Constify show_convenience
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
61baf725 3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
d16aafd8 31#include "doublest.h"
36160dc4 32#include "regcache.h"
fe898f56 33#include "block.h"
27bc4d80 34#include "dfp.h"
bccdca4a 35#include "objfiles.h"
79a45b7d 36#include "valprint.h"
bc3b79fd 37#include "cli/cli-decode.h"
6dddc817 38#include "extension.h"
3bd0f5ef 39#include <ctype.h>
0914bcdb 40#include "tracepoint.h"
be335936 41#include "cp-abi.h"
a58e2656 42#include "user-regs.h"
325fac50 43#include <algorithm>
eb3ff9a5 44#include "completer.h"
0914bcdb 45
bc3b79fd
TJB
46/* Definition of a user function. */
47struct internal_function
48{
49 /* The name of the function. It is a bit odd to have this in the
50 function itself -- the user might use a differently-named
51 convenience variable to hold the function. */
52 char *name;
53
54 /* The handler. */
55 internal_function_fn handler;
56
57 /* User data for the handler. */
58 void *cookie;
59};
60
4e07d55f
PA
61/* Defines an [OFFSET, OFFSET + LENGTH) range. */
62
63struct range
64{
65 /* Lowest offset in the range. */
6b850546 66 LONGEST offset;
4e07d55f
PA
67
68 /* Length of the range. */
6b850546 69 LONGEST length;
4e07d55f
PA
70};
71
72typedef struct range range_s;
73
74DEF_VEC_O(range_s);
75
76/* Returns true if the ranges defined by [offset1, offset1+len1) and
77 [offset2, offset2+len2) overlap. */
78
79static int
6b850546
DT
80ranges_overlap (LONGEST offset1, LONGEST len1,
81 LONGEST offset2, LONGEST len2)
4e07d55f
PA
82{
83 ULONGEST h, l;
84
325fac50
PA
85 l = std::max (offset1, offset2);
86 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
87 return (l < h);
88}
89
90/* Returns true if the first argument is strictly less than the
91 second, useful for VEC_lower_bound. We keep ranges sorted by
92 offset and coalesce overlapping and contiguous ranges, so this just
93 compares the starting offset. */
94
95static int
96range_lessthan (const range_s *r1, const range_s *r2)
97{
98 return r1->offset < r2->offset;
99}
100
101/* Returns true if RANGES contains any range that overlaps [OFFSET,
102 OFFSET+LENGTH). */
103
104static int
6b850546 105ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
4e07d55f
PA
106{
107 range_s what;
6b850546 108 LONGEST i;
4e07d55f
PA
109
110 what.offset = offset;
111 what.length = length;
112
113 /* We keep ranges sorted by offset and coalesce overlapping and
114 contiguous ranges, so to check if a range list contains a given
115 range, we can do a binary search for the position the given range
116 would be inserted if we only considered the starting OFFSET of
117 ranges. We call that position I. Since we also have LENGTH to
118 care for (this is a range afterall), we need to check if the
119 _previous_ range overlaps the I range. E.g.,
120
121 R
122 |---|
123 |---| |---| |------| ... |--|
124 0 1 2 N
125
126 I=1
127
128 In the case above, the binary search would return `I=1', meaning,
129 this OFFSET should be inserted at position 1, and the current
130 position 1 should be pushed further (and before 2). But, `0'
131 overlaps with R.
132
133 Then we need to check if the I range overlaps the I range itself.
134 E.g.,
135
136 R
137 |---|
138 |---| |---| |-------| ... |--|
139 0 1 2 N
140
141 I=1
142 */
143
144 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
145
146 if (i > 0)
147 {
148 struct range *bef = VEC_index (range_s, ranges, i - 1);
149
150 if (ranges_overlap (bef->offset, bef->length, offset, length))
151 return 1;
152 }
153
154 if (i < VEC_length (range_s, ranges))
155 {
156 struct range *r = VEC_index (range_s, ranges, i);
157
158 if (ranges_overlap (r->offset, r->length, offset, length))
159 return 1;
160 }
161
162 return 0;
163}
164
bc3b79fd
TJB
165static struct cmd_list_element *functionlist;
166
87784a47
TT
167/* Note that the fields in this structure are arranged to save a bit
168 of memory. */
169
91294c83
AC
170struct value
171{
172 /* Type of value; either not an lval, or one of the various
173 different possible kinds of lval. */
174 enum lval_type lval;
175
176 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
177 unsigned int modifiable : 1;
178
179 /* If zero, contents of this value are in the contents field. If
180 nonzero, contents are in inferior. If the lval field is lval_memory,
181 the contents are in inferior memory at location.address plus offset.
182 The lval field may also be lval_register.
183
184 WARNING: This field is used by the code which handles watchpoints
185 (see breakpoint.c) to decide whether a particular value can be
186 watched by hardware watchpoints. If the lazy flag is set for
187 some member of a value chain, it is assumed that this member of
188 the chain doesn't need to be watched as part of watching the
189 value itself. This is how GDB avoids watching the entire struct
190 or array when the user wants to watch a single struct member or
191 array element. If you ever change the way lazy flag is set and
192 reset, be sure to consider this use as well! */
193 unsigned int lazy : 1;
194
87784a47
TT
195 /* If value is a variable, is it initialized or not. */
196 unsigned int initialized : 1;
197
198 /* If value is from the stack. If this is set, read_stack will be
199 used instead of read_memory to enable extra caching. */
200 unsigned int stack : 1;
91294c83 201
e848a8a5
TT
202 /* If the value has been released. */
203 unsigned int released : 1;
204
91294c83
AC
205 /* Location of value (if lval). */
206 union
207 {
7dc54575 208 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
209 CORE_ADDR address;
210
7dc54575
YQ
211 /*If lval == lval_register, the value is from a register. */
212 struct
213 {
214 /* Register number. */
215 int regnum;
216 /* Frame ID of "next" frame to which a register value is relative.
217 If the register value is found relative to frame F, then the
218 frame id of F->next will be stored in next_frame_id. */
219 struct frame_id next_frame_id;
220 } reg;
221
91294c83
AC
222 /* Pointer to internal variable. */
223 struct internalvar *internalvar;
5f5233d4 224
e81e7f5e
SC
225 /* Pointer to xmethod worker. */
226 struct xmethod_worker *xm_worker;
227
5f5233d4
PA
228 /* If lval == lval_computed, this is a set of function pointers
229 to use to access and describe the value, and a closure pointer
230 for them to use. */
231 struct
232 {
c8f2448a
JK
233 /* Functions to call. */
234 const struct lval_funcs *funcs;
235
236 /* Closure for those functions to use. */
237 void *closure;
5f5233d4 238 } computed;
91294c83
AC
239 } location;
240
3723fda8 241 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
242 addressable memory units. Note also the member embedded_offset
243 below. */
6b850546 244 LONGEST offset;
91294c83
AC
245
246 /* Only used for bitfields; number of bits contained in them. */
6b850546 247 LONGEST bitsize;
91294c83
AC
248
249 /* Only used for bitfields; position of start of field. For
32c9a795 250 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 251 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
6b850546 252 LONGEST bitpos;
91294c83 253
87784a47
TT
254 /* The number of references to this value. When a value is created,
255 the value chain holds a reference, so REFERENCE_COUNT is 1. If
256 release_value is called, this value is removed from the chain but
257 the caller of release_value now has a reference to this value.
258 The caller must arrange for a call to value_free later. */
259 int reference_count;
260
4ea48cc1
DJ
261 /* Only used for bitfields; the containing value. This allows a
262 single read from the target when displaying multiple
263 bitfields. */
264 struct value *parent;
265
91294c83
AC
266 /* Type of the value. */
267 struct type *type;
268
269 /* If a value represents a C++ object, then the `type' field gives
270 the object's compile-time type. If the object actually belongs
271 to some class derived from `type', perhaps with other base
272 classes and additional members, then `type' is just a subobject
273 of the real thing, and the full object is probably larger than
274 `type' would suggest.
275
276 If `type' is a dynamic class (i.e. one with a vtable), then GDB
277 can actually determine the object's run-time type by looking at
278 the run-time type information in the vtable. When this
279 information is available, we may elect to read in the entire
280 object, for several reasons:
281
282 - When printing the value, the user would probably rather see the
283 full object, not just the limited portion apparent from the
284 compile-time type.
285
286 - If `type' has virtual base classes, then even printing `type'
287 alone may require reaching outside the `type' portion of the
288 object to wherever the virtual base class has been stored.
289
290 When we store the entire object, `enclosing_type' is the run-time
291 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
292 offset of `type' within that larger type, in target addressable memory
293 units. The value_contents() macro takes `embedded_offset' into account,
294 so most GDB code continues to see the `type' portion of the value, just
295 as the inferior would.
91294c83
AC
296
297 If `type' is a pointer to an object, then `enclosing_type' is a
298 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
299 the offset in target addressable memory units from the full object
300 to the pointed-to object -- that is, the value `embedded_offset' would
301 have if we followed the pointer and fetched the complete object.
302 (I don't really see the point. Why not just determine the
303 run-time type when you indirect, and avoid the special case? The
304 contents don't matter until you indirect anyway.)
91294c83
AC
305
306 If we're not doing anything fancy, `enclosing_type' is equal to
307 `type', and `embedded_offset' is zero, so everything works
308 normally. */
309 struct type *enclosing_type;
6b850546
DT
310 LONGEST embedded_offset;
311 LONGEST pointed_to_offset;
91294c83
AC
312
313 /* Values are stored in a chain, so that they can be deleted easily
314 over calls to the inferior. Values assigned to internal
a08702d6
TJB
315 variables, put into the value history or exposed to Python are
316 taken off this list. */
91294c83
AC
317 struct value *next;
318
3e3d7139
JG
319 /* Actual contents of the value. Target byte-order. NULL or not
320 valid if lazy is nonzero. */
321 gdb_byte *contents;
828d3400 322
4e07d55f
PA
323 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
324 rather than available, since the common and default case is for a
9a0dc9e3
PA
325 value to be available. This is filled in at value read time.
326 The unavailable ranges are tracked in bits. Note that a contents
327 bit that has been optimized out doesn't really exist in the
328 program, so it can't be marked unavailable either. */
4e07d55f 329 VEC(range_s) *unavailable;
9a0dc9e3
PA
330
331 /* Likewise, but for optimized out contents (a chunk of the value of
332 a variable that does not actually exist in the program). If LVAL
333 is lval_register, this is a register ($pc, $sp, etc., never a
334 program variable) that has not been saved in the frame. Not
335 saved registers and optimized-out program variables values are
336 treated pretty much the same, except not-saved registers have a
337 different string representation and related error strings. */
338 VEC(range_s) *optimized_out;
91294c83
AC
339};
340
e512cdbd
SM
341/* See value.h. */
342
343struct gdbarch *
344get_value_arch (const struct value *value)
345{
346 return get_type_arch (value_type (value));
347}
348
4e07d55f 349int
6b850546 350value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
351{
352 gdb_assert (!value->lazy);
353
354 return !ranges_contain (value->unavailable, offset, length);
355}
356
bdf22206 357int
6b850546
DT
358value_bytes_available (const struct value *value,
359 LONGEST offset, LONGEST length)
bdf22206
AB
360{
361 return value_bits_available (value,
362 offset * TARGET_CHAR_BIT,
363 length * TARGET_CHAR_BIT);
364}
365
9a0dc9e3
PA
366int
367value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
368{
369 gdb_assert (!value->lazy);
370
371 return ranges_contain (value->optimized_out, bit_offset, bit_length);
372}
373
ec0a52e1
PA
374int
375value_entirely_available (struct value *value)
376{
377 /* We can only tell whether the whole value is available when we try
378 to read it. */
379 if (value->lazy)
380 value_fetch_lazy (value);
381
382 if (VEC_empty (range_s, value->unavailable))
383 return 1;
384 return 0;
385}
386
9a0dc9e3
PA
387/* Returns true if VALUE is entirely covered by RANGES. If the value
388 is lazy, it'll be read now. Note that RANGE is a pointer to
389 pointer because reading the value might change *RANGE. */
390
391static int
392value_entirely_covered_by_range_vector (struct value *value,
393 VEC(range_s) **ranges)
6211c335 394{
9a0dc9e3
PA
395 /* We can only tell whether the whole value is optimized out /
396 unavailable when we try to read it. */
6211c335
YQ
397 if (value->lazy)
398 value_fetch_lazy (value);
399
9a0dc9e3 400 if (VEC_length (range_s, *ranges) == 1)
6211c335 401 {
9a0dc9e3 402 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
403
404 if (t->offset == 0
64c46ce4
JB
405 && t->length == (TARGET_CHAR_BIT
406 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
407 return 1;
408 }
409
410 return 0;
411}
412
9a0dc9e3
PA
413int
414value_entirely_unavailable (struct value *value)
415{
416 return value_entirely_covered_by_range_vector (value, &value->unavailable);
417}
418
419int
420value_entirely_optimized_out (struct value *value)
421{
422 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
423}
424
425/* Insert into the vector pointed to by VECTORP the bit range starting of
426 OFFSET bits, and extending for the next LENGTH bits. */
427
428static void
6b850546
DT
429insert_into_bit_range_vector (VEC(range_s) **vectorp,
430 LONGEST offset, LONGEST length)
4e07d55f
PA
431{
432 range_s newr;
433 int i;
434
435 /* Insert the range sorted. If there's overlap or the new range
436 would be contiguous with an existing range, merge. */
437
438 newr.offset = offset;
439 newr.length = length;
440
441 /* Do a binary search for the position the given range would be
442 inserted if we only considered the starting OFFSET of ranges.
443 Call that position I. Since we also have LENGTH to care for
444 (this is a range afterall), we need to check if the _previous_
445 range overlaps the I range. E.g., calling R the new range:
446
447 #1 - overlaps with previous
448
449 R
450 |-...-|
451 |---| |---| |------| ... |--|
452 0 1 2 N
453
454 I=1
455
456 In the case #1 above, the binary search would return `I=1',
457 meaning, this OFFSET should be inserted at position 1, and the
458 current position 1 should be pushed further (and become 2). But,
459 note that `0' overlaps with R, so we want to merge them.
460
461 A similar consideration needs to be taken if the new range would
462 be contiguous with the previous range:
463
464 #2 - contiguous with previous
465
466 R
467 |-...-|
468 |--| |---| |------| ... |--|
469 0 1 2 N
470
471 I=1
472
473 If there's no overlap with the previous range, as in:
474
475 #3 - not overlapping and not contiguous
476
477 R
478 |-...-|
479 |--| |---| |------| ... |--|
480 0 1 2 N
481
482 I=1
483
484 or if I is 0:
485
486 #4 - R is the range with lowest offset
487
488 R
489 |-...-|
490 |--| |---| |------| ... |--|
491 0 1 2 N
492
493 I=0
494
495 ... we just push the new range to I.
