constify command prefix
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
ecd75fc8 3 Copyright (C) 1986-2014 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
0e9f083f 22#include <string.h>
c906108c
SS
23#include "symtab.h"
24#include "gdbtypes.h"
25#include "value.h"
26#include "gdbcore.h"
c906108c
SS
27#include "command.h"
28#include "gdbcmd.h"
29#include "target.h"
30#include "language.h"
c906108c 31#include "demangle.h"
d16aafd8 32#include "doublest.h"
5ae326fa 33#include "gdb_assert.h"
36160dc4 34#include "regcache.h"
fe898f56 35#include "block.h"
27bc4d80 36#include "dfp.h"
bccdca4a 37#include "objfiles.h"
79a45b7d 38#include "valprint.h"
bc3b79fd 39#include "cli/cli-decode.h"
8af8e3bc 40#include "exceptions.h"
6dddc817 41#include "extension.h"
3bd0f5ef 42#include <ctype.h>
0914bcdb 43#include "tracepoint.h"
be335936 44#include "cp-abi.h"
a58e2656 45#include "user-regs.h"
0914bcdb 46
581e13c1 47/* Prototypes for exported functions. */
c906108c 48
a14ed312 49void _initialize_values (void);
c906108c 50
bc3b79fd
TJB
51/* Definition of a user function. */
52struct internal_function
53{
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64};
65
4e07d55f
PA
66/* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68struct range
69{
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75};
76
77typedef struct range range_s;
78
79DEF_VEC_O(range_s);
80
81/* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84static int
85ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87{
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93}
94
95/* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100static int
101range_lessthan (const range_s *r1, const range_s *r2)
102{
103 return r1->offset < r2->offset;
104}
105
106/* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109static int
110ranges_contain (VEC(range_s) *ranges, int offset, int length)
111{
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168}
169
bc3b79fd
TJB
170static struct cmd_list_element *functionlist;
171
87784a47
TT
172/* Note that the fields in this structure are arranged to save a bit
173 of memory. */
174
91294c83
AC
175struct value
176{
177 /* Type of value; either not an lval, or one of the various
178 different possible kinds of lval. */
179 enum lval_type lval;
180
181 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
182 unsigned int modifiable : 1;
183
184 /* If zero, contents of this value are in the contents field. If
185 nonzero, contents are in inferior. If the lval field is lval_memory,
186 the contents are in inferior memory at location.address plus offset.
187 The lval field may also be lval_register.
188
189 WARNING: This field is used by the code which handles watchpoints
190 (see breakpoint.c) to decide whether a particular value can be
191 watched by hardware watchpoints. If the lazy flag is set for
192 some member of a value chain, it is assumed that this member of
193 the chain doesn't need to be watched as part of watching the
194 value itself. This is how GDB avoids watching the entire struct
195 or array when the user wants to watch a single struct member or
196 array element. If you ever change the way lazy flag is set and
197 reset, be sure to consider this use as well! */
198 unsigned int lazy : 1;
199
901461f8
PA
200 /* If nonzero, this is the value of a variable that does not
201 actually exist in the program. If nonzero, and LVAL is
202 lval_register, this is a register ($pc, $sp, etc., never a
203 program variable) that has not been saved in the frame. All
204 optimized-out values are treated pretty much the same, except
205 registers have a different string representation and related
206 error strings. */
87784a47
TT
207 unsigned int optimized_out : 1;
208
209 /* If value is a variable, is it initialized or not. */
210 unsigned int initialized : 1;
211
212 /* If value is from the stack. If this is set, read_stack will be
213 used instead of read_memory to enable extra caching. */
214 unsigned int stack : 1;
91294c83 215
e848a8a5
TT
216 /* If the value has been released. */
217 unsigned int released : 1;
218
98b1cfdc
TT
219 /* Register number if the value is from a register. */
220 short regnum;
221
91294c83
AC
222 /* Location of value (if lval). */
223 union
224 {
225 /* If lval == lval_memory, this is the address in the inferior.
226 If lval == lval_register, this is the byte offset into the
227 registers structure. */
228 CORE_ADDR address;
229
230 /* Pointer to internal variable. */
231 struct internalvar *internalvar;
5f5233d4 232
e81e7f5e
SC
233 /* Pointer to xmethod worker. */
234 struct xmethod_worker *xm_worker;
235
5f5233d4
PA
236 /* If lval == lval_computed, this is a set of function pointers
237 to use to access and describe the value, and a closure pointer
238 for them to use. */
239 struct
240 {
c8f2448a
JK
241 /* Functions to call. */
242 const struct lval_funcs *funcs;
243
244 /* Closure for those functions to use. */
245 void *closure;
5f5233d4 246 } computed;
91294c83
AC
247 } location;
248
249 /* Describes offset of a value within lval of a structure in bytes.
250 If lval == lval_memory, this is an offset to the address. If
251 lval == lval_register, this is a further offset from
252 location.address within the registers structure. Note also the
253 member embedded_offset below. */
254 int offset;
255
256 /* Only used for bitfields; number of bits contained in them. */
257 int bitsize;
258
259 /* Only used for bitfields; position of start of field. For
32c9a795 260 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 261 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
262 int bitpos;
263
87784a47
TT
264 /* The number of references to this value. When a value is created,
265 the value chain holds a reference, so REFERENCE_COUNT is 1. If
266 release_value is called, this value is removed from the chain but
267 the caller of release_value now has a reference to this value.
268 The caller must arrange for a call to value_free later. */
269 int reference_count;
270
4ea48cc1
DJ
271 /* Only used for bitfields; the containing value. This allows a
272 single read from the target when displaying multiple
273 bitfields. */
274 struct value *parent;
275
91294c83
AC
276 /* Frame register value is relative to. This will be described in
277 the lval enum above as "lval_register". */
278 struct frame_id frame_id;
279
280 /* Type of the value. */
281 struct type *type;
282
283 /* If a value represents a C++ object, then the `type' field gives
284 the object's compile-time type. If the object actually belongs
285 to some class derived from `type', perhaps with other base
286 classes and additional members, then `type' is just a subobject
287 of the real thing, and the full object is probably larger than
288 `type' would suggest.
289
290 If `type' is a dynamic class (i.e. one with a vtable), then GDB
291 can actually determine the object's run-time type by looking at
292 the run-time type information in the vtable. When this
293 information is available, we may elect to read in the entire
294 object, for several reasons:
295
296 - When printing the value, the user would probably rather see the
297 full object, not just the limited portion apparent from the
298 compile-time type.
299
300 - If `type' has virtual base classes, then even printing `type'
301 alone may require reaching outside the `type' portion of the
302 object to wherever the virtual base class has been stored.
303
304 When we store the entire object, `enclosing_type' is the run-time
305 type -- the complete object -- and `embedded_offset' is the
306 offset of `type' within that larger type, in bytes. The
307 value_contents() macro takes `embedded_offset' into account, so
308 most GDB code continues to see the `type' portion of the value,
309 just as the inferior would.
310
311 If `type' is a pointer to an object, then `enclosing_type' is a
312 pointer to the object's run-time type, and `pointed_to_offset' is
313 the offset in bytes from the full object to the pointed-to object
314 -- that is, the value `embedded_offset' would have if we followed
315 the pointer and fetched the complete object. (I don't really see
316 the point. Why not just determine the run-time type when you
317 indirect, and avoid the special case? The contents don't matter
318 until you indirect anyway.)
319
320 If we're not doing anything fancy, `enclosing_type' is equal to
321 `type', and `embedded_offset' is zero, so everything works
322 normally. */
323 struct type *enclosing_type;
324 int embedded_offset;
325 int pointed_to_offset;
326
327 /* Values are stored in a chain, so that they can be deleted easily
328 over calls to the inferior. Values assigned to internal
a08702d6
TJB
329 variables, put into the value history or exposed to Python are
330 taken off this list. */
91294c83
AC
331 struct value *next;
332
3e3d7139
JG
333 /* Actual contents of the value. Target byte-order. NULL or not
334 valid if lazy is nonzero. */
335 gdb_byte *contents;
828d3400 336
4e07d55f
PA
337 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
338 rather than available, since the common and default case is for a
bdf22206
AB
339 value to be available. This is filled in at value read time. The
340 unavailable ranges are tracked in bits. */
4e07d55f 341 VEC(range_s) *unavailable;
91294c83
AC
342};
343
4e07d55f 344int
bdf22206 345value_bits_available (const struct value *value, int offset, int length)
4e07d55f
PA
346{
347 gdb_assert (!value->lazy);
348
349 return !ranges_contain (value->unavailable, offset, length);
350}
351
bdf22206
AB
352int
353value_bytes_available (const struct value *value, int offset, int length)
354{
355 return value_bits_available (value,
356 offset * TARGET_CHAR_BIT,
357 length * TARGET_CHAR_BIT);
358}
359
ec0a52e1
PA
360int
361value_entirely_available (struct value *value)
362{
363 /* We can only tell whether the whole value is available when we try
364 to read it. */
365 if (value->lazy)
366 value_fetch_lazy (value);
367
368 if (VEC_empty (range_s, value->unavailable))
369 return 1;
370 return 0;
371}
372
6211c335
YQ
373int
374value_entirely_unavailable (struct value *value)
375{
376 /* We can only tell whether the whole value is available when we try
377 to read it. */
378 if (value->lazy)
379 value_fetch_lazy (value);
380
381 if (VEC_length (range_s, value->unavailable) == 1)
382 {
383 struct range *t = VEC_index (range_s, value->unavailable, 0);
384
385 if (t->offset == 0
64c46ce4
JB
386 && t->length == (TARGET_CHAR_BIT
387 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
388 return 1;
389 }
390
391 return 0;
392}
393
4e07d55f 394void
bdf22206 395mark_value_bits_unavailable (struct value *value, int offset, int length)
4e07d55f
PA
396{
397 range_s newr;
398 int i;
399
400 /* Insert the range sorted. If there's overlap or the new range
401 would be contiguous with an existing range, merge. */
402
403 newr.offset = offset;
404 newr.length = length;
405
406 /* Do a binary search for the position the given range would be
407 inserted if we only considered the starting OFFSET of ranges.
408 Call that position I. Since we also have LENGTH to care for
409 (this is a range afterall), we need to check if the _previous_
410 range overlaps the I range. E.g., calling R the new range:
411
412 #1 - overlaps with previous
413
414 R
415 |-...-|
416 |---| |---| |------| ... |--|
417 0 1 2 N
418
419 I=1
420
421 In the case #1 above, the binary search would return `I=1',
422 meaning, this OFFSET should be inserted at position 1, and the
423 current position 1 should be pushed further (and become 2). But,
424 note that `0' overlaps with R, so we want to merge them.
425
426 A similar consideration needs to be taken if the new range would
427 be contiguous with the previous range:
428
429 #2 - contiguous with previous
430
431 R
432 |-...-|
433 |--| |---| |------| ... |--|
434 0 1 2 N
435
436 I=1
437
438 If there's no overlap with the previous range, as in:
439
440 #3 - not overlapping and not contiguous
441
442 R
443 |-...-|
444 |--| |---| |------| ... |--|
445 0 1 2 N
446
447 I=1
448
449 or if I is 0:
450
451 #4 - R is the range with lowest offset
452
453 R
454 |-...-|
455 |--| |---| |------| ... |--|
456 0 1 2 N
457
458 I=0
459
460 ... we just push the new range to I.
461
462 All the 4 cases above need to consider that the new range may
463 also overlap several of the ranges that follow, or that R may be
464 contiguous with the following range, and merge. E.g.,
465
466 #5 - overlapping following ranges
467
468 R
469 |------------------------|
470 |--| |---| |------| ... |--|
471 0 1 2 N
472
473 I=0
474
475 or:
476
477 R
478 |-------|
479 |--| |---| |------| ... |--|
480 0 1 2 N
481
482 I=1
483
484 */
485
486 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
487 if (i > 0)
488 {
6bfc80c7 489 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
4e07d55f
PA
490
491 if (ranges_overlap (bef->offset, bef->length, offset, length))
492 {
493 /* #1 */
494 ULONGEST l = min (bef->offset, offset);
495 ULONGEST h = max (bef->offset + bef->length, offset + length);
496
497 bef->offset = l;
498 bef->length = h - l;
499 i--;
500 }
501 else if (offset == bef->offset + bef->length)
502 {
503 /* #2 */
504 bef->length += length;
505 i--;
506 }
507 else
508 {
509 /* #3 */
510 VEC_safe_insert (range_s, value->unavailable, i, &newr);
511 }
512 }
513 else
514 {
515 /* #4 */
516 VEC_safe_insert (range_s, value->unavailable, i, &newr);
517 }
518
519 /* Check whether the ranges following the one we've just added or
520 touched can be folded in (#5 above). */
521 if (i + 1 < VEC_length (range_s, value->unavailable))
522 {
523 struct range *t;
524 struct range *r;
525 int removed = 0;
526 int next = i + 1;
527
528 /* Get the range we just touched. */
529 t = VEC_index (range_s, value->unavailable, i);
530 removed = 0;
531
532 i = next;
533 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
534 if (r->offset <= t->offset + t->length)
535 {
536 ULONGEST l, h;
537
538 l = min (t->offset, r->offset);
539 h = max (t->offset + t->length, r->offset + r->length);
540
541 t->offset = l;
542 t->length = h - l;
543
544 removed++;
545 }
546 else
547 {
548 /* If we couldn't merge this one, we won't be able to
549 merge following ones either, since the ranges are
550 always sorted by OFFSET. */
551 break;
552 }
553
554 if (removed != 0)
555 VEC_block_remove (range_s, value->unavailable, next, removed);
556 }
557}
558
bdf22206
AB
559void
560mark_value_bytes_unavailable (struct value *value, int offset, int length)
561{
562 mark_value_bits_unavailable (value,
563 offset * TARGET_CHAR_BIT,
564 length * TARGET_CHAR_BIT);
565}
566
c8c1c22f
PA
567/* Find the first range in RANGES that overlaps the range defined by
568 OFFSET and LENGTH, starting at element POS in the RANGES vector,
569 Returns the index into RANGES where such overlapping range was
570 found, or -1 if none was found. */
571
572static int
573find_first_range_overlap (VEC(range_s) *ranges, int pos,
574 int offset, int length)
575{
576 range_s *r;
577 int i;
578
579 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
580 if (ranges_overlap (r->offset, r->length, offset, length))
581 return i;
582
583 return -1;
584}
585
bdf22206
AB
586/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
587 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
588 return non-zero.
