Support structure offsets that are 512K or larger.
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
618f726f 3 Copyright (C) 1986-2016 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
d16aafd8 31#include "doublest.h"
36160dc4 32#include "regcache.h"
fe898f56 33#include "block.h"
27bc4d80 34#include "dfp.h"
bccdca4a 35#include "objfiles.h"
79a45b7d 36#include "valprint.h"
bc3b79fd 37#include "cli/cli-decode.h"
6dddc817 38#include "extension.h"
3bd0f5ef 39#include <ctype.h>
0914bcdb 40#include "tracepoint.h"
be335936 41#include "cp-abi.h"
a58e2656 42#include "user-regs.h"
0914bcdb 43
581e13c1 44/* Prototypes for exported functions. */
c906108c 45
a14ed312 46void _initialize_values (void);
c906108c 47
bc3b79fd
TJB
48/* Definition of a user function. */
49struct internal_function
50{
51 /* The name of the function. It is a bit odd to have this in the
52 function itself -- the user might use a differently-named
53 convenience variable to hold the function. */
54 char *name;
55
56 /* The handler. */
57 internal_function_fn handler;
58
59 /* User data for the handler. */
60 void *cookie;
61};
62
4e07d55f
PA
63/* Defines an [OFFSET, OFFSET + LENGTH) range. */
64
65struct range
66{
67 /* Lowest offset in the range. */
6b850546 68 LONGEST offset;
4e07d55f
PA
69
70 /* Length of the range. */
6b850546 71 LONGEST length;
4e07d55f
PA
72};
73
74typedef struct range range_s;
75
76DEF_VEC_O(range_s);
77
78/* Returns true if the ranges defined by [offset1, offset1+len1) and
79 [offset2, offset2+len2) overlap. */
80
81static int
6b850546
DT
82ranges_overlap (LONGEST offset1, LONGEST len1,
83 LONGEST offset2, LONGEST len2)
4e07d55f
PA
84{
85 ULONGEST h, l;
86
87 l = max (offset1, offset2);
88 h = min (offset1 + len1, offset2 + len2);
89 return (l < h);
90}
91
92/* Returns true if the first argument is strictly less than the
93 second, useful for VEC_lower_bound. We keep ranges sorted by
94 offset and coalesce overlapping and contiguous ranges, so this just
95 compares the starting offset. */
96
97static int
98range_lessthan (const range_s *r1, const range_s *r2)
99{
100 return r1->offset < r2->offset;
101}
102
103/* Returns true if RANGES contains any range that overlaps [OFFSET,
104 OFFSET+LENGTH). */
105
106static int
6b850546 107ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
4e07d55f
PA
108{
109 range_s what;
6b850546 110 LONGEST i;
4e07d55f
PA
111
112 what.offset = offset;
113 what.length = length;
114
115 /* We keep ranges sorted by offset and coalesce overlapping and
116 contiguous ranges, so to check if a range list contains a given
117 range, we can do a binary search for the position the given range
118 would be inserted if we only considered the starting OFFSET of
119 ranges. We call that position I. Since we also have LENGTH to
120 care for (this is a range afterall), we need to check if the
121 _previous_ range overlaps the I range. E.g.,
122
123 R
124 |---|
125 |---| |---| |------| ... |--|
126 0 1 2 N
127
128 I=1
129
130 In the case above, the binary search would return `I=1', meaning,
131 this OFFSET should be inserted at position 1, and the current
132 position 1 should be pushed further (and before 2). But, `0'
133 overlaps with R.
134
135 Then we need to check if the I range overlaps the I range itself.
136 E.g.,
137
138 R
139 |---|
140 |---| |---| |-------| ... |--|
141 0 1 2 N
142
143 I=1
144 */
145
146 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
147
148 if (i > 0)
149 {
150 struct range *bef = VEC_index (range_s, ranges, i - 1);
151
152 if (ranges_overlap (bef->offset, bef->length, offset, length))
153 return 1;
154 }
155
156 if (i < VEC_length (range_s, ranges))
157 {
158 struct range *r = VEC_index (range_s, ranges, i);
159
160 if (ranges_overlap (r->offset, r->length, offset, length))
161 return 1;
162 }
163
164 return 0;
165}
166
bc3b79fd
TJB
167static struct cmd_list_element *functionlist;
168
87784a47
TT
169/* Note that the fields in this structure are arranged to save a bit
170 of memory. */
171
91294c83
AC
172struct value
173{
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
179 unsigned int modifiable : 1;
180
181 /* If zero, contents of this value are in the contents field. If
182 nonzero, contents are in inferior. If the lval field is lval_memory,
183 the contents are in inferior memory at location.address plus offset.
184 The lval field may also be lval_register.
185
186 WARNING: This field is used by the code which handles watchpoints
187 (see breakpoint.c) to decide whether a particular value can be
188 watched by hardware watchpoints. If the lazy flag is set for
189 some member of a value chain, it is assumed that this member of
190 the chain doesn't need to be watched as part of watching the
191 value itself. This is how GDB avoids watching the entire struct
192 or array when the user wants to watch a single struct member or
193 array element. If you ever change the way lazy flag is set and
194 reset, be sure to consider this use as well! */
195 unsigned int lazy : 1;
196
87784a47
TT
197 /* If value is a variable, is it initialized or not. */
198 unsigned int initialized : 1;
199
200 /* If value is from the stack. If this is set, read_stack will be
201 used instead of read_memory to enable extra caching. */
202 unsigned int stack : 1;
91294c83 203
e848a8a5
TT
204 /* If the value has been released. */
205 unsigned int released : 1;
206
98b1cfdc
TT
207 /* Register number if the value is from a register. */
208 short regnum;
209
91294c83
AC
210 /* Location of value (if lval). */
211 union
212 {
213 /* If lval == lval_memory, this is the address in the inferior.
214 If lval == lval_register, this is the byte offset into the
215 registers structure. */
216 CORE_ADDR address;
217
218 /* Pointer to internal variable. */
219 struct internalvar *internalvar;
5f5233d4 220
e81e7f5e
SC
221 /* Pointer to xmethod worker. */
222 struct xmethod_worker *xm_worker;
223
5f5233d4
PA
224 /* If lval == lval_computed, this is a set of function pointers
225 to use to access and describe the value, and a closure pointer
226 for them to use. */
227 struct
228 {
c8f2448a
JK
229 /* Functions to call. */
230 const struct lval_funcs *funcs;
231
232 /* Closure for those functions to use. */
233 void *closure;
5f5233d4 234 } computed;
91294c83
AC
235 } location;
236
3723fda8
SM
237 /* Describes offset of a value within lval of a structure in target
238 addressable memory units. If lval == lval_memory, this is an offset to
239 the address. If lval == lval_register, this is a further offset from
240 location.address within the registers structure. Note also the member
241 embedded_offset below. */
6b850546 242 LONGEST offset;
91294c83
AC
243
244 /* Only used for bitfields; number of bits contained in them. */
6b850546 245 LONGEST bitsize;
91294c83
AC
246
247 /* Only used for bitfields; position of start of field. For
32c9a795 248 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 249 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
6b850546 250 LONGEST bitpos;
91294c83 251
87784a47
TT
252 /* The number of references to this value. When a value is created,
253 the value chain holds a reference, so REFERENCE_COUNT is 1. If
254 release_value is called, this value is removed from the chain but
255 the caller of release_value now has a reference to this value.
256 The caller must arrange for a call to value_free later. */
257 int reference_count;
258
4ea48cc1
DJ
259 /* Only used for bitfields; the containing value. This allows a
260 single read from the target when displaying multiple
261 bitfields. */
262 struct value *parent;
263
91294c83
AC
264 /* Frame register value is relative to. This will be described in
265 the lval enum above as "lval_register". */
266 struct frame_id frame_id;
267
268 /* Type of the value. */
269 struct type *type;
270
271 /* If a value represents a C++ object, then the `type' field gives
272 the object's compile-time type. If the object actually belongs
273 to some class derived from `type', perhaps with other base
274 classes and additional members, then `type' is just a subobject
275 of the real thing, and the full object is probably larger than
276 `type' would suggest.
277
278 If `type' is a dynamic class (i.e. one with a vtable), then GDB
279 can actually determine the object's run-time type by looking at
280 the run-time type information in the vtable. When this
281 information is available, we may elect to read in the entire
282 object, for several reasons:
283
284 - When printing the value, the user would probably rather see the
285 full object, not just the limited portion apparent from the
286 compile-time type.
287
288 - If `type' has virtual base classes, then even printing `type'
289 alone may require reaching outside the `type' portion of the
290 object to wherever the virtual base class has been stored.
291
292 When we store the entire object, `enclosing_type' is the run-time
293 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
294 offset of `type' within that larger type, in target addressable memory
295 units. The value_contents() macro takes `embedded_offset' into account,
296 so most GDB code continues to see the `type' portion of the value, just
297 as the inferior would.
91294c83
AC
298
299 If `type' is a pointer to an object, then `enclosing_type' is a
300 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
301 the offset in target addressable memory units from the full object
302 to the pointed-to object -- that is, the value `embedded_offset' would
303 have if we followed the pointer and fetched the complete object.
304 (I don't really see the point. Why not just determine the
305 run-time type when you indirect, and avoid the special case? The
306 contents don't matter until you indirect anyway.)
91294c83
AC
307
308 If we're not doing anything fancy, `enclosing_type' is equal to
309 `type', and `embedded_offset' is zero, so everything works
310 normally. */
311 struct type *enclosing_type;
6b850546
DT
312 LONGEST embedded_offset;
313 LONGEST pointed_to_offset;
91294c83
AC
314
315 /* Values are stored in a chain, so that they can be deleted easily
316 over calls to the inferior. Values assigned to internal
a08702d6
TJB
317 variables, put into the value history or exposed to Python are
318 taken off this list. */
91294c83
AC
319 struct value *next;
320
3e3d7139
JG
321 /* Actual contents of the value. Target byte-order. NULL or not
322 valid if lazy is nonzero. */
323 gdb_byte *contents;
828d3400 324
4e07d55f
PA
325 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
326 rather than available, since the common and default case is for a
9a0dc9e3
PA
327 value to be available. This is filled in at value read time.
328 The unavailable ranges are tracked in bits. Note that a contents
329 bit that has been optimized out doesn't really exist in the
330 program, so it can't be marked unavailable either. */
4e07d55f 331 VEC(range_s) *unavailable;
9a0dc9e3
PA
332
333 /* Likewise, but for optimized out contents (a chunk of the value of
334 a variable that does not actually exist in the program). If LVAL
335 is lval_register, this is a register ($pc, $sp, etc., never a
336 program variable) that has not been saved in the frame. Not
337 saved registers and optimized-out program variables values are
338 treated pretty much the same, except not-saved registers have a
339 different string representation and related error strings. */
340 VEC(range_s) *optimized_out;
91294c83
AC
341};
342
e512cdbd
SM
343/* See value.h. */
344
345struct gdbarch *
346get_value_arch (const struct value *value)
347{
348 return get_type_arch (value_type (value));
349}
350
4e07d55f 351int
6b850546 352value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
353{
354 gdb_assert (!value->lazy);
355
356 return !ranges_contain (value->unavailable, offset, length);
357}
358
bdf22206 359int
6b850546
DT
360value_bytes_available (const struct value *value,
361 LONGEST offset, LONGEST length)
bdf22206
AB
362{
363 return value_bits_available (value,
364 offset * TARGET_CHAR_BIT,
365 length * TARGET_CHAR_BIT);
366}
367
9a0dc9e3
PA
368int
369value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
370{
371 gdb_assert (!value->lazy);
372
373 return ranges_contain (value->optimized_out, bit_offset, bit_length);
374}
375
ec0a52e1
PA
376int
377value_entirely_available (struct value *value)
378{
379 /* We can only tell whether the whole value is available when we try
380 to read it. */
381 if (value->lazy)
382 value_fetch_lazy (value);
383
384 if (VEC_empty (range_s, value->unavailable))
385 return 1;
386 return 0;
387}
388
9a0dc9e3
PA
389/* Returns true if VALUE is entirely covered by RANGES. If the value
390 is lazy, it'll be read now. Note that RANGE is a pointer to
391 pointer because reading the value might change *RANGE. */
392
393static int
394value_entirely_covered_by_range_vector (struct value *value,
395 VEC(range_s) **ranges)
6211c335 396{
9a0dc9e3
PA
397 /* We can only tell whether the whole value is optimized out /
398 unavailable when we try to read it. */
6211c335
YQ
399 if (value->lazy)
400 value_fetch_lazy (value);
401
9a0dc9e3 402 if (VEC_length (range_s, *ranges) == 1)
6211c335 403 {
9a0dc9e3 404 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
405
406 if (t->offset == 0
64c46ce4
JB
407 && t->length == (TARGET_CHAR_BIT
408 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
409 return 1;
410 }
411
412 return 0;
413}
414
9a0dc9e3
PA
415int
416value_entirely_unavailable (struct value *value)
417{
418 return value_entirely_covered_by_range_vector (value, &value->unavailable);
419}
420
421int
422value_entirely_optimized_out (struct value *value)
423{
424 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
425}
426
427/* Insert into the vector pointed to by VECTORP the bit range starting of
428 OFFSET bits, and extending for the next LENGTH bits. */
429
430static void
6b850546
DT
431insert_into_bit_range_vector (VEC(range_s) **vectorp,
432 LONGEST offset, LONGEST length)
4e07d55f
PA
433{
434 range_s newr;
435 int i;
436
437 /* Insert the range sorted. If there's overlap or the new range
438 would be contiguous with an existing range, merge. */
439
440 newr.offset = offset;
441 newr.length = length;
442
443 /* Do a binary search for the position the given range would be
444 inserted if we only considered the starting OFFSET of ranges.
445 Call that position I. Since we also have LENGTH to care for
446 (this is a range afterall), we need to check if the _previous_
447 range overlaps the I range. E.g., calling R the new range:
448
449 #1 - overlaps with previous
450
451 R
452 |-...-|
453 |---| |---| |------| ... |--|
454 0 1 2 N
455
456 I=1
457
458 In the case #1 above, the binary search would return `I=1',
459 meaning, this OFFSET should be inserted at position 1, and the
460 current position 1 should be pushed further (and become 2). But,
461 note that `0' overlaps with R, so we want to merge them.
462
463 A similar consideration needs to be taken if the new range would
464 be contiguous with the previous range:
465
466 #2 - contiguous with previous
467
468 R
469 |-...-|
470 |--| |---| |------| ... |--|
471 0 1 2 N
472
473 I=1
474
475 If there's no overlap with the previous range, as in:
476
477 #3 - not overlapping and not contiguous
478
479 R
480 |-...-|
481 |--| |---| |------| ... |--|
482 0 1 2 N
483
484 I=1
485
486 or if I is 0:
487
488 #4 - R is the range with lowest offset
489
490 R
491 |-...-|
492 |--| |---| |------| ... |--|
493 0 1 2 N
494
495 I=0
496
497 ... we just push the new range to I.