496
497 All the 4 cases above need to consider that the new range may
498 also overlap several of the ranges that follow, or that R may be
499 contiguous with the following range, and merge. E.g.,
500
501 #5 - overlapping following ranges
502
503 R
504 |------------------------|
505 |--| |---| |------| ... |--|
506 0 1 2 N
507
508 I=0
509
510 or:
511
512 R
513 |-------|
514 |--| |---| |------| ... |--|
515 0 1 2 N
516
517 I=1
518
519 */
520
9a0dc9e3 521 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
522 if (i > 0)
523 {
9a0dc9e3 524 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
525
526 if (ranges_overlap (bef->offset, bef->length, offset, length))
527 {
528 /* #1 */
325fac50
PA
529 ULONGEST l = std::min (bef->offset, offset);
530 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
4e07d55f
PA
531
532 bef->offset = l;
533 bef->length = h - l;
534 i--;
535 }
536 else if (offset == bef->offset + bef->length)
537 {
538 /* #2 */
539 bef->length += length;
540 i--;
541 }
542 else
543 {
544 /* #3 */
9a0dc9e3 545 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
546 }
547 }
548 else
549 {
550 /* #4 */
9a0dc9e3 551 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
552 }
553
554 /* Check whether the ranges following the one we've just added or
555 touched can be folded in (#5 above). */
9a0dc9e3 556 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
557 {
558 struct range *t;
559 struct range *r;
560 int removed = 0;
561 int next = i + 1;
562
563 /* Get the range we just touched. */
9a0dc9e3 564 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
565 removed = 0;
566
567 i = next;
9a0dc9e3 568 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
569 if (r->offset <= t->offset + t->length)
570 {
571 ULONGEST l, h;
572
325fac50
PA
573 l = std::min (t->offset, r->offset);
574 h = std::max (t->offset + t->length, r->offset + r->length);
4e07d55f
PA
575
576 t->offset = l;
577 t->length = h - l;
578
579 removed++;
580 }
581 else
582 {
583 /* If we couldn't merge this one, we won't be able to
584 merge following ones either, since the ranges are
585 always sorted by OFFSET. */
586 break;
587 }
588
589 if (removed != 0)
9a0dc9e3 590 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
591 }
592}
593
9a0dc9e3 594void
6b850546
DT
595mark_value_bits_unavailable (struct value *value,
596 LONGEST offset, LONGEST length)
9a0dc9e3
PA
597{
598 insert_into_bit_range_vector (&value->unavailable, offset, length);
599}
600
bdf22206 601void
6b850546
DT
602mark_value_bytes_unavailable (struct value *value,
603 LONGEST offset, LONGEST length)
bdf22206
AB
604{
605 mark_value_bits_unavailable (value,
606 offset * TARGET_CHAR_BIT,
607 length * TARGET_CHAR_BIT);
608}
609
c8c1c22f
PA
610/* Find the first range in RANGES that overlaps the range defined by
611 OFFSET and LENGTH, starting at element POS in the RANGES vector,
612 Returns the index into RANGES where such overlapping range was
613 found, or -1 if none was found. */
614
615static int
616find_first_range_overlap (VEC(range_s) *ranges, int pos,
6b850546 617 LONGEST offset, LONGEST length)
c8c1c22f
PA
618{
619 range_s *r;
620 int i;
621
622 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
623 if (ranges_overlap (r->offset, r->length, offset, length))
624 return i;
625
626 return -1;
627}
628
bdf22206
AB
629/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
630 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
631 return non-zero.
632
633 It must always be the case that:
634 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
635
636 It is assumed that memory can be accessed from:
637 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
638 to:
639 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
640 / TARGET_CHAR_BIT) */
641static int
642memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
643 const gdb_byte *ptr2, size_t offset2_bits,
644 size_t length_bits)
645{
646 gdb_assert (offset1_bits % TARGET_CHAR_BIT
647 == offset2_bits % TARGET_CHAR_BIT);
648
649 if (offset1_bits % TARGET_CHAR_BIT != 0)
650 {
651 size_t bits;
652 gdb_byte mask, b1, b2;
653
654 /* The offset from the base pointers PTR1 and PTR2 is not a complete
655 number of bytes. A number of bits up to either the next exact
656 byte boundary, or LENGTH_BITS (which ever is sooner) will be
657 compared. */
658 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
659 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
660 mask = (1 << bits) - 1;
661
662 if (length_bits < bits)
663 {
664 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
665 bits = length_bits;
666 }
667
668 /* Now load the two bytes and mask off the bits we care about. */
669 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
670 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
671
672 if (b1 != b2)
673 return 1;
674
675 /* Now update the length and offsets to take account of the bits
676 we've just compared. */
677 length_bits -= bits;
678 offset1_bits += bits;
679 offset2_bits += bits;
680 }
681
682 if (length_bits % TARGET_CHAR_BIT != 0)
683 {
684 size_t bits;
685 size_t o1, o2;
686 gdb_byte mask, b1, b2;
687
688 /* The length is not an exact number of bytes. After the previous
689 IF.. block then the offsets are byte aligned, or the
690 length is zero (in which case this code is not reached). Compare
691 a number of bits at the end of the region, starting from an exact
692 byte boundary. */
693 bits = length_bits % TARGET_CHAR_BIT;
694 o1 = offset1_bits + length_bits - bits;
695 o2 = offset2_bits + length_bits - bits;
696
697 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
698 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
699
700 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
701 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
702
703 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
704 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
705
706 if (b1 != b2)
707 return 1;
708
709 length_bits -= bits;
710 }
711
712 if (length_bits > 0)
713 {
714 /* We've now taken care of any stray "bits" at the start, or end of
715 the region to compare, the remainder can be covered with a simple
716 memcmp. */
717 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
718 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
719 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
720
721 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
722 ptr2 + offset2_bits / TARGET_CHAR_BIT,
723 length_bits / TARGET_CHAR_BIT);
724 }
725
726 /* Length is zero, regions match. */
727 return 0;
728}
729
9a0dc9e3
PA
730/* Helper struct for find_first_range_overlap_and_match and
731 value_contents_bits_eq. Keep track of which slot of a given ranges
732 vector have we last looked at. */
bdf22206 733
9a0dc9e3
PA
734struct ranges_and_idx
735{
736 /* The ranges. */
737 VEC(range_s) *ranges;
738
739 /* The range we've last found in RANGES. Given ranges are sorted,
740 we can start the next lookup here. */
741 int idx;
742};
743
744/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
745 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
746 ranges starting at OFFSET2 bits. Return true if the ranges match
747 and fill in *L and *H with the overlapping window relative to
748 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
749
750static int
9a0dc9e3
PA
751find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
752 struct ranges_and_idx *rp2,
6b850546
DT
753 LONGEST offset1, LONGEST offset2,
754 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 755{
9a0dc9e3
PA
756 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
757 offset1, length);
758 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
759 offset2, length);
c8c1c22f 760
9a0dc9e3
PA
761 if (rp1->idx == -1 && rp2->idx == -1)
762 {
763 *l = length;
764 *h = length;
765 return 1;
766 }
767 else if (rp1->idx == -1 || rp2->idx == -1)
768 return 0;
769 else
c8c1c22f
PA
770 {
771 range_s *r1, *r2;
772 ULONGEST l1, h1;
773 ULONGEST l2, h2;
774
9a0dc9e3
PA
775 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
776 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
777
778 /* Get the unavailable windows intersected by the incoming
779 ranges. The first and last ranges that overlap the argument
780 range may be wider than said incoming arguments ranges. */
325fac50
PA
781 l1 = std::max (offset1, r1->offset);
782 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 783
325fac50
PA
784 l2 = std::max (offset2, r2->offset);
785 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
786
787 /* Make them relative to the respective start offsets, so we can
788 compare them for equality. */
789 l1 -= offset1;
790 h1 -= offset1;
791
792 l2 -= offset2;
793 h2 -= offset2;
794
9a0dc9e3 795 /* Different ranges, no match. */
c8c1c22f
PA
796 if (l1 != l2 || h1 != h2)
797 return 0;
798
9a0dc9e3
PA
799 *h = h1;
800 *l = l1;
801 return 1;
802 }
803}
804
805/* Helper function for value_contents_eq. The only difference is that
806 this function is bit rather than byte based.
807
808 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
809 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
810 Return true if the available bits match. */
811
812static int
813value_contents_bits_eq (const struct value *val1, int offset1,
814 const struct value *val2, int offset2,
815 int length)
816{
817 /* Each array element corresponds to a ranges source (unavailable,
818 optimized out). '1' is for VAL1, '2' for VAL2. */
819 struct ranges_and_idx rp1[2], rp2[2];
820
821 /* See function description in value.h. */
822 gdb_assert (!val1->lazy && !val2->lazy);
823
824 /* We shouldn't be trying to compare past the end of the values. */
825 gdb_assert (offset1 + length
826 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
827 gdb_assert (offset2 + length
828 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
829
830 memset (&rp1, 0, sizeof (rp1));
831 memset (&rp2, 0, sizeof (rp2));
832 rp1[0].ranges = val1->unavailable;
833 rp2[0].ranges = val2->unavailable;
834 rp1[1].ranges = val1->optimized_out;
835 rp2[1].ranges = val2->optimized_out;
836
837 while (length > 0)
838 {
000339af 839 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
840 int i;
841
842 for (i = 0; i < 2; i++)
843 {
844 ULONGEST l_tmp, h_tmp;
845
846 /* The contents only match equal if the invalid/unavailable
847 contents ranges match as well. */
848 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
849 offset1, offset2, length,
850 &l_tmp, &h_tmp))
851 return 0;
852
853 /* We're interested in the lowest/first range found. */
854 if (i == 0 || l_tmp < l)
855 {
856 l = l_tmp;
857 h = h_tmp;
858 }
859 }
860
861 /* Compare the available/valid contents. */
bdf22206 862 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 863 val2->contents, offset2, l) != 0)
c8c1c22f
PA
864 return 0;
865
9a0dc9e3
PA
866 length -= h;
867 offset1 += h;
868 offset2 += h;
c8c1c22f
PA
869 }
870
871 return 1;
872}
873
bdf22206 874int
6b850546
DT
875value_contents_eq (const struct value *val1, LONGEST offset1,
876 const struct value *val2, LONGEST offset2,
877 LONGEST length)
bdf22206 878{
9a0dc9e3
PA
879 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
880 val2, offset2 * TARGET_CHAR_BIT,
881 length * TARGET_CHAR_BIT);
bdf22206
AB
882}
883
581e13c1 884/* Prototypes for local functions. */
c906108c 885
a14ed312 886static void show_values (char *, int);
c906108c 887
c906108c
SS
888
889/* The value-history records all the values printed
890 by print commands during this session. Each chunk
891 records 60 consecutive values. The first chunk on
892 the chain records the most recent values.
893 The total number of values is in value_history_count. */
894
895#define VALUE_HISTORY_CHUNK 60
896
897struct value_history_chunk
c5aa993b
JM
898 {
899 struct value_history_chunk *next;
f23631e4 900 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 901 };
c906108c
SS
902
903/* Chain of chunks now in use. */
904
905static struct value_history_chunk *value_history_chain;
906
581e13c1 907static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 908
c906108c
SS
909\f
910/* List of all value objects currently allocated
911 (except for those released by calls to release_value)
912 This is so they can be freed after each command. */
913
f23631e4 914static struct value *all_values;
c906108c 915
3e3d7139
JG
916/* Allocate a lazy value for type TYPE. Its actual content is
917 "lazily" allocated too: the content field of the return value is
918 NULL; it will be allocated when it is fetched from the target. */
c906108c 919
f23631e4 920struct value *
3e3d7139 921allocate_value_lazy (struct type *type)
c906108c 922{
f23631e4 923 struct value *val;
c54eabfa
JK
924
925 /* Call check_typedef on our type to make sure that, if TYPE
926 is a TYPE_CODE_TYPEDEF, its length is set to the length
927 of the target type instead of zero. However, we do not
928 replace the typedef type by the target type, because we want
929 to keep the typedef in order to be able to set the VAL's type
930 description correctly. */
931 check_typedef (type);
c906108c 932
8d749320 933 val = XCNEW (struct value);
3e3d7139 934 val->contents = NULL;
df407dfe 935 val->next = all_values;
c906108c 936 all_values = val;
df407dfe 937 val->type = type;
4754a64e 938 val->enclosing_type = type;
c906108c 939 VALUE_LVAL (val) = not_lval;
42ae5230 940 val->location.address = 0;
df407dfe
AC
941 val->offset = 0;
942 val->bitpos = 0;
943 val->bitsize = 0;
3e3d7139 944 val->lazy = 1;
13c3b5f5 945 val->embedded_offset = 0;
b44d461b 946 val->pointed_to_offset = 0;
c906108c 947 val->modifiable = 1;
42be36b3 948 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
949
950 /* Values start out on the all_values chain. */
951 val->reference_count = 1;
952
c906108c
SS
953 return val;
954}
955
5fdf6324
AB
956/* The maximum size, in bytes, that GDB will try to allocate for a value.
957 The initial value of 64k was not selected for any specific reason, it is
958 just a reasonable starting point. */
959
960static int max_value_size = 65536; /* 64k bytes */
961
962/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
963 LONGEST, otherwise GDB will not be able to parse integer values from the
964 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
965 be unable to parse "set max-value-size 2".