589
590 It must always be the case that:
591 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
592
593 It is assumed that memory can be accessed from:
594 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
595 to:
596 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
597 / TARGET_CHAR_BIT) */
598static int
599memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
600 const gdb_byte *ptr2, size_t offset2_bits,
601 size_t length_bits)
602{
603 gdb_assert (offset1_bits % TARGET_CHAR_BIT
604 == offset2_bits % TARGET_CHAR_BIT);
605
606 if (offset1_bits % TARGET_CHAR_BIT != 0)
607 {
608 size_t bits;
609 gdb_byte mask, b1, b2;
610
611 /* The offset from the base pointers PTR1 and PTR2 is not a complete
612 number of bytes. A number of bits up to either the next exact
613 byte boundary, or LENGTH_BITS (which ever is sooner) will be
614 compared. */
615 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
616 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
617 mask = (1 << bits) - 1;
618
619 if (length_bits < bits)
620 {
621 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
622 bits = length_bits;
623 }
624
625 /* Now load the two bytes and mask off the bits we care about. */
626 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
627 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
628
629 if (b1 != b2)
630 return 1;
631
632 /* Now update the length and offsets to take account of the bits
633 we've just compared. */
634 length_bits -= bits;
635 offset1_bits += bits;
636 offset2_bits += bits;
637 }
638
639 if (length_bits % TARGET_CHAR_BIT != 0)
640 {
641 size_t bits;
642 size_t o1, o2;
643 gdb_byte mask, b1, b2;
644
645 /* The length is not an exact number of bytes. After the previous
646 IF.. block then the offsets are byte aligned, or the
647 length is zero (in which case this code is not reached). Compare
648 a number of bits at the end of the region, starting from an exact
649 byte boundary. */
650 bits = length_bits % TARGET_CHAR_BIT;
651 o1 = offset1_bits + length_bits - bits;
652 o2 = offset2_bits + length_bits - bits;
653
654 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
655 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
656
657 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
658 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
659
660 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
661 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
662
663 if (b1 != b2)
664 return 1;
665
666 length_bits -= bits;
667 }
668
669 if (length_bits > 0)
670 {
671 /* We've now taken care of any stray "bits" at the start, or end of
672 the region to compare, the remainder can be covered with a simple
673 memcmp. */
674 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
675 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
676 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
677
678 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
679 ptr2 + offset2_bits / TARGET_CHAR_BIT,
680 length_bits / TARGET_CHAR_BIT);
681 }
682
683 /* Length is zero, regions match. */
684 return 0;
685}
686
687/* Helper function for value_available_contents_eq. The only difference is
688 that this function is bit rather than byte based.
689
690 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits with
691 LENGTH bits of VAL2's contents starting at OFFSET2 bits. Return true
692 if the available bits match. */
693
694static int
695value_available_contents_bits_eq (const struct value *val1, int offset1,
696 const struct value *val2, int offset2,
697 int length)
c8c1c22f 698{
c8c1c22f 699 int idx1 = 0, idx2 = 0;
c8c1c22f 700
4eb59108 701 /* See function description in value.h. */
c8c1c22f
PA
702 gdb_assert (!val1->lazy && !val2->lazy);
703
c8c1c22f
PA
704 while (length > 0)
705 {
706 range_s *r1, *r2;
707 ULONGEST l1, h1;
708 ULONGEST l2, h2;
709
710 idx1 = find_first_range_overlap (val1->unavailable, idx1,
711 offset1, length);
712 idx2 = find_first_range_overlap (val2->unavailable, idx2,
713 offset2, length);
714
715 /* The usual case is for both values to be completely available. */
716 if (idx1 == -1 && idx2 == -1)
bdf22206
AB
717 return (memcmp_with_bit_offsets (val1->contents, offset1,
718 val2->contents, offset2,
719 length) == 0);
c8c1c22f
PA
720 /* The contents only match equal if the available set matches as
721 well. */
722 else if (idx1 == -1 || idx2 == -1)
723 return 0;
724
725 gdb_assert (idx1 != -1 && idx2 != -1);
726
727 r1 = VEC_index (range_s, val1->unavailable, idx1);
728 r2 = VEC_index (range_s, val2->unavailable, idx2);
729
730 /* Get the unavailable windows intersected by the incoming
731 ranges. The first and last ranges that overlap the argument
732 range may be wider than said incoming arguments ranges. */
733 l1 = max (offset1, r1->offset);
734 h1 = min (offset1 + length, r1->offset + r1->length);
735
736 l2 = max (offset2, r2->offset);
737 h2 = min (offset2 + length, r2->offset + r2->length);
738
739 /* Make them relative to the respective start offsets, so we can
740 compare them for equality. */
741 l1 -= offset1;
742 h1 -= offset1;
743
744 l2 -= offset2;
745 h2 -= offset2;
746
747 /* Different availability, no match. */
748 if (l1 != l2 || h1 != h2)
749 return 0;
750
751 /* Compare the _available_ contents. */
bdf22206
AB
752 if (memcmp_with_bit_offsets (val1->contents, offset1,
753 val2->contents, offset2, l1) != 0)
c8c1c22f
PA
754 return 0;
755
c8c1c22f
PA
756 length -= h1;
757 offset1 += h1;
758 offset2 += h1;
759 }
760
761 return 1;
762}
763
bdf22206
AB
764int
765value_available_contents_eq (const struct value *val1, int offset1,
766 const struct value *val2, int offset2,
767 int length)
768{
769 return value_available_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
770 val2, offset2 * TARGET_CHAR_BIT,
771 length * TARGET_CHAR_BIT);
772}
773
581e13c1 774/* Prototypes for local functions. */
c906108c 775
a14ed312 776static void show_values (char *, int);
c906108c 777
a14ed312 778static void show_convenience (char *, int);
c906108c 779
c906108c
SS
780
781/* The value-history records all the values printed
782 by print commands during this session. Each chunk
783 records 60 consecutive values. The first chunk on
784 the chain records the most recent values.
785 The total number of values is in value_history_count. */
786
787#define VALUE_HISTORY_CHUNK 60
788
789struct value_history_chunk
c5aa993b
JM
790 {
791 struct value_history_chunk *next;
f23631e4 792 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 793 };
c906108c
SS
794
795/* Chain of chunks now in use. */
796
797static struct value_history_chunk *value_history_chain;
798
581e13c1 799static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 800
c906108c
SS
801\f
802/* List of all value objects currently allocated
803 (except for those released by calls to release_value)
804 This is so they can be freed after each command. */
805
f23631e4 806static struct value *all_values;
c906108c 807
3e3d7139
JG
808/* Allocate a lazy value for type TYPE. Its actual content is
809 "lazily" allocated too: the content field of the return value is
810 NULL; it will be allocated when it is fetched from the target. */
c906108c 811
f23631e4 812struct value *
3e3d7139 813allocate_value_lazy (struct type *type)
c906108c 814{
f23631e4 815 struct value *val;
c54eabfa
JK
816
817 /* Call check_typedef on our type to make sure that, if TYPE
818 is a TYPE_CODE_TYPEDEF, its length is set to the length
819 of the target type instead of zero. However, we do not
820 replace the typedef type by the target type, because we want
821 to keep the typedef in order to be able to set the VAL's type
822 description correctly. */
823 check_typedef (type);
c906108c 824
3e3d7139
JG
825 val = (struct value *) xzalloc (sizeof (struct value));
826 val->contents = NULL;
df407dfe 827 val->next = all_values;
c906108c 828 all_values = val;
df407dfe 829 val->type = type;
4754a64e 830 val->enclosing_type = type;
c906108c 831 VALUE_LVAL (val) = not_lval;
42ae5230 832 val->location.address = 0;
1df6926e 833 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
834 val->offset = 0;
835 val->bitpos = 0;
836 val->bitsize = 0;
9ee8fc9d 837 VALUE_REGNUM (val) = -1;
3e3d7139 838 val->lazy = 1;
feb13ab0 839 val->optimized_out = 0;
13c3b5f5 840 val->embedded_offset = 0;
b44d461b 841 val->pointed_to_offset = 0;
c906108c 842 val->modifiable = 1;
42be36b3 843 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
844
845 /* Values start out on the all_values chain. */
846 val->reference_count = 1;
847
c906108c
SS
848 return val;
849}
850
3e3d7139
JG
851/* Allocate the contents of VAL if it has not been allocated yet. */
852
548b762d 853static void
3e3d7139
JG
854allocate_value_contents (struct value *val)
855{
856 if (!val->contents)
857 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
858}
859
860/* Allocate a value and its contents for type TYPE. */
861
862struct value *
863allocate_value (struct type *type)
864{
865 struct value *val = allocate_value_lazy (type);
a109c7c1 866
3e3d7139
JG
867 allocate_value_contents (val);
868 val->lazy = 0;
869 return val;
870}
871
c906108c 872/* Allocate a value that has the correct length
938f5214 873 for COUNT repetitions of type TYPE. */
c906108c 874
f23631e4 875struct value *
fba45db2 876allocate_repeat_value (struct type *type, int count)
c906108c 877{
c5aa993b 878 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
879 /* FIXME-type-allocation: need a way to free this type when we are
880 done with it. */
e3506a9f
UW
881 struct type *array_type
882 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 883
e3506a9f 884 return allocate_value (array_type);
c906108c
SS
885}
886
5f5233d4
PA
887struct value *
888allocate_computed_value (struct type *type,
c8f2448a 889 const struct lval_funcs *funcs,
5f5233d4
PA
890 void *closure)
891{
41e8491f 892 struct value *v = allocate_value_lazy (type);
a109c7c1 893
5f5233d4
PA
894 VALUE_LVAL (v) = lval_computed;
895 v->location.computed.funcs = funcs;
896 v->location.computed.closure = closure;
5f5233d4
PA
897
898 return v;
899}
900
a7035dbb
JK
901/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
902
903struct value *
904allocate_optimized_out_value (struct type *type)
905{
906 struct value *retval = allocate_value_lazy (type);
907
908 set_value_optimized_out (retval, 1);
bddbbedd
PA
909 /* FIXME: we should be able to avoid allocating the value's contents
910 buffer, but value_available_contents_bits_eq can't handle
911 that. */
912 /* set_value_lazy (retval, 0); */
a7035dbb
JK
913 return retval;
914}
915
df407dfe
AC
916/* Accessor methods. */
917
17cf0ecd
AC
918struct value *
919value_next (struct value *value)
920{
921 return value->next;
922}
923
df407dfe 924struct type *
0e03807e 925value_type (const struct value *value)
df407dfe
AC
926{
927 return value->type;
928}
04624583
AC
929void
930deprecated_set_value_type (struct value *value, struct type *type)
931{
932 value->type = type;
933}
df407dfe
AC
934
935int
0e03807e 936value_offset (const struct value *value)
df407dfe
AC
937{
938 return value->offset;
939}
f5cf64a7
AC
940void
941set_value_offset (struct value *value, int offset)
942{
943 value->offset = offset;
944}
df407dfe
AC
945
946int
0e03807e 947value_bitpos (const struct value *value)
df407dfe
AC
948{
949 return value->bitpos;
950}
9bbda503
AC
951void
952set_value_bitpos (struct value *value, int bit)
953{
954 value->bitpos = bit;
955}
df407dfe
AC
956
957int
0e03807e 958value_bitsize (const struct value *value)
df407dfe
AC
959{
960 return value->bitsize;
961}
9bbda503
AC
962void
963set_value_bitsize (struct value *value, int bit)
964{
965 value->bitsize = bit;
966}
df407dfe 967
4ea48cc1
DJ
968struct value *
969value_parent (struct value *value)
970{
971 return value->parent;
972}
973
53ba8333
JB
974/* See value.h. */
975
976void
977set_value_parent (struct value *value, struct value *parent)
978{
40501e00
TT
979 struct value *old = value->parent;
980
53ba8333 981 value->parent = parent;
40501e00
TT
982 if (parent != NULL)
983 value_incref (parent);
984 value_free (old);
53ba8333
JB
985}
986
fc1a4b47 987gdb_byte *
990a07ab
AC
988value_contents_raw (struct value *value)
989{
3e3d7139
JG
990 allocate_value_contents (value);
991 return value->contents + value->embedded_offset;
990a07ab
AC
992}
993
fc1a4b47 994gdb_byte *
990a07ab
AC
995value_contents_all_raw (struct value *value)
996{
3e3d7139
JG
997 allocate_value_contents (value);
998 return value->contents;
990a07ab
AC
999}
1000
4754a64e
AC
1001struct type *
1002value_enclosing_type (struct value *value)
1003{
1004 return value->enclosing_type;
1005}
1006
8264ba82
AG
1007/* Look at value.h for description. */
1008
1009struct type *
1010value_actual_type (struct value *value, int resolve_simple_types,
1011 int *real_type_found)
1012{
1013 struct value_print_options opts;
8264ba82
AG
1014 struct type *result;
1015
1016 get_user_print_options (&opts);
1017
1018 if (real_type_found)
1019 *real_type_found = 0;
1020 result = value_type (value);
1021 if (opts.objectprint)
1022 {
5e34c6c3
LM
1023 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1024 fetch its rtti type. */
1025 if ((TYPE_CODE (result) == TYPE_CODE_PTR
8264ba82 1026 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3
LM
1027 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
1028 == TYPE_CODE_STRUCT)
8264ba82
AG
1029 {
1030 struct type *real_type;
1031
1032 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1033 if (real_type)
1034 {
1035 if (real_type_found)
1036 *real_type_found = 1;
1037 result = real_type;
1038 }
1039 }
1040 else if (resolve_simple_types)
1041 {
1042 if (real_type_found)
1043 *real_type_found = 1;
1044 result = value_enclosing_type (value);
1045 }
1046 }
1047
1048 return result;
1049}
1050
901461f8
PA
1051void
1052error_value_optimized_out (void)
1053{
1054 error (_("value has been optimized out"));
1055}
1056
0e03807e 1057static void
4e07d55f 1058require_not_optimized_out (const struct value *value)
0e03807e
TT
1059{
1060 if (value->optimized_out)
901461f8
PA
1061 {
1062 if (value->lval == lval_register)
1063 error (_("register has not been saved in frame"));
1064 else
1065 error_value_optimized_out ();
1066 }
0e03807e
TT
1067}
1068
4e07d55f
PA
1069static void
1070require_available (const struct value *value)
1071{
1072 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1073 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1074}
1075
fc1a4b47 1076const gdb_byte *
0e03807e 1077value_contents_for_printing (struct value *value)
46615f07
AC
1078{
1079 if (value->lazy)
1080 value_fetch_lazy (value);
3e3d7139 1081 return value->contents;
46615f07
AC
1082}
1083
de4127a3
PA
1084const gdb_byte *
1085value_contents_for_printing_const (const struct value *value)
1086{
1087 gdb_assert (!value->lazy);
1088 return value->contents;
1089}
1090
0e03807e
TT
1091const gdb_byte *
1092value_contents_all (struct value *value)
1093{
1094 const gdb_byte *result = value_contents_for_printing (value);
1095 require_not_optimized_out (value);
4e07d55f 1096 require_available (value);
0e03807e
TT
1097 return result;
1098}
1099
29976f3f
PA
1100/* Copy LENGTH bytes of SRC value's (all) contents
1101 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1102 contents, starting at DST_OFFSET. If unavailable contents are
1103 being copied from SRC, the corresponding DST contents are marked
1104 unavailable accordingly. Neither DST nor SRC may be lazy
1105 values.
