2005-02-10 Andrew Cagney <cagney@gnu.org>
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
f23631e4 3 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994,
990a07ab
AC
4 1995, 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005 Free
5 Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 2 of the License, or
12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b
JM
19 You should have received a copy of the GNU General Public License
20 along with this program; if not, write to the Free Software
21 Foundation, Inc., 59 Temple Place - Suite 330,
22 Boston, MA 02111-1307, USA. */
c906108c
SS
23
24#include "defs.h"
25#include "gdb_string.h"
26#include "symtab.h"
27#include "gdbtypes.h"
28#include "value.h"
29#include "gdbcore.h"
c906108c
SS
30#include "command.h"
31#include "gdbcmd.h"
32#include "target.h"
33#include "language.h"
34#include "scm-lang.h"
35#include "demangle.h"
d16aafd8 36#include "doublest.h"
5ae326fa 37#include "gdb_assert.h"
36160dc4 38#include "regcache.h"
fe898f56 39#include "block.h"
c906108c
SS
40
41/* Prototypes for exported functions. */
42
a14ed312 43void _initialize_values (void);
c906108c 44
91294c83
AC
45struct value
46{
47 /* Type of value; either not an lval, or one of the various
48 different possible kinds of lval. */
49 enum lval_type lval;
50
51 /* Is it modifiable? Only relevant if lval != not_lval. */
52 int modifiable;
53
54 /* Location of value (if lval). */
55 union
56 {
57 /* If lval == lval_memory, this is the address in the inferior.
58 If lval == lval_register, this is the byte offset into the
59 registers structure. */
60 CORE_ADDR address;
61
62 /* Pointer to internal variable. */
63 struct internalvar *internalvar;
64 } location;
65
66 /* Describes offset of a value within lval of a structure in bytes.
67 If lval == lval_memory, this is an offset to the address. If
68 lval == lval_register, this is a further offset from
69 location.address within the registers structure. Note also the
70 member embedded_offset below. */
71 int offset;
72
73 /* Only used for bitfields; number of bits contained in them. */
74 int bitsize;
75
76 /* Only used for bitfields; position of start of field. For
77 BITS_BIG_ENDIAN=0 targets, it is the position of the LSB. For
78 BITS_BIG_ENDIAN=1 targets, it is the position of the MSB. */
79 int bitpos;
80
81 /* Frame register value is relative to. This will be described in
82 the lval enum above as "lval_register". */
83 struct frame_id frame_id;
84
85 /* Type of the value. */
86 struct type *type;
87
88 /* If a value represents a C++ object, then the `type' field gives
89 the object's compile-time type. If the object actually belongs
90 to some class derived from `type', perhaps with other base
91 classes and additional members, then `type' is just a subobject
92 of the real thing, and the full object is probably larger than
93 `type' would suggest.
94
95 If `type' is a dynamic class (i.e. one with a vtable), then GDB
96 can actually determine the object's run-time type by looking at
97 the run-time type information in the vtable. When this
98 information is available, we may elect to read in the entire
99 object, for several reasons:
100
101 - When printing the value, the user would probably rather see the
102 full object, not just the limited portion apparent from the
103 compile-time type.
104
105 - If `type' has virtual base classes, then even printing `type'
106 alone may require reaching outside the `type' portion of the
107 object to wherever the virtual base class has been stored.
108
109 When we store the entire object, `enclosing_type' is the run-time
110 type -- the complete object -- and `embedded_offset' is the
111 offset of `type' within that larger type, in bytes. The
112 value_contents() macro takes `embedded_offset' into account, so
113 most GDB code continues to see the `type' portion of the value,
114 just as the inferior would.
115
116 If `type' is a pointer to an object, then `enclosing_type' is a
117 pointer to the object's run-time type, and `pointed_to_offset' is
118 the offset in bytes from the full object to the pointed-to object
119 -- that is, the value `embedded_offset' would have if we followed
120 the pointer and fetched the complete object. (I don't really see
121 the point. Why not just determine the run-time type when you
122 indirect, and avoid the special case? The contents don't matter
123 until you indirect anyway.)
124
125 If we're not doing anything fancy, `enclosing_type' is equal to
126 `type', and `embedded_offset' is zero, so everything works
127 normally. */
128 struct type *enclosing_type;
129 int embedded_offset;
130 int pointed_to_offset;
131
132 /* Values are stored in a chain, so that they can be deleted easily
133 over calls to the inferior. Values assigned to internal
134 variables or put into the value history are taken off this
135 list. */
136 struct value *next;
137
138 /* Register number if the value is from a register. */
139 short regnum;
140
141 /* If zero, contents of this value are in the contents field. If
142 nonzero, contents are in inferior memory at address in the
143 location.address field plus the offset field (and the lval field
144 should be lval_memory).
145
146 WARNING: This field is used by the code which handles watchpoints
147 (see breakpoint.c) to decide whether a particular value can be
148 watched by hardware watchpoints. If the lazy flag is set for
149 some member of a value chain, it is assumed that this member of
150 the chain doesn't need to be watched as part of watching the
151 value itself. This is how GDB avoids watching the entire struct
152 or array when the user wants to watch a single struct member or
153 array element. If you ever change the way lazy flag is set and
154 reset, be sure to consider this use as well! */
155 char lazy;
156
157 /* If nonzero, this is the value of a variable which does not
158 actually exist in the program. */
159 char optimized_out;
160
161 /* Actual contents of the value. For use of this value; setting it
162 uses the stuff above. Not valid if lazy is nonzero. Target
163 byte-order. We force it to be aligned properly for any possible
164 value. Note that a value therefore extends beyond what is
165 declared here. */
166 union
167 {
168 bfd_byte contents[1];
169 DOUBLEST force_doublest_align;
170 LONGEST force_longest_align;
171 CORE_ADDR force_core_addr_align;
172 void *force_pointer_align;
173 } aligner;
174 /* Do not add any new members here -- contents above will trash
175 them. */
176};
177
c906108c
SS
178/* Prototypes for local functions. */
179
a14ed312 180static void show_values (char *, int);
c906108c 181
a14ed312 182static void show_convenience (char *, int);
c906108c 183
c906108c
SS
184
185/* The value-history records all the values printed
186 by print commands during this session. Each chunk
187 records 60 consecutive values. The first chunk on
188 the chain records the most recent values.
