1c22f
PA
794 if (l1 != l2 || h1 != h2)
795 return 0;
796
9a0dc9e3
PA
797 *h = h1;
798 *l = l1;
799 return 1;
800 }
801}
802
803/* Helper function for value_contents_eq. The only difference is that
804 this function is bit rather than byte based.
805
806 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
807 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
808 Return true if the available bits match. */
809
810static int
811value_contents_bits_eq (const struct value *val1, int offset1,
812 const struct value *val2, int offset2,
813 int length)
814{
815 /* Each array element corresponds to a ranges source (unavailable,
816 optimized out). '1' is for VAL1, '2' for VAL2. */
817 struct ranges_and_idx rp1[2], rp2[2];
818
819 /* See function description in value.h. */
820 gdb_assert (!val1->lazy && !val2->lazy);
821
822 /* We shouldn't be trying to compare past the end of the values. */
823 gdb_assert (offset1 + length
824 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
825 gdb_assert (offset2 + length
826 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
827
828 memset (&rp1, 0, sizeof (rp1));
829 memset (&rp2, 0, sizeof (rp2));
830 rp1[0].ranges = val1->unavailable;
831 rp2[0].ranges = val2->unavailable;
832 rp1[1].ranges = val1->optimized_out;
833 rp2[1].ranges = val2->optimized_out;
834
835 while (length > 0)
836 {
000339af 837 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
838 int i;
839
840 for (i = 0; i < 2; i++)
841 {
842 ULONGEST l_tmp, h_tmp;
843
844 /* The contents only match equal if the invalid/unavailable
845 contents ranges match as well. */
846 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
847 offset1, offset2, length,
848 &l_tmp, &h_tmp))
849 return 0;
850
851 /* We're interested in the lowest/first range found. */
852 if (i == 0 || l_tmp < l)
853 {
854 l = l_tmp;
855 h = h_tmp;
856 }
857 }
858
859 /* Compare the available/valid contents. */
bdf22206 860 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 861 val2->contents, offset2, l) != 0)
c8c1c22f
PA
862 return 0;
863
9a0dc9e3
PA
864 length -= h;
865 offset1 += h;
866 offset2 += h;
c8c1c22f
PA
867 }
868
869 return 1;
870}
871
bdf22206 872int
9a0dc9e3
PA
873value_contents_eq (const struct value *val1, int offset1,
874 const struct value *val2, int offset2,
875 int length)
bdf22206 876{
9a0dc9e3
PA
877 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
878 val2, offset2 * TARGET_CHAR_BIT,
879 length * TARGET_CHAR_BIT);
bdf22206
AB
880}
881
581e13c1 882/* Prototypes for local functions. */
c906108c 883
a14ed312 884static void show_values (char *, int);
c906108c 885
a14ed312 886static void show_convenience (char *, int);
c906108c 887
c906108c
SS
888
889/* The value-history records all the values printed
890 by print commands during this session. Each chunk
891 records 60 consecutive values. The first chunk on
892 the chain records the most recent values.
893 The total number of values is in value_history_count. */
894
895#define VALUE_HISTORY_CHUNK 60
896
897struct value_history_chunk
c5aa993b
JM
898 {
899 struct value_history_chunk *next;
f23631e4 900 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 901 };
c906108c
SS
902
903/* Chain of chunks now in use. */
904
905static struct value_history_chunk *value_history_chain;
906
581e13c1 907static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 908
c906108c
SS
909\f
910/* List of all value objects currently allocated
911 (except for those released by calls to release_value)
912 This is so they can be freed after each command. */
913
f23631e4 914static struct value *all_values;
c906108c 915
3e3d7139
JG
916/* Allocate a lazy value for type TYPE. Its actual content is
917 "lazily" allocated too: the content field of the return value is
918 NULL; it will be allocated when it is fetched from the target. */
c906108c 919
f23631e4 920struct value *
3e3d7139 921allocate_value_lazy (struct type *type)
c906108c 922{
f23631e4 923 struct value *val;
c54eabfa
JK
924
925 /* Call check_typedef on our type to make sure that, if TYPE
926 is a TYPE_CODE_TYPEDEF, its length is set to the length
927 of the target type instead of zero. However, we do not
928 replace the typedef type by the target type, because we want
929 to keep the typedef in order to be able to set the VAL's type
930 description correctly. */
931 check_typedef (type);
c906108c 932
8d749320 933 val = XCNEW (struct value);
3e3d7139 934 val->contents = NULL;
df407dfe 935 val->next = all_values;
c906108c 936 all_values = val;
df407dfe 937 val->type = type;
4754a64e 938 val->enclosing_type = type;
c906108c 939 VALUE_LVAL (val) = not_lval;
42ae5230 940 val->location.address = 0;
1df6926e 941 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
942 val->offset = 0;
943 val->bitpos = 0;
944 val->bitsize = 0;
9ee8fc9d 945 VALUE_REGNUM (val) = -1;
3e3d7139 946 val->lazy = 1;
13c3b5f5 947 val->embedded_offset = 0;
b44d461b 948 val->pointed_to_offset = 0;
c906108c 949 val->modifiable = 1;
42be36b3 950 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
951
952 /* Values start out on the all_values chain. */
953 val->reference_count = 1;
954
c906108c
SS
955 return val;
956}
957
5fdf6324
AB
958/* The maximum size, in bytes, that GDB will try to allocate for a value.
959 The initial value of 64k was not selected for any specific reason, it is
960 just a reasonable starting point. */
961
962static int max_value_size = 65536; /* 64k bytes */
963
964/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
965 LONGEST, otherwise GDB will not be able to parse integer values from the
966 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
967 be unable to parse "set max-value-size 2".
968
969 As we want a consistent GDB experience across hosts with different sizes
970 of LONGEST, this arbitrary minimum value was selected, so long as this
971 is bigger than LONGEST on all GDB supported hosts we're fine. */
972
973#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
974gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
975
976/* Implement the "set max-value-size" command. */
977
978static void
979set_max_value_size (char *args, int from_tty,
980 struct cmd_list_element *c)
981{
982 gdb_assert (max_value_size == -1 || max_value_size >= 0);
983
984 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
985 {
986 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
987 error (_("max-value-size set too low, increasing to %d bytes"),
988 max_value_size);
989 }
990}
991
992/* Implement the "show max-value-size" command. */
993
994static void
995show_max_value_size (struct ui_file *file, int from_tty,
996 struct cmd_list_element *c, const char *value)
997{
998 if (max_value_size == -1)
999 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
1000 else
1001 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
1002 max_value_size);
1003}
1004
1005/* Called before we attempt to allocate or reallocate a buffer for the
1006 contents of a value. TYPE is the type of the value for which we are
1007 allocating the buffer. If the buffer is too large (based on the user
1008 controllable setting) then throw an error. If this function returns
1009 then we should attempt to allocate the buffer. */
1010
1011static void
1012check_type_length_before_alloc (const struct type *type)
1013{
1014 unsigned int length = TYPE_LENGTH (type);
1015
1016 if (max_value_size > -1 && length > max_value_size)
1017 {
1018 if (TYPE_NAME (type) != NULL)
1019 error (_("value of type `%s' requires %u bytes, which is more "
1020 "than max-value-size"), TYPE_NAME (type), length);
1021 else
1022 error (_("value requires %u bytes, which is more than "
1023 "max-value-size"), length);
1024 }
1025}
1026
3e3d7139
JG
1027/* Allocate the contents of VAL if it has not been allocated yet. */
1028
548b762d 1029static void
3e3d7139
JG
1030allocate_value_contents (struct value *val)
1031{
1032 if (!val->contents)
5fdf6324
AB
1033 {
1034 check_type_length_before_alloc (val->enclosing_type);
1035 val->contents
1036 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1037 }
3e3d7139
JG
1038}
1039
1040/* Allocate a value and its contents for type TYPE. */
1041
1042struct value *
1043allocate_value (struct type *type)
1044{
1045 struct value *val = allocate_value_lazy (type);
a109c7c1 1046
3e3d7139
JG
1047 allocate_value_contents (val);
1048 val->lazy = 0;
1049 return val;
1050}
1051
c906108c 1052/* Allocate a value that has the correct length
938f5214 1053 for COUNT repetitions of type TYPE. */
c906108c 1054
f23631e4 1055struct value *
fba45db2 1056allocate_repeat_value (struct type *type, int count)
c906108c 1057{
c5aa993b 1058 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1059 /* FIXME-type-allocation: need a way to free this type when we are
1060 done with it. */
e3506a9f
UW
1061 struct type *array_type
1062 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1063
e3506a9f 1064 return allocate_value (array_type);
c906108c
SS
1065}
1066
5f5233d4
PA
1067struct value *
1068allocate_computed_value (struct type *type,
c8f2448a 1069 const struct lval_funcs *funcs,
5f5233d4
PA
1070 void *closure)
1071{
41e8491f 1072 struct value *v = allocate_value_lazy (type);
a109c7c1 1073
5f5233d4
PA
1074 VALUE_LVAL (v) = lval_computed;
1075 v->location.computed.funcs = funcs;
1076 v->location.computed.closure = closure;
5f5233d4
PA
1077
1078 return v;
1079}
1080
a7035dbb
JK
1081/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1082
1083struct value *
1084allocate_optimized_out_value (struct type *type)
1085{
1086 struct value *retval = allocate_value_lazy (type);
1087
9a0dc9e3
PA
1088 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1089 set_value_lazy (retval, 0);
a7035dbb
JK
1090 return retval;
1091}
1092
df407dfe
AC
1093/* Accessor methods. */
1094
17cf0ecd
AC
1095struct value *
1096value_next (struct value *value)
1097{
1098 return value->next;
1099}
1100
df407dfe 1101struct type *
0e03807e 1102value_type (const struct value *value)
df407dfe
AC
1103{
1104 return value->type;
1105}
04624583
AC
1106void
1107deprecated_set_value_type (struct value *value, struct type *type)
1108{
1109 value->type = type;
1110}
df407dfe
AC
1111
1112int
0e03807e 1113value_offset (const struct value *value)
df407dfe
AC
1114{
1115 return value->offset;
1116}
f5cf64a7
AC
1117void
1118set_value_offset (struct value *value, int offset)
1119{
1120 value->offset = offset;
1121}
df407dfe
AC
1122
1123int
0e03807e 1124value_bitpos (const struct value *value)
df407dfe
AC
1125{
1126 return value->bitpos;
1127}
9bbda503
AC
1128void
1129set_value_bitpos (struct value *value, int bit)
1130{
1131 value->bitpos = bit;
1132}
df407dfe
AC
1133
1134int
0e03807e 1135value_bitsize (const struct value *value)
df407dfe
AC
1136{
1137 return value->bitsize;
1138}
9bbda503
AC
1139void
1140set_value_bitsize (struct value *value, int bit)
1141{
1142 value->bitsize = bit;
1143}
df407dfe 1144
4ea48cc1
DJ
1145struct value *
1146value_parent (struct value *value)
1147{
1148 return value->parent;
1149}
1150
53ba8333
JB
1151/* See value.h. */
1152
1153void
1154set_value_parent (struct value *value, struct value *parent)
1155{
40501e00
TT
1156 struct value *old = value->parent;
1157
53ba8333 1158 value->parent = parent;
40501e00
TT
1159 if (parent != NULL)
1160 value_incref (parent);
1161 value_free (old);
53ba8333
JB
1162}
1163
fc1a4b47 1164gdb_byte *
990a07ab
AC
1165value_contents_raw (struct value *value)
1166{
3ae385af
SM
1167 struct gdbarch *arch = get_value_arch (value);
1168 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1169
3e3d7139 1170 allocate_value_contents (value);
3ae385af 1171 return value->contents + value->embedded_offset * unit_size;
990a07ab
AC
1172}
1173
fc1a4b47 1174gdb_byte *
990a07ab
AC
1175value_contents_all_raw (struct value *value)
1176{
3e3d7139
JG
1177 allocate_value_contents (value);
1178 return value->contents;
990a07ab
AC
1179}
1180
4754a64e
AC
1181struct type *
1182value_enclosing_type (struct value *value)
1183{
1184 return value->enclosing_type;
1185}
1186
8264ba82
AG
1187/* Look at value.h for description. */
1188
1189struct type *
1190value_actual_type (struct value *value, int resolve_simple_types,
1191 int *real_type_found)
1192{
1193 struct value_print_options opts;
8264ba82
AG
1194 struct type *result;
1195
1196 get_user_print_options (&opts);
1197
1198 if (real_type_found)
1199 *real_type_found = 0;
1200 result = value_type (value);
1201 if (opts.objectprint)
1202 {
5e34c6c3
LM
1203 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1204 fetch its rtti type. */
1205 if ((TYPE_CODE (result) == TYPE_CODE_PTR
8264ba82 1206 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3
LM
1207 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1208 == TYPE_CODE_STRUCT)
8264ba82
AG
1209 {
1210 struct type *real_type;
1211
1212 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1213 if (real_type)
1214 {
1215 if (real_type_found)
1216 *real_type_found = 1;
1217 result = real_type;
1218 }
1219 }
1220 else if (resolve_simple_types)
1221 {
1222 if (real_type_found)
1223 *real_type_found = 1;
1224 result = value_enclosing_type (value);
1225 }
1226 }
1227
1228 return result;
1229}
1230
901461f8
PA
1231void
1232error_value_optimized_out (void)
1233{
1234 error (_("value has been optimized out"));
1235}
1236
0e03807e 1237static void
4e07d55f 1238require_not_optimized_out (const struct value *value)
0e03807e 1239{
9a0dc9e3 1240 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1241 {
1242 if (value->lval == lval_register)
1243 error (_("register has not been saved in frame"));
1244 else
1245 error_value_optimized_out ();
1246 }
0e03807e
TT
1247}
1248
4e07d55f
PA
1249static void
1250require_available (const struct value *value)
1251{
1252 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1253 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1254}
1255
fc1a4b47 1256const gdb_byte *
0e03807e 1257value_contents_for_printing (struct value *value)
46615f07
AC
1258{
1259 if (value->lazy)
1260 value_fetch_lazy (value);
3e3d7139 1261 return value->contents;
46615f07
AC
1262}
1263
de4127a3
PA
1264const gdb_byte *
1265value_contents_for_printing_const (const struct value *value)
1266{
1267 gdb_assert (!value->lazy);
1268 return value->contents;
1269}
1270
0e03807e
TT
1271const gdb_byte *
1272value_contents_all (struct value *value)
1273{
1274 const gdb_byte *result = value_contents_for_printing (value);
1275 require_not_optimized_out (value);
4e07d55f 1276 require_available (value);
0e03807e
TT
1277 return result;
1278}
1279
9a0dc9e3
PA
1280/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1281 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1282
1283static void
1284ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1285 VEC (range_s) *src_range, int src_bit_offset,
1286 int bit_length)
1287{
1288 range_s *r;
1289 int i;
1290
1291 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1292 {
1293 ULONGEST h, l;
1294
1295 l = max (r->offset, src_bit_offset);
1296 h = min (r->offset + r->length, src_bit_offset + bit_length);
1297
1298 if (l < h)
1299 insert_into_bit_range_vector (dst_range,
1300 dst_bit_offset + (l - src_bit_offset),
1301 h - l);
1302 }
1303}
1304
4875ffdb
PA
1305/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1306 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1307
1308static void
1309value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1310 const struct value *src, int src_bit_offset,
1311 int bit_length)
1312{
1313 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1314 src->unavailable, src_bit_offset,
1315 bit_length);
1316 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1317 src->optimized_out, src_bit_offset,
1318 bit_length);
1319}
1320
3ae385af 1321/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1322 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1323 contents, starting at DST_OFFSET. If unavailable contents are
1324 being copied from SRC, the corresponding DST contents are marked
1325 unavailable accordingly. Neither DST nor SRC may be lazy
1326 values.
