2009-01-13 Jim Blandy <jimb@codesourcery.com>
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75
JB
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
c906108c
SS
28#include "command.h"
29#include "gdbcmd.h"
30#include "target.h"
31#include "language.h"
c906108c 32#include "demangle.h"
d16aafd8 33#include "doublest.h"
5ae326fa 34#include "gdb_assert.h"
36160dc4 35#include "regcache.h"
fe898f56 36#include "block.h"
27bc4d80 37#include "dfp.h"
bccdca4a 38#include "objfiles.h"
79a45b7d 39#include "valprint.h"
c906108c 40
a08702d6
TJB
41#include "python/python.h"
42
c906108c
SS
43/* Prototypes for exported functions. */
44
a14ed312 45void _initialize_values (void);
c906108c 46
91294c83
AC
47struct value
48{
49 /* Type of value; either not an lval, or one of the various
50 different possible kinds of lval. */
51 enum lval_type lval;
52
53 /* Is it modifiable? Only relevant if lval != not_lval. */
54 int modifiable;
55
56 /* Location of value (if lval). */
57 union
58 {
59 /* If lval == lval_memory, this is the address in the inferior.
60 If lval == lval_register, this is the byte offset into the
61 registers structure. */
62 CORE_ADDR address;
63
64 /* Pointer to internal variable. */
65 struct internalvar *internalvar;
66 } location;
67
68 /* Describes offset of a value within lval of a structure in bytes.
69 If lval == lval_memory, this is an offset to the address. If
70 lval == lval_register, this is a further offset from
71 location.address within the registers structure. Note also the
72 member embedded_offset below. */
73 int offset;
74
75 /* Only used for bitfields; number of bits contained in them. */
76 int bitsize;
77
78 /* Only used for bitfields; position of start of field. For
32c9a795
MD
79 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
80 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
81 int bitpos;
82
83 /* Frame register value is relative to. This will be described in
84 the lval enum above as "lval_register". */
85 struct frame_id frame_id;
86
87 /* Type of the value. */
88 struct type *type;
89
90 /* If a value represents a C++ object, then the `type' field gives
91 the object's compile-time type. If the object actually belongs
92 to some class derived from `type', perhaps with other base
93 classes and additional members, then `type' is just a subobject
94 of the real thing, and the full object is probably larger than
95 `type' would suggest.
96
97 If `type' is a dynamic class (i.e. one with a vtable), then GDB
98 can actually determine the object's run-time type by looking at
99 the run-time type information in the vtable. When this
100 information is available, we may elect to read in the entire
101 object, for several reasons:
102
103 - When printing the value, the user would probably rather see the
104 full object, not just the limited portion apparent from the
105 compile-time type.
106
107 - If `type' has virtual base classes, then even printing `type'
108 alone may require reaching outside the `type' portion of the
109 object to wherever the virtual base class has been stored.
110
111 When we store the entire object, `enclosing_type' is the run-time
112 type -- the complete object -- and `embedded_offset' is the
113 offset of `type' within that larger type, in bytes. The
114 value_contents() macro takes `embedded_offset' into account, so
115 most GDB code continues to see the `type' portion of the value,
116 just as the inferior would.
117
118 If `type' is a pointer to an object, then `enclosing_type' is a
119 pointer to the object's run-time type, and `pointed_to_offset' is
120 the offset in bytes from the full object to the pointed-to object
121 -- that is, the value `embedded_offset' would have if we followed
122 the pointer and fetched the complete object. (I don't really see
123 the point. Why not just determine the run-time type when you
124 indirect, and avoid the special case? The contents don't matter
125 until you indirect anyway.)
126
127 If we're not doing anything fancy, `enclosing_type' is equal to
128 `type', and `embedded_offset' is zero, so everything works
129 normally. */
130 struct type *enclosing_type;
131 int embedded_offset;
132 int pointed_to_offset;
133
134 /* Values are stored in a chain, so that they can be deleted easily
135 over calls to the inferior. Values assigned to internal
a08702d6
TJB
136 variables, put into the value history or exposed to Python are
137 taken off this list. */
91294c83
AC
138 struct value *next;
139
140 /* Register number if the value is from a register. */
141 short regnum;
142
143 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
144 nonzero, contents are in inferior. If the lval field is lval_memory,
145 the contents are in inferior memory at location.address plus offset.
146 The lval field may also be lval_register.
91294c83
AC
147
148 WARNING: This field is used by the code which handles watchpoints
149 (see breakpoint.c) to decide whether a particular value can be
150 watched by hardware watchpoints. If the lazy flag is set for
151 some member of a value chain, it is assumed that this member of
152 the chain doesn't need to be watched as part of watching the
153 value itself. This is how GDB avoids watching the entire struct
154 or array when the user wants to watch a single struct member or
155 array element. If you ever change the way lazy flag is set and
156 reset, be sure to consider this use as well! */
157 char lazy;
158
159 /* If nonzero, this is the value of a variable which does not
160 actually exist in the program. */
161 char optimized_out;
162
42be36b3
CT
163 /* If value is a variable, is it initialized or not. */
164 int initialized;
165
3e3d7139
JG
166 /* Actual contents of the value. Target byte-order. NULL or not
167 valid if lazy is nonzero. */
168 gdb_byte *contents;
91294c83
AC
169};
170
c906108c
SS
171/* Prototypes for local functions. */
172
a14ed312 173static void show_values (char *, int);
c906108c 174
a14ed312 175static void show_convenience (char *, int);
c906108c 176
c906108c
SS
177
178/* The value-history records all the values printed
179 by print commands during this session. Each chunk
180 records 60 consecutive values. The first chunk on
181 the chain records the most recent values.