189 The total number of values is in value_history_count. */
190
191#define VALUE_HISTORY_CHUNK 60
192
193struct value_history_chunk
c5aa993b
JM
194 {
195 struct value_history_chunk *next;
f23631e4 196 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 197 };
c906108c
SS
198
199/* Chain of chunks now in use. */
200
201static struct value_history_chunk *value_history_chain;
202
203static int value_history_count; /* Abs number of last entry stored */
204\f
205/* List of all value objects currently allocated
206 (except for those released by calls to release_value)
207 This is so they can be freed after each command. */
208
f23631e4 209static struct value *all_values;
c906108c
SS
210
211/* Allocate a value that has the correct length for type TYPE. */
212
f23631e4 213struct value *
fba45db2 214allocate_value (struct type *type)
c906108c 215{
f23631e4 216 struct value *val;
c906108c
SS
217 struct type *atype = check_typedef (type);
218
5b90c7b5 219 val = (struct value *) xzalloc (sizeof (struct value) + TYPE_LENGTH (atype));
df407dfe 220 val->next = all_values;
c906108c 221 all_values = val;
df407dfe 222 val->type = type;
4754a64e 223 val->enclosing_type = type;
c906108c
SS
224 VALUE_LVAL (val) = not_lval;
225 VALUE_ADDRESS (val) = 0;
1df6926e 226 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
227 val->offset = 0;
228 val->bitpos = 0;
229 val->bitsize = 0;
9ee8fc9d 230 VALUE_REGNUM (val) = -1;
d69fe07e 231 val->lazy = 0;
feb13ab0 232 val->optimized_out = 0;
13c3b5f5 233 val->embedded_offset = 0;
b44d461b 234 val->pointed_to_offset = 0;
c906108c
SS
235 val->modifiable = 1;
236 return val;
237}
238
239/* Allocate a value that has the correct length
240 for COUNT repetitions type TYPE. */
241
f23631e4 242struct value *
fba45db2 243allocate_repeat_value (struct type *type, int count)
c906108c 244{
c5aa993b 245 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
246 /* FIXME-type-allocation: need a way to free this type when we are
247 done with it. */
248 struct type *range_type
c5aa993b
JM
249 = create_range_type ((struct type *) NULL, builtin_type_int,
250 low_bound, count + low_bound - 1);
c906108c
SS
251 /* FIXME-type-allocation: need a way to free this type when we are
252 done with it. */
253 return allocate_value (create_array_type ((struct type *) NULL,
254 type, range_type));
255}
256
df407dfe
AC
257/* Accessor methods. */
258
17cf0ecd
AC
259struct value *
260value_next (struct value *value)
261{
262 return value->next;
263}
264
df407dfe
AC
265struct type *
266value_type (struct value *value)
267{
268 return value->type;
269}
04624583
AC
270void
271deprecated_set_value_type (struct value *value, struct type *type)
272{
273 value->type = type;
274}
df407dfe
AC
275
276int
277value_offset (struct value *value)
278{
279 return value->offset;
280}
f5cf64a7
AC
281void
282set_value_offset (struct value *value, int offset)
283{
284 value->offset = offset;
285}
df407dfe
AC
286
287int
288value_bitpos (struct value *value)
289{
290 return value->bitpos;
291}
9bbda503
AC
292void
293set_value_bitpos (struct value *value, int bit)
294{
295 value->bitpos = bit;
296}
df407dfe
AC
297
298int
299value_bitsize (struct value *value)
300{
301 return value->bitsize;
302}
9bbda503
AC
303void
304set_value_bitsize (struct value *value, int bit)
305{
306 value->bitsize = bit;
307}
df407dfe 308
990a07ab
AC
309bfd_byte *
310value_contents_raw (struct value *value)
311{
312 return value->aligner.contents + value->embedded_offset;
313}
314
315bfd_byte *
316value_contents_all_raw (struct value *value)
317{
318 return value->aligner.contents;
319}
320
4754a64e
AC
321struct type *
322value_enclosing_type (struct value *value)
323{
324 return value->enclosing_type;
325}
326
46615f07
AC
327const bfd_byte *
328value_contents_all (struct value *value)
329{
330 if (value->lazy)
331 value_fetch_lazy (value);
332 return value->aligner.contents;
333}
334
d69fe07e
AC
335int
336value_lazy (struct value *value)
337{
338 return value->lazy;
339}
340
dfa52d88
AC
341void
342set_value_lazy (struct value *value, int val)
343{
344 value->lazy = val;
345}
346
0fd88904
AC
347const bfd_byte *
348value_contents (struct value *value)
349{
350 return value_contents_writeable (value);
351}
352
353bfd_byte *
354value_contents_writeable (struct value *value)
355{
356 if (value->lazy)
357 value_fetch_lazy (value);
358 return value->aligner.contents;
359}
360
feb13ab0
AC
361int
362value_optimized_out (struct value *value)
363{
364 return value->optimized_out;
365}
366
367void
368set_value_optimized_out (struct value *value, int val)
369{
370 value->optimized_out = val;
371}
13c3b5f5
AC
372
373int
374value_embedded_offset (struct value *value)
375{
376 return value->embedded_offset;
377}
378
379void
380set_value_embedded_offset (struct value *value, int val)
381{
382 value->embedded_offset = val;
383}
b44d461b
AC
384
385int
386value_pointed_to_offset (struct value *value)
387{
388 return value->pointed_to_offset;
389}
390
391void
392set_value_pointed_to_offset (struct value *value, int val)
393{
394 value->pointed_to_offset = val;
395}
13bb5560
AC
396
397enum lval_type *
398deprecated_value_lval_hack (struct value *value)
399{
400 return &value->lval;
401}
402
403CORE_ADDR *
404deprecated_value_address_hack (struct value *value)
405{
406 return &value->location.address;
407}
408
409struct internalvar **
410deprecated_value_internalvar_hack (struct value *value)
411{
412 return &value->location.internalvar;
413}
414
415struct frame_id *
416deprecated_value_frame_id_hack (struct value *value)
417{
418 return &value->frame_id;
419}
420
421short *
422deprecated_value_regnum_hack (struct value *value)
423{
424 return &value->regnum;
425}
88e3b34b
AC
426
427int
428deprecated_value_modifiable (struct value *value)
429{
430 return value->modifiable;
431}
432void
433deprecated_set_value_modifiable (struct value *value, int modifiable)
434{
435 value->modifiable = modifiable;
436}
990a07ab 437\f
c906108c
SS
438/* Return a mark in the value chain. All values allocated after the
439 mark is obtained (except for those released) are subject to being freed
440 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 441struct value *
fba45db2 442value_mark (void)
c906108c
SS
443{
444 return all_values;
445}
446
447/* Free all values allocated since MARK was obtained by value_mark
448 (except for those released). */
449void
f23631e4 450value_free_to_mark (struct value *mark)
c906108c 451{
f23631e4
AC
452 struct value *val;
453 struct value *next;
c906108c
SS
454
455 for (val = all_values; val && val != mark; val = next)
456 {
df407dfe 457 next = val->next;
c906108c
SS
458 value_free (val);
459 }
460 all_values = val;
461}
462
463/* Free all the values that have been allocated (except for those released).
