*** empty log message ***
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75 4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7b6bb8da 5 2009, 2010, 2011 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
c906108c
SS
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
c906108c
SS
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
c906108c 33#include "demangle.h"
d16aafd8 34#include "doublest.h"
5ae326fa 35#include "gdb_assert.h"
36160dc4 36#include "regcache.h"
fe898f56 37#include "block.h"
27bc4d80 38#include "dfp.h"
bccdca4a 39#include "objfiles.h"
79a45b7d 40#include "valprint.h"
bc3b79fd 41#include "cli/cli-decode.h"
8af8e3bc 42#include "exceptions.h"
a08702d6 43#include "python/python.h"
3bd0f5ef 44#include <ctype.h>
0914bcdb
SS
45#include "tracepoint.h"
46
581e13c1 47/* Prototypes for exported functions. */
c906108c 48
a14ed312 49void _initialize_values (void);
c906108c 50
bc3b79fd
TJB
51/* Definition of a user function. */
52struct internal_function
53{
54 /* The name of the function. It is a bit odd to have this in the
55 function itself -- the user might use a differently-named
56 convenience variable to hold the function. */
57 char *name;
58
59 /* The handler. */
60 internal_function_fn handler;
61
62 /* User data for the handler. */
63 void *cookie;
64};
65
4e07d55f
PA
66/* Defines an [OFFSET, OFFSET + LENGTH) range. */
67
68struct range
69{
70 /* Lowest offset in the range. */
71 int offset;
72
73 /* Length of the range. */
74 int length;
75};
76
77typedef struct range range_s;
78
79DEF_VEC_O(range_s);
80
81/* Returns true if the ranges defined by [offset1, offset1+len1) and
82 [offset2, offset2+len2) overlap. */
83
84static int
85ranges_overlap (int offset1, int len1,
86 int offset2, int len2)
87{
88 ULONGEST h, l;
89
90 l = max (offset1, offset2);
91 h = min (offset1 + len1, offset2 + len2);
92 return (l < h);
93}
94
95/* Returns true if the first argument is strictly less than the
96 second, useful for VEC_lower_bound. We keep ranges sorted by
97 offset and coalesce overlapping and contiguous ranges, so this just
98 compares the starting offset. */
99
100static int
101range_lessthan (const range_s *r1, const range_s *r2)
102{
103 return r1->offset < r2->offset;
104}
105
106/* Returns true if RANGES contains any range that overlaps [OFFSET,
107 OFFSET+LENGTH). */
108
109static int
110ranges_contain (VEC(range_s) *ranges, int offset, int length)
111{
112 range_s what;
113 int i;
114
115 what.offset = offset;
116 what.length = length;
117
118 /* We keep ranges sorted by offset and coalesce overlapping and
119 contiguous ranges, so to check if a range list contains a given
120 range, we can do a binary search for the position the given range
121 would be inserted if we only considered the starting OFFSET of
122 ranges. We call that position I. Since we also have LENGTH to
123 care for (this is a range afterall), we need to check if the
124 _previous_ range overlaps the I range. E.g.,
125
126 R
127 |---|
128 |---| |---| |------| ... |--|
129 0 1 2 N
130
131 I=1
132
133 In the case above, the binary search would return `I=1', meaning,
134 this OFFSET should be inserted at position 1, and the current
135 position 1 should be pushed further (and before 2). But, `0'
136 overlaps with R.
137
138 Then we need to check if the I range overlaps the I range itself.
139 E.g.,
140
141 R
142 |---|
143 |---| |---| |-------| ... |--|
144 0 1 2 N
145
146 I=1
147 */
148
149 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
150
151 if (i > 0)
152 {
153 struct range *bef = VEC_index (range_s, ranges, i - 1);
154
155 if (ranges_overlap (bef->offset, bef->length, offset, length))
156 return 1;
157 }
158
159 if (i < VEC_length (range_s, ranges))
160 {
161 struct range *r = VEC_index (range_s, ranges, i);
162
163 if (ranges_overlap (r->offset, r->length, offset, length))
164 return 1;
165 }
166
167 return 0;
168}
169
bc3b79fd
TJB
170static struct cmd_list_element *functionlist;
171
91294c83
AC
172struct value
173{
174 /* Type of value; either not an lval, or one of the various
175 different possible kinds of lval. */
176 enum lval_type lval;
177
178 /* Is it modifiable? Only relevant if lval != not_lval. */
179 int modifiable;
180
181 /* Location of value (if lval). */
182 union
183 {
184 /* If lval == lval_memory, this is the address in the inferior.
185 If lval == lval_register, this is the byte offset into the
186 registers structure. */
187 CORE_ADDR address;
188
189 /* Pointer to internal variable. */
190 struct internalvar *internalvar;
5f5233d4
PA
191
192 /* If lval == lval_computed, this is a set of function pointers
193 to use to access and describe the value, and a closure pointer
194 for them to use. */
195 struct
196 {
c8f2448a
JK
197 /* Functions to call. */
198 const struct lval_funcs *funcs;
199
200 /* Closure for those functions to use. */
201 void *closure;
5f5233d4 202 } computed;
91294c83
AC
203 } location;
204
205 /* Describes offset of a value within lval of a structure in bytes.
206 If lval == lval_memory, this is an offset to the address. If
207 lval == lval_register, this is a further offset from
208 location.address within the registers structure. Note also the
209 member embedded_offset below. */
210 int offset;
211
212 /* Only used for bitfields; number of bits contained in them. */
213 int bitsize;
214
215 /* Only used for bitfields; position of start of field. For
32c9a795 216 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 217 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
218 int bitpos;
219
4ea48cc1
DJ
220 /* Only used for bitfields; the containing value. This allows a
221 single read from the target when displaying multiple
222 bitfields. */
223 struct value *parent;
224
91294c83
AC
225 /* Frame register value is relative to. This will be described in
226 the lval enum above as "lval_register". */
227 struct frame_id frame_id;
228
229 /* Type of the value. */
230 struct type *type;
231
232 /* If a value represents a C++ object, then the `type' field gives
233 the object's compile-time type. If the object actually belongs
234 to some class derived from `type', perhaps with other base
235 classes and additional members, then `type' is just a subobject
236 of the real thing, and the full object is probably larger than
237 `type' would suggest.
238
239 If `type' is a dynamic class (i.e. one with a vtable), then GDB
240 can actually determine the object's run-time type by looking at
241 the run-time type information in the vtable. When this
242 information is available, we may elect to read in the entire
243 object, for several reasons:
244
245 - When printing the value, the user would probably rather see the
246 full object, not just the limited portion apparent from the
247 compile-time type.
248
249 - If `type' has virtual base classes, then even printing `type'
250 alone may require reaching outside the `type' portion of the
251 object to wherever the virtual base class has been stored.
252
253 When we store the entire object, `enclosing_type' is the run-time
254 type -- the complete object -- and `embedded_offset' is the
255 offset of `type' within that larger type, in bytes. The
256 value_contents() macro takes `embedded_offset' into account, so
257 most GDB code continues to see the `type' portion of the value,
258 just as the inferior would.
259
260 If `type' is a pointer to an object, then `enclosing_type' is a
261 pointer to the object's run-time type, and `pointed_to_offset' is
262 the offset in bytes from the full object to the pointed-to object
263 -- that is, the value `embedded_offset' would have if we followed
264 the pointer and fetched the complete object. (I don't really see
265 the point. Why not just determine the run-time type when you
266 indirect, and avoid the special case? The contents don't matter
267 until you indirect anyway.)
268
269 If we're not doing anything fancy, `enclosing_type' is equal to
270 `type', and `embedded_offset' is zero, so everything works
271 normally. */
272 struct type *enclosing_type;
273 int embedded_offset;
274 int pointed_to_offset;
275
276 /* Values are stored in a chain, so that they can be deleted easily
277 over calls to the inferior. Values assigned to internal
a08702d6
TJB
278 variables, put into the value history or exposed to Python are
279 taken off this list. */
91294c83
AC
280 struct value *next;
281
282 /* Register number if the value is from a register. */
283 short regnum;
284
285 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
286 nonzero, contents are in inferior. If the lval field is lval_memory,
287 the contents are in inferior memory at location.address plus offset.
288 The lval field may also be lval_register.
91294c83
AC
289
290 WARNING: This field is used by the code which handles watchpoints
291 (see breakpoint.c) to decide whether a particular value can be
292 watched by hardware watchpoints. If the lazy flag is set for
293 some member of a value chain, it is assumed that this member of
294 the chain doesn't need to be watched as part of watching the
295 value itself. This is how GDB avoids watching the entire struct
296 or array when the user wants to watch a single struct member or
297 array element. If you ever change the way lazy flag is set and
298 reset, be sure to consider this use as well! */
299 char lazy;
300
301 /* If nonzero, this is the value of a variable which does not
302 actually exist in the program. */
303 char optimized_out;
304
42be36b3
CT
305 /* If value is a variable, is it initialized or not. */
306 int initialized;
307
4e5d721f
DE
308 /* If value is from the stack. If this is set, read_stack will be
309 used instead of read_memory to enable extra caching. */
310 int stack;
311
3e3d7139
JG
312 /* Actual contents of the value. Target byte-order. NULL or not
313 valid if lazy is nonzero. */
314 gdb_byte *contents;
828d3400 315
4e07d55f
PA
316 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
317 rather than available, since the common and default case is for a
318 value to be available. This is filled in at value read time. */
319 VEC(range_s) *unavailable;
320
828d3400
DJ
321 /* The number of references to this value. When a value is created,
322 the value chain holds a reference, so REFERENCE_COUNT is 1. If
323 release_value is called, this value is removed from the chain but
324 the caller of release_value now has a reference to this value.
325 The caller must arrange for a call to value_free later. */
326 int reference_count;
91294c83
AC
327};
328
4e07d55f
PA
329int
330value_bytes_available (const struct value *value, int offset, int length)
331{
332 gdb_assert (!value->lazy);
333
334 return !ranges_contain (value->unavailable, offset, length);
335}
336
ec0a52e1
PA
337int
338value_entirely_available (struct value *value)
339{
340 /* We can only tell whether the whole value is available when we try
341 to read it. */
342 if (value->lazy)
343 value_fetch_lazy (value);
344
345 if (VEC_empty (range_s, value->unavailable))
346 return 1;
347 return 0;
348}
349
4e07d55f
PA
350void
351mark_value_bytes_unavailable (struct value *value, int offset, int length)
352{
353 range_s newr;
354 int i;
355
356 /* Insert the range sorted. If there's overlap or the new range
357 would be contiguous with an existing range, merge. */
358
359 newr.offset = offset;
360 newr.length = length;
361
362 /* Do a binary search for the position the given range would be
363 inserted if we only considered the starting OFFSET of ranges.
364 Call that position I. Since we also have LENGTH to care for
365 (this is a range afterall), we need to check if the _previous_
366 range overlaps the I range. E.g., calling R the new range:
367
368 #1 - overlaps with previous
369
370 R
371 |-...-|
372 |---| |---| |------| ... |--|
373 0 1 2 N
374
375 I=1
376
377 In the case #1 above, the binary search would return `I=1',
378 meaning, this OFFSET should be inserted at position 1, and the
379 current position 1 should be pushed further (and become 2). But,
380 note that `0' overlaps with R, so we want to merge them.
381
382 A similar consideration needs to be taken if the new range would
383 be contiguous with the previous range:
384
385 #2 - contiguous with previous
386
387 R
388 |-...-|
389 |--| |---| |------| ... |--|
390 0 1 2 N
391
392 I=1
393
394 If there's no overlap with the previous range, as in:
395
396 #3 - not overlapping and not contiguous
397
398 R
399 |-...-|
400 |--| |---| |------| ... |--|
401 0 1 2 N
402
403 I=1
404
405 or if I is 0:
406
407 #4 - R is the range with lowest offset
408
409 R
410 |-...-|
411 |--| |---| |------| ... |--|
412 0 1 2 N
413
414 I=0
415
416 ... we just push the new range to I.