182 The total number of values is in value_history_count. */
183
184#define VALUE_HISTORY_CHUNK 60
185
186struct value_history_chunk
c5aa993b
JM
187 {
188 struct value_history_chunk *next;
f23631e4 189 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 190 };
c906108c
SS
191
192/* Chain of chunks now in use. */
193
194static struct value_history_chunk *value_history_chain;
195
196static int value_history_count; /* Abs number of last entry stored */
197\f
198/* List of all value objects currently allocated
199 (except for those released by calls to release_value)
200 This is so they can be freed after each command. */
201
f23631e4 202static struct value *all_values;
c906108c 203
3e3d7139
JG
204/* Allocate a lazy value for type TYPE. Its actual content is
205 "lazily" allocated too: the content field of the return value is
206 NULL; it will be allocated when it is fetched from the target. */
c906108c 207
f23631e4 208struct value *
3e3d7139 209allocate_value_lazy (struct type *type)
c906108c 210{
f23631e4 211 struct value *val;
c906108c
SS
212 struct type *atype = check_typedef (type);
213
3e3d7139
JG
214 val = (struct value *) xzalloc (sizeof (struct value));
215 val->contents = NULL;
df407dfe 216 val->next = all_values;
c906108c 217 all_values = val;
df407dfe 218 val->type = type;
4754a64e 219 val->enclosing_type = type;
c906108c
SS
220 VALUE_LVAL (val) = not_lval;
221 VALUE_ADDRESS (val) = 0;
1df6926e 222 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
223 val->offset = 0;
224 val->bitpos = 0;
225 val->bitsize = 0;
9ee8fc9d 226 VALUE_REGNUM (val) = -1;
3e3d7139 227 val->lazy = 1;
feb13ab0 228 val->optimized_out = 0;
13c3b5f5 229 val->embedded_offset = 0;
b44d461b 230 val->pointed_to_offset = 0;
c906108c 231 val->modifiable = 1;
42be36b3 232 val->initialized = 1; /* Default to initialized. */
c906108c
SS
233 return val;
234}
235
3e3d7139
JG
236/* Allocate the contents of VAL if it has not been allocated yet. */
237
238void
239allocate_value_contents (struct value *val)
240{
241 if (!val->contents)
242 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
243}
244
245/* Allocate a value and its contents for type TYPE. */
246
247struct value *
248allocate_value (struct type *type)
249{
250 struct value *val = allocate_value_lazy (type);
251 allocate_value_contents (val);
252 val->lazy = 0;
253 return val;
254}
255
c906108c 256/* Allocate a value that has the correct length
938f5214 257 for COUNT repetitions of type TYPE. */
c906108c 258
f23631e4 259struct value *
fba45db2 260allocate_repeat_value (struct type *type, int count)
c906108c 261{
c5aa993b 262 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
263 /* FIXME-type-allocation: need a way to free this type when we are
264 done with it. */
265 struct type *range_type
6d84d3d8 266 = create_range_type ((struct type *) NULL, builtin_type_int32,
c5aa993b 267 low_bound, count + low_bound - 1);
c906108c
SS
268 /* FIXME-type-allocation: need a way to free this type when we are
269 done with it. */
270 return allocate_value (create_array_type ((struct type *) NULL,
271 type, range_type));
272}
273
a08702d6
TJB
274/* Needed if another module needs to maintain its on list of values. */
275void
276value_prepend_to_list (struct value **head, struct value *val)
277{
278 val->next = *head;
279 *head = val;
280}
281
282/* Needed if another module needs to maintain its on list of values. */
283void
284value_remove_from_list (struct value **head, struct value *val)
285{
286 struct value *prev;
287
288 if (*head == val)
289 *head = (*head)->next;
290 else
291 for (prev = *head; prev->next; prev = prev->next)
292 if (prev->next == val)
293 {
294 prev->next = val->next;
295 break;
296 }
297}
298
df407dfe
AC
299/* Accessor methods. */
300
17cf0ecd
AC
301struct value *
302value_next (struct value *value)
303{
304 return value->next;
305}
306
df407dfe
AC
307struct type *
308value_type (struct value *value)
309{
310 return value->type;
311}
04624583
AC
312void
313deprecated_set_value_type (struct value *value, struct type *type)
314{
315 value->type = type;
316}
df407dfe
AC
317
318int
319value_offset (struct value *value)
320{
321 return value->offset;
322}
f5cf64a7
AC
323void
324set_value_offset (struct value *value, int offset)
325{
326 value->offset = offset;
327}
df407dfe
AC
328
329int
330value_bitpos (struct value *value)
331{
332 return value->bitpos;
333}
9bbda503
AC
334void
335set_value_bitpos (struct value *value, int bit)
336{
337 value->bitpos = bit;
338}
df407dfe
AC
339
340int
341value_bitsize (struct value *value)
342{
343 return value->bitsize;
344}
9bbda503
AC
345void
346set_value_bitsize (struct value *value, int bit)
347{
348 value->bitsize = bit;
349}
df407dfe 350
fc1a4b47 351gdb_byte *
990a07ab
AC
352value_contents_raw (struct value *value)
353{
3e3d7139
JG
354 allocate_value_contents (value);
355 return value->contents + value->embedded_offset;
990a07ab
AC
356}
357
fc1a4b47 358gdb_byte *
990a07ab
AC
359value_contents_all_raw (struct value *value)
360{
3e3d7139
JG
361 allocate_value_contents (value);
362 return value->contents;
990a07ab
AC
363}
364
4754a64e
AC
365struct type *
366value_enclosing_type (struct value *value)
367{
368 return value->enclosing_type;
369}
370
fc1a4b47 371const gdb_byte *
46615f07
AC
372value_contents_all (struct value *value)
373{
374 if (value->lazy)
375 value_fetch_lazy (value);
3e3d7139 376 return value->contents;
46615f07
AC
377}
378
d69fe07e
AC
379int
380value_lazy (struct value *value)
381{
382 return value->lazy;
383}
384
dfa52d88
AC
385void
386set_value_lazy (struct value *value, int val)
387{
388 value->lazy = val;
389}
390
fc1a4b47 391const gdb_byte *
0fd88904
AC
392value_contents (struct value *value)
393{
394 return value_contents_writeable (value);
395}
396
fc1a4b47 397gdb_byte *
0fd88904
AC
398value_contents_writeable (struct value *value)
399{
400 if (value->lazy)
401 value_fetch_lazy (value);
fc0c53a0 402 return value_contents_raw (value);
0fd88904
AC
403}
404
a6c442d8
MK
405/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
406 this function is different from value_equal; in C the operator ==
407 can return 0 even if the two values being compared are equal. */
408
409int
410value_contents_equal (struct value *val1, struct value *val2)
411{
412 struct type *type1;
413 struct type *type2;
414 int len;
415
416 type1 = check_typedef (value_type (val1));
417 type2 = check_typedef (value_type (val2));
418 len = TYPE_LENGTH (type1);
419 if (len != TYPE_LENGTH (type2))
420 return 0;
421
422 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
423}
424
feb13ab0
AC
425int
426value_optimized_out (struct value *value)
427{
428 return value->optimized_out;
429}
430
431void
432set_value_optimized_out (struct value *value, int val)
433{
434 value->optimized_out = val;
435}
13c3b5f5
AC
436
437int
438value_embedded_offset (struct value *value)
439{
440 return value->embedded_offset;
441}
442
443void
444set_value_embedded_offset (struct value *value, int val)
445{
446 value->embedded_offset = val;
447}
b44d461b
AC
448
449int
450value_pointed_to_offset (struct value *value)
451{
452 return value->pointed_to_offset;
453}
454
455void
456set_value_pointed_to_offset (struct value *value, int val)
457{
458 value->pointed_to_offset = val;
459}
13bb5560
AC
460
461enum lval_type *
462deprecated_value_lval_hack (struct value *value)
463{
464 return &value->lval;
465}
466
467CORE_ADDR *
468deprecated_value_address_hack (struct value *value)
469{
470 return &value->location.address;
471}
472
473struct internalvar **
474deprecated_value_internalvar_hack (struct value *value)
475{
476 return &value->location.internalvar;
477}
478
479struct frame_id *
480deprecated_value_frame_id_hack (struct value *value)
481{
482 return &value->frame_id;
483}
484
485short *
486deprecated_value_regnum_hack (struct value *value)
487{
488 return &value->regnum;
489}
88e3b34b
AC
490
491int
492deprecated_value_modifiable (struct value *value)
493{
494 return value->modifiable;
495}
496void
497deprecated_set_value_modifiable (struct value *value, int modifiable)
498{
499 value->modifiable = modifiable;
500}
990a07ab 501\f
c906108c
SS
502/* Return a mark in the value chain. All values allocated after the
503 mark is obtained (except for those released) are subject to being freed
504 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 505struct value *
fba45db2 506value_mark (void)
c906108c
SS
507{
508 return all_values;
509}
510
3e3d7139
JG
511void
512value_free (struct value *val)
513{
514 if (val)
515 xfree (val->contents);
516 xfree (val);
517}
518
c906108c
SS
519/* Free all values allocated since MARK was obtained by value_mark
520 (except for those released). */
521void
f23631e4 522value_free_to_mark (struct value *mark)
c906108c 523{
f23631e4
AC
524 struct value *val;
525 struct value *next;
c906108c
SS
526
527 for (val = all_values; val && val != mark; val = next)
528 {
df407dfe 529 next = val->next;
c906108c
SS
530 value_free (val);
531 }
532 all_values = val;
533}
534
535/* Free all the values that have been allocated (except for those released).
