* MAINTAINERS: Perform some obvious fixups.
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
6aba47ca 3 Copyright (C) 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
0fb0cc75
JB
4 1996, 1997, 1998, 1999, 2000, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
5 2009 Free Software Foundation, Inc.
c906108c 6
c5aa993b 7 This file is part of GDB.
c906108c 8
c5aa993b
JM
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
a9762ec7 11 the Free Software Foundation; either version 3 of the License, or
c5aa993b 12 (at your option) any later version.
c906108c 13
c5aa993b
JM
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
c906108c 18
c5aa993b 19 You should have received a copy of the GNU General Public License
a9762ec7 20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
21
22#include "defs.h"
e17c207e 23#include "arch-utils.h"
c906108c
SS
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
c906108c
SS
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
c906108c 33#include "demangle.h"
d16aafd8 34#include "doublest.h"
5ae326fa 35#include "gdb_assert.h"
36160dc4 36#include "regcache.h"
fe898f56 37#include "block.h"
27bc4d80 38#include "dfp.h"
bccdca4a 39#include "objfiles.h"
79a45b7d 40#include "valprint.h"
bc3b79fd 41#include "cli/cli-decode.h"
c906108c 42
a08702d6
TJB
43#include "python/python.h"
44
c906108c
SS
45/* Prototypes for exported functions. */
46
a14ed312 47void _initialize_values (void);
c906108c 48
bc3b79fd
TJB
49/* Definition of a user function. */
50struct internal_function
51{
52 /* The name of the function. It is a bit odd to have this in the
53 function itself -- the user might use a differently-named
54 convenience variable to hold the function. */
55 char *name;
56
57 /* The handler. */
58 internal_function_fn handler;
59
60 /* User data for the handler. */
61 void *cookie;
62};
63
64static struct cmd_list_element *functionlist;
65
91294c83
AC
66struct value
67{
68 /* Type of value; either not an lval, or one of the various
69 different possible kinds of lval. */
70 enum lval_type lval;
71
72 /* Is it modifiable? Only relevant if lval != not_lval. */
73 int modifiable;
74
75 /* Location of value (if lval). */
76 union
77 {
78 /* If lval == lval_memory, this is the address in the inferior.
79 If lval == lval_register, this is the byte offset into the
80 registers structure. */
81 CORE_ADDR address;
82
83 /* Pointer to internal variable. */
84 struct internalvar *internalvar;
5f5233d4
PA
85
86 /* If lval == lval_computed, this is a set of function pointers
87 to use to access and describe the value, and a closure pointer
88 for them to use. */
89 struct
90 {
91 struct lval_funcs *funcs; /* Functions to call. */
92 void *closure; /* Closure for those functions to use. */
93 } computed;
91294c83
AC
94 } location;
95
96 /* Describes offset of a value within lval of a structure in bytes.
97 If lval == lval_memory, this is an offset to the address. If
98 lval == lval_register, this is a further offset from
99 location.address within the registers structure. Note also the
100 member embedded_offset below. */
101 int offset;
102
103 /* Only used for bitfields; number of bits contained in them. */
104 int bitsize;
105
106 /* Only used for bitfields; position of start of field. For
32c9a795
MD
107 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
108 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
91294c83
AC
109 int bitpos;
110
4ea48cc1
DJ
111 /* Only used for bitfields; the containing value. This allows a
112 single read from the target when displaying multiple
113 bitfields. */
114 struct value *parent;
115
91294c83
AC
116 /* Frame register value is relative to. This will be described in
117 the lval enum above as "lval_register". */
118 struct frame_id frame_id;
119
120 /* Type of the value. */
121 struct type *type;
122
123 /* If a value represents a C++ object, then the `type' field gives
124 the object's compile-time type. If the object actually belongs
125 to some class derived from `type', perhaps with other base
126 classes and additional members, then `type' is just a subobject
127 of the real thing, and the full object is probably larger than
128 `type' would suggest.
129
130 If `type' is a dynamic class (i.e. one with a vtable), then GDB
131 can actually determine the object's run-time type by looking at
132 the run-time type information in the vtable. When this
133 information is available, we may elect to read in the entire
134 object, for several reasons:
135
136 - When printing the value, the user would probably rather see the
137 full object, not just the limited portion apparent from the
138 compile-time type.
139
140 - If `type' has virtual base classes, then even printing `type'
141 alone may require reaching outside the `type' portion of the
142 object to wherever the virtual base class has been stored.
143
144 When we store the entire object, `enclosing_type' is the run-time
145 type -- the complete object -- and `embedded_offset' is the
146 offset of `type' within that larger type, in bytes. The
147 value_contents() macro takes `embedded_offset' into account, so
148 most GDB code continues to see the `type' portion of the value,
149 just as the inferior would.
150
151 If `type' is a pointer to an object, then `enclosing_type' is a
152 pointer to the object's run-time type, and `pointed_to_offset' is
153 the offset in bytes from the full object to the pointed-to object
154 -- that is, the value `embedded_offset' would have if we followed
155 the pointer and fetched the complete object. (I don't really see
156 the point. Why not just determine the run-time type when you
157 indirect, and avoid the special case? The contents don't matter
158 until you indirect anyway.)
159
160 If we're not doing anything fancy, `enclosing_type' is equal to
161 `type', and `embedded_offset' is zero, so everything works
162 normally. */
163 struct type *enclosing_type;
164 int embedded_offset;
165 int pointed_to_offset;
166
167 /* Values are stored in a chain, so that they can be deleted easily
168 over calls to the inferior. Values assigned to internal
a08702d6
TJB
169 variables, put into the value history or exposed to Python are
170 taken off this list. */
91294c83
AC
171 struct value *next;
172
173 /* Register number if the value is from a register. */
174 short regnum;
175
176 /* If zero, contents of this value are in the contents field. If
9214ee5f
DJ
177 nonzero, contents are in inferior. If the lval field is lval_memory,
178 the contents are in inferior memory at location.address plus offset.
179 The lval field may also be lval_register.
91294c83
AC
180
181 WARNING: This field is used by the code which handles watchpoints
182 (see breakpoint.c) to decide whether a particular value can be
183 watched by hardware watchpoints. If the lazy flag is set for
184 some member of a value chain, it is assumed that this member of
185 the chain doesn't need to be watched as part of watching the
186 value itself. This is how GDB avoids watching the entire struct
187 or array when the user wants to watch a single struct member or
188 array element. If you ever change the way lazy flag is set and
189 reset, be sure to consider this use as well! */
190 char lazy;
191
192 /* If nonzero, this is the value of a variable which does not
193 actually exist in the program. */
194 char optimized_out;
195
42be36b3
CT
196 /* If value is a variable, is it initialized or not. */
197 int initialized;
198
3e3d7139
JG
199 /* Actual contents of the value. Target byte-order. NULL or not
200 valid if lazy is nonzero. */
201 gdb_byte *contents;
828d3400
DJ
202
203 /* The number of references to this value. When a value is created,
204 the value chain holds a reference, so REFERENCE_COUNT is 1. If
205 release_value is called, this value is removed from the chain but
206 the caller of release_value now has a reference to this value.
207 The caller must arrange for a call to value_free later. */
208 int reference_count;
91294c83
AC
209};
210
c906108c
SS
211/* Prototypes for local functions. */
212
a14ed312 213static void show_values (char *, int);
c906108c 214
a14ed312 215static void show_convenience (char *, int);
c906108c 216
c906108c
SS
217
218/* The value-history records all the values printed
219 by print commands during this session. Each chunk
220 records 60 consecutive values. The first chunk on
221 the chain records the most recent values.