966
967 As we want a consistent GDB experience across hosts with different sizes
968 of LONGEST, this arbitrary minimum value was selected, so long as this
969 is bigger than LONGEST on all GDB supported hosts we're fine. */
970
971#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
972gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
973
974/* Implement the "set max-value-size" command. */
975
976static void
977set_max_value_size (char *args, int from_tty,
978 struct cmd_list_element *c)
979{
980 gdb_assert (max_value_size == -1 || max_value_size >= 0);
981
982 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
983 {
984 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
985 error (_("max-value-size set too low, increasing to %d bytes"),
986 max_value_size);
987 }
988}
989
990/* Implement the "show max-value-size" command. */
991
992static void
993show_max_value_size (struct ui_file *file, int from_tty,
994 struct cmd_list_element *c, const char *value)
995{
996 if (max_value_size == -1)
997 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
998 else
999 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
1000 max_value_size);
1001}
1002
1003/* Called before we attempt to allocate or reallocate a buffer for the
1004 contents of a value. TYPE is the type of the value for which we are
1005 allocating the buffer. If the buffer is too large (based on the user
1006 controllable setting) then throw an error. If this function returns
1007 then we should attempt to allocate the buffer. */
1008
1009static void
1010check_type_length_before_alloc (const struct type *type)
1011{
1012 unsigned int length = TYPE_LENGTH (type);
1013
1014 if (max_value_size > -1 && length > max_value_size)
1015 {
1016 if (TYPE_NAME (type) != NULL)
1017 error (_("value of type `%s' requires %u bytes, which is more "
1018 "than max-value-size"), TYPE_NAME (type), length);
1019 else
1020 error (_("value requires %u bytes, which is more than "
1021 "max-value-size"), length);
1022 }
1023}
1024
3e3d7139
JG
1025/* Allocate the contents of VAL if it has not been allocated yet. */
1026
548b762d 1027static void
3e3d7139
JG
1028allocate_value_contents (struct value *val)
1029{
1030 if (!val->contents)
5fdf6324
AB
1031 {
1032 check_type_length_before_alloc (val->enclosing_type);
1033 val->contents
1034 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1035 }
3e3d7139
JG
1036}
1037
1038/* Allocate a value and its contents for type TYPE. */
1039
1040struct value *
1041allocate_value (struct type *type)
1042{
1043 struct value *val = allocate_value_lazy (type);
a109c7c1 1044
3e3d7139
JG
1045 allocate_value_contents (val);
1046 val->lazy = 0;
1047 return val;
1048}
1049
c906108c 1050/* Allocate a value that has the correct length
938f5214 1051 for COUNT repetitions of type TYPE. */
c906108c 1052
f23631e4 1053struct value *
fba45db2 1054allocate_repeat_value (struct type *type, int count)
c906108c 1055{
c5aa993b 1056 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1057 /* FIXME-type-allocation: need a way to free this type when we are
1058 done with it. */
e3506a9f
UW
1059 struct type *array_type
1060 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1061
e3506a9f 1062 return allocate_value (array_type);
c906108c
SS
1063}
1064
5f5233d4
PA
1065struct value *
1066allocate_computed_value (struct type *type,
c8f2448a 1067 const struct lval_funcs *funcs,
5f5233d4
PA
1068 void *closure)
1069{
41e8491f 1070 struct value *v = allocate_value_lazy (type);
a109c7c1 1071
5f5233d4
PA
1072 VALUE_LVAL (v) = lval_computed;
1073 v->location.computed.funcs = funcs;
1074 v->location.computed.closure = closure;
5f5233d4
PA
1075
1076 return v;
1077}
1078
a7035dbb
JK
1079/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1080
1081struct value *
1082allocate_optimized_out_value (struct type *type)
1083{
1084 struct value *retval = allocate_value_lazy (type);
1085
9a0dc9e3
PA
1086 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1087 set_value_lazy (retval, 0);
a7035dbb
JK
1088 return retval;
1089}
1090
df407dfe
AC
1091/* Accessor methods. */
1092
17cf0ecd 1093struct value *
4bf7b526 1094value_next (const struct value *value)
17cf0ecd
AC
1095{
1096 return value->next;
1097}
1098
df407dfe 1099struct type *
0e03807e 1100value_type (const struct value *value)
df407dfe
AC
1101{
1102 return value->type;
1103}
04624583
AC
1104void
1105deprecated_set_value_type (struct value *value, struct type *type)
1106{
1107 value->type = type;
1108}
df407dfe 1109
6b850546 1110LONGEST
0e03807e 1111value_offset (const struct value *value)
df407dfe
AC
1112{
1113 return value->offset;
1114}
f5cf64a7 1115void
6b850546 1116set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1117{
1118 value->offset = offset;
1119}
df407dfe 1120
6b850546 1121LONGEST
0e03807e 1122value_bitpos (const struct value *value)
df407dfe
AC
1123{
1124 return value->bitpos;
1125}
9bbda503 1126void
6b850546 1127set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1128{
1129 value->bitpos = bit;
1130}
df407dfe 1131
6b850546 1132LONGEST
0e03807e 1133value_bitsize (const struct value *value)
df407dfe
AC
1134{
1135 return value->bitsize;
1136}
9bbda503 1137void
6b850546 1138set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1139{
1140 value->bitsize = bit;
1141}
df407dfe 1142
4ea48cc1 1143struct value *
4bf7b526 1144value_parent (const struct value *value)
4ea48cc1
DJ
1145{
1146 return value->parent;
1147}
1148
53ba8333
JB
1149/* See value.h. */
1150
1151void
1152set_value_parent (struct value *value, struct value *parent)
1153{
40501e00
TT
1154 struct value *old = value->parent;
1155
53ba8333 1156 value->parent = parent;
40501e00
TT
1157 if (parent != NULL)
1158 value_incref (parent);
1159 value_free (old);
53ba8333
JB
1160}
1161
fc1a4b47 1162gdb_byte *
990a07ab
AC
1163value_contents_raw (struct value *value)
1164{
3ae385af
SM
1165 struct gdbarch *arch = get_value_arch (value);
1166 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1167
3e3d7139 1168 allocate_value_contents (value);
3ae385af 1169 return value->contents + value->embedded_offset * unit_size;
990a07ab
AC
1170}
1171
fc1a4b47 1172gdb_byte *
990a07ab
AC
1173value_contents_all_raw (struct value *value)
1174{
3e3d7139
JG
1175 allocate_value_contents (value);
1176 return value->contents;
990a07ab
AC
1177}
1178
4754a64e 1179struct type *
4bf7b526 1180value_enclosing_type (const struct value *value)
4754a64e
AC
1181{
1182 return value->enclosing_type;
1183}
1184
8264ba82
AG
1185/* Look at value.h for description. */
1186
1187struct type *
1188value_actual_type (struct value *value, int resolve_simple_types,
1189 int *real_type_found)
1190{
1191 struct value_print_options opts;
8264ba82
AG
1192 struct type *result;
1193
1194 get_user_print_options (&opts);
1195
1196 if (real_type_found)
1197 *real_type_found = 0;
1198 result = value_type (value);
1199 if (opts.objectprint)
1200 {
5e34c6c3
LM
1201 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1202 fetch its rtti type. */
aa006118 1203 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
5e34c6c3 1204 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1205 == TYPE_CODE_STRUCT
1206 && !value_optimized_out (value))
8264ba82
AG
1207 {
1208 struct type *real_type;
1209
1210 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1211 if (real_type)
1212 {
1213 if (real_type_found)
1214 *real_type_found = 1;
1215 result = real_type;
1216 }
1217 }
1218 else if (resolve_simple_types)
1219 {
1220 if (real_type_found)
1221 *real_type_found = 1;
1222 result = value_enclosing_type (value);
1223 }
1224 }
1225
1226 return result;
1227}
1228
901461f8
PA
1229void
1230error_value_optimized_out (void)
1231{
1232 error (_("value has been optimized out"));
1233}
1234
0e03807e 1235static void
4e07d55f 1236require_not_optimized_out (const struct value *value)
0e03807e 1237{
9a0dc9e3 1238 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1239 {
1240 if (value->lval == lval_register)
1241 error (_("register has not been saved in frame"));
1242 else
1243 error_value_optimized_out ();
1244 }
0e03807e
TT
1245}
1246
4e07d55f
PA
1247static void
1248require_available (const struct value *value)
1249{
1250 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1251 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1252}
1253
fc1a4b47 1254const gdb_byte *
0e03807e 1255value_contents_for_printing (struct value *value)
46615f07
AC
1256{
1257 if (value->lazy)
1258 value_fetch_lazy (value);
3e3d7139 1259 return value->contents;
46615f07
AC
1260}
1261
de4127a3
PA
1262const gdb_byte *
1263value_contents_for_printing_const (const struct value *value)
1264{
1265 gdb_assert (!value->lazy);
1266 return value->contents;
1267}
1268
0e03807e
TT
1269const gdb_byte *
1270value_contents_all (struct value *value)
1271{
1272 const gdb_byte *result = value_contents_for_printing (value);
1273 require_not_optimized_out (value);
4e07d55f 1274 require_available (value);
0e03807e
TT
1275 return result;
1276}
1277
9a0dc9e3
PA
1278/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1279 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1280
1281static void
1282ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1283 VEC (range_s) *src_range, int src_bit_offset,
1284 int bit_length)
1285{
1286 range_s *r;
1287 int i;
1288
1289 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1290 {
1291 ULONGEST h, l;
1292
325fac50
PA
1293 l = std::max (r->offset, (LONGEST) src_bit_offset);
1294 h = std::min (r->offset + r->length,
1295 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1296
1297 if (l < h)
1298 insert_into_bit_range_vector (dst_range,
1299 dst_bit_offset + (l - src_bit_offset),
1300 h - l);
1301 }
1302}
1303
4875ffdb
PA
1304/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1305 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1306
1307static void
1308value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1309 const struct value *src, int src_bit_offset,
1310 int bit_length)
1311{
1312 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1313 src->unavailable, src_bit_offset,
1314 bit_length);
1315 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1316 src->optimized_out, src_bit_offset,
1317 bit_length);
1318}
1319
3ae385af 1320/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1321 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1322 contents, starting at DST_OFFSET. If unavailable contents are
1323 being copied from SRC, the corresponding DST contents are marked
1324 unavailable accordingly. Neither DST nor SRC may be lazy
1325 values.
1326
1327 It is assumed the contents of DST in the [DST_OFFSET,
1328 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1329
1330void
6b850546
DT
1331value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1332 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1333{
6b850546 1334 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1335 struct gdbarch *arch = get_value_arch (src);
1336 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1337
1338 /* A lazy DST would make that this copy operation useless, since as
1339 soon as DST's contents were un-lazied (by a later value_contents
1340 call, say), the contents would be overwritten. A lazy SRC would
1341 mean we'd be copying garbage. */
1342 gdb_assert (!dst->lazy && !src->lazy);
1343
29976f3f
PA
1344 /* The overwritten DST range gets unavailability ORed in, not
1345 replaced. Make sure to remember to implement replacing if it
1346 turns out actually necessary. */
1347 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1348 gdb_assert (!value_bits_any_optimized_out (dst,
1349 TARGET_CHAR_BIT * dst_offset,
1350 TARGET_CHAR_BIT * length));
29976f3f 1351
39d37385 1352 /* Copy the data. */
3ae385af
SM
1353 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1354 value_contents_all_raw (src) + src_offset * unit_size,
1355 length * unit_size);
39d37385
PA
1356
1357 /* Copy the meta-data, adjusted. */
3ae385af
SM
1358 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1359 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1360 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1361
4875ffdb
PA
1362 value_ranges_copy_adjusted (dst, dst_bit_offset,
1363 src, src_bit_offset,
1364 bit_length);
39d37385
PA
1365}
1366
29976f3f
PA
1367/* Copy LENGTH bytes of SRC value's (all) contents
1368 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1369 (all) contents, starting at DST_OFFSET. If unavailable contents
1370 are being copied from SRC, the corresponding DST contents are
1371 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1372 lazy, it will be fetched now.
29976f3f
PA
1373
1374 It is assumed the contents of DST in the [DST_OFFSET,
1375 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1376
1377void
6b850546
DT
1378value_contents_copy (struct value *dst, LONGEST dst_offset,
1379 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1380{
39d37385
PA
1381 if (src->lazy)
1382 value_fetch_lazy (src);
1383
1384 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1385}
1386
d69fe07e 1387int
4bf7b526 1388value_lazy (const struct value *value)
d69fe07e
AC
1389{
1390 return value->lazy;
1391}
1392
dfa52d88
AC
1393void
1394set_value_lazy (struct value *value, int val)
1395{
1396 value->lazy = val;
1397}
1398
4e5d721f 1399int
4bf7b526 1400value_stack (const struct value *value)
4e5d721f
DE
1401{
1402 return value->stack;
1403}
1404
1405void
1406set_value_stack (struct value *value, int val)
1407{
1408 value->stack = val;
1409}
1410
fc1a4b47 1411const gdb_byte *
0fd88904
AC
1412value_contents (struct value *value)
1413{
0e03807e
TT
1414 const gdb_byte *result = value_contents_writeable (value);
1415 require_not_optimized_out (value);
4e07d55f 1416 require_available (value);
0e03807e 1417 return result;
0fd88904
AC
1418}
1419
fc1a4b47 1420gdb_byte *
0fd88904
AC
1421value_contents_writeable (struct value *value)
1422{
1423 if (value->lazy)
1424 value_fetch_lazy (value);
fc0c53a0 1425 return value_contents_raw (value);
0fd88904
AC
1426}
1427
feb13ab0
AC
1428int
1429value_optimized_out (struct value *value)
1430{
691a26f5
AB
1431 /* We can only know if a value is optimized out once we have tried to
1432 fetch it. */
9a0dc9e3 1433 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
ecf2e90c
DB
1434 {
1435 TRY
1436 {
1437 value_fetch_lazy (value);
1438 }
1439 CATCH (ex, RETURN_MASK_ERROR)
1440 {
1441 /* Fall back to checking value->optimized_out. */
1442 }
1443 END_CATCH
1444 }
691a26f5 1445
9a0dc9e3 1446 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1447}
1448
9a0dc9e3
PA
1449/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1450 the following LENGTH bytes. */
eca07816 1451
feb13ab0 1452void
9a0dc9e3 1453mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1454{
9a0dc9e3
PA
1455 mark_value_bits_optimized_out (value,
1456 offset * TARGET_CHAR_BIT,
1457 length * TARGET_CHAR_BIT);
feb13ab0 1458}
13c3b5f5 1459
9a0dc9e3 1460/* See value.h. */
0e03807e 1461
9a0dc9e3 1462void
6b850546
DT
1463mark_value_bits_optimized_out (struct value *value,
1464 LONGEST offset, LONGEST length)
0e03807e 1465{
9a0dc9e3 1466 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1467}
1468
8cf6f0b1
TT
1469int
1470value_bits_synthetic_pointer (const struct value *value,
6b850546 1471 LONGEST offset, LONGEST length)
8cf6f0b1 1472{
e7303042 1473 if (value->lval != lval_computed
8cf6f0b1
TT
1474 || !value->location.computed.funcs->check_synthetic_pointer)
1475 return 0;
1476 return value->location.computed.funcs->check_synthetic_pointer (value,
1477 offset,
1478 length);
1479}
1480
6b850546 1481LONGEST
4bf7b526 1482value_embedded_offset (const struct value *value)
13c3b5f5
AC
1483{
1484 return value->embedded_offset;
1485}
1486
1487void
6b850546 1488set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1489{
1490 value->embedded_offset = val;
1491}
b44d461b 1492
6b850546 1493LONGEST
4bf7b526 1494value_pointed_to_offset (const struct value *value)
b44d461b
AC
1495{
1496 return value->pointed_to_offset;
1497}
1498
1499void
6b850546 1500set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1501{
1502 value->pointed_to_offset = val;
1503}
13bb5560 1504
c8f2448a 1505const struct lval_funcs *
a471c594 1506value_computed_funcs (const struct value *v)
5f5233d4 1507{
a471c594 1508 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1509
1510 return v->location.computed.funcs;
1511}
1512
1513void *
0e03807e 1514value_computed_closure (const struct value *v)
5f5233d4 1515{
0e03807e 1516 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1517
1518 return v->location.computed.closure;
1519}
1520
13bb5560
AC
1521enum lval_type *
1522deprecated_value_lval_hack (struct value *value)
1523{
1524 return &value->lval;
1525}
1526
a471c594
JK
1527enum lval_type
1528value_lval_const (const struct value *value)
1529{
1530 return value->lval;
1531}
1532
42ae5230 1533CORE_ADDR
de4127a3 1534value_address (const struct value *value)
42ae5230 1535{
1a088441 1536 if (value->lval != lval_memory)
42ae5230 1537 return 0;
53ba8333
JB
1538 if (value->parent != NULL)
1539 return value_address (value->parent) + value->offset;
9920b434
BH
1540 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1541 {
1542 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1543 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1544 }
1545
1546 return value->location.address + value->offset;
42ae5230
TT
1547}
1548
1549CORE_ADDR
4bf7b526 1550value_raw_address (const struct value *value)
42ae5230 1551{
1a088441 1552 if (value->lval != lval_memory)
42ae5230
TT
1553 return 0;
1554 return value->location.address;
1555}
1556
1557void
1558set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1559{
1a088441 1560 gdb_assert (value->lval == lval_memory);
42ae5230 1561 value->location.address = addr;
13bb5560
AC
1562}
1563
1564struct internalvar **
1565deprecated_value_internalvar_hack (struct value *value)
1566{
1567 return &value->location.internalvar;
1568}
1569
1570struct frame_id *
41b56feb 1571deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1572{
7c2ba67e 1573 gdb_assert (value->lval == lval_register);
7dc54575 1574 return &value->location.reg.next_frame_id;
13bb5560
AC
1575}
1576
7dc54575 1577int *
13bb5560
AC
1578deprecated_value_regnum_hack (struct value *value)
1579{
7c2ba67e 1580 gdb_assert (value->lval == lval_register);
7dc54575 1581 return &value->location.reg.regnum;
13bb5560 1582}
88e3b34b
AC
1583
1584int
4bf7b526 1585deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1586{
1587 return value->modifiable;
1588}
990a07ab 1589\f
c906108c
SS
1590/* Return a mark in the value chain. All values allocated after the
1591 mark is obtained (except for those released) are subject to being freed
1592 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1593struct value *
fba45db2 1594value_mark (void)
c906108c
SS
1595{
1596 return all_values;
1597}
1598
828d3400
DJ
1599/* Take a reference to VAL. VAL will not be deallocated until all
1600 references are released. */
1601
1602void
1603value_incref (struct value *val)
1604{
1605 val->reference_count++;
1606}
1607
1608/* Release a reference to VAL, which was acquired with value_incref.
1609 This function is also called to deallocate values from the value
1610 chain. */
1611
3e3d7139
JG
1612void
1613value_free (struct value *val)
1614{
1615 if (val)
5f5233d4 1616 {
828d3400
DJ
1617 gdb_assert (val->reference_count > 0);
1618 val->reference_count--;
1619 if (val->reference_count > 0)
1620 return;
1621
4ea48cc1
DJ
1622 /* If there's an associated parent value, drop our reference to
1623 it. */
1624 if (val->parent != NULL)
1625 value_free (val->parent);
1626
5f5233d4
PA
1627 if (VALUE_LVAL (val) == lval_computed)
1628 {
c8f2448a 1629 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1630
1631 if (funcs->free_closure)
1632 funcs->free_closure (val);
1633 }
e81e7f5e
SC
1634 else if (VALUE_LVAL (val) == lval_xcallable)
1635 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1636
1637 xfree (val->contents);
4e07d55f 1638 VEC_free (range_s, val->unavailable);
5f5233d4 1639 }
3e3d7139
JG
1640 xfree (val);
1641}
1642
c906108c
SS
1643/* Free all values allocated since MARK was obtained by value_mark
1644 (except for those released). */
1645void
4bf7b526 1646value_free_to_mark (const struct value *mark)
c906108c 1647{
f23631e4
AC
1648 struct value *val;
1649 struct value *next;
c906108c
SS
1650
1651 for (val = all_values; val && val != mark; val = next)
1652 {
df407dfe 1653 next = val->next;
e848a8a5 1654 val->released = 1;
c906108c
SS
1655 value_free (val);
1656 }
1657 all_values = val;
1658}
1659
1660/* Free all the values that have been allocated (except for those released).