417
418 All the 4 cases above need to consider that the new range may
419 also overlap several of the ranges that follow, or that R may be
420 contiguous with the following range, and merge. E.g.,
421
422 #5 - overlapping following ranges
423
424 R
425 |------------------------|
426 |--| |---| |------| ... |--|
427 0 1 2 N
428
429 I=0
430
431 or:
432
433 R
434 |-------|
435 |--| |---| |------| ... |--|
436 0 1 2 N
437
438 I=1
439
440 */
441
442 i = VEC_lower_bound (range_s, value->unavailable, &newr, range_lessthan);
443 if (i > 0)
444 {
6bfc80c7 445 struct range *bef = VEC_index (range_s, value->unavailable, i - 1);
4e07d55f
PA
446
447 if (ranges_overlap (bef->offset, bef->length, offset, length))
448 {
449 /* #1 */
450 ULONGEST l = min (bef->offset, offset);
451 ULONGEST h = max (bef->offset + bef->length, offset + length);
452
453 bef->offset = l;
454 bef->length = h - l;
455 i--;
456 }
457 else if (offset == bef->offset + bef->length)
458 {
459 /* #2 */
460 bef->length += length;
461 i--;
462 }
463 else
464 {
465 /* #3 */
466 VEC_safe_insert (range_s, value->unavailable, i, &newr);
467 }
468 }
469 else
470 {
471 /* #4 */
472 VEC_safe_insert (range_s, value->unavailable, i, &newr);
473 }
474
475 /* Check whether the ranges following the one we've just added or
476 touched can be folded in (#5 above). */
477 if (i + 1 < VEC_length (range_s, value->unavailable))
478 {
479 struct range *t;
480 struct range *r;
481 int removed = 0;
482 int next = i + 1;
483
484 /* Get the range we just touched. */
485 t = VEC_index (range_s, value->unavailable, i);
486 removed = 0;
487
488 i = next;
489 for (; VEC_iterate (range_s, value->unavailable, i, r); i++)
490 if (r->offset <= t->offset + t->length)
491 {
492 ULONGEST l, h;
493
494 l = min (t->offset, r->offset);
495 h = max (t->offset + t->length, r->offset + r->length);
496
497 t->offset = l;
498 t->length = h - l;
499
500 removed++;
501 }
502 else
503 {
504 /* If we couldn't merge this one, we won't be able to
505 merge following ones either, since the ranges are
506 always sorted by OFFSET. */
507 break;
508 }
509
510 if (removed != 0)
511 VEC_block_remove (range_s, value->unavailable, next, removed);
512 }
513}
514
c8c1c22f
PA
515/* Find the first range in RANGES that overlaps the range defined by
516 OFFSET and LENGTH, starting at element POS in the RANGES vector,
517 Returns the index into RANGES where such overlapping range was
518 found, or -1 if none was found. */
519
520static int
521find_first_range_overlap (VEC(range_s) *ranges, int pos,
522 int offset, int length)
523{
524 range_s *r;
525 int i;
526
527 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
528 if (ranges_overlap (r->offset, r->length, offset, length))
529 return i;
530
531 return -1;
532}
533
534int
535value_available_contents_eq (const struct value *val1, int offset1,
536 const struct value *val2, int offset2,
537 int length)
538{
c8c1c22f 539 int idx1 = 0, idx2 = 0;
c8c1c22f
PA
540
541 /* This routine is used by printing routines, where we should
542 already have read the value. Note that we only know whether a
543 value chunk is available if we've tried to read it. */
544 gdb_assert (!val1->lazy && !val2->lazy);
545
c8c1c22f
PA
546 while (length > 0)
547 {
548 range_s *r1, *r2;
549 ULONGEST l1, h1;
550 ULONGEST l2, h2;
551
552 idx1 = find_first_range_overlap (val1->unavailable, idx1,
553 offset1, length);
554 idx2 = find_first_range_overlap (val2->unavailable, idx2,
555 offset2, length);
556
557 /* The usual case is for both values to be completely available. */
558 if (idx1 == -1 && idx2 == -1)
cd24cfaa
PA
559 return (memcmp (val1->contents + offset1,
560 val2->contents + offset2,
561 length) == 0);
c8c1c22f
PA
562 /* The contents only match equal if the available set matches as
563 well. */
564 else if (idx1 == -1 || idx2 == -1)
565 return 0;
566
567 gdb_assert (idx1 != -1 && idx2 != -1);
568
569 r1 = VEC_index (range_s, val1->unavailable, idx1);
570 r2 = VEC_index (range_s, val2->unavailable, idx2);
571
572 /* Get the unavailable windows intersected by the incoming
573 ranges. The first and last ranges that overlap the argument
574 range may be wider than said incoming arguments ranges. */
575 l1 = max (offset1, r1->offset);
576 h1 = min (offset1 + length, r1->offset + r1->length);
577
578 l2 = max (offset2, r2->offset);
579 h2 = min (offset2 + length, r2->offset + r2->length);
580
581 /* Make them relative to the respective start offsets, so we can
582 compare them for equality. */
583 l1 -= offset1;
584 h1 -= offset1;
585
586 l2 -= offset2;
587 h2 -= offset2;
588
589 /* Different availability, no match. */
590 if (l1 != l2 || h1 != h2)
591 return 0;
592
593 /* Compare the _available_ contents. */
cd24cfaa
PA
594 if (memcmp (val1->contents + offset1,
595 val2->contents + offset2,
596 l1) != 0)
c8c1c22f
PA
597 return 0;
598
c8c1c22f
PA
599 length -= h1;
600 offset1 += h1;
601 offset2 += h1;
602 }
603
604 return 1;
605}
606
581e13c1 607/* Prototypes for local functions. */
c906108c 608
a14ed312 609static void show_values (char *, int);
c906108c 610
a14ed312 611static void show_convenience (char *, int);
c906108c 612
c906108c
SS
613
614/* The value-history records all the values printed
615 by print commands during this session. Each chunk
616 records 60 consecutive values. The first chunk on
617 the chain records the most recent values.
618 The total number of values is in value_history_count. */
619
620#define VALUE_HISTORY_CHUNK 60
621
622struct value_history_chunk
c5aa993b
JM
623 {
624 struct value_history_chunk *next;
f23631e4 625 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 626 };
c906108c
SS
627
628/* Chain of chunks now in use. */
629
630static struct value_history_chunk *value_history_chain;
631
581e13c1 632static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 633
c906108c
SS
634\f
635/* List of all value objects currently allocated
636 (except for those released by calls to release_value)
637 This is so they can be freed after each command. */
638
f23631e4 639static struct value *all_values;
c906108c 640
3e3d7139
JG
641/* Allocate a lazy value for type TYPE. Its actual content is
642 "lazily" allocated too: the content field of the return value is
643 NULL; it will be allocated when it is fetched from the target. */
c906108c 644
f23631e4 645struct value *
3e3d7139 646allocate_value_lazy (struct type *type)
c906108c 647{
f23631e4 648 struct value *val;
c54eabfa
JK
649
650 /* Call check_typedef on our type to make sure that, if TYPE
651 is a TYPE_CODE_TYPEDEF, its length is set to the length
652 of the target type instead of zero. However, we do not
653 replace the typedef type by the target type, because we want
654 to keep the typedef in order to be able to set the VAL's type
655 description correctly. */
656 check_typedef (type);
c906108c 657
3e3d7139
JG
658 val = (struct value *) xzalloc (sizeof (struct value));
659 val->contents = NULL;
df407dfe 660 val->next = all_values;
c906108c 661 all_values = val;
df407dfe 662 val->type = type;
4754a64e 663 val->enclosing_type = type;
c906108c 664 VALUE_LVAL (val) = not_lval;
42ae5230 665 val->location.address = 0;
1df6926e 666 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
667 val->offset = 0;
668 val->bitpos = 0;
669 val->bitsize = 0;
9ee8fc9d 670 VALUE_REGNUM (val) = -1;
3e3d7139 671 val->lazy = 1;
feb13ab0 672 val->optimized_out = 0;
13c3b5f5 673 val->embedded_offset = 0;
b44d461b 674 val->pointed_to_offset = 0;
c906108c 675 val->modifiable = 1;
42be36b3 676 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
677
678 /* Values start out on the all_values chain. */
679 val->reference_count = 1;
680
c906108c
SS
681 return val;
682}
683
3e3d7139
JG
684/* Allocate the contents of VAL if it has not been allocated yet. */
685
686void
687allocate_value_contents (struct value *val)
688{
689 if (!val->contents)
690 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
691}
692
693/* Allocate a value and its contents for type TYPE. */
694
695struct value *
696allocate_value (struct type *type)
697{
698 struct value *val = allocate_value_lazy (type);
a109c7c1 699
3e3d7139
JG
700 allocate_value_contents (val);
701 val->lazy = 0;
702 return val;
703}
704
c906108c 705/* Allocate a value that has the correct length
938f5214 706 for COUNT repetitions of type TYPE. */
c906108c 707
f23631e4 708struct value *
fba45db2 709allocate_repeat_value (struct type *type, int count)
c906108c 710{
c5aa993b 711 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
712 /* FIXME-type-allocation: need a way to free this type when we are
713 done with it. */
e3506a9f
UW
714 struct type *array_type
715 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 716
e3506a9f 717 return allocate_value (array_type);
c906108c
SS
718}
719
5f5233d4
PA
720struct value *
721allocate_computed_value (struct type *type,
c8f2448a 722 const struct lval_funcs *funcs,
5f5233d4
PA
723 void *closure)
724{
41e8491f 725 struct value *v = allocate_value_lazy (type);
a109c7c1 726
5f5233d4
PA
727 VALUE_LVAL (v) = lval_computed;
728 v->location.computed.funcs = funcs;
729 v->location.computed.closure = closure;
5f5233d4
PA
730
731 return v;
732}
733
a7035dbb
JK
734/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
735
736struct value *
737allocate_optimized_out_value (struct type *type)
738{
739 struct value *retval = allocate_value_lazy (type);
740
741 set_value_optimized_out (retval, 1);
742
743 return retval;
744}
745
df407dfe
AC
746/* Accessor methods. */
747
17cf0ecd
AC
748struct value *
749value_next (struct value *value)
750{
751 return value->next;
752}
753
df407dfe 754struct type *
0e03807e 755value_type (const struct value *value)
df407dfe
AC
756{
757 return value->type;
758}
04624583
AC
759void
760deprecated_set_value_type (struct value *value, struct type *type)
761{
762 value->type = type;
763}
df407dfe
AC
764
765int
0e03807e 766value_offset (const struct value *value)
df407dfe
AC
767{
768 return value->offset;
769}
f5cf64a7
AC
770void
771set_value_offset (struct value *value, int offset)
772{
773 value->offset = offset;
774}
df407dfe
AC
775
776int
0e03807e 777value_bitpos (const struct value *value)
df407dfe
AC
778{
779 return value->bitpos;
780}
9bbda503
AC
781void
782set_value_bitpos (struct value *value, int bit)
783{
784 value->bitpos = bit;
785}
df407dfe
AC
786
787int
0e03807e 788value_bitsize (const struct value *value)
df407dfe
AC
789{
790 return value->bitsize;
791}
9bbda503
AC
792void
793set_value_bitsize (struct value *value, int bit)
794{
795 value->bitsize = bit;
796}
df407dfe 797
4ea48cc1
DJ
798struct value *
799value_parent (struct value *value)
800{
801 return value->parent;
802}
803
fc1a4b47 804gdb_byte *
990a07ab
AC
805value_contents_raw (struct value *value)
806{
3e3d7139
JG
807 allocate_value_contents (value);
808 return value->contents + value->embedded_offset;
990a07ab
AC
809}
810
fc1a4b47 811gdb_byte *
990a07ab
AC
812value_contents_all_raw (struct value *value)
813{
3e3d7139
JG
814 allocate_value_contents (value);
815 return value->contents;
990a07ab
AC
816}
817
4754a64e
AC
818struct type *
819value_enclosing_type (struct value *value)
820{
821 return value->enclosing_type;
822}
823
0e03807e 824static void
4e07d55f 825require_not_optimized_out (const struct value *value)
0e03807e
TT
826{
827 if (value->optimized_out)
828 error (_("value has been optimized out"));
829}
830
4e07d55f
PA
831static void
832require_available (const struct value *value)
833{
834 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 835 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
836}
837
fc1a4b47 838const gdb_byte *
0e03807e 839value_contents_for_printing (struct value *value)
46615f07
AC
840{
841 if (value->lazy)
842 value_fetch_lazy (value);
3e3d7139 843 return value->contents;
46615f07
AC
844}
845
de4127a3
PA
846const gdb_byte *
847value_contents_for_printing_const (const struct value *value)
848{
849 gdb_assert (!value->lazy);
850 return value->contents;
851}
852
0e03807e
TT
853const gdb_byte *
854value_contents_all (struct value *value)
855{
856 const gdb_byte *result = value_contents_for_printing (value);
857 require_not_optimized_out (value);
4e07d55f 858 require_available (value);
0e03807e
TT
859 return result;
860}
861
29976f3f
PA
862/* Copy LENGTH bytes of SRC value's (all) contents
863 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
864 contents, starting at DST_OFFSET. If unavailable contents are
865 being copied from SRC, the corresponding DST contents are marked
866 unavailable accordingly. Neither DST nor SRC may be lazy
867 values.