1327
1328 It is assumed the contents of DST in the [DST_OFFSET,
1329 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1330
1331void
1332value_contents_copy_raw (struct value *dst, int dst_offset,
1333 struct value *src, int src_offset, int length)
1334{
1335 range_s *r;
bdf22206 1336 int src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1337 struct gdbarch *arch = get_value_arch (src);
1338 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1339
1340 /* A lazy DST would make that this copy operation useless, since as
1341 soon as DST's contents were un-lazied (by a later value_contents
1342 call, say), the contents would be overwritten. A lazy SRC would
1343 mean we'd be copying garbage. */
1344 gdb_assert (!dst->lazy && !src->lazy);
1345
29976f3f
PA
1346 /* The overwritten DST range gets unavailability ORed in, not
1347 replaced. Make sure to remember to implement replacing if it
1348 turns out actually necessary. */
1349 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1350 gdb_assert (!value_bits_any_optimized_out (dst,
1351 TARGET_CHAR_BIT * dst_offset,
1352 TARGET_CHAR_BIT * length));
29976f3f 1353
39d37385 1354 /* Copy the data. */
3ae385af
SM
1355 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1356 value_contents_all_raw (src) + src_offset * unit_size,
1357 length * unit_size);
39d37385
PA
1358
1359 /* Copy the meta-data, adjusted. */
3ae385af
SM
1360 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1361 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1362 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1363
4875ffdb
PA
1364 value_ranges_copy_adjusted (dst, dst_bit_offset,
1365 src, src_bit_offset,
1366 bit_length);
39d37385
PA
1367}
1368
29976f3f
PA
1369/* Copy LENGTH bytes of SRC value's (all) contents
1370 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1371 (all) contents, starting at DST_OFFSET. If unavailable contents
1372 are being copied from SRC, the corresponding DST contents are
1373 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1374 lazy, it will be fetched now.
29976f3f
PA
1375
1376 It is assumed the contents of DST in the [DST_OFFSET,
1377 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1378
1379void
1380value_contents_copy (struct value *dst, int dst_offset,
1381 struct value *src, int src_offset, int length)
1382{
39d37385
PA
1383 if (src->lazy)
1384 value_fetch_lazy (src);
1385
1386 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1387}
1388
d69fe07e
AC
1389int
1390value_lazy (struct value *value)
1391{
1392 return value->lazy;
1393}
1394
dfa52d88
AC
1395void
1396set_value_lazy (struct value *value, int val)
1397{
1398 value->lazy = val;
1399}
1400
4e5d721f
DE
1401int
1402value_stack (struct value *value)
1403{
1404 return value->stack;
1405}
1406
1407void
1408set_value_stack (struct value *value, int val)
1409{
1410 value->stack = val;
1411}
1412
fc1a4b47 1413const gdb_byte *
0fd88904
AC
1414value_contents (struct value *value)
1415{
0e03807e
TT
1416 const gdb_byte *result = value_contents_writeable (value);
1417 require_not_optimized_out (value);
4e07d55f 1418 require_available (value);
0e03807e 1419 return result;
0fd88904
AC
1420}
1421
fc1a4b47 1422gdb_byte *
0fd88904
AC
1423value_contents_writeable (struct value *value)
1424{
1425 if (value->lazy)
1426 value_fetch_lazy (value);
fc0c53a0 1427 return value_contents_raw (value);
0fd88904
AC
1428}
1429
feb13ab0
AC
1430int
1431value_optimized_out (struct value *value)
1432{
691a26f5
AB
1433 /* We can only know if a value is optimized out once we have tried to
1434 fetch it. */
9a0dc9e3 1435 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
691a26f5
AB
1436 value_fetch_lazy (value);
1437
9a0dc9e3 1438 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1439}
1440
9a0dc9e3
PA
1441/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1442 the following LENGTH bytes. */
eca07816 1443
feb13ab0 1444void
9a0dc9e3 1445mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1446{
9a0dc9e3
PA
1447 mark_value_bits_optimized_out (value,
1448 offset * TARGET_CHAR_BIT,
1449 length * TARGET_CHAR_BIT);
feb13ab0 1450}
13c3b5f5 1451
9a0dc9e3 1452/* See value.h. */
0e03807e 1453
9a0dc9e3
PA
1454void
1455mark_value_bits_optimized_out (struct value *value, int offset, int length)
0e03807e 1456{
9a0dc9e3 1457 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1458}
1459
8cf6f0b1
TT
1460int
1461value_bits_synthetic_pointer (const struct value *value,
1462 int offset, int length)
1463{
e7303042 1464 if (value->lval != lval_computed
8cf6f0b1
TT
1465 || !value->location.computed.funcs->check_synthetic_pointer)
1466 return 0;
1467 return value->location.computed.funcs->check_synthetic_pointer (value,
1468 offset,
1469 length);
1470}
1471
13c3b5f5
AC
1472int
1473value_embedded_offset (struct value *value)
1474{
1475 return value->embedded_offset;
1476}
1477
1478void
1479set_value_embedded_offset (struct value *value, int val)
1480{
1481 value->embedded_offset = val;
1482}
b44d461b
AC
1483
1484int
1485value_pointed_to_offset (struct value *value)
1486{
1487 return value->pointed_to_offset;
1488}
1489
1490void
1491set_value_pointed_to_offset (struct value *value, int val)
1492{
1493 value->pointed_to_offset = val;
1494}
13bb5560 1495
c8f2448a 1496const struct lval_funcs *
a471c594 1497value_computed_funcs (const struct value *v)
5f5233d4 1498{
a471c594 1499 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1500
1501 return v->location.computed.funcs;
1502}
1503
1504void *
0e03807e 1505value_computed_closure (const struct value *v)
5f5233d4 1506{
0e03807e 1507 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1508
1509 return v->location.computed.closure;
1510}
1511
13bb5560
AC
1512enum lval_type *
1513deprecated_value_lval_hack (struct value *value)
1514{
1515 return &value->lval;
1516}
1517
a471c594
JK
1518enum lval_type
1519value_lval_const (const struct value *value)
1520{
1521 return value->lval;
1522}
1523
42ae5230 1524CORE_ADDR
de4127a3 1525value_address (const struct value *value)
42ae5230
TT
1526{
1527 if (value->lval == lval_internalvar
e81e7f5e
SC
1528 || value->lval == lval_internalvar_component
1529 || value->lval == lval_xcallable)
42ae5230 1530 return 0;
53ba8333
JB
1531 if (value->parent != NULL)
1532 return value_address (value->parent) + value->offset;
1533 else
1534 return value->location.address + value->offset;
42ae5230
TT
1535}
1536
1537CORE_ADDR
1538value_raw_address (struct value *value)
1539{
1540 if (value->lval == lval_internalvar
e81e7f5e
SC
1541 || value->lval == lval_internalvar_component
1542 || value->lval == lval_xcallable)
42ae5230
TT
1543 return 0;
1544 return value->location.address;
1545}
1546
1547void
1548set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1549{
42ae5230 1550 gdb_assert (value->lval != lval_internalvar
e81e7f5e
SC
1551 && value->lval != lval_internalvar_component
1552 && value->lval != lval_xcallable);
42ae5230 1553 value->location.address = addr;
13bb5560
AC
1554}
1555
1556struct internalvar **
1557deprecated_value_internalvar_hack (struct value *value)
1558{
1559 return &value->location.internalvar;
1560}
1561
1562struct frame_id *
1563deprecated_value_frame_id_hack (struct value *value)
1564{
1565 return &value->frame_id;
1566}
1567
1568short *
1569deprecated_value_regnum_hack (struct value *value)
1570{
1571 return &value->regnum;
1572}
88e3b34b
AC
1573
1574int
1575deprecated_value_modifiable (struct value *value)
1576{
1577 return value->modifiable;
1578}
990a07ab 1579\f
c906108c
SS
1580/* Return a mark in the value chain. All values allocated after the
1581 mark is obtained (except for those released) are subject to being freed
1582 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1583struct value *
fba45db2 1584value_mark (void)
c906108c
SS
1585{
1586 return all_values;
1587}
1588
828d3400
DJ
1589/* Take a reference to VAL. VAL will not be deallocated until all
1590 references are released. */
1591
1592void
1593value_incref (struct value *val)
1594{
1595 val->reference_count++;
1596}
1597
1598/* Release a reference to VAL, which was acquired with value_incref.
1599 This function is also called to deallocate values from the value
1600 chain. */
1601
3e3d7139
JG
1602void
1603value_free (struct value *val)
1604{
1605 if (val)
5f5233d4 1606 {
828d3400
DJ
1607 gdb_assert (val->reference_count > 0);
1608 val->reference_count--;
1609 if (val->reference_count > 0)
1610 return;
1611
4ea48cc1
DJ
1612 /* If there's an associated parent value, drop our reference to
1613 it. */
1614 if (val->parent != NULL)
1615 value_free (val->parent);
1616
5f5233d4
PA
1617 if (VALUE_LVAL (val) == lval_computed)
1618 {
c8f2448a 1619 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1620
1621 if (funcs->free_closure)
1622 funcs->free_closure (val);
1623 }
e81e7f5e
SC
1624 else if (VALUE_LVAL (val) == lval_xcallable)
1625 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1626
1627 xfree (val->contents);
4e07d55f 1628 VEC_free (range_s, val->unavailable);
5f5233d4 1629 }
3e3d7139
JG
1630 xfree (val);
1631}
1632
c906108c
SS
1633/* Free all values allocated since MARK was obtained by value_mark
1634 (except for those released). */
1635void
f23631e4 1636value_free_to_mark (struct value *mark)
c906108c 1637{
f23631e4
AC
1638 struct value *val;
1639 struct value *next;
c906108c
SS
1640
1641 for (val = all_values; val && val != mark; val = next)
1642 {
df407dfe 1643 next = val->next;
e848a8a5 1644 val->released = 1;
c906108c
SS
1645 value_free (val);
1646 }
1647 all_values = val;
1648}
1649
1650/* Free all the values that have been allocated (except for those released).
