Remove prepare_re_set_context
[deliverable/binutils-gdb.git] / gdb / value.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
1bac305b 2
61baf725 3 Copyright (C) 1986-2017 Free Software Foundation, Inc.
c906108c 4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
a9762ec7 9 the Free Software Foundation; either version 3 of the License, or
c5aa993b 10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b 17 You should have received a copy of the GNU General Public License
a9762ec7 18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
c906108c
SS
19
20#include "defs.h"
e17c207e 21#include "arch-utils.h"
c906108c
SS
22#include "symtab.h"
23#include "gdbtypes.h"
24#include "value.h"
25#include "gdbcore.h"
c906108c
SS
26#include "command.h"
27#include "gdbcmd.h"
28#include "target.h"
29#include "language.h"
c906108c 30#include "demangle.h"
d16aafd8 31#include "doublest.h"
1841ee5d 32#include "floatformat.h"
36160dc4 33#include "regcache.h"
fe898f56 34#include "block.h"
27bc4d80 35#include "dfp.h"
bccdca4a 36#include "objfiles.h"
79a45b7d 37#include "valprint.h"
bc3b79fd 38#include "cli/cli-decode.h"
6dddc817 39#include "extension.h"
3bd0f5ef 40#include <ctype.h>
0914bcdb 41#include "tracepoint.h"
be335936 42#include "cp-abi.h"
a58e2656 43#include "user-regs.h"
325fac50 44#include <algorithm>
eb3ff9a5 45#include "completer.h"
0914bcdb 46
bc3b79fd
TJB
47/* Definition of a user function. */
48struct internal_function
49{
50 /* The name of the function. It is a bit odd to have this in the
51 function itself -- the user might use a differently-named
52 convenience variable to hold the function. */
53 char *name;
54
55 /* The handler. */
56 internal_function_fn handler;
57
58 /* User data for the handler. */
59 void *cookie;
60};
61
4e07d55f
PA
62/* Defines an [OFFSET, OFFSET + LENGTH) range. */
63
64struct range
65{
66 /* Lowest offset in the range. */
6b850546 67 LONGEST offset;
4e07d55f
PA
68
69 /* Length of the range. */
6b850546 70 LONGEST length;
4e07d55f
PA
71};
72
73typedef struct range range_s;
74
75DEF_VEC_O(range_s);
76
77/* Returns true if the ranges defined by [offset1, offset1+len1) and
78 [offset2, offset2+len2) overlap. */
79
80static int
6b850546
DT
81ranges_overlap (LONGEST offset1, LONGEST len1,
82 LONGEST offset2, LONGEST len2)
4e07d55f
PA
83{
84 ULONGEST h, l;
85
325fac50
PA
86 l = std::max (offset1, offset2);
87 h = std::min (offset1 + len1, offset2 + len2);
4e07d55f
PA
88 return (l < h);
89}
90
91/* Returns true if the first argument is strictly less than the
92 second, useful for VEC_lower_bound. We keep ranges sorted by
93 offset and coalesce overlapping and contiguous ranges, so this just
94 compares the starting offset. */
95
96static int
97range_lessthan (const range_s *r1, const range_s *r2)
98{
99 return r1->offset < r2->offset;
100}
101
102/* Returns true if RANGES contains any range that overlaps [OFFSET,
103 OFFSET+LENGTH). */
104
105static int
6b850546 106ranges_contain (VEC(range_s) *ranges, LONGEST offset, LONGEST length)
4e07d55f
PA
107{
108 range_s what;
6b850546 109 LONGEST i;
4e07d55f
PA
110
111 what.offset = offset;
112 what.length = length;
113
114 /* We keep ranges sorted by offset and coalesce overlapping and
115 contiguous ranges, so to check if a range list contains a given
116 range, we can do a binary search for the position the given range
117 would be inserted if we only considered the starting OFFSET of
118 ranges. We call that position I. Since we also have LENGTH to
119 care for (this is a range afterall), we need to check if the
120 _previous_ range overlaps the I range. E.g.,
121
122 R
123 |---|
124 |---| |---| |------| ... |--|
125 0 1 2 N
126
127 I=1
128
129 In the case above, the binary search would return `I=1', meaning,
130 this OFFSET should be inserted at position 1, and the current
131 position 1 should be pushed further (and before 2). But, `0'
132 overlaps with R.