1106
1107 It is assumed the contents of DST in the [DST_OFFSET,
1108 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1109
1110void
1111value_contents_copy_raw (struct value *dst, int dst_offset,
1112 struct value *src, int src_offset, int length)
1113{
1114 range_s *r;
1115 int i;
bdf22206 1116 int src_bit_offset, dst_bit_offset, bit_length;
39d37385
PA
1117
1118 /* A lazy DST would make that this copy operation useless, since as
1119 soon as DST's contents were un-lazied (by a later value_contents
1120 call, say), the contents would be overwritten. A lazy SRC would
1121 mean we'd be copying garbage. */
1122 gdb_assert (!dst->lazy && !src->lazy);
1123
29976f3f
PA
1124 /* The overwritten DST range gets unavailability ORed in, not
1125 replaced. Make sure to remember to implement replacing if it
1126 turns out actually necessary. */
1127 gdb_assert (value_bytes_available (dst, dst_offset, length));
1128
39d37385
PA
1129 /* Copy the data. */
1130 memcpy (value_contents_all_raw (dst) + dst_offset,
1131 value_contents_all_raw (src) + src_offset,
1132 length);
1133
1134 /* Copy the meta-data, adjusted. */
bdf22206
AB
1135 src_bit_offset = src_offset * TARGET_CHAR_BIT;
1136 dst_bit_offset = dst_offset * TARGET_CHAR_BIT;
1137 bit_length = length * TARGET_CHAR_BIT;
39d37385
PA
1138 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
1139 {
1140 ULONGEST h, l;
1141
bdf22206
AB
1142 l = max (r->offset, src_bit_offset);
1143 h = min (r->offset + r->length, src_bit_offset + bit_length);
39d37385
PA
1144
1145 if (l < h)
bdf22206
AB
1146 mark_value_bits_unavailable (dst,
1147 dst_bit_offset + (l - src_bit_offset),
1148 h - l);
39d37385
PA
1149 }
1150}
1151
29976f3f
PA
1152/* Copy LENGTH bytes of SRC value's (all) contents
1153 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1154 (all) contents, starting at DST_OFFSET. If unavailable contents
1155 are being copied from SRC, the corresponding DST contents are
1156 marked unavailable accordingly. DST must not be lazy. If SRC is
1157 lazy, it will be fetched now. If SRC is not valid (is optimized
1158 out), an error is thrown.
1159
1160 It is assumed the contents of DST in the [DST_OFFSET,
1161 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1162
1163void
1164value_contents_copy (struct value *dst, int dst_offset,
1165 struct value *src, int src_offset, int length)
1166{
1167 require_not_optimized_out (src);
1168
1169 if (src->lazy)
1170 value_fetch_lazy (src);
1171
1172 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1173}
1174
d69fe07e
AC
1175int
1176value_lazy (struct value *value)
1177{
1178 return value->lazy;
1179}
1180
dfa52d88
AC
1181void
1182set_value_lazy (struct value *value, int val)
1183{
1184 value->lazy = val;
1185}
1186
4e5d721f
DE
1187int
1188value_stack (struct value *value)
1189{
1190 return value->stack;
1191}
1192
1193void
1194set_value_stack (struct value *value, int val)
1195{
1196 value->stack = val;
1197}
1198
fc1a4b47 1199const gdb_byte *
0fd88904
AC
1200value_contents (struct value *value)
1201{
0e03807e
TT
1202 const gdb_byte *result = value_contents_writeable (value);
1203 require_not_optimized_out (value);
4e07d55f 1204 require_available (value);
0e03807e 1205 return result;
0fd88904
AC
1206}
1207
fc1a4b47 1208gdb_byte *
0fd88904
AC
1209value_contents_writeable (struct value *value)
1210{
1211 if (value->lazy)
1212 value_fetch_lazy (value);
fc0c53a0 1213 return value_contents_raw (value);
0fd88904
AC
1214}
1215
feb13ab0
AC
1216int
1217value_optimized_out (struct value *value)
1218{
691a26f5
AB
1219 /* We can only know if a value is optimized out once we have tried to
1220 fetch it. */
1221 if (!value->optimized_out && value->lazy)
1222 value_fetch_lazy (value);
1223
feb13ab0
AC
1224 return value->optimized_out;
1225}
1226
eca07816
JB
1227int
1228value_optimized_out_const (const struct value *value)
1229{
1230 return value->optimized_out;
1231}
1232
feb13ab0
AC
1233void
1234set_value_optimized_out (struct value *value, int val)
1235{
1236 value->optimized_out = val;
1237}
13c3b5f5 1238
0e03807e
TT
1239int
1240value_entirely_optimized_out (const struct value *value)
1241{
1242 if (!value->optimized_out)
1243 return 0;
1244 if (value->lval != lval_computed
ba19bb4d 1245 || !value->location.computed.funcs->check_any_valid)
0e03807e 1246 return 1;
b65c7efe 1247 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
1248}
1249
1250int
1251value_bits_valid (const struct value *value, int offset, int length)
1252{
466c1fca
AB
1253 if (!value->optimized_out)
1254 return 1;
0e03807e
TT
1255 if (value->lval != lval_computed
1256 || !value->location.computed.funcs->check_validity)
466c1fca
AB
1257 return 0;
1258 return value->location.computed.funcs->check_validity (value, offset,
1259 length);
0e03807e
TT
1260}
1261
8cf6f0b1
TT
1262int
1263value_bits_synthetic_pointer (const struct value *value,
1264 int offset, int length)
1265{
e7303042 1266 if (value->lval != lval_computed
8cf6f0b1
TT
1267 || !value->location.computed.funcs->check_synthetic_pointer)
1268 return 0;
1269 return value->location.computed.funcs->check_synthetic_pointer (value,
1270 offset,
1271 length);
1272}
1273
13c3b5f5
AC
1274int
1275value_embedded_offset (struct value *value)
1276{
1277 return value->embedded_offset;
1278}
1279
1280void
1281set_value_embedded_offset (struct value *value, int val)
1282{
1283 value->embedded_offset = val;
1284}
b44d461b
AC
1285
1286int
1287value_pointed_to_offset (struct value *value)
1288{
1289 return value->pointed_to_offset;
1290}
1291
1292void
1293set_value_pointed_to_offset (struct value *value, int val)
1294{
1295 value->pointed_to_offset = val;
1296}
13bb5560 1297
c8f2448a 1298const struct lval_funcs *
a471c594 1299value_computed_funcs (const struct value *v)
5f5233d4 1300{
a471c594 1301 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1302
1303 return v->location.computed.funcs;
1304}
1305
1306void *
0e03807e 1307value_computed_closure (const struct value *v)
5f5233d4 1308{
0e03807e 1309 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1310
1311 return v->location.computed.closure;
1312}
1313
13bb5560
AC
1314enum lval_type *
1315deprecated_value_lval_hack (struct value *value)
1316{
1317 return &value->lval;
1318}
1319
a471c594
JK
1320enum lval_type
1321value_lval_const (const struct value *value)
1322{
1323 return value->lval;
1324}
1325
42ae5230 1326CORE_ADDR
de4127a3 1327value_address (const struct value *value)
42ae5230
TT
1328{
1329 if (value->lval == lval_internalvar
e81e7f5e
SC
1330 || value->lval == lval_internalvar_component
1331 || value->lval == lval_xcallable)
42ae5230 1332 return 0;
53ba8333
JB
1333 if (value->parent != NULL)
1334 return value_address (value->parent) + value->offset;
1335 else
1336 return value->location.address + value->offset;
42ae5230
TT
1337}
1338
1339CORE_ADDR
1340value_raw_address (struct value *value)
1341{
1342 if (value->lval == lval_internalvar
e81e7f5e
SC
1343 || value->lval == lval_internalvar_component
1344 || value->lval == lval_xcallable)
42ae5230
TT
1345 return 0;
1346 return value->location.address;
1347}
1348
1349void
1350set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1351{
42ae5230 1352 gdb_assert (value->lval != lval_internalvar
e81e7f5e
SC
1353 && value->lval != lval_internalvar_component
1354 && value->lval != lval_xcallable);
42ae5230 1355 value->location.address = addr;
13bb5560
AC
1356}
1357
1358struct internalvar **
1359deprecated_value_internalvar_hack (struct value *value)
1360{
1361 return &value->location.internalvar;
1362}
1363
1364struct frame_id *
1365deprecated_value_frame_id_hack (struct value *value)
1366{
1367 return &value->frame_id;
1368}
1369
1370short *
1371deprecated_value_regnum_hack (struct value *value)
1372{
1373 return &value->regnum;
1374}
88e3b34b
AC
1375
1376int
1377deprecated_value_modifiable (struct value *value)
1378{
1379 return value->modifiable;
1380}
990a07ab 1381\f
c906108c
SS
1382/* Return a mark in the value chain. All values allocated after the
1383 mark is obtained (except for those released) are subject to being freed
1384 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1385struct value *
fba45db2 1386value_mark (void)
c906108c
SS
1387{
1388 return all_values;
1389}
1390
828d3400
DJ
1391/* Take a reference to VAL. VAL will not be deallocated until all
1392 references are released. */
1393
1394void
1395value_incref (struct value *val)
1396{
1397 val->reference_count++;
1398}
1399
1400/* Release a reference to VAL, which was acquired with value_incref.
1401 This function is also called to deallocate values from the value
1402 chain. */
1403
3e3d7139
JG
1404void
1405value_free (struct value *val)
1406{
1407 if (val)
5f5233d4 1408 {
828d3400
DJ
1409 gdb_assert (val->reference_count > 0);
1410 val->reference_count--;
1411 if (val->reference_count > 0)
1412 return;
1413
4ea48cc1
DJ
1414 /* If there's an associated parent value, drop our reference to
1415 it. */
1416 if (val->parent != NULL)
1417 value_free (val->parent);
1418
5f5233d4
PA
1419 if (VALUE_LVAL (val) == lval_computed)
1420 {
c8f2448a 1421 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1422
1423 if (funcs->free_closure)
1424 funcs->free_closure (val);
1425 }
e81e7f5e
SC
1426 else if (VALUE_LVAL (val) == lval_xcallable)
1427 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1428
1429 xfree (val->contents);
4e07d55f 1430 VEC_free (range_s, val->unavailable);
5f5233d4 1431 }
3e3d7139
JG
1432 xfree (val);
1433}
1434
c906108c
SS
1435/* Free all values allocated since MARK was obtained by value_mark
1436 (except for those released). */
1437void
f23631e4 1438value_free_to_mark (struct value *mark)
c906108c 1439{
f23631e4
AC
1440 struct value *val;
1441 struct value *next;
c906108c
SS
1442
1443 for (val = all_values; val && val != mark; val = next)
1444 {
df407dfe 1445 next = val->next;
e848a8a5 1446 val->released = 1;
c906108c
SS
1447 value_free (val);
1448 }
1449 all_values = val;
1450}
1451
1452/* Free all the values that have been allocated (except for those released).
725e88af
DE
1453 Call after each command, successful or not.
1454 In practice this is called before each command, which is sufficient. */
c906108c
SS
1455
1456void
fba45db2 1457free_all_values (void)
c906108c 1458{
f23631e4
AC
1459 struct value *val;
1460 struct value *next;
c906108c
SS
1461
1462 for (val = all_values; val; val = next)
1463 {
df407dfe 1464 next = val->next;
e848a8a5 1465 val->released = 1;
c906108c
SS
1466 value_free (val);
1467 }
1468
1469 all_values = 0;
1470}
1471
0cf6dd15
TJB
1472/* Frees all the elements in a chain of values. */
1473
1474void
1475free_value_chain (struct value *v)
1476{
1477 struct value *next;
1478
1479 for (; v; v = next)
1480 {
1481 next = value_next (v);
1482 value_free (v);
1483 }
1484}
1485
c906108c
SS
1486/* Remove VAL from the chain all_values
1487 so it will not be freed automatically. */
1488
1489void
f23631e4 1490release_value (struct value *val)
c906108c 1491{
f23631e4 1492 struct value *v;
c906108c
SS
1493
1494 if (all_values == val)
1495 {
1496 all_values = val->next;
06a64a0b 1497 val->next = NULL;
e848a8a5 1498 val->released = 1;
c906108c
SS
1499 return;
1500 }
1501
1502 for (v = all_values; v; v = v->next)
1503 {
1504 if (v->next == val)
1505 {
1506 v->next = val->next;
06a64a0b 1507 val->next = NULL;
e848a8a5 1508 val->released = 1;
c906108c
SS
1509 break;
1510 }
1511 }
1512}
1513
e848a8a5
TT
1514/* If the value is not already released, release it.
1515 If the value is already released, increment its reference count.
1516 That is, this function ensures that the value is released from the
1517 value chain and that the caller owns a reference to it. */
1518
1519void
1520release_value_or_incref (struct value *val)
1521{
1522 if (val->released)
1523 value_incref (val);
1524 else
1525 release_value (val);
1526}
1527
c906108c 1528/* Release all values up to mark */
f23631e4
AC
1529struct value *
1530value_release_to_mark (struct value *mark)
c906108c 1531{
f23631e4
AC
1532 struct value *val;
1533 struct value *next;
c906108c 1534
df407dfe 1535 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1536 {
1537 if (next->next == mark)
1538 {
1539 all_values = next->next;
1540 next->next = NULL;
1541 return val;
1542 }
1543 next->released = 1;
1544 }
c906108c
SS
1545 all_values = 0;
1546 return val;
1547}
1548
1549/* Return a copy of the value ARG.