725e88af
DE
1651 Call after each command, successful or not.
1652 In practice this is called before each command, which is sufficient. */
c906108c
SS
1653
1654void
fba45db2 1655free_all_values (void)
c906108c 1656{
f23631e4
AC
1657 struct value *val;
1658 struct value *next;
c906108c
SS
1659
1660 for (val = all_values; val; val = next)
1661 {
df407dfe 1662 next = val->next;
e848a8a5 1663 val->released = 1;
c906108c
SS
1664 value_free (val);
1665 }
1666
1667 all_values = 0;
1668}
1669
0cf6dd15
TJB
1670/* Frees all the elements in a chain of values. */
1671
1672void
1673free_value_chain (struct value *v)
1674{
1675 struct value *next;
1676
1677 for (; v; v = next)
1678 {
1679 next = value_next (v);
1680 value_free (v);
1681 }
1682}
1683
c906108c
SS
1684/* Remove VAL from the chain all_values
1685 so it will not be freed automatically. */
1686
1687void
f23631e4 1688release_value (struct value *val)
c906108c 1689{
f23631e4 1690 struct value *v;
c906108c
SS
1691
1692 if (all_values == val)
1693 {
1694 all_values = val->next;
06a64a0b 1695 val->next = NULL;
e848a8a5 1696 val->released = 1;
c906108c
SS
1697 return;
1698 }
1699
1700 for (v = all_values; v; v = v->next)
1701 {
1702 if (v->next == val)
1703 {
1704 v->next = val->next;
06a64a0b 1705 val->next = NULL;
e848a8a5 1706 val->released = 1;
c906108c
SS
1707 break;
1708 }
1709 }
1710}
1711
e848a8a5
TT
1712/* If the value is not already released, release it.
1713 If the value is already released, increment its reference count.
1714 That is, this function ensures that the value is released from the
1715 value chain and that the caller owns a reference to it. */
1716
1717void
1718release_value_or_incref (struct value *val)
1719{
1720 if (val->released)
1721 value_incref (val);
1722 else
1723 release_value (val);
1724}
1725
c906108c 1726/* Release all values up to mark */
f23631e4
AC
1727struct value *
1728value_release_to_mark (struct value *mark)
c906108c 1729{
f23631e4
AC
1730 struct value *val;
1731 struct value *next;
c906108c 1732
df407dfe 1733 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1734 {
1735 if (next->next == mark)
1736 {
1737 all_values = next->next;
1738 next->next = NULL;
1739 return val;
1740 }
1741 next->released = 1;
1742 }
c906108c
SS
1743 all_values = 0;
1744 return val;
1745}
1746
1747/* Return a copy of the value ARG.
1748 It contains the same contents, for same memory address,
1749 but it's a different block of storage. */
1750
f23631e4
AC
1751struct value *
1752value_copy (struct value *arg)
c906108c 1753{
4754a64e 1754 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1755 struct value *val;
1756
1757 if (value_lazy (arg))
1758 val = allocate_value_lazy (encl_type);
1759 else
1760 val = allocate_value (encl_type);
df407dfe 1761 val->type = arg->type;
c906108c 1762 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1763 val->location = arg->location;
df407dfe
AC
1764 val->offset = arg->offset;
1765 val->bitpos = arg->bitpos;
1766 val->bitsize = arg->bitsize;
1df6926e 1767 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1768 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1769 val->lazy = arg->lazy;
13c3b5f5 1770 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1771 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1772 val->modifiable = arg->modifiable;
d69fe07e 1773 if (!value_lazy (val))
c906108c 1774 {
990a07ab 1775 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1776 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1777
1778 }
4e07d55f 1779 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1780 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1781 set_value_parent (val, arg->parent);
5f5233d4
PA
1782 if (VALUE_LVAL (val) == lval_computed)
1783 {
c8f2448a 1784 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1785
1786 if (funcs->copy_closure)
1787 val->location.computed.closure = funcs->copy_closure (val);
1788 }
c906108c
SS
1789 return val;
1790}
74bcbdf3 1791
4c082a81
SC
1792/* Return a "const" and/or "volatile" qualified version of the value V.
1793 If CNST is true, then the returned value will be qualified with
1794 "const".
1795 if VOLTL is true, then the returned value will be qualified with
1796 "volatile". */
1797
1798struct value *
1799make_cv_value (int cnst, int voltl, struct value *v)
1800{
1801 struct type *val_type = value_type (v);
1802 struct type *enclosing_type = value_enclosing_type (v);
1803 struct value *cv_val = value_copy (v);
1804
1805 deprecated_set_value_type (cv_val,
1806 make_cv_type (cnst, voltl, val_type, NULL));
1807 set_value_enclosing_type (cv_val,
1808 make_cv_type (cnst, voltl, enclosing_type, NULL));
1809
1810 return cv_val;
1811}
1812
c37f7098
KW
1813/* Return a version of ARG that is non-lvalue. */
1814
1815struct value *
1816value_non_lval (struct value *arg)
1817{
1818 if (VALUE_LVAL (arg) != not_lval)
1819 {
1820 struct type *enc_type = value_enclosing_type (arg);
1821 struct value *val = allocate_value (enc_type);
1822
1823 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1824 TYPE_LENGTH (enc_type));
1825 val->type = arg->type;
1826 set_value_embedded_offset (val, value_embedded_offset (arg));
1827 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1828 return val;
1829 }
1830 return arg;
1831}
1832
6c659fc2
SC
1833/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1834
1835void
1836value_force_lval (struct value *v, CORE_ADDR addr)
1837{
1838 gdb_assert (VALUE_LVAL (v) == not_lval);
1839
1840 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1841 v->lval = lval_memory;
1842 v->location.address = addr;
1843}
1844
74bcbdf3 1845void
0e03807e
TT
1846set_value_component_location (struct value *component,
1847 const struct value *whole)
74bcbdf3 1848{
e81e7f5e
SC
1849 gdb_assert (whole->lval != lval_xcallable);
1850
0e03807e 1851 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1852 VALUE_LVAL (component) = lval_internalvar_component;
1853 else
0e03807e 1854 VALUE_LVAL (component) = whole->lval;
5f5233d4 1855
74bcbdf3 1856 component->location = whole->location;
0e03807e 1857 if (whole->lval == lval_computed)
5f5233d4 1858 {
c8f2448a 1859 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1860
1861 if (funcs->copy_closure)
1862 component->location.computed.closure = funcs->copy_closure (whole);
1863 }
74bcbdf3
PA
1864}
1865
c906108c
SS
1866\f
1867/* Access to the value history. */
1868
1869/* Record a new value in the value history.
eddf0bae 1870 Returns the absolute history index of the entry. */
c906108c
SS
1871
1872int
f23631e4 1873record_latest_value (struct value *val)
c906108c
SS
1874{
1875 int i;
1876
1877 /* We don't want this value to have anything to do with the inferior anymore.
1878 In particular, "set $1 = 50" should not affect the variable from which
1879 the value was taken, and fast watchpoints should be able to assume that
1880 a value on the value history never changes. */
d69fe07e 1881 if (value_lazy (val))
c906108c
SS
1882 value_fetch_lazy (val);
1883 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1884 from. This is a bit dubious, because then *&$1 does not just return $1
1885 but the current contents of that location. c'est la vie... */
1886 val->modifiable = 0;
350e1a76
DE
1887
1888 /* The value may have already been released, in which case we're adding a
1889 new reference for its entry in the history. That is why we call
1890 release_value_or_incref here instead of release_value. */
1891 release_value_or_incref (val);
c906108c
SS
1892
1893 /* Here we treat value_history_count as origin-zero
1894 and applying to the value being stored now. */
1895
1896 i = value_history_count % VALUE_HISTORY_CHUNK;
1897 if (i == 0)
1898 {
8d749320 1899 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
a109c7c1 1900
fe978cb0
PA
1901 newobj->next = value_history_chain;
1902 value_history_chain = newobj;
c906108c
SS
1903 }
1904
1905 value_history_chain->values[i] = val;
1906
1907 /* Now we regard value_history_count as origin-one
1908 and applying to the value just stored. */
1909
1910 return ++value_history_count;
1911}
1912
1913/* Return a copy of the value in the history with sequence number NUM. */
1914
f23631e4 1915struct value *
fba45db2 1916access_value_history (int num)
c906108c 1917{
f23631e4 1918 struct value_history_chunk *chunk;
52f0bd74
AC
1919 int i;
1920 int absnum = num;
c906108c
SS
1921
1922 if (absnum <= 0)
1923 absnum += value_history_count;
1924
1925 if (absnum <= 0)
1926 {
1927 if (num == 0)
8a3fe4f8 1928 error (_("The history is empty."));
c906108c 1929 else if (num == 1)
8a3fe4f8 1930 error (_("There is only one value in the history."));
c906108c 1931 else
8a3fe4f8 1932 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1933 }
1934 if (absnum > value_history_count)
8a3fe4f8 1935 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1936
1937 absnum--;
1938
1939 /* Now absnum is always absolute and origin zero. */
1940
1941 chunk = value_history_chain;
3e43a32a
MS
1942 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1943 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1944 i > 0; i--)
1945 chunk = chunk->next;
1946
1947 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1948}
1949
c906108c 1950static void
fba45db2 1951show_values (char *num_exp, int from_tty)
c906108c 1952{
52f0bd74 1953 int i;
f23631e4 1954 struct value *val;
c906108c
SS
1955 static int num = 1;
1956
1957 if (num_exp)
1958 {
f132ba9d
TJB
1959 /* "show values +" should print from the stored position.
1960 "show values <exp>" should print around value number <exp>. */
c906108c 1961 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1962 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1963 }
1964 else
1965 {
f132ba9d 1966 /* "show values" means print the last 10 values. */
c906108c
SS
1967 num = value_history_count - 9;
1968 }
1969
1970 if (num <= 0)
1971 num = 1;
1972
1973 for (i = num; i < num + 10 && i <= value_history_count; i++)
1974 {
79a45b7d 1975 struct value_print_options opts;
a109c7c1 1976
c906108c 1977 val = access_value_history (i);
a3f17187 1978 printf_filtered (("$%d = "), i);
79a45b7d
TT
1979 get_user_print_options (&opts);
1980 value_print (val, gdb_stdout, &opts);
a3f17187 1981 printf_filtered (("\n"));
c906108c
SS
1982 }
1983
f132ba9d 1984 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1985 num += 10;
1986
1987 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1988 "show values +". If num_exp is null, this is unnecessary, since
1989 "show values +" is not useful after "show values". */
c906108c
SS
1990 if (from_tty && num_exp)
1991 {
1992 num_exp[0] = '+';
1993 num_exp[1] = '\0';
1994 }
1995}
1996\f
52059ffd
TT
1997enum internalvar_kind
1998{
1999 /* The internal variable is empty. */
2000 INTERNALVAR_VOID,
2001
2002 /* The value of the internal variable is provided directly as
2003 a GDB value object. */
2004 INTERNALVAR_VALUE,
2005
2006 /* A fresh value is computed via a call-back routine on every
2007 access to the internal variable. */
2008 INTERNALVAR_MAKE_VALUE,
2009
2010 /* The internal variable holds a GDB internal convenience function. */
2011 INTERNALVAR_FUNCTION,
2012
2013 /* The variable holds an integer value. */
2014 INTERNALVAR_INTEGER,
2015
2016 /* The variable holds a GDB-provided string. */
2017 INTERNALVAR_STRING,
2018};
2019
2020union internalvar_data
2021{
2022 /* A value object used with INTERNALVAR_VALUE. */
2023 struct value *value;
2024
2025 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2026 struct
2027 {
2028 /* The functions to call. */
2029 const struct internalvar_funcs *functions;
2030
2031 /* The function's user-data. */
2032 void *data;
2033 } make_value;
2034
2035 /* The internal function used with INTERNALVAR_FUNCTION. */
2036 struct
2037 {
2038 struct internal_function *function;
2039 /* True if this is the canonical name for the function. */
2040 int canonical;
2041 } fn;
2042
2043 /* An integer value used with INTERNALVAR_INTEGER. */
2044 struct
2045 {
2046 /* If type is non-NULL, it will be used as the type to generate
2047 a value for this internal variable. If type is NULL, a default
2048 integer type for the architecture is used. */
2049 struct type *type;
2050 LONGEST val;
2051 } integer;
2052
2053 /* A string value used with INTERNALVAR_STRING. */
2054 char *string;
2055};
2056
c906108c
SS
2057/* Internal variables. These are variables within the debugger
2058 that hold values assigned by debugger commands.
2059 The user refers to them with a '$' prefix
2060 that does not appear in the variable names stored internally. */
2061
4fa62494
UW
2062struct internalvar
2063{
2064 struct internalvar *next;
2065 char *name;
4fa62494 2066
78267919
UW
2067 /* We support various different kinds of content of an internal variable.
2068 enum internalvar_kind specifies the kind, and union internalvar_data
2069 provides the data associated with this particular kind. */
2070
52059ffd 2071 enum internalvar_kind kind;
4fa62494 2072
52059ffd 2073 union internalvar_data u;
4fa62494
UW
2074};
2075
c906108c
SS
2076static struct internalvar *internalvars;
2077
3e43a32a
MS
2078/* If the variable does not already exist create it and give it the
2079 value given. If no value is given then the default is zero. */
53e5f3cf
AS
2080static void
2081init_if_undefined_command (char* args, int from_tty)
2082{
2083 struct internalvar* intvar;
2084
2085 /* Parse the expression - this is taken from set_command(). */
2086 struct expression *expr = parse_expression (args);
2087 register struct cleanup *old_chain =
2088 make_cleanup (free_current_contents, &expr);
2089
2090 /* Validate the expression.