133
134 Then we need to check if the I range overlaps the I range itself.
135 E.g.,
136
137 R
138 |---|
139 |---| |---| |-------| ... |--|
140 0 1 2 N
141
142 I=1
143 */
144
145 i = VEC_lower_bound (range_s, ranges, &what, range_lessthan);
146
147 if (i > 0)
148 {
149 struct range *bef = VEC_index (range_s, ranges, i - 1);
150
151 if (ranges_overlap (bef->offset, bef->length, offset, length))
152 return 1;
153 }
154
155 if (i < VEC_length (range_s, ranges))
156 {
157 struct range *r = VEC_index (range_s, ranges, i);
158
159 if (ranges_overlap (r->offset, r->length, offset, length))
160 return 1;
161 }
162
163 return 0;
164}
165
bc3b79fd
TJB
166static struct cmd_list_element *functionlist;
167
87784a47
TT
168/* Note that the fields in this structure are arranged to save a bit
169 of memory. */
170
91294c83
AC
171struct value
172{
173 /* Type of value; either not an lval, or one of the various
174 different possible kinds of lval. */
175 enum lval_type lval;
176
177 /* Is it modifiable? Only relevant if lval != not_lval. */
87784a47
TT
178 unsigned int modifiable : 1;
179
180 /* If zero, contents of this value are in the contents field. If
181 nonzero, contents are in inferior. If the lval field is lval_memory,
182 the contents are in inferior memory at location.address plus offset.
183 The lval field may also be lval_register.
184
185 WARNING: This field is used by the code which handles watchpoints
186 (see breakpoint.c) to decide whether a particular value can be
187 watched by hardware watchpoints. If the lazy flag is set for
188 some member of a value chain, it is assumed that this member of
189 the chain doesn't need to be watched as part of watching the
190 value itself. This is how GDB avoids watching the entire struct
191 or array when the user wants to watch a single struct member or
192 array element. If you ever change the way lazy flag is set and
193 reset, be sure to consider this use as well! */
194 unsigned int lazy : 1;
195
87784a47
TT
196 /* If value is a variable, is it initialized or not. */
197 unsigned int initialized : 1;
198
199 /* If value is from the stack. If this is set, read_stack will be
200 used instead of read_memory to enable extra caching. */
201 unsigned int stack : 1;
91294c83 202
e848a8a5
TT
203 /* If the value has been released. */
204 unsigned int released : 1;
205
91294c83
AC
206 /* Location of value (if lval). */
207 union
208 {
7dc54575 209 /* If lval == lval_memory, this is the address in the inferior */
91294c83
AC
210 CORE_ADDR address;
211
7dc54575
YQ
212 /*If lval == lval_register, the value is from a register. */
213 struct
214 {
215 /* Register number. */
216 int regnum;
217 /* Frame ID of "next" frame to which a register value is relative.
218 If the register value is found relative to frame F, then the
219 frame id of F->next will be stored in next_frame_id. */
220 struct frame_id next_frame_id;
221 } reg;
222
91294c83
AC
223 /* Pointer to internal variable. */
224 struct internalvar *internalvar;
5f5233d4 225
e81e7f5e
SC
226 /* Pointer to xmethod worker. */
227 struct xmethod_worker *xm_worker;
228
5f5233d4
PA
229 /* If lval == lval_computed, this is a set of function pointers
230 to use to access and describe the value, and a closure pointer
231 for them to use. */
232 struct
233 {
c8f2448a
JK
234 /* Functions to call. */
235 const struct lval_funcs *funcs;
236
237 /* Closure for those functions to use. */
238 void *closure;
5f5233d4 239 } computed;
91294c83
AC
240 } location;
241
3723fda8 242 /* Describes offset of a value within lval of a structure in target
7dc54575
YQ
243 addressable memory units. Note also the member embedded_offset
244 below. */
6b850546 245 LONGEST offset;
91294c83
AC
246
247 /* Only used for bitfields; number of bits contained in them. */
6b850546 248 LONGEST bitsize;
91294c83
AC
249
250 /* Only used for bitfields; position of start of field. For
32c9a795 251 gdbarch_bits_big_endian=0 targets, it is the position of the LSB. For
581e13c1 252 gdbarch_bits_big_endian=1 targets, it is the position of the MSB. */
6b850546 253 LONGEST bitpos;
91294c83 254
87784a47
TT
255 /* The number of references to this value. When a value is created,
256 the value chain holds a reference, so REFERENCE_COUNT is 1. If
257 release_value is called, this value is removed from the chain but
258 the caller of release_value now has a reference to this value.