222 The total number of values is in value_history_count. */
223
224#define VALUE_HISTORY_CHUNK 60
225
226struct value_history_chunk
c5aa993b
JM
227 {
228 struct value_history_chunk *next;
f23631e4 229 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 230 };
c906108c
SS
231
232/* Chain of chunks now in use. */
233
234static struct value_history_chunk *value_history_chain;
235
236static int value_history_count; /* Abs number of last entry stored */
bc3b79fd 237
c906108c
SS
238\f
239/* List of all value objects currently allocated
240 (except for those released by calls to release_value)
241 This is so they can be freed after each command. */
242
f23631e4 243static struct value *all_values;
c906108c 244
3e3d7139
JG
245/* Allocate a lazy value for type TYPE. Its actual content is
246 "lazily" allocated too: the content field of the return value is
247 NULL; it will be allocated when it is fetched from the target. */
c906108c 248
f23631e4 249struct value *
3e3d7139 250allocate_value_lazy (struct type *type)
c906108c 251{
f23631e4 252 struct value *val;
c906108c
SS
253 struct type *atype = check_typedef (type);
254
3e3d7139
JG
255 val = (struct value *) xzalloc (sizeof (struct value));
256 val->contents = NULL;
df407dfe 257 val->next = all_values;
c906108c 258 all_values = val;
df407dfe 259 val->type = type;
4754a64e 260 val->enclosing_type = type;
c906108c 261 VALUE_LVAL (val) = not_lval;
42ae5230 262 val->location.address = 0;
1df6926e 263 VALUE_FRAME_ID (val) = null_frame_id;
df407dfe
AC
264 val->offset = 0;
265 val->bitpos = 0;
266 val->bitsize = 0;
9ee8fc9d 267 VALUE_REGNUM (val) = -1;
3e3d7139 268 val->lazy = 1;
feb13ab0 269 val->optimized_out = 0;
13c3b5f5 270 val->embedded_offset = 0;
b44d461b 271 val->pointed_to_offset = 0;
c906108c 272 val->modifiable = 1;
42be36b3 273 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
274
275 /* Values start out on the all_values chain. */
276 val->reference_count = 1;
277
c906108c
SS
278 return val;
279}
280
3e3d7139
JG
281/* Allocate the contents of VAL if it has not been allocated yet. */
282
283void
284allocate_value_contents (struct value *val)
285{
286 if (!val->contents)
287 val->contents = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
288}
289
290/* Allocate a value and its contents for type TYPE. */
291
292struct value *
293allocate_value (struct type *type)
294{
295 struct value *val = allocate_value_lazy (type);
296 allocate_value_contents (val);
297 val->lazy = 0;
298 return val;
299}
300
c906108c 301/* Allocate a value that has the correct length
938f5214 302 for COUNT repetitions of type TYPE. */
c906108c 303
f23631e4 304struct value *
fba45db2 305allocate_repeat_value (struct type *type, int count)
c906108c 306{
c5aa993b 307 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
308 /* FIXME-type-allocation: need a way to free this type when we are
309 done with it. */
e3506a9f
UW
310 struct type *array_type
311 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
312 return allocate_value (array_type);
c906108c
SS
313}
314
5f5233d4
PA
315struct value *
316allocate_computed_value (struct type *type,
317 struct lval_funcs *funcs,
318 void *closure)
319{
320 struct value *v = allocate_value (type);
321 VALUE_LVAL (v) = lval_computed;
322 v->location.computed.funcs = funcs;
323 v->location.computed.closure = closure;
324 set_value_lazy (v, 1);
325
326 return v;
327}
328
df407dfe
AC
329/* Accessor methods. */
330
17cf0ecd
AC
331struct value *
332value_next (struct value *value)
333{
334 return value->next;
335}
336
df407dfe
AC
337struct type *
338value_type (struct value *value)
339{
340 return value->type;
341}
04624583
AC
342void
343deprecated_set_value_type (struct value *value, struct type *type)
344{
345 value->type = type;
346}
df407dfe
AC
347
348int
349value_offset (struct value *value)
350{
351 return value->offset;
352}
f5cf64a7
AC
353void
354set_value_offset (struct value *value, int offset)
355{
356 value->offset = offset;
357}
df407dfe
AC
358
359int
360value_bitpos (struct value *value)
361{
362 return value->bitpos;
363}
9bbda503
AC
364void
365set_value_bitpos (struct value *value, int bit)
366{
367 value->bitpos = bit;
368}
df407dfe
AC
369
370int
371value_bitsize (struct value *value)
372{
373 return value->bitsize;
374}
9bbda503
AC
375void
376set_value_bitsize (struct value *value, int bit)
377{
378 value->bitsize = bit;
379}
df407dfe 380
4ea48cc1
DJ
381struct value *
382value_parent (struct value *value)
383{
384 return value->parent;
385}
386
fc1a4b47 387gdb_byte *
990a07ab
AC
388value_contents_raw (struct value *value)
389{
3e3d7139
JG
390 allocate_value_contents (value);
391 return value->contents + value->embedded_offset;
990a07ab
AC
392}
393
fc1a4b47 394gdb_byte *
990a07ab
AC
395value_contents_all_raw (struct value *value)
396{
3e3d7139
JG
397 allocate_value_contents (value);
398 return value->contents;
990a07ab
AC
399}
400
4754a64e
AC
401struct type *
402value_enclosing_type (struct value *value)
403{
404 return value->enclosing_type;
405}
406
fc1a4b47 407const gdb_byte *
46615f07
AC
408value_contents_all (struct value *value)
409{
410 if (value->lazy)
411 value_fetch_lazy (value);
3e3d7139 412 return value->contents;
46615f07
AC
413}
414
d69fe07e
AC
415int
416value_lazy (struct value *value)
417{
418 return value->lazy;
419}
420
dfa52d88
AC
421void
422set_value_lazy (struct value *value, int val)
423{
424 value->lazy = val;
425}
426
fc1a4b47 427const gdb_byte *
0fd88904
AC
428value_contents (struct value *value)
429{
430 return value_contents_writeable (value);
431}
432
fc1a4b47 433gdb_byte *
0fd88904
AC
434value_contents_writeable (struct value *value)
435{
436 if (value->lazy)
437 value_fetch_lazy (value);
fc0c53a0 438 return value_contents_raw (value);
0fd88904
AC
439}
440
a6c442d8
MK
441/* Return non-zero if VAL1 and VAL2 have the same contents. Note that
442 this function is different from value_equal; in C the operator ==
443 can return 0 even if the two values being compared are equal. */
444
445int
446value_contents_equal (struct value *val1, struct value *val2)
447{
448 struct type *type1;
449 struct type *type2;
450 int len;
451
452 type1 = check_typedef (value_type (val1));
453 type2 = check_typedef (value_type (val2));
454 len = TYPE_LENGTH (type1);
455 if (len != TYPE_LENGTH (type2))
456 return 0;
457
458 return (memcmp (value_contents (val1), value_contents (val2), len) == 0);
459}
460
feb13ab0
AC
461int
462value_optimized_out (struct value *value)
463{
464 return value->optimized_out;
465}
466
467void
468set_value_optimized_out (struct value *value, int val)
469{
470 value->optimized_out = val;
471}
13c3b5f5
AC
472
473int
474value_embedded_offset (struct value *value)
475{
476 return value->embedded_offset;
477}
478
479void
480set_value_embedded_offset (struct value *value, int val)
481{
482 value->embedded_offset = val;
483}
b44d461b
AC
484
485int
486value_pointed_to_offset (struct value *value)
487{
488 return value->pointed_to_offset;
489}
490
491void
492set_value_pointed_to_offset (struct value *value, int val)
493{
494 value->pointed_to_offset = val;
495}
13bb5560 496
5f5233d4
PA
497struct lval_funcs *
498value_computed_funcs (struct value *v)
499{
500 gdb_assert (VALUE_LVAL (v) == lval_computed);
501
502 return v->location.computed.funcs;
503}
504
505void *
506value_computed_closure (struct value *v)
507{
508 gdb_assert (VALUE_LVAL (v) == lval_computed);
509
510 return v->location.computed.closure;
511}
512
13bb5560
AC
513enum lval_type *
514deprecated_value_lval_hack (struct value *value)
515{
516 return &value->lval;
517}
518
42ae5230
TT
519CORE_ADDR
520value_address (struct value *value)
521{
522 if (value->lval == lval_internalvar
523 || value->lval == lval_internalvar_component)
524 return 0;
525 return value->location.address + value->offset;
526}
527
528CORE_ADDR
529value_raw_address (struct value *value)
530{
531 if (value->lval == lval_internalvar
532 || value->lval == lval_internalvar_component)
533 return 0;
534 return value->location.address;
535}
536
537void
538set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 539{
42ae5230
TT
540 gdb_assert (value->lval != lval_internalvar
541 && value->lval != lval_internalvar_component);
542 value->location.address = addr;
13bb5560
AC
543}
544
545struct internalvar **
546deprecated_value_internalvar_hack (struct value *value)
547{
548 return &value->location.internalvar;
549}
550
551struct frame_id *
552deprecated_value_frame_id_hack (struct value *value)
553{
554 return &value->frame_id;
555}
556
557short *
558deprecated_value_regnum_hack (struct value *value)
559{
560 return &value->regnum;
561}
88e3b34b
AC
562
563int
564deprecated_value_modifiable (struct value *value)
565{
566 return value->modifiable;
567}
568void
569deprecated_set_value_modifiable (struct value *value, int modifiable)
570{
571 value->modifiable = modifiable;
572}
990a07ab 573\f
c906108c
SS
574/* Return a mark in the value chain. All values allocated after the
575 mark is obtained (except for those released) are subject to being freed
576 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 577struct value *
fba45db2 578value_mark (void)
c906108c
SS
579{
580 return all_values;
581}
582
828d3400
DJ
583/* Take a reference to VAL. VAL will not be deallocated until all
584 references are released. */
585
586void
587value_incref (struct value *val)
588{
589 val->reference_count++;
590}
591
592/* Release a reference to VAL, which was acquired with value_incref.
593 This function is also called to deallocate values from the value
594 chain. */
595
3e3d7139
JG
596void
597value_free (struct value *val)
598{
599 if (val)
5f5233d4 600 {
828d3400
DJ
601 gdb_assert (val->reference_count > 0);
602 val->reference_count--;
603 if (val->reference_count > 0)
604 return;
605
4ea48cc1
DJ
606 /* If there's an associated parent value, drop our reference to
607 it. */
608 if (val->parent != NULL)
609 value_free (val->parent);
610
5f5233d4
PA
611 if (VALUE_LVAL (val) == lval_computed)
612 {
613 struct lval_funcs *funcs = val->location.computed.funcs;
614
615 if (funcs->free_closure)
616 funcs->free_closure (val);
617 }
618
619 xfree (val->contents);
620 }
3e3d7139
JG
621 xfree (val);
622}
623
c906108c
SS
624/* Free all values allocated since MARK was obtained by value_mark
625 (except for those released). */
626void
f23631e4 627value_free_to_mark (struct value *mark)
c906108c 628{
f23631e4
AC
629 struct value *val;
630 struct value *next;
c906108c
SS
631
632 for (val = all_values; val && val != mark; val = next)
633 {
df407dfe 634 next = val->next;
c906108c
SS
635 value_free (val);
636 }
637 all_values = val;
638}
639
640/* Free all the values that have been allocated (except for those released).
641 Called after each command, successful or not. */
642
643void
fba45db2 644free_all_values (void)
c906108c 645{
f23631e4
AC
646 struct value *val;
647 struct value *next;
c906108c
SS
648
649 for (val = all_values; val; val = next)
650 {
df407dfe 651 next = val->next;
c906108c
SS
652 value_free (val);
653 }
654
655 all_values = 0;
656}
657
658/* Remove VAL from the chain all_values
659 so it will not be freed automatically. */
660
661void
f23631e4 662release_value (struct value *val)
c906108c 663{
f23631e4 664 struct value *v;
c906108c
SS
665
666 if (all_values == val)
667 {
668 all_values = val->next;
669 return;
670 }
671
672 for (v = all_values; v; v = v->next)
673 {
674 if (v->next == val)
675 {
676 v->next = val->next;
677 break;
678 }
679 }
680}
681
682/* Release all values up to mark */
f23631e4
AC
683struct value *
684value_release_to_mark (struct value *mark)
c906108c 685{
f23631e4
AC
686 struct value *val;
687 struct value *next;
c906108c 688
df407dfe
AC
689 for (val = next = all_values; next; next = next->next)
690 if (next->next == mark)
c906108c 691 {
df407dfe
AC
692 all_values = next->next;
693 next->next = NULL;
c906108c
SS
694 return val;
695 }
696 all_values = 0;
697 return val;
698}
699
700/* Return a copy of the value ARG.