2091 Was the expression an assignment?
2092 Or even an expression at all? */
2093 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2094 error (_("Init-if-undefined requires an assignment expression."));
2095
2096 /* Extract the variable from the parsed expression.
2097 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2098 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2099 error (_("The first parameter to init-if-undefined "
2100 "should be a GDB variable."));
53e5f3cf
AS
2101 intvar = expr->elts[2].internalvar;
2102
2103 /* Only evaluate the expression if the lvalue is void.
2104 This may still fail if the expresssion is invalid. */
78267919 2105 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
2106 evaluate_expression (expr);
2107
2108 do_cleanups (old_chain);
2109}
2110
2111
c906108c
SS
2112/* Look up an internal variable with name NAME. NAME should not
2113 normally include a dollar sign.
2114
2115 If the specified internal variable does not exist,
c4a3d09a 2116 the return value is NULL. */
c906108c
SS
2117
2118struct internalvar *
bc3b79fd 2119lookup_only_internalvar (const char *name)
c906108c 2120{
52f0bd74 2121 struct internalvar *var;
c906108c
SS
2122
2123 for (var = internalvars; var; var = var->next)
5cb316ef 2124 if (strcmp (var->name, name) == 0)
c906108c
SS
2125 return var;
2126
c4a3d09a
MF
2127 return NULL;
2128}
2129
d55637df
TT
2130/* Complete NAME by comparing it to the names of internal variables.
2131 Returns a vector of newly allocated strings, or NULL if no matches
2132 were found. */
2133
2134VEC (char_ptr) *
2135complete_internalvar (const char *name)
2136{
2137 VEC (char_ptr) *result = NULL;
2138 struct internalvar *var;
2139 int len;
2140
2141 len = strlen (name);
2142
2143 for (var = internalvars; var; var = var->next)
2144 if (strncmp (var->name, name, len) == 0)
2145 {
2146 char *r = xstrdup (var->name);
2147
2148 VEC_safe_push (char_ptr, result, r);
2149 }
2150
2151 return result;
2152}
c4a3d09a
MF
2153
2154/* Create an internal variable with name NAME and with a void value.
2155 NAME should not normally include a dollar sign. */
2156
2157struct internalvar *
bc3b79fd 2158create_internalvar (const char *name)
c4a3d09a 2159{
8d749320 2160 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2161
1754f103 2162 var->name = concat (name, (char *)NULL);
78267919 2163 var->kind = INTERNALVAR_VOID;
c906108c
SS
2164 var->next = internalvars;
2165 internalvars = var;
2166 return var;
2167}
2168
4aa995e1
PA
2169/* Create an internal variable with name NAME and register FUN as the
2170 function that value_of_internalvar uses to create a value whenever
2171 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2172 dollar sign. DATA is passed uninterpreted to FUN when it is
2173 called. CLEANUP, if not NULL, is called when the internal variable
2174 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2175
2176struct internalvar *
22d2b532
SDJ
2177create_internalvar_type_lazy (const char *name,
2178 const struct internalvar_funcs *funcs,
2179 void *data)
4aa995e1 2180{
4fa62494 2181 struct internalvar *var = create_internalvar (name);
a109c7c1 2182
78267919 2183 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2184 var->u.make_value.functions = funcs;
2185 var->u.make_value.data = data;
4aa995e1
PA
2186 return var;
2187}
c4a3d09a 2188
22d2b532
SDJ
2189/* See documentation in value.h. */
2190
2191int
2192compile_internalvar_to_ax (struct internalvar *var,
2193 struct agent_expr *expr,
2194 struct axs_value *value)
2195{
2196 if (var->kind != INTERNALVAR_MAKE_VALUE
2197 || var->u.make_value.functions->compile_to_ax == NULL)
2198 return 0;
2199
2200 var->u.make_value.functions->compile_to_ax (var, expr, value,
2201 var->u.make_value.data);
2202 return 1;
2203}
2204
c4a3d09a
MF
2205/* Look up an internal variable with name NAME. NAME should not
2206 normally include a dollar sign.
2207
2208 If the specified internal variable does not exist,
2209 one is created, with a void value. */
2210
2211struct internalvar *
bc3b79fd 2212lookup_internalvar (const char *name)
c4a3d09a
MF
2213{
2214 struct internalvar *var;
2215
2216 var = lookup_only_internalvar (name);
2217 if (var)
2218 return var;
2219
2220 return create_internalvar (name);
2221}
2222
78267919
UW
2223/* Return current value of internal variable VAR. For variables that
2224 are not inherently typed, use a value type appropriate for GDBARCH. */
2225
f23631e4 2226struct value *
78267919 2227value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2228{
f23631e4 2229 struct value *val;
0914bcdb
SS
2230 struct trace_state_variable *tsv;
2231
2232 /* If there is a trace state variable of the same name, assume that
2233 is what we really want to see. */
2234 tsv = find_trace_state_variable (var->name);
2235 if (tsv)
2236 {
2237 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2238 &(tsv->value));
2239 if (tsv->value_known)
2240 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2241 tsv->value);
2242 else
2243 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2244 return val;
2245 }
c906108c 2246
78267919 2247 switch (var->kind)
5f5233d4 2248 {
78267919
UW
2249 case INTERNALVAR_VOID:
2250 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2251 break;
4fa62494 2252
78267919
UW
2253 case INTERNALVAR_FUNCTION:
2254 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2255 break;
4fa62494 2256
cab0c772
UW
2257 case INTERNALVAR_INTEGER:
2258 if (!var->u.integer.type)
78267919 2259 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2260 var->u.integer.val);
78267919 2261 else
cab0c772
UW
2262 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2263 break;
2264
78267919
UW
2265 case INTERNALVAR_STRING:
2266 val = value_cstring (var->u.string, strlen (var->u.string),
2267 builtin_type (gdbarch)->builtin_char);
2268 break;
4fa62494 2269
78267919
UW
2270 case INTERNALVAR_VALUE:
2271 val = value_copy (var->u.value);
4aa995e1
PA
2272 if (value_lazy (val))
2273 value_fetch_lazy (val);
78267919 2274 break;
4aa995e1 2275
78267919 2276 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2277 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2278 var->u.make_value.data);
78267919
UW
2279 break;
2280
2281 default:
9b20d036 2282 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2283 }
2284
2285 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2286 on this value go back to affect the original internal variable.
2287
2288 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2289 no underlying modifyable state in the internal variable.
2290
2291 Likewise, if the variable's value is a computed lvalue, we want
2292 references to it to produce another computed lvalue, where
2293 references and assignments actually operate through the
2294 computed value's functions.
2295
2296 This means that internal variables with computed values
2297 behave a little differently from other internal variables:
2298 assignments to them don't just replace the previous value
2299 altogether. At the moment, this seems like the behavior we
2300 want. */
2301
2302 if (var->kind != INTERNALVAR_MAKE_VALUE
2303 && val->lval != lval_computed)
2304 {
2305 VALUE_LVAL (val) = lval_internalvar;
2306 VALUE_INTERNALVAR (val) = var;
5f5233d4 2307 }
d3c139e9 2308
4fa62494
UW
2309 return val;
2310}
d3c139e9 2311
4fa62494
UW
2312int
2313get_internalvar_integer (struct internalvar *var, LONGEST *result)
2314{
3158c6ed 2315 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2316 {
cab0c772
UW
2317 *result = var->u.integer.val;
2318 return 1;
3158c6ed 2319 }
d3c139e9 2320
3158c6ed
PA
2321 if (var->kind == INTERNALVAR_VALUE)
2322 {
2323 struct type *type = check_typedef (value_type (var->u.value));
2324
2325 if (TYPE_CODE (type) == TYPE_CODE_INT)
2326 {
2327 *result = value_as_long (var->u.value);
2328 return 1;
2329 }
4fa62494 2330 }
3158c6ed
PA
2331
2332 return 0;
4fa62494 2333}
d3c139e9 2334
4fa62494
UW
2335static int
2336get_internalvar_function (struct internalvar *var,
2337 struct internal_function **result)
2338{
78267919 2339 switch (var->kind)
d3c139e9 2340 {
78267919
UW
2341 case INTERNALVAR_FUNCTION:
2342 *result = var->u.fn.function;
4fa62494 2343 return 1;
d3c139e9 2344
4fa62494
UW
2345 default:
2346 return 0;
2347 }
c906108c
SS
2348}
2349
2350void
fba45db2 2351set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 2352 int bitsize, struct value *newval)
c906108c 2353{
4fa62494 2354 gdb_byte *addr;
3ae385af
SM
2355 struct gdbarch *arch;
2356 int unit_size;
c906108c 2357
78267919 2358 switch (var->kind)
4fa62494 2359 {
78267919
UW
2360 case INTERNALVAR_VALUE:
2361 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2362 arch = get_value_arch (var->u.value);
2363 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2364
2365 if (bitsize)
50810684 2366 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2367 value_as_long (newval), bitpos, bitsize);
2368 else
3ae385af 2369 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2370 TYPE_LENGTH (value_type (newval)));
2371 break;
78267919
UW
2372
2373 default:
2374 /* We can never get a component of any other kind. */
9b20d036 2375 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2376 }
c906108c
SS
2377}
2378
2379void
f23631e4 2380set_internalvar (struct internalvar *var, struct value *val)
c906108c 2381{
78267919 2382 enum internalvar_kind new_kind;
4fa62494 2383 union internalvar_data new_data = { 0 };
c906108c 2384
78267919 2385 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2386 error (_("Cannot overwrite convenience function %s"), var->name);
2387
4fa62494 2388 /* Prepare new contents. */
78267919 2389 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2390 {
2391 case TYPE_CODE_VOID:
78267919 2392 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2393 break;
2394
2395 case TYPE_CODE_INTERNAL_FUNCTION:
2396 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2397 new_kind = INTERNALVAR_FUNCTION;
2398 get_internalvar_function (VALUE_INTERNALVAR (val),
2399 &new_data.fn.function);
2400 /* Copies created here are never canonical. */
4fa62494
UW
2401 break;
2402
4fa62494 2403 default:
78267919
UW
2404 new_kind = INTERNALVAR_VALUE;
2405 new_data.value = value_copy (val);
2406 new_data.value->modifiable = 1;
4fa62494
UW
2407
2408 /* Force the value to be fetched from the target now, to avoid problems
2409 later when this internalvar is referenced and the target is gone or
2410 has changed. */
78267919
UW
2411 if (value_lazy (new_data.value))
2412 value_fetch_lazy (new_data.value);
4fa62494
UW
2413
2414 /* Release the value from the value chain to prevent it from being
2415 deleted by free_all_values. From here on this function should not
2416 call error () until new_data is installed into the var->u to avoid
2417 leaking memory. */
78267919 2418 release_value (new_data.value);
4fa62494
UW
2419 break;
2420 }
2421
2422 /* Clean up old contents. */
2423 clear_internalvar (var);
2424
2425 /* Switch over. */
78267919 2426 var->kind = new_kind;
4fa62494 2427 var->u = new_data;
c906108c
SS
2428 /* End code which must not call error(). */
2429}
2430
4fa62494
UW
2431void
2432set_internalvar_integer (struct internalvar *var, LONGEST l)
2433{
2434 /* Clean up old contents. */
2435 clear_internalvar (var);
2436
cab0c772
UW
2437 var->kind = INTERNALVAR_INTEGER;
2438 var->u.integer.type = NULL;
2439 var->u.integer.val = l;
78267919
UW
2440}
2441
2442void
2443set_internalvar_string (struct internalvar *var, const char *string)
2444{
2445 /* Clean up old contents. */
2446 clear_internalvar (var);
2447
2448 var->kind = INTERNALVAR_STRING;
2449 var->u.string = xstrdup (string);
4fa62494
UW
2450}
2451
2452static void
2453set_internalvar_function (struct internalvar *var, struct internal_function *f)
2454{
2455 /* Clean up old contents. */
2456 clear_internalvar (var);
2457
78267919
UW
2458 var->kind = INTERNALVAR_FUNCTION;
2459 var->u.fn.function = f;
2460 var->u.fn.canonical = 1;
2461 /* Variables installed here are always the canonical version. */
4fa62494
UW
2462}
2463
2464void
2465clear_internalvar (struct internalvar *var)
2466{
2467 /* Clean up old contents. */
78267919 2468 switch (var->kind)
4fa62494 2469 {
78267919
UW
2470 case INTERNALVAR_VALUE:
2471 value_free (var->u.value);
2472 break;
2473
2474 case INTERNALVAR_STRING:
2475 xfree (var->u.string);
4fa62494
UW
2476 break;
2477
22d2b532
SDJ
2478 case INTERNALVAR_MAKE_VALUE:
2479 if (var->u.make_value.functions->destroy != NULL)
2480 var->u.make_value.functions->destroy (var->u.make_value.data);
2481 break;
2482
4fa62494 2483 default:
4fa62494
UW
2484 break;
2485 }
2486
78267919
UW
2487 /* Reset to void kind. */
2488 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2489}
2490
c906108c 2491char *
fba45db2 2492internalvar_name (struct internalvar *var)
c906108c
SS
2493{
2494 return var->name;
2495}
2496
4fa62494
UW
2497static struct internal_function *
2498create_internal_function (const char *name,
2499 internal_function_fn handler, void *cookie)
bc3b79fd 2500{
bc3b79fd 2501 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2502
bc3b79fd
TJB
2503 ifn->name = xstrdup (name);
2504 ifn->handler = handler;
2505 ifn->cookie = cookie;
4fa62494 2506 return ifn;
bc3b79fd
TJB
2507}
2508
2509char *
2510value_internal_function_name (struct value *val)
2511{
4fa62494
UW
2512 struct internal_function *ifn;
2513 int result;
2514
2515 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2516 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2517 gdb_assert (result);
2518
bc3b79fd
TJB
2519 return ifn->name;
2520}
2521
2522struct value *
d452c4bc
UW
2523call_internal_function (struct gdbarch *gdbarch,