868
869 It is assumed the contents of DST in the [DST_OFFSET,
870 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
871
872void
873value_contents_copy_raw (struct value *dst, int dst_offset,
874 struct value *src, int src_offset, int length)
875{
876 range_s *r;
877 int i;
878
879 /* A lazy DST would make that this copy operation useless, since as
880 soon as DST's contents were un-lazied (by a later value_contents
881 call, say), the contents would be overwritten. A lazy SRC would
882 mean we'd be copying garbage. */
883 gdb_assert (!dst->lazy && !src->lazy);
884
29976f3f
PA
885 /* The overwritten DST range gets unavailability ORed in, not
886 replaced. Make sure to remember to implement replacing if it
887 turns out actually necessary. */
888 gdb_assert (value_bytes_available (dst, dst_offset, length));
889
39d37385
PA
890 /* Copy the data. */
891 memcpy (value_contents_all_raw (dst) + dst_offset,
892 value_contents_all_raw (src) + src_offset,
893 length);
894
895 /* Copy the meta-data, adjusted. */
896 for (i = 0; VEC_iterate (range_s, src->unavailable, i, r); i++)
897 {
898 ULONGEST h, l;
899
900 l = max (r->offset, src_offset);
901 h = min (r->offset + r->length, src_offset + length);
902
903 if (l < h)
904 mark_value_bytes_unavailable (dst,
905 dst_offset + (l - src_offset),
906 h - l);
907 }
908}
909
29976f3f
PA
910/* Copy LENGTH bytes of SRC value's (all) contents
911 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
912 (all) contents, starting at DST_OFFSET. If unavailable contents
913 are being copied from SRC, the corresponding DST contents are
914 marked unavailable accordingly. DST must not be lazy. If SRC is
915 lazy, it will be fetched now. If SRC is not valid (is optimized
916 out), an error is thrown.
917
918 It is assumed the contents of DST in the [DST_OFFSET,
919 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
920
921void
922value_contents_copy (struct value *dst, int dst_offset,
923 struct value *src, int src_offset, int length)
924{
925 require_not_optimized_out (src);
926
927 if (src->lazy)
928 value_fetch_lazy (src);
929
930 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
931}
932
d69fe07e
AC
933int
934value_lazy (struct value *value)
935{
936 return value->lazy;
937}
938
dfa52d88
AC
939void
940set_value_lazy (struct value *value, int val)
941{
942 value->lazy = val;
943}
944
4e5d721f
DE
945int
946value_stack (struct value *value)
947{
948 return value->stack;
949}
950
951void
952set_value_stack (struct value *value, int val)
953{
954 value->stack = val;
955}
956
fc1a4b47 957const gdb_byte *
0fd88904
AC
958value_contents (struct value *value)
959{
0e03807e
TT
960 const gdb_byte *result = value_contents_writeable (value);
961 require_not_optimized_out (value);
4e07d55f 962 require_available (value);
0e03807e 963 return result;
0fd88904
AC
964}
965
fc1a4b47 966gdb_byte *
0fd88904
AC
967value_contents_writeable (struct value *value)
968{
969 if (value->lazy)
970 value_fetch_lazy (value);
fc0c53a0 971 return value_contents_raw (value);
0fd88904
AC
972}
973
a6c442d8
MK
974/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
975 this function is different from value_equal; in C the operator ==
976 can return 0 even if the two values being compared are equal. */
977
978int
979value_contents_equal (struct value *val1, struct value *val2)
980{
981 struct type *type1;
982 struct type *type2;
983 int len;
984
985 type1 = check_typedef (value_type (val1));
986 type2 = check_typedef (value_type (val2));
987 len = TYPE_LENGTH (type1);
988 if (len != TYPE_LENGTH (type2))
989 return 0;
990
991 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
992}
993
feb13ab0
AC
994int
995value_optimized_out (struct value *value)
996{
997 return value->optimized_out;
998}
999
1000void
1001set_value_optimized_out (struct value *value, int val)
1002{
1003 value->optimized_out = val;
1004}
13c3b5f5 1005
0e03807e
TT
1006int
1007value_entirely_optimized_out (const struct value *value)
1008{
1009 if (!value->optimized_out)
1010 return 0;
1011 if (value->lval != lval_computed
ba19bb4d 1012 || !value->location.computed.funcs->check_any_valid)
0e03807e 1013 return 1;
b65c7efe 1014 return !value->location.computed.funcs->check_any_valid (value);
0e03807e
TT
1015}
1016
1017int
1018value_bits_valid (const struct value *value, int offset, int length)
1019{
e7303042 1020 if (!value->optimized_out)
0e03807e
TT
1021 return 1;
1022 if (value->lval != lval_computed
1023 || !value->location.computed.funcs->check_validity)
1024 return 0;
1025 return value->location.computed.funcs->check_validity (value, offset,
1026 length);
1027}
1028
8cf6f0b1
TT
1029int
1030value_bits_synthetic_pointer (const struct value *value,
1031 int offset, int length)
1032{
e7303042 1033 if (value->lval != lval_computed
8cf6f0b1
TT
1034 || !value->location.computed.funcs->check_synthetic_pointer)
1035 return 0;
1036 return value->location.computed.funcs->check_synthetic_pointer (value,
1037 offset,
1038 length);
1039}
1040
13c3b5f5
AC
1041int
1042value_embedded_offset (struct value *value)
1043{
1044 return value->embedded_offset;
1045}
1046
1047void
1048set_value_embedded_offset (struct value *value, int val)
1049{
1050 value->embedded_offset = val;
1051}
b44d461b
AC
1052
1053int
1054value_pointed_to_offset (struct value *value)
1055{
1056 return value->pointed_to_offset;
1057}
1058
1059void
1060set_value_pointed_to_offset (struct value *value, int val)
1061{
1062 value->pointed_to_offset = val;
1063}
13bb5560 1064
c8f2448a 1065const struct lval_funcs *
5f5233d4
PA
1066value_computed_funcs (struct value *v)
1067{
1068 gdb_assert (VALUE_LVAL (v) == lval_computed);
1069
1070 return v->location.computed.funcs;
1071}
1072
1073void *
0e03807e 1074value_computed_closure (const struct value *v)
5f5233d4 1075{
0e03807e 1076 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1077
1078 return v->location.computed.closure;
1079}
1080
13bb5560
AC
1081enum lval_type *
1082deprecated_value_lval_hack (struct value *value)
1083{
1084 return &value->lval;
1085}
1086
42ae5230 1087CORE_ADDR
de4127a3 1088value_address (const struct value *value)
42ae5230
TT
1089{
1090 if (value->lval == lval_internalvar
1091 || value->lval == lval_internalvar_component)
1092 return 0;
1093 return value->location.address + value->offset;
1094}
1095
1096CORE_ADDR
1097value_raw_address (struct value *value)
1098{
1099 if (value->lval == lval_internalvar
1100 || value->lval == lval_internalvar_component)
1101 return 0;
1102 return value->location.address;
1103}
1104
1105void
1106set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1107{
42ae5230
TT
1108 gdb_assert (value->lval != lval_internalvar
1109 && value->lval != lval_internalvar_component);
1110 value->location.address = addr;
13bb5560
AC
1111}
1112
1113struct internalvar **
1114deprecated_value_internalvar_hack (struct value *value)
1115{
1116 return &value->location.internalvar;
1117}
1118
1119struct frame_id *
1120deprecated_value_frame_id_hack (struct value *value)
1121{
1122 return &value->frame_id;
1123}
1124
1125short *
1126deprecated_value_regnum_hack (struct value *value)
1127{
1128 return &value->regnum;
1129}
88e3b34b
AC
1130
1131int
1132deprecated_value_modifiable (struct value *value)
1133{
1134 return value->modifiable;
1135}
1136void
1137deprecated_set_value_modifiable (struct value *value, int modifiable)
1138{
1139 value->modifiable = modifiable;
1140}
990a07ab 1141\f
c906108c
SS
1142/* Return a mark in the value chain. All values allocated after the
1143 mark is obtained (except for those released) are subject to being freed
1144 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1145struct value *
fba45db2 1146value_mark (void)
c906108c
SS
1147{
1148 return all_values;
1149}
1150
828d3400
DJ
1151/* Take a reference to VAL. VAL will not be deallocated until all
1152 references are released. */
1153
1154void
1155value_incref (struct value *val)
1156{
1157 val->reference_count++;
1158}
1159
1160/* Release a reference to VAL, which was acquired with value_incref.
1161 This function is also called to deallocate values from the value
1162 chain. */
1163
3e3d7139
JG
1164void
1165value_free (struct value *val)
1166{
1167 if (val)
5f5233d4 1168 {
828d3400
DJ
1169 gdb_assert (val->reference_count > 0);
1170 val->reference_count--;
1171 if (val->reference_count > 0)
1172 return;
1173
4ea48cc1
DJ
1174 /* If there's an associated parent value, drop our reference to
1175 it. */
1176 if (val->parent != NULL)
1177 value_free (val->parent);
1178
5f5233d4
PA
1179 if (VALUE_LVAL (val) == lval_computed)
1180 {
c8f2448a 1181 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1182
1183 if (funcs->free_closure)
1184 funcs->free_closure (val);
1185 }
1186
1187 xfree (val->contents);
4e07d55f 1188 VEC_free (range_s, val->unavailable);
5f5233d4 1189 }
3e3d7139
JG
1190 xfree (val);
1191}
1192
c906108c
SS
1193/* Free all values allocated since MARK was obtained by value_mark
1194 (except for those released). */
1195void
f23631e4 1196value_free_to_mark (struct value *mark)
c906108c 1197{
f23631e4
AC
1198 struct value *val;
1199 struct value *next;
c906108c
SS
1200
1201 for (val = all_values; val && val != mark; val = next)
1202 {
df407dfe 1203 next = val->next;
c906108c
SS
1204 value_free (val);
1205 }
1206 all_values = val;
1207}
1208
1209/* Free all the values that have been allocated (except for those released).
725e88af
DE
1210 Call after each command, successful or not.
1211 In practice this is called before each command, which is sufficient. */
c906108c
SS
1212
1213void
fba45db2 1214free_all_values (void)
c906108c 1215{
f23631e4
AC
1216 struct value *val;
1217 struct value *next;
c906108c
SS
1218
1219 for (val = all_values; val; val = next)
1220 {
df407dfe 1221 next = val->next;
c906108c
SS
1222 value_free (val);
1223 }
1224
1225 all_values = 0;
1226}
1227
0cf6dd15
TJB
1228/* Frees all the elements in a chain of values. */
1229
1230void
1231free_value_chain (struct value *v)
1232{
1233 struct value *next;
1234
1235 for (; v; v = next)
1236 {
1237 next = value_next (v);
1238 value_free (v);
1239 }
1240}
1241
c906108c
SS
1242/* Remove VAL from the chain all_values
1243 so it will not be freed automatically. */
1244
1245void
f23631e4 1246release_value (struct value *val)
c906108c 1247{
f23631e4 1248 struct value *v;
c906108c
SS
1249
1250 if (all_values == val)
1251 {
1252 all_values = val->next;
06a64a0b 1253 val->next = NULL;
c906108c
SS
1254 return;
1255 }
1256
1257 for (v = all_values; v; v = v->next)
1258 {
1259 if (v->next == val)
1260 {
1261 v->next = val->next;
06a64a0b 1262 val->next = NULL;
c906108c
SS
1263 break;
1264 }
1265 }
1266}
1267
1268/* Release all values up to mark */
f23631e4
AC
1269struct value *
1270value_release_to_mark (struct value *mark)
c906108c 1271{
f23631e4
AC
1272 struct value *val;
1273 struct value *next;
c906108c 1274
df407dfe
AC
1275 for (val = next = all_values; next; next = next->next)
1276 if (next->next == mark)
c906108c 1277 {
df407dfe
AC
1278 all_values = next->next;
1279 next->next = NULL;
c906108c
SS
1280 return val;
1281 }
1282 all_values = 0;
1283 return val;
1284}
1285
1286/* Return a copy of the value ARG.