498
499 All the 4 cases above need to consider that the new range may
500 also overlap several of the ranges that follow, or that R may be
501 contiguous with the following range, and merge. E.g.,
502
503 #5 - overlapping following ranges
504
505 R
506 |------------------------|
507 |--| |---| |------| ... |--|
508 0 1 2 N
509
510 I=0
511
512 or:
513
514 R
515 |-------|
516 |--| |---| |------| ... |--|
517 0 1 2 N
518
519 I=1
520
521 */
522
9a0dc9e3 523 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
524 if (i > 0)
525 {
9a0dc9e3 526 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
527
528 if (ranges_overlap (bef->offset, bef->length, offset, length))
529 {
530 /* #1 */
531 ULONGEST l = min (bef->offset, offset);
532 ULONGEST h = max (bef->offset + bef->length, offset + length);
533
534 bef->offset = l;
535 bef->length = h - l;
536 i--;
537 }
538 else if (offset == bef->offset + bef->length)
539 {
540 /* #2 */
541 bef->length += length;
542 i--;
543 }
544 else
545 {
546 /* #3 */
9a0dc9e3 547 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
548 }
549 }
550 else
551 {
552 /* #4 */
9a0dc9e3 553 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
554 }
555
556 /* Check whether the ranges following the one we've just added or
557 touched can be folded in (#5 above). */
9a0dc9e3 558 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
559 {
560 struct range *t;
561 struct range *r;
562 int removed = 0;
563 int next = i + 1;
564
565 /* Get the range we just touched. */
9a0dc9e3 566 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
567 removed = 0;
568
569 i = next;
9a0dc9e3 570 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
571 if (r->offset <= t->offset + t->length)
572 {
573 ULONGEST l, h;
574
575 l = min (t->offset, r->offset);
576 h = max (t->offset + t->length, r->offset + r->length);
577
578 t->offset = l;
579 t->length = h - l;
580
581 removed++;
582 }
583 else
584 {
585 /* If we couldn't merge this one, we won't be able to
586 merge following ones either, since the ranges are
587 always sorted by OFFSET. */
588 break;
589 }
590
591 if (removed != 0)
9a0dc9e3 592 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
593 }
594}
595
9a0dc9e3 596void
6b850546
DT
597mark_value_bits_unavailable (struct value *value,
598 LONGEST offset, LONGEST length)
9a0dc9e3
PA
599{
600 insert_into_bit_range_vector (&value->unavailable, offset, length);
601}
602
bdf22206 603void
6b850546
DT
604mark_value_bytes_unavailable (struct value *value,
605 LONGEST offset, LONGEST length)
bdf22206
AB
606{
607 mark_value_bits_unavailable (value,
608 offset * TARGET_CHAR_BIT,
609 length * TARGET_CHAR_BIT);
610}
611
c8c1c22f
PA
612/* Find the first range in RANGES that overlaps the range defined by
613 OFFSET and LENGTH, starting at element POS in the RANGES vector,
614 Returns the index into RANGES where such overlapping range was
615 found, or -1 if none was found. */
616
617static int
618find_first_range_overlap (VEC(range_s) *ranges, int pos,
6b850546 619 LONGEST offset, LONGEST length)
c8c1c22f
PA
620{
621 range_s *r;
622 int i;
623
624 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
625 if (ranges_overlap (r->offset, r->length, offset, length))
626 return i;
627
628 return -1;
629}
630
bdf22206
AB
631/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
632 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
633 return non-zero.
634
635 It must always be the case that:
636 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
637
638 It is assumed that memory can be accessed from:
639 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
640 to:
641 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
642 / TARGET_CHAR_BIT) */
643static int
644memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
645 const gdb_byte *ptr2, size_t offset2_bits,
646 size_t length_bits)
647{
648 gdb_assert (offset1_bits % TARGET_CHAR_BIT
649 == offset2_bits % TARGET_CHAR_BIT);
650
651 if (offset1_bits % TARGET_CHAR_BIT != 0)
652 {
653 size_t bits;
654 gdb_byte mask, b1, b2;
655
656 /* The offset from the base pointers PTR1 and PTR2 is not a complete
657 number of bytes. A number of bits up to either the next exact
658 byte boundary, or LENGTH_BITS (which ever is sooner) will be
659 compared. */
660 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
661 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
662 mask = (1 << bits) - 1;
663
664 if (length_bits < bits)
665 {
666 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
667 bits = length_bits;
668 }
669
670 /* Now load the two bytes and mask off the bits we care about. */
671 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
672 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
673
674 if (b1 != b2)
675 return 1;
676
677 /* Now update the length and offsets to take account of the bits
678 we've just compared. */
679 length_bits -= bits;
680 offset1_bits += bits;
681 offset2_bits += bits;
682 }
683
684 if (length_bits % TARGET_CHAR_BIT != 0)
685 {
686 size_t bits;
687 size_t o1, o2;
688 gdb_byte mask, b1, b2;
689
690 /* The length is not an exact number of bytes. After the previous
691 IF.. block then the offsets are byte aligned, or the
692 length is zero (in which case this code is not reached). Compare
693 a number of bits at the end of the region, starting from an exact
694 byte boundary. */
695 bits = length_bits % TARGET_CHAR_BIT;
696 o1 = offset1_bits + length_bits - bits;
697 o2 = offset2_bits + length_bits - bits;
698
699 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
700 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
701
702 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
703 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
704
705 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
706 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
707
708 if (b1 != b2)
709 return 1;
710
711 length_bits -= bits;
712 }
713
714 if (length_bits > 0)
715 {
716 /* We've now taken care of any stray "bits" at the start, or end of
717 the region to compare, the remainder can be covered with a simple
718 memcmp. */
719 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
720 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
721 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
722
723 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
724 ptr2 + offset2_bits / TARGET_CHAR_BIT,
725 length_bits / TARGET_CHAR_BIT);
726 }
727
728 /* Length is zero, regions match. */
729 return 0;
730}
731
9a0dc9e3
PA
732/* Helper struct for find_first_range_overlap_and_match and
733 value_contents_bits_eq. Keep track of which slot of a given ranges
734 vector have we last looked at. */
bdf22206 735
9a0dc9e3
PA
736struct ranges_and_idx
737{
738 /* The ranges. */
739 VEC(range_s) *ranges;
740
741 /* The range we've last found in RANGES. Given ranges are sorted,
742 we can start the next lookup here. */
743 int idx;
744};
745
746/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
747 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
748 ranges starting at OFFSET2 bits. Return true if the ranges match
749 and fill in *L and *H with the overlapping window relative to
750 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
751
752static int
9a0dc9e3
PA
753find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
754 struct ranges_and_idx *rp2,
6b850546
DT
755 LONGEST offset1, LONGEST offset2,
756 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 757{
9a0dc9e3
PA
758 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
759 offset1, length);
760 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
761 offset2, length);
c8c1c22f 762
9a0dc9e3
PA
763 if (rp1->idx == -1 && rp2->idx == -1)
764 {
765 *l = length;
766 *h = length;
767 return 1;
768 }
769 else if (rp1->idx == -1 || rp2->idx == -1)
770 return 0;
771 else
c8c1c22f
PA
772 {
773 range_s *r1, *r2;
774 ULONGEST l1, h1;
775 ULONGEST l2, h2;
776
9a0dc9e3
PA
777 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
778 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
779
780 /* Get the unavailable windows intersected by the incoming
781 ranges. The first and last ranges that overlap the argument
782 range may be wider than said incoming arguments ranges. */
783 l1 = max (offset1, r1->offset);
784 h1 = min (offset1 + length, r1->offset + r1->length);
785
786 l2 = max (offset2, r2->offset);
9a0dc9e3 787 h2 = min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
788
789 /* Make them relative to the respective start offsets, so we can
790 compare them for equality. */
791 l1 -= offset1;
792 h1 -= offset1;
793
794 l2 -= offset2;
795 h2 -= offset2;
796
9a0dc9e3 797 /* Different ranges, no match. */
c8c1c22f
PA
798 if (l1 != l2 || h1 != h2)
799 return 0;
800
9a0dc9e3
PA
801 *h = h1;
802 *l = l1;
803 return 1;
804 }
805}
806
807/* Helper function for value_contents_eq. The only difference is that
808 this function is bit rather than byte based.
809
810 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
811 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
812 Return true if the available bits match. */
813
814static int
815value_contents_bits_eq (const struct value *val1, int offset1,
816 const struct value *val2, int offset2,
817 int length)
818{
819 /* Each array element corresponds to a ranges source (unavailable,
820 optimized out). '1' is for VAL1, '2' for VAL2. */
821 struct ranges_and_idx rp1[2], rp2[2];
822
823 /* See function description in value.h. */
824 gdb_assert (!val1->lazy && !val2->lazy);
825
826 /* We shouldn't be trying to compare past the end of the values. */
827 gdb_assert (offset1 + length
828 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
829 gdb_assert (offset2 + length
830 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
831
832 memset (&rp1, 0, sizeof (rp1));
833 memset (&rp2, 0, sizeof (rp2));
834 rp1[0].ranges = val1->unavailable;
835 rp2[0].ranges = val2->unavailable;
836 rp1[1].ranges = val1->optimized_out;
837 rp2[1].ranges = val2->optimized_out;
838
839 while (length > 0)
840 {
000339af 841 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
842 int i;
843
844 for (i = 0; i < 2; i++)
845 {
846 ULONGEST l_tmp, h_tmp;
847
848 /* The contents only match equal if the invalid/unavailable
849 contents ranges match as well. */
850 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
851 offset1, offset2, length,
852 &l_tmp, &h_tmp))
853 return 0;
854
855 /* We're interested in the lowest/first range found. */
856 if (i == 0 || l_tmp < l)
857 {
858 l = l_tmp;
859 h = h_tmp;
860 }
861 }
862
863 /* Compare the available/valid contents. */
bdf22206 864 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 865 val2->contents, offset2, l) != 0)
c8c1c22f
PA
866 return 0;
867
9a0dc9e3
PA
868 length -= h;
869 offset1 += h;
870 offset2 += h;
c8c1c22f
PA
871 }
872
873 return 1;
874}
875
bdf22206 876int
6b850546
DT
877value_contents_eq (const struct value *val1, LONGEST offset1,
878 const struct value *val2, LONGEST offset2,
879 LONGEST length)
bdf22206 880{
9a0dc9e3
PA
881 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
882 val2, offset2 * TARGET_CHAR_BIT,
883 length * TARGET_CHAR_BIT);
bdf22206
AB
884}
885
581e13c1 886/* Prototypes for local functions. */
c906108c 887
a14ed312 888static void show_values (char *, int);
c906108c 889
a14ed312 890static void show_convenience (char *, int);
c906108c 891
c906108c
SS
892
893/* The value-history records all the values printed
894 by print commands during this session. Each chunk
895 records 60 consecutive values. The first chunk on
896 the chain records the most recent values.
897 The total number of values is in value_history_count. */
898
899#define VALUE_HISTORY_CHUNK 60
900
901struct value_history_chunk
c5aa993b
JM
902 {
903 struct value_history_chunk *next;
f23631e4 904 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 905 };
c906108c
SS
906
907/* Chain of chunks now in use. */
908
909static struct value_history_chunk *value_history_chain;
910
581e13c1 911static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 912
c906108c
SS
913\f
914/* List of all value objects currently allocated
915 (except for those released by calls to release_value)
916 This is so they can be freed after each command. */
917
f23631e4 918static struct value *all_values;
c906108c 919
3e3d7139
JG
920/* Allocate a lazy value for type TYPE. Its actual content is
921 "lazily" allocated too: the content field of the return value is
922 NULL; it will be allocated when it is fetched from the target. */
c906108c 923
f23631e4 924struct value *
3e3d7139 925allocate_value_lazy (struct type *type)
c906108c 926{
f23631e4 927 struct value *val;
c54eabfa
JK
928
929 /* Call check_typedef on our type to make sure that, if TYPE
930 is a TYPE_CODE_TYPEDEF, its length is set to the length
931 of the target type instead of zero. However, we do not
932 replace the typedef type by the target type, because we want
933 to keep the typedef in order to be able to set the VAL's type
934 description correctly. */
935 check_typedef (type);
c906108c 936
8d749320 937 val = XCNEW (struct value);
3e3d7139 938 val->contents = NULL;
df407dfe 939 val->next = all_values;
c906108c 940 all_values = val;
df407dfe 941 val->type = type;
4754a64e 942 val->enclosing_type = type;
c906108c 943 VALUE_LVAL (val) = not_lval;
42ae5230 944 val->location.address = 0;
1df6926e 945 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
946 val->offset = 0;
947 val->bitpos = 0;
948 val->bitsize = 0;
9ee8fc9d 949 VALUE_REGNUM (val) = -1;
3e3d7139 950 val->lazy = 1;
13c3b5f5 951 val->embedded_offset = 0;
b44d461b 952 val->pointed_to_offset = 0;
c906108c 953 val->modifiable = 1;
42be36b3 954 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
955
956 /* Values start out on the all_values chain. */
957 val->reference_count = 1;
958
c906108c
SS
959 return val;
960}
961
5fdf6324
AB
962/* The maximum size, in bytes, that GDB will try to allocate for a value.
963 The initial value of 64k was not selected for any specific reason, it is
964 just a reasonable starting point. */
965
966static int max_value_size = 65536; /* 64k bytes */
967
968/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
969 LONGEST, otherwise GDB will not be able to parse integer values from the
970 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
971 be unable to parse "set max-value-size 2".