725e88af
DE
1661 Call after each command, successful or not.
1662 In practice this is called before each command, which is sufficient. */
c906108c
SS
1663
1664void
fba45db2 1665free_all_values (void)
c906108c 1666{
f23631e4
AC
1667 struct value *val;
1668 struct value *next;
c906108c
SS
1669
1670 for (val = all_values; val; val = next)
1671 {
df407dfe 1672 next = val->next;
e848a8a5 1673 val->released = 1;
c906108c
SS
1674 value_free (val);
1675 }
1676
1677 all_values = 0;
1678}
1679
0cf6dd15
TJB
1680/* Frees all the elements in a chain of values. */
1681
1682void
1683free_value_chain (struct value *v)
1684{
1685 struct value *next;
1686
1687 for (; v; v = next)
1688 {
1689 next = value_next (v);
1690 value_free (v);
1691 }
1692}
1693
c906108c
SS
1694/* Remove VAL from the chain all_values
1695 so it will not be freed automatically. */
1696
1697void
f23631e4 1698release_value (struct value *val)
c906108c 1699{
f23631e4 1700 struct value *v;
c906108c
SS
1701
1702 if (all_values == val)
1703 {
1704 all_values = val->next;
06a64a0b 1705 val->next = NULL;
e848a8a5 1706 val->released = 1;
c906108c
SS
1707 return;
1708 }
1709
1710 for (v = all_values; v; v = v->next)
1711 {
1712 if (v->next == val)
1713 {
1714 v->next = val->next;
06a64a0b 1715 val->next = NULL;
e848a8a5 1716 val->released = 1;
c906108c
SS
1717 break;
1718 }
1719 }
1720}
1721
e848a8a5
TT
1722/* If the value is not already released, release it.
1723 If the value is already released, increment its reference count.
1724 That is, this function ensures that the value is released from the
1725 value chain and that the caller owns a reference to it. */
1726
1727void
1728release_value_or_incref (struct value *val)
1729{
1730 if (val->released)
1731 value_incref (val);
1732 else
1733 release_value (val);
1734}
1735
c906108c 1736/* Release all values up to mark */
f23631e4 1737struct value *
4bf7b526 1738value_release_to_mark (const struct value *mark)
c906108c 1739{
f23631e4
AC
1740 struct value *val;
1741 struct value *next;
c906108c 1742
df407dfe 1743 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1744 {
1745 if (next->next == mark)
1746 {
1747 all_values = next->next;
1748 next->next = NULL;
1749 return val;
1750 }
1751 next->released = 1;
1752 }
c906108c
SS
1753 all_values = 0;
1754 return val;
1755}
1756
1757/* Return a copy of the value ARG.
1758 It contains the same contents, for same memory address,
1759 but it's a different block of storage. */
1760
f23631e4
AC
1761struct value *
1762value_copy (struct value *arg)
c906108c 1763{
4754a64e 1764 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1765 struct value *val;
1766
1767 if (value_lazy (arg))
1768 val = allocate_value_lazy (encl_type);
1769 else
1770 val = allocate_value (encl_type);
df407dfe 1771 val->type = arg->type;
c906108c 1772 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1773 val->location = arg->location;
df407dfe
AC
1774 val->offset = arg->offset;
1775 val->bitpos = arg->bitpos;
1776 val->bitsize = arg->bitsize;
d69fe07e 1777 val->lazy = arg->lazy;
13c3b5f5 1778 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1779 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1780 val->modifiable = arg->modifiable;
d69fe07e 1781 if (!value_lazy (val))
c906108c 1782 {
990a07ab 1783 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1784 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1785
1786 }
4e07d55f 1787 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1788 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1789 set_value_parent (val, arg->parent);
5f5233d4
PA
1790 if (VALUE_LVAL (val) == lval_computed)
1791 {
c8f2448a 1792 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1793
1794 if (funcs->copy_closure)
1795 val->location.computed.closure = funcs->copy_closure (val);
1796 }
c906108c
SS
1797 return val;
1798}
74bcbdf3 1799
4c082a81
SC
1800/* Return a "const" and/or "volatile" qualified version of the value V.
1801 If CNST is true, then the returned value will be qualified with
1802 "const".
1803 if VOLTL is true, then the returned value will be qualified with
1804 "volatile". */
1805
1806struct value *
1807make_cv_value (int cnst, int voltl, struct value *v)
1808{
1809 struct type *val_type = value_type (v);
1810 struct type *enclosing_type = value_enclosing_type (v);
1811 struct value *cv_val = value_copy (v);
1812
1813 deprecated_set_value_type (cv_val,
1814 make_cv_type (cnst, voltl, val_type, NULL));
1815 set_value_enclosing_type (cv_val,
1816 make_cv_type (cnst, voltl, enclosing_type, NULL));
1817
1818 return cv_val;
1819}
1820
c37f7098
KW
1821/* Return a version of ARG that is non-lvalue. */
1822
1823struct value *
1824value_non_lval (struct value *arg)
1825{
1826 if (VALUE_LVAL (arg) != not_lval)
1827 {
1828 struct type *enc_type = value_enclosing_type (arg);
1829 struct value *val = allocate_value (enc_type);
1830
1831 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1832 TYPE_LENGTH (enc_type));
1833 val->type = arg->type;
1834 set_value_embedded_offset (val, value_embedded_offset (arg));
1835 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1836 return val;
1837 }
1838 return arg;
1839}
1840
6c659fc2
SC
1841/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1842
1843void
1844value_force_lval (struct value *v, CORE_ADDR addr)
1845{
1846 gdb_assert (VALUE_LVAL (v) == not_lval);
1847
1848 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1849 v->lval = lval_memory;
1850 v->location.address = addr;
1851}
1852
74bcbdf3 1853void
0e03807e
TT
1854set_value_component_location (struct value *component,
1855 const struct value *whole)
74bcbdf3 1856{
9920b434
BH
1857 struct type *type;
1858
e81e7f5e
SC
1859 gdb_assert (whole->lval != lval_xcallable);
1860
0e03807e 1861 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1862 VALUE_LVAL (component) = lval_internalvar_component;
1863 else
0e03807e 1864 VALUE_LVAL (component) = whole->lval;
5f5233d4 1865
74bcbdf3 1866 component->location = whole->location;
0e03807e 1867 if (whole->lval == lval_computed)
5f5233d4 1868 {
c8f2448a 1869 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1870
1871 if (funcs->copy_closure)
1872 component->location.computed.closure = funcs->copy_closure (whole);
1873 }
9920b434
BH
1874
1875 /* If type has a dynamic resolved location property
1876 update it's value address. */
1877 type = value_type (whole);
1878 if (NULL != TYPE_DATA_LOCATION (type)
1879 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1880 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1881}
1882
c906108c
SS
1883/* Access to the value history. */
1884
1885/* Record a new value in the value history.
eddf0bae 1886 Returns the absolute history index of the entry. */
c906108c
SS
1887
1888int
f23631e4 1889record_latest_value (struct value *val)
c906108c
SS
1890{
1891 int i;
1892
1893 /* We don't want this value to have anything to do with the inferior anymore.
1894 In particular, "set $1 = 50" should not affect the variable from which
1895 the value was taken, and fast watchpoints should be able to assume that
1896 a value on the value history never changes. */
d69fe07e 1897 if (value_lazy (val))
c906108c
SS
1898 value_fetch_lazy (val);
1899 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1900 from. This is a bit dubious, because then *&$1 does not just return $1
1901 but the current contents of that location. c'est la vie... */
1902 val->modifiable = 0;
350e1a76
DE
1903
1904 /* The value may have already been released, in which case we're adding a
1905 new reference for its entry in the history. That is why we call
1906 release_value_or_incref here instead of release_value. */
1907 release_value_or_incref (val);
c906108c
SS
1908
1909 /* Here we treat value_history_count as origin-zero
1910 and applying to the value being stored now. */
1911
1912 i = value_history_count % VALUE_HISTORY_CHUNK;
1913 if (i == 0)
1914 {
8d749320 1915 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
a109c7c1 1916
fe978cb0
PA
1917 newobj->next = value_history_chain;
1918 value_history_chain = newobj;
c906108c
SS
1919 }
1920
1921 value_history_chain->values[i] = val;
1922
1923 /* Now we regard value_history_count as origin-one
1924 and applying to the value just stored. */
1925
1926 return ++value_history_count;
1927}
1928
1929/* Return a copy of the value in the history with sequence number NUM. */
1930
f23631e4 1931struct value *
fba45db2 1932access_value_history (int num)
c906108c 1933{
f23631e4 1934 struct value_history_chunk *chunk;
52f0bd74
AC
1935 int i;
1936 int absnum = num;
c906108c
SS
1937
1938 if (absnum <= 0)
1939 absnum += value_history_count;
1940
1941 if (absnum <= 0)
1942 {
1943 if (num == 0)
8a3fe4f8 1944 error (_("The history is empty."));
c906108c 1945 else if (num == 1)
8a3fe4f8 1946 error (_("There is only one value in the history."));
c906108c 1947 else
8a3fe4f8 1948 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1949 }
1950 if (absnum > value_history_count)
8a3fe4f8 1951 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1952
1953 absnum--;
1954
1955 /* Now absnum is always absolute and origin zero. */
1956
1957 chunk = value_history_chain;
3e43a32a
MS
1958 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1959 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1960 i > 0; i--)
1961 chunk = chunk->next;
1962
1963 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1964}
1965
c906108c 1966static void
fba45db2 1967show_values (char *num_exp, int from_tty)
c906108c 1968{
52f0bd74 1969 int i;
f23631e4 1970 struct value *val;
c906108c
SS
1971 static int num = 1;
1972
1973 if (num_exp)
1974 {
f132ba9d
TJB
1975 /* "show values +" should print from the stored position.
1976 "show values <exp>" should print around value number <exp>. */
c906108c 1977 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1978 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1979 }
1980 else
1981 {
f132ba9d 1982 /* "show values" means print the last 10 values. */
c906108c
SS
1983 num = value_history_count - 9;
1984 }
1985
1986 if (num <= 0)
1987 num = 1;
1988
1989 for (i = num; i < num + 10 && i <= value_history_count; i++)
1990 {
79a45b7d 1991 struct value_print_options opts;
a109c7c1 1992
c906108c 1993 val = access_value_history (i);
a3f17187 1994 printf_filtered (("$%d = "), i);
79a45b7d
TT
1995 get_user_print_options (&opts);
1996 value_print (val, gdb_stdout, &opts);
a3f17187 1997 printf_filtered (("\n"));
c906108c
SS
1998 }
1999
f132ba9d 2000 /* The next "show values +" should start after what we just printed. */
c906108c
SS
2001 num += 10;
2002
2003 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
2004 "show values +". If num_exp is null, this is unnecessary, since
2005 "show values +" is not useful after "show values". */
c906108c
SS
2006 if (from_tty && num_exp)
2007 {
2008 num_exp[0] = '+';
2009 num_exp[1] = '\0';
2010 }
2011}
2012\f
52059ffd
TT
2013enum internalvar_kind
2014{
2015 /* The internal variable is empty. */
2016 INTERNALVAR_VOID,
2017
2018 /* The value of the internal variable is provided directly as
2019 a GDB value object. */
2020 INTERNALVAR_VALUE,
2021
2022 /* A fresh value is computed via a call-back routine on every
2023 access to the internal variable. */
2024 INTERNALVAR_MAKE_VALUE,
2025
2026 /* The internal variable holds a GDB internal convenience function. */
2027 INTERNALVAR_FUNCTION,
2028
2029 /* The variable holds an integer value. */
2030 INTERNALVAR_INTEGER,
2031
2032 /* The variable holds a GDB-provided string. */
2033 INTERNALVAR_STRING,
2034};
2035
2036union internalvar_data
2037{
2038 /* A value object used with INTERNALVAR_VALUE. */
2039 struct value *value;
2040
2041 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2042 struct
2043 {
2044 /* The functions to call. */
2045 const struct internalvar_funcs *functions;
2046
2047 /* The function's user-data. */
2048 void *data;
2049 } make_value;
2050
2051 /* The internal function used with INTERNALVAR_FUNCTION. */
2052 struct
2053 {
2054 struct internal_function *function;
2055 /* True if this is the canonical name for the function. */
2056 int canonical;
2057 } fn;
2058
2059 /* An integer value used with INTERNALVAR_INTEGER. */
2060 struct
2061 {
2062 /* If type is non-NULL, it will be used as the type to generate
2063 a value for this internal variable. If type is NULL, a default
2064 integer type for the architecture is used. */
2065 struct type *type;
2066 LONGEST val;
2067 } integer;
2068
2069 /* A string value used with INTERNALVAR_STRING. */
2070 char *string;
2071};
2072
c906108c
SS
2073/* Internal variables. These are variables within the debugger
2074 that hold values assigned by debugger commands.
2075 The user refers to them with a '$' prefix
2076 that does not appear in the variable names stored internally. */
2077
4fa62494
UW
2078struct internalvar
2079{
2080 struct internalvar *next;
2081 char *name;
4fa62494 2082
78267919
UW
2083 /* We support various different kinds of content of an internal variable.
2084 enum internalvar_kind specifies the kind, and union internalvar_data
2085 provides the data associated with this particular kind. */
2086
52059ffd 2087 enum internalvar_kind kind;
4fa62494 2088
52059ffd 2089 union internalvar_data u;
4fa62494
UW
2090};
2091
c906108c
SS
2092static struct internalvar *internalvars;
2093
3e43a32a
MS
2094/* If the variable does not already exist create it and give it the
2095 value given. If no value is given then the default is zero. */
53e5f3cf
AS
2096static void
2097init_if_undefined_command (char* args, int from_tty)
2098{
2099 struct internalvar* intvar;
2100
2101 /* Parse the expression - this is taken from set_command(). */
4d01a485 2102 expression_up expr = parse_expression (args);
53e5f3cf
AS
2103
2104 /* Validate the expression.
2105 Was the expression an assignment?
2106 Or even an expression at all? */
2107 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2108 error (_("Init-if-undefined requires an assignment expression."));
2109
2110 /* Extract the variable from the parsed expression.
2111 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2112 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2113 error (_("The first parameter to init-if-undefined "
2114 "should be a GDB variable."));
53e5f3cf
AS
2115 intvar = expr->elts[2].internalvar;
2116
2117 /* Only evaluate the expression if the lvalue is void.
2118 This may still fail if the expresssion is invalid. */
78267919 2119 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 2120 evaluate_expression (expr.get ());
53e5f3cf
AS
2121}
2122
2123
c906108c
SS
2124/* Look up an internal variable with name NAME. NAME should not
2125 normally include a dollar sign.
2126
2127 If the specified internal variable does not exist,
c4a3d09a 2128 the return value is NULL. */
c906108c
SS
2129
2130struct internalvar *
bc3b79fd 2131lookup_only_internalvar (const char *name)
c906108c 2132{
52f0bd74 2133 struct internalvar *var;
c906108c
SS
2134
2135 for (var = internalvars; var; var = var->next)
5cb316ef 2136 if (strcmp (var->name, name) == 0)
c906108c
SS
2137 return var;
2138
c4a3d09a
MF
2139 return NULL;
2140}
2141
eb3ff9a5
PA
2142/* Complete NAME by comparing it to the names of internal
2143 variables. */
d55637df 2144
eb3ff9a5
PA
2145void
2146complete_internalvar (completion_tracker &tracker, const char *name)
d55637df 2147{
d55637df
TT
2148 struct internalvar *var;
2149 int len;
2150
2151 len = strlen (name);
2152
2153 for (var = internalvars; var; var = var->next)
2154 if (strncmp (var->name, name, len) == 0)
2155 {
eb3ff9a5 2156 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
d55637df 2157
eb3ff9a5 2158 tracker.add_completion (std::move (copy));
d55637df 2159 }
d55637df 2160}
c4a3d09a
MF
2161
2162/* Create an internal variable with name NAME and with a void value.
2163 NAME should not normally include a dollar sign. */
2164
2165struct internalvar *
bc3b79fd 2166create_internalvar (const char *name)
c4a3d09a 2167{
8d749320 2168 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2169
1754f103 2170 var->name = concat (name, (char *)NULL);
78267919 2171 var->kind = INTERNALVAR_VOID;
c906108c
SS
2172 var->next = internalvars;
2173 internalvars = var;
2174 return var;
2175}
2176
4aa995e1
PA
2177/* Create an internal variable with name NAME and register FUN as the
2178 function that value_of_internalvar uses to create a value whenever
2179 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2180 dollar sign. DATA is passed uninterpreted to FUN when it is
2181 called. CLEANUP, if not NULL, is called when the internal variable
2182 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2183
2184struct internalvar *
22d2b532
SDJ
2185create_internalvar_type_lazy (const char *name,
2186 const struct internalvar_funcs *funcs,
2187 void *data)
4aa995e1 2188{
4fa62494 2189 struct internalvar *var = create_internalvar (name);
a109c7c1 2190
78267919 2191 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2192 var->u.make_value.functions = funcs;
2193 var->u.make_value.data = data;
4aa995e1
PA
2194 return var;
2195}
c4a3d09a 2196
22d2b532
SDJ
2197/* See documentation in value.h. */
2198
2199int
2200compile_internalvar_to_ax (struct internalvar *var,
2201 struct agent_expr *expr,
2202 struct axs_value *value)
2203{
2204 if (var->kind != INTERNALVAR_MAKE_VALUE
2205 || var->u.make_value.functions->compile_to_ax == NULL)
2206 return 0;
2207
2208 var->u.make_value.functions->compile_to_ax (var, expr, value,
2209 var->u.make_value.data);
2210 return 1;
2211}
2212
c4a3d09a
MF
2213/* Look up an internal variable with name NAME. NAME should not
2214 normally include a dollar sign.