464 Called after each command, successful or not. */
465
466void
fba45db2 467free_all_values (void)
c906108c 468{
f23631e4
AC
469 struct value *val;
470 struct value *next;
c906108c
SS
471
472 for (val = all_values; val; val = next)
473 {
df407dfe 474 next = val->next;
c906108c
SS
475 value_free (val);
476 }
477
478 all_values = 0;
479}
480
481/* Remove VAL from the chain all_values
482 so it will not be freed automatically. */
483
484void
f23631e4 485release_value (struct value *val)
c906108c 486{
f23631e4 487 struct value *v;
c906108c
SS
488
489 if (all_values == val)
490 {
491 all_values = val->next;
492 return;
493 }
494
495 for (v = all_values; v; v = v->next)
496 {
497 if (v->next == val)
498 {
499 v->next = val->next;
500 break;
501 }
502 }
503}
504
505/* Release all values up to mark */
f23631e4
AC
506struct value *
507value_release_to_mark (struct value *mark)
c906108c 508{
f23631e4
AC
509 struct value *val;
510 struct value *next;
c906108c 511
df407dfe
AC
512 for (val = next = all_values; next; next = next->next)
513 if (next->next == mark)
c906108c 514 {
df407dfe
AC
515 all_values = next->next;
516 next->next = NULL;
c906108c
SS
517 return val;
518 }
519 all_values = 0;
520 return val;
521}
522
523/* Return a copy of the value ARG.
524 It contains the same contents, for same memory address,
525 but it's a different block of storage. */
526
f23631e4
AC
527struct value *
528value_copy (struct value *arg)
c906108c 529{
4754a64e 530 struct type *encl_type = value_enclosing_type (arg);
f23631e4 531 struct value *val = allocate_value (encl_type);
df407dfe 532 val->type = arg->type;
c906108c
SS
533 VALUE_LVAL (val) = VALUE_LVAL (arg);
534 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
df407dfe
AC
535 val->offset = arg->offset;
536 val->bitpos = arg->bitpos;
537 val->bitsize = arg->bitsize;
1df6926e 538 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 539 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 540 val->lazy = arg->lazy;
feb13ab0 541 val->optimized_out = arg->optimized_out;
13c3b5f5 542 val->embedded_offset = value_embedded_offset (arg);
b44d461b 543 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 544 val->modifiable = arg->modifiable;
d69fe07e 545 if (!value_lazy (val))
c906108c 546 {
990a07ab 547 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 548 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
549
550 }
551 return val;
552}
553\f
554/* Access to the value history. */
555
556/* Record a new value in the value history.
557 Returns the absolute history index of the entry.
558 Result of -1 indicates the value was not saved; otherwise it is the
559 value history index of this new item. */
560
561int
f23631e4 562record_latest_value (struct value *val)
c906108c
SS
563{
564 int i;
565
566 /* We don't want this value to have anything to do with the inferior anymore.
567 In particular, "set $1 = 50" should not affect the variable from which
568 the value was taken, and fast watchpoints should be able to assume that
569 a value on the value history never changes. */
d69fe07e 570 if (value_lazy (val))
c906108c
SS
571 value_fetch_lazy (val);
572 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
573 from. This is a bit dubious, because then *&$1 does not just return $1
574 but the current contents of that location. c'est la vie... */
575 val->modifiable = 0;
576 release_value (val);
577
578 /* Here we treat value_history_count as origin-zero
579 and applying to the value being stored now. */
580
581 i = value_history_count % VALUE_HISTORY_CHUNK;
582 if (i == 0)
583 {
f23631e4 584 struct value_history_chunk *new
c5aa993b
JM
585 = (struct value_history_chunk *)
586 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
587 memset (new->values, 0, sizeof new->values);
588 new->next = value_history_chain;
589 value_history_chain = new;
590 }
591
592 value_history_chain->values[i] = val;
593
594 /* Now we regard value_history_count as origin-one
595 and applying to the value just stored. */
596
597 return ++value_history_count;
598}
599
600/* Return a copy of the value in the history with sequence number NUM. */
601
f23631e4 602struct value *
fba45db2 603access_value_history (int num)
c906108c 604{
f23631e4 605 struct value_history_chunk *chunk;
52f0bd74
AC
606 int i;
607 int absnum = num;
c906108c
SS
608
609 if (absnum <= 0)
610 absnum += value_history_count;
611
612 if (absnum <= 0)
613 {
614 if (num == 0)
8a3fe4f8 615 error (_("The history is empty."));
c906108c 616 else if (num == 1)
8a3fe4f8 617 error (_("There is only one value in the history."));
c906108c 618 else
8a3fe4f8 619 error (_("History does not go back to $$%d."), -num);
c906108c
SS
620 }
621 if (absnum > value_history_count)
8a3fe4f8 622 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
623
624 absnum--;
625
626 /* Now absnum is always absolute and origin zero. */
627
628 chunk = value_history_chain;
629 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
630 i > 0; i--)
631 chunk = chunk->next;
632
633 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
634}
635
636/* Clear the value history entirely.
637 Must be done when new symbol tables are loaded,
638 because the type pointers become invalid. */
639
640void
fba45db2 641clear_value_history (void)
c906108c 642{
f23631e4 643 struct value_history_chunk *next;
52f0bd74 644 int i;
f23631e4 645 struct value *val;
c906108c
SS
646
647 while (value_history_chain)
648 {
649 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
650 if ((val = value_history_chain->values[i]) != NULL)
b8c9b27d 651 xfree (val);
c906108c 652 next = value_history_chain->next;
b8c9b27d 653 xfree (value_history_chain);
c906108c
SS
654 value_history_chain = next;
655 }
656 value_history_count = 0;
657}
658
659static void
fba45db2 660show_values (char *num_exp, int from_tty)
c906108c 661{
52f0bd74 662 int i;
f23631e4 663 struct value *val;
c906108c
SS
664 static int num = 1;
665
666 if (num_exp)
667 {
c5aa993b
JM
668 /* "info history +" should print from the stored position.