2524 const struct language_defn *language,
2525 struct value *func, int argc, struct value **argv)
bc3b79fd 2526{
4fa62494
UW
2527 struct internal_function *ifn;
2528 int result;
2529
2530 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2531 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2532 gdb_assert (result);
2533
d452c4bc 2534 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2535}
2536
2537/* The 'function' command. This does nothing -- it is just a
2538 placeholder to let "help function NAME" work. This is also used as
2539 the implementation of the sub-command that is created when
2540 registering an internal function. */
2541static void
2542function_command (char *command, int from_tty)
2543{
2544 /* Do nothing. */
2545}
2546
2547/* Clean up if an internal function's command is destroyed. */
2548static void
2549function_destroyer (struct cmd_list_element *self, void *ignore)
2550{
6f937416 2551 xfree ((char *) self->name);
1947513d 2552 xfree ((char *) self->doc);
bc3b79fd
TJB
2553}
2554
2555/* Add a new internal function. NAME is the name of the function; DOC
2556 is a documentation string describing the function. HANDLER is
2557 called when the function is invoked. COOKIE is an arbitrary
2558 pointer which is passed to HANDLER and is intended for "user
2559 data". */
2560void
2561add_internal_function (const char *name, const char *doc,
2562 internal_function_fn handler, void *cookie)
2563{
2564 struct cmd_list_element *cmd;
4fa62494 2565 struct internal_function *ifn;
bc3b79fd 2566 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2567
2568 ifn = create_internal_function (name, handler, cookie);
2569 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2570
2571 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2572 &functionlist);
2573 cmd->destroyer = function_destroyer;
2574}
2575
ae5a43e0
DJ
2576/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2577 prevent cycles / duplicates. */
2578
4e7a5ef5 2579void
ae5a43e0
DJ
2580preserve_one_value (struct value *value, struct objfile *objfile,
2581 htab_t copied_types)
2582{
2583 if (TYPE_OBJFILE (value->type) == objfile)
2584 value->type = copy_type_recursive (objfile, value->type, copied_types);
2585
2586 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2587 value->enclosing_type = copy_type_recursive (objfile,
2588 value->enclosing_type,
2589 copied_types);
2590}
2591
78267919
UW
2592/* Likewise for internal variable VAR. */
2593
2594static void
2595preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2596 htab_t copied_types)
2597{
2598 switch (var->kind)
2599 {
cab0c772
UW
2600 case INTERNALVAR_INTEGER:
2601 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2602 var->u.integer.type
2603 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2604 break;
2605
78267919
UW
2606 case INTERNALVAR_VALUE:
2607 preserve_one_value (var->u.value, objfile, copied_types);
2608 break;
2609 }
2610}
2611
ae5a43e0
DJ
2612/* Update the internal variables and value history when OBJFILE is
2613 discarded; we must copy the types out of the objfile. New global types
2614 will be created for every convenience variable which currently points to
2615 this objfile's types, and the convenience variables will be adjusted to
2616 use the new global types. */
c906108c
SS
2617
2618void
ae5a43e0 2619preserve_values (struct objfile *objfile)
c906108c 2620{
ae5a43e0
DJ
2621 htab_t copied_types;
2622 struct value_history_chunk *cur;
52f0bd74 2623 struct internalvar *var;
ae5a43e0 2624 int i;
c906108c 2625
ae5a43e0
DJ
2626 /* Create the hash table. We allocate on the objfile's obstack, since
2627 it is soon to be deleted. */
2628 copied_types = create_copied_types_hash (objfile);
2629
2630 for (cur = value_history_chain; cur; cur = cur->next)
2631 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2632 if (cur->values[i])
2633 preserve_one_value (cur->values[i], objfile, copied_types);
2634
2635 for (var = internalvars; var; var = var->next)
78267919 2636 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2637
6dddc817 2638 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2639
ae5a43e0 2640 htab_delete (copied_types);
c906108c
SS
2641}
2642
2643static void
fba45db2 2644show_convenience (char *ignore, int from_tty)
c906108c 2645{
e17c207e 2646 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2647 struct internalvar *var;
c906108c 2648 int varseen = 0;
79a45b7d 2649 struct value_print_options opts;
c906108c 2650
79a45b7d 2651 get_user_print_options (&opts);
c906108c
SS
2652 for (var = internalvars; var; var = var->next)
2653 {
c709acd1 2654
c906108c
SS
2655 if (!varseen)
2656 {
2657 varseen = 1;
2658 }
a3f17187 2659 printf_filtered (("$%s = "), var->name);
c709acd1 2660
492d29ea 2661 TRY
c709acd1
PA
2662 {
2663 struct value *val;
2664
2665 val = value_of_internalvar (gdbarch, var);
2666 value_print (val, gdb_stdout, &opts);
2667 }
492d29ea
PA
2668 CATCH (ex, RETURN_MASK_ERROR)
2669 {
2670 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2671 }
2672 END_CATCH
2673
a3f17187 2674 printf_filtered (("\n"));
c906108c
SS
2675 }
2676 if (!varseen)
f47f77df
DE
2677 {
2678 /* This text does not mention convenience functions on purpose.
2679 The user can't create them except via Python, and if Python support
2680 is installed this message will never be printed ($_streq will
2681 exist). */
2682 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2683 "Convenience variables have "
2684 "names starting with \"$\";\n"
2685 "use \"set\" as in \"set "
2686 "$foo = 5\" to define them.\n"));
2687 }
c906108c
SS
2688}
2689\f
e81e7f5e
SC
2690/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2691
2692struct value *
2693value_of_xmethod (struct xmethod_worker *worker)
2694{
2695 if (worker->value == NULL)
2696 {
2697 struct value *v;
2698
2699 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2700 v->lval = lval_xcallable;
2701 v->location.xm_worker = worker;
2702 v->modifiable = 0;
2703 worker->value = v;
2704 }
2705
2706 return worker->value;
2707}
2708
2ce1cdbf
DE
2709/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2710
2711struct type *
2712result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2713{
2714 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2715 && method->lval == lval_xcallable && argc > 0);
2716
2717 return get_xmethod_result_type (method->location.xm_worker,
2718 argv[0], argv + 1, argc - 1);
2719}
2720
e81e7f5e
SC
2721/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2722
2723struct value *
2724call_xmethod (struct value *method, int argc, struct value **argv)
2725{
2726 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2727 && method->lval == lval_xcallable && argc > 0);
2728
2729 return invoke_xmethod (method->location.xm_worker,
2730 argv[0], argv + 1, argc - 1);
2731}
2732\f
c906108c
SS
2733/* Extract a value as a C number (either long or double).
2734 Knows how to convert fixed values to double, or
2735 floating values to long.
2736 Does not deallocate the value. */
2737
2738LONGEST
f23631e4 2739value_as_long (struct value *val)
c906108c
SS
2740{
2741 /* This coerces arrays and functions, which is necessary (e.g.
2742 in disassemble_command). It also dereferences references, which
2743 I suspect is the most logical thing to do. */
994b9211 2744 val = coerce_array (val);
0fd88904 2745 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2746}
2747
2748DOUBLEST
f23631e4 2749value_as_double (struct value *val)
c906108c
SS
2750{
2751 DOUBLEST foo;
2752 int inv;
c5aa993b 2753
0fd88904 2754 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2755 if (inv)
8a3fe4f8 2756 error (_("Invalid floating value found in program."));
c906108c
SS
2757 return foo;
2758}
4ef30785 2759
581e13c1 2760/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2761 Note that val's type may not actually be a pointer; value_as_long
2762 handles all the cases. */
c906108c 2763CORE_ADDR
f23631e4 2764value_as_address (struct value *val)
c906108c 2765{
50810684
UW
2766 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2767
c906108c
SS
2768 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2769 whether we want this to be true eventually. */
2770#if 0
bf6ae464 2771 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2772 non-address (e.g. argument to "signal", "info break", etc.), or
2773 for pointers to char, in which the low bits *are* significant. */
50810684 2774 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2775#else
f312f057
JB
2776
2777 /* There are several targets (IA-64, PowerPC, and others) which
2778 don't represent pointers to functions as simply the address of
2779 the function's entry point. For example, on the IA-64, a
2780 function pointer points to a two-word descriptor, generated by
2781 the linker, which contains the function's entry point, and the
2782 value the IA-64 "global pointer" register should have --- to
2783 support position-independent code. The linker generates
2784 descriptors only for those functions whose addresses are taken.
2785
2786 On such targets, it's difficult for GDB to convert an arbitrary
2787 function address into a function pointer; it has to either find
2788 an existing descriptor for that function, or call malloc and
2789 build its own. On some targets, it is impossible for GDB to
2790 build a descriptor at all: the descriptor must contain a jump
2791 instruction; data memory cannot be executed; and code memory
2792 cannot be modified.
2793
2794 Upon entry to this function, if VAL is a value of type `function'
2795 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2796 value_address (val) is the address of the function. This is what
f312f057
JB
2797 you'll get if you evaluate an expression like `main'. The call
2798 to COERCE_ARRAY below actually does all the usual unary
2799 conversions, which includes converting values of type `function'
2800 to `pointer to function'. This is the challenging conversion
2801 discussed above. Then, `unpack_long' will convert that pointer
2802 back into an address.
2803
2804 So, suppose the user types `disassemble foo' on an architecture
2805 with a strange function pointer representation, on which GDB
2806 cannot build its own descriptors, and suppose further that `foo'
2807 has no linker-built descriptor. The address->pointer conversion
2808 will signal an error and prevent the command from running, even
2809 though the next step would have been to convert the pointer
2810 directly back into the same address.
2811
2812 The following shortcut avoids this whole mess. If VAL is a
2813 function, just return its address directly. */
df407dfe
AC
2814 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2815 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2816 return value_address (val);
f312f057 2817
994b9211 2818 val = coerce_array (val);
fc0c74b1
AC
2819
2820 /* Some architectures (e.g. Harvard), map instruction and data
2821 addresses onto a single large unified address space. For
2822 instance: An architecture may consider a large integer in the
2823 range 0x10000000 .. 0x1000ffff to already represent a data
2824 addresses (hence not need a pointer to address conversion) while
2825 a small integer would still need to be converted integer to
2826 pointer to address. Just assume such architectures handle all
2827 integer conversions in a single function. */
2828
2829 /* JimB writes:
2830
2831 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2832 must admonish GDB hackers to make sure its behavior matches the
2833 compiler's, whenever possible.
2834
2835 In general, I think GDB should evaluate expressions the same way
2836 the compiler does. When the user copies an expression out of
2837 their source code and hands it to a `print' command, they should
2838 get the same value the compiler would have computed. Any
2839 deviation from this rule can cause major confusion and annoyance,
2840 and needs to be justified carefully. In other words, GDB doesn't
2841 really have the freedom to do these conversions in clever and
2842 useful ways.
2843
2844 AndrewC pointed out that users aren't complaining about how GDB
2845 casts integers to pointers; they are complaining that they can't
2846 take an address from a disassembly listing and give it to `x/i'.
2847 This is certainly important.
2848
79dd2d24 2849 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2850 makes it possible for GDB to "get it right" in all circumstances
2851 --- the target has complete control over how things get done, so
2852 people can Do The Right Thing for their target without breaking
2853 anyone else. The standard doesn't specify how integers get
2854 converted to pointers; usually, the ABI doesn't either, but
2855 ABI-specific code is a more reasonable place to handle it. */
2856
df407dfe
AC
2857 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2858 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2859 && gdbarch_integer_to_address_p (gdbarch))
2860 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2861 value_contents (val));
fc0c74b1 2862
0fd88904 2863 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2864#endif
2865}
2866\f
2867/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2868 as a long, or as a double, assuming the raw data is described
2869 by type TYPE. Knows how to convert different sizes of values
2870 and can convert between fixed and floating point. We don't assume
2871 any alignment for the raw data. Return value is in host byte order.
2872
2873 If you want functions and arrays to be coerced to pointers, and
2874 references to be dereferenced, call value_as_long() instead.