1287 It contains the same contents, for same memory address,
1288 but it's a different block of storage. */
1289
f23631e4
AC
1290struct value *
1291value_copy (struct value *arg)
c906108c 1292{
4754a64e 1293 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1294 struct value *val;
1295
1296 if (value_lazy (arg))
1297 val = allocate_value_lazy (encl_type);
1298 else
1299 val = allocate_value (encl_type);
df407dfe 1300 val->type = arg->type;
c906108c 1301 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1302 val->location = arg->location;
df407dfe
AC
1303 val->offset = arg->offset;
1304 val->bitpos = arg->bitpos;
1305 val->bitsize = arg->bitsize;
1df6926e 1306 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 1307 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 1308 val->lazy = arg->lazy;
feb13ab0 1309 val->optimized_out = arg->optimized_out;
13c3b5f5 1310 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1311 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1312 val->modifiable = arg->modifiable;
d69fe07e 1313 if (!value_lazy (val))
c906108c 1314 {
990a07ab 1315 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1316 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1317
1318 }
4e07d55f 1319 val->unavailable = VEC_copy (range_s, arg->unavailable);
4ea48cc1
DJ
1320 val->parent = arg->parent;
1321 if (val->parent)
1322 value_incref (val->parent);
5f5233d4
PA
1323 if (VALUE_LVAL (val) == lval_computed)
1324 {
c8f2448a 1325 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1326
1327 if (funcs->copy_closure)
1328 val->location.computed.closure = funcs->copy_closure (val);
1329 }
c906108c
SS
1330 return val;
1331}
74bcbdf3 1332
c37f7098
KW
1333/* Return a version of ARG that is non-lvalue. */
1334
1335struct value *
1336value_non_lval (struct value *arg)
1337{
1338 if (VALUE_LVAL (arg) != not_lval)
1339 {
1340 struct type *enc_type = value_enclosing_type (arg);
1341 struct value *val = allocate_value (enc_type);
1342
1343 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1344 TYPE_LENGTH (enc_type));
1345 val->type = arg->type;
1346 set_value_embedded_offset (val, value_embedded_offset (arg));
1347 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1348 return val;
1349 }
1350 return arg;
1351}
1352
74bcbdf3 1353void
0e03807e
TT
1354set_value_component_location (struct value *component,
1355 const struct value *whole)
74bcbdf3 1356{
0e03807e 1357 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1358 VALUE_LVAL (component) = lval_internalvar_component;
1359 else
0e03807e 1360 VALUE_LVAL (component) = whole->lval;
5f5233d4 1361
74bcbdf3 1362 component->location = whole->location;
0e03807e 1363 if (whole->lval == lval_computed)
5f5233d4 1364 {
c8f2448a 1365 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1366
1367 if (funcs->copy_closure)
1368 component->location.computed.closure = funcs->copy_closure (whole);
1369 }
74bcbdf3
PA
1370}
1371
c906108c
SS
1372\f
1373/* Access to the value history. */
1374
1375/* Record a new value in the value history.
1376 Returns the absolute history index of the entry.
1377 Result of -1 indicates the value was not saved; otherwise it is the
1378 value history index of this new item. */
1379
1380int
f23631e4 1381record_latest_value (struct value *val)
c906108c
SS
1382{
1383 int i;
1384
1385 /* We don't want this value to have anything to do with the inferior anymore.
1386 In particular, "set $1 = 50" should not affect the variable from which
1387 the value was taken, and fast watchpoints should be able to assume that
1388 a value on the value history never changes. */
d69fe07e 1389 if (value_lazy (val))
c906108c
SS
1390 value_fetch_lazy (val);
1391 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1392 from. This is a bit dubious, because then *&$1 does not just return $1
1393 but the current contents of that location. c'est la vie... */
1394 val->modifiable = 0;
1395 release_value (val);
1396
1397 /* Here we treat value_history_count as origin-zero
1398 and applying to the value being stored now. */
1399
1400 i = value_history_count % VALUE_HISTORY_CHUNK;
1401 if (i == 0)
1402 {
f23631e4 1403 struct value_history_chunk *new
a109c7c1
MS
1404 = (struct value_history_chunk *)
1405
c5aa993b 1406 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
1407 memset (new->values, 0, sizeof new->values);
1408 new->next = value_history_chain;
1409 value_history_chain = new;
1410 }
1411
1412 value_history_chain->values[i] = val;
1413
1414 /* Now we regard value_history_count as origin-one
1415 and applying to the value just stored. */
1416
1417 return ++value_history_count;
1418}
1419
1420/* Return a copy of the value in the history with sequence number NUM. */
1421
f23631e4 1422struct value *
fba45db2 1423access_value_history (int num)
c906108c 1424{
f23631e4 1425 struct value_history_chunk *chunk;
52f0bd74
AC
1426 int i;
1427 int absnum = num;
c906108c
SS
1428
1429 if (absnum <= 0)
1430 absnum += value_history_count;
1431
1432 if (absnum <= 0)
1433 {
1434 if (num == 0)
8a3fe4f8 1435 error (_("The history is empty."));
c906108c 1436 else if (num == 1)
8a3fe4f8 1437 error (_("There is only one value in the history."));
c906108c 1438 else
8a3fe4f8 1439 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1440 }
1441 if (absnum > value_history_count)
8a3fe4f8 1442 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1443
1444 absnum--;
1445
1446 /* Now absnum is always absolute and origin zero. */
1447
1448 chunk = value_history_chain;
3e43a32a
MS
1449 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1450 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1451 i > 0; i--)
1452 chunk = chunk->next;
1453
1454 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1455}
1456
c906108c 1457static void
fba45db2 1458show_values (char *num_exp, int from_tty)
c906108c 1459{
52f0bd74 1460 int i;
f23631e4 1461 struct value *val;
c906108c
SS
1462 static int num = 1;
1463
1464 if (num_exp)
1465 {
f132ba9d
TJB
1466 /* "show values +" should print from the stored position.
1467 "show values <exp>" should print around value number <exp>. */
c906108c 1468 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1469 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1470 }
1471 else
1472 {
f132ba9d 1473 /* "show values" means print the last 10 values. */
c906108c
SS
1474 num = value_history_count - 9;
1475 }
1476
1477 if (num <= 0)
1478 num = 1;
1479
1480 for (i = num; i < num + 10 && i <= value_history_count; i++)
1481 {
79a45b7d 1482 struct value_print_options opts;
a109c7c1 1483
c906108c 1484 val = access_value_history (i);
a3f17187 1485 printf_filtered (("$%d = "), i);
79a45b7d
TT
1486 get_user_print_options (&opts);
1487 value_print (val, gdb_stdout, &opts);
a3f17187 1488 printf_filtered (("\n"));
c906108c
SS
1489 }
1490
f132ba9d 1491 /* The next "show values +" should start after what we just printed. */
c906108c
SS
1492 num += 10;
1493
1494 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
1495 "show values +". If num_exp is null, this is unnecessary, since
1496 "show values +" is not useful after "show values". */
c906108c
SS
1497 if (from_tty && num_exp)
1498 {
1499 num_exp[0] = '+';
1500 num_exp[1] = '\0';
1501 }
1502}
1503\f
1504/* Internal variables. These are variables within the debugger
1505 that hold values assigned by debugger commands.
1506 The user refers to them with a '$' prefix
1507 that does not appear in the variable names stored internally. */
1508
4fa62494
UW
1509struct internalvar
1510{
1511 struct internalvar *next;
1512 char *name;
4fa62494 1513
78267919
UW
1514 /* We support various different kinds of content of an internal variable.
1515 enum internalvar_kind specifies the kind, and union internalvar_data
1516 provides the data associated with this particular kind. */
1517
1518 enum internalvar_kind
1519 {
1520 /* The internal variable is empty. */
1521 INTERNALVAR_VOID,
1522
1523 /* The value of the internal variable is provided directly as
1524 a GDB value object. */
1525 INTERNALVAR_VALUE,
1526
1527 /* A fresh value is computed via a call-back routine on every
1528 access to the internal variable. */
1529 INTERNALVAR_MAKE_VALUE,
4fa62494 1530
78267919
UW
1531 /* The internal variable holds a GDB internal convenience function. */
1532 INTERNALVAR_FUNCTION,
1533
cab0c772
UW
1534 /* The variable holds an integer value. */
1535 INTERNALVAR_INTEGER,
1536
78267919
UW
1537 /* The variable holds a GDB-provided string. */
1538 INTERNALVAR_STRING,
1539
1540 } kind;
4fa62494 1541
4fa62494
UW
1542 union internalvar_data
1543 {
78267919
UW
1544 /* A value object used with INTERNALVAR_VALUE. */
1545 struct value *value;
1546
1547 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
1548 internalvar_make_value make_value;
1549
1550 /* The internal function used with INTERNALVAR_FUNCTION. */
1551 struct
1552 {
1553 struct internal_function *function;
1554 /* True if this is the canonical name for the function. */
1555 int canonical;
1556 } fn;
1557
cab0c772 1558 /* An integer value used with INTERNALVAR_INTEGER. */
78267919
UW
1559 struct
1560 {
1561 /* If type is non-NULL, it will be used as the type to generate
1562 a value for this internal variable. If type is NULL, a default
1563 integer type for the architecture is used. */
1564 struct type *type;
cab0c772
UW
1565 LONGEST val;
1566 } integer;
1567
78267919
UW
1568 /* A string value used with INTERNALVAR_STRING. */
1569 char *string;
4fa62494
UW
1570 } u;
1571};
1572
c906108c
SS
1573static struct internalvar *internalvars;
1574
3e43a32a
MS
1575/* If the variable does not already exist create it and give it the
1576 value given. If no value is given then the default is zero. */
53e5f3cf
AS
1577static void
1578init_if_undefined_command (char* args, int from_tty)
1579{
1580 struct internalvar* intvar;
1581
1582 /* Parse the expression - this is taken from set_command(). */
1583 struct expression *expr = parse_expression (args);
1584 register struct cleanup *old_chain =
1585 make_cleanup (free_current_contents, &expr);
1586
1587 /* Validate the expression.
1588 Was the expression an assignment?
1589 Or even an expression at all? */
1590 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
1591 error (_("Init-if-undefined requires an assignment expression."));
1592
1593 /* Extract the variable from the parsed expression.
1594 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
1595 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
1596 error (_("The first parameter to init-if-undefined "
1597 "should be a GDB variable."));
53e5f3cf
AS
1598 intvar = expr->elts[2].internalvar;
1599
1600 /* Only evaluate the expression if the lvalue is void.
1601 This may still fail if the expresssion is invalid. */
78267919 1602 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
1603 evaluate_expression (expr);
1604
1605 do_cleanups (old_chain);
1606}
1607
1608
c906108c
SS
1609/* Look up an internal variable with name NAME. NAME should not
1610 normally include a dollar sign.
1611
1612 If the specified internal variable does not exist,
c4a3d09a 1613 the return value is NULL. */
c906108c
SS
1614
1615struct internalvar *
bc3b79fd 1616lookup_only_internalvar (const char *name)
c906108c 1617{
52f0bd74 1618 struct internalvar *var;
c906108c
SS
1619
1620 for (var = internalvars; var; var = var->next)
5cb316ef 1621 if (strcmp (var->name, name) == 0)
c906108c
SS
1622 return var;
1623
c4a3d09a
MF
1624 return NULL;
1625}
1626
1627
1628/* Create an internal variable with name NAME and with a void value.
1629 NAME should not normally include a dollar sign. */
1630
1631struct internalvar *
bc3b79fd 1632create_internalvar (const char *name)
c4a3d09a
MF
1633{
1634 struct internalvar *var;
a109c7c1 1635
c906108c 1636 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1637 var->name = concat (name, (char *)NULL);
78267919 1638 var->kind = INTERNALVAR_VOID;
c906108c
SS
1639 var->next = internalvars;
1640 internalvars = var;
1641 return var;
1642}
1643
4aa995e1
PA
1644/* Create an internal variable with name NAME and register FUN as the
1645 function that value_of_internalvar uses to create a value whenever
1646 this variable is referenced. NAME should not normally include a
1647 dollar sign. */
1648
1649struct internalvar *
1650create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1651{
4fa62494 1652 struct internalvar *var = create_internalvar (name);
a109c7c1 1653
78267919
UW
1654 var->kind = INTERNALVAR_MAKE_VALUE;
1655 var->u.make_value = fun;
4aa995e1
PA
1656 return var;
1657}
c4a3d09a
MF
1658
1659/* Look up an internal variable with name NAME. NAME should not
1660 normally include a dollar sign.