1550 It contains the same contents, for same memory address,
1551 but it's a different block of storage. */
1552
f23631e4
AC
1553struct value *
1554value_copy (struct value *arg)
c906108c 1555{
4754a64e 1556 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1557 struct value *val;
1558
1559 if (value_lazy (arg))
1560 val = allocate_value_lazy (encl_type);
1561 else
1562 val = allocate_value (encl_type);
df407dfe 1563 val->type = arg->type;
c906108c 1564 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1565 val->location = arg->location;
df407dfe
AC
1566 val->offset = arg->offset;
1567 val->bitpos = arg->bitpos;
1568 val->bitsize = arg->bitsize;
1df6926e 1569 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1570 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1571 val->lazy = arg->lazy;
feb13ab0 1572 val->optimized_out = arg->optimized_out;
13c3b5f5 1573 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1574 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1575 val->modifiable = arg->modifiable;
d69fe07e 1576 if (!value_lazy (val))
c906108c 1577 {
990a07ab 1578 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1579 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1580
1581 }
4e07d55f 1582 val->unavailable = VEC_copy (range_s, arg->unavailable);
40501e00 1583 set_value_parent (val, arg->parent);
5f5233d4
PA
1584 if (VALUE_LVAL (val) == lval_computed)
1585 {
c8f2448a 1586 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1587
1588 if (funcs->copy_closure)
1589 val->location.computed.closure = funcs->copy_closure (val);
1590 }
c906108c
SS
1591 return val;
1592}
74bcbdf3 1593
c37f7098
KW
1594/* Return a version of ARG that is non-lvalue. */
1595
1596struct value *
1597value_non_lval (struct value *arg)
1598{
1599 if (VALUE_LVAL (arg) != not_lval)
1600 {
1601 struct type *enc_type = value_enclosing_type (arg);
1602 struct value *val = allocate_value (enc_type);
1603
1604 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1605 TYPE_LENGTH (enc_type));
1606 val->type = arg->type;
1607 set_value_embedded_offset (val, value_embedded_offset (arg));
1608 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1609 return val;
1610 }
1611 return arg;
1612}
1613
74bcbdf3 1614void
0e03807e
TT
1615set_value_component_location (struct value *component,
1616 const struct value *whole)
74bcbdf3 1617{
e81e7f5e
SC
1618 gdb_assert (whole->lval != lval_xcallable);
1619
0e03807e 1620 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1621 VALUE_LVAL (component) = lval_internalvar_component;
1622 else
0e03807e 1623 VALUE_LVAL (component) = whole->lval;
5f5233d4 1624
74bcbdf3 1625 component->location = whole->location;
0e03807e 1626 if (whole->lval == lval_computed)
5f5233d4 1627 {
c8f2448a 1628 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1629
1630 if (funcs->copy_closure)
1631 component->location.computed.closure = funcs->copy_closure (whole);
1632 }
74bcbdf3
PA
1633}
1634
c906108c
SS
1635\f
1636/* Access to the value history. */
1637
1638/* Record a new value in the value history.
eddf0bae 1639 Returns the absolute history index of the entry. */
c906108c
SS
1640
1641int
f23631e4 1642record_latest_value (struct value *val)
c906108c
SS
1643{
1644 int i;
1645
1646 /* We don't want this value to have anything to do with the inferior anymore.
1647 In particular, "set $1 = 50" should not affect the variable from which
1648 the value was taken, and fast watchpoints should be able to assume that
1649 a value on the value history never changes. */
d69fe07e 1650 if (value_lazy (val))
c906108c
SS
1651 value_fetch_lazy (val);
1652 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1653 from. This is a bit dubious, because then *&$1 does not just return $1
1654 but the current contents of that location. c'est la vie... */
1655 val->modifiable = 0;
350e1a76
DE
1656
1657 /* The value may have already been released, in which case we're adding a
1658 new reference for its entry in the history. That is why we call
1659 release_value_or_incref here instead of release_value. */
1660 release_value_or_incref (val);
c906108c
SS
1661
1662 /* Here we treat value_history_count as origin-zero
1663 and applying to the value being stored now. */
1664
1665 i = value_history_count % VALUE_HISTORY_CHUNK;
1666 if (i == 0)
1667 {
f23631e4 1668 struct value_history_chunk *new
a109c7c1
MS
1669 = (struct value_history_chunk *)
1670
c5aa993b 1671 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
1672 memset (new->values, 0, sizeof new->values);
1673 new->next = value_history_chain;
1674 value_history_chain = new;
1675 }
1676
1677 value_history_chain->values[i] = val;
1678
1679 /* Now we regard value_history_count as origin-one
1680 and applying to the value just stored. */
1681
1682 return ++value_history_count;
1683}
1684
1685/* Return a copy of the value in the history with sequence number NUM. */
1686
f23631e4 1687struct value *
fba45db2 1688access_value_history (int num)
c906108c 1689{
f23631e4 1690 struct value_history_chunk *chunk;
52f0bd74
AC
1691 int i;
1692 int absnum = num;
c906108c
SS
1693
1694 if (absnum <= 0)
1695 absnum += value_history_count;
1696
1697 if (absnum <= 0)
1698 {
1699 if (num == 0)
8a3fe4f8 1700 error (_("The history is empty."));
c906108c 1701 else if (num == 1)
8a3fe4f8 1702 error (_("There is only one value in the history."));
c906108c 1703 else
8a3fe4f8 1704 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1705 }
1706 if (absnum > value_history_count)
8a3fe4f8 1707 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1708
1709 absnum--;
1710
1711 /* Now absnum is always absolute and origin zero. */
1712
1713 chunk = value_history_chain;
3e43a32a
MS
1714 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1715 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1716 i > 0; i--)
1717 chunk = chunk->next;
1718
1719 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1720}
1721
c906108c 1722static void
fba45db2 1723show_values (char *num_exp, int from_tty)
c906108c 1724{
52f0bd74 1725 int i;
f23631e4 1726 struct value *val;
c906108c
SS
1727 static int num = 1;
1728
1729 if (num_exp)
1730 {
f132ba9d
TJB
1731 /* "show values +" should print from the stored position.
1732 "show values <exp>" should print around value number <exp>. */
c906108c 1733 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1734 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1735 }
1736 else
1737 {
f132ba9d 1738 /* "show values" means print the last 10 values. */
c906108c
SS
1739 num = value_history_count - 9;
1740 }
1741
1742 if (num <= 0)
1743 num = 1;
1744
1745 for (i = num; i < num + 10 && i <= value_history_count; i++)
1746 {
79a45b7d 1747 struct value_print_options opts;
a109c7c1 1748
c906108c 1749 val = access_value_history (i);
a3f17187 1750 printf_filtered (("$%d = "), i);
79a45b7d
TT
1751 get_user_print_options (&opts);
1752 value_print (val, gdb_stdout, &opts);
a3f17187 1753 printf_filtered (("\n"));
c906108c
SS
1754 }
1755
f132ba9d 1756 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1757 num += 10;
1758
1759 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1760 "show values +". If num_exp is null, this is unnecessary, since
1761 "show values +" is not useful after "show values". */
c906108c
SS
1762 if (from_tty && num_exp)
1763 {
1764 num_exp[0] = '+';
1765 num_exp[1] = '\0';
1766 }
1767}
1768\f
1769/* Internal variables. These are variables within the debugger
1770 that hold values assigned by debugger commands.
1771 The user refers to them with a '$' prefix
1772 that does not appear in the variable names stored internally. */
1773
4fa62494
UW
1774struct internalvar
1775{
1776 struct internalvar *next;
1777 char *name;
4fa62494 1778
78267919
UW
1779 /* We support various different kinds of content of an internal variable.
1780 enum internalvar_kind specifies the kind, and union internalvar_data
1781 provides the data associated with this particular kind. */
1782
1783 enum internalvar_kind
1784 {
1785 /* The internal variable is empty. */
1786 INTERNALVAR_VOID,
1787
1788 /* The value of the internal variable is provided directly as
1789 a GDB value object. */
1790 INTERNALVAR_VALUE,
1791
1792 /* A fresh value is computed via a call-back routine on every
1793 access to the internal variable. */
1794 INTERNALVAR_MAKE_VALUE,
4fa62494 1795
78267919
UW
1796 /* The internal variable holds a GDB internal convenience function. */
1797 INTERNALVAR_FUNCTION,
1798
cab0c772
UW
1799 /* The variable holds an integer value. */
1800 INTERNALVAR_INTEGER,
1801
78267919
UW
1802 /* The variable holds a GDB-provided string. */
1803 INTERNALVAR_STRING,
1804
1805 } kind;
4fa62494 1806
4fa62494
UW
1807 union internalvar_data
1808 {
78267919
UW
1809 /* A value object used with INTERNALVAR_VALUE. */
1810 struct value *value;
1811
1812 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
22d2b532
SDJ
1813 struct
1814 {
1815 /* The functions to call. */
1816 const struct internalvar_funcs *functions;
1817
1818 /* The function's user-data. */
1819 void *data;
1820 } make_value;
78267919
UW
1821
1822 /* The internal function used with INTERNALVAR_FUNCTION. */
1823 struct
1824 {
1825 struct internal_function *function;
1826 /* True if this is the canonical name for the function. */
1827 int canonical;
1828 } fn;
1829
cab0c772 1830 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1831 struct
1832 {
1833 /* If type is non-NULL, it will be used as the type to generate
1834 a value for this internal variable. If type is NULL, a default
1835 integer type for the architecture is used. */
1836 struct type *type;
cab0c772
UW
1837 LONGEST val;
1838 } integer;
1839
78267919
UW
1840 /* A string value used with INTERNALVAR_STRING. */
1841 char *string;
4fa62494
UW
1842 } u;
1843};
1844
c906108c
SS
1845static struct internalvar *internalvars;
1846
3e43a32a
MS
1847/* If the variable does not already exist create it and give it the
1848 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1849static void
1850init_if_undefined_command (char* args, int from_tty)
1851{
1852 struct internalvar* intvar;
1853
1854 /* Parse the expression - this is taken from set_command(). */
1855 struct expression *expr = parse_expression (args);
1856 register struct cleanup *old_chain =
1857 make_cleanup (free_current_contents, &expr);
1858
1859 /* Validate the expression.
1860 Was the expression an assignment?
1861 Or even an expression at all? */
1862 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1863 error (_("Init-if-undefined requires an assignment expression."));
1864
1865 /* Extract the variable from the parsed expression.
1866 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1867 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1868 error (_("The first parameter to init-if-undefined "
1869 "should be a GDB variable."));
53e5f3cf
AS
1870 intvar = expr->elts[2].internalvar;
1871
1872 /* Only evaluate the expression if the lvalue is void.
1873 This may still fail if the expresssion is invalid. */
78267919 1874 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1875 evaluate_expression (expr);
1876
1877 do_cleanups (old_chain);
1878}
1879
1880
c906108c
SS
1881/* Look up an internal variable with name NAME. NAME should not
1882 normally include a dollar sign.
1883
1884 If the specified internal variable does not exist,
c4a3d09a 1885 the return value is NULL. */
c906108c
SS
1886
1887struct internalvar *
bc3b79fd 1888lookup_only_internalvar (const char *name)
c906108c 1889{
52f0bd74 1890 struct internalvar *var;
c906108c
SS
1891
1892 for (var = internalvars; var; var = var->next)
5cb316ef 1893 if (strcmp (var->name, name) == 0)
c906108c
SS
1894 return var;
1895
c4a3d09a
MF
1896 return NULL;
1897}
1898
d55637df
TT
1899/* Complete NAME by comparing it to the names of internal variables.
1900 Returns a vector of newly allocated strings, or NULL if no matches
1901 were found. */
1902
1903VEC (char_ptr) *
1904complete_internalvar (const char *name)
1905{
1906 VEC (char_ptr) *result = NULL;
1907 struct internalvar *var;
1908 int len;
1909
1910 len = strlen (name);
1911
1912 for (var = internalvars; var; var = var->next)
1913 if (strncmp (var->name, name, len) == 0)
1914 {
1915 char *r = xstrdup (var->name);
1916
1917 VEC_safe_push (char_ptr, result, r);
1918 }
1919
1920 return result;
1921}
c4a3d09a
MF
1922
1923/* Create an internal variable with name NAME and with a void value.
1924 NAME should not normally include a dollar sign. */
1925
1926struct internalvar *
bc3b79fd 1927create_internalvar (const char *name)
c4a3d09a
MF
1928{
1929 struct internalvar *var;
a109c7c1 1930
c906108c 1931 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1932 var->name = concat (name, (char *)NULL);
78267919 1933 var->kind = INTERNALVAR_VOID;
c906108c
SS
1934 var->next = internalvars;
1935 internalvars = var;
1936 return var;
1937}
1938
4aa995e1
PA
1939/* Create an internal variable with name NAME and register FUN as the
1940 function that value_of_internalvar uses to create a value whenever
1941 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
1942 dollar sign. DATA is passed uninterpreted to FUN when it is
1943 called. CLEANUP, if not NULL, is called when the internal variable
1944 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
1945
1946struct internalvar *
22d2b532
SDJ
1947create_internalvar_type_lazy (const char *name,
1948 const struct internalvar_funcs *funcs,
1949 void *data)
4aa995e1 1950{
4fa62494 1951 struct internalvar *var = create_internalvar (name);
a109c7c1 1952
78267919 1953 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
1954 var->u.make_value.functions = funcs;
1955 var->u.make_value.data = data;
4aa995e1
PA
1956 return var;
1957}
c4a3d09a 1958
22d2b532
SDJ
1959/* See documentation in value.h. */
1960
1961int
1962compile_internalvar_to_ax (struct internalvar *var,
1963 struct agent_expr *expr,
1964 struct axs_value *value)
1965{
1966 if (var->kind != INTERNALVAR_MAKE_VALUE
1967 || var->u.make_value.functions->compile_to_ax == NULL)
1968 return 0;
1969
1970 var->u.make_value.functions->compile_to_ax (var, expr, value,
1971 var->u.make_value.data);
1972 return 1;
1973}
1974
c4a3d09a
MF
1975/* Look up an internal variable with name NAME. NAME should not
1976 normally include a dollar sign.
1977
1978 If the specified internal variable does not exist,
1979 one is created, with a void value. */
1980
1981struct internalvar *
bc3b79fd 1982lookup_internalvar (const char *name)
c4a3d09a
MF
1983{
1984 struct internalvar *var;
1985
1986 var = lookup_only_internalvar (name);
1987 if (var)
1988 return var;
1989
1990 return create_internalvar (name);
1991}
1992
78267919
UW
1993/* Return current value of internal variable VAR. For variables that
1994 are not inherently typed, use a value type appropriate for GDBARCH. */
1995
f23631e4 1996struct value *
78267919 1997value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1998{
f23631e4 1999 struct value *val;
0914bcdb
SS
2000 struct trace_state_variable *tsv;
2001
2002 /* If there is a trace state variable of the same name, assume that
2003 is what we really want to see. */
2004 tsv = find_trace_state_variable (var->name);
2005 if (tsv)
2006 {
2007 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2008 &(tsv->value));
2009 if (tsv->value_known)
2010 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2011 tsv->value);
2012 else
2013 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2014 return val;
2015 }
c906108c 2016
78267919 2017 switch (var->kind)
5f5233d4 2018 {
78267919
UW
2019 case INTERNALVAR_VOID:
2020 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2021 break;
4fa62494 2022
78267919
UW
2023 case INTERNALVAR_FUNCTION:
2024 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2025 break;
4fa62494 2026
cab0c772
UW
2027 case INTERNALVAR_INTEGER:
2028 if (!var->u.integer.type)
78267919 2029 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2030 var->u.integer.val);
78267919 2031 else
cab0c772
UW
2032 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2033 break;
2034
78267919
UW
2035 case INTERNALVAR_STRING:
2036 val = value_cstring (var->u.string, strlen (var->u.string),
2037 builtin_type (gdbarch)->builtin_char);
2038 break;
4fa62494 2039
78267919
UW
2040 case INTERNALVAR_VALUE:
2041 val = value_copy (var->u.value);
4aa995e1
PA
2042 if (value_lazy (val))
2043 value_fetch_lazy (val);
78267919 2044 break;
4aa995e1 2045
78267919 2046 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2047 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2048 var->u.make_value.data);
78267919
UW
2049 break;
2050
2051 default:
9b20d036 2052 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2053 }
2054
2055 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2056 on this value go back to affect the original internal variable.
2057
2058 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2059 no underlying modifyable state in the internal variable.