536 Called after each command, successful or not. */
537
538void
fba45db2 539free_all_values (void)
c906108c 540{
f23631e4
AC
541 struct value *val;
542 struct value *next;
c906108c
SS
543
544 for (val = all_values; val; val = next)
545 {
df407dfe 546 next = val->next;
c906108c
SS
547 value_free (val);
548 }
549
550 all_values = 0;
551}
552
553/* Remove VAL from the chain all_values
554 so it will not be freed automatically. */
555
556void
f23631e4 557release_value (struct value *val)
c906108c 558{
f23631e4 559 struct value *v;
c906108c
SS
560
561 if (all_values == val)
562 {
563 all_values = val->next;
564 return;
565 }
566
567 for (v = all_values; v; v = v->next)
568 {
569 if (v->next == val)
570 {
571 v->next = val->next;
572 break;
573 }
574 }
575}
576
577/* Release all values up to mark */
f23631e4
AC
578struct value *
579value_release_to_mark (struct value *mark)
c906108c 580{
f23631e4
AC
581 struct value *val;
582 struct value *next;
c906108c 583
df407dfe
AC
584 for (val = next = all_values; next; next = next->next)
585 if (next->next == mark)
c906108c 586 {
df407dfe
AC
587 all_values = next->next;
588 next->next = NULL;
c906108c
SS
589 return val;
590 }
591 all_values = 0;
592 return val;
593}
594
595/* Return a copy of the value ARG.
596 It contains the same contents, for same memory address,
597 but it's a different block of storage. */
598
f23631e4
AC
599struct value *
600value_copy (struct value *arg)
c906108c 601{
4754a64e 602 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
603 struct value *val;
604
605 if (value_lazy (arg))
606 val = allocate_value_lazy (encl_type);
607 else
608 val = allocate_value (encl_type);
df407dfe 609 val->type = arg->type;
c906108c 610 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 611 val->location = arg->location;
df407dfe
AC
612 val->offset = arg->offset;
613 val->bitpos = arg->bitpos;
614 val->bitsize = arg->bitsize;
1df6926e 615 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 616 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 617 val->lazy = arg->lazy;
feb13ab0 618 val->optimized_out = arg->optimized_out;
13c3b5f5 619 val->embedded_offset = value_embedded_offset (arg);
b44d461b 620 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 621 val->modifiable = arg->modifiable;
d69fe07e 622 if (!value_lazy (val))
c906108c 623 {
990a07ab 624 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 625 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
626
627 }
628 return val;
629}
74bcbdf3
PA
630
631void
632set_value_component_location (struct value *component, struct value *whole)
633{
634 if (VALUE_LVAL (whole) == lval_internalvar)
635 VALUE_LVAL (component) = lval_internalvar_component;
636 else
637 VALUE_LVAL (component) = VALUE_LVAL (whole);
638 component->location = whole->location;
639}
640
c906108c
SS
641\f
642/* Access to the value history. */
643
644/* Record a new value in the value history.
645 Returns the absolute history index of the entry.
646 Result of -1 indicates the value was not saved; otherwise it is the
647 value history index of this new item. */
648
649int
f23631e4 650record_latest_value (struct value *val)
c906108c
SS
651{
652 int i;
653
654 /* We don't want this value to have anything to do with the inferior anymore.
655 In particular, "set $1 = 50" should not affect the variable from which
656 the value was taken, and fast watchpoints should be able to assume that
657 a value on the value history never changes. */
d69fe07e 658 if (value_lazy (val))
c906108c
SS
659 value_fetch_lazy (val);
660 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
661 from. This is a bit dubious, because then *&$1 does not just return $1
662 but the current contents of that location. c'est la vie... */
663 val->modifiable = 0;
664 release_value (val);
665
666 /* Here we treat value_history_count as origin-zero
667 and applying to the value being stored now. */
668
669 i = value_history_count % VALUE_HISTORY_CHUNK;
670 if (i == 0)
671 {
f23631e4 672 struct value_history_chunk *new
c5aa993b
JM
673 = (struct value_history_chunk *)
674 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
675 memset (new->values, 0, sizeof new->values);
676 new->next = value_history_chain;
677 value_history_chain = new;
678 }
679
680 value_history_chain->values[i] = val;
681
682 /* Now we regard value_history_count as origin-one
683 and applying to the value just stored. */
684
685 return ++value_history_count;
686}
687
688/* Return a copy of the value in the history with sequence number NUM. */
689
f23631e4 690struct value *
fba45db2 691access_value_history (int num)
c906108c 692{
f23631e4 693 struct value_history_chunk *chunk;
52f0bd74
AC
694 int i;
695 int absnum = num;
c906108c
SS
696
697 if (absnum <= 0)
698 absnum += value_history_count;
699
700 if (absnum <= 0)
701 {
702 if (num == 0)
8a3fe4f8 703 error (_("The history is empty."));
c906108c 704 else if (num == 1)
8a3fe4f8 705 error (_("There is only one value in the history."));
c906108c 706 else
8a3fe4f8 707 error (_("History does not go back to $$%d."), -num);
c906108c
SS
708 }
709 if (absnum > value_history_count)
8a3fe4f8 710 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
711
712 absnum--;
713
714 /* Now absnum is always absolute and origin zero. */
715
716 chunk = value_history_chain;
717 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
718 i > 0; i--)
719 chunk = chunk->next;
720
721 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
722}
723
c906108c 724static void
fba45db2 725show_values (char *num_exp, int from_tty)
c906108c 726{
52f0bd74 727 int i;
f23631e4 728 struct value *val;
c906108c
SS
729 static int num = 1;
730
731 if (num_exp)
732 {
f132ba9d
TJB
733 /* "show values +" should print from the stored position.
734 "show values <exp>" should print around value number <exp>. */
c906108c 735 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 736 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
737 }
738 else
739 {
f132ba9d 740 /* "show values" means print the last 10 values. */
c906108c
SS
741 num = value_history_count - 9;
742 }
743
744 if (num <= 0)
745 num = 1;
746
747 for (i = num; i < num + 10 && i <= value_history_count; i++)
748 {
79a45b7d 749 struct value_print_options opts;
c906108c 750 val = access_value_history (i);
a3f17187 751 printf_filtered (("$%d = "), i);
79a45b7d
TT
752 get_user_print_options (&opts);
753 value_print (val, gdb_stdout, &opts);
a3f17187 754 printf_filtered (("\n"));
c906108c
SS
755 }
756
f132ba9d 757 /* The next "show values +" should start after what we just printed. */
c906108c
SS
758 num += 10;
759
760 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
761 "show values +". If num_exp is null, this is unnecessary, since
762 "show values +" is not useful after "show values". */
c906108c
SS
763 if (from_tty && num_exp)
764 {
765 num_exp[0] = '+';
766 num_exp[1] = '\0';
767 }
768}
769\f
770/* Internal variables. These are variables within the debugger
771 that hold values assigned by debugger commands.
772 The user refers to them with a '$' prefix
773 that does not appear in the variable names stored internally. */
774
775static struct internalvar *internalvars;
776
53e5f3cf
AS
777/* If the variable does not already exist create it and give it the value given.