972
973 As we want a consistent GDB experience across hosts with different sizes
974 of LONGEST, this arbitrary minimum value was selected, so long as this
975 is bigger than LONGEST on all GDB supported hosts we're fine. */
976
977#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
978gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
979
980/* Implement the "set max-value-size" command. */
981
982static void
983set_max_value_size (char *args, int from_tty,
984 struct cmd_list_element *c)
985{
986 gdb_assert (max_value_size == -1 || max_value_size >= 0);
987
988 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
989 {
990 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
991 error (_("max-value-size set too low, increasing to %d bytes"),
992 max_value_size);
993 }
994}
995
996/* Implement the "show max-value-size" command. */
997
998static void
999show_max_value_size (struct ui_file *file, int from_tty,
1000 struct cmd_list_element *c, const char *value)
1001{
1002 if (max_value_size == -1)
1003 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
1004 else
1005 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
1006 max_value_size);
1007}
1008
1009/* Called before we attempt to allocate or reallocate a buffer for the
1010 contents of a value. TYPE is the type of the value for which we are
1011 allocating the buffer. If the buffer is too large (based on the user
1012 controllable setting) then throw an error. If this function returns
1013 then we should attempt to allocate the buffer. */
1014
1015static void
1016check_type_length_before_alloc (const struct type *type)
1017{
1018 unsigned int length = TYPE_LENGTH (type);
1019
1020 if (max_value_size > -1 && length > max_value_size)
1021 {
1022 if (TYPE_NAME (type) != NULL)
1023 error (_("value of type `%s' requires %u bytes, which is more "
1024 "than max-value-size"), TYPE_NAME (type), length);
1025 else
1026 error (_("value requires %u bytes, which is more than "
1027 "max-value-size"), length);
1028 }
1029}
1030
3e3d7139
JG
1031/* Allocate the contents of VAL if it has not been allocated yet. */
1032
548b762d 1033static void
3e3d7139
JG
1034allocate_value_contents (struct value *val)
1035{
1036 if (!val->contents)
5fdf6324
AB
1037 {
1038 check_type_length_before_alloc (val->enclosing_type);
1039 val->contents
1040 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1041 }
3e3d7139
JG
1042}
1043
1044/* Allocate a value and its contents for type TYPE. */
1045
1046struct value *
1047allocate_value (struct type *type)
1048{
1049 struct value *val = allocate_value_lazy (type);
a109c7c1 1050
3e3d7139
JG
1051 allocate_value_contents (val);
1052 val->lazy = 0;
1053 return val;
1054}
1055
c906108c 1056/* Allocate a value that has the correct length
938f5214 1057 for COUNT repetitions of type TYPE. */
c906108c 1058
f23631e4 1059struct value *
fba45db2 1060allocate_repeat_value (struct type *type, int count)
c906108c 1061{
c5aa993b 1062 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1063 /* FIXME-type-allocation: need a way to free this type when we are
1064 done with it. */
e3506a9f
UW
1065 struct type *array_type
1066 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1067
e3506a9f 1068 return allocate_value (array_type);
c906108c
SS
1069}
1070
5f5233d4
PA
1071struct value *
1072allocate_computed_value (struct type *type,
c8f2448a 1073 const struct lval_funcs *funcs,
5f5233d4
PA
1074 void *closure)
1075{
41e8491f 1076 struct value *v = allocate_value_lazy (type);
a109c7c1 1077
5f5233d4
PA
1078 VALUE_LVAL (v) = lval_computed;
1079 v->location.computed.funcs = funcs;
1080 v->location.computed.closure = closure;
5f5233d4
PA
1081
1082 return v;
1083}
1084
a7035dbb
JK
1085/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1086
1087struct value *
1088allocate_optimized_out_value (struct type *type)
1089{
1090 struct value *retval = allocate_value_lazy (type);
1091
9a0dc9e3
PA
1092 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1093 set_value_lazy (retval, 0);
a7035dbb
JK
1094 return retval;
1095}
1096
df407dfe
AC
1097/* Accessor methods. */
1098
17cf0ecd 1099struct value *
4bf7b526 1100value_next (const struct value *value)
17cf0ecd
AC
1101{
1102 return value->next;
1103}
1104
df407dfe 1105struct type *
0e03807e 1106value_type (const struct value *value)
df407dfe
AC
1107{
1108 return value->type;
1109}
04624583
AC
1110void
1111deprecated_set_value_type (struct value *value, struct type *type)
1112{
1113 value->type = type;
1114}
df407dfe 1115
6b850546 1116LONGEST
0e03807e 1117value_offset (const struct value *value)
df407dfe
AC
1118{
1119 return value->offset;
1120}
f5cf64a7 1121void
6b850546 1122set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1123{
1124 value->offset = offset;
1125}
df407dfe 1126
6b850546 1127LONGEST
0e03807e 1128value_bitpos (const struct value *value)
df407dfe
AC
1129{
1130 return value->bitpos;
1131}
9bbda503 1132void
6b850546 1133set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1134{
1135 value->bitpos = bit;
1136}
df407dfe 1137
6b850546 1138LONGEST
0e03807e 1139value_bitsize (const struct value *value)
df407dfe
AC
1140{
1141 return value->bitsize;
1142}
9bbda503 1143void
6b850546 1144set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1145{
1146 value->bitsize = bit;
1147}
df407dfe 1148
4ea48cc1 1149struct value *
4bf7b526 1150value_parent (const struct value *value)
4ea48cc1
DJ
1151{
1152 return value->parent;
1153}
1154
53ba8333
JB
1155/* See value.h. */
1156
1157void
1158set_value_parent (struct value *value, struct value *parent)
1159{
40501e00
TT
1160 struct value *old = value->parent;
1161
53ba8333 1162 value->parent = parent;
40501e00
TT
1163 if (parent != NULL)
1164 value_incref (parent);
1165 value_free (old);
53ba8333
JB
1166}
1167
fc1a4b47 1168gdb_byte *
990a07ab
AC
1169value_contents_raw (struct value *value)
1170{
3ae385af
SM
1171 struct gdbarch *arch = get_value_arch (value);
1172 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1173
3e3d7139 1174 allocate_value_contents (value);
3ae385af 1175 return value->contents + value->embedded_offset * unit_size;
990a07ab
AC
1176}
1177
fc1a4b47 1178gdb_byte *
990a07ab
AC
1179value_contents_all_raw (struct value *value)
1180{
3e3d7139
JG
1181 allocate_value_contents (value);
1182 return value->contents;
990a07ab
AC
1183}
1184
4754a64e 1185struct type *
4bf7b526 1186value_enclosing_type (const struct value *value)
4754a64e
AC
1187{
1188 return value->enclosing_type;
1189}
1190
8264ba82
AG
1191/* Look at value.h for description. */
1192
1193struct type *
1194value_actual_type (struct value *value, int resolve_simple_types,
1195 int *real_type_found)
1196{
1197 struct value_print_options opts;
8264ba82
AG
1198 struct type *result;
1199
1200 get_user_print_options (&opts);
1201
1202 if (real_type_found)
1203 *real_type_found = 0;
1204 result = value_type (value);
1205 if (opts.objectprint)
1206 {
5e34c6c3
LM
1207 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1208 fetch its rtti type. */
1209 if ((TYPE_CODE (result) == TYPE_CODE_PTR
444bca65 1210 || TYPE_CODE (result) == TYPE_CODE_REF)
5e34c6c3 1211 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1212 == TYPE_CODE_STRUCT
1213 && !value_optimized_out (value))
8264ba82
AG
1214 {
1215 struct type *real_type;
1216
1217 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1218 if (real_type)
1219 {
1220 if (real_type_found)
1221 *real_type_found = 1;
1222 result = real_type;
1223 }
1224 }
1225 else if (resolve_simple_types)
1226 {
1227 if (real_type_found)
1228 *real_type_found = 1;
1229 result = value_enclosing_type (value);
1230 }
1231 }
1232
1233 return result;
1234}
1235
901461f8
PA
1236void
1237error_value_optimized_out (void)
1238{
1239 error (_("value has been optimized out"));
1240}
1241
0e03807e 1242static void
4e07d55f 1243require_not_optimized_out (const struct value *value)
0e03807e 1244{
9a0dc9e3 1245 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1246 {
1247 if (value->lval == lval_register)
1248 error (_("register has not been saved in frame"));
1249 else
1250 error_value_optimized_out ();
1251 }
0e03807e
TT
1252}
1253
4e07d55f
PA
1254static void
1255require_available (const struct value *value)
1256{
1257 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1258 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1259}
1260
fc1a4b47 1261const gdb_byte *
0e03807e 1262value_contents_for_printing (struct value *value)
46615f07
AC
1263{
1264 if (value->lazy)
1265 value_fetch_lazy (value);
3e3d7139 1266 return value->contents;
46615f07
AC
1267}
1268
de4127a3
PA
1269const gdb_byte *
1270value_contents_for_printing_const (const struct value *value)
1271{
1272 gdb_assert (!value->lazy);
1273 return value->contents;
1274}
1275
0e03807e
TT
1276const gdb_byte *
1277value_contents_all (struct value *value)
1278{
1279 const gdb_byte *result = value_contents_for_printing (value);
1280 require_not_optimized_out (value);
4e07d55f 1281 require_available (value);
0e03807e
TT
1282 return result;
1283}
1284
9a0dc9e3
PA
1285/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1286 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1287
1288static void
1289ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1290 VEC (range_s) *src_range, int src_bit_offset,
1291 int bit_length)
1292{
1293 range_s *r;
1294 int i;
1295
1296 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1297 {
1298 ULONGEST h, l;
1299
1300 l = max (r->offset, src_bit_offset);
1301 h = min (r->offset + r->length, src_bit_offset + bit_length);
1302
1303 if (l < h)
1304 insert_into_bit_range_vector (dst_range,
1305 dst_bit_offset + (l - src_bit_offset),
1306 h - l);
1307 }
1308}
1309
4875ffdb
PA
1310/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1311 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1312
1313static void
1314value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1315 const struct value *src, int src_bit_offset,
1316 int bit_length)
1317{
1318 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1319 src->unavailable, src_bit_offset,
1320 bit_length);
1321 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1322 src->optimized_out, src_bit_offset,
1323 bit_length);
1324}
1325
3ae385af 1326/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1327 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1328 contents, starting at DST_OFFSET. If unavailable contents are
1329 being copied from SRC, the corresponding DST contents are marked
1330 unavailable accordingly. Neither DST nor SRC may be lazy
1331 values.
1332
1333 It is assumed the contents of DST in the [DST_OFFSET,
1334 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1335
1336void
6b850546
DT
1337value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1338 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1339{
6b850546 1340 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1341 struct gdbarch *arch = get_value_arch (src);
1342 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1343
1344 /* A lazy DST would make that this copy operation useless, since as
1345 soon as DST's contents were un-lazied (by a later value_contents
1346 call, say), the contents would be overwritten. A lazy SRC would
1347 mean we'd be copying garbage. */
1348 gdb_assert (!dst->lazy && !src->lazy);
1349
29976f3f
PA
1350 /* The overwritten DST range gets unavailability ORed in, not
1351 replaced. Make sure to remember to implement replacing if it
1352 turns out actually necessary. */
1353 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1354 gdb_assert (!value_bits_any_optimized_out (dst,
1355 TARGET_CHAR_BIT * dst_offset,
1356 TARGET_CHAR_BIT * length));
29976f3f 1357
39d37385 1358 /* Copy the data. */
3ae385af
SM
1359 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1360 value_contents_all_raw (src) + src_offset * unit_size,
1361 length * unit_size);
39d37385
PA
1362
1363 /* Copy the meta-data, adjusted. */
3ae385af
SM
1364 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1365 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1366 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1367
4875ffdb
PA
1368 value_ranges_copy_adjusted (dst, dst_bit_offset,
1369 src, src_bit_offset,
1370 bit_length);
39d37385
PA
1371}
1372
29976f3f
PA
1373/* Copy LENGTH bytes of SRC value's (all) contents
1374 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1375 (all) contents, starting at DST_OFFSET. If unavailable contents
1376 are being copied from SRC, the corresponding DST contents are
1377 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1378 lazy, it will be fetched now.
29976f3f
PA
1379
1380 It is assumed the contents of DST in the [DST_OFFSET,
1381 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1382
1383void
6b850546
DT
1384value_contents_copy (struct value *dst, LONGEST dst_offset,
1385 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1386{
39d37385
PA
1387 if (src->lazy)
1388 value_fetch_lazy (src);
1389
1390 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1391}
1392
d69fe07e 1393int
4bf7b526 1394value_lazy (const struct value *value)
d69fe07e
AC
1395{
1396 return value->lazy;
1397}
1398
dfa52d88
AC
1399void
1400set_value_lazy (struct value *value, int val)
1401{
1402 value->lazy = val;
1403}
1404
4e5d721f 1405int
4bf7b526 1406value_stack (const struct value *value)
4e5d721f
DE
1407{
1408 return value->stack;
1409}
1410
1411void
1412set_value_stack (struct value *value, int val)
1413{
1414 value->stack = val;
1415}
1416
fc1a4b47 1417const gdb_byte *
0fd88904
AC
1418value_contents (struct value *value)
1419{
0e03807e
TT
1420 const gdb_byte *result = value_contents_writeable (value);
1421 require_not_optimized_out (value);
4e07d55f 1422 require_available (value);
0e03807e 1423 return result;
0fd88904
AC
1424}
1425
fc1a4b47 1426gdb_byte *
0fd88904
AC
1427value_contents_writeable (struct value *value)
1428{
1429 if (value->lazy)
1430 value_fetch_lazy (value);
fc0c53a0 1431 return value_contents_raw (value);
0fd88904
AC
1432}
1433
feb13ab0
AC
1434int
1435value_optimized_out (struct value *value)
1436{
691a26f5
AB
1437 /* We can only know if a value is optimized out once we have tried to
1438 fetch it. */
9a0dc9e3 1439 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
ecf2e90c
DB
1440 {
1441 TRY
1442 {
1443 value_fetch_lazy (value);
1444 }
1445 CATCH (ex, RETURN_MASK_ERROR)
1446 {
1447 /* Fall back to checking value->optimized_out. */
1448 }
1449 END_CATCH
1450 }
691a26f5 1451
9a0dc9e3 1452 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1453}
1454
9a0dc9e3
PA
1455/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1456 the following LENGTH bytes. */
eca07816 1457
feb13ab0 1458void
9a0dc9e3 1459mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1460{
9a0dc9e3
PA
1461 mark_value_bits_optimized_out (value,
1462 offset * TARGET_CHAR_BIT,
1463 length * TARGET_CHAR_BIT);
feb13ab0 1464}
13c3b5f5 1465
9a0dc9e3 1466/* See value.h. */
0e03807e 1467
9a0dc9e3 1468void
6b850546
DT
1469mark_value_bits_optimized_out (struct value *value,
1470 LONGEST offset, LONGEST length)
0e03807e 1471{
9a0dc9e3 1472 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1473}
1474
8cf6f0b1
TT
1475int
1476value_bits_synthetic_pointer (const struct value *value,
6b850546 1477 LONGEST offset, LONGEST length)
8cf6f0b1 1478{
e7303042 1479 if (value->lval != lval_computed
8cf6f0b1
TT
1480 || !value->location.computed.funcs->check_synthetic_pointer)
1481 return 0;
1482 return value->location.computed.funcs->check_synthetic_pointer (value,
1483 offset,
1484 length);
1485}
1486
6b850546 1487LONGEST
4bf7b526 1488value_embedded_offset (const struct value *value)
13c3b5f5
AC
1489{
1490 return value->embedded_offset;
1491}
1492
1493void
6b850546 1494set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1495{
1496 value->embedded_offset = val;
1497}
b44d461b 1498
6b850546 1499LONGEST
4bf7b526 1500value_pointed_to_offset (const struct value *value)
b44d461b
AC
1501{
1502 return value->pointed_to_offset;
1503}
1504
1505void
6b850546 1506set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1507{
1508 value->pointed_to_offset = val;
1509}
13bb5560 1510
c8f2448a 1511const struct lval_funcs *
a471c594 1512value_computed_funcs (const struct value *v)
5f5233d4 1513{
a471c594 1514 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1515
1516 return v->location.computed.funcs;
1517}
1518
1519void *
0e03807e 1520value_computed_closure (const struct value *v)
5f5233d4 1521{
0e03807e 1522 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1523
1524 return v->location.computed.closure;
1525}
1526
13bb5560
AC
1527enum lval_type *
1528deprecated_value_lval_hack (struct value *value)
1529{
1530 return &value->lval;
1531}
1532
a471c594
JK
1533enum lval_type
1534value_lval_const (const struct value *value)
1535{
1536 return value->lval;
1537}
1538
42ae5230 1539CORE_ADDR
de4127a3 1540value_address (const struct value *value)
42ae5230
TT
1541{
1542 if (value->lval == lval_internalvar
e81e7f5e
SC
1543 || value->lval == lval_internalvar_component
1544 || value->lval == lval_xcallable)
42ae5230 1545 return 0;
53ba8333
JB
1546 if (value->parent != NULL)
1547 return value_address (value->parent) + value->offset;
9920b434
BH
1548 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1549 {
1550 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1551 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1552 }
1553
1554 return value->location.address + value->offset;
42ae5230
TT
1555}
1556
1557CORE_ADDR
4bf7b526 1558value_raw_address (const struct value *value)
42ae5230
TT
1559{
1560 if (value->lval == lval_internalvar
e81e7f5e
SC
1561 || value->lval == lval_internalvar_component
1562 || value->lval == lval_xcallable)
42ae5230
TT
1563 return 0;
1564 return value->location.address;
1565}
1566
1567void
1568set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1569{
42ae5230 1570 gdb_assert (value->lval != lval_internalvar
e81e7f5e
SC
1571 && value->lval != lval_internalvar_component
1572 && value->lval != lval_xcallable);
42ae5230 1573 value->location.address = addr;
13bb5560
AC
1574}
1575
1576struct internalvar **
1577deprecated_value_internalvar_hack (struct value *value)
1578{
1579 return &value->location.internalvar;
1580}
1581
1582struct frame_id *
1583deprecated_value_frame_id_hack (struct value *value)
1584{
1585 return &value->frame_id;
1586}
1587
1588short *
1589deprecated_value_regnum_hack (struct value *value)
1590{
1591 return &value->regnum;
1592}
88e3b34b
AC
1593
1594int
4bf7b526 1595deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1596{
1597 return value->modifiable;
1598}
990a07ab 1599\f
c906108c
SS
1600/* Return a mark in the value chain. All values allocated after the
1601 mark is obtained (except for those released) are subject to being freed
1602 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1603struct value *
fba45db2 1604value_mark (void)
c906108c
SS
1605{
1606 return all_values;
1607}
1608
828d3400
DJ
1609/* Take a reference to VAL. VAL will not be deallocated until all
1610 references are released. */
1611
1612void
1613value_incref (struct value *val)
1614{
1615 val->reference_count++;
1616}
1617
1618/* Release a reference to VAL, which was acquired with value_incref.
1619 This function is also called to deallocate values from the value
1620 chain. */
1621
3e3d7139
JG
1622void
1623value_free (struct value *val)
1624{
1625 if (val)
5f5233d4 1626 {
828d3400
DJ
1627 gdb_assert (val->reference_count > 0);
1628 val->reference_count--;
1629 if (val->reference_count > 0)
1630 return;
1631
4ea48cc1
DJ
1632 /* If there's an associated parent value, drop our reference to
1633 it. */
1634 if (val->parent != NULL)
1635 value_free (val->parent);
1636
5f5233d4
PA
1637 if (VALUE_LVAL (val) == lval_computed)
1638 {
c8f2448a 1639 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1640
1641 if (funcs->free_closure)
1642 funcs->free_closure (val);
1643 }
e81e7f5e
SC
1644 else if (VALUE_LVAL (val) == lval_xcallable)
1645 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1646
1647 xfree (val->contents);
4e07d55f 1648 VEC_free (range_s, val->unavailable);
5f5233d4 1649 }
3e3d7139
JG
1650 xfree (val);
1651}
1652
c906108c
SS
1653/* Free all values allocated since MARK was obtained by value_mark
1654 (except for those released). */
1655void
4bf7b526 1656value_free_to_mark (const struct value *mark)
c906108c 1657{
f23631e4
AC
1658 struct value *val;
1659 struct value *next;
c906108c
SS
1660
1661 for (val = all_values; val && val != mark; val = next)
1662 {
df407dfe 1663 next = val->next;
e848a8a5 1664 val->released = 1;
c906108c
SS
1665 value_free (val);
1666 }
1667 all_values = val;
1668}
1669
1670/* Free all the values that have been allocated (except for those released).