2060
2061 Likewise, if the variable's value is a computed lvalue, we want
2062 references to it to produce another computed lvalue, where
2063 references and assignments actually operate through the
2064 computed value's functions.
2065
2066 This means that internal variables with computed values
2067 behave a little differently from other internal variables:
2068 assignments to them don't just replace the previous value
2069 altogether. At the moment, this seems like the behavior we
2070 want. */
2071
2072 if (var->kind != INTERNALVAR_MAKE_VALUE
2073 && val->lval != lval_computed)
2074 {
2075 VALUE_LVAL (val) = lval_internalvar;
2076 VALUE_INTERNALVAR (val) = var;
5f5233d4 2077 }
d3c139e9 2078
4fa62494
UW
2079 return val;
2080}
d3c139e9 2081
4fa62494
UW
2082int
2083get_internalvar_integer (struct internalvar *var, LONGEST *result)
2084{
3158c6ed 2085 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2086 {
cab0c772
UW
2087 *result = var->u.integer.val;
2088 return 1;
3158c6ed 2089 }
d3c139e9 2090
3158c6ed
PA
2091 if (var->kind == INTERNALVAR_VALUE)
2092 {
2093 struct type *type = check_typedef (value_type (var->u.value));
2094
2095 if (TYPE_CODE (type) == TYPE_CODE_INT)
2096 {
2097 *result = value_as_long (var->u.value);
2098 return 1;
2099 }
4fa62494 2100 }
3158c6ed
PA
2101
2102 return 0;
4fa62494 2103}
d3c139e9 2104
4fa62494
UW
2105static int
2106get_internalvar_function (struct internalvar *var,
2107 struct internal_function **result)
2108{
78267919 2109 switch (var->kind)
d3c139e9 2110 {
78267919
UW
2111 case INTERNALVAR_FUNCTION:
2112 *result = var->u.fn.function;
4fa62494 2113 return 1;
d3c139e9 2114
4fa62494
UW
2115 default:
2116 return 0;
2117 }
c906108c
SS
2118}
2119
2120void
fba45db2 2121set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 2122 int bitsize, struct value *newval)
c906108c 2123{
4fa62494 2124 gdb_byte *addr;
c906108c 2125
78267919 2126 switch (var->kind)
4fa62494 2127 {
78267919
UW
2128 case INTERNALVAR_VALUE:
2129 addr = value_contents_writeable (var->u.value);
4fa62494
UW
2130
2131 if (bitsize)
50810684 2132 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2133 value_as_long (newval), bitpos, bitsize);
2134 else
2135 memcpy (addr + offset, value_contents (newval),
2136 TYPE_LENGTH (value_type (newval)));
2137 break;
78267919
UW
2138
2139 default:
2140 /* We can never get a component of any other kind. */
9b20d036 2141 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2142 }
c906108c
SS
2143}
2144
2145void
f23631e4 2146set_internalvar (struct internalvar *var, struct value *val)
c906108c 2147{
78267919 2148 enum internalvar_kind new_kind;
4fa62494 2149 union internalvar_data new_data = { 0 };
c906108c 2150
78267919 2151 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2152 error (_("Cannot overwrite convenience function %s"), var->name);
2153
4fa62494 2154 /* Prepare new contents. */
78267919 2155 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2156 {
2157 case TYPE_CODE_VOID:
78267919 2158 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2159 break;
2160
2161 case TYPE_CODE_INTERNAL_FUNCTION:
2162 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2163 new_kind = INTERNALVAR_FUNCTION;
2164 get_internalvar_function (VALUE_INTERNALVAR (val),
2165 &new_data.fn.function);
2166 /* Copies created here are never canonical. */
4fa62494
UW
2167 break;
2168
4fa62494 2169 default:
78267919
UW
2170 new_kind = INTERNALVAR_VALUE;
2171 new_data.value = value_copy (val);
2172 new_data.value->modifiable = 1;
4fa62494
UW
2173
2174 /* Force the value to be fetched from the target now, to avoid problems
2175 later when this internalvar is referenced and the target is gone or
2176 has changed. */
78267919
UW
2177 if (value_lazy (new_data.value))
2178 value_fetch_lazy (new_data.value);
4fa62494
UW
2179
2180 /* Release the value from the value chain to prevent it from being
2181 deleted by free_all_values. From here on this function should not
2182 call error () until new_data is installed into the var->u to avoid
2183 leaking memory. */
78267919 2184 release_value (new_data.value);
4fa62494
UW
2185 break;
2186 }
2187
2188 /* Clean up old contents. */
2189 clear_internalvar (var);
2190
2191 /* Switch over. */
78267919 2192 var->kind = new_kind;
4fa62494 2193 var->u = new_data;
c906108c
SS
2194 /* End code which must not call error(). */
2195}
2196
4fa62494
UW
2197void
2198set_internalvar_integer (struct internalvar *var, LONGEST l)
2199{
2200 /* Clean up old contents. */
2201 clear_internalvar (var);
2202
cab0c772
UW
2203 var->kind = INTERNALVAR_INTEGER;
2204 var->u.integer.type = NULL;
2205 var->u.integer.val = l;
78267919
UW
2206}
2207
2208void
2209set_internalvar_string (struct internalvar *var, const char *string)
2210{
2211 /* Clean up old contents. */
2212 clear_internalvar (var);
2213
2214 var->kind = INTERNALVAR_STRING;
2215 var->u.string = xstrdup (string);
4fa62494
UW
2216}
2217
2218static void
2219set_internalvar_function (struct internalvar *var, struct internal_function *f)
2220{
2221 /* Clean up old contents. */
2222 clear_internalvar (var);
2223
78267919
UW
2224 var->kind = INTERNALVAR_FUNCTION;
2225 var->u.fn.function = f;
2226 var->u.fn.canonical = 1;
2227 /* Variables installed here are always the canonical version. */
4fa62494
UW
2228}
2229
2230void
2231clear_internalvar (struct internalvar *var)
2232{
2233 /* Clean up old contents. */
78267919 2234 switch (var->kind)
4fa62494 2235 {
78267919
UW
2236 case INTERNALVAR_VALUE:
2237 value_free (var->u.value);
2238 break;
2239
2240 case INTERNALVAR_STRING:
2241 xfree (var->u.string);
4fa62494
UW
2242 break;
2243
22d2b532
SDJ
2244 case INTERNALVAR_MAKE_VALUE:
2245 if (var->u.make_value.functions->destroy != NULL)
2246 var->u.make_value.functions->destroy (var->u.make_value.data);
2247 break;
2248
4fa62494 2249 default:
4fa62494
UW
2250 break;
2251 }
2252
78267919
UW
2253 /* Reset to void kind. */
2254 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2255}
2256
c906108c 2257char *
fba45db2 2258internalvar_name (struct internalvar *var)
c906108c
SS
2259{
2260 return var->name;
2261}
2262
4fa62494
UW
2263static struct internal_function *
2264create_internal_function (const char *name,
2265 internal_function_fn handler, void *cookie)
bc3b79fd 2266{
bc3b79fd 2267 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2268
bc3b79fd
TJB
2269 ifn->name = xstrdup (name);
2270 ifn->handler = handler;
2271 ifn->cookie = cookie;
4fa62494 2272 return ifn;
bc3b79fd
TJB
2273}
2274
2275char *
2276value_internal_function_name (struct value *val)
2277{
4fa62494
UW
2278 struct internal_function *ifn;
2279 int result;
2280
2281 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2282 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2283 gdb_assert (result);
2284
bc3b79fd
TJB
2285 return ifn->name;
2286}
2287
2288struct value *
d452c4bc
UW
2289call_internal_function (struct gdbarch *gdbarch,
2290 const struct language_defn *language,
2291 struct value *func, int argc, struct value **argv)
bc3b79fd 2292{
4fa62494
UW
2293 struct internal_function *ifn;
2294 int result;
2295
2296 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2297 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2298 gdb_assert (result);
2299
d452c4bc 2300 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2301}
2302
2303/* The 'function' command. This does nothing -- it is just a
2304 placeholder to let "help function NAME" work. This is also used as
2305 the implementation of the sub-command that is created when
2306 registering an internal function. */
2307static void
2308function_command (char *command, int from_tty)
2309{
2310 /* Do nothing. */
2311}
2312
2313/* Clean up if an internal function's command is destroyed. */
2314static void
2315function_destroyer (struct cmd_list_element *self, void *ignore)
2316{
6f937416 2317 xfree ((char *) self->name);
bc3b79fd
TJB
2318 xfree (self->doc);
2319}
2320
2321/* Add a new internal function. NAME is the name of the function; DOC
2322 is a documentation string describing the function. HANDLER is
2323 called when the function is invoked. COOKIE is an arbitrary
2324 pointer which is passed to HANDLER and is intended for "user
2325 data". */
2326void
2327add_internal_function (const char *name, const char *doc,
2328 internal_function_fn handler, void *cookie)
2329{
2330 struct cmd_list_element *cmd;
4fa62494 2331 struct internal_function *ifn;
bc3b79fd 2332 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2333
2334 ifn = create_internal_function (name, handler, cookie);
2335 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2336
2337 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2338 &functionlist);
2339 cmd->destroyer = function_destroyer;
2340}
2341
ae5a43e0
DJ
2342/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2343 prevent cycles / duplicates. */
2344
4e7a5ef5 2345void
ae5a43e0
DJ
2346preserve_one_value (struct value *value, struct objfile *objfile,
2347 htab_t copied_types)
2348{
2349 if (TYPE_OBJFILE (value->type) == objfile)
2350 value->type = copy_type_recursive (objfile, value->type, copied_types);
2351
2352 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2353 value->enclosing_type = copy_type_recursive (objfile,
2354 value->enclosing_type,
2355 copied_types);
2356}
2357
78267919
UW
2358/* Likewise for internal variable VAR. */
2359
2360static void
2361preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2362 htab_t copied_types)
2363{
2364 switch (var->kind)
2365 {
cab0c772
UW
2366 case INTERNALVAR_INTEGER:
2367 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2368 var->u.integer.type
2369 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2370 break;
2371
78267919
UW
2372 case INTERNALVAR_VALUE:
2373 preserve_one_value (var->u.value, objfile, copied_types);
2374 break;
2375 }
2376}
2377
ae5a43e0
DJ
2378/* Update the internal variables and value history when OBJFILE is
2379 discarded; we must copy the types out of the objfile. New global types
2380 will be created for every convenience variable which currently points to
2381 this objfile's types, and the convenience variables will be adjusted to
2382 use the new global types. */
c906108c
SS
2383
2384void
ae5a43e0 2385preserve_values (struct objfile *objfile)
c906108c 2386{
ae5a43e0
DJ
2387 htab_t copied_types;
2388 struct value_history_chunk *cur;
52f0bd74 2389 struct internalvar *var;
ae5a43e0 2390 int i;
c906108c 2391
ae5a43e0
DJ
2392 /* Create the hash table. We allocate on the objfile's obstack, since
2393 it is soon to be deleted. */
2394 copied_types = create_copied_types_hash (objfile);
2395
2396 for (cur = value_history_chain; cur; cur = cur->next)
2397 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2398 if (cur->values[i])
2399 preserve_one_value (cur->values[i], objfile, copied_types);
2400
2401 for (var = internalvars; var; var = var->next)
78267919 2402 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2403
6dddc817 2404 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2405
ae5a43e0 2406 htab_delete (copied_types);
c906108c
SS
2407}
2408
2409static void
fba45db2 2410show_convenience (char *ignore, int from_tty)
c906108c 2411{
e17c207e 2412 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2413 struct internalvar *var;
c906108c 2414 int varseen = 0;
79a45b7d 2415 struct value_print_options opts;
c906108c 2416
79a45b7d 2417 get_user_print_options (&opts);
c906108c
SS
2418 for (var = internalvars; var; var = var->next)
2419 {
c709acd1
PA
2420 volatile struct gdb_exception ex;
2421
c906108c
SS
2422 if (!varseen)
2423 {
2424 varseen = 1;
2425 }
a3f17187 2426 printf_filtered (("$%s = "), var->name);
c709acd1
PA
2427
2428 TRY_CATCH (ex, RETURN_MASK_ERROR)
2429 {
2430 struct value *val;
2431
2432 val = value_of_internalvar (gdbarch, var);
2433 value_print (val, gdb_stdout, &opts);
2434 }
2435 if (ex.reason < 0)
2436 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
a3f17187 2437 printf_filtered (("\n"));
c906108c
SS
2438 }
2439 if (!varseen)
f47f77df
DE
2440 {
2441 /* This text does not mention convenience functions on purpose.
2442 The user can't create them except via Python, and if Python support
2443 is installed this message will never be printed ($_streq will
2444 exist). */
2445 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2446 "Convenience variables have "
2447 "names starting with \"$\";\n"
2448 "use \"set\" as in \"set "
2449 "$foo = 5\" to define them.\n"));
2450 }
c906108c
SS
2451}
2452\f
e81e7f5e
SC
2453/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2454
2455struct value *
2456value_of_xmethod (struct xmethod_worker *worker)
2457{
2458 if (worker->value == NULL)
2459 {
2460 struct value *v;
2461
2462 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2463 v->lval = lval_xcallable;
2464 v->location.xm_worker = worker;
2465 v->modifiable = 0;
2466 worker->value = v;
2467 }
2468
2469 return worker->value;
2470}
2471
2472/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2473
2474struct value *
2475call_xmethod (struct value *method, int argc, struct value **argv)
2476{
2477 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2478 && method->lval == lval_xcallable && argc > 0);
2479
2480 return invoke_xmethod (method->location.xm_worker,
2481 argv[0], argv + 1, argc - 1);
2482}
2483\f
c906108c
SS
2484/* Extract a value as a C number (either long or double).
2485 Knows how to convert fixed values to double, or
2486 floating values to long.
2487 Does not deallocate the value. */
2488
2489LONGEST
f23631e4 2490value_as_long (struct value *val)
c906108c
SS
2491{
2492 /* This coerces arrays and functions, which is necessary (e.g.
2493 in disassemble_command). It also dereferences references, which
2494 I suspect is the most logical thing to do. */
994b9211 2495 val = coerce_array (val);
0fd88904 2496 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2497}
2498
2499DOUBLEST
f23631e4 2500value_as_double (struct value *val)
c906108c
SS
2501{
2502 DOUBLEST foo;
2503 int inv;
c5aa993b 2504
0fd88904 2505 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2506 if (inv)
8a3fe4f8 2507 error (_("Invalid floating value found in program."));
c906108c
SS
2508 return foo;
2509}
4ef30785 2510
581e13c1 2511/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2512 Note that val's type may not actually be a pointer; value_as_long
2513 handles all the cases. */
c906108c 2514CORE_ADDR
f23631e4 2515value_as_address (struct value *val)
c906108c 2516{
50810684
UW
2517 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2518
c906108c
SS
2519 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2520 whether we want this to be true eventually. */
2521#if 0
bf6ae464 2522 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2523 non-address (e.g. argument to "signal", "info break", etc.), or
2524 for pointers to char, in which the low bits *are* significant. */
50810684 2525 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2526#else
f312f057
JB
2527
2528 /* There are several targets (IA-64, PowerPC, and others) which
2529 don't represent pointers to functions as simply the address of
2530 the function's entry point. For example, on the IA-64, a
2531 function pointer points to a two-word descriptor, generated by
2532 the linker, which contains the function's entry point, and the
2533 value the IA-64 "global pointer" register should have --- to
2534 support position-independent code. The linker generates
2535 descriptors only for those functions whose addresses are taken.