2215
2216 If the specified internal variable does not exist,
2217 one is created, with a void value. */
2218
2219struct internalvar *
bc3b79fd 2220lookup_internalvar (const char *name)
c4a3d09a
MF
2221{
2222 struct internalvar *var;
2223
2224 var = lookup_only_internalvar (name);
2225 if (var)
2226 return var;
2227
2228 return create_internalvar (name);
2229}
2230
78267919
UW
2231/* Return current value of internal variable VAR. For variables that
2232 are not inherently typed, use a value type appropriate for GDBARCH. */
2233
f23631e4 2234struct value *
78267919 2235value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2236{
f23631e4 2237 struct value *val;
0914bcdb
SS
2238 struct trace_state_variable *tsv;
2239
2240 /* If there is a trace state variable of the same name, assume that
2241 is what we really want to see. */
2242 tsv = find_trace_state_variable (var->name);
2243 if (tsv)
2244 {
2245 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2246 &(tsv->value));
2247 if (tsv->value_known)
2248 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2249 tsv->value);
2250 else
2251 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2252 return val;
2253 }
c906108c 2254
78267919 2255 switch (var->kind)
5f5233d4 2256 {
78267919
UW
2257 case INTERNALVAR_VOID:
2258 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2259 break;
4fa62494 2260
78267919
UW
2261 case INTERNALVAR_FUNCTION:
2262 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2263 break;
4fa62494 2264
cab0c772
UW
2265 case INTERNALVAR_INTEGER:
2266 if (!var->u.integer.type)
78267919 2267 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2268 var->u.integer.val);
78267919 2269 else
cab0c772
UW
2270 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2271 break;
2272
78267919
UW
2273 case INTERNALVAR_STRING:
2274 val = value_cstring (var->u.string, strlen (var->u.string),
2275 builtin_type (gdbarch)->builtin_char);
2276 break;
4fa62494 2277
78267919
UW
2278 case INTERNALVAR_VALUE:
2279 val = value_copy (var->u.value);
4aa995e1
PA
2280 if (value_lazy (val))
2281 value_fetch_lazy (val);
78267919 2282 break;
4aa995e1 2283
78267919 2284 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2285 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2286 var->u.make_value.data);
78267919
UW
2287 break;
2288
2289 default:
9b20d036 2290 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2291 }
2292
2293 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2294 on this value go back to affect the original internal variable.
2295
2296 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2297 no underlying modifyable state in the internal variable.
2298
2299 Likewise, if the variable's value is a computed lvalue, we want
2300 references to it to produce another computed lvalue, where
2301 references and assignments actually operate through the
2302 computed value's functions.
2303
2304 This means that internal variables with computed values
2305 behave a little differently from other internal variables:
2306 assignments to them don't just replace the previous value
2307 altogether. At the moment, this seems like the behavior we
2308 want. */
2309
2310 if (var->kind != INTERNALVAR_MAKE_VALUE
2311 && val->lval != lval_computed)
2312 {
2313 VALUE_LVAL (val) = lval_internalvar;
2314 VALUE_INTERNALVAR (val) = var;
5f5233d4 2315 }
d3c139e9 2316
4fa62494
UW
2317 return val;
2318}
d3c139e9 2319
4fa62494
UW
2320int
2321get_internalvar_integer (struct internalvar *var, LONGEST *result)
2322{
3158c6ed 2323 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2324 {
cab0c772
UW
2325 *result = var->u.integer.val;
2326 return 1;
3158c6ed 2327 }
d3c139e9 2328
3158c6ed
PA
2329 if (var->kind == INTERNALVAR_VALUE)
2330 {
2331 struct type *type = check_typedef (value_type (var->u.value));
2332
2333 if (TYPE_CODE (type) == TYPE_CODE_INT)
2334 {
2335 *result = value_as_long (var->u.value);
2336 return 1;
2337 }
4fa62494 2338 }
3158c6ed
PA
2339
2340 return 0;
4fa62494 2341}
d3c139e9 2342
4fa62494
UW
2343static int
2344get_internalvar_function (struct internalvar *var,
2345 struct internal_function **result)
2346{
78267919 2347 switch (var->kind)
d3c139e9 2348 {
78267919
UW
2349 case INTERNALVAR_FUNCTION:
2350 *result = var->u.fn.function;
4fa62494 2351 return 1;
d3c139e9 2352
4fa62494
UW
2353 default:
2354 return 0;
2355 }
c906108c
SS
2356}
2357
2358void
6b850546
DT
2359set_internalvar_component (struct internalvar *var,
2360 LONGEST offset, LONGEST bitpos,
2361 LONGEST bitsize, struct value *newval)
c906108c 2362{
4fa62494 2363 gdb_byte *addr;
3ae385af
SM
2364 struct gdbarch *arch;
2365 int unit_size;
c906108c 2366
78267919 2367 switch (var->kind)
4fa62494 2368 {
78267919
UW
2369 case INTERNALVAR_VALUE:
2370 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2371 arch = get_value_arch (var->u.value);
2372 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2373
2374 if (bitsize)
50810684 2375 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2376 value_as_long (newval), bitpos, bitsize);
2377 else
3ae385af 2378 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2379 TYPE_LENGTH (value_type (newval)));
2380 break;
78267919
UW
2381
2382 default:
2383 /* We can never get a component of any other kind. */
9b20d036 2384 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2385 }
c906108c
SS
2386}
2387
2388void
f23631e4 2389set_internalvar (struct internalvar *var, struct value *val)
c906108c 2390{
78267919 2391 enum internalvar_kind new_kind;
4fa62494 2392 union internalvar_data new_data = { 0 };
c906108c 2393
78267919 2394 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2395 error (_("Cannot overwrite convenience function %s"), var->name);
2396
4fa62494 2397 /* Prepare new contents. */
78267919 2398 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2399 {
2400 case TYPE_CODE_VOID:
78267919 2401 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2402 break;
2403
2404 case TYPE_CODE_INTERNAL_FUNCTION:
2405 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2406 new_kind = INTERNALVAR_FUNCTION;
2407 get_internalvar_function (VALUE_INTERNALVAR (val),
2408 &new_data.fn.function);
2409 /* Copies created here are never canonical. */
4fa62494
UW
2410 break;
2411
4fa62494 2412 default:
78267919
UW
2413 new_kind = INTERNALVAR_VALUE;
2414 new_data.value = value_copy (val);
2415 new_data.value->modifiable = 1;
4fa62494
UW
2416
2417 /* Force the value to be fetched from the target now, to avoid problems
2418 later when this internalvar is referenced and the target is gone or
2419 has changed. */
78267919
UW
2420 if (value_lazy (new_data.value))
2421 value_fetch_lazy (new_data.value);
4fa62494
UW
2422
2423 /* Release the value from the value chain to prevent it from being
2424 deleted by free_all_values. From here on this function should not
2425 call error () until new_data is installed into the var->u to avoid
2426 leaking memory. */
78267919 2427 release_value (new_data.value);
9920b434
BH
2428
2429 /* Internal variables which are created from values with a dynamic
2430 location don't need the location property of the origin anymore.
2431 The resolved dynamic location is used prior then any other address
2432 when accessing the value.
2433 If we keep it, we would still refer to the origin value.
2434 Remove the location property in case it exist. */
2435 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2436
4fa62494
UW
2437 break;
2438 }
2439
2440 /* Clean up old contents. */
2441 clear_internalvar (var);
2442
2443 /* Switch over. */
78267919 2444 var->kind = new_kind;
4fa62494 2445 var->u = new_data;
c906108c
SS
2446 /* End code which must not call error(). */
2447}
2448
4fa62494
UW
2449void
2450set_internalvar_integer (struct internalvar *var, LONGEST l)
2451{
2452 /* Clean up old contents. */
2453 clear_internalvar (var);
2454
cab0c772
UW
2455 var->kind = INTERNALVAR_INTEGER;
2456 var->u.integer.type = NULL;
2457 var->u.integer.val = l;
78267919
UW
2458}
2459
2460void
2461set_internalvar_string (struct internalvar *var, const char *string)
2462{
2463 /* Clean up old contents. */
2464 clear_internalvar (var);
2465
2466 var->kind = INTERNALVAR_STRING;
2467 var->u.string = xstrdup (string);
4fa62494
UW
2468}
2469
2470static void
2471set_internalvar_function (struct internalvar *var, struct internal_function *f)
2472{
2473 /* Clean up old contents. */
2474 clear_internalvar (var);
2475
78267919
UW
2476 var->kind = INTERNALVAR_FUNCTION;
2477 var->u.fn.function = f;
2478 var->u.fn.canonical = 1;
2479 /* Variables installed here are always the canonical version. */
4fa62494
UW
2480}
2481
2482void
2483clear_internalvar (struct internalvar *var)
2484{
2485 /* Clean up old contents. */
78267919 2486 switch (var->kind)
4fa62494 2487 {
78267919
UW
2488 case INTERNALVAR_VALUE:
2489 value_free (var->u.value);
2490 break;
2491
2492 case INTERNALVAR_STRING:
2493 xfree (var->u.string);
4fa62494
UW
2494 break;
2495
22d2b532
SDJ
2496 case INTERNALVAR_MAKE_VALUE:
2497 if (var->u.make_value.functions->destroy != NULL)
2498 var->u.make_value.functions->destroy (var->u.make_value.data);
2499 break;
2500
4fa62494 2501 default:
4fa62494
UW
2502 break;
2503 }
2504
78267919
UW
2505 /* Reset to void kind. */
2506 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2507}
2508
c906108c 2509char *
4bf7b526 2510internalvar_name (const struct internalvar *var)
c906108c
SS
2511{
2512 return var->name;
2513}
2514
4fa62494
UW
2515static struct internal_function *
2516create_internal_function (const char *name,
2517 internal_function_fn handler, void *cookie)
bc3b79fd 2518{
bc3b79fd 2519 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2520
bc3b79fd
TJB
2521 ifn->name = xstrdup (name);
2522 ifn->handler = handler;
2523 ifn->cookie = cookie;
4fa62494 2524 return ifn;
bc3b79fd
TJB
2525}
2526
2527char *
2528value_internal_function_name (struct value *val)
2529{
4fa62494
UW
2530 struct internal_function *ifn;
2531 int result;
2532
2533 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2534 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2535 gdb_assert (result);
2536
bc3b79fd
TJB
2537 return ifn->name;
2538}
2539
2540struct value *
d452c4bc
UW
2541call_internal_function (struct gdbarch *gdbarch,
2542 const struct language_defn *language,
2543 struct value *func, int argc, struct value **argv)
bc3b79fd 2544{
4fa62494
UW
2545 struct internal_function *ifn;
2546 int result;
2547
2548 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2549 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2550 gdb_assert (result);
2551
d452c4bc 2552 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2553}
2554
2555/* The 'function' command. This does nothing -- it is just a
2556 placeholder to let "help function NAME" work. This is also used as
2557 the implementation of the sub-command that is created when
2558 registering an internal function. */
2559static void
2560function_command (char *command, int from_tty)
2561{
2562 /* Do nothing. */
2563}
2564
2565/* Clean up if an internal function's command is destroyed. */
2566static void
2567function_destroyer (struct cmd_list_element *self, void *ignore)
2568{
6f937416 2569 xfree ((char *) self->name);
1947513d 2570 xfree ((char *) self->doc);
bc3b79fd
TJB
2571}
2572
2573/* Add a new internal function. NAME is the name of the function; DOC
2574 is a documentation string describing the function. HANDLER is
2575 called when the function is invoked. COOKIE is an arbitrary
2576 pointer which is passed to HANDLER and is intended for "user
2577 data". */
2578void
2579add_internal_function (const char *name, const char *doc,
2580 internal_function_fn handler, void *cookie)
2581{
2582 struct cmd_list_element *cmd;
4fa62494 2583 struct internal_function *ifn;
bc3b79fd 2584 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2585
2586 ifn = create_internal_function (name, handler, cookie);
2587 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2588
2589 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2590 &functionlist);
2591 cmd->destroyer = function_destroyer;
2592}
2593
ae5a43e0
DJ
2594/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2595 prevent cycles / duplicates. */
2596
4e7a5ef5 2597void
ae5a43e0
DJ
2598preserve_one_value (struct value *value, struct objfile *objfile,
2599 htab_t copied_types)
2600{
2601 if (TYPE_OBJFILE (value->type) == objfile)
2602 value->type = copy_type_recursive (objfile, value->type, copied_types);
2603
2604 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2605 value->enclosing_type = copy_type_recursive (objfile,
2606 value->enclosing_type,
2607 copied_types);
2608}
2609
78267919
UW
2610/* Likewise for internal variable VAR. */
2611
2612static void
2613preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2614 htab_t copied_types)
2615{
2616 switch (var->kind)
2617 {
cab0c772
UW
2618 case INTERNALVAR_INTEGER:
2619 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2620 var->u.integer.type
2621 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2622 break;
2623
78267919
UW
2624 case INTERNALVAR_VALUE:
2625 preserve_one_value (var->u.value, objfile, copied_types);
2626 break;
2627 }
2628}
2629
ae5a43e0
DJ
2630/* Update the internal variables and value history when OBJFILE is
2631 discarded; we must copy the types out of the objfile. New global types
2632 will be created for every convenience variable which currently points to
2633 this objfile's types, and the convenience variables will be adjusted to
2634 use the new global types. */
c906108c
SS
2635
2636void
ae5a43e0 2637preserve_values (struct objfile *objfile)
c906108c 2638{
ae5a43e0
DJ
2639 htab_t copied_types;
2640 struct value_history_chunk *cur;
52f0bd74 2641 struct internalvar *var;
ae5a43e0 2642 int i;
c906108c 2643
ae5a43e0
DJ
2644 /* Create the hash table. We allocate on the objfile's obstack, since
2645 it is soon to be deleted. */
2646 copied_types = create_copied_types_hash (objfile);
2647
2648 for (cur = value_history_chain; cur; cur = cur->next)
2649 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2650 if (cur->values[i])
2651 preserve_one_value (cur->values[i], objfile, copied_types);
2652
2653 for (var = internalvars; var; var = var->next)
78267919 2654 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2655
6dddc817 2656 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2657
ae5a43e0 2658 htab_delete (copied_types);
c906108c
SS
2659}
2660
2661static void
ad25e423 2662show_convenience (const char *ignore, int from_tty)
c906108c 2663{
e17c207e 2664 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2665 struct internalvar *var;
c906108c 2666 int varseen = 0;
79a45b7d 2667 struct value_print_options opts;
c906108c 2668
79a45b7d 2669 get_user_print_options (&opts);
c906108c
SS
2670 for (var = internalvars; var; var = var->next)
2671 {
c709acd1 2672
c906108c
SS
2673 if (!varseen)
2674 {
2675 varseen = 1;
2676 }
a3f17187 2677 printf_filtered (("$%s = "), var->name);
c709acd1 2678
492d29ea 2679 TRY
c709acd1
PA
2680 {
2681 struct value *val;
2682
2683 val = value_of_internalvar (gdbarch, var);
2684 value_print (val, gdb_stdout, &opts);
2685 }
492d29ea
PA
2686 CATCH (ex, RETURN_MASK_ERROR)
2687 {
2688 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2689 }
2690 END_CATCH
2691
a3f17187 2692 printf_filtered (("\n"));
c906108c
SS
2693 }
2694 if (!varseen)
f47f77df
DE
2695 {
2696 /* This text does not mention convenience functions on purpose.