259 The caller must arrange for a call to value_free later. */
260 int reference_count;
261
4ea48cc1
DJ
262 /* Only used for bitfields; the containing value. This allows a
263 single read from the target when displaying multiple
264 bitfields. */
265 struct value *parent;
266
91294c83
AC
267 /* Type of the value. */
268 struct type *type;
269
270 /* If a value represents a C++ object, then the `type' field gives
271 the object's compile-time type. If the object actually belongs
272 to some class derived from `type', perhaps with other base
273 classes and additional members, then `type' is just a subobject
274 of the real thing, and the full object is probably larger than
275 `type' would suggest.
276
277 If `type' is a dynamic class (i.e. one with a vtable), then GDB
278 can actually determine the object's run-time type by looking at
279 the run-time type information in the vtable. When this
280 information is available, we may elect to read in the entire
281 object, for several reasons:
282
283 - When printing the value, the user would probably rather see the
284 full object, not just the limited portion apparent from the
285 compile-time type.
286
287 - If `type' has virtual base classes, then even printing `type'
288 alone may require reaching outside the `type' portion of the
289 object to wherever the virtual base class has been stored.
290
291 When we store the entire object, `enclosing_type' is the run-time
292 type -- the complete object -- and `embedded_offset' is the
3723fda8
SM
293 offset of `type' within that larger type, in target addressable memory
294 units. The value_contents() macro takes `embedded_offset' into account,
295 so most GDB code continues to see the `type' portion of the value, just
296 as the inferior would.
91294c83
AC
297
298 If `type' is a pointer to an object, then `enclosing_type' is a
299 pointer to the object's run-time type, and `pointed_to_offset' is
3723fda8
SM
300 the offset in target addressable memory units from the full object
301 to the pointed-to object -- that is, the value `embedded_offset' would
302 have if we followed the pointer and fetched the complete object.
303 (I don't really see the point. Why not just determine the
304 run-time type when you indirect, and avoid the special case? The
305 contents don't matter until you indirect anyway.)
91294c83
AC
306
307 If we're not doing anything fancy, `enclosing_type' is equal to
308 `type', and `embedded_offset' is zero, so everything works
309 normally. */
310 struct type *enclosing_type;
6b850546
DT
311 LONGEST embedded_offset;
312 LONGEST pointed_to_offset;
91294c83
AC
313
314 /* Values are stored in a chain, so that they can be deleted easily
315 over calls to the inferior. Values assigned to internal
a08702d6
TJB
316 variables, put into the value history or exposed to Python are
317 taken off this list. */
91294c83
AC
318 struct value *next;
319
3e3d7139
JG
320 /* Actual contents of the value. Target byte-order. NULL or not
321 valid if lazy is nonzero. */
322 gdb_byte *contents;
828d3400 323
4e07d55f
PA
324 /* Unavailable ranges in CONTENTS. We mark unavailable ranges,
325 rather than available, since the common and default case is for a
9a0dc9e3
PA
326 value to be available. This is filled in at value read time.