2875
2876 C++: It is assumed that the front-end has taken care of
2877 all matters concerning pointers to members. A pointer
2878 to member which reaches here is considered to be equivalent
2879 to an INT (or some size). After all, it is only an offset. */
2880
2881LONGEST
fc1a4b47 2882unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2883{
e17a4113 2884 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2885 enum type_code code = TYPE_CODE (type);
2886 int len = TYPE_LENGTH (type);
2887 int nosign = TYPE_UNSIGNED (type);
c906108c 2888
c906108c
SS
2889 switch (code)
2890 {
2891 case TYPE_CODE_TYPEDEF:
2892 return unpack_long (check_typedef (type), valaddr);
2893 case TYPE_CODE_ENUM:
4f2aea11 2894 case TYPE_CODE_FLAGS:
c906108c
SS
2895 case TYPE_CODE_BOOL:
2896 case TYPE_CODE_INT:
2897 case TYPE_CODE_CHAR:
2898 case TYPE_CODE_RANGE:
0d5de010 2899 case TYPE_CODE_MEMBERPTR:
c906108c 2900 if (nosign)
e17a4113 2901 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2902 else
e17a4113 2903 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2904
2905 case TYPE_CODE_FLT:
96d2f608 2906 return extract_typed_floating (valaddr, type);
c906108c 2907
4ef30785
TJB
2908 case TYPE_CODE_DECFLOAT:
2909 /* libdecnumber has a function to convert from decimal to integer, but
2910 it doesn't work when the decimal number has a fractional part. */
e17a4113 2911 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2912
c906108c
SS
2913 case TYPE_CODE_PTR:
2914 case TYPE_CODE_REF:
2915 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2916 whether we want this to be true eventually. */
4478b372 2917 return extract_typed_address (valaddr, type);
c906108c 2918
c906108c 2919 default:
8a3fe4f8 2920 error (_("Value can't be converted to integer."));
c906108c 2921 }
c5aa993b 2922 return 0; /* Placate lint. */
c906108c
SS
2923}
2924
2925/* Return a double value from the specified type and address.
2926 INVP points to an int which is set to 0 for valid value,
2927 1 for invalid value (bad float format). In either case,
2928 the returned double is OK to use. Argument is in target
2929 format, result is in host format. */
2930
2931DOUBLEST
fc1a4b47 2932unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2933{
e17a4113 2934 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2935 enum type_code code;
2936 int len;
2937 int nosign;
2938
581e13c1 2939 *invp = 0; /* Assume valid. */
f168693b 2940 type = check_typedef (type);
c906108c
SS
2941 code = TYPE_CODE (type);
2942 len = TYPE_LENGTH (type);
2943 nosign = TYPE_UNSIGNED (type);
2944 if (code == TYPE_CODE_FLT)
2945 {
75bc7ddf
AC
2946 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2947 floating-point value was valid (using the macro
2948 INVALID_FLOAT). That test/macro have been removed.
2949
2950 It turns out that only the VAX defined this macro and then
2951 only in a non-portable way. Fixing the portability problem
2952 wouldn't help since the VAX floating-point code is also badly
2953 bit-rotten. The target needs to add definitions for the
ea06eb3d 2954 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2955 exactly describe the target floating-point format. The
2956 problem here is that the corresponding floatformat_vax_f and
2957 floatformat_vax_d values these methods should be set to are
2958 also not defined either. Oops!
2959
2960 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2961 definitions and the new cases for floatformat_is_valid (). */
2962
2963 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2964 {
2965 *invp = 1;
2966 return 0.0;
2967 }
2968
96d2f608 2969 return extract_typed_floating (valaddr, type);
c906108c 2970 }
4ef30785 2971 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2972 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2973 else if (nosign)
2974 {
2975 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2976 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2977 }
2978 else
2979 {
2980 /* Signed -- we are OK with unpack_long. */
2981 return unpack_long (type, valaddr);
2982 }
2983}
2984
2985/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2986 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2987 We don't assume any alignment for the raw data. Return value is in
2988 host byte order.
2989
2990 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2991 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2992
2993 C++: It is assumed that the front-end has taken care of
2994 all matters concerning pointers to members. A pointer
2995 to member which reaches here is considered to be equivalent
2996 to an INT (or some size). After all, it is only an offset. */
2997
2998CORE_ADDR
fc1a4b47 2999unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
3000{
3001 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
3002 whether we want this to be true eventually. */
3003 return unpack_long (type, valaddr);
3004}
4478b372 3005
c906108c 3006\f
1596cb5d 3007/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 3008 TYPE. */
c906108c 3009
f23631e4 3010struct value *
fba45db2 3011value_static_field (struct type *type, int fieldno)
c906108c 3012{
948e66d9
DJ
3013 struct value *retval;
3014
1596cb5d 3015 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 3016 {
1596cb5d 3017 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
3018 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3019 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
3020 break;
3021 case FIELD_LOC_KIND_PHYSNAME:
c906108c 3022 {
ff355380 3023 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 3024 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 3025 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 3026
d12307c1 3027 if (sym.symbol == NULL)
c906108c 3028 {
a109c7c1 3029 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 3030 reported as non-debuggable symbols. */
3b7344d5
TT
3031 struct bound_minimal_symbol msym
3032 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 3033
3b7344d5 3034 if (!msym.minsym)
686d4def 3035 return allocate_optimized_out_value (type);
c906108c 3036 else
c5aa993b 3037 {
52e9fde8 3038 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 3039 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
3040 }
3041 }
3042 else
d12307c1 3043 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 3044 break;
c906108c 3045 }
1596cb5d 3046 default:
f3574227 3047 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
3048 }
3049
948e66d9 3050 return retval;
c906108c
SS
3051}
3052
4dfea560
DE
3053/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3054 You have to be careful here, since the size of the data area for the value
3055 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3056 than the old enclosing type, you have to allocate more space for the
3057 data. */
2b127877 3058
4dfea560
DE
3059void
3060set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 3061{
5fdf6324
AB
3062 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3063 {
3064 check_type_length_before_alloc (new_encl_type);
3065 val->contents
3066 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3067 }
3e3d7139
JG
3068
3069 val->enclosing_type = new_encl_type;
2b127877
DB
3070}
3071
c906108c
SS
3072/* Given a value ARG1 (offset by OFFSET bytes)
3073 of a struct or union type ARG_TYPE,
3074 extract and return the value of one of its (non-static) fields.
581e13c1 3075 FIELDNO says which field. */
c906108c 3076
f23631e4
AC
3077struct value *
3078value_primitive_field (struct value *arg1, int offset,
aa1ee363 3079 int fieldno, struct type *arg_type)
c906108c 3080{
f23631e4 3081 struct value *v;
52f0bd74 3082 struct type *type;
3ae385af
SM
3083 struct gdbarch *arch = get_value_arch (arg1);
3084 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 3085
f168693b 3086 arg_type = check_typedef (arg_type);
c906108c 3087 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
3088
3089 /* Call check_typedef on our type to make sure that, if TYPE
3090 is a TYPE_CODE_TYPEDEF, its length is set to the length
3091 of the target type instead of zero. However, we do not
3092 replace the typedef type by the target type, because we want
3093 to keep the typedef in order to be able to print the type
3094 description correctly. */
3095 check_typedef (type);
c906108c 3096
691a26f5 3097 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 3098 {
22c05d8a
JK
3099 /* Handle packed fields.
3100
3101 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3102 set. If possible, arrange offset and bitpos so that we can
3103 do a single aligned read of the size of the containing type.
3104 Otherwise, adjust offset to the byte containing the first
3105 bit. Assume that the address, offset, and embedded offset
3106 are sufficiently aligned. */
22c05d8a 3107
4ea48cc1
DJ
3108 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3109 int container_bitsize = TYPE_LENGTH (type) * 8;
3110
9a0dc9e3
PA
3111 v = allocate_value_lazy (type);
3112 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3113 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3114 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3115 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3116 else
9a0dc9e3
PA
3117 v->bitpos = bitpos % 8;
3118 v->offset = (value_embedded_offset (arg1)
3119 + offset
3120 + (bitpos - v->bitpos) / 8);
3121 set_value_parent (v, arg1);
3122 if (!value_lazy (arg1))
3123 value_fetch_lazy (v);
c906108c
SS
3124 }
3125 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3126 {
3127 /* This field is actually a base subobject, so preserve the
39d37385
PA
3128 entire object's contents for later references to virtual
3129 bases, etc. */
be335936 3130 int boffset;
a4e2ee12
DJ
3131
3132 /* Lazy register values with offsets are not supported. */
3133 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3134 value_fetch_lazy (arg1);
3135
9a0dc9e3
PA
3136 /* We special case virtual inheritance here because this
3137 requires access to the contents, which we would rather avoid
3138 for references to ordinary fields of unavailable values. */
3139 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3140 boffset = baseclass_offset (arg_type, fieldno,
3141 value_contents (arg1),
3142 value_embedded_offset (arg1),
3143 value_address (arg1),
3144 arg1);
c906108c 3145 else
9a0dc9e3 3146 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3147
9a0dc9e3
PA
3148 if (value_lazy (arg1))
3149 v = allocate_value_lazy (value_enclosing_type (arg1));
3150 else
3151 {
3152 v = allocate_value (value_enclosing_type (arg1));
3153 value_contents_copy_raw (v, 0, arg1, 0,
3154 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3155 }
9a0dc9e3
PA
3156 v->type = type;
3157 v->offset = value_offset (arg1);
3158 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c
SS
3159 }
3160 else
3161 {
3162 /* Plain old data member */
3ae385af
SM
3163 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3164 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3165
3166 /* Lazy register values with offsets are not supported. */
3167 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3168 value_fetch_lazy (arg1);
3169
9a0dc9e3 3170 if (value_lazy (arg1))
3e3d7139 3171 v = allocate_value_lazy (type);
c906108c 3172 else
3e3d7139
JG
3173 {
3174 v = allocate_value (type);
39d37385
PA
3175 value_contents_copy_raw (v, value_embedded_offset (v),
3176 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3177 type_length_units (type));
3e3d7139 3178 }
df407dfe 3179 v->offset = (value_offset (arg1) + offset
13c3b5f5 3180 + value_embedded_offset (arg1));
c906108c 3181 }
74bcbdf3 3182 set_value_component_location (v, arg1);
9ee8fc9d 3183 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 3184 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
3185 return v;
3186}
3187
3188/* Given a value ARG1 of a struct or union type,
3189 extract and return the value of one of its (non-static) fields.
581e13c1 3190 FIELDNO says which field. */
c906108c 3191
f23631e4 3192struct value *
aa1ee363 3193value_field (struct value *arg1, int fieldno)
c906108c 3194{
df407dfe 3195 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3196}
3197
3198/* Return a non-virtual function as a value.
3199 F is the list of member functions which contains the desired method.
0478d61c
FF
3200 J is an index into F which provides the desired method.
3201
3202 We only use the symbol for its address, so be happy with either a
581e13c1 3203 full symbol or a minimal symbol. */
c906108c 3204
f23631e4 3205struct value *
3e43a32a
MS
3206value_fn_field (struct value **arg1p, struct fn_field *f,
3207 int j, struct type *type,
fba45db2 3208 int offset)
c906108c 3209{
f23631e4 3210 struct value *v;
52f0bd74 3211 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3212 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3213 struct symbol *sym;
7c7b6655 3214 struct bound_minimal_symbol msym;
c906108c 3215
d12307c1 3216 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3217 if (sym != NULL)
0478d61c 3218 {
7c7b6655 3219 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3220 }
3221 else
3222 {
3223 gdb_assert (sym == NULL);
7c7b6655
TT
3224 msym = lookup_bound_minimal_symbol (physname);
3225 if (msym.minsym == NULL)
5ae326fa 3226 return NULL;
0478d61c
FF
3227 }
3228
c906108c 3229 v = allocate_value (ftype);
0478d61c
FF
3230 if (sym)
3231 {
42ae5230 3232 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3233 }
3234 else
3235 {
bccdca4a
UW
3236 /* The minimal symbol might point to a function descriptor;
3237 resolve it to the actual code address instead. */
7c7b6655 3238 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3239 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3240
42ae5230
TT
3241 set_value_address (v,
3242 gdbarch_convert_from_func_ptr_addr
77e371c0 3243 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3244 }
c906108c
SS
3245
3246 if (arg1p)
c5aa993b 3247 {
df407dfe 3248 if (type != value_type (*arg1p))
c5aa993b
JM
3249 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3250 value_addr (*arg1p)));
3251
070ad9f0 3252 /* Move the `this' pointer according to the offset.
581e13c1 3253 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3254 }
3255
3256 return v;
3257}
3258
c906108c 3259\f
c906108c 3260
4875ffdb
PA
3261/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3262 VALADDR, and store the result in *RESULT.
3263 The bitfield starts at BITPOS bits and contains BITSIZE bits.
c906108c 3264
4875ffdb
PA
3265 Extracting bits depends on endianness of the machine. Compute the
3266 number of least significant bits to discard. For big endian machines,
3267 we compute the total number of bits in the anonymous object, subtract
3268 off the bit count from the MSB of the object to the MSB of the
3269 bitfield, then the size of the bitfield, which leaves the LSB discard
3270 count. For little endian machines, the discard count is simply the
3271 number of bits from the LSB of the anonymous object to the LSB of the
3272 bitfield.