2697 The user can't create them except via Python, and if Python support
2698 is installed this message will never be printed ($_streq will
2699 exist). */
2700 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2701 "Convenience variables have "
2702 "names starting with \"$\";\n"
2703 "use \"set\" as in \"set "
2704 "$foo = 5\" to define them.\n"));
2705 }
c906108c
SS
2706}
2707\f
e81e7f5e
SC
2708/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2709
2710struct value *
2711value_of_xmethod (struct xmethod_worker *worker)
2712{
2713 if (worker->value == NULL)
2714 {
2715 struct value *v;
2716
2717 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2718 v->lval = lval_xcallable;
2719 v->location.xm_worker = worker;
2720 v->modifiable = 0;
2721 worker->value = v;
2722 }
2723
2724 return worker->value;
2725}
2726
2ce1cdbf
DE
2727/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2728
2729struct type *
2730result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2731{
2732 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2733 && method->lval == lval_xcallable && argc > 0);
2734
2735 return get_xmethod_result_type (method->location.xm_worker,
2736 argv[0], argv + 1, argc - 1);
2737}
2738
e81e7f5e
SC
2739/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2740
2741struct value *
2742call_xmethod (struct value *method, int argc, struct value **argv)
2743{
2744 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2745 && method->lval == lval_xcallable && argc > 0);
2746
2747 return invoke_xmethod (method->location.xm_worker,
2748 argv[0], argv + 1, argc - 1);
2749}
2750\f
c906108c
SS
2751/* Extract a value as a C number (either long or double).
2752 Knows how to convert fixed values to double, or
2753 floating values to long.
2754 Does not deallocate the value. */
2755
2756LONGEST
f23631e4 2757value_as_long (struct value *val)
c906108c
SS
2758{
2759 /* This coerces arrays and functions, which is necessary (e.g.
2760 in disassemble_command). It also dereferences references, which
2761 I suspect is the most logical thing to do. */
994b9211 2762 val = coerce_array (val);
0fd88904 2763 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2764}
2765
2766DOUBLEST
f23631e4 2767value_as_double (struct value *val)
c906108c
SS
2768{
2769 DOUBLEST foo;
2770 int inv;
c5aa993b 2771
0fd88904 2772 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2773 if (inv)
8a3fe4f8 2774 error (_("Invalid floating value found in program."));
c906108c
SS
2775 return foo;
2776}
4ef30785 2777
581e13c1 2778/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2779 Note that val's type may not actually be a pointer; value_as_long
2780 handles all the cases. */
c906108c 2781CORE_ADDR
f23631e4 2782value_as_address (struct value *val)
c906108c 2783{
50810684
UW
2784 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2785
c906108c
SS
2786 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2787 whether we want this to be true eventually. */
2788#if 0
bf6ae464 2789 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2790 non-address (e.g. argument to "signal", "info break", etc.), or
2791 for pointers to char, in which the low bits *are* significant. */
50810684 2792 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2793#else
f312f057
JB
2794
2795 /* There are several targets (IA-64, PowerPC, and others) which
2796 don't represent pointers to functions as simply the address of
2797 the function's entry point. For example, on the IA-64, a
2798 function pointer points to a two-word descriptor, generated by
2799 the linker, which contains the function's entry point, and the
2800 value the IA-64 "global pointer" register should have --- to
2801 support position-independent code. The linker generates
2802 descriptors only for those functions whose addresses are taken.
2803
2804 On such targets, it's difficult for GDB to convert an arbitrary
2805 function address into a function pointer; it has to either find
2806 an existing descriptor for that function, or call malloc and
2807 build its own. On some targets, it is impossible for GDB to
2808 build a descriptor at all: the descriptor must contain a jump
2809 instruction; data memory cannot be executed; and code memory
2810 cannot be modified.
2811
2812 Upon entry to this function, if VAL is a value of type `function'
2813 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2814 value_address (val) is the address of the function. This is what
f312f057
JB
2815 you'll get if you evaluate an expression like `main'. The call
2816 to COERCE_ARRAY below actually does all the usual unary
2817 conversions, which includes converting values of type `function'
2818 to `pointer to function'. This is the challenging conversion
2819 discussed above. Then, `unpack_long' will convert that pointer
2820 back into an address.
2821
2822 So, suppose the user types `disassemble foo' on an architecture
2823 with a strange function pointer representation, on which GDB
2824 cannot build its own descriptors, and suppose further that `foo'
2825 has no linker-built descriptor. The address->pointer conversion
2826 will signal an error and prevent the command from running, even
2827 though the next step would have been to convert the pointer
2828 directly back into the same address.
2829
2830 The following shortcut avoids this whole mess. If VAL is a
2831 function, just return its address directly. */
df407dfe
AC
2832 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2833 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2834 return value_address (val);
f312f057 2835
994b9211 2836 val = coerce_array (val);
fc0c74b1
AC
2837
2838 /* Some architectures (e.g. Harvard), map instruction and data
2839 addresses onto a single large unified address space. For
2840 instance: An architecture may consider a large integer in the
2841 range 0x10000000 .. 0x1000ffff to already represent a data
2842 addresses (hence not need a pointer to address conversion) while
2843 a small integer would still need to be converted integer to
2844 pointer to address. Just assume such architectures handle all
2845 integer conversions in a single function. */
2846
2847 /* JimB writes:
2848
2849 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2850 must admonish GDB hackers to make sure its behavior matches the
2851 compiler's, whenever possible.
2852
2853 In general, I think GDB should evaluate expressions the same way
2854 the compiler does. When the user copies an expression out of
2855 their source code and hands it to a `print' command, they should
2856 get the same value the compiler would have computed. Any
2857 deviation from this rule can cause major confusion and annoyance,
2858 and needs to be justified carefully. In other words, GDB doesn't
2859 really have the freedom to do these conversions in clever and
2860 useful ways.
2861
2862 AndrewC pointed out that users aren't complaining about how GDB
2863 casts integers to pointers; they are complaining that they can't
2864 take an address from a disassembly listing and give it to `x/i'.
2865 This is certainly important.
2866
79dd2d24 2867 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2868 makes it possible for GDB to "get it right" in all circumstances
2869 --- the target has complete control over how things get done, so
2870 people can Do The Right Thing for their target without breaking
2871 anyone else. The standard doesn't specify how integers get
2872 converted to pointers; usually, the ABI doesn't either, but
2873 ABI-specific code is a more reasonable place to handle it. */
2874
df407dfe 2875 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
aa006118 2876 && !TYPE_IS_REFERENCE (value_type (val))
50810684
UW
2877 && gdbarch_integer_to_address_p (gdbarch))
2878 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2879 value_contents (val));
fc0c74b1 2880
0fd88904 2881 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2882#endif
2883}
2884\f
2885/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2886 as a long, or as a double, assuming the raw data is described
2887 by type TYPE. Knows how to convert different sizes of values
2888 and can convert between fixed and floating point. We don't assume
2889 any alignment for the raw data. Return value is in host byte order.
2890
2891 If you want functions and arrays to be coerced to pointers, and
2892 references to be dereferenced, call value_as_long() instead.
2893
2894 C++: It is assumed that the front-end has taken care of
2895 all matters concerning pointers to members. A pointer
2896 to member which reaches here is considered to be equivalent
2897 to an INT (or some size). After all, it is only an offset. */
2898
2899LONGEST
fc1a4b47 2900unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2901{
e17a4113 2902 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2903 enum type_code code = TYPE_CODE (type);
2904 int len = TYPE_LENGTH (type);
2905 int nosign = TYPE_UNSIGNED (type);
c906108c 2906
c906108c
SS
2907 switch (code)
2908 {
2909 case TYPE_CODE_TYPEDEF:
2910 return unpack_long (check_typedef (type), valaddr);
2911 case TYPE_CODE_ENUM:
4f2aea11 2912 case TYPE_CODE_FLAGS:
c906108c
SS
2913 case TYPE_CODE_BOOL:
2914 case TYPE_CODE_INT:
2915 case TYPE_CODE_CHAR:
2916 case TYPE_CODE_RANGE:
0d5de010 2917 case TYPE_CODE_MEMBERPTR:
c906108c 2918 if (nosign)
e17a4113 2919 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2920 else
e17a4113 2921 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2922
2923 case TYPE_CODE_FLT:
aebf07fc 2924 return (LONGEST) extract_typed_floating (valaddr, type);
c906108c 2925
4ef30785
TJB
2926 case TYPE_CODE_DECFLOAT:
2927 /* libdecnumber has a function to convert from decimal to integer, but
2928 it doesn't work when the decimal number has a fractional part. */
aebf07fc 2929 return (LONGEST) decimal_to_doublest (valaddr, len, byte_order);
4ef30785 2930
c906108c
SS
2931 case TYPE_CODE_PTR:
2932 case TYPE_CODE_REF:
aa006118 2933 case TYPE_CODE_RVALUE_REF:
c906108c 2934 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2935 whether we want this to be true eventually. */
4478b372 2936 return extract_typed_address (valaddr, type);
c906108c 2937
c906108c 2938 default:
8a3fe4f8 2939 error (_("Value can't be converted to integer."));
c906108c 2940 }
c5aa993b 2941 return 0; /* Placate lint. */
c906108c
SS
2942}
2943
2944/* Return a double value from the specified type and address.
2945 INVP points to an int which is set to 0 for valid value,
2946 1 for invalid value (bad float format). In either case,
2947 the returned double is OK to use. Argument is in target
2948 format, result is in host format. */
2949
2950DOUBLEST
fc1a4b47 2951unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2952{
e17a4113 2953 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2954 enum type_code code;
2955 int len;
2956 int nosign;
2957
581e13c1 2958 *invp = 0; /* Assume valid. */
f168693b 2959 type = check_typedef (type);
c906108c
SS
2960 code = TYPE_CODE (type);
2961 len = TYPE_LENGTH (type);
2962 nosign = TYPE_UNSIGNED (type);
2963 if (code == TYPE_CODE_FLT)
2964 {
75bc7ddf
AC
2965 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2966 floating-point value was valid (using the macro
2967 INVALID_FLOAT). That test/macro have been removed.
2968
2969 It turns out that only the VAX defined this macro and then
2970 only in a non-portable way. Fixing the portability problem
2971 wouldn't help since the VAX floating-point code is also badly
2972 bit-rotten. The target needs to add definitions for the
ea06eb3d 2973 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2974 exactly describe the target floating-point format. The
2975 problem here is that the corresponding floatformat_vax_f and
2976 floatformat_vax_d values these methods should be set to are
2977 also not defined either. Oops!
2978
2979 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2980 definitions and the new cases for floatformat_is_valid (). */
2981
2982 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2983 {
2984 *invp = 1;
2985 return 0.0;
2986 }
2987
96d2f608 2988 return extract_typed_floating (valaddr, type);
c906108c 2989 }
4ef30785 2990 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2991 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2992 else if (nosign)
2993 {
2994 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2995 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2996 }
2997 else
2998 {
2999 /* Signed -- we are OK with unpack_long. */
3000 return unpack_long (type, valaddr);
3001 }
3002}
3003
3004/* Unpack raw data (copied from debugee, target byte order) at VALADDR
3005 as a CORE_ADDR, assuming the raw data is described by type TYPE.
3006 We don't assume any alignment for the raw data. Return value is in
3007 host byte order.
3008
3009 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 3010 references to be dereferenced, call value_as_address() instead.
c906108c
SS
3011
3012 C++: It is assumed that the front-end has taken care of
3013 all matters concerning pointers to members. A pointer
3014 to member which reaches here is considered to be equivalent
3015 to an INT (or some size). After all, it is only an offset. */
3016
3017CORE_ADDR
fc1a4b47 3018unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
3019{
3020 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
3021 whether we want this to be true eventually. */
3022 return unpack_long (type, valaddr);
3023}
4478b372 3024
c906108c 3025\f
1596cb5d 3026/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 3027 TYPE. */
c906108c 3028
f23631e4 3029struct value *
fba45db2 3030value_static_field (struct type *type, int fieldno)
c906108c 3031{
948e66d9
DJ
3032 struct value *retval;
3033
1596cb5d 3034 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 3035 {
1596cb5d 3036 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
3037 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3038 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
3039 break;
3040 case FIELD_LOC_KIND_PHYSNAME:
c906108c 3041 {
ff355380 3042 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 3043 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 3044 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 3045
d12307c1 3046 if (sym.symbol == NULL)
c906108c 3047 {
a109c7c1 3048 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 3049 reported as non-debuggable symbols. */
3b7344d5
TT
3050 struct bound_minimal_symbol msym
3051 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 3052
3b7344d5 3053 if (!msym.minsym)
686d4def 3054 return allocate_optimized_out_value (type);
c906108c 3055 else
c5aa993b 3056 {
52e9fde8 3057 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 3058 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
3059 }
3060 }
3061 else
d12307c1 3062 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 3063 break;
c906108c 3064 }
1596cb5d 3065 default:
f3574227 3066 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
3067 }
3068
948e66d9 3069 return retval;
c906108c
SS
3070}
3071
4dfea560
DE
3072/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3073 You have to be careful here, since the size of the data area for the value
3074 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3075 than the old enclosing type, you have to allocate more space for the
3076 data. */
2b127877 3077
4dfea560
DE
3078void
3079set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 3080{
5fdf6324
AB
3081 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3082 {
3083 check_type_length_before_alloc (new_encl_type);
3084 val->contents
3085 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3086 }
3e3d7139
JG
3087
3088 val->enclosing_type = new_encl_type;
2b127877
DB
3089}
3090
c906108c
SS
3091/* Given a value ARG1 (offset by OFFSET bytes)
3092 of a struct or union type ARG_TYPE,
3093 extract and return the value of one of its (non-static) fields.
581e13c1 3094 FIELDNO says which field. */
c906108c 3095
f23631e4 3096struct value *
6b850546 3097value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 3098 int fieldno, struct type *arg_type)
c906108c 3099{
f23631e4 3100 struct value *v;
52f0bd74 3101 struct type *type;
3ae385af
SM
3102 struct gdbarch *arch = get_value_arch (arg1);
3103 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 3104
f168693b 3105 arg_type = check_typedef (arg_type);
c906108c 3106 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
3107
3108 /* Call check_typedef on our type to make sure that, if TYPE
3109 is a TYPE_CODE_TYPEDEF, its length is set to the length
3110 of the target type instead of zero. However, we do not
3111 replace the typedef type by the target type, because we want
3112 to keep the typedef in order to be able to print the type
3113 description correctly. */
3114 check_typedef (type);
c906108c 3115
691a26f5 3116 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 3117 {
22c05d8a
JK
3118 /* Handle packed fields.
3119
3120 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3121 set. If possible, arrange offset and bitpos so that we can
3122 do a single aligned read of the size of the containing type.
3123 Otherwise, adjust offset to the byte containing the first
3124 bit. Assume that the address, offset, and embedded offset
3125 are sufficiently aligned. */
22c05d8a 3126
6b850546
DT
3127 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3128 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 3129
9a0dc9e3
PA
3130 v = allocate_value_lazy (type);
3131 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3132 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3133 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3134 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3135 else
9a0dc9e3
PA
3136 v->bitpos = bitpos % 8;
3137 v->offset = (value_embedded_offset (arg1)
3138 + offset
3139 + (bitpos - v->bitpos) / 8);
3140 set_value_parent (v, arg1);
3141 if (!value_lazy (arg1))
3142 value_fetch_lazy (v);
c906108c
SS
3143 }
3144 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3145 {
3146 /* This field is actually a base subobject, so preserve the
39d37385
PA
3147 entire object's contents for later references to virtual
3148 bases, etc. */
6b850546 3149 LONGEST boffset;
a4e2ee12
DJ
3150
3151 /* Lazy register values with offsets are not supported. */
3152 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3153 value_fetch_lazy (arg1);
3154
9a0dc9e3
PA
3155 /* We special case virtual inheritance here because this
3156 requires access to the contents, which we would rather avoid
3157 for references to ordinary fields of unavailable values. */
3158 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3159 boffset = baseclass_offset (arg_type, fieldno,
3160 value_contents (arg1),
3161 value_embedded_offset (arg1),
3162 value_address (arg1),
3163 arg1);
c906108c 3164 else
9a0dc9e3 3165 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3166
9a0dc9e3
PA
3167 if (value_lazy (arg1))
3168 v = allocate_value_lazy (value_enclosing_type (arg1));
3169 else
3170 {
3171 v = allocate_value (value_enclosing_type (arg1));
3172 value_contents_copy_raw (v, 0, arg1, 0,
3173 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3174 }
9a0dc9e3
PA
3175 v->type = type;
3176 v->offset = value_offset (arg1);
3177 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 3178 }
9920b434
BH
3179 else if (NULL != TYPE_DATA_LOCATION (type))
3180 {
3181 /* Field is a dynamic data member. */
3182
3183 gdb_assert (0 == offset);
3184 /* We expect an already resolved data location. */
3185 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3186 /* For dynamic data types defer memory allocation
3187 until we actual access the value. */
3188 v = allocate_value_lazy (type);
3189 }
c906108c
SS
3190 else
3191 {
3192 /* Plain old data member */
3ae385af
SM
3193 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3194 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3195
3196 /* Lazy register values with offsets are not supported. */
3197 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3198 value_fetch_lazy (arg1);
3199
9a0dc9e3 3200 if (value_lazy (arg1))
3e3d7139 3201 v = allocate_value_lazy (type);
c906108c 3202 else
3e3d7139
JG
3203 {
3204 v = allocate_value (type);
39d37385
PA
3205 value_contents_copy_raw (v, value_embedded_offset (v),
3206 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3207 type_length_units (type));
3e3d7139 3208 }
df407dfe 3209 v->offset = (value_offset (arg1) + offset
13c3b5f5 3210 + value_embedded_offset (arg1));
c906108c 3211 }
74bcbdf3 3212 set_value_component_location (v, arg1);
c906108c
SS
3213 return v;
3214}
3215
3216/* Given a value ARG1 of a struct or union type,
3217 extract and return the value of one of its (non-static) fields.