669 "info history <exp>" should print around value number <exp>. */
c906108c 670 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 671 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
672 }
673 else
674 {
675 /* "info history" means print the last 10 values. */
676 num = value_history_count - 9;
677 }
678
679 if (num <= 0)
680 num = 1;
681
682 for (i = num; i < num + 10 && i <= value_history_count; i++)
683 {
684 val = access_value_history (i);
685 printf_filtered ("$%d = ", i);
686 value_print (val, gdb_stdout, 0, Val_pretty_default);
687 printf_filtered ("\n");
688 }
689
690 /* The next "info history +" should start after what we just printed. */
691 num += 10;
692
693 /* Hitting just return after this command should do the same thing as
694 "info history +". If num_exp is null, this is unnecessary, since
695 "info history +" is not useful after "info history". */
696 if (from_tty && num_exp)
697 {
698 num_exp[0] = '+';
699 num_exp[1] = '\0';
700 }
701}
702\f
703/* Internal variables. These are variables within the debugger
704 that hold values assigned by debugger commands.
705 The user refers to them with a '$' prefix
706 that does not appear in the variable names stored internally. */
707
708static struct internalvar *internalvars;
709
710/* Look up an internal variable with name NAME. NAME should not
711 normally include a dollar sign.
712
713 If the specified internal variable does not exist,
714 one is created, with a void value. */
715
716struct internalvar *
fba45db2 717lookup_internalvar (char *name)
c906108c 718{
52f0bd74 719 struct internalvar *var;
c906108c
SS
720
721 for (var = internalvars; var; var = var->next)
5cb316ef 722 if (strcmp (var->name, name) == 0)
c906108c
SS
723 return var;
724
725 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
726 var->name = concat (name, NULL);
727 var->value = allocate_value (builtin_type_void);
728 release_value (var->value);
729 var->next = internalvars;
730 internalvars = var;
731 return var;
732}
733
f23631e4 734struct value *
fba45db2 735value_of_internalvar (struct internalvar *var)
c906108c 736{
f23631e4 737 struct value *val;
c906108c 738
c906108c 739 val = value_copy (var->value);
d69fe07e 740 if (value_lazy (val))
c906108c
SS
741 value_fetch_lazy (val);
742 VALUE_LVAL (val) = lval_internalvar;
743 VALUE_INTERNALVAR (val) = var;
744 return val;
745}
746
747void
fba45db2 748set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 749 int bitsize, struct value *newval)
c906108c 750{
0fd88904 751 bfd_byte *addr = value_contents_writeable (var->value) + offset;
c906108c 752
c906108c
SS
753 if (bitsize)
754 modify_field (addr, value_as_long (newval),
755 bitpos, bitsize);
756 else
0fd88904 757 memcpy (addr, value_contents (newval), TYPE_LENGTH (value_type (newval)));
c906108c
SS
758}
759
760void
f23631e4 761set_internalvar (struct internalvar *var, struct value *val)
c906108c 762{
f23631e4 763 struct value *newval;
c906108c 764
c906108c
SS
765 newval = value_copy (val);
766 newval->modifiable = 1;
767
768 /* Force the value to be fetched from the target now, to avoid problems
769 later when this internalvar is referenced and the target is gone or
770 has changed. */
d69fe07e 771 if (value_lazy (newval))
c906108c
SS
772 value_fetch_lazy (newval);
773
774 /* Begin code which must not call error(). If var->value points to
775 something free'd, an error() obviously leaves a dangling pointer.
776 But we also get a danling pointer if var->value points to
777 something in the value chain (i.e., before release_value is
778 called), because after the error free_all_values will get called before
779 long. */
b8c9b27d 780 xfree (var->value);
c906108c
SS
781 var->value = newval;
782 release_value (newval);
783 /* End code which must not call error(). */
784}
785
786char *
fba45db2 787internalvar_name (struct internalvar *var)
c906108c
SS
788{
789 return var->name;
790}
791
792/* Free all internalvars. Done when new symtabs are loaded,
793 because that makes the values invalid. */
794
795void
fba45db2 796clear_internalvars (void)
c906108c 797{
52f0bd74 798 struct internalvar *var;
c906108c
SS
799
800 while (internalvars)
801 {
802 var = internalvars;
803 internalvars = var->next;
b8c9b27d
KB
804 xfree (var->name);
805 xfree (var->value);
806 xfree (var);
c906108c
SS
807 }
808}
809
810static void
fba45db2 811show_convenience (char *ignore, int from_tty)
c906108c 812{
52f0bd74 813 struct internalvar *var;
c906108c
SS
814 int varseen = 0;
815
816 for (var = internalvars; var; var = var->next)
817 {
c906108c
SS
818 if (!varseen)
819 {
820 varseen = 1;
821 }
822 printf_filtered ("$%s = ", var->name);
823 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
824 printf_filtered ("\n");
825 }
826 if (!varseen)
827 printf_unfiltered ("No debugger convenience variables now defined.\n\
828Convenience variables have names starting with \"$\";\n\
829use \"set\" as in \"set $foo = 5\" to define them.\n");
830}
831\f
832/* Extract a value as a C number (either long or double).
833 Knows how to convert fixed values to double, or
834 floating values to long.
835 Does not deallocate the value. */
836
837LONGEST
f23631e4 838value_as_long (struct value *val)
c906108c
SS
839{
840 /* This coerces arrays and functions, which is necessary (e.g.
841 in disassemble_command). It also dereferences references, which
842 I suspect is the most logical thing to do. */
994b9211 843 val = coerce_array (val);
0fd88904 844 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
845}
846
847DOUBLEST
f23631e4 848value_as_double (struct value *val)
c906108c
SS
849{
850 DOUBLEST foo;
851 int inv;
c5aa993b 852
0fd88904 853 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 854 if (inv)
8a3fe4f8 855 error (_("Invalid floating value found in program."));
c906108c
SS
856 return foo;
857}
4478b372
JB
858/* Extract a value as a C pointer. Does not deallocate the value.
859 Note that val's type may not actually be a pointer; value_as_long
860 handles all the cases. */
c906108c 861CORE_ADDR
f23631e4 862value_as_address (struct value *val)
c906108c
SS
863{
864 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
865 whether we want this to be true eventually. */
866#if 0
867 /* ADDR_BITS_REMOVE is wrong if we are being called for a
868 non-address (e.g. argument to "signal", "info break", etc.), or
869 for pointers to char, in which the low bits *are* significant. */
c5aa993b 870 return ADDR_BITS_REMOVE (value_as_long (val));
c906108c 871#else
f312f057
JB
872
873 /* There are several targets (IA-64, PowerPC, and others) which
874 don't represent pointers to functions as simply the address of
875 the function's entry point. For example, on the IA-64, a
876 function pointer points to a two-word descriptor, generated by
877 the linker, which contains the function's entry point, and the
878 value the IA-64 "global pointer" register should have --- to
879 support position-independent code. The linker generates
880 descriptors only for those functions whose addresses are taken.
881
882 On such targets, it's difficult for GDB to convert an arbitrary
883 function address into a function pointer; it has to either find
884 an existing descriptor for that function, or call malloc and
885 build its own. On some targets, it is impossible for GDB to
886 build a descriptor at all: the descriptor must contain a jump
887 instruction; data memory cannot be executed; and code memory
888 cannot be modified.