778 If no value is given then the default is zero. */
779static void
780init_if_undefined_command (char* args, int from_tty)
781{
782 struct internalvar* intvar;
783
784 /* Parse the expression - this is taken from set_command(). */
785 struct expression *expr = parse_expression (args);
786 register struct cleanup *old_chain =
787 make_cleanup (free_current_contents, &expr);
788
789 /* Validate the expression.
790 Was the expression an assignment?
791 Or even an expression at all? */
792 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
793 error (_("Init-if-undefined requires an assignment expression."));
794
795 /* Extract the variable from the parsed expression.
796 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
797 if (expr->elts[1].opcode != OP_INTERNALVAR)
798 error (_("The first parameter to init-if-undefined should be a GDB variable."));
799 intvar = expr->elts[2].internalvar;
800
801 /* Only evaluate the expression if the lvalue is void.
802 This may still fail if the expresssion is invalid. */
803 if (TYPE_CODE (value_type (intvar->value)) == TYPE_CODE_VOID)
804 evaluate_expression (expr);
805
806 do_cleanups (old_chain);
807}
808
809
c906108c
SS
810/* Look up an internal variable with name NAME. NAME should not
811 normally include a dollar sign.
812
813 If the specified internal variable does not exist,
c4a3d09a 814 the return value is NULL. */
c906108c
SS
815
816struct internalvar *
c4a3d09a 817lookup_only_internalvar (char *name)
c906108c 818{
52f0bd74 819 struct internalvar *var;
c906108c
SS
820
821 for (var = internalvars; var; var = var->next)
5cb316ef 822 if (strcmp (var->name, name) == 0)
c906108c
SS
823 return var;
824
c4a3d09a
MF
825 return NULL;
826}
827
828
829/* Create an internal variable with name NAME and with a void value.
830 NAME should not normally include a dollar sign. */
831
832struct internalvar *
833create_internalvar (char *name)
834{
835 struct internalvar *var;
c906108c 836 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 837 var->name = concat (name, (char *)NULL);
c906108c 838 var->value = allocate_value (builtin_type_void);
0d20ae72 839 var->endian = gdbarch_byte_order (current_gdbarch);
c906108c
SS
840 release_value (var->value);
841 var->next = internalvars;
842 internalvars = var;
843 return var;
844}
845
c4a3d09a
MF
846
847/* Look up an internal variable with name NAME. NAME should not
848 normally include a dollar sign.
849
850 If the specified internal variable does not exist,
851 one is created, with a void value. */
852
853struct internalvar *
854lookup_internalvar (char *name)
855{
856 struct internalvar *var;
857
858 var = lookup_only_internalvar (name);
859 if (var)
860 return var;
861
862 return create_internalvar (name);
863}
864
f23631e4 865struct value *
fba45db2 866value_of_internalvar (struct internalvar *var)
c906108c 867{
f23631e4 868 struct value *val;
d3c139e9
AS
869 int i, j;
870 gdb_byte temp;
c906108c 871
c906108c 872 val = value_copy (var->value);
d69fe07e 873 if (value_lazy (val))
c906108c
SS
874 value_fetch_lazy (val);
875 VALUE_LVAL (val) = lval_internalvar;
876 VALUE_INTERNALVAR (val) = var;
d3c139e9
AS
877
878 /* Values are always stored in the target's byte order. When connected to a
879 target this will most likely always be correct, so there's normally no
880 need to worry about it.
881
882 However, internal variables can be set up before the target endian is
883 known and so may become out of date. Fix it up before anybody sees.
884
885 Internal variables usually hold simple scalar values, and we can
886 correct those. More complex values (e.g. structures and floating
887 point types) are left alone, because they would be too complicated
888 to correct. */
889
0d20ae72 890 if (var->endian != gdbarch_byte_order (current_gdbarch))
d3c139e9
AS
891 {
892 gdb_byte *array = value_contents_raw (val);
893 struct type *type = check_typedef (value_enclosing_type (val));
894 switch (TYPE_CODE (type))
895 {
896 case TYPE_CODE_INT:
897 case TYPE_CODE_PTR:
898 /* Reverse the bytes. */
899 for (i = 0, j = TYPE_LENGTH (type) - 1; i < j; i++, j--)
900 {
901 temp = array[j];
902 array[j] = array[i];
903 array[i] = temp;
904 }
905 break;
906 }
907 }
908
c906108c
SS
909 return val;
910}
911
912void
fba45db2 913set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 914 int bitsize, struct value *newval)
c906108c 915{
fc1a4b47 916 gdb_byte *addr = value_contents_writeable (var->value) + offset;
c906108c 917
c906108c
SS
918 if (bitsize)
919 modify_field (addr, value_as_long (newval),
920 bitpos, bitsize);
921 else
0fd88904 922 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
c906108c
SS
923}
924
925void
f23631e4 926set_internalvar (struct internalvar *var, struct value *val)
c906108c 927{
f23631e4 928 struct value *newval;
c906108c 929
c906108c
SS
930 newval = value_copy (val);
931 newval->modifiable = 1;
932
933 /* Force the value to be fetched from the target now, to avoid problems
934 later when this internalvar is referenced and the target is gone or
935 has changed. */
d69fe07e 936 if (value_lazy (newval))
c906108c
SS
937 value_fetch_lazy (newval);
938
939 /* Begin code which must not call error(). If var->value points to
940 something free'd, an error() obviously leaves a dangling pointer.
941 But we also get a danling pointer if var->value points to
942 something in the value chain (i.e., before release_value is
943 called), because after the error free_all_values will get called before
944 long. */
170ce852 945 value_free (var->value);
c906108c 946 var->value = newval;
0d20ae72 947 var->endian = gdbarch_byte_order (current_gdbarch);
c906108c
SS
948 release_value (newval);
949 /* End code which must not call error(). */
950}
951
952char *
fba45db2 953internalvar_name (struct internalvar *var)
c906108c
SS
954{
955 return var->name;
956}
957
ae5a43e0
DJ
958/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
959 prevent cycles / duplicates. */
960
961static void
962preserve_one_value (struct value *value, struct objfile *objfile,
963 htab_t copied_types)
964{
965 if (TYPE_OBJFILE (value->type) == objfile)
966 value->type = copy_type_recursive (objfile, value->type, copied_types);
967
968 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
969 value->enclosing_type = copy_type_recursive (objfile,
970 value->enclosing_type,
971 copied_types);
972}
973
974/* Update the internal variables and value history when OBJFILE is
975 discarded; we must copy the types out of the objfile. New global types
976 will be created for every convenience variable which currently points to
977 this objfile's types, and the convenience variables will be adjusted to
978 use the new global types. */
c906108c
SS
979
980void
ae5a43e0 981preserve_values (struct objfile *objfile)
c906108c 982{
ae5a43e0
DJ
983 htab_t copied_types;
984 struct value_history_chunk *cur;
52f0bd74 985 struct internalvar *var;
a08702d6 986 struct value *val;
ae5a43e0 987 int i;
c906108c 988
ae5a43e0
DJ
989 /* Create the hash table. We allocate on the objfile's obstack, since
990 it is soon to be deleted. */
991 copied_types = create_copied_types_hash (objfile);
992
993 for (cur = value_history_chain; cur; cur = cur->next)
994 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
995 if (cur->values[i])
996 preserve_one_value (cur->values[i], objfile, copied_types);
997
998 for (var = internalvars; var; var = var->next)
999 preserve_one_value (var->value, objfile, copied_types);
1000
a08702d6
TJB
1001 for (val = values_in_python; val; val = val->next)
1002 preserve_one_value (val, objfile, copied_types);
1003
ae5a43e0 1004 htab_delete (copied_types);
c906108c
SS
1005}
1006
1007static void
fba45db2 1008show_convenience (char *ignore, int from_tty)
c906108c 1009{
52f0bd74 1010 struct internalvar *var;
c906108c 1011 int varseen = 0;
79a45b7d 1012 struct value_print_options opts;
c906108c 1013
79a45b7d 1014 get_user_print_options (&opts);
c906108c
SS
1015 for (var = internalvars; var; var = var->next)
1016 {
c906108c
SS
1017 if (!varseen)
1018 {
1019 varseen = 1;
1020 }
a3f17187 1021 printf_filtered (("$%s = "), var->name);
d3c139e9 1022 value_print (value_of_internalvar (var), gdb_stdout,
79a45b7d 1023 &opts);
a3f17187 1024 printf_filtered (("\n"));
c906108c
SS
1025 }
1026 if (!varseen)
a3f17187
AC
1027 printf_unfiltered (_("\
1028No debugger convenience variables now defined.\n\
c906108c 1029Convenience variables have names starting with \"$\";\n\
a3f17187 1030use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
1031}
1032\f
1033/* Extract a value as a C number (either long or double).