701 It contains the same contents, for same memory address,
702 but it's a different block of storage. */
703
f23631e4
AC
704struct value *
705value_copy (struct value *arg)
c906108c 706{
4754a64e 707 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
708 struct value *val;
709
710 if (value_lazy (arg))
711 val = allocate_value_lazy (encl_type);
712 else
713 val = allocate_value (encl_type);
df407dfe 714 val->type = arg->type;
c906108c 715 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 716 val->location = arg->location;
df407dfe
AC
717 val->offset = arg->offset;
718 val->bitpos = arg->bitpos;
719 val->bitsize = arg->bitsize;
1df6926e 720 VALUE_FRAME_ID (val) = VALUE_FRAME_ID (arg);
9ee8fc9d 721 VALUE_REGNUM (val) = VALUE_REGNUM (arg);
d69fe07e 722 val->lazy = arg->lazy;
feb13ab0 723 val->optimized_out = arg->optimized_out;
13c3b5f5 724 val->embedded_offset = value_embedded_offset (arg);
b44d461b 725 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 726 val->modifiable = arg->modifiable;
d69fe07e 727 if (!value_lazy (val))
c906108c 728 {
990a07ab 729 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 730 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
731
732 }
4ea48cc1
DJ
733 val->parent = arg->parent;
734 if (val->parent)
735 value_incref (val->parent);
5f5233d4
PA
736 if (VALUE_LVAL (val) == lval_computed)
737 {
738 struct lval_funcs *funcs = val->location.computed.funcs;
739
740 if (funcs->copy_closure)
741 val->location.computed.closure = funcs->copy_closure (val);
742 }
c906108c
SS
743 return val;
744}
74bcbdf3
PA
745
746void
747set_value_component_location (struct value *component, struct value *whole)
748{
749 if (VALUE_LVAL (whole) == lval_internalvar)
750 VALUE_LVAL (component) = lval_internalvar_component;
751 else
752 VALUE_LVAL (component) = VALUE_LVAL (whole);
5f5233d4 753
74bcbdf3 754 component->location = whole->location;
5f5233d4
PA
755 if (VALUE_LVAL (whole) == lval_computed)
756 {
757 struct lval_funcs *funcs = whole->location.computed.funcs;
758
759 if (funcs->copy_closure)
760 component->location.computed.closure = funcs->copy_closure (whole);
761 }
74bcbdf3
PA
762}
763
c906108c
SS
764\f
765/* Access to the value history. */
766
767/* Record a new value in the value history.
768 Returns the absolute history index of the entry.
769 Result of -1 indicates the value was not saved; otherwise it is the
770 value history index of this new item. */
771
772int
f23631e4 773record_latest_value (struct value *val)
c906108c
SS
774{
775 int i;
776
777 /* We don't want this value to have anything to do with the inferior anymore.
778 In particular, "set $1 = 50" should not affect the variable from which
779 the value was taken, and fast watchpoints should be able to assume that
780 a value on the value history never changes. */
d69fe07e 781 if (value_lazy (val))
c906108c
SS
782 value_fetch_lazy (val);
783 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
784 from. This is a bit dubious, because then *&$1 does not just return $1
785 but the current contents of that location. c'est la vie... */
786 val->modifiable = 0;
787 release_value (val);
788
789 /* Here we treat value_history_count as origin-zero
790 and applying to the value being stored now. */
791
792 i = value_history_count % VALUE_HISTORY_CHUNK;
793 if (i == 0)
794 {
f23631e4 795 struct value_history_chunk *new
c5aa993b
JM
796 = (struct value_history_chunk *)
797 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
798 memset (new->values, 0, sizeof new->values);
799 new->next = value_history_chain;
800 value_history_chain = new;
801 }
802
803 value_history_chain->values[i] = val;
804
805 /* Now we regard value_history_count as origin-one
806 and applying to the value just stored. */
807
808 return ++value_history_count;
809}
810
811/* Return a copy of the value in the history with sequence number NUM. */
812
f23631e4 813struct value *
fba45db2 814access_value_history (int num)
c906108c 815{
f23631e4 816 struct value_history_chunk *chunk;
52f0bd74
AC
817 int i;
818 int absnum = num;
c906108c
SS
819
820 if (absnum <= 0)
821 absnum += value_history_count;
822
823 if (absnum <= 0)
824 {
825 if (num == 0)
8a3fe4f8 826 error (_("The history is empty."));
c906108c 827 else if (num == 1)
8a3fe4f8 828 error (_("There is only one value in the history."));
c906108c 829 else
8a3fe4f8 830 error (_("History does not go back to $$%d."), -num);
c906108c
SS
831 }
832 if (absnum > value_history_count)
8a3fe4f8 833 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
834
835 absnum--;
836
837 /* Now absnum is always absolute and origin zero. */
838
839 chunk = value_history_chain;
840 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
841 i > 0; i--)
842 chunk = chunk->next;
843
844 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
845}
846
c906108c 847static void
fba45db2 848show_values (char *num_exp, int from_tty)
c906108c 849{
52f0bd74 850 int i;
f23631e4 851 struct value *val;
c906108c
SS
852 static int num = 1;
853
854 if (num_exp)
855 {
f132ba9d
TJB
856 /* "show values +" should print from the stored position.
857 "show values <exp>" should print around value number <exp>. */
c906108c 858 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 859 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
860 }
861 else
862 {
f132ba9d 863 /* "show values" means print the last 10 values. */
c906108c
SS
864 num = value_history_count - 9;
865 }
866
867 if (num <= 0)
868 num = 1;
869
870 for (i = num; i < num + 10 && i <= value_history_count; i++)
871 {
79a45b7d 872 struct value_print_options opts;
c906108c 873 val = access_value_history (i);
a3f17187 874 printf_filtered (("$%d = "), i);
79a45b7d
TT
875 get_user_print_options (&opts);
876 value_print (val, gdb_stdout, &opts);
a3f17187 877 printf_filtered (("\n"));
c906108c
SS
878 }
879
f132ba9d 880 /* The next "show values +" should start after what we just printed. */
c906108c
SS
881 num += 10;
882
883 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
884 "show values +". If num_exp is null, this is unnecessary, since
885 "show values +" is not useful after "show values". */
c906108c
SS
886 if (from_tty && num_exp)
887 {
888 num_exp[0] = '+';
889 num_exp[1] = '\0';
890 }
891}
892\f
893/* Internal variables. These are variables within the debugger
894 that hold values assigned by debugger commands.
895 The user refers to them with a '$' prefix
896 that does not appear in the variable names stored internally. */
897
4fa62494
UW
898struct internalvar
899{
900 struct internalvar *next;
901 char *name;
4fa62494 902
78267919
UW
903 /* We support various different kinds of content of an internal variable.
904 enum internalvar_kind specifies the kind, and union internalvar_data
905 provides the data associated with this particular kind. */
906
907 enum internalvar_kind
908 {
909 /* The internal variable is empty. */
910 INTERNALVAR_VOID,
911
912 /* The value of the internal variable is provided directly as
913 a GDB value object. */
914 INTERNALVAR_VALUE,
915
916 /* A fresh value is computed via a call-back routine on every
917 access to the internal variable. */
918 INTERNALVAR_MAKE_VALUE,
4fa62494 919
78267919
UW
920 /* The internal variable holds a GDB internal convenience function. */
921 INTERNALVAR_FUNCTION,
922
923 /* The variable holds a simple scalar value. */
924 INTERNALVAR_SCALAR,
925
926 /* The variable holds a GDB-provided string. */
927 INTERNALVAR_STRING,
928
929 } kind;
4fa62494 930
4fa62494
UW
931 union internalvar_data
932 {
78267919
UW
933 /* A value object used with INTERNALVAR_VALUE. */
934 struct value *value;
935
936 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
937 internalvar_make_value make_value;
938
939 /* The internal function used with INTERNALVAR_FUNCTION. */
940 struct
941 {
942 struct internal_function *function;
943 /* True if this is the canonical name for the function. */
944 int canonical;
945 } fn;
946
947 /* A scalar value used with INTERNALVAR_SCALAR. */
948 struct
949 {
950 /* If type is non-NULL, it will be used as the type to generate
951 a value for this internal variable. If type is NULL, a default
952 integer type for the architecture is used. */
953 struct type *type;
954 union
955 {
956 LONGEST l; /* Used with TYPE_CODE_INT and NULL types. */
957 CORE_ADDR a; /* Used with TYPE_CODE_PTR types. */
958 } val;
959 } scalar;
960
961 /* A string value used with INTERNALVAR_STRING. */
962 char *string;
4fa62494
UW
963 } u;
964};
965
c906108c
SS
966static struct internalvar *internalvars;
967
53e5f3cf
AS
968/* If the variable does not already exist create it and give it the value given.
969 If no value is given then the default is zero. */
970static void
971init_if_undefined_command (char* args, int from_tty)
972{
973 struct internalvar* intvar;
974
975 /* Parse the expression - this is taken from set_command(). */
976 struct expression *expr = parse_expression (args);
977 register struct cleanup *old_chain =
978 make_cleanup (free_current_contents, &expr);
979
980 /* Validate the expression.