1661
1662 If the specified internal variable does not exist,
1663 one is created, with a void value. */
1664
1665struct internalvar *
bc3b79fd 1666lookup_internalvar (const char *name)
c4a3d09a
MF
1667{
1668 struct internalvar *var;
1669
1670 var = lookup_only_internalvar (name);
1671 if (var)
1672 return var;
1673
1674 return create_internalvar (name);
1675}
1676
78267919
UW
1677/* Return current value of internal variable VAR. For variables that
1678 are not inherently typed, use a value type appropriate for GDBARCH. */
1679
f23631e4 1680struct value *
78267919 1681value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1682{
f23631e4 1683 struct value *val;
0914bcdb
SS
1684 struct trace_state_variable *tsv;
1685
1686 /* If there is a trace state variable of the same name, assume that
1687 is what we really want to see. */
1688 tsv = find_trace_state_variable (var->name);
1689 if (tsv)
1690 {
1691 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
1692 &(tsv->value));
1693 if (tsv->value_known)
1694 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
1695 tsv->value);
1696 else
1697 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1698 return val;
1699 }
c906108c 1700
78267919 1701 switch (var->kind)
5f5233d4 1702 {
78267919
UW
1703 case INTERNALVAR_VOID:
1704 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1705 break;
4fa62494 1706
78267919
UW
1707 case INTERNALVAR_FUNCTION:
1708 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1709 break;
4fa62494 1710
cab0c772
UW
1711 case INTERNALVAR_INTEGER:
1712 if (!var->u.integer.type)
78267919 1713 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 1714 var->u.integer.val);
78267919 1715 else
cab0c772
UW
1716 val = value_from_longest (var->u.integer.type, var->u.integer.val);
1717 break;
1718
78267919
UW
1719 case INTERNALVAR_STRING:
1720 val = value_cstring (var->u.string, strlen (var->u.string),
1721 builtin_type (gdbarch)->builtin_char);
1722 break;
4fa62494 1723
78267919
UW
1724 case INTERNALVAR_VALUE:
1725 val = value_copy (var->u.value);
4aa995e1
PA
1726 if (value_lazy (val))
1727 value_fetch_lazy (val);
78267919 1728 break;
4aa995e1 1729
78267919
UW
1730 case INTERNALVAR_MAKE_VALUE:
1731 val = (*var->u.make_value) (gdbarch, var);
1732 break;
1733
1734 default:
9b20d036 1735 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
1736 }
1737
1738 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1739 on this value go back to affect the original internal variable.
1740
1741 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1742 no underlying modifyable state in the internal variable.
1743
1744 Likewise, if the variable's value is a computed lvalue, we want
1745 references to it to produce another computed lvalue, where
1746 references and assignments actually operate through the
1747 computed value's functions.
1748
1749 This means that internal variables with computed values
1750 behave a little differently from other internal variables:
1751 assignments to them don't just replace the previous value
1752 altogether. At the moment, this seems like the behavior we
1753 want. */
1754
1755 if (var->kind != INTERNALVAR_MAKE_VALUE
1756 && val->lval != lval_computed)
1757 {
1758 VALUE_LVAL (val) = lval_internalvar;
1759 VALUE_INTERNALVAR (val) = var;
5f5233d4 1760 }
d3c139e9 1761
4fa62494
UW
1762 return val;
1763}
d3c139e9 1764
4fa62494
UW
1765int
1766get_internalvar_integer (struct internalvar *var, LONGEST *result)
1767{
3158c6ed 1768 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 1769 {
cab0c772
UW
1770 *result = var->u.integer.val;
1771 return 1;
3158c6ed 1772 }
d3c139e9 1773
3158c6ed
PA
1774 if (var->kind == INTERNALVAR_VALUE)
1775 {
1776 struct type *type = check_typedef (value_type (var->u.value));
1777
1778 if (TYPE_CODE (type) == TYPE_CODE_INT)
1779 {
1780 *result = value_as_long (var->u.value);
1781 return 1;
1782 }
4fa62494 1783 }
3158c6ed
PA
1784
1785 return 0;
4fa62494 1786}
d3c139e9 1787
4fa62494
UW
1788static int
1789get_internalvar_function (struct internalvar *var,
1790 struct internal_function **result)
1791{
78267919 1792 switch (var->kind)
d3c139e9 1793 {
78267919
UW
1794 case INTERNALVAR_FUNCTION:
1795 *result = var->u.fn.function;
4fa62494 1796 return 1;
d3c139e9 1797
4fa62494
UW
1798 default:
1799 return 0;
1800 }
c906108c
SS
1801}
1802
1803void
fba45db2 1804set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1805 int bitsize, struct value *newval)
c906108c 1806{
4fa62494 1807 gdb_byte *addr;
c906108c 1808
78267919 1809 switch (var->kind)
4fa62494 1810 {
78267919
UW
1811 case INTERNALVAR_VALUE:
1812 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1813
1814 if (bitsize)
50810684 1815 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1816 value_as_long (newval), bitpos, bitsize);
1817 else
1818 memcpy (addr + offset, value_contents (newval),
1819 TYPE_LENGTH (value_type (newval)));
1820 break;
78267919
UW
1821
1822 default:
1823 /* We can never get a component of any other kind. */
9b20d036 1824 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 1825 }
c906108c
SS
1826}
1827
1828void
f23631e4 1829set_internalvar (struct internalvar *var, struct value *val)
c906108c 1830{
78267919 1831 enum internalvar_kind new_kind;
4fa62494 1832 union internalvar_data new_data = { 0 };
c906108c 1833
78267919 1834 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1835 error (_("Cannot overwrite convenience function %s"), var->name);
1836
4fa62494 1837 /* Prepare new contents. */
78267919 1838 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1839 {
1840 case TYPE_CODE_VOID:
78267919 1841 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1842 break;
1843
1844 case TYPE_CODE_INTERNAL_FUNCTION:
1845 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1846 new_kind = INTERNALVAR_FUNCTION;
1847 get_internalvar_function (VALUE_INTERNALVAR (val),
1848 &new_data.fn.function);
1849 /* Copies created here are never canonical. */
4fa62494
UW
1850 break;
1851
4fa62494 1852 default:
78267919
UW
1853 new_kind = INTERNALVAR_VALUE;
1854 new_data.value = value_copy (val);
1855 new_data.value->modifiable = 1;
4fa62494
UW
1856
1857 /* Force the value to be fetched from the target now, to avoid problems
1858 later when this internalvar is referenced and the target is gone or
1859 has changed. */
78267919
UW
1860 if (value_lazy (new_data.value))
1861 value_fetch_lazy (new_data.value);
4fa62494
UW
1862
1863 /* Release the value from the value chain to prevent it from being
1864 deleted by free_all_values. From here on this function should not
1865 call error () until new_data is installed into the var->u to avoid
1866 leaking memory. */
78267919 1867 release_value (new_data.value);
4fa62494
UW
1868 break;
1869 }
1870
1871 /* Clean up old contents. */
1872 clear_internalvar (var);
1873
1874 /* Switch over. */
78267919 1875 var->kind = new_kind;
4fa62494 1876 var->u = new_data;
c906108c
SS
1877 /* End code which must not call error(). */
1878}
1879
4fa62494
UW
1880void
1881set_internalvar_integer (struct internalvar *var, LONGEST l)
1882{
1883 /* Clean up old contents. */
1884 clear_internalvar (var);
1885
cab0c772
UW
1886 var->kind = INTERNALVAR_INTEGER;
1887 var->u.integer.type = NULL;
1888 var->u.integer.val = l;
78267919
UW
1889}
1890
1891void
1892set_internalvar_string (struct internalvar *var, const char *string)
1893{
1894 /* Clean up old contents. */
1895 clear_internalvar (var);
1896
1897 var->kind = INTERNALVAR_STRING;
1898 var->u.string = xstrdup (string);
4fa62494
UW
1899}
1900
1901static void
1902set_internalvar_function (struct internalvar *var, struct internal_function *f)
1903{
1904 /* Clean up old contents. */
1905 clear_internalvar (var);
1906
78267919
UW
1907 var->kind = INTERNALVAR_FUNCTION;
1908 var->u.fn.function = f;
1909 var->u.fn.canonical = 1;
1910 /* Variables installed here are always the canonical version. */
4fa62494
UW
1911}
1912
1913void
1914clear_internalvar (struct internalvar *var)
1915{
1916 /* Clean up old contents. */
78267919 1917 switch (var->kind)
4fa62494 1918 {
78267919
UW
1919 case INTERNALVAR_VALUE:
1920 value_free (var->u.value);
1921 break;
1922
1923 case INTERNALVAR_STRING:
1924 xfree (var->u.string);
4fa62494
UW
1925 break;
1926
1927 default:
4fa62494
UW
1928 break;
1929 }
1930
78267919
UW
1931 /* Reset to void kind. */
1932 var->kind = INTERNALVAR_VOID;
4fa62494
UW
1933}
1934
c906108c 1935char *
fba45db2 1936internalvar_name (struct internalvar *var)
c906108c
SS
1937{
1938 return var->name;
1939}
1940
4fa62494
UW
1941static struct internal_function *
1942create_internal_function (const char *name,
1943 internal_function_fn handler, void *cookie)
bc3b79fd 1944{
bc3b79fd 1945 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 1946
bc3b79fd
TJB
1947 ifn->name = xstrdup (name);
1948 ifn->handler = handler;
1949 ifn->cookie = cookie;
4fa62494 1950 return ifn;
bc3b79fd
TJB
1951}
1952
1953char *
1954value_internal_function_name (struct value *val)
1955{
4fa62494
UW
1956 struct internal_function *ifn;
1957 int result;
1958
1959 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1960 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1961 gdb_assert (result);
1962
bc3b79fd
TJB
1963 return ifn->name;
1964}
1965
1966struct value *
d452c4bc
UW
1967call_internal_function (struct gdbarch *gdbarch,
1968 const struct language_defn *language,
1969 struct value *func, int argc, struct value **argv)
bc3b79fd 1970{
4fa62494
UW
1971 struct internal_function *ifn;
1972 int result;
1973
1974 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1975 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1976 gdb_assert (result);
1977
d452c4bc 1978 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
1979}
1980
1981/* The 'function' command. This does nothing -- it is just a
1982 placeholder to let "help function NAME" work. This is also used as
1983 the implementation of the sub-command that is created when
1984 registering an internal function. */
1985static void
1986function_command (char *command, int from_tty)
1987{
1988 /* Do nothing. */
1989}
1990
1991/* Clean up if an internal function's command is destroyed. */
1992static void
1993function_destroyer (struct cmd_list_element *self, void *ignore)
1994{
1995 xfree (self->name);
1996 xfree (self->doc);
1997}
1998
1999/* Add a new internal function. NAME is the name of the function; DOC
2000 is a documentation string describing the function. HANDLER is
2001 called when the function is invoked. COOKIE is an arbitrary
2002 pointer which is passed to HANDLER and is intended for "user
2003 data". */
2004void
2005add_internal_function (const char *name, const char *doc,
2006 internal_function_fn handler, void *cookie)
2007{
2008 struct cmd_list_element *cmd;
4fa62494 2009 struct internal_function *ifn;
bc3b79fd 2010 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2011
2012 ifn = create_internal_function (name, handler, cookie);
2013 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2014
2015 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2016 &functionlist);
2017 cmd->destroyer = function_destroyer;
2018}
2019
ae5a43e0
DJ
2020/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2021 prevent cycles / duplicates. */
2022
4e7a5ef5 2023void
ae5a43e0
DJ
2024preserve_one_value (struct value *value, struct objfile *objfile,
2025 htab_t copied_types)
2026{
2027 if (TYPE_OBJFILE (value->type) == objfile)
2028 value->type = copy_type_recursive (objfile, value->type, copied_types);
2029
2030 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2031 value->enclosing_type = copy_type_recursive (objfile,
2032 value->enclosing_type,
2033 copied_types);
2034}
2035
78267919
UW
2036/* Likewise for internal variable VAR. */
2037
2038static void
2039preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2040 htab_t copied_types)
2041{
2042 switch (var->kind)
2043 {
cab0c772
UW
2044 case INTERNALVAR_INTEGER:
2045 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2046 var->u.integer.type
2047 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2048 break;
2049
78267919
UW
2050 case INTERNALVAR_VALUE:
2051 preserve_one_value (var->u.value, objfile, copied_types);
2052 break;
2053 }
2054}
2055
ae5a43e0
DJ
2056/* Update the internal variables and value history when OBJFILE is
2057 discarded; we must copy the types out of the objfile. New global types
2058 will be created for every convenience variable which currently points to
2059 this objfile's types, and the convenience variables will be adjusted to
2060 use the new global types. */
c906108c
SS
2061
2062void
ae5a43e0 2063preserve_values (struct objfile *objfile)
c906108c 2064{
ae5a43e0
DJ
2065 htab_t copied_types;
2066 struct value_history_chunk *cur;
52f0bd74 2067 struct internalvar *var;
ae5a43e0 2068 int i;
c906108c 2069
ae5a43e0
DJ
2070 /* Create the hash table. We allocate on the objfile's obstack, since
2071 it is soon to be deleted. */
2072 copied_types = create_copied_types_hash (objfile);
2073
2074 for (cur = value_history_chain; cur; cur = cur->next)
2075 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2076 if (cur->values[i])
2077 preserve_one_value (cur->values[i], objfile, copied_types);
2078
2079 for (var = internalvars; var; var = var->next)
78267919 2080 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2081
4e7a5ef5 2082 preserve_python_values (objfile, copied_types);
a08702d6 2083
ae5a43e0 2084 htab_delete (copied_types);
c906108c
SS
2085}
2086
2087static void
fba45db2 2088show_convenience (char *ignore, int from_tty)
c906108c 2089{
e17c207e 2090 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2091 struct internalvar *var;
c906108c 2092 int varseen = 0;
79a45b7d 2093 struct value_print_options opts;
c906108c 2094
79a45b7d 2095 get_user_print_options (&opts);
c906108c
SS
2096 for (var = internalvars; var; var = var->next)
2097 {
c906108c
SS
2098 if (!varseen)
2099 {
2100 varseen = 1;
2101 }
a3f17187 2102 printf_filtered (("$%s = "), var->name);
78267919 2103 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
79a45b7d 2104 &opts);
a3f17187 2105 printf_filtered (("\n"));
c906108c
SS
2106 }
2107 if (!varseen)
3e43a32a
MS
2108 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2109 "Convenience variables have "
2110 "names starting with \"$\";\n"
2111 "use \"set\" as in \"set "
2112 "$foo = 5\" to define them.\n"));
c906108c
SS
2113}
2114\f
2115/* Extract a value as a C number (either long or double).