2536
2537 On such targets, it's difficult for GDB to convert an arbitrary
2538 function address into a function pointer; it has to either find
2539 an existing descriptor for that function, or call malloc and
2540 build its own. On some targets, it is impossible for GDB to
2541 build a descriptor at all: the descriptor must contain a jump
2542 instruction; data memory cannot be executed; and code memory
2543 cannot be modified.
2544
2545 Upon entry to this function, if VAL is a value of type `function'
2546 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2547 value_address (val) is the address of the function. This is what
f312f057
JB
2548 you'll get if you evaluate an expression like `main'. The call
2549 to COERCE_ARRAY below actually does all the usual unary
2550 conversions, which includes converting values of type `function'
2551 to `pointer to function'. This is the challenging conversion
2552 discussed above. Then, `unpack_long' will convert that pointer
2553 back into an address.
2554
2555 So, suppose the user types `disassemble foo' on an architecture
2556 with a strange function pointer representation, on which GDB
2557 cannot build its own descriptors, and suppose further that `foo'
2558 has no linker-built descriptor. The address->pointer conversion
2559 will signal an error and prevent the command from running, even
2560 though the next step would have been to convert the pointer
2561 directly back into the same address.
2562
2563 The following shortcut avoids this whole mess. If VAL is a
2564 function, just return its address directly. */
df407dfe
AC
2565 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2566 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2567 return value_address (val);
f312f057 2568
994b9211 2569 val = coerce_array (val);
fc0c74b1
AC
2570
2571 /* Some architectures (e.g. Harvard), map instruction and data
2572 addresses onto a single large unified address space. For
2573 instance: An architecture may consider a large integer in the
2574 range 0x10000000 .. 0x1000ffff to already represent a data
2575 addresses (hence not need a pointer to address conversion) while
2576 a small integer would still need to be converted integer to
2577 pointer to address. Just assume such architectures handle all
2578 integer conversions in a single function. */
2579
2580 /* JimB writes:
2581
2582 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2583 must admonish GDB hackers to make sure its behavior matches the
2584 compiler's, whenever possible.
2585
2586 In general, I think GDB should evaluate expressions the same way
2587 the compiler does. When the user copies an expression out of
2588 their source code and hands it to a `print' command, they should
2589 get the same value the compiler would have computed. Any
2590 deviation from this rule can cause major confusion and annoyance,
2591 and needs to be justified carefully. In other words, GDB doesn't
2592 really have the freedom to do these conversions in clever and
2593 useful ways.
2594
2595 AndrewC pointed out that users aren't complaining about how GDB
2596 casts integers to pointers; they are complaining that they can't
2597 take an address from a disassembly listing and give it to `x/i'.
2598 This is certainly important.
2599
79dd2d24 2600 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2601 makes it possible for GDB to "get it right" in all circumstances
2602 --- the target has complete control over how things get done, so
2603 people can Do The Right Thing for their target without breaking
2604 anyone else. The standard doesn't specify how integers get
2605 converted to pointers; usually, the ABI doesn't either, but
2606 ABI-specific code is a more reasonable place to handle it. */
2607
df407dfe
AC
2608 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2609 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2610 && gdbarch_integer_to_address_p (gdbarch))
2611 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2612 value_contents (val));
fc0c74b1 2613
0fd88904 2614 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2615#endif
2616}
2617\f
2618/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2619 as a long, or as a double, assuming the raw data is described
2620 by type TYPE. Knows how to convert different sizes of values
2621 and can convert between fixed and floating point. We don't assume
2622 any alignment for the raw data. Return value is in host byte order.
2623
2624 If you want functions and arrays to be coerced to pointers, and
2625 references to be dereferenced, call value_as_long() instead.
2626
2627 C++: It is assumed that the front-end has taken care of
2628 all matters concerning pointers to members. A pointer
2629 to member which reaches here is considered to be equivalent
2630 to an INT (or some size). After all, it is only an offset. */
2631
2632LONGEST
fc1a4b47 2633unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2634{
e17a4113 2635 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2636 enum type_code code = TYPE_CODE (type);
2637 int len = TYPE_LENGTH (type);
2638 int nosign = TYPE_UNSIGNED (type);
c906108c 2639
c906108c
SS
2640 switch (code)
2641 {
2642 case TYPE_CODE_TYPEDEF:
2643 return unpack_long (check_typedef (type), valaddr);
2644 case TYPE_CODE_ENUM:
4f2aea11 2645 case TYPE_CODE_FLAGS:
c906108c
SS
2646 case TYPE_CODE_BOOL:
2647 case TYPE_CODE_INT:
2648 case TYPE_CODE_CHAR:
2649 case TYPE_CODE_RANGE:
0d5de010 2650 case TYPE_CODE_MEMBERPTR:
c906108c 2651 if (nosign)
e17a4113 2652 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2653 else
e17a4113 2654 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2655
2656 case TYPE_CODE_FLT:
96d2f608 2657 return extract_typed_floating (valaddr, type);
c906108c 2658
4ef30785
TJB
2659 case TYPE_CODE_DECFLOAT:
2660 /* libdecnumber has a function to convert from decimal to integer, but
2661 it doesn't work when the decimal number has a fractional part. */
e17a4113 2662 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2663
c906108c
SS
2664 case TYPE_CODE_PTR:
2665 case TYPE_CODE_REF:
2666 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2667 whether we want this to be true eventually. */
4478b372 2668 return extract_typed_address (valaddr, type);
c906108c 2669
c906108c 2670 default:
8a3fe4f8 2671 error (_("Value can't be converted to integer."));
c906108c 2672 }
c5aa993b 2673 return 0; /* Placate lint. */
c906108c
SS
2674}
2675
2676/* Return a double value from the specified type and address.
2677 INVP points to an int which is set to 0 for valid value,
2678 1 for invalid value (bad float format). In either case,
2679 the returned double is OK to use. Argument is in target
2680 format, result is in host format. */
2681
2682DOUBLEST
fc1a4b47 2683unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2684{
e17a4113 2685 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2686 enum type_code code;
2687 int len;
2688 int nosign;
2689
581e13c1 2690 *invp = 0; /* Assume valid. */
c906108c
SS
2691 CHECK_TYPEDEF (type);
2692 code = TYPE_CODE (type);
2693 len = TYPE_LENGTH (type);
2694 nosign = TYPE_UNSIGNED (type);
2695 if (code == TYPE_CODE_FLT)
2696 {
75bc7ddf
AC
2697 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2698 floating-point value was valid (using the macro
2699 INVALID_FLOAT). That test/macro have been removed.
2700
2701 It turns out that only the VAX defined this macro and then
2702 only in a non-portable way. Fixing the portability problem
2703 wouldn't help since the VAX floating-point code is also badly
2704 bit-rotten. The target needs to add definitions for the
ea06eb3d 2705 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2706 exactly describe the target floating-point format. The
2707 problem here is that the corresponding floatformat_vax_f and
2708 floatformat_vax_d values these methods should be set to are
2709 also not defined either. Oops!
2710
2711 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2712 definitions and the new cases for floatformat_is_valid (). */
2713
2714 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2715 {
2716 *invp = 1;
2717 return 0.0;
2718 }
2719
96d2f608 2720 return extract_typed_floating (valaddr, type);
c906108c 2721 }
4ef30785 2722 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2723 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2724 else if (nosign)
2725 {
2726 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2727 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2728 }
2729 else
2730 {
2731 /* Signed -- we are OK with unpack_long. */
2732 return unpack_long (type, valaddr);
2733 }
2734}
2735
2736/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2737 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2738 We don't assume any alignment for the raw data. Return value is in
2739 host byte order.
2740
2741 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2742 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2743
2744 C++: It is assumed that the front-end has taken care of
2745 all matters concerning pointers to members. A pointer
2746 to member which reaches here is considered to be equivalent
2747 to an INT (or some size). After all, it is only an offset. */
2748
2749CORE_ADDR
fc1a4b47 2750unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2751{
2752 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2753 whether we want this to be true eventually. */
2754 return unpack_long (type, valaddr);
2755}
4478b372 2756
c906108c 2757\f
1596cb5d 2758/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 2759 TYPE. */
c906108c 2760
f23631e4 2761struct value *
fba45db2 2762value_static_field (struct type *type, int fieldno)
c906108c 2763{
948e66d9
DJ
2764 struct value *retval;
2765
1596cb5d 2766 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2767 {
1596cb5d 2768 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2769 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2770 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2771 break;
2772 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2773 {
ff355380 2774 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2775 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 2776 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2777
948e66d9 2778 if (sym == NULL)
c906108c 2779 {
a109c7c1 2780 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2781 reported as non-debuggable symbols. */
3b7344d5
TT
2782 struct bound_minimal_symbol msym
2783 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 2784
3b7344d5 2785 if (!msym.minsym)
686d4def 2786 return allocate_optimized_out_value (type);
c906108c 2787 else
c5aa993b 2788 {
52e9fde8 2789 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 2790 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2791 }
2792 }
2793 else
515ed532 2794 retval = value_of_variable (sym, NULL);
1596cb5d 2795 break;
c906108c 2796 }
1596cb5d 2797 default:
f3574227 2798 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2799 }
2800
948e66d9 2801 return retval;
c906108c
SS
2802}
2803
4dfea560
DE
2804/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2805 You have to be careful here, since the size of the data area for the value
2806 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2807 than the old enclosing type, you have to allocate more space for the
2808 data. */
2b127877 2809
4dfea560
DE
2810void
2811set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2812{
3e3d7139
JG
2813 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2814 val->contents =
2815 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2816
2817 val->enclosing_type = new_encl_type;
2b127877
DB
2818}
2819
c906108c
SS
2820/* Given a value ARG1 (offset by OFFSET bytes)
2821 of a struct or union type ARG_TYPE,
2822 extract and return the value of one of its (non-static) fields.
581e13c1 2823 FIELDNO says which field. */
c906108c 2824
f23631e4
AC
2825struct value *
2826value_primitive_field (struct value *arg1, int offset,
aa1ee363 2827 int fieldno, struct type *arg_type)
c906108c 2828{
f23631e4 2829 struct value *v;
52f0bd74 2830 struct type *type;
c906108c
SS
2831
2832 CHECK_TYPEDEF (arg_type);
2833 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2834
2835 /* Call check_typedef on our type to make sure that, if TYPE
2836 is a TYPE_CODE_TYPEDEF, its length is set to the length
2837 of the target type instead of zero. However, we do not
2838 replace the typedef type by the target type, because we want
2839 to keep the typedef in order to be able to print the type
2840 description correctly. */
2841 check_typedef (type);
c906108c 2842
691a26f5 2843 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 2844 {
22c05d8a
JK
2845 /* Handle packed fields.
2846
2847 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
2848 set. If possible, arrange offset and bitpos so that we can
2849 do a single aligned read of the size of the containing type.
2850 Otherwise, adjust offset to the byte containing the first
2851 bit. Assume that the address, offset, and embedded offset
2852 are sufficiently aligned. */
22c05d8a 2853
4ea48cc1
DJ
2854 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2855 int container_bitsize = TYPE_LENGTH (type) * 8;
2856
691a26f5
AB
2857 if (arg1->optimized_out)
2858 v = allocate_optimized_out_value (type);
4ea48cc1 2859 else
691a26f5
AB
2860 {
2861 v = allocate_value_lazy (type);
2862 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2863 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2864 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2865 v->bitpos = bitpos % container_bitsize;
2866 else
2867 v->bitpos = bitpos % 8;
2868 v->offset = (value_embedded_offset (arg1)
2869 + offset
2870 + (bitpos - v->bitpos) / 8);
2871 set_value_parent (v, arg1);
2872 if (!value_lazy (arg1))
2873 value_fetch_lazy (v);
2874 }
c906108c
SS
2875 }
2876 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2877 {
2878 /* This field is actually a base subobject, so preserve the
39d37385
PA
2879 entire object's contents for later references to virtual
2880 bases, etc. */
be335936 2881 int boffset;
a4e2ee12
DJ
2882
2883 /* Lazy register values with offsets are not supported. */
2884 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2885 value_fetch_lazy (arg1);
2886
691a26f5
AB
2887 /* The optimized_out flag is only set correctly once a lazy value is
2888 loaded, having just loaded some lazy values we should check the
2889 optimized out case now. */
2890 if (arg1->optimized_out)
2891 v = allocate_optimized_out_value (type);
c906108c 2892 else
3e3d7139 2893 {
691a26f5
AB
2894 /* We special case virtual inheritance here because this
2895 requires access to the contents, which we would rather avoid
2896 for references to ordinary fields of unavailable values. */
2897 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
2898 boffset = baseclass_offset (arg_type, fieldno,
2899 value_contents (arg1),
2900 value_embedded_offset (arg1),
2901 value_address (arg1),
2902 arg1);
2903 else
2904 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
2905
2906 if (value_lazy (arg1))
2907 v = allocate_value_lazy (value_enclosing_type (arg1));
2908 else
2909 {
2910 v = allocate_value (value_enclosing_type (arg1));
2911 value_contents_copy_raw (v, 0, arg1, 0,
2912 TYPE_LENGTH (value_enclosing_type (arg1)));
2913 }
2914 v->type = type;
2915 v->offset = value_offset (arg1);
2916 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
3e3d7139 2917 }
c906108c
SS
2918 }
2919 else
2920 {
2921 /* Plain old data member */
2922 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2923
2924 /* Lazy register values with offsets are not supported. */
2925 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2926 value_fetch_lazy (arg1);
2927
691a26f5
AB
2928 /* The optimized_out flag is only set correctly once a lazy value is
2929 loaded, having just loaded some lazy values we should check for
2930 the optimized out case now. */
2931 if (arg1->optimized_out)
2932 v = allocate_optimized_out_value (type);
2933 else if (value_lazy (arg1))
3e3d7139 2934 v = allocate_value_lazy (type);
c906108c 2935 else
3e3d7139
JG
2936 {
2937 v = allocate_value (type);
39d37385
PA
2938 value_contents_copy_raw (v, value_embedded_offset (v),
2939 arg1, value_embedded_offset (arg1) + offset,
2940 TYPE_LENGTH (type));
3e3d7139 2941 }
df407dfe 2942 v->offset = (value_offset (arg1) + offset
13c3b5f5 2943 + value_embedded_offset (arg1));
c906108c 2944 }
74bcbdf3 2945 set_value_component_location (v, arg1);
9ee8fc9d 2946 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2947 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2948 return v;
2949}
2950
2951/* Given a value ARG1 of a struct or union type,
2952 extract and return the value of one of its (non-static) fields.