981 Was the expression an assignment?
982 Or even an expression at all? */
983 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
984 error (_("Init-if-undefined requires an assignment expression."));
985
986 /* Extract the variable from the parsed expression.
987 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
988 if (expr->elts[1].opcode != OP_INTERNALVAR)
989 error (_("The first parameter to init-if-undefined should be a GDB variable."));
990 intvar = expr->elts[2].internalvar;
991
992 /* Only evaluate the expression if the lvalue is void.
993 This may still fail if the expresssion is invalid. */
78267919 994 if (intvar->kind == INTERNALVAR_VOID)
53e5f3cf
AS
995 evaluate_expression (expr);
996
997 do_cleanups (old_chain);
998}
999
1000
c906108c
SS
1001/* Look up an internal variable with name NAME. NAME should not
1002 normally include a dollar sign.
1003
1004 If the specified internal variable does not exist,
c4a3d09a 1005 the return value is NULL. */
c906108c
SS
1006
1007struct internalvar *
bc3b79fd 1008lookup_only_internalvar (const char *name)
c906108c 1009{
52f0bd74 1010 struct internalvar *var;
c906108c
SS
1011
1012 for (var = internalvars; var; var = var->next)
5cb316ef 1013 if (strcmp (var->name, name) == 0)
c906108c
SS
1014 return var;
1015
c4a3d09a
MF
1016 return NULL;
1017}
1018
1019
1020/* Create an internal variable with name NAME and with a void value.
1021 NAME should not normally include a dollar sign. */
1022
1023struct internalvar *
bc3b79fd 1024create_internalvar (const char *name)
c4a3d09a
MF
1025{
1026 struct internalvar *var;
c906108c 1027 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
1754f103 1028 var->name = concat (name, (char *)NULL);
78267919 1029 var->kind = INTERNALVAR_VOID;
c906108c
SS
1030 var->next = internalvars;
1031 internalvars = var;
1032 return var;
1033}
1034
4aa995e1
PA
1035/* Create an internal variable with name NAME and register FUN as the
1036 function that value_of_internalvar uses to create a value whenever
1037 this variable is referenced. NAME should not normally include a
1038 dollar sign. */
1039
1040struct internalvar *
1041create_internalvar_type_lazy (char *name, internalvar_make_value fun)
1042{
4fa62494 1043 struct internalvar *var = create_internalvar (name);
78267919
UW
1044 var->kind = INTERNALVAR_MAKE_VALUE;
1045 var->u.make_value = fun;
4aa995e1
PA
1046 return var;
1047}
c4a3d09a
MF
1048
1049/* Look up an internal variable with name NAME. NAME should not
1050 normally include a dollar sign.
1051
1052 If the specified internal variable does not exist,
1053 one is created, with a void value. */
1054
1055struct internalvar *
bc3b79fd 1056lookup_internalvar (const char *name)
c4a3d09a
MF
1057{
1058 struct internalvar *var;
1059
1060 var = lookup_only_internalvar (name);
1061 if (var)
1062 return var;
1063
1064 return create_internalvar (name);
1065}
1066
78267919
UW
1067/* Return current value of internal variable VAR. For variables that
1068 are not inherently typed, use a value type appropriate for GDBARCH. */
1069
f23631e4 1070struct value *
78267919 1071value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 1072{
f23631e4 1073 struct value *val;
c906108c 1074
78267919 1075 switch (var->kind)
5f5233d4 1076 {
78267919
UW
1077 case INTERNALVAR_VOID:
1078 val = allocate_value (builtin_type (gdbarch)->builtin_void);
1079 break;
4fa62494 1080
78267919
UW
1081 case INTERNALVAR_FUNCTION:
1082 val = allocate_value (builtin_type (gdbarch)->internal_fn);
1083 break;
4fa62494 1084
78267919
UW
1085 case INTERNALVAR_SCALAR:
1086 if (!var->u.scalar.type)
1087 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
1088 var->u.scalar.val.l);
1089 else if (TYPE_CODE (var->u.scalar.type) == TYPE_CODE_INT)
1090 val = value_from_longest (var->u.scalar.type, var->u.scalar.val.l);
1091 else if (TYPE_CODE (var->u.scalar.type) == TYPE_CODE_PTR)
1092 val = value_from_pointer (var->u.scalar.type, var->u.scalar.val.a);
1093 else
1094 internal_error (__FILE__, __LINE__, "bad type");
1095 break;
4fa62494 1096
78267919
UW
1097 case INTERNALVAR_STRING:
1098 val = value_cstring (var->u.string, strlen (var->u.string),
1099 builtin_type (gdbarch)->builtin_char);
1100 break;
4fa62494 1101
78267919
UW
1102 case INTERNALVAR_VALUE:
1103 val = value_copy (var->u.value);
4aa995e1
PA
1104 if (value_lazy (val))
1105 value_fetch_lazy (val);
78267919 1106 break;
4aa995e1 1107
78267919
UW
1108 case INTERNALVAR_MAKE_VALUE:
1109 val = (*var->u.make_value) (gdbarch, var);
1110 break;
1111
1112 default:
1113 internal_error (__FILE__, __LINE__, "bad kind");
1114 }
1115
1116 /* Change the VALUE_LVAL to lval_internalvar so that future operations
1117 on this value go back to affect the original internal variable.
1118
1119 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
1120 no underlying modifyable state in the internal variable.
1121
1122 Likewise, if the variable's value is a computed lvalue, we want
1123 references to it to produce another computed lvalue, where
1124 references and assignments actually operate through the
1125 computed value's functions.
1126
1127 This means that internal variables with computed values
1128 behave a little differently from other internal variables:
1129 assignments to them don't just replace the previous value
1130 altogether. At the moment, this seems like the behavior we
1131 want. */
1132
1133 if (var->kind != INTERNALVAR_MAKE_VALUE
1134 && val->lval != lval_computed)
1135 {
1136 VALUE_LVAL (val) = lval_internalvar;
1137 VALUE_INTERNALVAR (val) = var;
5f5233d4 1138 }
d3c139e9 1139
4fa62494
UW
1140 return val;
1141}
d3c139e9 1142
4fa62494
UW
1143int
1144get_internalvar_integer (struct internalvar *var, LONGEST *result)
1145{
78267919 1146 switch (var->kind)
4fa62494 1147 {
78267919
UW
1148 case INTERNALVAR_SCALAR:
1149 if (var->u.scalar.type == NULL
1150 || TYPE_CODE (var->u.scalar.type) == TYPE_CODE_INT)
1151 {
1152 *result = var->u.scalar.val.l;
1153 return 1;
1154 }
1155 /* Fall through. */
d3c139e9 1156
4fa62494
UW
1157 default:
1158 return 0;
1159 }
1160}
d3c139e9 1161
4fa62494
UW
1162static int
1163get_internalvar_function (struct internalvar *var,
1164 struct internal_function **result)
1165{
78267919 1166 switch (var->kind)
d3c139e9 1167 {
78267919
UW
1168 case INTERNALVAR_FUNCTION:
1169 *result = var->u.fn.function;
4fa62494 1170 return 1;
d3c139e9 1171
4fa62494
UW
1172 default:
1173 return 0;
1174 }
c906108c
SS
1175}
1176
1177void
fba45db2 1178set_internalvar_component (struct internalvar *var, int offset, int bitpos,
f23631e4 1179 int bitsize, struct value *newval)
c906108c 1180{
4fa62494 1181 gdb_byte *addr;
c906108c 1182
78267919 1183 switch (var->kind)
4fa62494 1184 {
78267919
UW
1185 case INTERNALVAR_VALUE:
1186 addr = value_contents_writeable (var->u.value);
4fa62494
UW
1187
1188 if (bitsize)
50810684 1189 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
1190 value_as_long (newval), bitpos, bitsize);
1191 else
1192 memcpy (addr + offset, value_contents (newval),
1193 TYPE_LENGTH (value_type (newval)));
1194 break;
78267919
UW
1195
1196 default:
1197 /* We can never get a component of any other kind. */
1198 internal_error (__FILE__, __LINE__, "set_internalvar_component");
4fa62494 1199 }
c906108c
SS
1200}
1201
1202void
f23631e4 1203set_internalvar (struct internalvar *var, struct value *val)
c906108c 1204{
78267919 1205 enum internalvar_kind new_kind;
4fa62494 1206 union internalvar_data new_data = { 0 };
c906108c 1207
78267919 1208 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
1209 error (_("Cannot overwrite convenience function %s"), var->name);
1210
4fa62494 1211 /* Prepare new contents. */
78267919 1212 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
1213 {
1214 case TYPE_CODE_VOID:
78267919 1215 new_kind = INTERNALVAR_VOID;
4fa62494
UW
1216 break;
1217
1218 case TYPE_CODE_INTERNAL_FUNCTION:
1219 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
1220 new_kind = INTERNALVAR_FUNCTION;
1221 get_internalvar_function (VALUE_INTERNALVAR (val),
1222 &new_data.fn.function);
1223 /* Copies created here are never canonical. */
4fa62494
UW
1224 break;
1225
1226 case TYPE_CODE_INT:
78267919
UW
1227 new_kind = INTERNALVAR_SCALAR;
1228 new_data.scalar.type = value_type (val);
1229 new_data.scalar.val.l = value_as_long (val);
4fa62494
UW
1230 break;
1231
1232 case TYPE_CODE_PTR:
78267919
UW
1233 new_kind = INTERNALVAR_SCALAR;
1234 new_data.scalar.type = value_type (val);
1235 new_data.scalar.val.a = value_as_address (val);
4fa62494
UW
1236 break;
1237
1238 default:
78267919
UW
1239 new_kind = INTERNALVAR_VALUE;
1240 new_data.value = value_copy (val);
1241 new_data.value->modifiable = 1;
4fa62494
UW
1242
1243 /* Force the value to be fetched from the target now, to avoid problems
1244 later when this internalvar is referenced and the target is gone or
1245 has changed. */
78267919
UW
1246 if (value_lazy (new_data.value))
1247 value_fetch_lazy (new_data.value);
4fa62494
UW
1248