2116 Knows how to convert fixed values to double, or
2117 floating values to long.
2118 Does not deallocate the value. */
2119
2120LONGEST
f23631e4 2121value_as_long (struct value *val)
c906108c
SS
2122{
2123 /* This coerces arrays and functions, which is necessary (e.g.
2124 in disassemble_command). It also dereferences references, which
2125 I suspect is the most logical thing to do. */
994b9211 2126 val = coerce_array (val);
0fd88904 2127 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2128}
2129
2130DOUBLEST
f23631e4 2131value_as_double (struct value *val)
c906108c
SS
2132{
2133 DOUBLEST foo;
2134 int inv;
c5aa993b 2135
0fd88904 2136 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2137 if (inv)
8a3fe4f8 2138 error (_("Invalid floating value found in program."));
c906108c
SS
2139 return foo;
2140}
4ef30785 2141
581e13c1 2142/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2143 Note that val's type may not actually be a pointer; value_as_long
2144 handles all the cases. */
c906108c 2145CORE_ADDR
f23631e4 2146value_as_address (struct value *val)
c906108c 2147{
50810684
UW
2148 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2149
c906108c
SS
2150 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2151 whether we want this to be true eventually. */
2152#if 0
bf6ae464 2153 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2154 non-address (e.g. argument to "signal", "info break", etc.), or
2155 for pointers to char, in which the low bits *are* significant. */
50810684 2156 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2157#else
f312f057
JB
2158
2159 /* There are several targets (IA-64, PowerPC, and others) which
2160 don't represent pointers to functions as simply the address of
2161 the function's entry point. For example, on the IA-64, a
2162 function pointer points to a two-word descriptor, generated by
2163 the linker, which contains the function's entry point, and the
2164 value the IA-64 "global pointer" register should have --- to
2165 support position-independent code. The linker generates
2166 descriptors only for those functions whose addresses are taken.
2167
2168 On such targets, it's difficult for GDB to convert an arbitrary
2169 function address into a function pointer; it has to either find
2170 an existing descriptor for that function, or call malloc and
2171 build its own. On some targets, it is impossible for GDB to
2172 build a descriptor at all: the descriptor must contain a jump
2173 instruction; data memory cannot be executed; and code memory
2174 cannot be modified.
2175
2176 Upon entry to this function, if VAL is a value of type `function'
2177 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2178 value_address (val) is the address of the function. This is what
f312f057
JB
2179 you'll get if you evaluate an expression like `main'. The call
2180 to COERCE_ARRAY below actually does all the usual unary
2181 conversions, which includes converting values of type `function'
2182 to `pointer to function'. This is the challenging conversion
2183 discussed above. Then, `unpack_long' will convert that pointer
2184 back into an address.
2185
2186 So, suppose the user types `disassemble foo' on an architecture
2187 with a strange function pointer representation, on which GDB
2188 cannot build its own descriptors, and suppose further that `foo'
2189 has no linker-built descriptor. The address->pointer conversion
2190 will signal an error and prevent the command from running, even
2191 though the next step would have been to convert the pointer
2192 directly back into the same address.
2193
2194 The following shortcut avoids this whole mess. If VAL is a
2195 function, just return its address directly. */
df407dfe
AC
2196 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2197 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2198 return value_address (val);
f312f057 2199
994b9211 2200 val = coerce_array (val);
fc0c74b1
AC
2201
2202 /* Some architectures (e.g. Harvard), map instruction and data
2203 addresses onto a single large unified address space. For
2204 instance: An architecture may consider a large integer in the
2205 range 0x10000000 .. 0x1000ffff to already represent a data
2206 addresses (hence not need a pointer to address conversion) while
2207 a small integer would still need to be converted integer to
2208 pointer to address. Just assume such architectures handle all
2209 integer conversions in a single function. */
2210
2211 /* JimB writes:
2212
2213 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2214 must admonish GDB hackers to make sure its behavior matches the
2215 compiler's, whenever possible.
2216
2217 In general, I think GDB should evaluate expressions the same way
2218 the compiler does. When the user copies an expression out of
2219 their source code and hands it to a `print' command, they should
2220 get the same value the compiler would have computed. Any
2221 deviation from this rule can cause major confusion and annoyance,
2222 and needs to be justified carefully. In other words, GDB doesn't
2223 really have the freedom to do these conversions in clever and
2224 useful ways.
2225
2226 AndrewC pointed out that users aren't complaining about how GDB
2227 casts integers to pointers; they are complaining that they can't
2228 take an address from a disassembly listing and give it to `x/i'.
2229 This is certainly important.
2230
79dd2d24 2231 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2232 makes it possible for GDB to "get it right" in all circumstances
2233 --- the target has complete control over how things get done, so
2234 people can Do The Right Thing for their target without breaking
2235 anyone else. The standard doesn't specify how integers get
2236 converted to pointers; usually, the ABI doesn't either, but
2237 ABI-specific code is a more reasonable place to handle it. */
2238
df407dfe
AC
2239 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
2240 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
2241 && gdbarch_integer_to_address_p (gdbarch))
2242 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2243 value_contents (val));
fc0c74b1 2244
0fd88904 2245 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2246#endif
2247}
2248\f
2249/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2250 as a long, or as a double, assuming the raw data is described
2251 by type TYPE. Knows how to convert different sizes of values
2252 and can convert between fixed and floating point. We don't assume
2253 any alignment for the raw data. Return value is in host byte order.
2254
2255 If you want functions and arrays to be coerced to pointers, and
2256 references to be dereferenced, call value_as_long() instead.
2257
2258 C++: It is assumed that the front-end has taken care of
2259 all matters concerning pointers to members. A pointer
2260 to member which reaches here is considered to be equivalent
2261 to an INT (or some size). After all, it is only an offset. */
2262
2263LONGEST
fc1a4b47 2264unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2265{
e17a4113 2266 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2267 enum type_code code = TYPE_CODE (type);
2268 int len = TYPE_LENGTH (type);
2269 int nosign = TYPE_UNSIGNED (type);
c906108c 2270
c906108c
SS
2271 switch (code)
2272 {
2273 case TYPE_CODE_TYPEDEF:
2274 return unpack_long (check_typedef (type), valaddr);
2275 case TYPE_CODE_ENUM:
4f2aea11 2276 case TYPE_CODE_FLAGS:
c906108c
SS
2277 case TYPE_CODE_BOOL:
2278 case TYPE_CODE_INT:
2279 case TYPE_CODE_CHAR:
2280 case TYPE_CODE_RANGE:
0d5de010 2281 case TYPE_CODE_MEMBERPTR:
c906108c 2282 if (nosign)
e17a4113 2283 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2284 else
e17a4113 2285 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2286
2287 case TYPE_CODE_FLT:
96d2f608 2288 return extract_typed_floating (valaddr, type);
c906108c 2289
4ef30785
TJB
2290 case TYPE_CODE_DECFLOAT:
2291 /* libdecnumber has a function to convert from decimal to integer, but
2292 it doesn't work when the decimal number has a fractional part. */
e17a4113 2293 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2294
c906108c
SS
2295 case TYPE_CODE_PTR:
2296 case TYPE_CODE_REF:
2297 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2298 whether we want this to be true eventually. */
4478b372 2299 return extract_typed_address (valaddr, type);
c906108c 2300
c906108c 2301 default:
8a3fe4f8 2302 error (_("Value can't be converted to integer."));
c906108c 2303 }
c5aa993b 2304 return 0; /* Placate lint. */
c906108c
SS
2305}
2306
2307/* Return a double value from the specified type and address.
2308 INVP points to an int which is set to 0 for valid value,
2309 1 for invalid value (bad float format). In either case,
2310 the returned double is OK to use. Argument is in target
2311 format, result is in host format. */
2312
2313DOUBLEST
fc1a4b47 2314unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2315{
e17a4113 2316 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2317 enum type_code code;
2318 int len;
2319 int nosign;
2320
581e13c1 2321 *invp = 0; /* Assume valid. */
c906108c
SS
2322 CHECK_TYPEDEF (type);
2323 code = TYPE_CODE (type);
2324 len = TYPE_LENGTH (type);
2325 nosign = TYPE_UNSIGNED (type);
2326 if (code == TYPE_CODE_FLT)
2327 {
75bc7ddf
AC
2328 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2329 floating-point value was valid (using the macro
2330 INVALID_FLOAT). That test/macro have been removed.
2331
2332 It turns out that only the VAX defined this macro and then
2333 only in a non-portable way. Fixing the portability problem
2334 wouldn't help since the VAX floating-point code is also badly
2335 bit-rotten. The target needs to add definitions for the
ea06eb3d 2336 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2337 exactly describe the target floating-point format. The
2338 problem here is that the corresponding floatformat_vax_f and
2339 floatformat_vax_d values these methods should be set to are
2340 also not defined either. Oops!
2341
2342 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2343 definitions and the new cases for floatformat_is_valid (). */
2344
2345 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2346 {
2347 *invp = 1;
2348 return 0.0;
2349 }
2350
96d2f608 2351 return extract_typed_floating (valaddr, type);
c906108c 2352 }
4ef30785 2353 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2354 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2355 else if (nosign)
2356 {
2357 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2358 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2359 }
2360 else
2361 {
2362 /* Signed -- we are OK with unpack_long. */
2363 return unpack_long (type, valaddr);
2364 }
2365}
2366
2367/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2368 as a CORE_ADDR, assuming the raw data is described by type TYPE.
2369 We don't assume any alignment for the raw data. Return value is in
2370 host byte order.
2371
2372 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 2373 references to be dereferenced, call value_as_address() instead.
c906108c
SS
2374
2375 C++: It is assumed that the front-end has taken care of
2376 all matters concerning pointers to members. A pointer
2377 to member which reaches here is considered to be equivalent
2378 to an INT (or some size). After all, it is only an offset. */
2379
2380CORE_ADDR
fc1a4b47 2381unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
2382{
2383 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2384 whether we want this to be true eventually. */
2385 return unpack_long (type, valaddr);
2386}
4478b372 2387
c906108c 2388\f
1596cb5d 2389/* Get the value of the FIELDNO'th field (which must be static) of
2c2738a0 2390 TYPE. Return NULL if the field doesn't exist or has been
581e13c1 2391 optimized out. */
c906108c 2392
f23631e4 2393struct value *
fba45db2 2394value_static_field (struct type *type, int fieldno)
c906108c 2395{
948e66d9
DJ
2396 struct value *retval;
2397
1596cb5d 2398 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 2399 {
1596cb5d 2400 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
2401 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2402 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
2403 break;
2404 case FIELD_LOC_KIND_PHYSNAME:
c906108c 2405 {
ff355380 2406 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 2407 /* TYPE_FIELD_NAME (type, fieldno); */
2570f2b7 2408 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 2409
948e66d9 2410 if (sym == NULL)
c906108c 2411 {
a109c7c1 2412 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 2413 reported as non-debuggable symbols. */
a109c7c1
MS
2414 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name,
2415 NULL, NULL);
2416
c906108c
SS
2417 if (!msym)
2418 return NULL;
2419 else
c5aa993b 2420 {
52e9fde8
SS
2421 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
2422 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
2423 }
2424 }
2425 else
515ed532 2426 retval = value_of_variable (sym, NULL);
1596cb5d 2427 break;
c906108c 2428 }
1596cb5d 2429 default:
f3574227 2430 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
2431 }
2432
948e66d9 2433 return retval;
c906108c
SS
2434}
2435
4dfea560
DE
2436/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
2437 You have to be careful here, since the size of the data area for the value
2438 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
2439 than the old enclosing type, you have to allocate more space for the
2440 data. */
2b127877 2441
4dfea560
DE
2442void
2443set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 2444{
3e3d7139
JG
2445 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
2446 val->contents =
2447 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
2448
2449 val->enclosing_type = new_encl_type;
2b127877
DB
2450}
2451
c906108c
SS
2452/* Given a value ARG1 (offset by OFFSET bytes)
2453 of a struct or union type ARG_TYPE,
2454 extract and return the value of one of its (non-static) fields.