327 The unavailable ranges are tracked in bits. Note that a contents
328 bit that has been optimized out doesn't really exist in the
329 program, so it can't be marked unavailable either. */
4e07d55f 330 VEC(range_s) *unavailable;
9a0dc9e3
PA
331
332 /* Likewise, but for optimized out contents (a chunk of the value of
333 a variable that does not actually exist in the program). If LVAL
334 is lval_register, this is a register ($pc, $sp, etc., never a
335 program variable) that has not been saved in the frame. Not
336 saved registers and optimized-out program variables values are
337 treated pretty much the same, except not-saved registers have a
338 different string representation and related error strings. */
339 VEC(range_s) *optimized_out;
91294c83
AC
340};
341
e512cdbd
SM
342/* See value.h. */
343
344struct gdbarch *
345get_value_arch (const struct value *value)
346{
347 return get_type_arch (value_type (value));
348}
349
4e07d55f 350int
6b850546 351value_bits_available (const struct value *value, LONGEST offset, LONGEST length)
4e07d55f
PA
352{
353 gdb_assert (!value->lazy);
354
355 return !ranges_contain (value->unavailable, offset, length);
356}
357
bdf22206 358int
6b850546
DT
359value_bytes_available (const struct value *value,
360 LONGEST offset, LONGEST length)
bdf22206
AB
361{
362 return value_bits_available (value,
363 offset * TARGET_CHAR_BIT,
364 length * TARGET_CHAR_BIT);
365}
366
9a0dc9e3
PA
367int
368value_bits_any_optimized_out (const struct value *value, int bit_offset, int bit_length)
369{
370 gdb_assert (!value->lazy);
371
372 return ranges_contain (value->optimized_out, bit_offset, bit_length);
373}
374
ec0a52e1
PA
375int
376value_entirely_available (struct value *value)
377{
378 /* We can only tell whether the whole value is available when we try
379 to read it. */
380 if (value->lazy)
381 value_fetch_lazy (value);
382
383 if (VEC_empty (range_s, value->unavailable))
384 return 1;
385 return 0;
386}
387
9a0dc9e3
PA
388/* Returns true if VALUE is entirely covered by RANGES. If the value
389 is lazy, it'll be read now. Note that RANGE is a pointer to
390 pointer because reading the value might change *RANGE. */
391
392static int
393value_entirely_covered_by_range_vector (struct value *value,
394 VEC(range_s) **ranges)
6211c335 395{
9a0dc9e3
PA
396 /* We can only tell whether the whole value is optimized out /
397 unavailable when we try to read it. */
6211c335
YQ
398 if (value->lazy)
399 value_fetch_lazy (value);
400
9a0dc9e3 401 if (VEC_length (range_s, *ranges) == 1)
6211c335 402 {
9a0dc9e3 403 struct range *t = VEC_index (range_s, *ranges, 0);
6211c335
YQ
404
405 if (t->offset == 0
64c46ce4
JB
406 && t->length == (TARGET_CHAR_BIT
407 * TYPE_LENGTH (value_enclosing_type (value))))
6211c335
YQ
408 return 1;
409 }
410
411 return 0;
412}
413
9a0dc9e3
PA
414int
415value_entirely_unavailable (struct value *value)
416{
417 return value_entirely_covered_by_range_vector (value, &value->unavailable);
418}
419
420int
421value_entirely_optimized_out (struct value *value)
422{
423 return value_entirely_covered_by_range_vector (value, &value->optimized_out);
424}
425
426/* Insert into the vector pointed to by VECTORP the bit range starting of
427 OFFSET bits, and extending for the next LENGTH bits. */
428
429static void
6b850546
DT
430insert_into_bit_range_vector (VEC(range_s) **vectorp,
431 LONGEST offset, LONGEST length)
4e07d55f
PA
432{
433 range_s newr;
434 int i;
435
436 /* Insert the range sorted. If there's overlap or the new range
437 would be contiguous with an existing range, merge. */
438
439 newr.offset = offset;
440 newr.length = length;
441
442 /* Do a binary search for the position the given range would be
443 inserted if we only considered the starting OFFSET of ranges.
444 Call that position I. Since we also have LENGTH to care for
445 (this is a range afterall), we need to check if the _previous_
446 range overlaps the I range. E.g., calling R the new range:
447
448 #1 - overlaps with previous
449
450 R
451 |-...-|
452 |---| |---| |------| ... |--|
453 0 1 2 N
454
455 I=1
456
457 In the case #1 above, the binary search would return `I=1',
458 meaning, this OFFSET should be inserted at position 1, and the
459 current position 1 should be pushed further (and become 2). But,
460 note that `0' overlaps with R, so we want to merge them.
461
462 A similar consideration needs to be taken if the new range would
463 be contiguous with the previous range:
464
465 #2 - contiguous with previous
466
467 R
468 |-...-|
469 |--| |---| |------| ... |--|
470 0 1 2 N
471
472 I=1
473
474 If there's no overlap with the previous range, as in:
475
476 #3 - not overlapping and not contiguous
477
478 R
479 |-...-|
480 |--| |---| |------| ... |--|
481 0 1 2 N
482
483 I=1
484
485 or if I is 0:
486
487 #4 - R is the range with lowest offset
488
489 R
490 |-...-|
491 |--| |---| |------| ... |--|
492 0 1 2 N
493
494 I=0
495
496 ... we just push the new range to I.