581e13c1 3218 FIELDNO says which field. */
c906108c 3219
f23631e4 3220struct value *
aa1ee363 3221value_field (struct value *arg1, int fieldno)
c906108c 3222{
df407dfe 3223 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3224}
3225
3226/* Return a non-virtual function as a value.
3227 F is the list of member functions which contains the desired method.
0478d61c
FF
3228 J is an index into F which provides the desired method.
3229
3230 We only use the symbol for its address, so be happy with either a
581e13c1 3231 full symbol or a minimal symbol. */
c906108c 3232
f23631e4 3233struct value *
3e43a32a
MS
3234value_fn_field (struct value **arg1p, struct fn_field *f,
3235 int j, struct type *type,
6b850546 3236 LONGEST offset)
c906108c 3237{
f23631e4 3238 struct value *v;
52f0bd74 3239 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3240 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3241 struct symbol *sym;
7c7b6655 3242 struct bound_minimal_symbol msym;
c906108c 3243
d12307c1 3244 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3245 if (sym != NULL)
0478d61c 3246 {
7c7b6655 3247 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3248 }
3249 else
3250 {
3251 gdb_assert (sym == NULL);
7c7b6655
TT
3252 msym = lookup_bound_minimal_symbol (physname);
3253 if (msym.minsym == NULL)
5ae326fa 3254 return NULL;
0478d61c
FF
3255 }
3256
c906108c 3257 v = allocate_value (ftype);
1a088441 3258 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3259 if (sym)
3260 {
42ae5230 3261 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3262 }
3263 else
3264 {
bccdca4a
UW
3265 /* The minimal symbol might point to a function descriptor;
3266 resolve it to the actual code address instead. */
7c7b6655 3267 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3268 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3269
42ae5230
TT
3270 set_value_address (v,
3271 gdbarch_convert_from_func_ptr_addr
77e371c0 3272 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3273 }
c906108c
SS
3274
3275 if (arg1p)
c5aa993b 3276 {
df407dfe 3277 if (type != value_type (*arg1p))
c5aa993b
JM
3278 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3279 value_addr (*arg1p)));
3280
070ad9f0 3281 /* Move the `this' pointer according to the offset.
581e13c1 3282 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3283 }
3284
3285 return v;
3286}
3287
c906108c 3288\f
c906108c 3289
4875ffdb
PA
3290/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3291 VALADDR, and store the result in *RESULT.
3292 The bitfield starts at BITPOS bits and contains BITSIZE bits.
c906108c 3293
4875ffdb
PA
3294 Extracting bits depends on endianness of the machine. Compute the
3295 number of least significant bits to discard. For big endian machines,
3296 we compute the total number of bits in the anonymous object, subtract
3297 off the bit count from the MSB of the object to the MSB of the
3298 bitfield, then the size of the bitfield, which leaves the LSB discard
3299 count. For little endian machines, the discard count is simply the
3300 number of bits from the LSB of the anonymous object to the LSB of the
3301 bitfield.
3302
3303 If the field is signed, we also do sign extension. */
3304
3305static LONGEST
3306unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3307 LONGEST bitpos, LONGEST bitsize)
c906108c 3308{
4ea48cc1 3309 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3310 ULONGEST val;
3311 ULONGEST valmask;
c906108c 3312 int lsbcount;
6b850546
DT
3313 LONGEST bytes_read;
3314 LONGEST read_offset;
c906108c 3315
4a76eae5
DJ
3316 /* Read the minimum number of bytes required; there may not be
3317 enough bytes to read an entire ULONGEST. */
f168693b 3318 field_type = check_typedef (field_type);
4a76eae5
DJ
3319 if (bitsize)
3320 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3321 else
3322 bytes_read = TYPE_LENGTH (field_type);
3323
5467c6c8
PA
3324 read_offset = bitpos / 8;
3325
4875ffdb 3326 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3327 bytes_read, byte_order);
c906108c 3328
581e13c1 3329 /* Extract bits. See comment above. */
c906108c 3330
4ea48cc1 3331 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3332 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3333 else
3334 lsbcount = (bitpos % 8);
3335 val >>= lsbcount;
3336
3337 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3338 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3339
3340 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3341 {
3342 valmask = (((ULONGEST) 1) << bitsize) - 1;
3343 val &= valmask;
3344 if (!TYPE_UNSIGNED (field_type))
3345 {
3346 if (val & (valmask ^ (valmask >> 1)))
3347 {
3348 val |= ~valmask;
3349 }
3350 }
3351 }
5467c6c8 3352
4875ffdb 3353 return val;
5467c6c8
PA
3354}
3355
3356/* Unpack a field FIELDNO of the specified TYPE, from the object at
3357 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3358 ORIGINAL_VALUE, which must not be NULL. See
3359 unpack_value_bits_as_long for more details. */
3360
3361int
3362unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3363 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3364 const struct value *val, LONGEST *result)
3365{
4875ffdb
PA
3366 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3367 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3368 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3369 int bit_offset;
3370
5467c6c8
PA
3371 gdb_assert (val != NULL);
3372
4875ffdb
PA
3373 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3374 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3375 || !value_bits_available (val, bit_offset, bitsize))
3376 return 0;
3377
3378 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3379 bitpos, bitsize);
3380 return 1;
5467c6c8
PA
3381}
3382
3383/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3384 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3385
3386LONGEST
3387unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3388{
4875ffdb
PA
3389 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3390 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3391 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3392
4875ffdb
PA
3393 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3394}
3395
3396/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3397 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3398 the contents in DEST_VAL, zero or sign extending if the type of
3399 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3400 VAL. If the VAL's contents required to extract the bitfield from
3401 are unavailable/optimized out, DEST_VAL is correspondingly
3402 marked unavailable/optimized out. */
3403
bb9d5f81 3404void
4875ffdb 3405unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3406 LONGEST bitpos, LONGEST bitsize,
3407 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3408 const struct value *val)
3409{
3410 enum bfd_endian byte_order;
3411 int src_bit_offset;
3412 int dst_bit_offset;
4875ffdb
PA
3413 struct type *field_type = value_type (dest_val);
3414
4875ffdb 3415 byte_order = gdbarch_byte_order (get_type_arch (field_type));
e5ca03b4
PA
3416
3417 /* First, unpack and sign extend the bitfield as if it was wholly
3418 valid. Optimized out/unavailable bits are read as zero, but
3419 that's OK, as they'll end up marked below. If the VAL is
3420 wholly-invalid we may have skipped allocating its contents,
3421 though. See allocate_optimized_out_value. */
3422 if (valaddr != NULL)
3423 {
3424 LONGEST num;
3425
3426 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3427 bitpos, bitsize);
3428 store_signed_integer (value_contents_raw (dest_val),
3429 TYPE_LENGTH (field_type), byte_order, num);
3430 }
4875ffdb
PA
3431
3432 /* Now copy the optimized out / unavailability ranges to the right
3433 bits. */
3434 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3435 if (byte_order == BFD_ENDIAN_BIG)
3436 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3437 else
3438 dst_bit_offset = 0;
3439 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3440 val, src_bit_offset, bitsize);
5467c6c8
PA
3441}
3442
3443/* Return a new value with type TYPE, which is FIELDNO field of the
3444 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3445 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3446 from are unavailable/optimized out, the new value is
3447 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3448
3449struct value *
3450value_field_bitfield (struct type *type, int fieldno,
3451 const gdb_byte *valaddr,
6b850546 3452 LONGEST embedded_offset, const struct value *val)
5467c6c8 3453{
4875ffdb
PA
3454 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3455 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3456 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3457
4875ffdb
PA
3458 unpack_value_bitfield (res_val, bitpos, bitsize,
3459 valaddr, embedded_offset, val);
3460
3461 return res_val;
4ea48cc1
DJ
3462}
3463
c906108c
SS
3464/* Modify the value of a bitfield. ADDR points to a block of memory in
3465 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3466 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3467 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3468 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3469 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3470
3471void
50810684 3472modify_field (struct type *type, gdb_byte *addr,
6b850546 3473 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3474{
e17a4113 3475 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3476 ULONGEST oword;
3477 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3478 LONGEST bytesize;
19f220c3
JK
3479
3480 /* Normalize BITPOS. */
3481 addr += bitpos / 8;
3482 bitpos %= 8;
c906108c
SS
3483
3484 /* If a negative fieldval fits in the field in question, chop
3485 off the sign extension bits. */
f4e88c8e
PH
3486 if ((~fieldval & ~(mask >> 1)) == 0)
3487 fieldval &= mask;
c906108c
SS
3488
3489 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3490 if (0 != (fieldval & ~mask))
c906108c
SS
3491 {
3492 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3493 we don't have a sprintf_longest. */
6b850546 3494 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3495
3496 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3497 fieldval &= mask;
c906108c
SS
3498 }
3499
19f220c3
JK
3500 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3501 false valgrind reports. */
3502
3503 bytesize = (bitpos + bitsize + 7) / 8;
3504 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3505
3506 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3507 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3508 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3509
f4e88c8e 3510 oword &= ~(mask << bitpos);
c906108c
SS
3511 oword |= fieldval << bitpos;
3512
19f220c3 3513 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3514}
3515\f
14d06750 3516/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3517
14d06750
DJ
3518void
3519pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3520{
e17a4113 3521 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
6b850546 3522 LONGEST len;
14d06750
DJ
3523
3524 type = check_typedef (type);
c906108c
SS
3525 len = TYPE_LENGTH (type);
3526
14d06750 3527 switch (TYPE_CODE (type))
c906108c 3528 {
c906108c
SS
3529 case TYPE_CODE_INT:
3530 case TYPE_CODE_CHAR:
3531 case TYPE_CODE_ENUM:
4f2aea11 3532 case TYPE_CODE_FLAGS:
c906108c
SS
3533 case TYPE_CODE_BOOL:
3534 case TYPE_CODE_RANGE:
0d5de010 3535 case TYPE_CODE_MEMBERPTR:
e17a4113 3536 store_signed_integer (buf, len, byte_order, num);
c906108c 3537 break;
c5aa993b 3538
c906108c 3539 case TYPE_CODE_REF:
aa006118 3540 case TYPE_CODE_RVALUE_REF:
c906108c 3541 case TYPE_CODE_PTR:
14d06750 3542 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3543 break;
c5aa993b 3544
c906108c 3545 default:
14d06750
DJ
3546 error (_("Unexpected type (%d) encountered for integer constant."),
3547 TYPE_CODE (type));
c906108c 3548 }
14d06750
DJ
3549}
3550
3551
595939de
PM
3552/* Pack NUM into BUF using a target format of TYPE. */
3553
70221824 3554static void
595939de
PM
3555pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3556{
6b850546 3557 LONGEST len;
595939de
PM
3558 enum bfd_endian byte_order;
3559
3560 type = check_typedef (type);
3561 len = TYPE_LENGTH (type);
3562 byte_order = gdbarch_byte_order (get_type_arch (type));
3563
3564 switch (TYPE_CODE (type))
3565 {
3566 case TYPE_CODE_INT:
3567 case TYPE_CODE_CHAR:
3568 case TYPE_CODE_ENUM:
3569 case TYPE_CODE_FLAGS:
3570 case TYPE_CODE_BOOL:
3571 case TYPE_CODE_RANGE:
3572 case TYPE_CODE_MEMBERPTR:
3573 store_unsigned_integer (buf, len, byte_order, num);
3574 break;
3575
3576 case TYPE_CODE_REF:
aa006118 3577 case TYPE_CODE_RVALUE_REF:
595939de
PM
3578 case TYPE_CODE_PTR:
3579 store_typed_address (buf, type, (CORE_ADDR) num);
3580 break;
3581
3582 default:
3e43a32a
MS
3583 error (_("Unexpected type (%d) encountered "
3584 "for unsigned integer constant."),
595939de
PM
3585 TYPE_CODE (type));
3586 }
3587}
3588
3589
14d06750
DJ
3590/* Convert C numbers into newly allocated values. */
3591
3592struct value *
3593value_from_longest (struct type *type, LONGEST num)
3594{
3595 struct value *val = allocate_value (type);
3596
3597 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3598 return val;
3599}
3600
4478b372 3601
595939de
PM
3602/* Convert C unsigned numbers into newly allocated values. */
3603
3604struct value *
3605value_from_ulongest (struct type *type, ULONGEST num)
3606{
3607 struct value *val = allocate_value (type);
3608
3609 pack_unsigned_long (value_contents_raw (val), type, num);
3610
3611 return val;
3612}
3613
3614
4478b372 3615/* Create a value representing a pointer of type TYPE to the address
cb417230 3616 ADDR. */
80180f79 3617
f23631e4 3618struct value *
4478b372
JB
3619value_from_pointer (struct type *type, CORE_ADDR addr)
3620{
cb417230 3621 struct value *val = allocate_value (type);
a109c7c1 3622
80180f79 3623 store_typed_address (value_contents_raw (val),
cb417230 3624 check_typedef (type), addr);
4478b372
JB
3625 return val;
3626}
3627
3628
012370f6
TT
3629/* Create a value of type TYPE whose contents come from VALADDR, if it
3630 is non-null, and whose memory address (in the inferior) is
3631 ADDRESS. The type of the created value may differ from the passed
3632 type TYPE. Make sure to retrieve values new type after this call.
3633 Note that TYPE is not passed through resolve_dynamic_type; this is
3634 a special API intended for use only by Ada. */
3635
3636struct value *
3637value_from_contents_and_address_unresolved (struct type *type,
3638 const gdb_byte *valaddr,
3639 CORE_ADDR address)
3640{
3641 struct value *v;
3642
3643 if (valaddr == NULL)
3644 v = allocate_value_lazy (type);
3645 else
3646 v = value_from_contents (type, valaddr);
012370f6 3647 VALUE_LVAL (v) = lval_memory;
1a088441 3648 set_value_address (v, address);
012370f6
TT
3649 return v;
3650}
3651
8acb6b92
TT
3652/* Create a value of type TYPE whose contents come from VALADDR, if it
3653 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3654 ADDRESS. The type of the created value may differ from the passed
3655 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3656
3657struct value *
3658value_from_contents_and_address (struct type *type,
3659 const gdb_byte *valaddr,
3660 CORE_ADDR address)
3661{
c3345124 3662 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3663 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3664 struct value *v;
a109c7c1 3665
8acb6b92 3666 if (valaddr == NULL)
80180f79 3667 v = allocate_value_lazy (resolved_type);
8acb6b92 3668 else
80180f79 3669 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3670 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3671 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3672 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3673 VALUE_LVAL (v) = lval_memory;
1a088441 3674 set_value_address (v, address);
8acb6b92
TT
3675 return v;
3676}
3677
8a9b8146
TT
3678/* Create a value of type TYPE holding the contents CONTENTS.