3273
3274 If the field is signed, we also do sign extension. */
3275
3276static LONGEST
3277unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3278 int bitpos, int bitsize)
c906108c 3279{
4ea48cc1 3280 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3281 ULONGEST val;
3282 ULONGEST valmask;
c906108c 3283 int lsbcount;
4a76eae5 3284 int bytes_read;
5467c6c8 3285 int read_offset;
c906108c 3286
4a76eae5
DJ
3287 /* Read the minimum number of bytes required; there may not be
3288 enough bytes to read an entire ULONGEST. */
f168693b 3289 field_type = check_typedef (field_type);
4a76eae5
DJ
3290 if (bitsize)
3291 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3292 else
3293 bytes_read = TYPE_LENGTH (field_type);
3294
5467c6c8
PA
3295 read_offset = bitpos / 8;
3296
4875ffdb 3297 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3298 bytes_read, byte_order);
c906108c 3299
581e13c1 3300 /* Extract bits. See comment above. */
c906108c 3301
4ea48cc1 3302 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3303 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3304 else
3305 lsbcount = (bitpos % 8);
3306 val >>= lsbcount;
3307
3308 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3309 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3310
3311 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3312 {
3313 valmask = (((ULONGEST) 1) << bitsize) - 1;
3314 val &= valmask;
3315 if (!TYPE_UNSIGNED (field_type))
3316 {
3317 if (val & (valmask ^ (valmask >> 1)))
3318 {
3319 val |= ~valmask;
3320 }
3321 }
3322 }
5467c6c8 3323
4875ffdb 3324 return val;
5467c6c8
PA
3325}
3326
3327/* Unpack a field FIELDNO of the specified TYPE, from the object at
3328 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3329 ORIGINAL_VALUE, which must not be NULL. See
3330 unpack_value_bits_as_long for more details. */
3331
3332int
3333unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3334 int embedded_offset, int fieldno,
3335 const struct value *val, LONGEST *result)
3336{
4875ffdb
PA
3337 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3338 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3339 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3340 int bit_offset;
3341
5467c6c8
PA
3342 gdb_assert (val != NULL);
3343
4875ffdb
PA
3344 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3345 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3346 || !value_bits_available (val, bit_offset, bitsize))
3347 return 0;
3348
3349 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3350 bitpos, bitsize);
3351 return 1;
5467c6c8
PA
3352}
3353
3354/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3355 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3356
3357LONGEST
3358unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3359{
4875ffdb
PA
3360 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3361 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3362 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3363
4875ffdb
PA
3364 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3365}
3366
3367/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3368 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3369 the contents in DEST_VAL, zero or sign extending if the type of
3370 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3371 VAL. If the VAL's contents required to extract the bitfield from
3372 are unavailable/optimized out, DEST_VAL is correspondingly
3373 marked unavailable/optimized out. */
3374
bb9d5f81 3375void
4875ffdb
PA
3376unpack_value_bitfield (struct value *dest_val,
3377 int bitpos, int bitsize,
3378 const gdb_byte *valaddr, int embedded_offset,
3379 const struct value *val)
3380{
3381 enum bfd_endian byte_order;
3382 int src_bit_offset;
3383 int dst_bit_offset;
3384 LONGEST num;
3385 struct type *field_type = value_type (dest_val);
3386
3387 /* First, unpack and sign extend the bitfield as if it was wholly
3388 available. Invalid/unavailable bits are read as zero, but that's
3389 OK, as they'll end up marked below. */
3390 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3391 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3392 bitpos, bitsize);
3393 store_signed_integer (value_contents_raw (dest_val),
3394 TYPE_LENGTH (field_type), byte_order, num);
3395
3396 /* Now copy the optimized out / unavailability ranges to the right
3397 bits. */
3398 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3399 if (byte_order == BFD_ENDIAN_BIG)
3400 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3401 else
3402 dst_bit_offset = 0;
3403 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3404 val, src_bit_offset, bitsize);
5467c6c8
PA
3405}
3406
3407/* Return a new value with type TYPE, which is FIELDNO field of the
3408 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3409 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3410 from are unavailable/optimized out, the new value is
3411 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3412
3413struct value *
3414value_field_bitfield (struct type *type, int fieldno,
3415 const gdb_byte *valaddr,
3416 int embedded_offset, const struct value *val)
3417{
4875ffdb
PA
3418 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3419 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3420 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3421
4875ffdb
PA
3422 unpack_value_bitfield (res_val, bitpos, bitsize,
3423 valaddr, embedded_offset, val);
3424
3425 return res_val;
4ea48cc1
DJ
3426}
3427
c906108c
SS
3428/* Modify the value of a bitfield. ADDR points to a block of memory in
3429 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3430 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3431 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3432 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3433 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3434
3435void
50810684
UW
3436modify_field (struct type *type, gdb_byte *addr,
3437 LONGEST fieldval, int bitpos, int bitsize)
c906108c 3438{
e17a4113 3439 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3440 ULONGEST oword;
3441 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
3442 int bytesize;
3443
3444 /* Normalize BITPOS. */
3445 addr += bitpos / 8;
3446 bitpos %= 8;
c906108c
SS
3447
3448 /* If a negative fieldval fits in the field in question, chop
3449 off the sign extension bits. */
f4e88c8e
PH
3450 if ((~fieldval & ~(mask >> 1)) == 0)
3451 fieldval &= mask;
c906108c
SS
3452
3453 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3454 if (0 != (fieldval & ~mask))
c906108c
SS
3455 {
3456 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3457 we don't have a sprintf_longest. */
8a3fe4f8 3458 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
3459
3460 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3461 fieldval &= mask;
c906108c
SS
3462 }
3463
19f220c3
JK
3464 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3465 false valgrind reports. */
3466
3467 bytesize = (bitpos + bitsize + 7) / 8;
3468 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3469
3470 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3471 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3472 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3473
f4e88c8e 3474 oword &= ~(mask << bitpos);
c906108c
SS
3475 oword |= fieldval << bitpos;
3476
19f220c3 3477 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3478}
3479\f
14d06750 3480/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3481
14d06750
DJ
3482void
3483pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3484{
e17a4113 3485 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3486 int len;
14d06750
DJ
3487
3488 type = check_typedef (type);
c906108c
SS
3489 len = TYPE_LENGTH (type);
3490
14d06750 3491 switch (TYPE_CODE (type))
c906108c 3492 {
c906108c
SS
3493 case TYPE_CODE_INT:
3494 case TYPE_CODE_CHAR:
3495 case TYPE_CODE_ENUM:
4f2aea11 3496 case TYPE_CODE_FLAGS:
c906108c
SS
3497 case TYPE_CODE_BOOL:
3498 case TYPE_CODE_RANGE:
0d5de010 3499 case TYPE_CODE_MEMBERPTR:
e17a4113 3500 store_signed_integer (buf, len, byte_order, num);
c906108c 3501 break;
c5aa993b 3502
c906108c
SS
3503 case TYPE_CODE_REF:
3504 case TYPE_CODE_PTR:
14d06750 3505 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3506 break;
c5aa993b 3507
c906108c 3508 default:
14d06750
DJ
3509 error (_("Unexpected type (%d) encountered for integer constant."),
3510 TYPE_CODE (type));
c906108c 3511 }
14d06750
DJ
3512}
3513
3514
595939de
PM
3515/* Pack NUM into BUF using a target format of TYPE. */
3516
70221824 3517static void
595939de
PM
3518pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3519{
3520 int len;
3521 enum bfd_endian byte_order;
3522
3523 type = check_typedef (type);
3524 len = TYPE_LENGTH (type);
3525 byte_order = gdbarch_byte_order (get_type_arch (type));
3526
3527 switch (TYPE_CODE (type))
3528 {
3529 case TYPE_CODE_INT:
3530 case TYPE_CODE_CHAR:
3531 case TYPE_CODE_ENUM:
3532 case TYPE_CODE_FLAGS:
3533 case TYPE_CODE_BOOL:
3534 case TYPE_CODE_RANGE:
3535 case TYPE_CODE_MEMBERPTR:
3536 store_unsigned_integer (buf, len, byte_order, num);
3537 break;
3538
3539 case TYPE_CODE_REF:
3540 case TYPE_CODE_PTR:
3541 store_typed_address (buf, type, (CORE_ADDR) num);
3542 break;
3543
3544 default:
3e43a32a
MS
3545 error (_("Unexpected type (%d) encountered "
3546 "for unsigned integer constant."),
595939de
PM
3547 TYPE_CODE (type));
3548 }
3549}
3550
3551
14d06750
DJ
3552/* Convert C numbers into newly allocated values. */
3553
3554struct value *
3555value_from_longest (struct type *type, LONGEST num)
3556{
3557 struct value *val = allocate_value (type);
3558
3559 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3560 return val;
3561}
3562
4478b372 3563
595939de
PM
3564/* Convert C unsigned numbers into newly allocated values. */
3565
3566struct value *
3567value_from_ulongest (struct type *type, ULONGEST num)
3568{
3569 struct value *val = allocate_value (type);
3570
3571 pack_unsigned_long (value_contents_raw (val), type, num);
3572
3573 return val;
3574}
3575
3576
4478b372 3577/* Create a value representing a pointer of type TYPE to the address
cb417230 3578 ADDR. */
80180f79 3579
f23631e4 3580struct value *
4478b372
JB
3581value_from_pointer (struct type *type, CORE_ADDR addr)
3582{
cb417230 3583 struct value *val = allocate_value (type);
a109c7c1 3584
80180f79 3585 store_typed_address (value_contents_raw (val),
cb417230 3586 check_typedef (type), addr);
4478b372
JB
3587 return val;
3588}
3589
3590
012370f6
TT
3591/* Create a value of type TYPE whose contents come from VALADDR, if it
3592 is non-null, and whose memory address (in the inferior) is
3593 ADDRESS. The type of the created value may differ from the passed
3594 type TYPE. Make sure to retrieve values new type after this call.
3595 Note that TYPE is not passed through resolve_dynamic_type; this is
3596 a special API intended for use only by Ada. */
3597
3598struct value *
3599value_from_contents_and_address_unresolved (struct type *type,
3600 const gdb_byte *valaddr,
3601 CORE_ADDR address)
3602{
3603 struct value *v;
3604
3605 if (valaddr == NULL)
3606 v = allocate_value_lazy (type);
3607 else
3608 v = value_from_contents (type, valaddr);
3609 set_value_address (v, address);
3610 VALUE_LVAL (v) = lval_memory;
3611 return v;
3612}
3613
8acb6b92
TT
3614/* Create a value of type TYPE whose contents come from VALADDR, if it
3615 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3616 ADDRESS. The type of the created value may differ from the passed
3617 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3618
3619struct value *
3620value_from_contents_and_address (struct type *type,
3621 const gdb_byte *valaddr,
3622 CORE_ADDR address)
3623{
c3345124 3624 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3625 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3626 struct value *v;
a109c7c1 3627
8acb6b92 3628 if (valaddr == NULL)
80180f79 3629 v = allocate_value_lazy (resolved_type);
8acb6b92 3630 else
80180f79 3631 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3632 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3633 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3634 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
42ae5230 3635 set_value_address (v, address);
33d502b4 3636 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3637 return v;
3638}
3639
8a9b8146
TT
3640/* Create a value of type TYPE holding the contents CONTENTS.