725e88af
DE
1671 Call after each command, successful or not.
1672 In practice this is called before each command, which is sufficient. */
c906108c
SS
1673
1674void
fba45db2 1675free_all_values (void)
c906108c 1676{
f23631e4
AC
1677 struct value *val;
1678 struct value *next;
c906108c
SS
1679
1680 for (val = all_values; val; val = next)
1681 {
df407dfe 1682 next = val->next;
e848a8a5 1683 val->released = 1;
c906108c
SS
1684 value_free (val);
1685 }
1686
1687 all_values = 0;
1688}
1689
0cf6dd15
TJB
1690/* Frees all the elements in a chain of values. */
1691
1692void
1693free_value_chain (struct value *v)
1694{
1695 struct value *next;
1696
1697 for (; v; v = next)
1698 {
1699 next = value_next (v);
1700 value_free (v);
1701 }
1702}
1703
c906108c
SS
1704/* Remove VAL from the chain all_values
1705 so it will not be freed automatically. */
1706
1707void
f23631e4 1708release_value (struct value *val)
c906108c 1709{
f23631e4 1710 struct value *v;
c906108c
SS
1711
1712 if (all_values == val)
1713 {
1714 all_values = val->next;
06a64a0b 1715 val->next = NULL;
e848a8a5 1716 val->released = 1;
c906108c
SS
1717 return;
1718 }
1719
1720 for (v = all_values; v; v = v->next)
1721 {
1722 if (v->next == val)
1723 {
1724 v->next = val->next;
06a64a0b 1725 val->next = NULL;
e848a8a5 1726 val->released = 1;
c906108c
SS
1727 break;
1728 }
1729 }
1730}
1731
e848a8a5
TT
1732/* If the value is not already released, release it.
1733 If the value is already released, increment its reference count.
1734 That is, this function ensures that the value is released from the
1735 value chain and that the caller owns a reference to it. */
1736
1737void
1738release_value_or_incref (struct value *val)
1739{
1740 if (val->released)
1741 value_incref (val);
1742 else
1743 release_value (val);
1744}
1745
c906108c 1746/* Release all values up to mark */
f23631e4 1747struct value *
4bf7b526 1748value_release_to_mark (const struct value *mark)
c906108c 1749{
f23631e4
AC
1750 struct value *val;
1751 struct value *next;
c906108c 1752
df407dfe 1753 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1754 {
1755 if (next->next == mark)
1756 {
1757 all_values = next->next;
1758 next->next = NULL;
1759 return val;
1760 }
1761 next->released = 1;
1762 }
c906108c
SS
1763 all_values = 0;
1764 return val;
1765}
1766
1767/* Return a copy of the value ARG.
1768 It contains the same contents, for same memory address,
1769 but it's a different block of storage. */
1770
f23631e4
AC
1771struct value *
1772value_copy (struct value *arg)
c906108c 1773{
4754a64e 1774 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1775 struct value *val;
1776
1777 if (value_lazy (arg))
1778 val = allocate_value_lazy (encl_type);
1779 else
1780 val = allocate_value (encl_type);
df407dfe 1781 val->type = arg->type;
c906108c 1782 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1783 val->location = arg->location;
df407dfe
AC
1784 val->offset = arg->offset;
1785 val->bitpos = arg->bitpos;
1786 val->bitsize = arg->bitsize;
1df6926e 1787 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1788 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1789 val->lazy = arg->lazy;
13c3b5f5 1790 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1791 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1792 val->modifiable = arg->modifiable;
d69fe07e 1793 if (!value_lazy (val))
c906108c 1794 {
990a07ab 1795 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1796 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1797
1798 }
4e07d55f 1799 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1800 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1801 set_value_parent (val, arg->parent);
5f5233d4
PA
1802 if (VALUE_LVAL (val) == lval_computed)
1803 {
c8f2448a 1804 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1805
1806 if (funcs->copy_closure)
1807 val->location.computed.closure = funcs->copy_closure (val);
1808 }
c906108c
SS
1809 return val;
1810}
74bcbdf3 1811
4c082a81
SC
1812/* Return a "const" and/or "volatile" qualified version of the value V.
1813 If CNST is true, then the returned value will be qualified with
1814 "const".
1815 if VOLTL is true, then the returned value will be qualified with
1816 "volatile". */
1817
1818struct value *
1819make_cv_value (int cnst, int voltl, struct value *v)
1820{
1821 struct type *val_type = value_type (v);
1822 struct type *enclosing_type = value_enclosing_type (v);
1823 struct value *cv_val = value_copy (v);
1824
1825 deprecated_set_value_type (cv_val,
1826 make_cv_type (cnst, voltl, val_type, NULL));
1827 set_value_enclosing_type (cv_val,
1828 make_cv_type (cnst, voltl, enclosing_type, NULL));
1829
1830 return cv_val;
1831}
1832
c37f7098
KW
1833/* Return a version of ARG that is non-lvalue. */
1834
1835struct value *
1836value_non_lval (struct value *arg)
1837{
1838 if (VALUE_LVAL (arg) != not_lval)
1839 {
1840 struct type *enc_type = value_enclosing_type (arg);
1841 struct value *val = allocate_value (enc_type);
1842
1843 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1844 TYPE_LENGTH (enc_type));
1845 val->type = arg->type;
1846 set_value_embedded_offset (val, value_embedded_offset (arg));
1847 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1848 return val;
1849 }
1850 return arg;
1851}
1852
6c659fc2
SC
1853/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1854
1855void
1856value_force_lval (struct value *v, CORE_ADDR addr)
1857{
1858 gdb_assert (VALUE_LVAL (v) == not_lval);
1859
1860 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1861 v->lval = lval_memory;
1862 v->location.address = addr;
1863}
1864
74bcbdf3 1865void
0e03807e
TT
1866set_value_component_location (struct value *component,
1867 const struct value *whole)
74bcbdf3 1868{
9920b434
BH
1869 struct type *type;
1870
e81e7f5e
SC
1871 gdb_assert (whole->lval != lval_xcallable);
1872
0e03807e 1873 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1874 VALUE_LVAL (component) = lval_internalvar_component;
1875 else
0e03807e 1876 VALUE_LVAL (component) = whole->lval;
5f5233d4 1877
74bcbdf3 1878 component->location = whole->location;
0e03807e 1879 if (whole->lval == lval_computed)
5f5233d4 1880 {
c8f2448a 1881 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1882
1883 if (funcs->copy_closure)
1884 component->location.computed.closure = funcs->copy_closure (whole);
1885 }
9920b434
BH
1886
1887 /* If type has a dynamic resolved location property
1888 update it's value address. */
1889 type = value_type (whole);
1890 if (NULL != TYPE_DATA_LOCATION (type)
1891 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1892 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1893}
1894
c906108c
SS
1895/* Access to the value history. */
1896
1897/* Record a new value in the value history.
eddf0bae 1898 Returns the absolute history index of the entry. */
c906108c
SS
1899
1900int
f23631e4 1901record_latest_value (struct value *val)
c906108c
SS
1902{
1903 int i;
1904
1905 /* We don't want this value to have anything to do with the inferior anymore.
1906 In particular, "set $1 = 50" should not affect the variable from which
1907 the value was taken, and fast watchpoints should be able to assume that
1908 a value on the value history never changes. */
d69fe07e 1909 if (value_lazy (val))
c906108c
SS
1910 value_fetch_lazy (val);
1911 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1912 from. This is a bit dubious, because then *&$1 does not just return $1
1913 but the current contents of that location. c'est la vie... */
1914 val->modifiable = 0;
350e1a76
DE
1915
1916 /* The value may have already been released, in which case we're adding a
1917 new reference for its entry in the history. That is why we call
1918 release_value_or_incref here instead of release_value. */
1919 release_value_or_incref (val);
c906108c
SS
1920
1921 /* Here we treat value_history_count as origin-zero
1922 and applying to the value being stored now. */
1923
1924 i = value_history_count % VALUE_HISTORY_CHUNK;
1925 if (i == 0)
1926 {
8d749320 1927 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
a109c7c1 1928
fe978cb0
PA
1929 newobj->next = value_history_chain;
1930 value_history_chain = newobj;
c906108c
SS
1931 }
1932
1933 value_history_chain->values[i] = val;
1934
1935 /* Now we regard value_history_count as origin-one
1936 and applying to the value just stored. */
1937
1938 return ++value_history_count;
1939}
1940
1941/* Return a copy of the value in the history with sequence number NUM. */
1942
f23631e4 1943struct value *
fba45db2 1944access_value_history (int num)
c906108c 1945{
f23631e4 1946 struct value_history_chunk *chunk;
52f0bd74
AC
1947 int i;
1948 int absnum = num;
c906108c
SS
1949
1950 if (absnum <= 0)
1951 absnum += value_history_count;
1952
1953 if (absnum <= 0)
1954 {
1955 if (num == 0)
8a3fe4f8 1956 error (_("The history is empty."));
c906108c 1957 else if (num == 1)
8a3fe4f8 1958 error (_("There is only one value in the history."));
c906108c 1959 else
8a3fe4f8 1960 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1961 }
1962 if (absnum > value_history_count)
8a3fe4f8 1963 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1964
1965 absnum--;
1966
1967 /* Now absnum is always absolute and origin zero. */
1968
1969 chunk = value_history_chain;
3e43a32a
MS
1970 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1971 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1972 i > 0; i--)
1973 chunk = chunk->next;
1974
1975 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1976}
1977
c906108c 1978static void
fba45db2 1979show_values (char *num_exp, int from_tty)
c906108c 1980{
52f0bd74 1981 int i;
f23631e4 1982 struct value *val;
c906108c
SS
1983 static int num = 1;
1984
1985 if (num_exp)
1986 {
f132ba9d
TJB
1987 /* "show values +" should print from the stored position.
1988 "show values <exp>" should print around value number <exp>. */
c906108c 1989 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1990 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1991 }
1992 else
1993 {
f132ba9d 1994 /* "show values" means print the last 10 values. */
c906108c
SS
1995 num = value_history_count - 9;
1996 }
1997
1998 if (num <= 0)
1999 num = 1;
2000
2001 for (i = num; i < num + 10 && i <= value_history_count; i++)
2002 {
79a45b7d 2003 struct value_print_options opts;
a109c7c1 2004
c906108c 2005 val = access_value_history (i);
a3f17187 2006 printf_filtered (("$%d = "), i);
79a45b7d
TT
2007 get_user_print_options (&opts);
2008 value_print (val, gdb_stdout, &opts);
a3f17187 2009 printf_filtered (("\n"));
c906108c
SS
2010 }
2011
f132ba9d 2012 /* The next "show values +" should start after what we just printed. */
c906108c
SS
2013 num += 10;
2014
2015 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
2016 "show values +". If num_exp is null, this is unnecessary, since
2017 "show values +" is not useful after "show values". */
c906108c
SS
2018 if (from_tty && num_exp)
2019 {
2020 num_exp[0] = '+';
2021 num_exp[1] = '\0';
2022 }
2023}
2024\f
52059ffd
TT
2025enum internalvar_kind
2026{
2027 /* The internal variable is empty. */
2028 INTERNALVAR_VOID,
2029
2030 /* The value of the internal variable is provided directly as
2031 a GDB value object. */
2032 INTERNALVAR_VALUE,
2033
2034 /* A fresh value is computed via a call-back routine on every
2035 access to the internal variable. */
2036 INTERNALVAR_MAKE_VALUE,
2037
2038 /* The internal variable holds a GDB internal convenience function. */
2039 INTERNALVAR_FUNCTION,
2040
2041 /* The variable holds an integer value. */
2042 INTERNALVAR_INTEGER,
2043
2044 /* The variable holds a GDB-provided string. */
2045 INTERNALVAR_STRING,
2046};
2047
2048union internalvar_data
2049{
2050 /* A value object used with INTERNALVAR_VALUE. */
2051 struct value *value;
2052
2053 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2054 struct
2055 {
2056 /* The functions to call. */
2057 const struct internalvar_funcs *functions;
2058
2059 /* The function's user-data. */
2060 void *data;
2061 } make_value;
2062
2063 /* The internal function used with INTERNALVAR_FUNCTION. */
2064 struct
2065 {
2066 struct internal_function *function;
2067 /* True if this is the canonical name for the function. */
2068 int canonical;
2069 } fn;
2070
2071 /* An integer value used with INTERNALVAR_INTEGER. */
2072 struct
2073 {
2074 /* If type is non-NULL, it will be used as the type to generate
2075 a value for this internal variable. If type is NULL, a default
2076 integer type for the architecture is used. */
2077 struct type *type;
2078 LONGEST val;
2079 } integer;
2080
2081 /* A string value used with INTERNALVAR_STRING. */
2082 char *string;
2083};
2084
c906108c
SS
2085/* Internal variables. These are variables within the debugger
2086 that hold values assigned by debugger commands.
2087 The user refers to them with a '$' prefix
2088 that does not appear in the variable names stored internally. */
2089
4fa62494
UW
2090struct internalvar
2091{
2092 struct internalvar *next;
2093 char *name;
4fa62494 2094
78267919
UW
2095 /* We support various different kinds of content of an internal variable.
2096 enum internalvar_kind specifies the kind, and union internalvar_data
2097 provides the data associated with this particular kind. */
2098
52059ffd 2099 enum internalvar_kind kind;
4fa62494 2100
52059ffd 2101 union internalvar_data u;
4fa62494
UW
2102};
2103
c906108c
SS
2104static struct internalvar *internalvars;
2105
3e43a32a
MS
2106/* If the variable does not already exist create it and give it the
2107 value given. If no value is given then the default is zero. */
53e5f3cf
AS
2108static void
2109init_if_undefined_command (char* args, int from_tty)
2110{
2111 struct internalvar* intvar;
2112
2113 /* Parse the expression - this is taken from set_command(). */
2114 struct expression *expr = parse_expression (args);
2115 register struct cleanup *old_chain =
2116 make_cleanup (free_current_contents, &expr);
2117
2118 /* Validate the expression.
2119 Was the expression an assignment?
2120 Or even an expression at all? */
2121 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2122 error (_("Init-if-undefined requires an assignment expression."));
2123
2124 /* Extract the variable from the parsed expression.
2125 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2126 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2127 error (_("The first parameter to init-if-undefined "
2128 "should be a GDB variable."));
53e5f3cf
AS
2129 intvar = expr->elts[2].internalvar;
2130
2131 /* Only evaluate the expression if the lvalue is void.
2132 This may still fail if the expresssion is invalid. */
78267919 2133 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
2134 evaluate_expression (expr);
2135
2136 do_cleanups (old_chain);
2137}
2138
2139
c906108c
SS
2140/* Look up an internal variable with name NAME. NAME should not
2141 normally include a dollar sign.
2142
2143 If the specified internal variable does not exist,
c4a3d09a 2144 the return value is NULL. */
c906108c
SS
2145
2146struct internalvar *
bc3b79fd 2147lookup_only_internalvar (const char *name)
c906108c 2148{
52f0bd74 2149 struct internalvar *var;
c906108c
SS
2150
2151 for (var = internalvars; var; var = var->next)
5cb316ef 2152 if (strcmp (var->name, name) == 0)
c906108c
SS
2153 return var;
2154
c4a3d09a
MF
2155 return NULL;
2156}
2157
d55637df
TT
2158/* Complete NAME by comparing it to the names of internal variables.
2159 Returns a vector of newly allocated strings, or NULL if no matches
2160 were found. */
2161
2162VEC (char_ptr) *
2163complete_internalvar (const char *name)
2164{
2165 VEC (char_ptr) *result = NULL;
2166 struct internalvar *var;
2167 int len;
2168
2169 len = strlen (name);
2170
2171 for (var = internalvars; var; var = var->next)
2172 if (strncmp (var->name, name, len) == 0)
2173 {
2174 char *r = xstrdup (var->name);
2175
2176 VEC_safe_push (char_ptr, result, r);
2177 }
2178
2179 return result;
2180}
c4a3d09a
MF
2181
2182/* Create an internal variable with name NAME and with a void value.