889
890 Upon entry to this function, if VAL is a value of type `function'
891 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
892 VALUE_ADDRESS (val) is the address of the function. This is what
893 you'll get if you evaluate an expression like `main'. The call
894 to COERCE_ARRAY below actually does all the usual unary
895 conversions, which includes converting values of type `function'
896 to `pointer to function'. This is the challenging conversion
897 discussed above. Then, `unpack_long' will convert that pointer
898 back into an address.
899
900 So, suppose the user types `disassemble foo' on an architecture
901 with a strange function pointer representation, on which GDB
902 cannot build its own descriptors, and suppose further that `foo'
903 has no linker-built descriptor. The address->pointer conversion
904 will signal an error and prevent the command from running, even
905 though the next step would have been to convert the pointer
906 directly back into the same address.
907
908 The following shortcut avoids this whole mess. If VAL is a
909 function, just return its address directly. */
df407dfe
AC
910 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
911 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
f312f057
JB
912 return VALUE_ADDRESS (val);
913
994b9211 914 val = coerce_array (val);
fc0c74b1
AC
915
916 /* Some architectures (e.g. Harvard), map instruction and data
917 addresses onto a single large unified address space. For
918 instance: An architecture may consider a large integer in the
919 range 0x10000000 .. 0x1000ffff to already represent a data
920 addresses (hence not need a pointer to address conversion) while
921 a small integer would still need to be converted integer to
922 pointer to address. Just assume such architectures handle all
923 integer conversions in a single function. */
924
925 /* JimB writes:
926
927 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
928 must admonish GDB hackers to make sure its behavior matches the
929 compiler's, whenever possible.
930
931 In general, I think GDB should evaluate expressions the same way
932 the compiler does. When the user copies an expression out of
933 their source code and hands it to a `print' command, they should
934 get the same value the compiler would have computed. Any
935 deviation from this rule can cause major confusion and annoyance,
936 and needs to be justified carefully. In other words, GDB doesn't
937 really have the freedom to do these conversions in clever and
938 useful ways.
939
940 AndrewC pointed out that users aren't complaining about how GDB
941 casts integers to pointers; they are complaining that they can't
942 take an address from a disassembly listing and give it to `x/i'.
943 This is certainly important.
944
79dd2d24 945 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
946 makes it possible for GDB to "get it right" in all circumstances
947 --- the target has complete control over how things get done, so
948 people can Do The Right Thing for their target without breaking
949 anyone else. The standard doesn't specify how integers get
950 converted to pointers; usually, the ABI doesn't either, but
951 ABI-specific code is a more reasonable place to handle it. */
952
df407dfe
AC
953 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
954 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
79dd2d24
AC
955 && gdbarch_integer_to_address_p (current_gdbarch))
956 return gdbarch_integer_to_address (current_gdbarch, value_type (val),
0fd88904 957 value_contents (val));
fc0c74b1 958
0fd88904 959 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
960#endif
961}
962\f
963/* Unpack raw data (copied from debugee, target byte order) at VALADDR
964 as a long, or as a double, assuming the raw data is described
965 by type TYPE. Knows how to convert different sizes of values
966 and can convert between fixed and floating point. We don't assume
967 any alignment for the raw data. Return value is in host byte order.
968
969 If you want functions and arrays to be coerced to pointers, and
970 references to be dereferenced, call value_as_long() instead.
971
972 C++: It is assumed that the front-end has taken care of
973 all matters concerning pointers to members. A pointer
974 to member which reaches here is considered to be equivalent
975 to an INT (or some size). After all, it is only an offset. */
976
977LONGEST
66140c26 978unpack_long (struct type *type, const char *valaddr)
c906108c 979{
52f0bd74
AC
980 enum type_code code = TYPE_CODE (type);
981 int len = TYPE_LENGTH (type);
982 int nosign = TYPE_UNSIGNED (type);
c906108c
SS
983
984 if (current_language->la_language == language_scm
985 && is_scmvalue_type (type))
986 return scm_unpack (type, valaddr, TYPE_CODE_INT);
987
988 switch (code)
989 {
990 case TYPE_CODE_TYPEDEF:
991 return unpack_long (check_typedef (type), valaddr);
992 case TYPE_CODE_ENUM:
993 case TYPE_CODE_BOOL:
994 case TYPE_CODE_INT:
995 case TYPE_CODE_CHAR:
996 case TYPE_CODE_RANGE:
997 if (nosign)
998 return extract_unsigned_integer (valaddr, len);
999 else
1000 return extract_signed_integer (valaddr, len);
1001
1002 case TYPE_CODE_FLT:
96d2f608 1003 return extract_typed_floating (valaddr, type);
c906108c
SS
1004
1005 case TYPE_CODE_PTR:
1006 case TYPE_CODE_REF:
1007 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1008 whether we want this to be true eventually. */
4478b372 1009 return extract_typed_address (valaddr, type);
c906108c
SS
1010
1011 case TYPE_CODE_MEMBER:
8a3fe4f8 1012 error (_("not implemented: member types in unpack_long"));
c906108c
SS
1013
1014 default:
8a3fe4f8 1015 error (_("Value can't be converted to integer."));
c906108c 1016 }
c5aa993b 1017 return 0; /* Placate lint. */
c906108c
SS
1018}
1019
1020/* Return a double value from the specified type and address.
1021 INVP points to an int which is set to 0 for valid value,
1022 1 for invalid value (bad float format). In either case,
1023 the returned double is OK to use. Argument is in target
1024 format, result is in host format. */
1025
1026DOUBLEST
66140c26 1027unpack_double (struct type *type, const char *valaddr, int *invp)
c906108c
SS
1028{
1029 enum type_code code;
1030 int len;
1031 int nosign;
1032
1033 *invp = 0; /* Assume valid. */
1034 CHECK_TYPEDEF (type);
1035 code = TYPE_CODE (type);
1036 len = TYPE_LENGTH (type);
1037 nosign = TYPE_UNSIGNED (type);
1038 if (code == TYPE_CODE_FLT)
1039 {
75bc7ddf
AC
1040 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1041 floating-point value was valid (using the macro
1042 INVALID_FLOAT). That test/macro have been removed.
1043
1044 It turns out that only the VAX defined this macro and then
1045 only in a non-portable way. Fixing the portability problem
1046 wouldn't help since the VAX floating-point code is also badly
1047 bit-rotten. The target needs to add definitions for the
1048 methods TARGET_FLOAT_FORMAT and TARGET_DOUBLE_FORMAT - these
1049 exactly describe the target floating-point format. The
1050 problem here is that the corresponding floatformat_vax_f and
1051 floatformat_vax_d values these methods should be set to are
1052 also not defined either. Oops!