3679 The new value is `not_lval'. */
3680
3681struct value *
3682value_from_contents (struct type *type, const gdb_byte *contents)
3683{
3684 struct value *result;
3685
3686 result = allocate_value (type);
3687 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3688 return result;
3689}
3690
f23631e4 3691struct value *
fba45db2 3692value_from_double (struct type *type, DOUBLEST num)
c906108c 3693{
f23631e4 3694 struct value *val = allocate_value (type);
c906108c 3695 struct type *base_type = check_typedef (type);
52f0bd74 3696 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3697
3698 if (code == TYPE_CODE_FLT)
3699 {
990a07ab 3700 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3701 }
3702 else
8a3fe4f8 3703 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3704
3705 return val;
3706}
994b9211 3707
27bc4d80 3708struct value *
4ef30785 3709value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3710{
3711 struct value *val = allocate_value (type);
27bc4d80 3712
4ef30785 3713 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3714 return val;
3715}
3716
3bd0f5ef
MS
3717/* Extract a value from the history file. Input will be of the form
3718 $digits or $$digits. See block comment above 'write_dollar_variable'
3719 for details. */
3720
3721struct value *
e799154c 3722value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3723{
3724 int index, len;
3725
3726 if (h[0] == '$')
3727 len = 1;
3728 else
3729 return NULL;
3730
3731 if (h[1] == '$')
3732 len = 2;
3733
3734 /* Find length of numeral string. */
3735 for (; isdigit (h[len]); len++)
3736 ;
3737
3738 /* Make sure numeral string is not part of an identifier. */
3739 if (h[len] == '_' || isalpha (h[len]))
3740 return NULL;
3741
3742 /* Now collect the index value. */
3743 if (h[1] == '$')
3744 {
3745 if (len == 2)
3746 {
3747 /* For some bizarre reason, "$$" is equivalent to "$$1",
3748 rather than to "$$0" as it ought to be! */
3749 index = -1;
3750 *endp += len;
3751 }
3752 else
e799154c
TT
3753 {
3754 char *local_end;
3755
3756 index = -strtol (&h[2], &local_end, 10);
3757 *endp = local_end;
3758 }
3bd0f5ef
MS
3759 }
3760 else
3761 {
3762 if (len == 1)
3763 {
3764 /* "$" is equivalent to "$0". */
3765 index = 0;
3766 *endp += len;
3767 }
3768 else
e799154c
TT
3769 {
3770 char *local_end;
3771
3772 index = strtol (&h[1], &local_end, 10);
3773 *endp = local_end;
3774 }
3bd0f5ef
MS
3775 }
3776
3777 return access_value_history (index);
3778}
3779
3fff9862
YQ
3780/* Get the component value (offset by OFFSET bytes) of a struct or
3781 union WHOLE. Component's type is TYPE. */
3782
3783struct value *
3784value_from_component (struct value *whole, struct type *type, LONGEST offset)
3785{
3786 struct value *v;
3787
3788 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3789 v = allocate_value_lazy (type);
3790 else
3791 {
3792 v = allocate_value (type);
3793 value_contents_copy (v, value_embedded_offset (v),
3794 whole, value_embedded_offset (whole) + offset,
3795 type_length_units (type));
3796 }
3797 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3798 set_value_component_location (v, whole);
3fff9862
YQ
3799
3800 return v;
3801}
3802
a471c594
JK
3803struct value *
3804coerce_ref_if_computed (const struct value *arg)
3805{
3806 const struct lval_funcs *funcs;
3807
aa006118 3808 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
a471c594
JK
3809 return NULL;
3810
3811 if (value_lval_const (arg) != lval_computed)
3812 return NULL;
3813
3814 funcs = value_computed_funcs (arg);
3815 if (funcs->coerce_ref == NULL)
3816 return NULL;
3817
3818 return funcs->coerce_ref (arg);
3819}
3820
dfcee124
AG
3821/* Look at value.h for description. */
3822
3823struct value *
3824readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3825 const struct type *original_type,
3826 const struct value *original_value)
dfcee124
AG
3827{
3828 /* Re-adjust type. */
3829 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3830
3831 /* Add embedding info. */
3832 set_value_enclosing_type (value, enc_type);
3833 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3834
3835 /* We may be pointing to an object of some derived type. */
3836 return value_full_object (value, NULL, 0, 0, 0);
3837}
3838
994b9211
AC
3839struct value *
3840coerce_ref (struct value *arg)
3841{
df407dfe 3842 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3843 struct value *retval;
dfcee124 3844 struct type *enc_type;
a109c7c1 3845
a471c594
JK
3846 retval = coerce_ref_if_computed (arg);
3847 if (retval)
3848 return retval;
3849
aa006118 3850 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
a471c594
JK
3851 return arg;
3852
dfcee124
AG
3853 enc_type = check_typedef (value_enclosing_type (arg));
3854 enc_type = TYPE_TARGET_TYPE (enc_type);
3855
3856 retval = value_at_lazy (enc_type,
3857 unpack_pointer (value_type (arg),
3858 value_contents (arg)));
9f1f738a 3859 enc_type = value_type (retval);
dfcee124
AG
3860 return readjust_indirect_value_type (retval, enc_type,
3861 value_type_arg_tmp, arg);
994b9211
AC
3862}
3863
3864struct value *
3865coerce_array (struct value *arg)
3866{
f3134b88
TT
3867 struct type *type;
3868
994b9211 3869 arg = coerce_ref (arg);
f3134b88
TT
3870 type = check_typedef (value_type (arg));
3871
3872 switch (TYPE_CODE (type))
3873 {
3874 case TYPE_CODE_ARRAY:
7346b668 3875 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3876 arg = value_coerce_array (arg);
3877 break;
3878 case TYPE_CODE_FUNC:
3879 arg = value_coerce_function (arg);
3880 break;
3881 }
994b9211
AC
3882 return arg;
3883}
c906108c 3884\f
c906108c 3885
bbfdfe1c
DM
3886/* Return the return value convention that will be used for the
3887 specified type. */
3888
3889enum return_value_convention
3890struct_return_convention (struct gdbarch *gdbarch,
3891 struct value *function, struct type *value_type)
3892{
3893 enum type_code code = TYPE_CODE (value_type);
3894
3895 if (code == TYPE_CODE_ERROR)
3896 error (_("Function return type unknown."));
3897
3898 /* Probe the architecture for the return-value convention. */
3899 return gdbarch_return_value (gdbarch, function, value_type,
3900 NULL, NULL, NULL);
3901}
3902
48436ce6
AC
3903/* Return true if the function returning the specified type is using
3904 the convention of returning structures in memory (passing in the
82585c72 3905 address as a hidden first parameter). */
c906108c
SS
3906
3907int
d80b854b 3908using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3909 struct value *function, struct type *value_type)
c906108c 3910{
bbfdfe1c 3911 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3912 /* A void return value is never in memory. See also corresponding
44e5158b 3913 code in "print_return_value". */
667e784f
AC
3914 return 0;
3915
bbfdfe1c 3916 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3917 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3918}
3919
42be36b3
CT
3920/* Set the initialized field in a value struct. */
3921
3922void
3923set_value_initialized (struct value *val, int status)
3924{
3925 val->initialized = status;
3926}
3927
3928/* Return the initialized field in a value struct. */
3929
3930int
4bf7b526 3931value_initialized (const struct value *val)
42be36b3
CT
3932{
3933 return val->initialized;
3934}
3935
a844296a
SM
3936/* Load the actual content of a lazy value. Fetch the data from the
3937 user's process and clear the lazy flag to indicate that the data in
3938 the buffer is valid.
a58e2656
AB
3939
3940 If the value is zero-length, we avoid calling read_memory, which
3941 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3942 it. */
a58e2656 3943
a844296a 3944void
a58e2656
AB
3945value_fetch_lazy (struct value *val)
3946{
3947 gdb_assert (value_lazy (val));
3948 allocate_value_contents (val);
9a0dc9e3
PA
3949 /* A value is either lazy, or fully fetched. The
3950 availability/validity is only established as we try to fetch a
3951 value. */
3952 gdb_assert (VEC_empty (range_s, val->optimized_out));
3953 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3954 if (value_bitsize (val))
3955 {
3956 /* To read a lazy bitfield, read the entire enclosing value. This
3957 prevents reading the same block of (possibly volatile) memory once
3958 per bitfield. It would be even better to read only the containing
3959 word, but we have no way to record that just specific bits of a
3960 value have been fetched. */
3961 struct type *type = check_typedef (value_type (val));
a58e2656 3962 struct value *parent = value_parent (val);
a58e2656 3963
b0c54aa5
AB
3964 if (value_lazy (parent))
3965 value_fetch_lazy (parent);
3966
4875ffdb
PA
3967 unpack_value_bitfield (val,
3968 value_bitpos (val), value_bitsize (val),
3969 value_contents_for_printing (parent),
3970 value_offset (val), parent);
a58e2656
AB
3971 }
3972 else if (VALUE_LVAL (val) == lval_memory)
3973 {
3974 CORE_ADDR addr = value_address (val);
3975 struct type *type = check_typedef (value_enclosing_type (val));
3976
3977 if (TYPE_LENGTH (type))
3978 read_value_memory (val, 0, value_stack (val),
3979 addr, value_contents_all_raw (val),
3ae385af 3980 type_length_units (type));
a58e2656
AB
3981 }
3982 else if (VALUE_LVAL (val) == lval_register)
3983 {
41b56feb 3984 struct frame_info *next_frame;
a58e2656
AB
3985 int regnum;
3986 struct type *type = check_typedef (value_type (val));
3987 struct value *new_val = val, *mark = value_mark ();
3988
3989 /* Offsets are not supported here; lazy register values must
3990 refer to the entire register. */
3991 gdb_assert (value_offset (val) == 0);
3992
3993 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3994 {
41b56feb 3995 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
6eeee81c 3996
41b56feb 3997 next_frame = frame_find_by_id (next_frame_id);
a58e2656
AB
3998 regnum = VALUE_REGNUM (new_val);
3999
41b56feb 4000 gdb_assert (next_frame != NULL);
a58e2656
AB
4001
4002 /* Convertible register routines are used for multi-register
4003 values and for interpretation in different types
4004 (e.g. float or int from a double register). Lazy
4005 register values should have the register's natural type,
4006 so they do not apply. */
41b56feb 4007 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
a58e2656
AB
4008 regnum, type));
4009
41b56feb
KB
4010 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
4011 Since a "->next" operation was performed when setting
4012 this field, we do not need to perform a "next" operation
4013 again when unwinding the register. That's why
4014 frame_unwind_register_value() is called here instead of
4015 get_frame_register_value(). */
4016 new_val = frame_unwind_register_value (next_frame, regnum);
6eeee81c
TT
4017
4018 /* If we get another lazy lval_register value, it means the
41b56feb
KB
4019 register is found by reading it from NEXT_FRAME's next frame.
4020 frame_unwind_register_value should never return a value with
4021 the frame id pointing to NEXT_FRAME. If it does, it means we
6eeee81c
TT
4022 either have two consecutive frames with the same frame id
4023 in the frame chain, or some code is trying to unwind
4024 behind get_prev_frame's back (e.g., a frame unwind
4025 sniffer trying to unwind), bypassing its validations. In
4026 any case, it should always be an internal error to end up
4027 in this situation. */
4028 if (VALUE_LVAL (new_val) == lval_register
4029 && value_lazy (new_val)
41b56feb 4030 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
6eeee81c
TT
4031 internal_error (__FILE__, __LINE__,
4032 _("infinite loop while fetching a register"));
a58e2656
AB
4033 }
4034
4035 /* If it's still lazy (for instance, a saved register on the
4036 stack), fetch it. */
4037 if (value_lazy (new_val))
4038 value_fetch_lazy (new_val);
4039
9a0dc9e3
PA
4040 /* Copy the contents and the unavailability/optimized-out
4041 meta-data from NEW_VAL to VAL. */
4042 set_value_lazy (val, 0);
4043 value_contents_copy (val, value_embedded_offset (val),
4044 new_val, value_embedded_offset (new_val),
3ae385af 4045 type_length_units (type));
a58e2656
AB
4046
4047 if (frame_debug)
4048 {
4049 struct gdbarch *gdbarch;
41b56feb
KB
4050 struct frame_info *frame;
4051 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
4052 so that the frame level will be shown correctly. */
a58e2656
AB
4053 frame = frame_find_by_id (VALUE_FRAME_ID (val));
4054 regnum = VALUE_REGNUM (val);
4055 gdbarch = get_frame_arch (frame);
4056
4057 fprintf_unfiltered (gdb_stdlog,
4058 "{ value_fetch_lazy "
4059 "(frame=%d,regnum=%d(%s),...) ",
4060 frame_relative_level (frame), regnum,
4061 user_reg_map_regnum_to_name (gdbarch, regnum));
4062
4063 fprintf_unfiltered (gdb_stdlog, "->");
4064 if (value_optimized_out (new_val))
f6c01fc5
AB
4065 {
4066 fprintf_unfiltered (gdb_stdlog, " ");
4067 val_print_optimized_out (new_val, gdb_stdlog);
4068 }
a58e2656
AB
4069 else
4070 {
4071 int i;
4072 const gdb_byte *buf = value_contents (new_val);
4073
4074 if (VALUE_LVAL (new_val) == lval_register)
4075 fprintf_unfiltered (gdb_stdlog, " register=%d",
4076 VALUE_REGNUM (new_val));
4077 else if (VALUE_LVAL (new_val) == lval_memory)
4078 fprintf_unfiltered (gdb_stdlog, " address=%s",
4079 paddress (gdbarch,
4080 value_address (new_val)));
4081 else
4082 fprintf_unfiltered (gdb_stdlog, " computed");
4083
4084 fprintf_unfiltered (gdb_stdlog, " bytes=");
4085 fprintf_unfiltered (gdb_stdlog, "[");
4086 for (i = 0; i < register_size (gdbarch, regnum); i++)
4087 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4088 fprintf_unfiltered (gdb_stdlog, "]");
4089 }
4090
4091 fprintf_unfiltered (gdb_stdlog, " }\n");
4092 }
4093
4094 /* Dispose of the intermediate values. This prevents
4095 watchpoints from trying to watch the saved frame pointer. */
4096 value_free_to_mark (mark);
4097 }
4098 else if (VALUE_LVAL (val) == lval_computed
4099 && value_computed_funcs (val)->read != NULL)
4100 value_computed_funcs (val)->read (val);
a58e2656
AB
4101 else
4102 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4103
4104 set_value_lazy (val, 0);
a58e2656
AB
4105}
4106
a280dbd1
SDJ
4107/* Implementation of the convenience function $_isvoid. */
4108
4109static struct value *
4110isvoid_internal_fn (struct gdbarch *gdbarch,
4111 const struct language_defn *language,
4112 void *cookie, int argc, struct value **argv)
4113{
4114 int ret;
4115
4116 if (argc != 1)
6bc305f5 4117 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
4118
4119 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4120
4121 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4122}
4123
c906108c 4124void
fba45db2 4125_initialize_values (void)
c906108c 4126{
1a966eab 4127 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4128Debugger convenience (\"$foo\") variables and functions.\n\
4129Convenience variables are created when you assign them values;\n\
4130thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4131\n\
c906108c
SS
4132A few convenience variables are given values automatically:\n\
4133\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4134\"$__\" holds the contents of the last address examined with \"x\"."
4135#ifdef HAVE_PYTHON
4136"\n\n\
4137Convenience functions are defined via the Python API."
4138#endif
4139 ), &showlist);
7e20dfcd 4140 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4141
db5f229b 4142 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4143Elements of value history around item number IDX (or last ten)."),
c906108c 4144 &showlist);
53e5f3cf
AS
4145
4146 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4147Initialize a convenience variable if necessary.\n\
4148init-if-undefined VARIABLE = EXPRESSION\n\
4149Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4150exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4151VARIABLE is already initialized."));
bc3b79fd
TJB
4152
4153 add_prefix_cmd ("function", no_class, function_command, _("\
4154Placeholder command for showing help on convenience functions."),
4155 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4156
4157 add_internal_function ("_isvoid", _("\
4158Check whether an expression is void.\n\
4159Usage: $_isvoid (expression)\n\
4160Return 1 if the expression is void, zero otherwise."),
4161 isvoid_internal_fn, NULL);
5fdf6324
AB
4162
4163 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4164 class_support, &max_value_size, _("\
4165Set maximum sized value gdb will load from the inferior."), _("\
4166Show maximum sized value gdb will load from the inferior."), _("\
4167Use this to control the maximum size, in bytes, of a value that gdb\n\
4168will load from the inferior. Setting this value to 'unlimited'\n\
4169disables checking.\n\
4170Setting this does not invalidate already allocated values, it only\n\
4171prevents future values, larger than this size, from being allocated."),
4172 set_max_value_size,
4173 show_max_value_size,
4174 &setlist, &showlist);
c906108c 4175}
This page took 2.159565 seconds and 4 git commands to generate.