581e13c1 2455 FIELDNO says which field. */
c906108c 2456
f23631e4
AC
2457struct value *
2458value_primitive_field (struct value *arg1, int offset,
aa1ee363 2459 int fieldno, struct type *arg_type)
c906108c 2460{
f23631e4 2461 struct value *v;
52f0bd74 2462 struct type *type;
c906108c
SS
2463
2464 CHECK_TYPEDEF (arg_type);
2465 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
2466
2467 /* Call check_typedef on our type to make sure that, if TYPE
2468 is a TYPE_CODE_TYPEDEF, its length is set to the length
2469 of the target type instead of zero. However, we do not
2470 replace the typedef type by the target type, because we want
2471 to keep the typedef in order to be able to print the type
2472 description correctly. */
2473 check_typedef (type);
c906108c
SS
2474
2475 /* Handle packed fields */
2476
2477 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
2478 {
4ea48cc1
DJ
2479 /* Create a new value for the bitfield, with bitpos and bitsize
2480 set. If possible, arrange offset and bitpos so that we can
2481 do a single aligned read of the size of the containing type.
2482 Otherwise, adjust offset to the byte containing the first
2483 bit. Assume that the address, offset, and embedded offset
2484 are sufficiently aligned. */
2485 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
2486 int container_bitsize = TYPE_LENGTH (type) * 8;
2487
2488 v = allocate_value_lazy (type);
df407dfe 2489 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
4ea48cc1
DJ
2490 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
2491 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
2492 v->bitpos = bitpos % container_bitsize;
2493 else
2494 v->bitpos = bitpos % 8;
38f12cfc
TT
2495 v->offset = (value_embedded_offset (arg1)
2496 + offset
2497 + (bitpos - v->bitpos) / 8);
4ea48cc1
DJ
2498 v->parent = arg1;
2499 value_incref (v->parent);
2500 if (!value_lazy (arg1))
2501 value_fetch_lazy (v);
c906108c
SS
2502 }
2503 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
2504 {
2505 /* This field is actually a base subobject, so preserve the
39d37385
PA
2506 entire object's contents for later references to virtual
2507 bases, etc. */
a4e2ee12
DJ
2508
2509 /* Lazy register values with offsets are not supported. */
2510 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2511 value_fetch_lazy (arg1);
2512
2513 if (value_lazy (arg1))
3e3d7139 2514 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 2515 else
3e3d7139
JG
2516 {
2517 v = allocate_value (value_enclosing_type (arg1));
39d37385
PA
2518 value_contents_copy_raw (v, 0, arg1, 0,
2519 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139
JG
2520 }
2521 v->type = type;
df407dfe 2522 v->offset = value_offset (arg1);
13c3b5f5
AC
2523 v->embedded_offset = (offset + value_embedded_offset (arg1)
2524 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
2525 }
2526 else
2527 {
2528 /* Plain old data member */
2529 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
2530
2531 /* Lazy register values with offsets are not supported. */
2532 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
2533 value_fetch_lazy (arg1);
2534
2535 if (value_lazy (arg1))
3e3d7139 2536 v = allocate_value_lazy (type);
c906108c 2537 else
3e3d7139
JG
2538 {
2539 v = allocate_value (type);
39d37385
PA
2540 value_contents_copy_raw (v, value_embedded_offset (v),
2541 arg1, value_embedded_offset (arg1) + offset,
2542 TYPE_LENGTH (type));
3e3d7139 2543 }
df407dfe 2544 v->offset = (value_offset (arg1) + offset
13c3b5f5 2545 + value_embedded_offset (arg1));
c906108c 2546 }
74bcbdf3 2547 set_value_component_location (v, arg1);
9ee8fc9d 2548 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 2549 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
2550 return v;
2551}
2552
2553/* Given a value ARG1 of a struct or union type,
2554 extract and return the value of one of its (non-static) fields.
581e13c1 2555 FIELDNO says which field. */
c906108c 2556
f23631e4 2557struct value *
aa1ee363 2558value_field (struct value *arg1, int fieldno)
c906108c 2559{
df407dfe 2560 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
2561}
2562
2563/* Return a non-virtual function as a value.
2564 F is the list of member functions which contains the desired method.
0478d61c
FF
2565 J is an index into F which provides the desired method.
2566
2567 We only use the symbol for its address, so be happy with either a
581e13c1 2568 full symbol or a minimal symbol. */
c906108c 2569
f23631e4 2570struct value *
3e43a32a
MS
2571value_fn_field (struct value **arg1p, struct fn_field *f,
2572 int j, struct type *type,
fba45db2 2573 int offset)
c906108c 2574{
f23631e4 2575 struct value *v;
52f0bd74 2576 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 2577 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 2578 struct symbol *sym;
0478d61c 2579 struct minimal_symbol *msym;
c906108c 2580
2570f2b7 2581 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 2582 if (sym != NULL)
0478d61c 2583 {
5ae326fa
AC
2584 msym = NULL;
2585 }
2586 else
2587 {
2588 gdb_assert (sym == NULL);
0478d61c 2589 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
2590 if (msym == NULL)
2591 return NULL;
0478d61c
FF
2592 }
2593
c906108c 2594 v = allocate_value (ftype);
0478d61c
FF
2595 if (sym)
2596 {
42ae5230 2597 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
2598 }
2599 else
2600 {
bccdca4a
UW
2601 /* The minimal symbol might point to a function descriptor;
2602 resolve it to the actual code address instead. */
2603 struct objfile *objfile = msymbol_objfile (msym);
2604 struct gdbarch *gdbarch = get_objfile_arch (objfile);
2605
42ae5230
TT
2606 set_value_address (v,
2607 gdbarch_convert_from_func_ptr_addr
2608 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 2609 }
c906108c
SS
2610
2611 if (arg1p)
c5aa993b 2612 {
df407dfe 2613 if (type != value_type (*arg1p))
c5aa993b
JM
2614 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
2615 value_addr (*arg1p)));
2616
070ad9f0 2617 /* Move the `this' pointer according to the offset.
581e13c1 2618 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
2619 }
2620
2621 return v;
2622}
2623
c906108c 2624\f
c906108c 2625
5467c6c8
PA
2626/* Helper function for both unpack_value_bits_as_long and
2627 unpack_bits_as_long. See those functions for more details on the
2628 interface; the only difference is that this function accepts either
2629 a NULL or a non-NULL ORIGINAL_VALUE. */
c906108c 2630
5467c6c8
PA
2631static int
2632unpack_value_bits_as_long_1 (struct type *field_type, const gdb_byte *valaddr,
2633 int embedded_offset, int bitpos, int bitsize,
2634 const struct value *original_value,
2635 LONGEST *result)
c906108c 2636{
4ea48cc1 2637 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2638 ULONGEST val;
2639 ULONGEST valmask;
c906108c 2640 int lsbcount;
4a76eae5 2641 int bytes_read;
5467c6c8 2642 int read_offset;
c906108c 2643
4a76eae5
DJ
2644 /* Read the minimum number of bytes required; there may not be
2645 enough bytes to read an entire ULONGEST. */
c906108c 2646 CHECK_TYPEDEF (field_type);
4a76eae5
DJ
2647 if (bitsize)
2648 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
2649 else
2650 bytes_read = TYPE_LENGTH (field_type);
2651
5467c6c8
PA
2652 read_offset = bitpos / 8;
2653
2654 if (original_value != NULL
2655 && !value_bytes_available (original_value, embedded_offset + read_offset,
2656 bytes_read))
2657 return 0;
2658
2659 val = extract_unsigned_integer (valaddr + embedded_offset + read_offset,
4a76eae5 2660 bytes_read, byte_order);
c906108c 2661
581e13c1 2662 /* Extract bits. See comment above. */
c906108c 2663
4ea48cc1 2664 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 2665 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
2666 else
2667 lsbcount = (bitpos % 8);
2668 val >>= lsbcount;
2669
2670 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 2671 If the field is signed, and is negative, then sign extend. */
c906108c
SS
2672
2673 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2674 {
2675 valmask = (((ULONGEST) 1) << bitsize) - 1;
2676 val &= valmask;
2677 if (!TYPE_UNSIGNED (field_type))
2678 {
2679 if (val & (valmask ^ (valmask >> 1)))
2680 {
2681 val |= ~valmask;
2682 }
2683 }
2684 }
5467c6c8
PA
2685
2686 *result = val;
2687 return 1;
c906108c
SS
2688}
2689
5467c6c8
PA
2690/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
2691 VALADDR + EMBEDDED_OFFSET, and store the result in *RESULT.
2692 VALADDR points to the contents of ORIGINAL_VALUE, which must not be
2693 NULL. The bitfield starts at BITPOS bits and contains BITSIZE
2694 bits.
4ea48cc1 2695
5467c6c8
PA
2696 Returns false if the value contents are unavailable, otherwise
2697 returns true, indicating a valid value has been stored in *RESULT.
2698
2699 Extracting bits depends on endianness of the machine. Compute the
2700 number of least significant bits to discard. For big endian machines,
2701 we compute the total number of bits in the anonymous object, subtract
2702 off the bit count from the MSB of the object to the MSB of the
2703 bitfield, then the size of the bitfield, which leaves the LSB discard
2704 count. For little endian machines, the discard count is simply the
2705 number of bits from the LSB of the anonymous object to the LSB of the
2706 bitfield.
2707
2708 If the field is signed, we also do sign extension. */
2709
2710int
2711unpack_value_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2712 int embedded_offset, int bitpos, int bitsize,
2713 const struct value *original_value,
2714 LONGEST *result)
2715{
2716 gdb_assert (original_value != NULL);
2717
2718 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2719 bitpos, bitsize, original_value, result);
2720
2721}
2722
2723/* Unpack a field FIELDNO of the specified TYPE, from the object at
2724 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2725 ORIGINAL_VALUE. See unpack_value_bits_as_long for more
2726 details. */
2727
2728static int
2729unpack_value_field_as_long_1 (struct type *type, const gdb_byte *valaddr,
2730 int embedded_offset, int fieldno,
2731 const struct value *val, LONGEST *result)
4ea48cc1
DJ
2732{
2733 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2734 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2735 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2736
5467c6c8
PA
2737 return unpack_value_bits_as_long_1 (field_type, valaddr, embedded_offset,
2738 bitpos, bitsize, val,
2739 result);
2740}
2741
2742/* Unpack a field FIELDNO of the specified TYPE, from the object at
2743 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
2744 ORIGINAL_VALUE, which must not be NULL. See
2745 unpack_value_bits_as_long for more details. */
2746
2747int
2748unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
2749 int embedded_offset, int fieldno,
2750 const struct value *val, LONGEST *result)
2751{
2752 gdb_assert (val != NULL);
2753
2754 return unpack_value_field_as_long_1 (type, valaddr, embedded_offset,
2755 fieldno, val, result);
2756}
2757
2758/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
2759 object at VALADDR. See unpack_value_bits_as_long for more details.