1053
1054 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1055 definitions and the new cases for floatformat_is_valid (). */
1056
1057 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1058 {
1059 *invp = 1;
1060 return 0.0;
1061 }
1062
96d2f608 1063 return extract_typed_floating (valaddr, type);
c906108c
SS
1064 }
1065 else if (nosign)
1066 {
1067 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1068 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1069 }
1070 else
1071 {
1072 /* Signed -- we are OK with unpack_long. */
1073 return unpack_long (type, valaddr);
1074 }
1075}
1076
1077/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1078 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1079 We don't assume any alignment for the raw data. Return value is in
1080 host byte order.
1081
1082 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1083 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1084
1085 C++: It is assumed that the front-end has taken care of
1086 all matters concerning pointers to members. A pointer
1087 to member which reaches here is considered to be equivalent
1088 to an INT (or some size). After all, it is only an offset. */
1089
1090CORE_ADDR
66140c26 1091unpack_pointer (struct type *type, const char *valaddr)
c906108c
SS
1092{
1093 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1094 whether we want this to be true eventually. */
1095 return unpack_long (type, valaddr);
1096}
4478b372 1097
c906108c 1098\f
2c2738a0
DC
1099/* Get the value of the FIELDN'th field (which must be static) of
1100 TYPE. Return NULL if the field doesn't exist or has been
1101 optimized out. */
c906108c 1102
f23631e4 1103struct value *
fba45db2 1104value_static_field (struct type *type, int fieldno)
c906108c 1105{
948e66d9
DJ
1106 struct value *retval;
1107
c906108c
SS
1108 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
1109 {
948e66d9 1110 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1111 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
1112 }
1113 else
1114 {
1115 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
176620f1 1116 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0, NULL);
948e66d9 1117 if (sym == NULL)
c906108c
SS
1118 {
1119 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
1120 as non-debuggable symbols */
1121 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
1122 if (!msym)
1123 return NULL;
1124 else
c5aa993b 1125 {
948e66d9 1126 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1127 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1128 }
1129 }
1130 else
1131 {
948e66d9
DJ
1132 /* SYM should never have a SYMBOL_CLASS which will require
1133 read_var_value to use the FRAME parameter. */
1134 if (symbol_read_needs_frame (sym))
8a3fe4f8
AC
1135 warning (_("static field's value depends on the current "
1136 "frame - bad debug info?"));
948e66d9 1137 retval = read_var_value (sym, NULL);
2b127877 1138 }
948e66d9
DJ
1139 if (retval && VALUE_LVAL (retval) == lval_memory)
1140 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
1141 VALUE_ADDRESS (retval));
c906108c 1142 }
948e66d9 1143 return retval;
c906108c
SS
1144}
1145
2b127877
DB
1146/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1147 You have to be careful here, since the size of the data area for the value
1148 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1149 than the old enclosing type, you have to allocate more space for the data.
1150 The return value is a pointer to the new version of this value structure. */
1151
f23631e4
AC
1152struct value *
1153value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1154{
4754a64e 1155 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (value_enclosing_type (val)))
2b127877 1156 {
4754a64e 1157 val->enclosing_type = new_encl_type;
2b127877
DB
1158 return val;
1159 }
1160 else
1161 {
f23631e4
AC
1162 struct value *new_val;
1163 struct value *prev;
2b127877 1164
f23631e4 1165 new_val = (struct value *) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
cc303028 1166
4754a64e 1167 new_val->enclosing_type = new_encl_type;
cc303028 1168
2b127877
DB
1169 /* We have to make sure this ends up in the same place in the value
1170 chain as the original copy, so it's clean-up behavior is the same.
1171 If the value has been released, this is a waste of time, but there
1172 is no way to tell that in advance, so... */
1173
1174 if (val != all_values)
1175 {
1176 for (prev = all_values; prev != NULL; prev = prev->next)
1177 {
1178 if (prev->next == val)
1179 {
1180 prev->next = new_val;
1181 break;
1182 }
1183 }
1184 }
1185
1186 return new_val;
1187 }
1188}
1189
c906108c
SS
1190/* Given a value ARG1 (offset by OFFSET bytes)
1191 of a struct or union type ARG_TYPE,
1192 extract and return the value of one of its (non-static) fields.
1193 FIELDNO says which field. */
1194
f23631e4
AC
1195struct value *
1196value_primitive_field (struct value *arg1, int offset,
aa1ee363 1197 int fieldno, struct type *arg_type)
c906108c 1198{
f23631e4 1199 struct value *v;
52f0bd74 1200 struct type *type;
c906108c
SS
1201
1202 CHECK_TYPEDEF (arg_type);
1203 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1204
1205 /* Handle packed fields */
1206
1207 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1208 {
1209 v = value_from_longest (type,
1210 unpack_field_as_long (arg_type,
0fd88904 1211 value_contents (arg1)
c5aa993b 1212 + offset,
c906108c 1213 fieldno));
df407dfe
AC
1214 v->bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
1215 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
1216 v->offset = value_offset (arg1) + offset
2e70b7b9 1217 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
1218 }
1219 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1220 {
1221 /* This field is actually a base subobject, so preserve the
1222 entire object's contents for later references to virtual
1223 bases, etc. */
4754a64e 1224 v = allocate_value (value_enclosing_type (arg1));
df407dfe 1225 v->type = type;
d69fe07e 1226 if (value_lazy (arg1))
dfa52d88 1227 set_value_lazy (v, 1);
c906108c 1228 else
990a07ab 1229 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
4754a64e 1230 TYPE_LENGTH (value_enclosing_type (arg1)));
df407dfe 1231 v->offset = value_offset (arg1);
13c3b5f5
AC
1232 v->embedded_offset = (offset + value_embedded_offset (arg1)
1233 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
1234 }
1235 else
1236 {
1237 /* Plain old data member */
1238 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
1239 v = allocate_value (type);
d69fe07e 1240 if (value_lazy (arg1))
dfa52d88 1241 set_value_lazy (v, 1);
c906108c 1242 else
990a07ab
AC
1243 memcpy (value_contents_raw (v),
1244 value_contents_raw (arg1) + offset,
c906108c 1245 TYPE_LENGTH (type));
df407dfe 1246 v->offset = (value_offset (arg1) + offset
13c3b5f5 1247 + value_embedded_offset (arg1));
c906108c
SS
1248 }
1249 VALUE_LVAL (v) = VALUE_LVAL (arg1);
1250 if (VALUE_LVAL (arg1) == lval_internalvar)
1251 VALUE_LVAL (v) = lval_internalvar_component;
1252 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
9ee8fc9d 1253 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 1254 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c 1255/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
c5aa993b 1256 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
c906108c
SS
1257 return v;
1258}
1259
1260/* Given a value ARG1 of a struct or union type,
1261 extract and return the value of one of its (non-static) fields.