1249 /* Release the value from the value chain to prevent it from being
1250 deleted by free_all_values. From here on this function should not
1251 call error () until new_data is installed into the var->u to avoid
1252 leaking memory. */
78267919 1253 release_value (new_data.value);
4fa62494
UW
1254 break;
1255 }
1256
1257 /* Clean up old contents. */
1258 clear_internalvar (var);
1259
1260 /* Switch over. */
78267919 1261 var->kind = new_kind;
4fa62494 1262 var->u = new_data;
c906108c
SS
1263 /* End code which must not call error(). */
1264}
1265
4fa62494
UW
1266void
1267set_internalvar_integer (struct internalvar *var, LONGEST l)
1268{
1269 /* Clean up old contents. */
1270 clear_internalvar (var);
1271
78267919
UW
1272 var->kind = INTERNALVAR_SCALAR;
1273 var->u.scalar.type = NULL;
1274 var->u.scalar.val.l = l;
1275}
1276
1277void
1278set_internalvar_string (struct internalvar *var, const char *string)
1279{
1280 /* Clean up old contents. */
1281 clear_internalvar (var);
1282
1283 var->kind = INTERNALVAR_STRING;
1284 var->u.string = xstrdup (string);
4fa62494
UW
1285}
1286
1287static void
1288set_internalvar_function (struct internalvar *var, struct internal_function *f)
1289{
1290 /* Clean up old contents. */
1291 clear_internalvar (var);
1292
78267919
UW
1293 var->kind = INTERNALVAR_FUNCTION;
1294 var->u.fn.function = f;
1295 var->u.fn.canonical = 1;
1296 /* Variables installed here are always the canonical version. */
4fa62494
UW
1297}
1298
1299void
1300clear_internalvar (struct internalvar *var)
1301{
1302 /* Clean up old contents. */
78267919 1303 switch (var->kind)
4fa62494 1304 {
78267919
UW
1305 case INTERNALVAR_VALUE:
1306 value_free (var->u.value);
1307 break;
1308
1309 case INTERNALVAR_STRING:
1310 xfree (var->u.string);
4fa62494
UW
1311 break;
1312
1313 default:
4fa62494
UW
1314 break;
1315 }
1316
78267919
UW
1317 /* Reset to void kind. */
1318 var->kind = INTERNALVAR_VOID;
4fa62494
UW
1319}
1320
c906108c 1321char *
fba45db2 1322internalvar_name (struct internalvar *var)
c906108c
SS
1323{
1324 return var->name;
1325}
1326
4fa62494
UW
1327static struct internal_function *
1328create_internal_function (const char *name,
1329 internal_function_fn handler, void *cookie)
bc3b79fd 1330{
bc3b79fd
TJB
1331 struct internal_function *ifn = XNEW (struct internal_function);
1332 ifn->name = xstrdup (name);
1333 ifn->handler = handler;
1334 ifn->cookie = cookie;
4fa62494 1335 return ifn;
bc3b79fd
TJB
1336}
1337
1338char *
1339value_internal_function_name (struct value *val)
1340{
4fa62494
UW
1341 struct internal_function *ifn;
1342 int result;
1343
1344 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
1345 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
1346 gdb_assert (result);
1347
bc3b79fd
TJB
1348 return ifn->name;
1349}
1350
1351struct value *
d452c4bc
UW
1352call_internal_function (struct gdbarch *gdbarch,
1353 const struct language_defn *language,
1354 struct value *func, int argc, struct value **argv)
bc3b79fd 1355{
4fa62494
UW
1356 struct internal_function *ifn;
1357 int result;
1358
1359 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
1360 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
1361 gdb_assert (result);
1362
d452c4bc 1363 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
1364}
1365
1366/* The 'function' command. This does nothing -- it is just a
1367 placeholder to let "help function NAME" work. This is also used as
1368 the implementation of the sub-command that is created when
1369 registering an internal function. */
1370static void
1371function_command (char *command, int from_tty)
1372{
1373 /* Do nothing. */
1374}
1375
1376/* Clean up if an internal function's command is destroyed. */
1377static void
1378function_destroyer (struct cmd_list_element *self, void *ignore)
1379{
1380 xfree (self->name);
1381 xfree (self->doc);
1382}
1383
1384/* Add a new internal function. NAME is the name of the function; DOC
1385 is a documentation string describing the function. HANDLER is
1386 called when the function is invoked. COOKIE is an arbitrary
1387 pointer which is passed to HANDLER and is intended for "user
1388 data". */
1389void
1390add_internal_function (const char *name, const char *doc,
1391 internal_function_fn handler, void *cookie)
1392{
1393 struct cmd_list_element *cmd;
4fa62494 1394 struct internal_function *ifn;
bc3b79fd 1395 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
1396
1397 ifn = create_internal_function (name, handler, cookie);
1398 set_internalvar_function (var, ifn);
bc3b79fd
TJB
1399
1400 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
1401 &functionlist);
1402 cmd->destroyer = function_destroyer;
1403}
1404
ae5a43e0
DJ
1405/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
1406 prevent cycles / duplicates. */
1407
4e7a5ef5 1408void
ae5a43e0
DJ
1409preserve_one_value (struct value *value, struct objfile *objfile,
1410 htab_t copied_types)
1411{
1412 if (TYPE_OBJFILE (value->type) == objfile)
1413 value->type = copy_type_recursive (objfile, value->type, copied_types);
1414
1415 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
1416 value->enclosing_type = copy_type_recursive (objfile,
1417 value->enclosing_type,
1418 copied_types);
1419}
1420
78267919
UW
1421/* Likewise for internal variable VAR. */
1422
1423static void
1424preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
1425 htab_t copied_types)
1426{
1427 switch (var->kind)
1428 {
1429 case INTERNALVAR_SCALAR:
1430 if (var->u.scalar.type && TYPE_OBJFILE (var->u.scalar.type) == objfile)
1431 var->u.scalar.type
1432 = copy_type_recursive (objfile, var->u.scalar.type, copied_types);
1433 break;
1434
1435 case INTERNALVAR_VALUE:
1436 preserve_one_value (var->u.value, objfile, copied_types);
1437 break;
1438 }
1439}
1440
ae5a43e0
DJ
1441/* Update the internal variables and value history when OBJFILE is
1442 discarded; we must copy the types out of the objfile. New global types
1443 will be created for every convenience variable which currently points to
1444 this objfile's types, and the convenience variables will be adjusted to
1445 use the new global types. */
c906108c
SS
1446
1447void
ae5a43e0 1448preserve_values (struct objfile *objfile)
c906108c 1449{
ae5a43e0
DJ
1450 htab_t copied_types;
1451 struct value_history_chunk *cur;
52f0bd74 1452 struct internalvar *var;
a08702d6 1453 struct value *val;
ae5a43e0 1454 int i;
c906108c 1455
ae5a43e0
DJ
1456 /* Create the hash table. We allocate on the objfile's obstack, since
1457 it is soon to be deleted. */
1458 copied_types = create_copied_types_hash (objfile);
1459
1460 for (cur = value_history_chain; cur; cur = cur->next)
1461 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
1462 if (cur->values[i])
1463 preserve_one_value (cur->values[i], objfile, copied_types);
1464
1465 for (var = internalvars; var; var = var->next)
78267919 1466 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 1467
4e7a5ef5 1468 preserve_python_values (objfile, copied_types);
a08702d6 1469
ae5a43e0 1470 htab_delete (copied_types);
c906108c
SS
1471}
1472
1473static void
fba45db2 1474show_convenience (char *ignore, int from_tty)
c906108c 1475{
e17c207e 1476 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 1477 struct internalvar *var;
c906108c 1478 int varseen = 0;
79a45b7d 1479 struct value_print_options opts;
c906108c 1480
79a45b7d 1481 get_user_print_options (&opts);
c906108c
SS
1482 for (var = internalvars; var; var = var->next)
1483 {
c906108c
SS
1484 if (!varseen)
1485 {
1486 varseen = 1;
1487 }
a3f17187 1488 printf_filtered (("$%s = "), var->name);
78267919 1489 value_print (value_of_internalvar (gdbarch, var), gdb_stdout,
79a45b7d 1490 &opts);
a3f17187 1491 printf_filtered (("\n"));
c906108c
SS
1492 }
1493 if (!varseen)
a3f17187
AC
1494 printf_unfiltered (_("\
1495No debugger convenience variables now defined.\n\
c906108c 1496Convenience variables have names starting with \"$\";\n\
a3f17187 1497use \"set\" as in \"set $foo = 5\" to define them.\n"));
c906108c
SS
1498}
1499\f
1500/* Extract a value as a C number (either long or double).
1501 Knows how to convert fixed values to double, or
1502 floating values to long.
1503 Does not deallocate the value. */
1504
1505LONGEST
f23631e4 1506value_as_long (struct value *val)
c906108c
SS
1507{
1508 /* This coerces arrays and functions, which is necessary (e.g.
1509 in disassemble_command). It also dereferences references, which
1510 I suspect is the most logical thing to do. */
994b9211 1511 val = coerce_array (val);
0fd88904 1512 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1513}
1514
1515DOUBLEST
f23631e4 1516value_as_double (struct value *val)
c906108c
SS
1517{
1518 DOUBLEST foo;
1519 int inv;
c5aa993b 1520
0fd88904 1521 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 1522 if (inv)
8a3fe4f8 1523 error (_("Invalid floating value found in program."));
c906108c
SS
1524 return foo;
1525}
4ef30785 1526
4478b372
JB
1527/* Extract a value as a C pointer. Does not deallocate the value.