1034 Knows how to convert fixed values to double, or
1035 floating values to long.
1036 Does not deallocate the value. */
1037
1038LONGEST
f23631e4 1039value_as_long (struct value *val)
c906108c
SS
1040{
1041 /* This coerces arrays and functions, which is necessary (e.g.
1042 in disassemble_command). It also dereferences references, which
1043 I suspect is the most logical thing to do. */
994b9211 1044 val = coerce_array (val);
0fd88904 1045 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1046}
1047
1048DOUBLEST
f23631e4 1049value_as_double (struct value *val)
c906108c
SS
1050{
1051 DOUBLEST foo;
1052 int inv;
c5aa993b 1053
0fd88904 1054 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1055 if (inv)
8a3fe4f8 1056 error (_("Invalid floating value found in program."));
c906108c
SS
1057 return foo;
1058}
4ef30785 1059
4478b372
JB
1060/* Extract a value as a C pointer. Does not deallocate the value.
1061 Note that val's type may not actually be a pointer; value_as_long
1062 handles all the cases. */
c906108c 1063CORE_ADDR
f23631e4 1064value_as_address (struct value *val)
c906108c
SS
1065{
1066 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1067 whether we want this to be true eventually. */
1068#if 0
bf6ae464 1069 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1070 non-address (e.g. argument to "signal", "info break", etc.), or
1071 for pointers to char, in which the low bits *are* significant. */
bf6ae464 1072 return gdbarch_addr_bits_remove (current_gdbarch, value_as_long (val));
c906108c 1073#else
f312f057
JB
1074
1075 /* There are several targets (IA-64, PowerPC, and others) which
1076 don't represent pointers to functions as simply the address of
1077 the function's entry point. For example, on the IA-64, a
1078 function pointer points to a two-word descriptor, generated by
1079 the linker, which contains the function's entry point, and the
1080 value the IA-64 "global pointer" register should have --- to
1081 support position-independent code. The linker generates
1082 descriptors only for those functions whose addresses are taken.
1083
1084 On such targets, it's difficult for GDB to convert an arbitrary
1085 function address into a function pointer; it has to either find
1086 an existing descriptor for that function, or call malloc and
1087 build its own. On some targets, it is impossible for GDB to
1088 build a descriptor at all: the descriptor must contain a jump
1089 instruction; data memory cannot be executed; and code memory
1090 cannot be modified.
1091
1092 Upon entry to this function, if VAL is a value of type `function'
1093 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
1094 VALUE_ADDRESS (val) is the address of the function. This is what
1095 you'll get if you evaluate an expression like `main'. The call
1096 to COERCE_ARRAY below actually does all the usual unary
1097 conversions, which includes converting values of type `function'
1098 to `pointer to function'. This is the challenging conversion
1099 discussed above. Then, `unpack_long' will convert that pointer
1100 back into an address.
1101
1102 So, suppose the user types `disassemble foo' on an architecture
1103 with a strange function pointer representation, on which GDB
1104 cannot build its own descriptors, and suppose further that `foo'
1105 has no linker-built descriptor. The address->pointer conversion
1106 will signal an error and prevent the command from running, even
1107 though the next step would have been to convert the pointer
1108 directly back into the same address.
1109
1110 The following shortcut avoids this whole mess. If VAL is a
1111 function, just return its address directly. */
df407dfe
AC
1112 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1113 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
f312f057
JB
1114 return VALUE_ADDRESS (val);
1115
994b9211 1116 val = coerce_array (val);
fc0c74b1
AC
1117
1118 /* Some architectures (e.g. Harvard), map instruction and data
1119 addresses onto a single large unified address space. For
1120 instance: An architecture may consider a large integer in the
1121 range 0x10000000 .. 0x1000ffff to already represent a data
1122 addresses (hence not need a pointer to address conversion) while
1123 a small integer would still need to be converted integer to
1124 pointer to address. Just assume such architectures handle all
1125 integer conversions in a single function. */
1126
1127 /* JimB writes:
1128
1129 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1130 must admonish GDB hackers to make sure its behavior matches the
1131 compiler's, whenever possible.
1132
1133 In general, I think GDB should evaluate expressions the same way
1134 the compiler does. When the user copies an expression out of
1135 their source code and hands it to a `print' command, they should
1136 get the same value the compiler would have computed. Any
1137 deviation from this rule can cause major confusion and annoyance,
1138 and needs to be justified carefully. In other words, GDB doesn't
1139 really have the freedom to do these conversions in clever and
1140 useful ways.
1141
1142 AndrewC pointed out that users aren't complaining about how GDB
1143 casts integers to pointers; they are complaining that they can't
1144 take an address from a disassembly listing and give it to `x/i'.
1145 This is certainly important.
1146
79dd2d24 1147 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1148 makes it possible for GDB to "get it right" in all circumstances
1149 --- the target has complete control over how things get done, so
1150 people can Do The Right Thing for their target without breaking
1151 anyone else. The standard doesn't specify how integers get
1152 converted to pointers; usually, the ABI doesn't either, but
1153 ABI-specific code is a more reasonable place to handle it. */
1154
df407dfe
AC
1155 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1156 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
79dd2d24
AC
1157 && gdbarch_integer_to_address_p (current_gdbarch))
1158 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
0fd88904 1159 value_contents (val));
fc0c74b1 1160
0fd88904 1161 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1162#endif
1163}
1164\f
1165/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1166 as a long, or as a double, assuming the raw data is described
1167 by type TYPE. Knows how to convert different sizes of values
1168 and can convert between fixed and floating point. We don't assume
1169 any alignment for the raw data. Return value is in host byte order.
1170
1171 If you want functions and arrays to be coerced to pointers, and
1172 references to be dereferenced, call value_as_long() instead.