2760 This function differs from unpack_value_field_as_long in that it
2761 operates without a struct value object. */
2762
2763LONGEST
2764unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2765{
2766 LONGEST result;
2767
2768 unpack_value_field_as_long_1 (type, valaddr, 0, fieldno, NULL, &result);
2769 return result;
2770}
2771
2772/* Return a new value with type TYPE, which is FIELDNO field of the
2773 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
2774 of VAL. If the VAL's contents required to extract the bitfield
2775 from are unavailable, the new value is correspondingly marked as
2776 unavailable. */
2777
2778struct value *
2779value_field_bitfield (struct type *type, int fieldno,
2780 const gdb_byte *valaddr,
2781 int embedded_offset, const struct value *val)
2782{
2783 LONGEST l;
2784
2785 if (!unpack_value_field_as_long (type, valaddr, embedded_offset, fieldno,
2786 val, &l))
2787 {
2788 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2789 struct value *retval = allocate_value (field_type);
2790 mark_value_bytes_unavailable (retval, 0, TYPE_LENGTH (field_type));
2791 return retval;
2792 }
2793 else
2794 {
2795 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), l);
2796 }
4ea48cc1
DJ
2797}
2798
c906108c
SS
2799/* Modify the value of a bitfield. ADDR points to a block of memory in
2800 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2801 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 2802 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 2803 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 2804 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2805
2806void
50810684
UW
2807modify_field (struct type *type, gdb_byte *addr,
2808 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2809{
e17a4113 2810 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2811 ULONGEST oword;
2812 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
19f220c3
JK
2813 int bytesize;
2814
2815 /* Normalize BITPOS. */
2816 addr += bitpos / 8;
2817 bitpos %= 8;
c906108c
SS
2818
2819 /* If a negative fieldval fits in the field in question, chop
2820 off the sign extension bits. */
f4e88c8e
PH
2821 if ((~fieldval & ~(mask >> 1)) == 0)
2822 fieldval &= mask;
c906108c
SS
2823
2824 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2825 if (0 != (fieldval & ~mask))
c906108c
SS
2826 {
2827 /* FIXME: would like to include fieldval in the message, but
c5aa993b 2828 we don't have a sprintf_longest. */
8a3fe4f8 2829 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
2830
2831 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 2832 fieldval &= mask;
c906108c
SS
2833 }
2834
19f220c3
JK
2835 /* Ensure no bytes outside of the modified ones get accessed as it may cause
2836 false valgrind reports. */
2837
2838 bytesize = (bitpos + bitsize + 7) / 8;
2839 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
2840
2841 /* Shifting for bit field depends on endianness of the target machine. */
50810684 2842 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 2843 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 2844
f4e88c8e 2845 oword &= ~(mask << bitpos);
c906108c
SS
2846 oword |= fieldval << bitpos;
2847
19f220c3 2848 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
2849}
2850\f
14d06750 2851/* Pack NUM into BUF using a target format of TYPE. */
c906108c 2852
14d06750
DJ
2853void
2854pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 2855{
e17a4113 2856 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 2857 int len;
14d06750
DJ
2858
2859 type = check_typedef (type);
c906108c
SS
2860 len = TYPE_LENGTH (type);
2861
14d06750 2862 switch (TYPE_CODE (type))
c906108c 2863 {
c906108c
SS
2864 case TYPE_CODE_INT:
2865 case TYPE_CODE_CHAR:
2866 case TYPE_CODE_ENUM:
4f2aea11 2867 case TYPE_CODE_FLAGS:
c906108c
SS
2868 case TYPE_CODE_BOOL:
2869 case TYPE_CODE_RANGE:
0d5de010 2870 case TYPE_CODE_MEMBERPTR:
e17a4113 2871 store_signed_integer (buf, len, byte_order, num);
c906108c 2872 break;
c5aa993b 2873
c906108c
SS
2874 case TYPE_CODE_REF:
2875 case TYPE_CODE_PTR:
14d06750 2876 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 2877 break;
c5aa993b 2878
c906108c 2879 default:
14d06750
DJ
2880 error (_("Unexpected type (%d) encountered for integer constant."),
2881 TYPE_CODE (type));
c906108c 2882 }
14d06750
DJ
2883}
2884
2885
595939de
PM
2886/* Pack NUM into BUF using a target format of TYPE. */
2887
2888void
2889pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
2890{
2891 int len;
2892 enum bfd_endian byte_order;
2893
2894 type = check_typedef (type);
2895 len = TYPE_LENGTH (type);
2896 byte_order = gdbarch_byte_order (get_type_arch (type));
2897
2898 switch (TYPE_CODE (type))
2899 {
2900 case TYPE_CODE_INT:
2901 case TYPE_CODE_CHAR:
2902 case TYPE_CODE_ENUM:
2903 case TYPE_CODE_FLAGS:
2904 case TYPE_CODE_BOOL:
2905 case TYPE_CODE_RANGE:
2906 case TYPE_CODE_MEMBERPTR:
2907 store_unsigned_integer (buf, len, byte_order, num);
2908 break;
2909
2910 case TYPE_CODE_REF:
2911 case TYPE_CODE_PTR:
2912 store_typed_address (buf, type, (CORE_ADDR) num);
2913 break;
2914
2915 default:
3e43a32a
MS
2916 error (_("Unexpected type (%d) encountered "
2917 "for unsigned integer constant."),
595939de
PM
2918 TYPE_CODE (type));
2919 }
2920}
2921
2922
14d06750
DJ
2923/* Convert C numbers into newly allocated values. */
2924
2925struct value *
2926value_from_longest (struct type *type, LONGEST num)
2927{
2928 struct value *val = allocate_value (type);
2929
2930 pack_long (value_contents_raw (val), type, num);
c906108c
SS
2931 return val;
2932}
2933
4478b372 2934
595939de
PM
2935/* Convert C unsigned numbers into newly allocated values. */
2936
2937struct value *
2938value_from_ulongest (struct type *type, ULONGEST num)
2939{
2940 struct value *val = allocate_value (type);
2941
2942 pack_unsigned_long (value_contents_raw (val), type, num);
2943
2944 return val;
2945}
2946
2947
4478b372
JB
2948/* Create a value representing a pointer of type TYPE to the address
2949 ADDR. */
f23631e4 2950struct value *
4478b372
JB
2951value_from_pointer (struct type *type, CORE_ADDR addr)
2952{
f23631e4 2953 struct value *val = allocate_value (type);
a109c7c1 2954
cab0c772 2955 store_typed_address (value_contents_raw (val), check_typedef (type), addr);
4478b372
JB
2956 return val;
2957}
2958
2959
8acb6b92
TT
2960/* Create a value of type TYPE whose contents come from VALADDR, if it
2961 is non-null, and whose memory address (in the inferior) is
2962 ADDRESS. */
2963
2964struct value *
2965value_from_contents_and_address (struct type *type,
2966 const gdb_byte *valaddr,
2967 CORE_ADDR address)
2968{
41e8491f 2969 struct value *v;
a109c7c1 2970
8acb6b92 2971 if (valaddr == NULL)
41e8491f 2972 v = allocate_value_lazy (type);
8acb6b92 2973 else
41e8491f
JK
2974 {
2975 v = allocate_value (type);
2976 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
2977 }
42ae5230 2978 set_value_address (v, address);
33d502b4 2979 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
2980 return v;
2981}
2982
8a9b8146
TT
2983/* Create a value of type TYPE holding the contents CONTENTS.
2984 The new value is `not_lval'. */
2985
2986struct value *
2987value_from_contents (struct type *type, const gdb_byte *contents)
2988{
2989 struct value *result;
2990
2991 result = allocate_value (type);
2992 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
2993 return result;
2994}
2995
f23631e4 2996struct value *
fba45db2 2997value_from_double (struct type *type, DOUBLEST num)
c906108c 2998{
f23631e4 2999 struct value *val = allocate_value (type);
c906108c 3000 struct type *base_type = check_typedef (type);
52f0bd74 3001 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3002
3003 if (code == TYPE_CODE_FLT)
3004 {
990a07ab 3005 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3006 }
3007 else
8a3fe4f8 3008 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3009
3010 return val;
3011}
994b9211 3012
27bc4d80 3013struct value *
4ef30785 3014value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3015{
3016 struct value *val = allocate_value (type);
27bc4d80 3017
4ef30785 3018 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3019 return val;
3020}
3021
3bd0f5ef
MS
3022/* Extract a value from the history file. Input will be of the form
3023 $digits or $$digits. See block comment above 'write_dollar_variable'
3024 for details. */
3025
3026struct value *
3027value_from_history_ref (char *h, char **endp)
3028{
3029 int index, len;
3030
3031 if (h[0] == '$')
3032 len = 1;
3033 else
3034 return NULL;
3035
3036 if (h[1] == '$')
3037 len = 2;
3038
3039 /* Find length of numeral string. */
3040 for (; isdigit (h[len]); len++)
3041 ;
3042
3043 /* Make sure numeral string is not part of an identifier. */
3044 if (h[len] == '_' || isalpha (h[len]))
3045 return NULL;
3046
3047 /* Now collect the index value. */
3048 if (h[1] == '$')
3049 {
3050 if (len == 2)
3051 {
3052 /* For some bizarre reason, "$$" is equivalent to "$$1",
3053 rather than to "$$0" as it ought to be! */
3054 index = -1;
3055 *endp += len;
3056 }
3057 else
3058 index = -strtol (&h[2], endp, 10);
3059 }
3060 else
3061 {
3062 if (len == 1)
3063 {
3064 /* "$" is equivalent to "$0". */
3065 index = 0;
3066 *endp += len;
3067 }
3068 else
3069 index = strtol (&h[1], endp, 10);
3070 }
3071
3072 return access_value_history (index);
3073}
3074
994b9211
AC
3075struct value *
3076coerce_ref (struct value *arg)
3077{
df407dfe 3078 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a109c7c1 3079
994b9211
AC
3080 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
3081 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 3082 unpack_pointer (value_type (arg),
0fd88904 3083 value_contents (arg)));
994b9211
AC
3084 return arg;
3085}
3086
3087struct value *
3088coerce_array (struct value *arg)
3089{
f3134b88
TT
3090 struct type *type;
3091
994b9211 3092 arg = coerce_ref (arg);
f3134b88
TT
3093 type = check_typedef (value_type (arg));
3094
3095 switch (TYPE_CODE (type))
3096 {
3097 case TYPE_CODE_ARRAY:
7346b668 3098 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3099 arg = value_coerce_array (arg);
3100 break;
3101 case TYPE_CODE_FUNC:
3102 arg = value_coerce_function (arg);
3103 break;
3104 }
994b9211
AC
3105 return arg;
3106}
c906108c 3107\f
c906108c 3108
48436ce6
AC
3109/* Return true if the function returning the specified type is using
3110 the convention of returning structures in memory (passing in the
82585c72 3111 address as a hidden first parameter). */
c906108c
SS
3112
3113int
d80b854b
UW
3114using_struct_return (struct gdbarch *gdbarch,
3115 struct type *func_type, struct type *value_type)
c906108c 3116{
52f0bd74 3117 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
3118
3119 if (code == TYPE_CODE_ERROR)
8a3fe4f8 3120 error (_("Function return type unknown."));
c906108c 3121
667e784f
AC
3122 if (code == TYPE_CODE_VOID)
3123 /* A void return value is never in memory. See also corresponding
44e5158b 3124 code in "print_return_value". */
667e784f
AC
3125 return 0;
3126
92ad9cd9 3127 /* Probe the architecture for the return-value convention. */
d80b854b 3128 return (gdbarch_return_value (gdbarch, func_type, value_type,
92ad9cd9 3129 NULL, NULL, NULL)
31db7b6c 3130 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3131}
3132
42be36b3
CT
3133/* Set the initialized field in a value struct. */
3134
3135void
3136set_value_initialized (struct value *val, int status)
3137{
3138 val->initialized = status;
3139}
3140
3141/* Return the initialized field in a value struct. */
3142
3143int
3144value_initialized (struct value *val)
3145{
3146 return val->initialized;
3147}
3148
c906108c 3149void
fba45db2 3150_initialize_values (void)
c906108c 3151{
1a966eab
AC
3152 add_cmd ("convenience", no_class, show_convenience, _("\
3153Debugger convenience (\"$foo\") variables.\n\
c906108c 3154These variables are created when you assign them values;\n\
1a966eab
AC
3155thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
3156\n\
c906108c
SS
3157A few convenience variables are given values automatically:\n\
3158\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 3159\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
3160 &showlist);
3161
db5f229b 3162 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 3163Elements of value history around item number IDX (or last ten)."),
c906108c 3164 &showlist);
53e5f3cf
AS
3165
3166 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
3167Initialize a convenience variable if necessary.\n\
3168init-if-undefined VARIABLE = EXPRESSION\n\
3169Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
3170exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
3171VARIABLE is already initialized."));
bc3b79fd
TJB
3172
3173 add_prefix_cmd ("function", no_class, function_command, _("\
3174Placeholder command for showing help on convenience functions."),
3175 &functionlist, "function ", 0, &cmdlist);
c906108c 3176}
This page took 1.584243 seconds and 4 git commands to generate.