2183 NAME should not normally include a dollar sign. */
2184
2185struct internalvar *
bc3b79fd 2186create_internalvar (const char *name)
c4a3d09a 2187{
8d749320 2188 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2189
1754f103 2190 var->name = concat (name, (char *)NULL);
78267919 2191 var->kind = INTERNALVAR_VOID;
c906108c
SS
2192 var->next = internalvars;
2193 internalvars = var;
2194 return var;
2195}
2196
4aa995e1
PA
2197/* Create an internal variable with name NAME and register FUN as the
2198 function that value_of_internalvar uses to create a value whenever
2199 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2200 dollar sign. DATA is passed uninterpreted to FUN when it is
2201 called. CLEANUP, if not NULL, is called when the internal variable
2202 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2203
2204struct internalvar *
22d2b532
SDJ
2205create_internalvar_type_lazy (const char *name,
2206 const struct internalvar_funcs *funcs,
2207 void *data)
4aa995e1 2208{
4fa62494 2209 struct internalvar *var = create_internalvar (name);
a109c7c1 2210
78267919 2211 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2212 var->u.make_value.functions = funcs;
2213 var->u.make_value.data = data;
4aa995e1
PA
2214 return var;
2215}
c4a3d09a 2216
22d2b532
SDJ
2217/* See documentation in value.h. */
2218
2219int
2220compile_internalvar_to_ax (struct internalvar *var,
2221 struct agent_expr *expr,
2222 struct axs_value *value)
2223{
2224 if (var->kind != INTERNALVAR_MAKE_VALUE
2225 || var->u.make_value.functions->compile_to_ax == NULL)
2226 return 0;
2227
2228 var->u.make_value.functions->compile_to_ax (var, expr, value,
2229 var->u.make_value.data);
2230 return 1;
2231}
2232
c4a3d09a
MF
2233/* Look up an internal variable with name NAME. NAME should not
2234 normally include a dollar sign.
2235
2236 If the specified internal variable does not exist,
2237 one is created, with a void value. */
2238
2239struct internalvar *
bc3b79fd 2240lookup_internalvar (const char *name)
c4a3d09a
MF
2241{
2242 struct internalvar *var;
2243
2244 var = lookup_only_internalvar (name);
2245 if (var)
2246 return var;
2247
2248 return create_internalvar (name);
2249}
2250
78267919
UW
2251/* Return current value of internal variable VAR. For variables that
2252 are not inherently typed, use a value type appropriate for GDBARCH. */
2253
f23631e4 2254struct value *
78267919 2255value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2256{
f23631e4 2257 struct value *val;
0914bcdb
SS
2258 struct trace_state_variable *tsv;
2259
2260 /* If there is a trace state variable of the same name, assume that
2261 is what we really want to see. */
2262 tsv = find_trace_state_variable (var->name);
2263 if (tsv)
2264 {
2265 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2266 &(tsv->value));
2267 if (tsv->value_known)
2268 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2269 tsv->value);
2270 else
2271 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2272 return val;
2273 }
c906108c 2274
78267919 2275 switch (var->kind)
5f5233d4 2276 {
78267919
UW
2277 case INTERNALVAR_VOID:
2278 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2279 break;
4fa62494 2280
78267919
UW
2281 case INTERNALVAR_FUNCTION:
2282 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2283 break;
4fa62494 2284
cab0c772
UW
2285 case INTERNALVAR_INTEGER:
2286 if (!var->u.integer.type)
78267919 2287 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2288 var->u.integer.val);
78267919 2289 else
cab0c772
UW
2290 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2291 break;
2292
78267919
UW
2293 case INTERNALVAR_STRING:
2294 val = value_cstring (var->u.string, strlen (var->u.string),
2295 builtin_type (gdbarch)->builtin_char);
2296 break;
4fa62494 2297
78267919
UW
2298 case INTERNALVAR_VALUE:
2299 val = value_copy (var->u.value);
4aa995e1
PA
2300 if (value_lazy (val))
2301 value_fetch_lazy (val);
78267919 2302 break;
4aa995e1 2303
78267919 2304 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2305 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2306 var->u.make_value.data);
78267919
UW
2307 break;
2308
2309 default:
9b20d036 2310 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2311 }
2312
2313 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2314 on this value go back to affect the original internal variable.
2315
2316 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2317 no underlying modifyable state in the internal variable.
2318
2319 Likewise, if the variable's value is a computed lvalue, we want
2320 references to it to produce another computed lvalue, where
2321 references and assignments actually operate through the
2322 computed value's functions.
2323
2324 This means that internal variables with computed values
2325 behave a little differently from other internal variables:
2326 assignments to them don't just replace the previous value
2327 altogether. At the moment, this seems like the behavior we
2328 want. */
2329
2330 if (var->kind != INTERNALVAR_MAKE_VALUE
2331 && val->lval != lval_computed)
2332 {
2333 VALUE_LVAL (val) = lval_internalvar;
2334 VALUE_INTERNALVAR (val) = var;
5f5233d4 2335 }
d3c139e9 2336
4fa62494
UW
2337 return val;
2338}
d3c139e9 2339
4fa62494
UW
2340int
2341get_internalvar_integer (struct internalvar *var, LONGEST *result)
2342{
3158c6ed 2343 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2344 {
cab0c772
UW
2345 *result = var->u.integer.val;
2346 return 1;
3158c6ed 2347 }
d3c139e9 2348
3158c6ed
PA
2349 if (var->kind == INTERNALVAR_VALUE)
2350 {
2351 struct type *type = check_typedef (value_type (var->u.value));
2352
2353 if (TYPE_CODE (type) == TYPE_CODE_INT)
2354 {
2355 *result = value_as_long (var->u.value);
2356 return 1;
2357 }
4fa62494 2358 }
3158c6ed
PA
2359
2360 return 0;
4fa62494 2361}
d3c139e9 2362
4fa62494
UW
2363static int
2364get_internalvar_function (struct internalvar *var,
2365 struct internal_function **result)
2366{
78267919 2367 switch (var->kind)
d3c139e9 2368 {
78267919
UW
2369 case INTERNALVAR_FUNCTION:
2370 *result = var->u.fn.function;
4fa62494 2371 return 1;
d3c139e9 2372
4fa62494
UW
2373 default:
2374 return 0;
2375 }
c906108c
SS
2376}
2377
2378void
6b850546
DT
2379set_internalvar_component (struct internalvar *var,
2380 LONGEST offset, LONGEST bitpos,
2381 LONGEST bitsize, struct value *newval)
c906108c 2382{
4fa62494 2383 gdb_byte *addr;
3ae385af
SM
2384 struct gdbarch *arch;
2385 int unit_size;
c906108c 2386
78267919 2387 switch (var->kind)
4fa62494 2388 {
78267919
UW
2389 case INTERNALVAR_VALUE:
2390 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2391 arch = get_value_arch (var->u.value);
2392 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2393
2394 if (bitsize)
50810684 2395 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2396 value_as_long (newval), bitpos, bitsize);
2397 else
3ae385af 2398 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2399 TYPE_LENGTH (value_type (newval)));
2400 break;
78267919
UW
2401
2402 default:
2403 /* We can never get a component of any other kind. */
9b20d036 2404 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2405 }
c906108c
SS
2406}
2407
2408void
f23631e4 2409set_internalvar (struct internalvar *var, struct value *val)
c906108c 2410{
78267919 2411 enum internalvar_kind new_kind;
4fa62494 2412 union internalvar_data new_data = { 0 };
c906108c 2413
78267919 2414 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2415 error (_("Cannot overwrite convenience function %s"), var->name);
2416
4fa62494 2417 /* Prepare new contents. */
78267919 2418 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2419 {
2420 case TYPE_CODE_VOID:
78267919 2421 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2422 break;
2423
2424 case TYPE_CODE_INTERNAL_FUNCTION:
2425 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2426 new_kind = INTERNALVAR_FUNCTION;
2427 get_internalvar_function (VALUE_INTERNALVAR (val),
2428 &new_data.fn.function);
2429 /* Copies created here are never canonical. */
4fa62494
UW
2430 break;
2431
4fa62494 2432 default:
78267919
UW
2433 new_kind = INTERNALVAR_VALUE;
2434 new_data.value = value_copy (val);
2435 new_data.value->modifiable = 1;
4fa62494
UW
2436
2437 /* Force the value to be fetched from the target now, to avoid problems
2438 later when this internalvar is referenced and the target is gone or
2439 has changed. */
78267919
UW
2440 if (value_lazy (new_data.value))
2441 value_fetch_lazy (new_data.value);
4fa62494
UW
2442
2443 /* Release the value from the value chain to prevent it from being
2444 deleted by free_all_values. From here on this function should not
2445 call error () until new_data is installed into the var->u to avoid
2446 leaking memory. */
78267919 2447 release_value (new_data.value);
9920b434
BH
2448
2449 /* Internal variables which are created from values with a dynamic
2450 location don't need the location property of the origin anymore.
2451 The resolved dynamic location is used prior then any other address
2452 when accessing the value.
2453 If we keep it, we would still refer to the origin value.
2454 Remove the location property in case it exist. */
2455 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2456
4fa62494
UW
2457 break;
2458 }
2459
2460 /* Clean up old contents. */
2461 clear_internalvar (var);
2462
2463 /* Switch over. */
78267919 2464 var->kind = new_kind;
4fa62494 2465 var->u = new_data;
c906108c
SS
2466 /* End code which must not call error(). */
2467}
2468
4fa62494
UW
2469void
2470set_internalvar_integer (struct internalvar *var, LONGEST l)
2471{
2472 /* Clean up old contents. */
2473 clear_internalvar (var);
2474
cab0c772
UW
2475 var->kind = INTERNALVAR_INTEGER;
2476 var->u.integer.type = NULL;
2477 var->u.integer.val = l;
78267919
UW
2478}
2479
2480void
2481set_internalvar_string (struct internalvar *var, const char *string)
2482{
2483 /* Clean up old contents. */
2484 clear_internalvar (var);
2485
2486 var->kind = INTERNALVAR_STRING;
2487 var->u.string = xstrdup (string);
4fa62494
UW
2488}
2489
2490static void
2491set_internalvar_function (struct internalvar *var, struct internal_function *f)
2492{
2493 /* Clean up old contents. */
2494 clear_internalvar (var);
2495
78267919
UW
2496 var->kind = INTERNALVAR_FUNCTION;
2497 var->u.fn.function = f;
2498 var->u.fn.canonical = 1;
2499 /* Variables installed here are always the canonical version. */
4fa62494
UW
2500}
2501
2502void
2503clear_internalvar (struct internalvar *var)
2504{
2505 /* Clean up old contents. */
78267919 2506 switch (var->kind)
4fa62494 2507 {
78267919
UW
2508 case INTERNALVAR_VALUE:
2509 value_free (var->u.value);
2510 break;
2511
2512 case INTERNALVAR_STRING:
2513 xfree (var->u.string);
4fa62494
UW
2514 break;
2515
22d2b532
SDJ
2516 case INTERNALVAR_MAKE_VALUE:
2517 if (var->u.make_value.functions->destroy != NULL)
2518 var->u.make_value.functions->destroy (var->u.make_value.data);
2519 break;
2520
4fa62494 2521 default:
4fa62494
UW
2522 break;
2523 }
2524
78267919
UW
2525 /* Reset to void kind. */
2526 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2527}
2528
c906108c 2529char *
4bf7b526 2530internalvar_name (const struct internalvar *var)
c906108c
SS
2531{
2532 return var->name;
2533}
2534
4fa62494
UW
2535static struct internal_function *
2536create_internal_function (const char *name,
2537 internal_function_fn handler, void *cookie)
bc3b79fd 2538{
bc3b79fd 2539 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2540
bc3b79fd
TJB
2541 ifn->name = xstrdup (name);
2542 ifn->handler = handler;
2543 ifn->cookie = cookie;
4fa62494 2544 return ifn;
bc3b79fd
TJB
2545}
2546
2547char *
2548value_internal_function_name (struct value *val)
2549{
4fa62494
UW
2550 struct internal_function *ifn;
2551 int result;
2552
2553 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2554 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2555 gdb_assert (result);
2556
bc3b79fd
TJB
2557 return ifn->name;
2558}
2559
2560struct value *
d452c4bc
UW
2561call_internal_function (struct gdbarch *gdbarch,
2562 const struct language_defn *language,
2563 struct value *func, int argc, struct value **argv)
bc3b79fd 2564{
4fa62494
UW
2565 struct internal_function *ifn;
2566 int result;
2567
2568 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2569 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2570 gdb_assert (result);
2571
d452c4bc 2572 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2573}
2574
2575/* The 'function' command. This does nothing -- it is just a
2576 placeholder to let "help function NAME" work. This is also used as
2577 the implementation of the sub-command that is created when
2578 registering an internal function. */
2579static void
2580function_command (char *command, int from_tty)
2581{
2582 /* Do nothing. */
2583}
2584
2585/* Clean up if an internal function's command is destroyed. */
2586static void
2587function_destroyer (struct cmd_list_element *self, void *ignore)
2588{
6f937416 2589 xfree ((char *) self->name);
1947513d 2590 xfree ((char *) self->doc);
bc3b79fd
TJB
2591}
2592
2593/* Add a new internal function. NAME is the name of the function; DOC
2594 is a documentation string describing the function. HANDLER is
2595 called when the function is invoked. COOKIE is an arbitrary
2596 pointer which is passed to HANDLER and is intended for "user
2597 data". */
2598void
2599add_internal_function (const char *name, const char *doc,
2600 internal_function_fn handler, void *cookie)
2601{
2602 struct cmd_list_element *cmd;
4fa62494 2603 struct internal_function *ifn;
bc3b79fd 2604 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2605
2606 ifn = create_internal_function (name, handler, cookie);
2607 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2608
2609 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2610 &functionlist);
2611 cmd->destroyer = function_destroyer;
2612}
2613
ae5a43e0
DJ
2614/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2615 prevent cycles / duplicates. */
2616
4e7a5ef5 2617void
ae5a43e0
DJ
2618preserve_one_value (struct value *value, struct objfile *objfile,
2619 htab_t copied_types)
2620{
2621 if (TYPE_OBJFILE (value->type) == objfile)
2622 value->type = copy_type_recursive (objfile, value->type, copied_types);
2623
2624 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2625 value->enclosing_type = copy_type_recursive (objfile,
2626 value->enclosing_type,
2627 copied_types);
2628}
2629
78267919
UW
2630/* Likewise for internal variable VAR. */
2631
2632static void
2633preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2634 htab_t copied_types)
2635{
2636 switch (var->kind)
2637 {
cab0c772
UW
2638 case INTERNALVAR_INTEGER:
2639 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2640 var->u.integer.type
2641 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2642 break;
2643
78267919
UW
2644 case INTERNALVAR_VALUE:
2645 preserve_one_value (var->u.value, objfile, copied_types);
2646 break;
2647 }
2648}
2649
ae5a43e0
DJ
2650/* Update the internal variables and value history when OBJFILE is
2651 discarded; we must copy the types out of the objfile. New global types
2652 will be created for every convenience variable which currently points to
2653 this objfile's types, and the convenience variables will be adjusted to
2654 use the new global types. */
c906108c
SS
2655
2656void
ae5a43e0 2657preserve_values (struct objfile *objfile)
c906108c 2658{
ae5a43e0
DJ
2659 htab_t copied_types;
2660 struct value_history_chunk *cur;
52f0bd74 2661 struct internalvar *var;
ae5a43e0 2662 int i;
c906108c 2663
ae5a43e0
DJ
2664 /* Create the hash table. We allocate on the objfile's obstack, since
2665 it is soon to be deleted. */
2666 copied_types = create_copied_types_hash (objfile);
2667
2668 for (cur = value_history_chain; cur; cur = cur->next)
2669 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2670 if (cur->values[i])
2671 preserve_one_value (cur->values[i], objfile, copied_types);
2672
2673 for (var = internalvars; var; var = var->next)
78267919 2674 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2675
6dddc817 2676 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2677
ae5a43e0 2678 htab_delete (copied_types);
c906108c
SS
2679}
2680
2681static void
fba45db2 2682show_convenience (char *ignore, int from_tty)
c906108c 2683{
e17c207e 2684 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2685 struct internalvar *var;
c906108c 2686 int varseen = 0;
79a45b7d 2687 struct value_print_options opts;
c906108c 2688
79a45b7d 2689 get_user_print_options (&opts);
c906108c
SS
2690 for (var = internalvars; var; var = var->next)
2691 {
c709acd1 2692
c906108c
SS
2693 if (!varseen)
2694 {
2695 varseen = 1;
2696 }
a3f17187 2697 printf_filtered (("$%s = "), var->name);
c709acd1 2698
492d29ea 2699 TRY
c709acd1
PA
2700 {
2701 struct value *val;
2702
2703 val = value_of_internalvar (gdbarch, var);
2704 value_print (val, gdb_stdout, &opts);
2705 }
492d29ea
PA
2706 CATCH (ex, RETURN_MASK_ERROR)
2707 {
2708 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2709 }
2710 END_CATCH
2711
a3f17187 2712 printf_filtered (("\n"));
c906108c
SS
2713 }
2714 if (!varseen)
f47f77df
DE
2715 {
2716 /* This text does not mention convenience functions on purpose.