1173
1174 C++: It is assumed that the front-end has taken care of
1175 all matters concerning pointers to members. A pointer
1176 to member which reaches here is considered to be equivalent
1177 to an INT (or some size). After all, it is only an offset. */
1178
1179LONGEST
fc1a4b47 1180unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1181{
52f0bd74
AC
1182 enum type_code code = TYPE_CODE (type);
1183 int len = TYPE_LENGTH (type);
1184 int nosign = TYPE_UNSIGNED (type);
c906108c 1185
c906108c
SS
1186 switch (code)
1187 {
1188 case TYPE_CODE_TYPEDEF:
1189 return unpack_long (check_typedef (type), valaddr);
1190 case TYPE_CODE_ENUM:
4f2aea11 1191 case TYPE_CODE_FLAGS:
c906108c
SS
1192 case TYPE_CODE_BOOL:
1193 case TYPE_CODE_INT:
1194 case TYPE_CODE_CHAR:
1195 case TYPE_CODE_RANGE:
0d5de010 1196 case TYPE_CODE_MEMBERPTR:
c906108c
SS
1197 if (nosign)
1198 return extract_unsigned_integer (valaddr, len);
1199 else
1200 return extract_signed_integer (valaddr, len);
1201
1202 case TYPE_CODE_FLT:
96d2f608 1203 return extract_typed_floating (valaddr, type);
c906108c 1204
4ef30785
TJB
1205 case TYPE_CODE_DECFLOAT:
1206 /* libdecnumber has a function to convert from decimal to integer, but
1207 it doesn't work when the decimal number has a fractional part. */
ba759613 1208 return decimal_to_doublest (valaddr, len);
4ef30785 1209
c906108c
SS
1210 case TYPE_CODE_PTR:
1211 case TYPE_CODE_REF:
1212 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1213 whether we want this to be true eventually. */
4478b372 1214 return extract_typed_address (valaddr, type);
c906108c 1215
c906108c 1216 default:
8a3fe4f8 1217 error (_("Value can't be converted to integer."));
c906108c 1218 }
c5aa993b 1219 return 0; /* Placate lint. */
c906108c
SS
1220}
1221
1222/* Return a double value from the specified type and address.
1223 INVP points to an int which is set to 0 for valid value,
1224 1 for invalid value (bad float format). In either case,
1225 the returned double is OK to use. Argument is in target
1226 format, result is in host format. */
1227
1228DOUBLEST
fc1a4b47 1229unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c
SS
1230{
1231 enum type_code code;
1232 int len;
1233 int nosign;
1234
1235 *invp = 0; /* Assume valid. */
1236 CHECK_TYPEDEF (type);
1237 code = TYPE_CODE (type);
1238 len = TYPE_LENGTH (type);
1239 nosign = TYPE_UNSIGNED (type);
1240 if (code == TYPE_CODE_FLT)
1241 {
75bc7ddf
AC
1242 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1243 floating-point value was valid (using the macro
1244 INVALID_FLOAT). That test/macro have been removed.
1245
1246 It turns out that only the VAX defined this macro and then
1247 only in a non-portable way. Fixing the portability problem
1248 wouldn't help since the VAX floating-point code is also badly
1249 bit-rotten. The target needs to add definitions for the
ea06eb3d 1250 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1251 exactly describe the target floating-point format. The
1252 problem here is that the corresponding floatformat_vax_f and
1253 floatformat_vax_d values these methods should be set to are
1254 also not defined either. Oops!
1255
1256 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1257 definitions and the new cases for floatformat_is_valid (). */
1258
1259 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1260 {
1261 *invp = 1;
1262 return 0.0;
1263 }
1264
96d2f608 1265 return extract_typed_floating (valaddr, type);
c906108c 1266 }
4ef30785 1267 else if (code == TYPE_CODE_DECFLOAT)
ba759613 1268 return decimal_to_doublest (valaddr, len);
c906108c
SS
1269 else if (nosign)
1270 {
1271 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1272 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1273 }
1274 else
1275 {
1276 /* Signed -- we are OK with unpack_long. */
1277 return unpack_long (type, valaddr);
1278 }
1279}
1280
1281/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1282 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1283 We don't assume any alignment for the raw data. Return value is in
1284 host byte order.
1285
1286 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1287 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1288
1289 C++: It is assumed that the front-end has taken care of
1290 all matters concerning pointers to members. A pointer
1291 to member which reaches here is considered to be equivalent
1292 to an INT (or some size). After all, it is only an offset. */
1293
1294CORE_ADDR
fc1a4b47 1295unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1296{
1297 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1298 whether we want this to be true eventually. */
1299 return unpack_long (type, valaddr);
1300}
4478b372 1301
c906108c 1302\f
2c2738a0
DC
1303/* Get the value of the FIELDN'th field (which must be static) of
1304 TYPE. Return NULL if the field doesn't exist or has been
1305 optimized out. */
c906108c 1306
f23631e4 1307struct value *
fba45db2 1308value_static_field (struct type *type, int fieldno)
c906108c 1309{
948e66d9
DJ
1310 struct value *retval;
1311
d6a843b5 1312 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
c906108c 1313 {
948e66d9 1314 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1315 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
1316 }
1317 else
1318 {
1319 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2570f2b7 1320 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
948e66d9 1321 if (sym == NULL)
c906108c
SS
1322 {
1323 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
1324 as non-debuggable symbols */
1325 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
1326 if (!msym)
1327 return NULL;
1328 else
c5aa993b 1329 {
948e66d9 1330 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1331 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1332 }
1333 }
1334 else
1335 {
948e66d9
DJ
1336 /* SYM should never have a SYMBOL_CLASS which will require
1337 read_var_value to use the FRAME parameter. */
1338 if (symbol_read_needs_frame (sym))
8a3fe4f8
AC
1339 warning (_("static field's value depends on the current "
1340 "frame - bad debug info?"));
948e66d9 1341 retval = read_var_value (sym, NULL);
2b127877 1342 }
948e66d9
DJ
1343 if (retval && VALUE_LVAL (retval) == lval_memory)
1344 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1345 VALUE_ADDRESS (retval));
c906108c 1346 }
948e66d9 1347 return retval;
c906108c
SS
1348}
1349
2b127877
DB
1350/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1351 You have to be careful here, since the size of the data area for the value
1352 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1353 than the old enclosing type, you have to allocate more space for the data.
1354 The return value is a pointer to the new version of this value structure. */
1355
f23631e4
AC
1356struct value *
1357value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1358{
3e3d7139
JG
1359 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1360 val->contents =
1361 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1362
1363 val->enclosing_type = new_encl_type;
1364 return val;
2b127877
DB
1365}
1366
c906108c
SS
1367/* Given a value ARG1 (offset by OFFSET bytes)
1368 of a struct or union type ARG_TYPE,
1369 extract and return the value of one of its (non-static) fields.