581e13c1 2953 FIELDNO says which field. */
c906108c 2954
f23631e4 2955struct value *
aa1ee363 2956value_field (struct value *arg1, int fieldno)
c906108c 2957{
df407dfe 2958 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2959}
2960
2961/* Return a non-virtual function as a value.
2962 F is the list of member functions which contains the desired method.
0478d61c
FF
2963 J is an index into F which provides the desired method.
2964
2965 We only use the symbol for its address, so be happy with either a
581e13c1 2966 full symbol or a minimal symbol. */
c906108c 2967
f23631e4 2968struct value *
3e43a32a
MS
2969value_fn_field (struct value **arg1p, struct fn_field *f,
2970 int j, struct type *type,
fba45db2 2971 int offset)
c906108c 2972{
f23631e4 2973 struct value *v;
52f0bd74 2974 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 2975 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2976 struct symbol *sym;
7c7b6655 2977 struct bound_minimal_symbol msym;
c906108c 2978
2570f2b7 2979 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2980 if (sym != NULL)
0478d61c 2981 {
7c7b6655 2982 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
2983 }
2984 else
2985 {
2986 gdb_assert (sym == NULL);
7c7b6655
TT
2987 msym = lookup_bound_minimal_symbol (physname);
2988 if (msym.minsym == NULL)
5ae326fa 2989 return NULL;
0478d61c
FF
2990 }
2991
c906108c 2992 v = allocate_value (ftype);
0478d61c
FF
2993 if (sym)
2994 {
42ae5230 2995 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2996 }
2997 else
2998 {
bccdca4a
UW
2999 /* The minimal symbol might point to a function descriptor;
3000 resolve it to the actual code address instead. */
7c7b6655 3001 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3002 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3003
42ae5230
TT
3004 set_value_address (v,
3005 gdbarch_convert_from_func_ptr_addr
77e371c0 3006 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3007 }
c906108c
SS
3008
3009 if (arg1p)
c5aa993b 3010 {
df407dfe 3011 if (type != value_type (*arg1p))
c5aa993b
JM
3012 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3013 value_addr (*arg1p)));
3014
070ad9f0 3015 /* Move the `this' pointer according to the offset.
581e13c1 3016 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3017 }
3018
3019 return v;
3020}
3021
c906108c 3022\f
c906108c 3023
5467c6c8
PA
3024/* Helper function for both unpack_value_bits_as_long and
3025 unpack_bits_as_long. See those functions for more details on the
3026 interface; the only difference is that this function accepts either
3027 a NULL or a non-NULL ORIGINAL_VALUE. */
c906108c 3028
5467c6c8
PA
3029static int
3030unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
3031 int embedded_offset, int bitpos, int bitsize,
3032 const struct value *original_value,
3033 LONGEST *result)
c906108c 3034{
4ea48cc1 3035 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3036 ULONGEST val;
3037 ULONGEST valmask;
c906108c 3038 int lsbcount;
4a76eae5 3039 int bytes_read;
5467c6c8 3040 int read_offset;
c906108c 3041
4a76eae5
DJ
3042 /* Read the minimum number of bytes required; there may not be
3043 enough bytes to read an entire ULONGEST. */
c906108c 3044 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
3045 if (bitsize)
3046 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3047 else
3048 bytes_read = TYPE_LENGTH (field_type);
3049
5467c6c8
PA
3050 read_offset = bitpos / 8;
3051
3052 if (original_value != NULL
bdf22206
AB
3053 && !value_bits_available (original_value, embedded_offset + bitpos,
3054 bitsize))
5467c6c8
PA
3055 return 0;
3056
3057 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
4a76eae5 3058 bytes_read, byte_order);
c906108c 3059
581e13c1 3060 /* Extract bits. See comment above. */
c906108c 3061
4ea48cc1 3062 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3063 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3064 else
3065 lsbcount = (bitpos % 8);
3066 val >>= lsbcount;
3067
3068 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3069 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3070
3071 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3072 {
3073 valmask = (((ULONGEST) 1) << bitsize) - 1;
3074 val &= valmask;
3075 if (!TYPE_UNSIGNED (field_type))
3076 {
3077 if (val & (valmask ^ (valmask >> 1)))
3078 {
3079 val |= ~valmask;
3080 }
3081 }
3082 }
5467c6c8
PA
3083
3084 *result = val;
3085 return 1;
c906108c
SS
3086}
3087
5467c6c8
PA
3088/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3089 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
3090 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
3091 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
3092 bits.
4ea48cc1 3093
5467c6c8
PA
3094 Returns false if the value contents are unavailable, otherwise
3095 returns true, indicating a valid value has been stored in *RESULT.
3096
3097 Extracting bits depends on endianness of the machine. Compute the
3098 number of least significant bits to discard. For big endian machines,
3099 we compute the total number of bits in the anonymous object, subtract
3100 off the bit count from the MSB of the object to the MSB of the
3101 bitfield, then the size of the bitfield, which leaves the LSB discard
3102 count. For little endian machines, the discard count is simply the
3103 number of bits from the LSB of the anonymous object to the LSB of the
3104 bitfield.
3105
3106 If the field is signed, we also do sign extension. */
3107
3108int
3109unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
3110 int embedded_offset, int bitpos, int bitsize,
3111 const struct value *original_value,
3112 LONGEST *result)
3113{
3114 gdb_assert (original_value != NULL);
3115
3116 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3117 bitpos, bitsize, original_value, result);
3118
3119}
3120
3121/* Unpack a field FIELDNO of the specified TYPE, from the object at
3122 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3123 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
3124 details. */
3125
3126static int
3127unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
3128 int embedded_offset, int fieldno,
3129 const struct value *val, LONGEST *result)
4ea48cc1
DJ
3130{
3131 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3132 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3133 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3134
5467c6c8
PA
3135 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
3136 bitpos, bitsize, val,
3137 result);
3138}
3139
3140/* Unpack a field FIELDNO of the specified TYPE, from the object at
3141 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3142 ORIGINAL_VALUE, which must not be NULL. See
3143 unpack_value_bits_as_long for more details. */
3144
3145int
3146unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
3147 int embedded_offset, int fieldno,
3148 const struct value *val, LONGEST *result)
3149{
3150 gdb_assert (val != NULL);
3151
3152 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
3153 fieldno, val, result);
3154}
3155
3156/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
3157 object at VALADDR. See unpack_value_bits_as_long for more details.
3158 This function differs from unpack_value_field_as_long in that it
3159 operates without a struct value object. */
3160
3161LONGEST
3162unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3163{
3164 LONGEST result;
3165
3166 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
3167 return result;
3168}
3169
3170/* Return a new value with type TYPE, which is FIELDNO field of the
3171 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3172 of VAL. If the VAL's contents required to extract the bitfield
3173 from are unavailable, the new value is correspondingly marked as
3174 unavailable. */
3175
3176struct value *
3177value_field_bitfield (struct type *type, int fieldno,
3178 const gdb_byte *valaddr,
3179 int embedded_offset, const struct value *val)
3180{
3181 LONGEST l;
3182
3183 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
3184 val, &l))
3185 {
3186 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3187 struct value *retval = allocate_value (field_type);
3188 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
3189 return retval;
3190 }
3191 else
3192 {
3193 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
3194 }
4ea48cc1
DJ
3195}
3196
c906108c
SS
3197/* Modify the value of a bitfield. ADDR points to a block of memory in
3198 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3199 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3200 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3201 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3202 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3203
3204void
50810684
UW
3205modify_field (struct type *type, gdb_byte *addr,
3206 LONGEST fieldval, int bitpos, int bitsize)
c906108c 3207{
e17a4113 3208 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3209 ULONGEST oword;
3210 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
3211 int bytesize;
3212
3213 /* Normalize BITPOS. */
3214 addr += bitpos / 8;
3215 bitpos %= 8;
c906108c
SS
3216
3217 /* If a negative fieldval fits in the field in question, chop
3218 off the sign extension bits. */
f4e88c8e
PH
3219 if ((~fieldval & ~(mask >> 1)) == 0)
3220 fieldval &= mask;
c906108c
SS
3221
3222 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3223 if (0 != (fieldval & ~mask))
c906108c
SS
3224 {
3225 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3226 we don't have a sprintf_longest. */
8a3fe4f8 3227 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
3228
3229 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3230 fieldval &= mask;
c906108c
SS
3231 }
3232
19f220c3
JK
3233 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3234 false valgrind reports. */
3235
3236 bytesize = (bitpos + bitsize + 7) / 8;
3237 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3238
3239 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3240 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3241 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3242
f4e88c8e 3243 oword &= ~(mask << bitpos);
c906108c
SS
3244 oword |= fieldval << bitpos;
3245
19f220c3 3246 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3247}
3248\f
14d06750 3249/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3250
14d06750
DJ
3251void
3252pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3253{
e17a4113 3254 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 3255 int len;
14d06750
DJ
3256
3257 type = check_typedef (type);
c906108c
SS
3258 len = TYPE_LENGTH (type);
3259
14d06750 3260 switch (TYPE_CODE (type))
c906108c 3261 {
c906108c
SS
3262 case TYPE_CODE_INT:
3263 case TYPE_CODE_CHAR:
3264 case TYPE_CODE_ENUM:
4f2aea11 3265 case TYPE_CODE_FLAGS:
c906108c
SS
3266 case TYPE_CODE_BOOL:
3267 case TYPE_CODE_RANGE:
0d5de010 3268 case TYPE_CODE_MEMBERPTR:
e17a4113 3269 store_signed_integer (buf, len, byte_order, num);
c906108c 3270 break;
c5aa993b 3271
c906108c
SS
3272 case TYPE_CODE_REF:
3273 case TYPE_CODE_PTR:
14d06750 3274 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3275 break;
c5aa993b 3276
c906108c 3277 default:
14d06750
DJ
3278 error (_("Unexpected type (%d) encountered for integer constant."),
3279 TYPE_CODE (type));
c906108c 3280 }
14d06750
DJ
3281}
3282
3283
595939de
PM
3284/* Pack NUM into BUF using a target format of TYPE. */
3285
70221824 3286static void
595939de
PM
3287pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3288{
3289 int len;
3290 enum bfd_endian byte_order;
3291
3292 type = check_typedef (type);
3293 len = TYPE_LENGTH (type);
3294 byte_order = gdbarch_byte_order (get_type_arch (type));
3295
3296 switch (TYPE_CODE (type))
3297 {
3298 case TYPE_CODE_INT:
3299 case TYPE_CODE_CHAR:
3300 case TYPE_CODE_ENUM:
3301 case TYPE_CODE_FLAGS:
3302 case TYPE_CODE_BOOL:
3303 case TYPE_CODE_RANGE:
3304 case TYPE_CODE_MEMBERPTR:
3305 store_unsigned_integer (buf, len, byte_order, num);
3306 break;
3307
3308 case TYPE_CODE_REF:
3309 case TYPE_CODE_PTR:
3310 store_typed_address (buf, type, (CORE_ADDR) num);
3311 break;
3312
3313 default:
3e43a32a
MS
3314 error (_("Unexpected type (%d) encountered "
3315 "for unsigned integer constant."),
595939de
PM
3316 TYPE_CODE (type));
3317 }
3318}
3319
3320
14d06750
DJ
3321/* Convert C numbers into newly allocated values. */
3322
3323struct value *
3324value_from_longest (struct type *type, LONGEST num)
3325{
3326 struct value *val = allocate_value (type);
3327
3328 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3329 return val;
3330}
3331
4478b372 3332
595939de
PM
3333/* Convert C unsigned numbers into newly allocated values. */
3334
3335struct value *
3336value_from_ulongest (struct type *type, ULONGEST num)
3337{
3338 struct value *val = allocate_value (type);
3339
3340 pack_unsigned_long (value_contents_raw (val), type, num);
3341
3342 return val;
3343}
3344
3345
4478b372 3346/* Create a value representing a pointer of type TYPE to the address
80180f79
SA
3347 ADDR. The type of the created value may differ from the passed
3348 type TYPE. Make sure to retrieve the returned values's new type
3349 after this call e.g. in case of an variable length array. */
3350
f23631e4 3351struct value *
4478b372
JB
3352value_from_pointer (struct type *type, CORE_ADDR addr)
3353{
80180f79
SA
3354 struct type *resolved_type = resolve_dynamic_type (type, addr);
3355 struct value *val = allocate_value (resolved_type);
a109c7c1 3356
80180f79
SA
3357 store_typed_address (value_contents_raw (val),
3358 check_typedef (resolved_type), addr);
4478b372
JB
3359 return val;
3360}
3361
3362
012370f6
TT
3363/* Create a value of type TYPE whose contents come from VALADDR, if it
3364 is non-null, and whose memory address (in the inferior) is
3365 ADDRESS. The type of the created value may differ from the passed
3366 type TYPE. Make sure to retrieve values new type after this call.
3367 Note that TYPE is not passed through resolve_dynamic_type; this is
3368 a special API intended for use only by Ada. */
3369
3370struct value *
3371value_from_contents_and_address_unresolved (struct type *type,
3372 const gdb_byte *valaddr,
3373 CORE_ADDR address)
3374{
3375 struct value *v;
3376
3377 if (valaddr == NULL)
3378 v = allocate_value_lazy (type);
3379 else
3380 v = value_from_contents (type, valaddr);
3381 set_value_address (v, address);
3382 VALUE_LVAL (v) = lval_memory;
3383 return v;
3384}
3385
8acb6b92
TT
3386/* Create a value of type TYPE whose contents come from VALADDR, if it
3387 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3388 ADDRESS. The type of the created value may differ from the passed
3389 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3390
3391struct value *
3392value_from_contents_and_address (struct type *type,
3393 const gdb_byte *valaddr,
3394 CORE_ADDR address)
3395{
80180f79 3396 struct type *resolved_type = resolve_dynamic_type (type, address);
41e8491f 3397 struct value *v;
a109c7c1 3398
8acb6b92 3399 if (valaddr == NULL)
80180f79 3400 v = allocate_value_lazy (resolved_type);
8acb6b92 3401 else
80180f79 3402 v = value_from_contents (resolved_type, valaddr);
42ae5230 3403 set_value_address (v, address);
33d502b4 3404 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3405 return v;
3406}
3407
8a9b8146
TT
3408/* Create a value of type TYPE holding the contents CONTENTS.