2717 The user can't create them except via Python, and if Python support
2718 is installed this message will never be printed ($_streq will
2719 exist). */
2720 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2721 "Convenience variables have "
2722 "names starting with \"$\";\n"
2723 "use \"set\" as in \"set "
2724 "$foo = 5\" to define them.\n"));
2725 }
c906108c
SS
2726}
2727\f
e81e7f5e
SC
2728/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2729
2730struct value *
2731value_of_xmethod (struct xmethod_worker *worker)
2732{
2733 if (worker->value == NULL)
2734 {
2735 struct value *v;
2736
2737 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2738 v->lval = lval_xcallable;
2739 v->location.xm_worker = worker;
2740 v->modifiable = 0;
2741 worker->value = v;
2742 }
2743
2744 return worker->value;
2745}
2746
2ce1cdbf
DE
2747/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2748
2749struct type *
2750result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2751{
2752 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2753 && method->lval == lval_xcallable && argc > 0);
2754
2755 return get_xmethod_result_type (method->location.xm_worker,
2756 argv[0], argv + 1, argc - 1);
2757}
2758
e81e7f5e
SC
2759/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2760
2761struct value *
2762call_xmethod (struct value *method, int argc, struct value **argv)
2763{
2764 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2765 && method->lval == lval_xcallable && argc > 0);
2766
2767 return invoke_xmethod (method->location.xm_worker,
2768 argv[0], argv + 1, argc - 1);
2769}
2770\f
c906108c
SS
2771/* Extract a value as a C number (either long or double).
2772 Knows how to convert fixed values to double, or
2773 floating values to long.
2774 Does not deallocate the value. */
2775
2776LONGEST
f23631e4 2777value_as_long (struct value *val)
c906108c
SS
2778{
2779 /* This coerces arrays and functions, which is necessary (e.g.
2780 in disassemble_command). It also dereferences references, which
2781 I suspect is the most logical thing to do. */
994b9211 2782 val = coerce_array (val);
0fd88904 2783 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2784}
2785
2786DOUBLEST
f23631e4 2787value_as_double (struct value *val)
c906108c
SS
2788{
2789 DOUBLEST foo;
2790 int inv;
c5aa993b 2791
0fd88904 2792 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2793 if (inv)
8a3fe4f8 2794 error (_("Invalid floating value found in program."));
c906108c
SS
2795 return foo;
2796}
4ef30785 2797
581e13c1 2798/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2799 Note that val's type may not actually be a pointer; value_as_long
2800 handles all the cases. */
c906108c 2801CORE_ADDR
f23631e4 2802value_as_address (struct value *val)
c906108c 2803{
50810684
UW
2804 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2805
c906108c
SS
2806 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2807 whether we want this to be true eventually. */
2808#if 0
bf6ae464 2809 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2810 non-address (e.g. argument to "signal", "info break", etc.), or
2811 for pointers to char, in which the low bits *are* significant. */
50810684 2812 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2813#else
f312f057
JB
2814
2815 /* There are several targets (IA-64, PowerPC, and others) which
2816 don't represent pointers to functions as simply the address of
2817 the function's entry point. For example, on the IA-64, a
2818 function pointer points to a two-word descriptor, generated by
2819 the linker, which contains the function's entry point, and the
2820 value the IA-64 "global pointer" register should have --- to
2821 support position-independent code. The linker generates
2822 descriptors only for those functions whose addresses are taken.
2823
2824 On such targets, it's difficult for GDB to convert an arbitrary
2825 function address into a function pointer; it has to either find
2826 an existing descriptor for that function, or call malloc and
2827 build its own. On some targets, it is impossible for GDB to
2828 build a descriptor at all: the descriptor must contain a jump
2829 instruction; data memory cannot be executed; and code memory
2830 cannot be modified.
2831
2832 Upon entry to this function, if VAL is a value of type `function'
2833 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2834 value_address (val) is the address of the function. This is what
f312f057
JB
2835 you'll get if you evaluate an expression like `main'. The call
2836 to COERCE_ARRAY below actually does all the usual unary
2837 conversions, which includes converting values of type `function'
2838 to `pointer to function'. This is the challenging conversion
2839 discussed above. Then, `unpack_long' will convert that pointer
2840 back into an address.
2841
2842 So, suppose the user types `disassemble foo' on an architecture
2843 with a strange function pointer representation, on which GDB
2844 cannot build its own descriptors, and suppose further that `foo'
2845 has no linker-built descriptor. The address->pointer conversion
2846 will signal an error and prevent the command from running, even
2847 though the next step would have been to convert the pointer
2848 directly back into the same address.
2849
2850 The following shortcut avoids this whole mess. If VAL is a
2851 function, just return its address directly. */
df407dfe
AC
2852 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2853 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2854 return value_address (val);
f312f057 2855
994b9211 2856 val = coerce_array (val);
fc0c74b1
AC
2857
2858 /* Some architectures (e.g. Harvard), map instruction and data
2859 addresses onto a single large unified address space. For
2860 instance: An architecture may consider a large integer in the
2861 range 0x10000000 .. 0x1000ffff to already represent a data
2862 addresses (hence not need a pointer to address conversion) while
2863 a small integer would still need to be converted integer to
2864 pointer to address. Just assume such architectures handle all
2865 integer conversions in a single function. */
2866
2867 /* JimB writes:
2868
2869 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2870 must admonish GDB hackers to make sure its behavior matches the
2871 compiler's, whenever possible.
2872
2873 In general, I think GDB should evaluate expressions the same way
2874 the compiler does. When the user copies an expression out of
2875 their source code and hands it to a `print' command, they should
2876 get the same value the compiler would have computed. Any
2877 deviation from this rule can cause major confusion and annoyance,
2878 and needs to be justified carefully. In other words, GDB doesn't
2879 really have the freedom to do these conversions in clever and
2880 useful ways.
2881
2882 AndrewC pointed out that users aren't complaining about how GDB
2883 casts integers to pointers; they are complaining that they can't
2884 take an address from a disassembly listing and give it to `x/i'.
2885 This is certainly important.
2886
79dd2d24 2887 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2888 makes it possible for GDB to "get it right" in all circumstances
2889 --- the target has complete control over how things get done, so
2890 people can Do The Right Thing for their target without breaking
2891 anyone else. The standard doesn't specify how integers get
2892 converted to pointers; usually, the ABI doesn't either, but
2893 ABI-specific code is a more reasonable place to handle it. */
2894
df407dfe
AC
2895 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2896 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2897 && gdbarch_integer_to_address_p (gdbarch))
2898 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2899 value_contents (val));
fc0c74b1 2900
0fd88904 2901 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2902#endif
2903}
2904\f
2905/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2906 as a long, or as a double, assuming the raw data is described
2907 by type TYPE. Knows how to convert different sizes of values
2908 and can convert between fixed and floating point. We don't assume
2909 any alignment for the raw data. Return value is in host byte order.
2910
2911 If you want functions and arrays to be coerced to pointers, and
2912 references to be dereferenced, call value_as_long() instead.
2913
2914 C++: It is assumed that the front-end has taken care of
2915 all matters concerning pointers to members. A pointer
2916 to member which reaches here is considered to be equivalent
2917 to an INT (or some size). After all, it is only an offset. */
2918
2919LONGEST
fc1a4b47 2920unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2921{
e17a4113 2922 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2923 enum type_code code = TYPE_CODE (type);
2924 int len = TYPE_LENGTH (type);
2925 int nosign = TYPE_UNSIGNED (type);
c906108c 2926
c906108c
SS
2927 switch (code)
2928 {
2929 case TYPE_CODE_TYPEDEF:
2930 return unpack_long (check_typedef (type), valaddr);
2931 case TYPE_CODE_ENUM:
4f2aea11 2932 case TYPE_CODE_FLAGS:
c906108c
SS
2933 case TYPE_CODE_BOOL:
2934 case TYPE_CODE_INT:
2935 case TYPE_CODE_CHAR:
2936 case TYPE_CODE_RANGE:
0d5de010 2937 case TYPE_CODE_MEMBERPTR:
c906108c 2938 if (nosign)
e17a4113 2939 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2940 else
e17a4113 2941 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2942
2943 case TYPE_CODE_FLT:
aebf07fc 2944 return (LONGEST) extract_typed_floating (valaddr, type);
c906108c 2945
4ef30785
TJB
2946 case TYPE_CODE_DECFLOAT:
2947 /* libdecnumber has a function to convert from decimal to integer, but
2948 it doesn't work when the decimal number has a fractional part. */
aebf07fc 2949 return (LONGEST) decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2950
c906108c
SS
2951 case TYPE_CODE_PTR:
2952 case TYPE_CODE_REF:
2953 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2954 whether we want this to be true eventually. */
4478b372 2955 return extract_typed_address (valaddr, type);
c906108c 2956
c906108c 2957 default:
8a3fe4f8 2958 error (_("Value can't be converted to integer."));
c906108c 2959 }
c5aa993b 2960 return 0; /* Placate lint. */
c906108c
SS
2961}
2962
2963/* Return a double value from the specified type and address.
2964 INVP points to an int which is set to 0 for valid value,
2965 1 for invalid value (bad float format). In either case,
2966 the returned double is OK to use. Argument is in target
2967 format, result is in host format. */
2968
2969DOUBLEST
fc1a4b47 2970unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2971{
e17a4113 2972 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2973 enum type_code code;
2974 int len;
2975 int nosign;
2976
581e13c1 2977 *invp = 0; /* Assume valid. */
f168693b 2978 type = check_typedef (type);
c906108c
SS
2979 code = TYPE_CODE (type);
2980 len = TYPE_LENGTH (type);
2981 nosign = TYPE_UNSIGNED (type);
2982 if (code == TYPE_CODE_FLT)
2983 {
75bc7ddf
AC
2984 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2985 floating-point value was valid (using the macro
2986 INVALID_FLOAT). That test/macro have been removed.
2987
2988 It turns out that only the VAX defined this macro and then
2989 only in a non-portable way. Fixing the portability problem
2990 wouldn't help since the VAX floating-point code is also badly
2991 bit-rotten. The target needs to add definitions for the
ea06eb3d 2992 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2993 exactly describe the target floating-point format. The
2994 problem here is that the corresponding floatformat_vax_f and
2995 floatformat_vax_d values these methods should be set to are
2996 also not defined either. Oops!
2997
2998 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2999 definitions and the new cases for floatformat_is_valid (). */
3000
3001 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
3002 {
3003 *invp = 1;
3004 return 0.0;
3005 }
3006
96d2f608 3007 return extract_typed_floating (valaddr, type);
c906108c 3008 }
4ef30785 3009 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 3010 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
3011 else if (nosign)
3012 {
3013 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 3014 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
3015 }
3016 else
3017 {
3018 /* Signed -- we are OK with unpack_long. */
3019 return unpack_long (type, valaddr);
3020 }
3021}
3022
3023/* Unpack raw data (copied from debugee, target byte order) at VALADDR
3024 as a CORE_ADDR, assuming the raw data is described by type TYPE.
3025 We don't assume any alignment for the raw data. Return value is in
3026 host byte order.
3027
3028 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 3029 references to be dereferenced, call value_as_address() instead.
c906108c
SS
3030
3031 C++: It is assumed that the front-end has taken care of
3032 all matters concerning pointers to members. A pointer
3033 to member which reaches here is considered to be equivalent
3034 to an INT (or some size). After all, it is only an offset. */
3035
3036CORE_ADDR
fc1a4b47 3037unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
3038{
3039 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
3040 whether we want this to be true eventually. */
3041 return unpack_long (type, valaddr);
3042}
4478b372 3043
c906108c 3044\f
1596cb5d 3045/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 3046 TYPE. */
c906108c 3047
f23631e4 3048struct value *
fba45db2 3049value_static_field (struct type *type, int fieldno)
c906108c 3050{
948e66d9
DJ
3051 struct value *retval;
3052
1596cb5d 3053 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 3054 {
1596cb5d 3055 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
3056 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3057 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
3058 break;
3059 case FIELD_LOC_KIND_PHYSNAME:
c906108c 3060 {
ff355380 3061 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 3062 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 3063 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 3064
d12307c1 3065 if (sym.symbol == NULL)
c906108c 3066 {
a109c7c1 3067 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 3068 reported as non-debuggable symbols. */
3b7344d5
TT
3069 struct bound_minimal_symbol msym
3070 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 3071
3b7344d5 3072 if (!msym.minsym)
686d4def 3073 return allocate_optimized_out_value (type);
c906108c 3074 else
c5aa993b 3075 {
52e9fde8 3076 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 3077 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
3078 }
3079 }
3080 else
d12307c1 3081 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 3082 break;
c906108c 3083 }
1596cb5d 3084 default:
f3574227 3085 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
3086 }
3087
948e66d9 3088 return retval;
c906108c
SS
3089}
3090
4dfea560
DE
3091/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3092 You have to be careful here, since the size of the data area for the value
3093 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3094 than the old enclosing type, you have to allocate more space for the
3095 data. */
2b127877 3096
4dfea560
DE
3097void
3098set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 3099{
5fdf6324
AB
3100 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3101 {
3102 check_type_length_before_alloc (new_encl_type);
3103 val->contents
3104 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3105 }
3e3d7139
JG
3106
3107 val->enclosing_type = new_encl_type;
2b127877
DB
3108}
3109
c906108c
SS
3110/* Given a value ARG1 (offset by OFFSET bytes)
3111 of a struct or union type ARG_TYPE,
3112 extract and return the value of one of its (non-static) fields.
581e13c1 3113 FIELDNO says which field. */
c906108c 3114
f23631e4 3115struct value *
6b850546 3116value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 3117 int fieldno, struct type *arg_type)
c906108c 3118{
f23631e4 3119 struct value *v;
52f0bd74 3120 struct type *type;
3ae385af
SM
3121 struct gdbarch *arch = get_value_arch (arg1);
3122 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 3123
f168693b 3124 arg_type = check_typedef (arg_type);
c906108c 3125 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
3126
3127 /* Call check_typedef on our type to make sure that, if TYPE
3128 is a TYPE_CODE_TYPEDEF, its length is set to the length
3129 of the target type instead of zero. However, we do not
3130 replace the typedef type by the target type, because we want
3131 to keep the typedef in order to be able to print the type
3132 description correctly. */
3133 check_typedef (type);
c906108c 3134
691a26f5 3135 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 3136 {
22c05d8a
JK
3137 /* Handle packed fields.
3138
3139 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3140 set. If possible, arrange offset and bitpos so that we can
3141 do a single aligned read of the size of the containing type.