1262 FIELDNO says which field. */
1263
f23631e4 1264struct value *
aa1ee363 1265value_field (struct value *arg1, int fieldno)
c906108c 1266{
df407dfe 1267 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
1268}
1269
1270/* Return a non-virtual function as a value.
1271 F is the list of member functions which contains the desired method.
0478d61c
FF
1272 J is an index into F which provides the desired method.
1273
1274 We only use the symbol for its address, so be happy with either a
1275 full symbol or a minimal symbol.
1276 */
c906108c 1277
f23631e4
AC
1278struct value *
1279value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 1280 int offset)
c906108c 1281{
f23631e4 1282 struct value *v;
52f0bd74 1283 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 1284 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 1285 struct symbol *sym;
0478d61c 1286 struct minimal_symbol *msym;
c906108c 1287
176620f1 1288 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0, NULL);
5ae326fa 1289 if (sym != NULL)
0478d61c 1290 {
5ae326fa
AC
1291 msym = NULL;
1292 }
1293 else
1294 {
1295 gdb_assert (sym == NULL);
0478d61c 1296 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
1297 if (msym == NULL)
1298 return NULL;
0478d61c
FF
1299 }
1300
c906108c 1301 v = allocate_value (ftype);
0478d61c
FF
1302 if (sym)
1303 {
1304 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
1305 }
1306 else
1307 {
1308 VALUE_ADDRESS (v) = SYMBOL_VALUE_ADDRESS (msym);
1309 }
c906108c
SS
1310
1311 if (arg1p)
c5aa993b 1312 {
df407dfe 1313 if (type != value_type (*arg1p))
c5aa993b
JM
1314 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1315 value_addr (*arg1p)));
1316
070ad9f0 1317 /* Move the `this' pointer according to the offset.
c5aa993b
JM
1318 VALUE_OFFSET (*arg1p) += offset;
1319 */
c906108c
SS
1320 }
1321
1322 return v;
1323}
1324
c906108c
SS
1325\f
1326/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1327 VALADDR.
1328
1329 Extracting bits depends on endianness of the machine. Compute the
1330 number of least significant bits to discard. For big endian machines,
1331 we compute the total number of bits in the anonymous object, subtract
1332 off the bit count from the MSB of the object to the MSB of the
1333 bitfield, then the size of the bitfield, which leaves the LSB discard
1334 count. For little endian machines, the discard count is simply the
1335 number of bits from the LSB of the anonymous object to the LSB of the
1336 bitfield.
1337
1338 If the field is signed, we also do sign extension. */
1339
1340LONGEST
66140c26 1341unpack_field_as_long (struct type *type, const char *valaddr, int fieldno)
c906108c
SS
1342{
1343 ULONGEST val;
1344 ULONGEST valmask;
1345 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1346 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1347 int lsbcount;
1348 struct type *field_type;
1349
1350 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1351 field_type = TYPE_FIELD_TYPE (type, fieldno);
1352 CHECK_TYPEDEF (field_type);
1353
1354 /* Extract bits. See comment above. */
1355
1356 if (BITS_BIG_ENDIAN)
1357 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1358 else
1359 lsbcount = (bitpos % 8);
1360 val >>= lsbcount;
1361
1362 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1363 If the field is signed, and is negative, then sign extend. */
1364
1365 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1366 {
1367 valmask = (((ULONGEST) 1) << bitsize) - 1;
1368 val &= valmask;
1369 if (!TYPE_UNSIGNED (field_type))
1370 {
1371 if (val & (valmask ^ (valmask >> 1)))
1372 {
1373 val |= ~valmask;
1374 }
1375 }
1376 }
1377 return (val);
1378}
1379
1380/* Modify the value of a bitfield. ADDR points to a block of memory in
1381 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1382 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
1383 indicate which bits (in target bit order) comprise the bitfield.
1384 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
1385 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
1386
1387void
fba45db2 1388modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
c906108c 1389{
f4e88c8e
PH
1390 ULONGEST oword;
1391 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
1392
1393 /* If a negative fieldval fits in the field in question, chop
1394 off the sign extension bits. */
f4e88c8e
PH
1395 if ((~fieldval & ~(mask >> 1)) == 0)
1396 fieldval &= mask;
c906108c
SS
1397
1398 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 1399 if (0 != (fieldval & ~mask))
c906108c
SS
1400 {
1401 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1402 we don't have a sprintf_longest. */
8a3fe4f8 1403 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
1404
1405 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 1406 fieldval &= mask;
c906108c
SS
1407 }
1408
f4e88c8e 1409 oword = extract_unsigned_integer (addr, sizeof oword);
c906108c
SS
1410
1411 /* Shifting for bit field depends on endianness of the target machine. */
1412 if (BITS_BIG_ENDIAN)
1413 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1414
f4e88c8e 1415 oword &= ~(mask << bitpos);
c906108c
SS
1416 oword |= fieldval << bitpos;
1417
f4e88c8e 1418 store_unsigned_integer (addr, sizeof oword, oword);
c906108c
SS
1419}
1420\f
1421/* Convert C numbers into newly allocated values */
1422
f23631e4 1423struct value *
aa1ee363 1424value_from_longest (struct type *type, LONGEST num)
c906108c 1425{
f23631e4 1426 struct value *val = allocate_value (type);
52f0bd74
AC
1427 enum type_code code;
1428 int len;
c5aa993b 1429retry:
c906108c
SS
1430 code = TYPE_CODE (type);
1431 len = TYPE_LENGTH (type);
1432
1433 switch (code)
1434 {
1435 case TYPE_CODE_TYPEDEF:
1436 type = check_typedef (type);
1437 goto retry;
1438 case TYPE_CODE_INT:
1439 case TYPE_CODE_CHAR:
1440 case TYPE_CODE_ENUM:
1441 case TYPE_CODE_BOOL:
1442 case TYPE_CODE_RANGE:
990a07ab 1443 store_signed_integer (value_contents_raw (val), len, num);
c906108c 1444 break;
c5aa993b 1445
c906108c
SS
1446 case TYPE_CODE_REF:
1447 case TYPE_CODE_PTR:
990a07ab 1448 store_typed_address (value_contents_raw (val), type, (CORE_ADDR) num);
c906108c 1449 break;
c5aa993b 1450
c906108c 1451 default:
8a3fe4f8 1452 error (_("Unexpected type (%d) encountered for integer constant."), code);