3641 The new value is `not_lval'. */
3642
3643struct value *
3644value_from_contents (struct type *type, const gdb_byte *contents)
3645{
3646 struct value *result;
3647
3648 result = allocate_value (type);
3649 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3650 return result;
3651}
3652
f23631e4 3653struct value *
fba45db2 3654value_from_double (struct type *type, DOUBLEST num)
c906108c 3655{
f23631e4 3656 struct value *val = allocate_value (type);
c906108c 3657 struct type *base_type = check_typedef (type);
52f0bd74 3658 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3659
3660 if (code == TYPE_CODE_FLT)
3661 {
990a07ab 3662 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3663 }
3664 else
8a3fe4f8 3665 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3666
3667 return val;
3668}
994b9211 3669
27bc4d80 3670struct value *
4ef30785 3671value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3672{
3673 struct value *val = allocate_value (type);
27bc4d80 3674
4ef30785 3675 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3676 return val;
3677}
3678
3bd0f5ef
MS
3679/* Extract a value from the history file. Input will be of the form
3680 $digits or $$digits. See block comment above 'write_dollar_variable'
3681 for details. */
3682
3683struct value *
e799154c 3684value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3685{
3686 int index, len;
3687
3688 if (h[0] == '$')
3689 len = 1;
3690 else
3691 return NULL;
3692
3693 if (h[1] == '$')
3694 len = 2;
3695
3696 /* Find length of numeral string. */
3697 for (; isdigit (h[len]); len++)
3698 ;
3699
3700 /* Make sure numeral string is not part of an identifier. */
3701 if (h[len] == '_' || isalpha (h[len]))
3702 return NULL;
3703
3704 /* Now collect the index value. */
3705 if (h[1] == '$')
3706 {
3707 if (len == 2)
3708 {
3709 /* For some bizarre reason, "$$" is equivalent to "$$1",
3710 rather than to "$$0" as it ought to be! */
3711 index = -1;
3712 *endp += len;
3713 }
3714 else
e799154c
TT
3715 {
3716 char *local_end;
3717
3718 index = -strtol (&h[2], &local_end, 10);
3719 *endp = local_end;
3720 }
3bd0f5ef
MS
3721 }
3722 else
3723 {
3724 if (len == 1)
3725 {
3726 /* "$" is equivalent to "$0". */
3727 index = 0;
3728 *endp += len;
3729 }
3730 else
e799154c
TT
3731 {
3732 char *local_end;
3733
3734 index = strtol (&h[1], &local_end, 10);
3735 *endp = local_end;
3736 }
3bd0f5ef
MS
3737 }
3738
3739 return access_value_history (index);
3740}
3741
a471c594
JK
3742struct value *
3743coerce_ref_if_computed (const struct value *arg)
3744{
3745 const struct lval_funcs *funcs;
3746
3747 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3748 return NULL;
3749
3750 if (value_lval_const (arg) != lval_computed)
3751 return NULL;
3752
3753 funcs = value_computed_funcs (arg);
3754 if (funcs->coerce_ref == NULL)
3755 return NULL;
3756
3757 return funcs->coerce_ref (arg);
3758}
3759
dfcee124
AG
3760/* Look at value.h for description. */
3761
3762struct value *
3763readjust_indirect_value_type (struct value *value, struct type *enc_type,
3764 struct type *original_type,
3765 struct value *original_value)
3766{
3767 /* Re-adjust type. */
3768 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3769
3770 /* Add embedding info. */
3771 set_value_enclosing_type (value, enc_type);
3772 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3773
3774 /* We may be pointing to an object of some derived type. */
3775 return value_full_object (value, NULL, 0, 0, 0);
3776}
3777
994b9211
AC
3778struct value *
3779coerce_ref (struct value *arg)
3780{
df407dfe 3781 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3782 struct value *retval;
dfcee124 3783 struct type *enc_type;
a109c7c1 3784
a471c594
JK
3785 retval = coerce_ref_if_computed (arg);
3786 if (retval)
3787 return retval;
3788
3789 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3790 return arg;
3791
dfcee124
AG
3792 enc_type = check_typedef (value_enclosing_type (arg));
3793 enc_type = TYPE_TARGET_TYPE (enc_type);
3794
3795 retval = value_at_lazy (enc_type,
3796 unpack_pointer (value_type (arg),
3797 value_contents (arg)));
9f1f738a 3798 enc_type = value_type (retval);
dfcee124
AG
3799 return readjust_indirect_value_type (retval, enc_type,
3800 value_type_arg_tmp, arg);
994b9211
AC
3801}
3802
3803struct value *
3804coerce_array (struct value *arg)
3805{
f3134b88
TT
3806 struct type *type;
3807
994b9211 3808 arg = coerce_ref (arg);
f3134b88
TT
3809 type = check_typedef (value_type (arg));
3810
3811 switch (TYPE_CODE (type))
3812 {
3813 case TYPE_CODE_ARRAY:
7346b668 3814 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3815 arg = value_coerce_array (arg);
3816 break;
3817 case TYPE_CODE_FUNC:
3818 arg = value_coerce_function (arg);
3819 break;
3820 }
994b9211
AC
3821 return arg;
3822}
c906108c 3823\f
c906108c 3824
bbfdfe1c
DM
3825/* Return the return value convention that will be used for the
3826 specified type. */
3827
3828enum return_value_convention
3829struct_return_convention (struct gdbarch *gdbarch,
3830 struct value *function, struct type *value_type)
3831{
3832 enum type_code code = TYPE_CODE (value_type);
3833
3834 if (code == TYPE_CODE_ERROR)
3835 error (_("Function return type unknown."));
3836
3837 /* Probe the architecture for the return-value convention. */
3838 return gdbarch_return_value (gdbarch, function, value_type,
3839 NULL, NULL, NULL);
3840}
3841
48436ce6
AC
3842/* Return true if the function returning the specified type is using
3843 the convention of returning structures in memory (passing in the
82585c72 3844 address as a hidden first parameter). */
c906108c
SS
3845
3846int
d80b854b 3847using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3848 struct value *function, struct type *value_type)
c906108c 3849{
bbfdfe1c 3850 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3851 /* A void return value is never in memory. See also corresponding
44e5158b 3852 code in "print_return_value". */
667e784f
AC
3853 return 0;
3854
bbfdfe1c 3855 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3856 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3857}
3858
42be36b3
CT
3859/* Set the initialized field in a value struct. */
3860
3861void
3862set_value_initialized (struct value *val, int status)
3863{
3864 val->initialized = status;
3865}
3866
3867/* Return the initialized field in a value struct. */
3868
3869int
3870value_initialized (struct value *val)
3871{
3872 return val->initialized;
3873}
3874
a844296a
SM
3875/* Load the actual content of a lazy value. Fetch the data from the
3876 user's process and clear the lazy flag to indicate that the data in
3877 the buffer is valid.
a58e2656
AB
3878
3879 If the value is zero-length, we avoid calling read_memory, which
3880 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3881 it. */
a58e2656 3882
a844296a 3883void
a58e2656
AB
3884value_fetch_lazy (struct value *val)
3885{
3886 gdb_assert (value_lazy (val));
3887 allocate_value_contents (val);
9a0dc9e3
PA
3888 /* A value is either lazy, or fully fetched. The
3889 availability/validity is only established as we try to fetch a
3890 value. */
3891 gdb_assert (VEC_empty (range_s, val->optimized_out));
3892 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3893 if (value_bitsize (val))
3894 {
3895 /* To read a lazy bitfield, read the entire enclosing value. This
3896 prevents reading the same block of (possibly volatile) memory once
3897 per bitfield. It would be even better to read only the containing
3898 word, but we have no way to record that just specific bits of a
3899 value have been fetched. */
3900 struct type *type = check_typedef (value_type (val));
a58e2656 3901 struct value *parent = value_parent (val);
a58e2656 3902
b0c54aa5
AB
3903 if (value_lazy (parent))
3904 value_fetch_lazy (parent);
3905
4875ffdb
PA
3906 unpack_value_bitfield (val,
3907 value_bitpos (val), value_bitsize (val),
3908 value_contents_for_printing (parent),
3909 value_offset (val), parent);
a58e2656
AB
3910 }
3911 else if (VALUE_LVAL (val) == lval_memory)
3912 {
3913 CORE_ADDR addr = value_address (val);
3914 struct type *type = check_typedef (value_enclosing_type (val));
3915
3916 if (TYPE_LENGTH (type))
3917 read_value_memory (val, 0, value_stack (val),
3918 addr, value_contents_all_raw (val),
3ae385af 3919 type_length_units (type));
a58e2656
AB
3920 }
3921 else if (VALUE_LVAL (val) == lval_register)
3922 {
3923 struct frame_info *frame;
3924 int regnum;
3925 struct type *type = check_typedef (value_type (val));
3926 struct value *new_val = val, *mark = value_mark ();
3927
3928 /* Offsets are not supported here; lazy register values must
3929 refer to the entire register. */
3930 gdb_assert (value_offset (val) == 0);
3931
3932 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3933 {
6eeee81c
TT
3934 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3935
3936 frame = frame_find_by_id (frame_id);
a58e2656
AB
3937 regnum = VALUE_REGNUM (new_val);
3938
3939 gdb_assert (frame != NULL);
3940
3941 /* Convertible register routines are used for multi-register
3942 values and for interpretation in different types
3943 (e.g. float or int from a double register). Lazy
3944 register values should have the register's natural type,
3945 so they do not apply. */
3946 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3947 regnum, type));
3948
3949 new_val = get_frame_register_value (frame, regnum);
6eeee81c
TT
3950
3951 /* If we get another lazy lval_register value, it means the
3952 register is found by reading it from the next frame.
3953 get_frame_register_value should never return a value with
3954 the frame id pointing to FRAME. If it does, it means we
3955 either have two consecutive frames with the same frame id
3956 in the frame chain, or some code is trying to unwind
3957 behind get_prev_frame's back (e.g., a frame unwind
3958 sniffer trying to unwind), bypassing its validations. In
3959 any case, it should always be an internal error to end up
3960 in this situation. */
3961 if (VALUE_LVAL (new_val) == lval_register
3962 && value_lazy (new_val)
3963 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3964 internal_error (__FILE__, __LINE__,
3965 _("infinite loop while fetching a register"));
a58e2656
AB
3966 }
3967
3968 /* If it's still lazy (for instance, a saved register on the
3969 stack), fetch it. */
3970 if (value_lazy (new_val))
3971 value_fetch_lazy (new_val);
3972
9a0dc9e3
PA
3973 /* Copy the contents and the unavailability/optimized-out
3974 meta-data from NEW_VAL to VAL. */
3975 set_value_lazy (val, 0);
3976 value_contents_copy (val, value_embedded_offset (val),
3977 new_val, value_embedded_offset (new_val),
3ae385af 3978 type_length_units (type));
a58e2656
AB
3979
3980 if (frame_debug)
3981 {
3982 struct gdbarch *gdbarch;
3983 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3984 regnum = VALUE_REGNUM (val);
3985 gdbarch = get_frame_arch (frame);
3986
3987 fprintf_unfiltered (gdb_stdlog,
3988 "{ value_fetch_lazy "
3989 "(frame=%d,regnum=%d(%s),...) ",
3990 frame_relative_level (frame), regnum,
3991 user_reg_map_regnum_to_name (gdbarch, regnum));
3992
3993 fprintf_unfiltered (gdb_stdlog, "->");
3994 if (value_optimized_out (new_val))
f6c01fc5
AB
3995 {
3996 fprintf_unfiltered (gdb_stdlog, " ");
3997 val_print_optimized_out (new_val, gdb_stdlog);
3998 }
a58e2656
AB
3999 else
4000 {
4001 int i;
4002 const gdb_byte *buf = value_contents (new_val);
4003
4004 if (VALUE_LVAL (new_val) == lval_register)
4005 fprintf_unfiltered (gdb_stdlog, " register=%d",
4006 VALUE_REGNUM (new_val));
4007 else if (VALUE_LVAL (new_val) == lval_memory)
4008 fprintf_unfiltered (gdb_stdlog, " address=%s",
4009 paddress (gdbarch,
4010 value_address (new_val)));
4011 else
4012 fprintf_unfiltered (gdb_stdlog, " computed");
4013
4014 fprintf_unfiltered (gdb_stdlog, " bytes=");
4015 fprintf_unfiltered (gdb_stdlog, "[");
4016 for (i = 0; i < register_size (gdbarch, regnum); i++)
4017 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4018 fprintf_unfiltered (gdb_stdlog, "]");
4019 }
4020
4021 fprintf_unfiltered (gdb_stdlog, " }\n");
4022 }
4023
4024 /* Dispose of the intermediate values. This prevents
4025 watchpoints from trying to watch the saved frame pointer. */
4026 value_free_to_mark (mark);
4027 }
4028 else if (VALUE_LVAL (val) == lval_computed
4029 && value_computed_funcs (val)->read != NULL)
4030 value_computed_funcs (val)->read (val);
a58e2656
AB
4031 else
4032 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4033
4034 set_value_lazy (val, 0);
a58e2656
AB
4035}
4036
a280dbd1
SDJ
4037/* Implementation of the convenience function $_isvoid. */
4038
4039static struct value *
4040isvoid_internal_fn (struct gdbarch *gdbarch,
4041 const struct language_defn *language,
4042 void *cookie, int argc, struct value **argv)
4043{
4044 int ret;
4045
4046 if (argc != 1)
6bc305f5 4047 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
4048
4049 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4050
4051 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4052}
4053
c906108c 4054void
fba45db2 4055_initialize_values (void)
c906108c 4056{
1a966eab 4057 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4058Debugger convenience (\"$foo\") variables and functions.\n\
4059Convenience variables are created when you assign them values;\n\
4060thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4061\n\
c906108c
SS
4062A few convenience variables are given values automatically:\n\
4063\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4064\"$__\" holds the contents of the last address examined with \"x\"."
4065#ifdef HAVE_PYTHON
4066"\n\n\
4067Convenience functions are defined via the Python API."
4068#endif
4069 ), &showlist);
7e20dfcd 4070 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4071
db5f229b 4072 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4073Elements of value history around item number IDX (or last ten)."),
c906108c 4074 &showlist);
53e5f3cf
AS
4075
4076 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4077Initialize a convenience variable if necessary.\n\
4078init-if-undefined VARIABLE = EXPRESSION\n\
4079Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4080exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4081VARIABLE is already initialized."));
bc3b79fd
TJB
4082
4083 add_prefix_cmd ("function", no_class, function_command, _("\
4084Placeholder command for showing help on convenience functions."),
4085 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4086
4087 add_internal_function ("_isvoid", _("\
4088Check whether an expression is void.\n\
4089Usage: $_isvoid (expression)\n\
4090Return 1 if the expression is void, zero otherwise."),
4091 isvoid_internal_fn, NULL);
5fdf6324
AB
4092
4093 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4094 class_support, &max_value_size, _("\
4095Set maximum sized value gdb will load from the inferior."), _("\
4096Show maximum sized value gdb will load from the inferior."), _("\
4097Use this to control the maximum size, in bytes, of a value that gdb\n\
4098will load from the inferior. Setting this value to 'unlimited'\n\
4099disables checking.\n\
4100Setting this does not invalidate already allocated values, it only\n\
4101prevents future values, larger than this size, from being allocated."),
4102 set_max_value_size,
4103 show_max_value_size,
4104 &setlist, &showlist);
c906108c 4105}
This page took 1.912523 seconds and 4 git commands to generate.