1528 Note that val's type may not actually be a pointer; value_as_long
1529 handles all the cases. */
c906108c 1530CORE_ADDR
f23631e4 1531value_as_address (struct value *val)
c906108c 1532{
50810684
UW
1533 struct gdbarch *gdbarch = get_type_arch (value_type (val));
1534
c906108c
SS
1535 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1536 whether we want this to be true eventually. */
1537#if 0
bf6ae464 1538 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
1539 non-address (e.g. argument to "signal", "info break", etc.), or
1540 for pointers to char, in which the low bits *are* significant. */
50810684 1541 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 1542#else
f312f057
JB
1543
1544 /* There are several targets (IA-64, PowerPC, and others) which
1545 don't represent pointers to functions as simply the address of
1546 the function's entry point. For example, on the IA-64, a
1547 function pointer points to a two-word descriptor, generated by
1548 the linker, which contains the function's entry point, and the
1549 value the IA-64 "global pointer" register should have --- to
1550 support position-independent code. The linker generates
1551 descriptors only for those functions whose addresses are taken.
1552
1553 On such targets, it's difficult for GDB to convert an arbitrary
1554 function address into a function pointer; it has to either find
1555 an existing descriptor for that function, or call malloc and
1556 build its own. On some targets, it is impossible for GDB to
1557 build a descriptor at all: the descriptor must contain a jump
1558 instruction; data memory cannot be executed; and code memory
1559 cannot be modified.
1560
1561 Upon entry to this function, if VAL is a value of type `function'
1562 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 1563 value_address (val) is the address of the function. This is what
f312f057
JB
1564 you'll get if you evaluate an expression like `main'. The call
1565 to COERCE_ARRAY below actually does all the usual unary
1566 conversions, which includes converting values of type `function'
1567 to `pointer to function'. This is the challenging conversion
1568 discussed above. Then, `unpack_long' will convert that pointer
1569 back into an address.
1570
1571 So, suppose the user types `disassemble foo' on an architecture
1572 with a strange function pointer representation, on which GDB
1573 cannot build its own descriptors, and suppose further that `foo'
1574 has no linker-built descriptor. The address->pointer conversion
1575 will signal an error and prevent the command from running, even
1576 though the next step would have been to convert the pointer
1577 directly back into the same address.
1578
1579 The following shortcut avoids this whole mess. If VAL is a
1580 function, just return its address directly. */
df407dfe
AC
1581 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
1582 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 1583 return value_address (val);
f312f057 1584
994b9211 1585 val = coerce_array (val);
fc0c74b1
AC
1586
1587 /* Some architectures (e.g. Harvard), map instruction and data
1588 addresses onto a single large unified address space. For
1589 instance: An architecture may consider a large integer in the
1590 range 0x10000000 .. 0x1000ffff to already represent a data
1591 addresses (hence not need a pointer to address conversion) while
1592 a small integer would still need to be converted integer to
1593 pointer to address. Just assume such architectures handle all
1594 integer conversions in a single function. */
1595
1596 /* JimB writes:
1597
1598 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
1599 must admonish GDB hackers to make sure its behavior matches the
1600 compiler's, whenever possible.
1601
1602 In general, I think GDB should evaluate expressions the same way
1603 the compiler does. When the user copies an expression out of
1604 their source code and hands it to a `print' command, they should
1605 get the same value the compiler would have computed. Any
1606 deviation from this rule can cause major confusion and annoyance,
1607 and needs to be justified carefully. In other words, GDB doesn't
1608 really have the freedom to do these conversions in clever and
1609 useful ways.
1610
1611 AndrewC pointed out that users aren't complaining about how GDB
1612 casts integers to pointers; they are complaining that they can't
1613 take an address from a disassembly listing and give it to `x/i'.
1614 This is certainly important.
1615
79dd2d24 1616 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
1617 makes it possible for GDB to "get it right" in all circumstances
1618 --- the target has complete control over how things get done, so
1619 people can Do The Right Thing for their target without breaking
1620 anyone else. The standard doesn't specify how integers get
1621 converted to pointers; usually, the ABI doesn't either, but
1622 ABI-specific code is a more reasonable place to handle it. */
1623
df407dfe
AC
1624 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
1625 && TYPE_CODE (value_type (val)) != TYPE_CODE_REF
50810684
UW
1626 && gdbarch_integer_to_address_p (gdbarch))
1627 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 1628 value_contents (val));
fc0c74b1 1629
0fd88904 1630 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
1631#endif
1632}
1633\f
1634/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1635 as a long, or as a double, assuming the raw data is described
1636 by type TYPE. Knows how to convert different sizes of values
1637 and can convert between fixed and floating point. We don't assume
1638 any alignment for the raw data. Return value is in host byte order.
1639
1640 If you want functions and arrays to be coerced to pointers, and
1641 references to be dereferenced, call value_as_long() instead.
1642
1643 C++: It is assumed that the front-end has taken care of
1644 all matters concerning pointers to members. A pointer
1645 to member which reaches here is considered to be equivalent
1646 to an INT (or some size). After all, it is only an offset. */
1647
1648LONGEST
fc1a4b47 1649unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 1650{
e17a4113 1651 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
1652 enum type_code code = TYPE_CODE (type);
1653 int len = TYPE_LENGTH (type);
1654 int nosign = TYPE_UNSIGNED (type);
c906108c 1655
c906108c
SS
1656 switch (code)
1657 {
1658 case TYPE_CODE_TYPEDEF:
1659 return unpack_long (check_typedef (type), valaddr);
1660 case TYPE_CODE_ENUM:
4f2aea11 1661 case TYPE_CODE_FLAGS:
c906108c
SS
1662 case TYPE_CODE_BOOL:
1663 case TYPE_CODE_INT:
1664 case TYPE_CODE_CHAR:
1665 case TYPE_CODE_RANGE:
0d5de010 1666 case TYPE_CODE_MEMBERPTR:
c906108c 1667 if (nosign)
e17a4113 1668 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 1669 else
e17a4113 1670 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
1671
1672 case TYPE_CODE_FLT:
96d2f608 1673 return extract_typed_floating (valaddr, type);
c906108c 1674
4ef30785
TJB
1675 case TYPE_CODE_DECFLOAT:
1676 /* libdecnumber has a function to convert from decimal to integer, but
1677 it doesn't work when the decimal number has a fractional part. */
e17a4113 1678 return decimal_to_doublest (valaddr, len, byte_order);
4ef30785 1679
c906108c
SS
1680 case TYPE_CODE_PTR:
1681 case TYPE_CODE_REF:
1682 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 1683 whether we want this to be true eventually. */
4478b372 1684 return extract_typed_address (valaddr, type);
c906108c 1685
c906108c 1686 default:
8a3fe4f8 1687 error (_("Value can't be converted to integer."));
c906108c 1688 }
c5aa993b 1689 return 0; /* Placate lint. */
c906108c
SS
1690}
1691
1692/* Return a double value from the specified type and address.
1693 INVP points to an int which is set to 0 for valid value,
1694 1 for invalid value (bad float format). In either case,
1695 the returned double is OK to use. Argument is in target
1696 format, result is in host format. */
1697
1698DOUBLEST
fc1a4b47 1699unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 1700{
e17a4113 1701 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
1702 enum type_code code;
1703 int len;
1704 int nosign;
1705
1706 *invp = 0; /* Assume valid. */
1707 CHECK_TYPEDEF (type);
1708 code = TYPE_CODE (type);
1709 len = TYPE_LENGTH (type);
1710 nosign = TYPE_UNSIGNED (type);
1711 if (code == TYPE_CODE_FLT)
1712 {
75bc7ddf
AC
1713 /* NOTE: cagney/2002-02-19: There was a test here to see if the
1714 floating-point value was valid (using the macro
1715 INVALID_FLOAT). That test/macro have been removed.
1716
1717 It turns out that only the VAX defined this macro and then
1718 only in a non-portable way. Fixing the portability problem
1719 wouldn't help since the VAX floating-point code is also badly
1720 bit-rotten. The target needs to add definitions for the
ea06eb3d 1721 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
1722 exactly describe the target floating-point format. The
1723 problem here is that the corresponding floatformat_vax_f and
1724 floatformat_vax_d values these methods should be set to are
1725 also not defined either. Oops!
1726
1727 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
1728 definitions and the new cases for floatformat_is_valid (). */
1729
1730 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
1731 {
1732 *invp = 1;
1733 return 0.0;
1734 }
1735
96d2f608 1736 return extract_typed_floating (valaddr, type);
c906108c 1737 }
4ef30785 1738 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 1739 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
1740 else if (nosign)
1741 {
1742 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 1743 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
1744 }
1745 else
1746 {
1747 /* Signed -- we are OK with unpack_long. */
1748 return unpack_long (type, valaddr);
1749 }
1750}
1751
1752/* Unpack raw data (copied from debugee, target byte order) at VALADDR
1753 as a CORE_ADDR, assuming the raw data is described by type TYPE.
1754 We don't assume any alignment for the raw data. Return value is in
1755 host byte order.