c906108c
SS
1453 }
1454 return val;
1455}
1456
4478b372
JB
1457
1458/* Create a value representing a pointer of type TYPE to the address
1459 ADDR. */
f23631e4 1460struct value *
4478b372
JB
1461value_from_pointer (struct type *type, CORE_ADDR addr)
1462{
f23631e4 1463 struct value *val = allocate_value (type);
990a07ab 1464 store_typed_address (value_contents_raw (val), type, addr);
4478b372
JB
1465 return val;
1466}
1467
1468
0f71a2f6 1469/* Create a value for a string constant to be stored locally
070ad9f0 1470 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1471 This is analogous to value_from_longest, which also does not
1472 use inferior memory. String shall NOT contain embedded nulls. */
1473
f23631e4 1474struct value *
fba45db2 1475value_from_string (char *ptr)
0f71a2f6 1476{
f23631e4 1477 struct value *val;
c5aa993b 1478 int len = strlen (ptr);
0f71a2f6 1479 int lowbound = current_language->string_lower_bound;
f290d38e
AC
1480 struct type *string_char_type;
1481 struct type *rangetype;
1482 struct type *stringtype;
1483
1484 rangetype = create_range_type ((struct type *) NULL,
1485 builtin_type_int,
1486 lowbound, len + lowbound - 1);
1487 string_char_type = language_string_char_type (current_language,
1488 current_gdbarch);
1489 stringtype = create_array_type ((struct type *) NULL,
1490 string_char_type,
1491 rangetype);
0f71a2f6 1492 val = allocate_value (stringtype);
990a07ab 1493 memcpy (value_contents_raw (val), ptr, len);
0f71a2f6
JM
1494 return val;
1495}
1496
f23631e4 1497struct value *
fba45db2 1498value_from_double (struct type *type, DOUBLEST num)
c906108c 1499{
f23631e4 1500 struct value *val = allocate_value (type);
c906108c 1501 struct type *base_type = check_typedef (type);
52f0bd74
AC
1502 enum type_code code = TYPE_CODE (base_type);
1503 int len = TYPE_LENGTH (base_type);
c906108c
SS
1504
1505 if (code == TYPE_CODE_FLT)
1506 {
990a07ab 1507 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
1508 }
1509 else
8a3fe4f8 1510 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
1511
1512 return val;
1513}
994b9211
AC
1514
1515struct value *
1516coerce_ref (struct value *arg)
1517{
df407dfe 1518 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
994b9211
AC
1519 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
1520 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 1521 unpack_pointer (value_type (arg),
0fd88904 1522 value_contents (arg)));
994b9211
AC
1523 return arg;
1524}
1525
1526struct value *
1527coerce_array (struct value *arg)
1528{
1529 arg = coerce_ref (arg);
1530 if (current_language->c_style_arrays
df407dfe 1531 && TYPE_CODE (value_type (arg)) == TYPE_CODE_ARRAY)
994b9211 1532 arg = value_coerce_array (arg);
df407dfe 1533 if (TYPE_CODE (value_type (arg)) == TYPE_CODE_FUNC)
994b9211
AC
1534 arg = value_coerce_function (arg);
1535 return arg;
1536}
1537
1538struct value *
1539coerce_number (struct value *arg)
1540{
1541 arg = coerce_array (arg);
1542 arg = coerce_enum (arg);
1543 return arg;
1544}
1545
1546struct value *
1547coerce_enum (struct value *arg)
1548{
df407dfe 1549 if (TYPE_CODE (check_typedef (value_type (arg))) == TYPE_CODE_ENUM)
994b9211
AC
1550 arg = value_cast (builtin_type_unsigned_int, arg);
1551 return arg;
1552}
c906108c 1553\f
c906108c 1554
74055713
AC
1555/* Should we use DEPRECATED_EXTRACT_STRUCT_VALUE_ADDRESS instead of
1556 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc and TYPE
1557 is the type (which is known to be struct, union or array).
c906108c
SS
1558
1559 On most machines, the struct convention is used unless we are
1560 using gcc and the type is of a special size. */
1561/* As of about 31 Mar 93, GCC was changed to be compatible with the
1562 native compiler. GCC 2.3.3 was the last release that did it the
1563 old way. Since gcc2_compiled was not changed, we have no
1564 way to correctly win in all cases, so we just do the right thing
1565 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1566 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1567 would cause more chaos than dealing with some struct returns being
1568 handled wrong. */
bc87dfa0
AC
1569/* NOTE: cagney/2004-06-13: Deleted check for "gcc_p". GCC 1.x is
1570 dead. */
c906108c
SS
1571
1572int
fba45db2 1573generic_use_struct_convention (int gcc_p, struct type *value_type)
c5aa993b 1574{
bc87dfa0
AC
1575 return !(TYPE_LENGTH (value_type) == 1
1576 || TYPE_LENGTH (value_type) == 2
1577 || TYPE_LENGTH (value_type) == 4
1578 || TYPE_LENGTH (value_type) == 8);
c906108c
SS
1579}
1580
48436ce6
AC
1581/* Return true if the function returning the specified type is using
1582 the convention of returning structures in memory (passing in the
1583 address as a hidden first parameter). GCC_P is nonzero if compiled
c906108c
SS
1584 with GCC. */
1585
1586int
48436ce6 1587using_struct_return (struct type *value_type, int gcc_p)
c906108c 1588{
52f0bd74 1589 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
1590
1591 if (code == TYPE_CODE_ERROR)
8a3fe4f8 1592 error (_("Function return type unknown."));
c906108c 1593
667e784f
AC
1594 if (code == TYPE_CODE_VOID)
1595 /* A void return value is never in memory. See also corresponding
44e5158b 1596 code in "print_return_value". */
667e784f
AC
1597 return 0;
1598
92ad9cd9
AC
1599 /* Probe the architecture for the return-value convention. */
1600 return (gdbarch_return_value (current_gdbarch, value_type,
1601 NULL, NULL, NULL)
31db7b6c 1602 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
1603}
1604
c906108c 1605void
fba45db2 1606_initialize_values (void)
c906108c
SS
1607{
1608 add_cmd ("convenience", no_class, show_convenience,
c5aa993b 1609 "Debugger convenience (\"$foo\") variables.\n\
c906108c
SS
1610These variables are created when you assign them values;\n\
1611thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1612A few convenience variables are given values automatically:\n\
1613\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1614\"$__\" holds the contents of the last address examined with \"x\".",
1615 &showlist);
1616
1617 add_cmd ("values", no_class, show_values,
1618 "Elements of value history around item number IDX (or last ten).",
1619 &showlist);
1620}
This page took 0.617025 seconds and 4 git commands to generate.