1370 FIELDNO says which field. */
1371
f23631e4
AC
1372struct value *
1373value_primitive_field (struct value *arg1, int offset,
aa1ee363 1374 int fieldno, struct type *arg_type)
c906108c 1375{
f23631e4 1376 struct value *v;
52f0bd74 1377 struct type *type;
c906108c
SS
1378
1379 CHECK_TYPEDEF (arg_type);
1380 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1381
1382 /* Handle packed fields */
1383
1384 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1385 {
1386 v = value_from_longest (type,
1387 unpack_field_as_long (arg_type,
0fd88904 1388 value_contents (arg1)
c5aa993b 1389 + offset,
c906108c 1390 fieldno));
df407dfe
AC
1391 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1392 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1393 v->offset = value_offset (arg1) + offset
2e70b7b9 1394 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
1395 }
1396 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1397 {
1398 /* This field is actually a base subobject, so preserve the
1399 entire object's contents for later references to virtual
1400 bases, etc. */
a4e2ee12
DJ
1401
1402 /* Lazy register values with offsets are not supported. */
1403 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1404 value_fetch_lazy (arg1);
1405
1406 if (value_lazy (arg1))
3e3d7139 1407 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 1408 else
3e3d7139
JG
1409 {
1410 v = allocate_value (value_enclosing_type (arg1));
1411 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1412 TYPE_LENGTH (value_enclosing_type (arg1)));
1413 }
1414 v->type = type;
df407dfe 1415 v->offset = value_offset (arg1);
13c3b5f5
AC
1416 v->embedded_offset = (offset + value_embedded_offset (arg1)
1417 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
1418 }
1419 else
1420 {
1421 /* Plain old data member */
1422 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
1423
1424 /* Lazy register values with offsets are not supported. */
1425 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1426 value_fetch_lazy (arg1);
1427
1428 if (value_lazy (arg1))
3e3d7139 1429 v = allocate_value_lazy (type);
c906108c 1430 else
3e3d7139
JG
1431 {
1432 v = allocate_value (type);
1433 memcpy (value_contents_raw (v),
1434 value_contents_raw (arg1) + offset,
1435 TYPE_LENGTH (type));
1436 }
df407dfe 1437 v->offset = (value_offset (arg1) + offset
13c3b5f5 1438 + value_embedded_offset (arg1));
c906108c 1439 }
74bcbdf3 1440 set_value_component_location (v, arg1);
9ee8fc9d 1441 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 1442 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
1443 return v;
1444}
1445
1446/* Given a value ARG1 of a struct or union type,
1447 extract and return the value of one of its (non-static) fields.
1448 FIELDNO says which field. */
1449
f23631e4 1450struct value *
aa1ee363 1451value_field (struct value *arg1, int fieldno)
c906108c 1452{
df407dfe 1453 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
1454}
1455
1456/* Return a non-virtual function as a value.
1457 F is the list of member functions which contains the desired method.
0478d61c
FF
1458 J is an index into F which provides the desired method.
1459
1460 We only use the symbol for its address, so be happy with either a
1461 full symbol or a minimal symbol.
1462 */
c906108c 1463
f23631e4
AC
1464struct value *
1465value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 1466 int offset)
c906108c 1467{
f23631e4 1468 struct value *v;
52f0bd74 1469 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 1470 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 1471 struct symbol *sym;
0478d61c 1472 struct minimal_symbol *msym;
c906108c 1473
2570f2b7 1474 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 1475 if (sym != NULL)
0478d61c 1476 {
5ae326fa
AC
1477 msym = NULL;
1478 }
1479 else
1480 {
1481 gdb_assert (sym == NULL);
0478d61c 1482 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
1483 if (msym == NULL)
1484 return NULL;
0478d61c
FF
1485 }
1486
c906108c 1487 v = allocate_value (ftype);
0478d61c
FF
1488 if (sym)
1489 {
1490 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1491 }
1492 else
1493 {
bccdca4a
UW
1494 /* The minimal symbol might point to a function descriptor;
1495 resolve it to the actual code address instead. */
1496 struct objfile *objfile = msymbol_objfile (msym);
1497 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1498
1499 VALUE_ADDRESS (v)
1500 = gdbarch_convert_from_func_ptr_addr
1501 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target);
0478d61c 1502 }
c906108c
SS
1503
1504 if (arg1p)
c5aa993b 1505 {
df407dfe 1506 if (type != value_type (*arg1p))
c5aa993b
JM
1507 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1508 value_addr (*arg1p)));
1509
070ad9f0 1510 /* Move the `this' pointer according to the offset.
c5aa993b
JM
1511 VALUE_OFFSET (*arg1p) += offset;
1512 */
c906108c
SS
1513 }
1514
1515 return v;
1516}
1517
c906108c
SS
1518\f
1519/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1520 VALADDR.
1521
1522 Extracting bits depends on endianness of the machine. Compute the
1523 number of least significant bits to discard. For big endian machines,
1524 we compute the total number of bits in the anonymous object, subtract
1525 off the bit count from the MSB of the object to the MSB of the
1526 bitfield, then the size of the bitfield, which leaves the LSB discard
1527 count. For little endian machines, the discard count is simply the
1528 number of bits from the LSB of the anonymous object to the LSB of the
1529 bitfield.
1530
1531 If the field is signed, we also do sign extension. */
1532
1533LONGEST
fc1a4b47 1534unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
c906108c
SS
1535{
1536 ULONGEST val;
1537 ULONGEST valmask;
1538 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1539 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1540 int lsbcount;
1541 struct type *field_type;
1542
1543 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1544 field_type = TYPE_FIELD_TYPE (type, fieldno);
1545 CHECK_TYPEDEF (field_type);
1546
1547 /* Extract bits. See comment above. */
1548
32c9a795 1549 if (gdbarch_bits_big_endian (current_gdbarch))
c906108c
SS
1550 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1551 else
1552 lsbcount = (bitpos % 8);
1553 val >>= lsbcount;
1554
1555 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1556 If the field is signed, and is negative, then sign extend. */
1557
1558 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1559 {
1560 valmask = (((ULONGEST) 1) << bitsize) - 1;
1561 val &= valmask;
1562 if (!TYPE_UNSIGNED (field_type))
1563 {
1564 if (val & (valmask ^ (valmask >> 1)))
1565 {
1566 val |= ~valmask;
1567 }
1568 }
1569 }
1570 return (val);
1571}
1572
1573/* Modify the value of a bitfield. ADDR points to a block of memory in
1574 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1575 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
1576 indicate which bits (in target bit order) comprise the bitfield.