1756
1757 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 1758 references to be dereferenced, call value_as_address() instead.
c906108c
SS
1759
1760 C++: It is assumed that the front-end has taken care of
1761 all matters concerning pointers to members. A pointer
1762 to member which reaches here is considered to be equivalent
1763 to an INT (or some size). After all, it is only an offset. */
1764
1765CORE_ADDR
fc1a4b47 1766unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
1767{
1768 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
1769 whether we want this to be true eventually. */
1770 return unpack_long (type, valaddr);
1771}
4478b372 1772
c906108c 1773\f
2c2738a0
DC
1774/* Get the value of the FIELDN'th field (which must be static) of
1775 TYPE. Return NULL if the field doesn't exist or has been
1776 optimized out. */
c906108c 1777
f23631e4 1778struct value *
fba45db2 1779value_static_field (struct type *type, int fieldno)
c906108c 1780{
948e66d9
DJ
1781 struct value *retval;
1782
d6a843b5 1783 if (TYPE_FIELD_LOC_KIND (type, fieldno) == FIELD_LOC_KIND_PHYSADDR)
c906108c 1784 {
948e66d9 1785 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1786 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
c906108c
SS
1787 }
1788 else
1789 {
1790 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
2570f2b7 1791 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
948e66d9 1792 if (sym == NULL)
c906108c
SS
1793 {
1794 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
1795 as non-debuggable symbols */
1796 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
1797 if (!msym)
1798 return NULL;
1799 else
c5aa993b 1800 {
948e66d9 1801 retval = value_at (TYPE_FIELD_TYPE (type, fieldno),
00a4c844 1802 SYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
1803 }
1804 }
1805 else
1806 {
948e66d9
DJ
1807 /* SYM should never have a SYMBOL_CLASS which will require
1808 read_var_value to use the FRAME parameter. */
1809 if (symbol_read_needs_frame (sym))
8a3fe4f8
AC
1810 warning (_("static field's value depends on the current "
1811 "frame - bad debug info?"));
948e66d9 1812 retval = read_var_value (sym, NULL);
2b127877 1813 }
948e66d9
DJ
1814 if (retval && VALUE_LVAL (retval) == lval_memory)
1815 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno),
42ae5230 1816 value_address (retval));
c906108c 1817 }
948e66d9 1818 return retval;
c906108c
SS
1819}
1820
2b127877
DB
1821/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
1822 You have to be careful here, since the size of the data area for the value
1823 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
1824 than the old enclosing type, you have to allocate more space for the data.
1825 The return value is a pointer to the new version of this value structure. */
1826
f23631e4
AC
1827struct value *
1828value_change_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 1829{
3e3d7139
JG
1830 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
1831 val->contents =
1832 (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
1833
1834 val->enclosing_type = new_encl_type;
1835 return val;
2b127877
DB
1836}
1837
c906108c
SS
1838/* Given a value ARG1 (offset by OFFSET bytes)
1839 of a struct or union type ARG_TYPE,
1840 extract and return the value of one of its (non-static) fields.
1841 FIELDNO says which field. */
1842
f23631e4
AC
1843struct value *
1844value_primitive_field (struct value *arg1, int offset,
aa1ee363 1845 int fieldno, struct type *arg_type)
c906108c 1846{
f23631e4 1847 struct value *v;
52f0bd74 1848 struct type *type;
c906108c
SS
1849
1850 CHECK_TYPEDEF (arg_type);
1851 type = TYPE_FIELD_TYPE (arg_type, fieldno);
1852
1853 /* Handle packed fields */
1854
1855 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
1856 {
4ea48cc1
DJ
1857 /* Create a new value for the bitfield, with bitpos and bitsize
1858 set. If possible, arrange offset and bitpos so that we can
1859 do a single aligned read of the size of the containing type.
1860 Otherwise, adjust offset to the byte containing the first
1861 bit. Assume that the address, offset, and embedded offset
1862 are sufficiently aligned. */
1863 int bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
1864 int container_bitsize = TYPE_LENGTH (type) * 8;
1865
1866 v = allocate_value_lazy (type);
df407dfe 1867 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
4ea48cc1
DJ
1868 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
1869 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
1870 v->bitpos = bitpos % container_bitsize;
1871 else
1872 v->bitpos = bitpos % 8;
1873 v->offset = value_offset (arg1) + value_embedded_offset (arg1)
1874 + (bitpos - v->bitpos) / 8;
1875 v->parent = arg1;
1876 value_incref (v->parent);
1877 if (!value_lazy (arg1))
1878 value_fetch_lazy (v);
c906108c
SS
1879 }
1880 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
1881 {
1882 /* This field is actually a base subobject, so preserve the
1883 entire object's contents for later references to virtual
1884 bases, etc. */
a4e2ee12
DJ
1885
1886 /* Lazy register values with offsets are not supported. */
1887 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1888 value_fetch_lazy (arg1);
1889
1890 if (value_lazy (arg1))
3e3d7139 1891 v = allocate_value_lazy (value_enclosing_type (arg1));
c906108c 1892 else
3e3d7139
JG
1893 {
1894 v = allocate_value (value_enclosing_type (arg1));
1895 memcpy (value_contents_all_raw (v), value_contents_all_raw (arg1),
1896 TYPE_LENGTH (value_enclosing_type (arg1)));
1897 }
1898 v->type = type;
df407dfe 1899 v->offset = value_offset (arg1);
13c3b5f5
AC
1900 v->embedded_offset = (offset + value_embedded_offset (arg1)
1901 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8);
c906108c
SS
1902 }
1903 else
1904 {
1905 /* Plain old data member */
1906 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
a4e2ee12
DJ
1907
1908 /* Lazy register values with offsets are not supported. */
1909 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
1910 value_fetch_lazy (arg1);
1911
1912 if (value_lazy (arg1))
3e3d7139 1913 v = allocate_value_lazy (type);
c906108c 1914 else
3e3d7139
JG
1915 {
1916 v = allocate_value (type);
1917 memcpy (value_contents_raw (v),
1918 value_contents_raw (arg1) + offset,
1919 TYPE_LENGTH (type));
1920 }
df407dfe 1921 v->offset = (value_offset (arg1) + offset
13c3b5f5 1922 + value_embedded_offset (arg1));
c906108c 1923 }
74bcbdf3 1924 set_value_component_location (v, arg1);
9ee8fc9d 1925 VALUE_REGNUM (v) = VALUE_REGNUM (arg1);
0c16dd26 1926 VALUE_FRAME_ID (v) = VALUE_FRAME_ID (arg1);
c906108c
SS
1927 return v;
1928}
1929
1930/* Given a value ARG1 of a struct or union type,
1931 extract and return the value of one of its (non-static) fields.
1932 FIELDNO says which field. */
1933
f23631e4 1934struct value *
aa1ee363 1935value_field (struct value *arg1, int fieldno)
c906108c 1936{
df407dfe 1937 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
1938}
1939
1940/* Return a non-virtual function as a value.
1941 F is the list of member functions which contains the desired method.
0478d61c
FF
1942 J is an index into F which provides the desired method.
1943
1944 We only use the symbol for its address, so be happy with either a
1945 full symbol or a minimal symbol.
1946 */
c906108c 1947
f23631e4
AC
1948struct value *
1949value_fn_field (struct value **arg1p, struct fn_field *f, int j, struct type *type,
fba45db2 1950 int offset)
c906108c 1951{
f23631e4 1952 struct value *v;
52f0bd74 1953 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
0478d61c 1954 char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 1955 struct symbol *sym;
0478d61c 1956 struct minimal_symbol *msym;
c906108c 1957
2570f2b7 1958 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0);
5ae326fa 1959 if (sym != NULL)
0478d61c 1960 {
5ae326fa
AC
1961 msym = NULL;
1962 }
1963 else
1964 {
1965 gdb_assert (sym == NULL);
0478d61c 1966 msym = lookup_minimal_symbol (physname, NULL, NULL);
5ae326fa
AC
1967 if (msym == NULL)
1968 return NULL;
0478d61c
FF
1969 }
1970
c906108c 1971 v = allocate_value (ftype);
0478d61c
FF
1972 if (sym)
1973 {
42ae5230 1974 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
1975 }
1976 else
1977 {
bccdca4a
UW
1978 /* The minimal symbol might point to a function descriptor;
1979 resolve it to the actual code address instead. */
1980 struct objfile *objfile = msymbol_objfile (msym);
1981 struct gdbarch *gdbarch = get_objfile_arch (objfile);
1982
42ae5230
TT
1983 set_value_address (v,
1984 gdbarch_convert_from_func_ptr_addr
1985 (gdbarch, SYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 1986 }
c906108c
SS
1987
1988 if (arg1p)
c5aa993b 1989 {
df407dfe 1990 if (type != value_type (*arg1p))
c5aa993b
JM
1991 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
1992 value_addr (*arg1p)));
1993
070ad9f0 1994 /* Move the `this' pointer according to the offset.
c5aa993b
JM
1995 VALUE_OFFSET (*arg1p) += offset;
1996 */
c906108c
SS
1997 }
1998
1999 return v;
2000}
2001
c906108c 2002\f
4ea48cc1
DJ
2003/* Unpack a bitfield of the specified FIELD_TYPE, from the anonymous
2004 object at VALADDR. The bitfield starts at BITPOS bits and contains
2005 BITSIZE bits.
c906108c
SS
2006
2007 Extracting bits depends on endianness of the machine. Compute the
2008 number of least significant bits to discard. For big endian machines,
2009 we compute the total number of bits in the anonymous object, subtract
2010 off the bit count from the MSB of the object to the MSB of the
2011 bitfield, then the size of the bitfield, which leaves the LSB discard
2012 count. For little endian machines, the discard count is simply the
2013 number of bits from the LSB of the anonymous object to the LSB of the
2014 bitfield.
2015
2016 If the field is signed, we also do sign extension. */
2017
2018LONGEST
4ea48cc1
DJ
2019unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
2020 int bitpos, int bitsize)
c906108c 2021{
4ea48cc1 2022 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
2023 ULONGEST val;
2024 ULONGEST valmask;
c906108c 2025 int lsbcount;
c906108c 2026
e17a4113
UW
2027 val = extract_unsigned_integer (valaddr + bitpos / 8,
2028 sizeof (val), byte_order);
c906108c
SS
2029 CHECK_TYPEDEF (field_type);
2030
2031 /* Extract bits. See comment above. */
2032
4ea48cc1 2033 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
c906108c
SS
2034 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
2035 else
2036 lsbcount = (bitpos % 8);
2037 val >>= lsbcount;
2038
2039 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
2040 If the field is signed, and is negative, then sign extend. */
2041
2042 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
2043 {
2044 valmask = (((ULONGEST) 1) << bitsize) - 1;
2045 val &= valmask;
2046 if (!TYPE_UNSIGNED (field_type))
2047 {
2048 if (val & (valmask ^ (valmask >> 1)))
2049 {
2050 val |= ~valmask;
2051 }
2052 }
2053 }
2054 return (val);
2055}
2056
4ea48cc1
DJ
2057/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
2058 VALADDR. See unpack_bits_as_long for more details. */
2059
2060LONGEST
2061unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
2062{
2063 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
2064 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
2065 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
2066
2067 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
2068}
2069
c906108c
SS
2070/* Modify the value of a bitfield. ADDR points to a block of memory in
2071 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
2072 is the desired value of the field, in host byte order. BITPOS and BITSIZE
f4e88c8e
PH
2073 indicate which bits (in target bit order) comprise the bitfield.