3409 The new value is `not_lval'. */
3410
3411struct value *
3412value_from_contents (struct type *type, const gdb_byte *contents)
3413{
3414 struct value *result;
3415
3416 result = allocate_value (type);
3417 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3418 return result;
3419}
3420
f23631e4 3421struct value *
fba45db2 3422value_from_double (struct type *type, DOUBLEST num)
c906108c 3423{
f23631e4 3424 struct value *val = allocate_value (type);
c906108c 3425 struct type *base_type = check_typedef (type);
52f0bd74 3426 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3427
3428 if (code == TYPE_CODE_FLT)
3429 {
990a07ab 3430 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3431 }
3432 else
8a3fe4f8 3433 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3434
3435 return val;
3436}
994b9211 3437
27bc4d80 3438struct value *
4ef30785 3439value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3440{
3441 struct value *val = allocate_value (type);
27bc4d80 3442
4ef30785 3443 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3444 return val;
3445}
3446
3bd0f5ef
MS
3447/* Extract a value from the history file. Input will be of the form
3448 $digits or $$digits. See block comment above 'write_dollar_variable'
3449 for details. */
3450
3451struct value *
3452value_from_history_ref (char *h, char **endp)
3453{
3454 int index, len;
3455
3456 if (h[0] == '$')
3457 len = 1;
3458 else
3459 return NULL;
3460
3461 if (h[1] == '$')
3462 len = 2;
3463
3464 /* Find length of numeral string. */
3465 for (; isdigit (h[len]); len++)
3466 ;
3467
3468 /* Make sure numeral string is not part of an identifier. */
3469 if (h[len] == '_' || isalpha (h[len]))
3470 return NULL;
3471
3472 /* Now collect the index value. */
3473 if (h[1] == '$')
3474 {
3475 if (len == 2)
3476 {
3477 /* For some bizarre reason, "$$" is equivalent to "$$1",
3478 rather than to "$$0" as it ought to be! */
3479 index = -1;
3480 *endp += len;
3481 }
3482 else
3483 index = -strtol (&h[2], endp, 10);
3484 }
3485 else
3486 {
3487 if (len == 1)
3488 {
3489 /* "$" is equivalent to "$0". */
3490 index = 0;
3491 *endp += len;
3492 }
3493 else
3494 index = strtol (&h[1], endp, 10);
3495 }
3496
3497 return access_value_history (index);
3498}
3499
a471c594
JK
3500struct value *
3501coerce_ref_if_computed (const struct value *arg)
3502{
3503 const struct lval_funcs *funcs;
3504
3505 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3506 return NULL;
3507
3508 if (value_lval_const (arg) != lval_computed)
3509 return NULL;
3510
3511 funcs = value_computed_funcs (arg);
3512 if (funcs->coerce_ref == NULL)
3513 return NULL;
3514
3515 return funcs->coerce_ref (arg);
3516}
3517
dfcee124
AG
3518/* Look at value.h for description. */
3519
3520struct value *
3521readjust_indirect_value_type (struct value *value, struct type *enc_type,
3522 struct type *original_type,
3523 struct value *original_value)
3524{
3525 /* Re-adjust type. */
3526 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3527
3528 /* Add embedding info. */
3529 set_value_enclosing_type (value, enc_type);
3530 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3531
3532 /* We may be pointing to an object of some derived type. */
3533 return value_full_object (value, NULL, 0, 0, 0);
3534}
3535
994b9211
AC
3536struct value *
3537coerce_ref (struct value *arg)
3538{
df407dfe 3539 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3540 struct value *retval;
dfcee124 3541 struct type *enc_type;
a109c7c1 3542
a471c594
JK
3543 retval = coerce_ref_if_computed (arg);
3544 if (retval)
3545 return retval;
3546
3547 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3548 return arg;
3549
dfcee124
AG
3550 enc_type = check_typedef (value_enclosing_type (arg));
3551 enc_type = TYPE_TARGET_TYPE (enc_type);
3552
3553 retval = value_at_lazy (enc_type,
3554 unpack_pointer (value_type (arg),
3555 value_contents (arg)));
9f1f738a 3556 enc_type = value_type (retval);
dfcee124
AG
3557 return readjust_indirect_value_type (retval, enc_type,
3558 value_type_arg_tmp, arg);
994b9211
AC
3559}
3560
3561struct value *
3562coerce_array (struct value *arg)
3563{
f3134b88
TT
3564 struct type *type;
3565
994b9211 3566 arg = coerce_ref (arg);
f3134b88
TT
3567 type = check_typedef (value_type (arg));
3568
3569 switch (TYPE_CODE (type))
3570 {
3571 case TYPE_CODE_ARRAY:
7346b668 3572 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3573 arg = value_coerce_array (arg);
3574 break;
3575 case TYPE_CODE_FUNC:
3576 arg = value_coerce_function (arg);
3577 break;
3578 }
994b9211
AC
3579 return arg;
3580}
c906108c 3581\f
c906108c 3582
bbfdfe1c
DM
3583/* Return the return value convention that will be used for the
3584 specified type. */
3585
3586enum return_value_convention
3587struct_return_convention (struct gdbarch *gdbarch,
3588 struct value *function, struct type *value_type)
3589{
3590 enum type_code code = TYPE_CODE (value_type);
3591
3592 if (code == TYPE_CODE_ERROR)
3593 error (_("Function return type unknown."));
3594
3595 /* Probe the architecture for the return-value convention. */
3596 return gdbarch_return_value (gdbarch, function, value_type,
3597 NULL, NULL, NULL);
3598}
3599
48436ce6
AC
3600/* Return true if the function returning the specified type is using
3601 the convention of returning structures in memory (passing in the
82585c72 3602 address as a hidden first parameter). */
c906108c
SS
3603
3604int
d80b854b 3605using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3606 struct value *function, struct type *value_type)
c906108c 3607{
bbfdfe1c 3608 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3609 /* A void return value is never in memory. See also corresponding
44e5158b 3610 code in "print_return_value". */
667e784f
AC
3611 return 0;
3612
bbfdfe1c 3613 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3614 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3615}
3616
42be36b3
CT
3617/* Set the initialized field in a value struct. */
3618
3619void
3620set_value_initialized (struct value *val, int status)
3621{
3622 val->initialized = status;
3623}
3624
3625/* Return the initialized field in a value struct. */
3626
3627int
3628value_initialized (struct value *val)
3629{
3630 return val->initialized;
3631}
3632
a58e2656
AB
3633/* Called only from the value_contents and value_contents_all()
3634 macros, if the current data for a variable needs to be loaded into
3635 value_contents(VAL). Fetches the data from the user's process, and
3636 clears the lazy flag to indicate that the data in the buffer is
3637 valid.
3638
3639 If the value is zero-length, we avoid calling read_memory, which
3640 would abort. We mark the value as fetched anyway -- all 0 bytes of
3641 it.
3642
3643 This function returns a value because it is used in the
3644 value_contents macro as part of an expression, where a void would
3645 not work. The value is ignored. */
3646
3647int
3648value_fetch_lazy (struct value *val)
3649{
3650 gdb_assert (value_lazy (val));
3651 allocate_value_contents (val);
3652 if (value_bitsize (val))
3653 {
3654 /* To read a lazy bitfield, read the entire enclosing value. This
3655 prevents reading the same block of (possibly volatile) memory once
3656 per bitfield. It would be even better to read only the containing
3657 word, but we have no way to record that just specific bits of a
3658 value have been fetched. */
3659 struct type *type = check_typedef (value_type (val));
3660 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
3661 struct value *parent = value_parent (val);
3662 LONGEST offset = value_offset (val);
3663 LONGEST num;
3664
b0c54aa5
AB
3665 if (value_lazy (parent))
3666 value_fetch_lazy (parent);
3667
3668 if (!value_bits_valid (parent,
a58e2656
AB
3669 TARGET_CHAR_BIT * offset + value_bitpos (val),
3670 value_bitsize (val)))
11b4b7cc
AB
3671 set_value_optimized_out (val, 1);
3672 else if (!unpack_value_bits_as_long (value_type (val),
a58e2656
AB
3673 value_contents_for_printing (parent),
3674 offset,
3675 value_bitpos (val),
3676 value_bitsize (val), parent, &num))
3677 mark_value_bytes_unavailable (val,
3678 value_embedded_offset (val),
3679 TYPE_LENGTH (type));
3680 else
3681 store_signed_integer (value_contents_raw (val), TYPE_LENGTH (type),
3682 byte_order, num);
3683 }
3684 else if (VALUE_LVAL (val) == lval_memory)
3685 {
3686 CORE_ADDR addr = value_address (val);
3687 struct type *type = check_typedef (value_enclosing_type (val));
3688
3689 if (TYPE_LENGTH (type))
3690 read_value_memory (val, 0, value_stack (val),
3691 addr, value_contents_all_raw (val),
3692 TYPE_LENGTH (type));
3693 }
3694 else if (VALUE_LVAL (val) == lval_register)
3695 {
3696 struct frame_info *frame;
3697 int regnum;
3698 struct type *type = check_typedef (value_type (val));
3699 struct value *new_val = val, *mark = value_mark ();
3700
3701 /* Offsets are not supported here; lazy register values must
3702 refer to the entire register. */
3703 gdb_assert (value_offset (val) == 0);
3704
3705 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3706 {
6eeee81c
TT
3707 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3708
3709 frame = frame_find_by_id (frame_id);
a58e2656
AB
3710 regnum = VALUE_REGNUM (new_val);
3711
3712 gdb_assert (frame != NULL);
3713
3714 /* Convertible register routines are used for multi-register
3715 values and for interpretation in different types
3716 (e.g. float or int from a double register). Lazy
3717 register values should have the register's natural type,
3718 so they do not apply. */
3719 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3720 regnum, type));
3721
3722 new_val = get_frame_register_value (frame, regnum);
6eeee81c
TT
3723
3724 /* If we get another lazy lval_register value, it means the
3725 register is found by reading it from the next frame.
3726 get_frame_register_value should never return a value with
3727 the frame id pointing to FRAME. If it does, it means we
3728 either have two consecutive frames with the same frame id
3729 in the frame chain, or some code is trying to unwind
3730 behind get_prev_frame's back (e.g., a frame unwind
3731 sniffer trying to unwind), bypassing its validations. In
3732 any case, it should always be an internal error to end up
3733 in this situation. */
3734 if (VALUE_LVAL (new_val) == lval_register
3735 && value_lazy (new_val)
3736 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
3737 internal_error (__FILE__, __LINE__,
3738 _("infinite loop while fetching a register"));
a58e2656
AB
3739 }
3740
3741 /* If it's still lazy (for instance, a saved register on the
3742 stack), fetch it. */
3743 if (value_lazy (new_val))
3744 value_fetch_lazy (new_val);
3745
3746 /* If the register was not saved, mark it optimized out. */
3747 if (value_optimized_out (new_val))
3748 set_value_optimized_out (val, 1);
3749 else
3750 {
3751 set_value_lazy (val, 0);
3752 value_contents_copy (val, value_embedded_offset (val),
3753 new_val, value_embedded_offset (new_val),
3754 TYPE_LENGTH (type));
3755 }
3756
3757 if (frame_debug)
3758 {
3759 struct gdbarch *gdbarch;
3760 frame = frame_find_by_id (VALUE_FRAME_ID (val));
3761 regnum = VALUE_REGNUM (val);
3762 gdbarch = get_frame_arch (frame);
3763
3764 fprintf_unfiltered (gdb_stdlog,
3765 "{ value_fetch_lazy "
3766 "(frame=%d,regnum=%d(%s),...) ",
3767 frame_relative_level (frame), regnum,
3768 user_reg_map_regnum_to_name (gdbarch, regnum));
3769
3770 fprintf_unfiltered (gdb_stdlog, "->");
3771 if (value_optimized_out (new_val))
f6c01fc5
AB
3772 {
3773 fprintf_unfiltered (gdb_stdlog, " ");
3774 val_print_optimized_out (new_val, gdb_stdlog);
3775 }
a58e2656
AB
3776 else
3777 {
3778 int i;
3779 const gdb_byte *buf = value_contents (new_val);
3780
3781 if (VALUE_LVAL (new_val) == lval_register)
3782 fprintf_unfiltered (gdb_stdlog, " register=%d",
3783 VALUE_REGNUM (new_val));
3784 else if (VALUE_LVAL (new_val) == lval_memory)
3785 fprintf_unfiltered (gdb_stdlog, " address=%s",
3786 paddress (gdbarch,
3787 value_address (new_val)));
3788 else
3789 fprintf_unfiltered (gdb_stdlog, " computed");
3790
3791 fprintf_unfiltered (gdb_stdlog, " bytes=");
3792 fprintf_unfiltered (gdb_stdlog, "[");
3793 for (i = 0; i < register_size (gdbarch, regnum); i++)
3794 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
3795 fprintf_unfiltered (gdb_stdlog, "]");
3796 }
3797
3798 fprintf_unfiltered (gdb_stdlog, " }\n");
3799 }
3800
3801 /* Dispose of the intermediate values. This prevents
3802 watchpoints from trying to watch the saved frame pointer. */
3803 value_free_to_mark (mark);
3804 }
3805 else if (VALUE_LVAL (val) == lval_computed
3806 && value_computed_funcs (val)->read != NULL)
3807 value_computed_funcs (val)->read (val);
691a26f5
AB
3808 /* Don't call value_optimized_out on val, doing so would result in a
3809 recursive call back to value_fetch_lazy, instead check the
3810 optimized_out flag directly. */
3811 else if (val->optimized_out)
a58e2656
AB
3812 /* Keep it optimized out. */;
3813 else
3814 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
3815
3816 set_value_lazy (val, 0);
3817 return 0;
3818}
3819
a280dbd1
SDJ
3820/* Implementation of the convenience function $_isvoid. */
3821
3822static struct value *
3823isvoid_internal_fn (struct gdbarch *gdbarch,
3824 const struct language_defn *language,
3825 void *cookie, int argc, struct value **argv)
3826{
3827 int ret;
3828
3829 if (argc != 1)
6bc305f5 3830 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
3831
3832 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
3833
3834 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
3835}
3836
c906108c 3837void
fba45db2 3838_initialize_values (void)
c906108c 3839{
1a966eab 3840 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
3841Debugger convenience (\"$foo\") variables and functions.\n\
3842Convenience variables are created when you assign them values;\n\
3843thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 3844\n\
c906108c
SS
3845A few convenience variables are given values automatically:\n\
3846\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
3847\"$__\" holds the contents of the last address examined with \"x\"."
3848#ifdef HAVE_PYTHON
3849"\n\n\
3850Convenience functions are defined via the Python API."
3851#endif
3852 ), &showlist);
7e20dfcd 3853 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 3854
db5f229b 3855 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3856Elements of value history around item number IDX (or last ten)."),
c906108c 3857 &showlist);
53e5f3cf
AS
3858
3859 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3860Initialize a convenience variable if necessary.\n\
3861init-if-undefined VARIABLE = EXPRESSION\n\
3862Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3863exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3864VARIABLE is already initialized."));
bc3b79fd
TJB
3865
3866 add_prefix_cmd ("function", no_class, function_command, _("\
3867Placeholder command for showing help on convenience functions."),
3868 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
3869
3870 add_internal_function ("_isvoid", _("\
3871Check whether an expression is void.\n\
3872Usage: $_isvoid (expression)\n\
3873Return 1 if the expression is void, zero otherwise."),
3874 isvoid_internal_fn, NULL);
c906108c 3875}
This page took 2.070487 seconds and 4 git commands to generate.