1577 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1578 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
1579
1580void
fc1a4b47 1581modify_field (gdb_byte *addr, LONGEST fieldval, int bitpos, int bitsize)
c906108c 1582{
f4e88c8e
PH
1583 ULONGEST oword;
1584 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
1585
1586 /* If a negative fieldval fits in the field in question, chop
1587 off the sign extension bits. */
f4e88c8e
PH
1588 if ((~fieldval & ~(mask >> 1)) == 0)
1589 fieldval &= mask;
c906108c
SS
1590
1591 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 1592 if (0 != (fieldval & ~mask))
c906108c
SS
1593 {
1594 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1595 we don't have a sprintf_longest. */
8a3fe4f8 1596 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
1597
1598 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 1599 fieldval &= mask;
c906108c
SS
1600 }
1601
f4e88c8e 1602 oword = extract_unsigned_integer (addr, sizeof oword);
c906108c
SS
1603
1604 /* Shifting for bit field depends on endianness of the target machine. */
32c9a795 1605 if (gdbarch_bits_big_endian (current_gdbarch))
c906108c
SS
1606 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1607
f4e88c8e 1608 oword &= ~(mask << bitpos);
c906108c
SS
1609 oword |= fieldval << bitpos;
1610
f4e88c8e 1611 store_unsigned_integer (addr, sizeof oword, oword);
c906108c
SS
1612}
1613\f
14d06750 1614/* Pack NUM into BUF using a target format of TYPE. */
c906108c 1615
14d06750
DJ
1616void
1617pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 1618{
52f0bd74 1619 int len;
14d06750
DJ
1620
1621 type = check_typedef (type);
c906108c
SS
1622 len = TYPE_LENGTH (type);
1623
14d06750 1624 switch (TYPE_CODE (type))
c906108c 1625 {
c906108c
SS
1626 case TYPE_CODE_INT:
1627 case TYPE_CODE_CHAR:
1628 case TYPE_CODE_ENUM:
4f2aea11 1629 case TYPE_CODE_FLAGS:
c906108c
SS
1630 case TYPE_CODE_BOOL:
1631 case TYPE_CODE_RANGE:
0d5de010 1632 case TYPE_CODE_MEMBERPTR:
14d06750 1633 store_signed_integer (buf, len, num);
c906108c 1634 break;
c5aa993b 1635
c906108c
SS
1636 case TYPE_CODE_REF:
1637 case TYPE_CODE_PTR:
14d06750 1638 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 1639 break;
c5aa993b 1640
c906108c 1641 default:
14d06750
DJ
1642 error (_("Unexpected type (%d) encountered for integer constant."),
1643 TYPE_CODE (type));
c906108c 1644 }
14d06750
DJ
1645}
1646
1647
1648/* Convert C numbers into newly allocated values. */
1649
1650struct value *
1651value_from_longest (struct type *type, LONGEST num)
1652{
1653 struct value *val = allocate_value (type);
1654
1655 pack_long (value_contents_raw (val), type, num);
1656
c906108c
SS
1657 return val;
1658}
1659
4478b372
JB
1660
1661/* Create a value representing a pointer of type TYPE to the address
1662 ADDR. */
f23631e4 1663struct value *
4478b372
JB
1664value_from_pointer (struct type *type, CORE_ADDR addr)
1665{
f23631e4 1666 struct value *val = allocate_value (type);
990a07ab 1667 store_typed_address (value_contents_raw (val), type, addr);
4478b372
JB
1668 return val;
1669}
1670
1671
0f71a2f6 1672/* Create a value for a string constant to be stored locally
070ad9f0 1673 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1674 This is analogous to value_from_longest, which also does not
1675 use inferior memory. String shall NOT contain embedded nulls. */
1676
f23631e4 1677struct value *
fba45db2 1678value_from_string (char *ptr)
0f71a2f6 1679{
f23631e4 1680 struct value *val;
c5aa993b 1681 int len = strlen (ptr);
0f71a2f6 1682 int lowbound = current_language->string_lower_bound;
f290d38e
AC
1683 struct type *string_char_type;
1684 struct type *rangetype;
1685 struct type *stringtype;
1686
1687 rangetype = create_range_type ((struct type *) NULL,
6d84d3d8 1688 builtin_type_int32,
f290d38e
AC
1689 lowbound, len + lowbound - 1);
1690 string_char_type = language_string_char_type (current_language,
1691 current_gdbarch);
1692 stringtype = create_array_type ((struct type *) NULL,
1693 string_char_type,
1694 rangetype);
0f71a2f6 1695 val = allocate_value (stringtype);
990a07ab 1696 memcpy (value_contents_raw (val), ptr, len);
0f71a2f6
JM
1697 return val;
1698}
1699
8acb6b92
TT
1700/* Create a value of type TYPE whose contents come from VALADDR, if it
1701 is non-null, and whose memory address (in the inferior) is
1702 ADDRESS. */
1703
1704struct value *
1705value_from_contents_and_address (struct type *type,
1706 const gdb_byte *valaddr,
1707 CORE_ADDR address)
1708{
1709 struct value *v = allocate_value (type);
1710 if (valaddr == NULL)
1711 set_value_lazy (v, 1);
1712 else
1713 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
1714 VALUE_ADDRESS (v) = address;
1715 if (address != 0)
1716 VALUE_LVAL (v) = lval_memory;
1717 return v;
1718}
1719
f23631e4 1720struct value *
fba45db2 1721value_from_double (struct type *type, DOUBLEST num)
c906108c 1722{
f23631e4 1723 struct value *val = allocate_value (type);
c906108c 1724 struct type *base_type = check_typedef (type);
52f0bd74
AC
1725 enum type_code code = TYPE_CODE (base_type);
1726 int len = TYPE_LENGTH (base_type);
c906108c
SS
1727
1728 if (code == TYPE_CODE_FLT)
1729 {
990a07ab 1730 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
1731 }
1732 else
8a3fe4f8 1733 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
1734
1735 return val;
1736}
994b9211 1737
27bc4d80 1738struct value *
4ef30785 1739value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
1740{
1741 struct value *val = allocate_value (type);
27bc4d80 1742
4ef30785 1743 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80 1744
27bc4d80
TJB
1745 return val;
1746}
1747
994b9211
AC
1748struct value *
1749coerce_ref (struct value *arg)
1750{
df407dfe 1751 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
994b9211
AC
1752 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1753 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 1754 unpack_pointer (value_type (arg),
0fd88904 1755 value_contents (arg)));
994b9211
AC
1756 return arg;
1757}
1758
1759struct value *
1760coerce_array (struct value *arg)
1761{
f3134b88
TT
1762 struct type *type;
1763
994b9211 1764 arg = coerce_ref (arg);
f3134b88
TT
1765 type = check_typedef (value_type (arg));
1766
1767 switch (TYPE_CODE (type))
1768 {
1769 case TYPE_CODE_ARRAY:
1770 if (current_language->c_style_arrays)
1771 arg = value_coerce_array (arg);
1772 break;
1773 case TYPE_CODE_FUNC:
1774 arg = value_coerce_function (arg);
1775 break;
1776 }
994b9211
AC
1777 return arg;
1778}
c906108c 1779\f
c906108c 1780
48436ce6
AC
1781/* Return true if the function returning the specified type is using
1782 the convention of returning structures in memory (passing in the
82585c72 1783 address as a hidden first parameter). */
c906108c
SS
1784
1785int
c055b101 1786using_struct_return (struct type *func_type, struct type *value_type)
c906108c 1787{
52f0bd74 1788 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
1789
1790 if (code == TYPE_CODE_ERROR)
8a3fe4f8 1791 error (_("Function return type unknown."));
c906108c 1792
667e784f
AC
1793 if (code == TYPE_CODE_VOID)
1794 /* A void return value is never in memory. See also corresponding
44e5158b 1795 code in "print_return_value". */
667e784f
AC
1796 return 0;
1797
92ad9cd9 1798 /* Probe the architecture for the return-value convention. */
c055b101 1799 return (gdbarch_return_value (current_gdbarch, func_type, value_type,
92ad9cd9 1800 NULL, NULL, NULL)
31db7b6c 1801 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
1802}
1803
42be36b3
CT
1804/* Set the initialized field in a value struct. */
1805
1806void
1807set_value_initialized (struct value *val, int status)
1808{
1809 val->initialized = status;
1810}
1811
1812/* Return the initialized field in a value struct. */
1813
1814int
1815value_initialized (struct value *val)
1816{
1817 return val->initialized;
1818}
1819
c906108c 1820void
fba45db2 1821_initialize_values (void)
c906108c 1822{
1a966eab
AC
1823 add_cmd ("convenience", no_class, show_convenience, _("\
1824Debugger convenience (\"$foo\") variables.\n\
c906108c 1825These variables are created when you assign them values;\n\
1a966eab
AC
1826thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1827\n\
c906108c
SS
1828A few convenience variables are given values automatically:\n\
1829\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 1830\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
1831 &showlist);
1832
1833 add_cmd ("values", no_class, show_values,
1a966eab 1834 _("Elements of value history around item number IDX (or last ten)."),
c906108c 1835 &showlist);
53e5f3cf
AS
1836
1837 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
1838Initialize a convenience variable if necessary.\n\
1839init-if-undefined VARIABLE = EXPRESSION\n\
1840Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
1841exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
1842VARIABLE is already initialized."));
c906108c 1843}
This page took 0.982334 seconds and 4 git commands to generate.