2074 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS+BITSIZE <= lbits, and
2075 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
2076
2077void
50810684
UW
2078modify_field (struct type *type, gdb_byte *addr,
2079 LONGEST fieldval, int bitpos, int bitsize)
c906108c 2080{
e17a4113 2081 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
2082 ULONGEST oword;
2083 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
c906108c
SS
2084
2085 /* If a negative fieldval fits in the field in question, chop
2086 off the sign extension bits. */
f4e88c8e
PH
2087 if ((~fieldval & ~(mask >> 1)) == 0)
2088 fieldval &= mask;
c906108c
SS
2089
2090 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 2091 if (0 != (fieldval & ~mask))
c906108c
SS
2092 {
2093 /* FIXME: would like to include fieldval in the message, but
c5aa993b 2094 we don't have a sprintf_longest. */
8a3fe4f8 2095 warning (_("Value does not fit in %d bits."), bitsize);
c906108c
SS
2096
2097 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 2098 fieldval &= mask;
c906108c
SS
2099 }
2100
e17a4113 2101 oword = extract_unsigned_integer (addr, sizeof oword, byte_order);
c906108c
SS
2102
2103 /* Shifting for bit field depends on endianness of the target machine. */
50810684 2104 if (gdbarch_bits_big_endian (get_type_arch (type)))
c906108c
SS
2105 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
2106
f4e88c8e 2107 oword &= ~(mask << bitpos);
c906108c
SS
2108 oword |= fieldval << bitpos;
2109
e17a4113 2110 store_unsigned_integer (addr, sizeof oword, byte_order, oword);
c906108c
SS
2111}
2112\f
14d06750 2113/* Pack NUM into BUF using a target format of TYPE. */
c906108c 2114
14d06750
DJ
2115void
2116pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 2117{
e17a4113 2118 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74 2119 int len;
14d06750
DJ
2120
2121 type = check_typedef (type);
c906108c
SS
2122 len = TYPE_LENGTH (type);
2123
14d06750 2124 switch (TYPE_CODE (type))
c906108c 2125 {
c906108c
SS
2126 case TYPE_CODE_INT:
2127 case TYPE_CODE_CHAR:
2128 case TYPE_CODE_ENUM:
4f2aea11 2129 case TYPE_CODE_FLAGS:
c906108c
SS
2130 case TYPE_CODE_BOOL:
2131 case TYPE_CODE_RANGE:
0d5de010 2132 case TYPE_CODE_MEMBERPTR:
e17a4113 2133 store_signed_integer (buf, len, byte_order, num);
c906108c 2134 break;
c5aa993b 2135
c906108c
SS
2136 case TYPE_CODE_REF:
2137 case TYPE_CODE_PTR:
14d06750 2138 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 2139 break;
c5aa993b 2140
c906108c 2141 default:
14d06750
DJ
2142 error (_("Unexpected type (%d) encountered for integer constant."),
2143 TYPE_CODE (type));
c906108c 2144 }
14d06750
DJ
2145}
2146
2147
2148/* Convert C numbers into newly allocated values. */
2149
2150struct value *
2151value_from_longest (struct type *type, LONGEST num)
2152{
2153 struct value *val = allocate_value (type);
2154
2155 pack_long (value_contents_raw (val), type, num);
2156
c906108c
SS
2157 return val;
2158}
2159
4478b372
JB
2160
2161/* Create a value representing a pointer of type TYPE to the address
2162 ADDR. */
f23631e4 2163struct value *
4478b372
JB
2164value_from_pointer (struct type *type, CORE_ADDR addr)
2165{
f23631e4 2166 struct value *val = allocate_value (type);
990a07ab 2167 store_typed_address (value_contents_raw (val), type, addr);
4478b372
JB
2168 return val;
2169}
2170
2171
8acb6b92
TT
2172/* Create a value of type TYPE whose contents come from VALADDR, if it
2173 is non-null, and whose memory address (in the inferior) is
2174 ADDRESS. */
2175
2176struct value *
2177value_from_contents_and_address (struct type *type,
2178 const gdb_byte *valaddr,
2179 CORE_ADDR address)
2180{
2181 struct value *v = allocate_value (type);
2182 if (valaddr == NULL)
2183 set_value_lazy (v, 1);
2184 else
2185 memcpy (value_contents_raw (v), valaddr, TYPE_LENGTH (type));
42ae5230 2186 set_value_address (v, address);
33d502b4 2187 VALUE_LVAL (v) = lval_memory;
8acb6b92
TT
2188 return v;
2189}
2190
f23631e4 2191struct value *
fba45db2 2192value_from_double (struct type *type, DOUBLEST num)
c906108c 2193{
f23631e4 2194 struct value *val = allocate_value (type);
c906108c 2195 struct type *base_type = check_typedef (type);
52f0bd74
AC
2196 enum type_code code = TYPE_CODE (base_type);
2197 int len = TYPE_LENGTH (base_type);
c906108c
SS
2198
2199 if (code == TYPE_CODE_FLT)
2200 {
990a07ab 2201 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
2202 }
2203 else
8a3fe4f8 2204 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
2205
2206 return val;
2207}
994b9211 2208
27bc4d80 2209struct value *
4ef30785 2210value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
2211{
2212 struct value *val = allocate_value (type);
27bc4d80 2213
4ef30785 2214 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80 2215
27bc4d80
TJB
2216 return val;
2217}
2218
994b9211
AC
2219struct value *
2220coerce_ref (struct value *arg)
2221{
df407dfe 2222 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
994b9211
AC
2223 if (TYPE_CODE (value_type_arg_tmp) == TYPE_CODE_REF)
2224 arg = value_at_lazy (TYPE_TARGET_TYPE (value_type_arg_tmp),
df407dfe 2225 unpack_pointer (value_type (arg),
0fd88904 2226 value_contents (arg)));
994b9211
AC
2227 return arg;
2228}
2229
2230struct value *
2231coerce_array (struct value *arg)
2232{
f3134b88
TT
2233 struct type *type;
2234
994b9211 2235 arg = coerce_ref (arg);
f3134b88
TT
2236 type = check_typedef (value_type (arg));
2237
2238 switch (TYPE_CODE (type))
2239 {
2240 case TYPE_CODE_ARRAY:
2241 if (current_language->c_style_arrays)
2242 arg = value_coerce_array (arg);
2243 break;
2244 case TYPE_CODE_FUNC:
2245 arg = value_coerce_function (arg);
2246 break;
2247 }
994b9211
AC
2248 return arg;
2249}
c906108c 2250\f
c906108c 2251
48436ce6
AC
2252/* Return true if the function returning the specified type is using
2253 the convention of returning structures in memory (passing in the
82585c72 2254 address as a hidden first parameter). */
c906108c
SS
2255
2256int
d80b854b
UW
2257using_struct_return (struct gdbarch *gdbarch,
2258 struct type *func_type, struct type *value_type)
c906108c 2259{
52f0bd74 2260 enum type_code code = TYPE_CODE (value_type);
c906108c
SS
2261
2262 if (code == TYPE_CODE_ERROR)
8a3fe4f8 2263 error (_("Function return type unknown."));
c906108c 2264
667e784f
AC
2265 if (code == TYPE_CODE_VOID)
2266 /* A void return value is never in memory. See also corresponding
44e5158b 2267 code in "print_return_value". */
667e784f
AC
2268 return 0;
2269
92ad9cd9 2270 /* Probe the architecture for the return-value convention. */
d80b854b 2271 return (gdbarch_return_value (gdbarch, func_type, value_type,
92ad9cd9 2272 NULL, NULL, NULL)
31db7b6c 2273 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
2274}
2275
42be36b3
CT
2276/* Set the initialized field in a value struct. */
2277
2278void
2279set_value_initialized (struct value *val, int status)
2280{
2281 val->initialized = status;
2282}
2283
2284/* Return the initialized field in a value struct. */
2285
2286int
2287value_initialized (struct value *val)
2288{
2289 return val->initialized;
2290}
2291
c906108c 2292void
fba45db2 2293_initialize_values (void)
c906108c 2294{
1a966eab
AC
2295 add_cmd ("convenience", no_class, show_convenience, _("\
2296Debugger convenience (\"$foo\") variables.\n\
c906108c 2297These variables are created when you assign them values;\n\
1a966eab
AC
2298thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
2299\n\
c906108c
SS
2300A few convenience variables are given values automatically:\n\
2301\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1a966eab 2302\"$__\" holds the contents of the last address examined with \"x\"."),
c906108c
SS
2303 &showlist);
2304
2305 add_cmd ("values", no_class, show_values,
1a966eab 2306 _("Elements of value history around item number IDX (or last ten)."),
c906108c 2307 &showlist);
53e5f3cf
AS
2308
2309 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
2310Initialize a convenience variable if necessary.\n\
2311init-if-undefined VARIABLE = EXPRESSION\n\
2312Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
2313exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
2314VARIABLE is already initialized."));
bc3b79fd
TJB
2315
2316 add_prefix_cmd ("function", no_class, function_command, _("\
2317Placeholder command for showing help on convenience functions."),
2318 &functionlist, "function ", 0, &cmdlist);
c906108c 2319}
This page took 1.040175 seconds and 4 git commands to generate.