3142 Otherwise, adjust offset to the byte containing the first
3143 bit. Assume that the address, offset, and embedded offset
3144 are sufficiently aligned. */
22c05d8a 3145
6b850546
DT
3146 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3147 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 3148
9a0dc9e3
PA
3149 v = allocate_value_lazy (type);
3150 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3151 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3152 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3153 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3154 else
9a0dc9e3
PA
3155 v->bitpos = bitpos % 8;
3156 v->offset = (value_embedded_offset (arg1)
3157 + offset
3158 + (bitpos - v->bitpos) / 8);
3159 set_value_parent (v, arg1);
3160 if (!value_lazy (arg1))
3161 value_fetch_lazy (v);
c906108c
SS
3162 }
3163 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3164 {
3165 /* This field is actually a base subobject, so preserve the
39d37385
PA
3166 entire object's contents for later references to virtual
3167 bases, etc. */
6b850546 3168 LONGEST boffset;
a4e2ee12
DJ
3169
3170 /* Lazy register values with offsets are not supported. */
3171 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3172 value_fetch_lazy (arg1);
3173
9a0dc9e3
PA
3174 /* We special case virtual inheritance here because this
3175 requires access to the contents, which we would rather avoid
3176 for references to ordinary fields of unavailable values. */
3177 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3178 boffset = baseclass_offset (arg_type, fieldno,
3179 value_contents (arg1),
3180 value_embedded_offset (arg1),
3181 value_address (arg1),
3182 arg1);
c906108c 3183 else
9a0dc9e3 3184 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3185
9a0dc9e3
PA
3186 if (value_lazy (arg1))
3187 v = allocate_value_lazy (value_enclosing_type (arg1));
3188 else
3189 {
3190 v = allocate_value (value_enclosing_type (arg1));
3191 value_contents_copy_raw (v, 0, arg1, 0,
3192 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3193 }
9a0dc9e3
PA
3194 v->type = type;
3195 v->offset = value_offset (arg1);
3196 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 3197 }
9920b434
BH
3198 else if (NULL != TYPE_DATA_LOCATION (type))
3199 {
3200 /* Field is a dynamic data member. */
3201
3202 gdb_assert (0 == offset);
3203 /* We expect an already resolved data location. */
3204 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3205 /* For dynamic data types defer memory allocation
3206 until we actual access the value. */
3207 v = allocate_value_lazy (type);
3208 }
c906108c
SS
3209 else
3210 {
3211 /* Plain old data member */
3ae385af
SM
3212 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3213 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3214
3215 /* Lazy register values with offsets are not supported. */
3216 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3217 value_fetch_lazy (arg1);
3218
9a0dc9e3 3219 if (value_lazy (arg1))
3e3d7139 3220 v = allocate_value_lazy (type);
c906108c 3221 else
3e3d7139
JG
3222 {
3223 v = allocate_value (type);
39d37385
PA
3224 value_contents_copy_raw (v, value_embedded_offset (v),
3225 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3226 type_length_units (type));
3e3d7139 3227 }
df407dfe 3228 v->offset = (value_offset (arg1) + offset
13c3b5f5 3229 + value_embedded_offset (arg1));
c906108c 3230 }
74bcbdf3 3231 set_value_component_location (v, arg1);
9ee8fc9d 3232 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 3233 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
3234 return v;
3235}
3236
3237/* Given a value ARG1 of a struct or union type,
3238 extract and return the value of one of its (non-static) fields.
581e13c1 3239 FIELDNO says which field. */
c906108c 3240
f23631e4 3241struct value *
aa1ee363 3242value_field (struct value *arg1, int fieldno)
c906108c 3243{
df407dfe 3244 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3245}
3246
3247/* Return a non-virtual function as a value.
3248 F is the list of member functions which contains the desired method.
0478d61c
FF
3249 J is an index into F which provides the desired method.
3250
3251 We only use the symbol for its address, so be happy with either a
581e13c1 3252 full symbol or a minimal symbol. */
c906108c 3253
f23631e4 3254struct value *
3e43a32a
MS
3255value_fn_field (struct value **arg1p, struct fn_field *f,
3256 int j, struct type *type,
6b850546 3257 LONGEST offset)
c906108c 3258{
f23631e4 3259 struct value *v;
52f0bd74 3260 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3261 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3262 struct symbol *sym;
7c7b6655 3263 struct bound_minimal_symbol msym;
c906108c 3264
d12307c1 3265 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3266 if (sym != NULL)
0478d61c 3267 {
7c7b6655 3268 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3269 }
3270 else
3271 {
3272 gdb_assert (sym == NULL);
7c7b6655
TT
3273 msym = lookup_bound_minimal_symbol (physname);
3274 if (msym.minsym == NULL)
5ae326fa 3275 return NULL;
0478d61c
FF
3276 }
3277
c906108c 3278 v = allocate_value (ftype);
0478d61c
FF
3279 if (sym)
3280 {
42ae5230 3281 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3282 }
3283 else
3284 {
bccdca4a
UW
3285 /* The minimal symbol might point to a function descriptor;
3286 resolve it to the actual code address instead. */
7c7b6655 3287 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3288 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3289
42ae5230
TT
3290 set_value_address (v,
3291 gdbarch_convert_from_func_ptr_addr
77e371c0 3292 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3293 }
c906108c
SS
3294
3295 if (arg1p)
c5aa993b 3296 {
df407dfe 3297 if (type != value_type (*arg1p))
c5aa993b
JM
3298 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3299 value_addr (*arg1p)));
3300
070ad9f0 3301 /* Move the `this' pointer according to the offset.
581e13c1 3302 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3303 }
3304
3305 return v;
3306}
3307
c906108c 3308\f
c906108c 3309
4875ffdb
PA
3310/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3311 VALADDR, and store the result in *RESULT.
3312 The bitfield starts at BITPOS bits and contains BITSIZE bits.
c906108c 3313
4875ffdb
PA
3314 Extracting bits depends on endianness of the machine. Compute the
3315 number of least significant bits to discard. For big endian machines,
3316 we compute the total number of bits in the anonymous object, subtract
3317 off the bit count from the MSB of the object to the MSB of the
3318 bitfield, then the size of the bitfield, which leaves the LSB discard
3319 count. For little endian machines, the discard count is simply the
3320 number of bits from the LSB of the anonymous object to the LSB of the
3321 bitfield.
3322
3323 If the field is signed, we also do sign extension. */
3324
3325static LONGEST
3326unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3327 LONGEST bitpos, LONGEST bitsize)
c906108c 3328{
4ea48cc1 3329 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3330 ULONGEST val;
3331 ULONGEST valmask;
c906108c 3332 int lsbcount;
6b850546
DT
3333 LONGEST bytes_read;
3334 LONGEST read_offset;
c906108c 3335
4a76eae5
DJ
3336 /* Read the minimum number of bytes required; there may not be
3337 enough bytes to read an entire ULONGEST. */
f168693b 3338 field_type = check_typedef (field_type);
4a76eae5
DJ
3339 if (bitsize)
3340 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3341 else
3342 bytes_read = TYPE_LENGTH (field_type);
3343
5467c6c8
PA
3344 read_offset = bitpos / 8;
3345
4875ffdb 3346 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3347 bytes_read, byte_order);
c906108c 3348
581e13c1 3349 /* Extract bits. See comment above. */
c906108c 3350
4ea48cc1 3351 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3352 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3353 else
3354 lsbcount = (bitpos % 8);
3355 val >>= lsbcount;
3356
3357 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3358 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3359
3360 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3361 {
3362 valmask = (((ULONGEST) 1) << bitsize) - 1;
3363 val &= valmask;
3364 if (!TYPE_UNSIGNED (field_type))
3365 {
3366 if (val & (valmask ^ (valmask >> 1)))
3367 {
3368 val |= ~valmask;
3369 }
3370 }
3371 }
5467c6c8 3372
4875ffdb 3373 return val;
5467c6c8
PA
3374}
3375
3376/* Unpack a field FIELDNO of the specified TYPE, from the object at
3377 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3378 ORIGINAL_VALUE, which must not be NULL. See
3379 unpack_value_bits_as_long for more details. */
3380
3381int
3382unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3383 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3384 const struct value *val, LONGEST *result)
3385{
4875ffdb
PA
3386 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3387 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3388 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3389 int bit_offset;
3390
5467c6c8
PA
3391 gdb_assert (val != NULL);
3392
4875ffdb
PA
3393 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3394 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3395 || !value_bits_available (val, bit_offset, bitsize))
3396 return 0;
3397
3398 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3399 bitpos, bitsize);
3400 return 1;
5467c6c8
PA
3401}
3402
3403/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3404 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3405
3406LONGEST
3407unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3408{
4875ffdb
PA
3409 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3410 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3411 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3412
4875ffdb
PA
3413 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3414}
3415
3416/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3417 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3418 the contents in DEST_VAL, zero or sign extending if the type of
3419 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3420 VAL. If the VAL's contents required to extract the bitfield from
3421 are unavailable/optimized out, DEST_VAL is correspondingly
3422 marked unavailable/optimized out. */
3423
bb9d5f81 3424void
4875ffdb 3425unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3426 LONGEST bitpos, LONGEST bitsize,
3427 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3428 const struct value *val)
3429{
3430 enum bfd_endian byte_order;
3431 int src_bit_offset;
3432 int dst_bit_offset;
3433 LONGEST num;
3434 struct type *field_type = value_type (dest_val);
3435
3436 /* First, unpack and sign extend the bitfield as if it was wholly
3437 available. Invalid/unavailable bits are read as zero, but that's
3438 OK, as they'll end up marked below. */
3439 byte_order = gdbarch_byte_order (get_type_arch (field_type));
3440 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3441 bitpos, bitsize);
3442 store_signed_integer (value_contents_raw (dest_val),
3443 TYPE_LENGTH (field_type), byte_order, num);
3444
3445 /* Now copy the optimized out / unavailability ranges to the right
3446 bits. */
3447 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3448 if (byte_order == BFD_ENDIAN_BIG)
3449 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3450 else
3451 dst_bit_offset = 0;
3452 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3453 val, src_bit_offset, bitsize);
5467c6c8
PA
3454}
3455
3456/* Return a new value with type TYPE, which is FIELDNO field of the
3457 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3458 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3459 from are unavailable/optimized out, the new value is
3460 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3461
3462struct value *
3463value_field_bitfield (struct type *type, int fieldno,
3464 const gdb_byte *valaddr,
6b850546 3465 LONGEST embedded_offset, const struct value *val)
5467c6c8 3466{
4875ffdb
PA
3467 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3468 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3469 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3470
4875ffdb
PA
3471 unpack_value_bitfield (res_val, bitpos, bitsize,
3472 valaddr, embedded_offset, val);
3473
3474 return res_val;
4ea48cc1
DJ
3475}
3476
c906108c
SS
3477/* Modify the value of a bitfield. ADDR points to a block of memory in
3478 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3479 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3480 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3481 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3482 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3483
3484void
50810684 3485modify_field (struct type *type, gdb_byte *addr,
6b850546 3486 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3487{
e17a4113 3488 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3489 ULONGEST oword;
3490 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3491 LONGEST bytesize;
19f220c3
JK
3492
3493 /* Normalize BITPOS. */
3494 addr += bitpos / 8;
3495 bitpos %= 8;
c906108c
SS
3496
3497 /* If a negative fieldval fits in the field in question, chop
3498 off the sign extension bits. */
f4e88c8e
PH
3499 if ((~fieldval & ~(mask >> 1)) == 0)
3500 fieldval &= mask;
c906108c
SS
3501
3502 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3503 if (0 != (fieldval & ~mask))
c906108c
SS
3504 {
3505 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3506 we don't have a sprintf_longest. */
6b850546 3507 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3508
3509 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3510 fieldval &= mask;
c906108c
SS
3511 }
3512
19f220c3
JK
3513 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3514 false valgrind reports. */
3515
3516 bytesize = (bitpos + bitsize + 7) / 8;
3517 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3518
3519 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3520 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3521 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3522
f4e88c8e 3523 oword &= ~(mask << bitpos);
c906108c
SS
3524 oword |= fieldval << bitpos;
3525
19f220c3 3526 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3527}
3528\f
14d06750 3529/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3530
14d06750
DJ
3531void
3532pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3533{
e17a4113 3534 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
6b850546 3535 LONGEST len;
14d06750
DJ
3536
3537 type = check_typedef (type);
c906108c
SS
3538 len = TYPE_LENGTH (type);
3539
14d06750 3540 switch (TYPE_CODE (type))
c906108c 3541 {
c906108c
SS
3542 case TYPE_CODE_INT:
3543 case TYPE_CODE_CHAR:
3544 case TYPE_CODE_ENUM:
4f2aea11 3545 case TYPE_CODE_FLAGS:
c906108c
SS
3546 case TYPE_CODE_BOOL:
3547 case TYPE_CODE_RANGE:
0d5de010 3548 case TYPE_CODE_MEMBERPTR:
e17a4113 3549 store_signed_integer (buf, len, byte_order, num);
c906108c 3550 break;
c5aa993b 3551
c906108c
SS
3552 case TYPE_CODE_REF:
3553 case TYPE_CODE_PTR:
14d06750 3554 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3555 break;
c5aa993b 3556
c906108c 3557 default:
14d06750
DJ
3558 error (_("Unexpected type (%d) encountered for integer constant."),
3559 TYPE_CODE (type));
c906108c 3560 }
14d06750
DJ
3561}
3562
3563
595939de
PM
3564/* Pack NUM into BUF using a target format of TYPE. */
3565
70221824 3566static void
595939de
PM
3567pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3568{
6b850546 3569 LONGEST len;
595939de
PM
3570 enum bfd_endian byte_order;
3571
3572 type = check_typedef (type);
3573 len = TYPE_LENGTH (type);
3574 byte_order = gdbarch_byte_order (get_type_arch (type));
3575
3576 switch (TYPE_CODE (type))
3577 {
3578 case TYPE_CODE_INT:
3579 case TYPE_CODE_CHAR:
3580 case TYPE_CODE_ENUM:
3581 case TYPE_CODE_FLAGS:
3582 case TYPE_CODE_BOOL:
3583 case TYPE_CODE_RANGE:
3584 case TYPE_CODE_MEMBERPTR:
3585 store_unsigned_integer (buf, len, byte_order, num);
3586 break;
3587
3588 case TYPE_CODE_REF:
3589 case TYPE_CODE_PTR:
3590 store_typed_address (buf, type, (CORE_ADDR) num);
3591 break;
3592
3593 default:
3e43a32a
MS
3594 error (_("Unexpected type (%d) encountered "
3595 "for unsigned integer constant."),
595939de
PM
3596 TYPE_CODE (type));
3597 }
3598}
3599
3600
14d06750
DJ
3601/* Convert C numbers into newly allocated values. */
3602
3603struct value *
3604value_from_longest (struct type *type, LONGEST num)
3605{
3606 struct value *val = allocate_value (type);
3607
3608 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3609 return val;
3610}
3611
4478b372 3612
595939de
PM
3613/* Convert C unsigned numbers into newly allocated values. */
3614
3615struct value *
3616value_from_ulongest (struct type *type, ULONGEST num)
3617{
3618 struct value *val = allocate_value (type);
3619
3620 pack_unsigned_long (value_contents_raw (val), type, num);
3621
3622 return val;
3623}
3624
3625
4478b372 3626/* Create a value representing a pointer of type TYPE to the address
cb417230 3627 ADDR. */
80180f79 3628
f23631e4 3629struct value *
4478b372
JB
3630value_from_pointer (struct type *type, CORE_ADDR addr)
3631{
cb417230 3632 struct value *val = allocate_value (type);
a109c7c1 3633
80180f79 3634 store_typed_address (value_contents_raw (val),
cb417230 3635 check_typedef (type), addr);
4478b372
JB
3636 return val;
3637}
3638
3639
012370f6
TT
3640/* Create a value of type TYPE whose contents come from VALADDR, if it
3641 is non-null, and whose memory address (in the inferior) is
3642 ADDRESS. The type of the created value may differ from the passed
3643 type TYPE. Make sure to retrieve values new type after this call.
3644 Note that TYPE is not passed through resolve_dynamic_type; this is
3645 a special API intended for use only by Ada. */
3646
3647struct value *
3648value_from_contents_and_address_unresolved (struct type *type,
3649 const gdb_byte *valaddr,
3650 CORE_ADDR address)
3651{
3652 struct value *v;
3653
3654 if (valaddr == NULL)
3655 v = allocate_value_lazy (type);
3656 else
3657 v = value_from_contents (type, valaddr);
3658 set_value_address (v, address);
3659 VALUE_LVAL (v) = lval_memory;
3660 return v;
3661}
3662
8acb6b92
TT
3663/* Create a value of type TYPE whose contents come from VALADDR, if it
3664 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3665 ADDRESS. The type of the created value may differ from the passed
3666 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3667
3668struct value *
3669value_from_contents_and_address (struct type *type,
3670 const gdb_byte *valaddr,
3671 CORE_ADDR address)
3672{
c3345124 3673 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3674 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3675 struct value *v;
a109c7c1 3676
8acb6b92 3677 if (valaddr == NULL)
80180f79 3678 v = allocate_value_lazy (resolved_type);
8acb6b92 3679 else
80180f79 3680 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3681 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3682 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3683 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
42ae5230 3684 set_value_address (v, address);
33d502b4 3685 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
3686 return v;
3687}
3688
8a9b8146
TT
3689/* Create a value of type TYPE holding the contents CONTENTS.
3690 The new value is `not_lval'. */
3691
3692struct value *
3693value_from_contents (struct type *type, const gdb_byte *contents)
3694{
3695 struct value *result;
3696
3697 result = allocate_value (type);
3698 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3699 return result;
3700}
3701
f23631e4 3702struct value *
fba45db2 3703value_from_double (struct type *type, DOUBLEST num)
c906108c 3704{
f23631e4 3705 struct value *val = allocate_value (type);
c906108c 3706 struct type *base_type = check_typedef (type);
52f0bd74 3707 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3708
3709 if (code == TYPE_CODE_FLT)
3710 {
990a07ab 3711 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3712 }
3713 else
8a3fe4f8 3714 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3715
3716 return val;
3717}
994b9211 3718
27bc4d80 3719struct value *
4ef30785 3720value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3721{
3722 struct value *val = allocate_value (type);
27bc4d80 3723
4ef30785 3724 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3725 return val;
3726}
3727
3bd0f5ef
MS
3728/* Extract a value from the history file. Input will be of the form
3729 $digits or $$digits. See block comment above 'write_dollar_variable'
3730 for details. */
3731
3732struct value *
e799154c 3733value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3734{
3735 int index, len;
3736
3737 if (h[0] == '$')
3738 len = 1;
3739 else
3740 return NULL;
3741
3742 if (h[1] == '$')
3743 len = 2;
3744
3745 /* Find length of numeral string. */
3746 for (; isdigit (h[len]); len++)
3747 ;
3748
3749 /* Make sure numeral string is not part of an identifier. */
3750 if (h[len] == '_' || isalpha (h[len]))
3751 return NULL;
3752
3753 /* Now collect the index value. */
3754 if (h[1] == '$')
3755 {
3756 if (len == 2)
3757 {
3758 /* For some bizarre reason, "$$" is equivalent to "$$1",
3759 rather than to "$$0" as it ought to be! */
3760 index = -1;
3761 *endp += len;
3762 }
3763 else
e799154c
TT
3764 {
3765 char *local_end;
3766
3767 index = -strtol (&h[2], &local_end, 10);
3768 *endp = local_end;
3769 }
3bd0f5ef
MS
3770 }
3771 else
3772 {
3773 if (len == 1)
3774 {
3775 /* "$" is equivalent to "$0". */
3776 index = 0;
3777 *endp += len;
3778 }
3779 else
e799154c
TT
3780 {
3781 char *local_end;
3782
3783 index = strtol (&h[1], &local_end, 10);
3784 *endp = local_end;
3785 }
3bd0f5ef
MS
3786 }
3787
3788 return access_value_history (index);
3789}
3790
a471c594
JK
3791struct value *
3792coerce_ref_if_computed (const struct value *arg)
3793{
3794 const struct lval_funcs *funcs;
3795
3796 if (TYPE_CODE (check_typedef (value_type (arg))) != TYPE_CODE_REF)
3797 return NULL;
3798
3799 if (value_lval_const (arg) != lval_computed)
3800 return NULL;
3801
3802 funcs = value_computed_funcs (arg);
3803 if (funcs->coerce_ref == NULL)
3804 return NULL;
3805
3806 return funcs->coerce_ref (arg);
3807}
3808
dfcee124
AG
3809/* Look at value.h for description. */
3810
3811struct value *
3812readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3813 const struct type *original_type,
3814 const struct value *original_value)
dfcee124
AG
3815{
3816 /* Re-adjust type. */
3817 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3818
3819 /* Add embedding info. */
3820 set_value_enclosing_type (value, enc_type);
3821 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3822
3823 /* We may be pointing to an object of some derived type. */
3824 return value_full_object (value, NULL, 0, 0, 0);
3825}
3826
994b9211
AC
3827struct value *
3828coerce_ref (struct value *arg)
3829{
df407dfe 3830 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3831 struct value *retval;
dfcee124 3832 struct type *enc_type;
a109c7c1 3833
a471c594
JK
3834 retval = coerce_ref_if_computed (arg);
3835 if (retval)
3836 return retval;
3837
3838 if (TYPE_CODE (value_type_arg_tmp) != TYPE_CODE_REF)
3839 return arg;
3840
dfcee124
AG
3841 enc_type = check_typedef (value_enclosing_type (arg));
3842 enc_type = TYPE_TARGET_TYPE (enc_type);
3843
3844 retval = value_at_lazy (enc_type,
3845 unpack_pointer (value_type (arg),
3846 value_contents (arg)));
9f1f738a 3847 enc_type = value_type (retval);
dfcee124
AG
3848 return readjust_indirect_value_type (retval, enc_type,
3849 value_type_arg_tmp, arg);
994b9211
AC
3850}
3851
3852struct value *
3853coerce_array (struct value *arg)
3854{
f3134b88
TT
3855 struct type *type;
3856
994b9211 3857 arg = coerce_ref (arg);
f3134b88
TT
3858 type = check_typedef (value_type (arg));
3859
3860 switch (TYPE_CODE (type))
3861 {
3862 case TYPE_CODE_ARRAY:
7346b668 3863 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3864 arg = value_coerce_array (arg);
3865 break;
3866 case TYPE_CODE_FUNC:
3867 arg = value_coerce_function (arg);
3868 break;
3869 }
994b9211
AC
3870 return arg;
3871}
c906108c 3872\f
c906108c 3873
bbfdfe1c
DM
3874/* Return the return value convention that will be used for the
3875 specified type. */
3876
3877enum return_value_convention
3878struct_return_convention (struct gdbarch *gdbarch,
3879 struct value *function, struct type *value_type)
3880{
3881 enum type_code code = TYPE_CODE (value_type);
3882
3883 if (code == TYPE_CODE_ERROR)
3884 error (_("Function return type unknown."));
3885
3886 /* Probe the architecture for the return-value convention. */
3887 return gdbarch_return_value (gdbarch, function, value_type,
3888 NULL, NULL, NULL);
3889}
3890
48436ce6
AC
3891/* Return true if the function returning the specified type is using
3892 the convention of returning structures in memory (passing in the
82585c72 3893 address as a hidden first parameter). */
c906108c
SS
3894
3895int
d80b854b 3896using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3897 struct value *function, struct type *value_type)
c906108c 3898{
bbfdfe1c 3899 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3900 /* A void return value is never in memory. See also corresponding
44e5158b 3901 code in "print_return_value". */
667e784f
AC
3902 return 0;
3903
bbfdfe1c 3904 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3905 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3906}
3907
42be36b3
CT
3908/* Set the initialized field in a value struct. */
3909
3910void
3911set_value_initialized (struct value *val, int status)
3912{
3913 val->initialized = status;
3914}
3915
3916/* Return the initialized field in a value struct. */
3917
3918int
4bf7b526 3919value_initialized (const struct value *val)
42be36b3
CT
3920{
3921 return val->initialized;
3922}
3923
a844296a
SM
3924/* Load the actual content of a lazy value. Fetch the data from the
3925 user's process and clear the lazy flag to indicate that the data in
3926 the buffer is valid.
a58e2656
AB
3927
3928 If the value is zero-length, we avoid calling read_memory, which
3929 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3930 it. */
a58e2656 3931
a844296a 3932void
a58e2656
AB
3933value_fetch_lazy (struct value *val)
3934{
3935 gdb_assert (value_lazy (val));
3936 allocate_value_contents (val);
9a0dc9e3
PA
3937 /* A value is either lazy, or fully fetched. The
3938 availability/validity is only established as we try to fetch a
3939 value. */
3940 gdb_assert (VEC_empty (range_s, val->optimized_out));
3941 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3942 if (value_bitsize (val))
3943 {
3944 /* To read a lazy bitfield, read the entire enclosing value. This
3945 prevents reading the same block of (possibly volatile) memory once
3946 per bitfield. It would be even better to read only the containing
3947 word, but we have no way to record that just specific bits of a
3948 value have been fetched. */
3949 struct type *type = check_typedef (value_type (val));
a58e2656 3950 struct value *parent = value_parent (val);
a58e2656 3951
b0c54aa5
AB
3952 if (value_lazy (parent))
3953 value_fetch_lazy (parent);
3954
4875ffdb
PA
3955 unpack_value_bitfield (val,
3956 value_bitpos (val), value_bitsize (val),
3957 value_contents_for_printing (parent),
3958 value_offset (val), parent);
a58e2656
AB
3959 }
3960 else if (VALUE_LVAL (val) == lval_memory)
3961 {
3962 CORE_ADDR addr = value_address (val);
3963 struct type *type = check_typedef (value_enclosing_type (val));
3964
3965 if (TYPE_LENGTH (type))
3966 read_value_memory (val, 0, value_stack (val),
3967 addr, value_contents_all_raw (val),
3ae385af 3968 type_length_units (type));
a58e2656
AB
3969 }
3970 else if (VALUE_LVAL (val) == lval_register)
3971 {
3972 struct frame_info *frame;
3973 int regnum;
3974 struct type *type = check_typedef (value_type (val));
3975 struct value *new_val = val, *mark = value_mark ();
3976
3977 /* Offsets are not supported here; lazy register values must
3978 refer to the entire register. */
3979 gdb_assert (value_offset (val) == 0);
3980
3981 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3982 {
6eeee81c
TT
3983 struct frame_id frame_id = VALUE_FRAME_ID (new_val);
3984
3985 frame = frame_find_by_id (frame_id);
a58e2656
AB
3986 regnum = VALUE_REGNUM (new_val);
3987
3988 gdb_assert (frame != NULL);
3989
3990 /* Convertible register routines are used for multi-register
3991 values and for interpretation in different types
3992 (e.g. float or int from a double register). Lazy
3993 register values should have the register's natural type,
3994 so they do not apply. */
3995 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (frame),
3996 regnum, type));
3997
3998 new_val = get_frame_register_value (frame, regnum);
6eeee81c
TT
3999
4000 /* If we get another lazy lval_register value, it means the
4001 register is found by reading it from the next frame.
4002 get_frame_register_value should never return a value with
4003 the frame id pointing to FRAME. If it does, it means we
4004 either have two consecutive frames with the same frame id
4005 in the frame chain, or some code is trying to unwind
4006 behind get_prev_frame's back (e.g., a frame unwind
4007 sniffer trying to unwind), bypassing its validations. In
4008 any case, it should always be an internal error to end up
4009 in this situation. */
4010 if (VALUE_LVAL (new_val) == lval_register
4011 && value_lazy (new_val)
4012 && frame_id_eq (VALUE_FRAME_ID (new_val), frame_id))
4013 internal_error (__FILE__, __LINE__,
4014 _("infinite loop while fetching a register"));
a58e2656
AB
4015 }
4016
4017 /* If it's still lazy (for instance, a saved register on the
4018 stack), fetch it. */
4019 if (value_lazy (new_val))
4020 value_fetch_lazy (new_val);
4021
9a0dc9e3
PA
4022 /* Copy the contents and the unavailability/optimized-out
4023 meta-data from NEW_VAL to VAL. */
4024 set_value_lazy (val, 0);
4025 value_contents_copy (val, value_embedded_offset (val),
4026 new_val, value_embedded_offset (new_val),
3ae385af 4027 type_length_units (type));
a58e2656
AB
4028
4029 if (frame_debug)
4030 {
4031 struct gdbarch *gdbarch;
4032 frame = frame_find_by_id (VALUE_FRAME_ID (val));
4033 regnum = VALUE_REGNUM (val);
4034 gdbarch = get_frame_arch (frame);
4035
4036 fprintf_unfiltered (gdb_stdlog,
4037 "{ value_fetch_lazy "
4038 "(frame=%d,regnum=%d(%s),...) ",
4039 frame_relative_level (frame), regnum,
4040 user_reg_map_regnum_to_name (gdbarch, regnum));
4041
4042 fprintf_unfiltered (gdb_stdlog, "->");
4043 if (value_optimized_out (new_val))
f6c01fc5
AB
4044 {
4045 fprintf_unfiltered (gdb_stdlog, " ");
4046 val_print_optimized_out (new_val, gdb_stdlog);
4047 }
a58e2656
AB
4048 else
4049 {
4050 int i;
4051 const gdb_byte *buf = value_contents (new_val);
4052
4053 if (VALUE_LVAL (new_val) == lval_register)
4054 fprintf_unfiltered (gdb_stdlog, " register=%d",
4055 VALUE_REGNUM (new_val));
4056 else if (VALUE_LVAL (new_val) == lval_memory)
4057 fprintf_unfiltered (gdb_stdlog, " address=%s",
4058 paddress (gdbarch,
4059 value_address (new_val)));
4060 else
4061 fprintf_unfiltered (gdb_stdlog, " computed");
4062
4063 fprintf_unfiltered (gdb_stdlog, " bytes=");
4064 fprintf_unfiltered (gdb_stdlog, "[");
4065 for (i = 0; i < register_size (gdbarch, regnum); i++)
4066 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4067 fprintf_unfiltered (gdb_stdlog, "]");
4068 }
4069
4070 fprintf_unfiltered (gdb_stdlog, " }\n");
4071 }
4072
4073 /* Dispose of the intermediate values. This prevents
4074 watchpoints from trying to watch the saved frame pointer. */
4075 value_free_to_mark (mark);
4076 }
4077 else if (VALUE_LVAL (val) == lval_computed
4078 && value_computed_funcs (val)->read != NULL)
4079 value_computed_funcs (val)->read (val);
a58e2656
AB
4080 else
4081 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4082
4083 set_value_lazy (val, 0);
a58e2656
AB
4084}
4085
a280dbd1
SDJ
4086/* Implementation of the convenience function $_isvoid. */
4087
4088static struct value *
4089isvoid_internal_fn (struct gdbarch *gdbarch,
4090 const struct language_defn *language,
4091 void *cookie, int argc, struct value **argv)
4092{
4093 int ret;
4094
4095 if (argc != 1)
6bc305f5 4096 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
4097
4098 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4099
4100 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4101}
4102
c906108c 4103void
fba45db2 4104_initialize_values (void)
c906108c 4105{
1a966eab 4106 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4107Debugger convenience (\"$foo\") variables and functions.\n\
4108Convenience variables are created when you assign them values;\n\
4109thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4110\n\
c906108c
SS
4111A few convenience variables are given values automatically:\n\
4112\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4113\"$__\" holds the contents of the last address examined with \"x\"."
4114#ifdef HAVE_PYTHON
4115"\n\n\
4116Convenience functions are defined via the Python API."
4117#endif
4118 ), &showlist);
7e20dfcd 4119 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4120
db5f229b 4121 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4122Elements of value history around item number IDX (or last ten)."),
c906108c 4123 &showlist);
53e5f3cf
AS
4124
4125 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4126Initialize a convenience variable if necessary.\n\
4127init-if-undefined VARIABLE = EXPRESSION\n\
4128Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4129exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4130VARIABLE is already initialized."));
bc3b79fd
TJB
4131
4132 add_prefix_cmd ("function", no_class, function_command, _("\
4133Placeholder command for showing help on convenience functions."),
4134 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4135
4136 add_internal_function ("_isvoid", _("\
4137Check whether an expression is void.\n\
4138Usage: $_isvoid (expression)\n\
4139Return 1 if the expression is void, zero otherwise."),
4140 isvoid_internal_fn, NULL);
5fdf6324
AB
4141
4142 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4143 class_support, &max_value_size, _("\
4144Set maximum sized value gdb will load from the inferior."), _("\
4145Show maximum sized value gdb will load from the inferior."), _("\
4146Use this to control the maximum size, in bytes, of a value that gdb\n\
4147will load from the inferior. Setting this value to 'unlimited'\n\
4148disables checking.\n\
4149Setting this does not invalidate already allocated values, it only\n\
4150prevents future values, larger than this size, from being allocated."),
4151 set_max_value_size,
4152 show_max_value_size,
4153 &setlist, &showlist);
c906108c 4154}
This page took 3.044598 seconds and 4 git commands to generate.