497
498 All the 4 cases above need to consider that the new range may
499 also overlap several of the ranges that follow, or that R may be
500 contiguous with the following range, and merge. E.g.,
501
502 #5 - overlapping following ranges
503
504 R
505 |------------------------|
506 |--| |---| |------| ... |--|
507 0 1 2 N
508
509 I=0
510
511 or:
512
513 R
514 |-------|
515 |--| |---| |------| ... |--|
516 0 1 2 N
517
518 I=1
519
520 */
521
9a0dc9e3 522 i = VEC_lower_bound (range_s, *vectorp, &newr, range_lessthan);
4e07d55f
PA
523 if (i > 0)
524 {
9a0dc9e3 525 struct range *bef = VEC_index (range_s, *vectorp, i - 1);
4e07d55f
PA
526
527 if (ranges_overlap (bef->offset, bef->length, offset, length))
528 {
529 /* #1 */
325fac50
PA
530 ULONGEST l = std::min (bef->offset, offset);
531 ULONGEST h = std::max (bef->offset + bef->length, offset + length);
4e07d55f
PA
532
533 bef->offset = l;
534 bef->length = h - l;
535 i--;
536 }
537 else if (offset == bef->offset + bef->length)
538 {
539 /* #2 */
540 bef->length += length;
541 i--;
542 }
543 else
544 {
545 /* #3 */
9a0dc9e3 546 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
547 }
548 }
549 else
550 {
551 /* #4 */
9a0dc9e3 552 VEC_safe_insert (range_s, *vectorp, i, &newr);
4e07d55f
PA
553 }
554
555 /* Check whether the ranges following the one we've just added or
556 touched can be folded in (#5 above). */
9a0dc9e3 557 if (i + 1 < VEC_length (range_s, *vectorp))
4e07d55f
PA
558 {
559 struct range *t;
560 struct range *r;
561 int removed = 0;
562 int next = i + 1;
563
564 /* Get the range we just touched. */
9a0dc9e3 565 t = VEC_index (range_s, *vectorp, i);
4e07d55f
PA
566 removed = 0;
567
568 i = next;
9a0dc9e3 569 for (; VEC_iterate (range_s, *vectorp, i, r); i++)
4e07d55f
PA
570 if (r->offset <= t->offset + t->length)
571 {
572 ULONGEST l, h;
573
325fac50
PA
574 l = std::min (t->offset, r->offset);
575 h = std::max (t->offset + t->length, r->offset + r->length);
4e07d55f
PA
576
577 t->offset = l;
578 t->length = h - l;
579
580 removed++;
581 }
582 else
583 {
584 /* If we couldn't merge this one, we won't be able to
585 merge following ones either, since the ranges are
586 always sorted by OFFSET. */
587 break;
588 }
589
590 if (removed != 0)
9a0dc9e3 591 VEC_block_remove (range_s, *vectorp, next, removed);
4e07d55f
PA
592 }
593}
594
9a0dc9e3 595void
6b850546
DT
596mark_value_bits_unavailable (struct value *value,
597 LONGEST offset, LONGEST length)
9a0dc9e3
PA
598{
599 insert_into_bit_range_vector (&value->unavailable, offset, length);
600}
601
bdf22206 602void
6b850546
DT
603mark_value_bytes_unavailable (struct value *value,
604 LONGEST offset, LONGEST length)
bdf22206
AB
605{
606 mark_value_bits_unavailable (value,
607 offset * TARGET_CHAR_BIT,
608 length * TARGET_CHAR_BIT);
609}
610
c8c1c22f
PA
611/* Find the first range in RANGES that overlaps the range defined by
612 OFFSET and LENGTH, starting at element POS in the RANGES vector,
613 Returns the index into RANGES where such overlapping range was
614 found, or -1 if none was found. */
615
616static int
617find_first_range_overlap (VEC(range_s) *ranges, int pos,
6b850546 618 LONGEST offset, LONGEST length)
c8c1c22f
PA
619{
620 range_s *r;
621 int i;
622
623 for (i = pos; VEC_iterate (range_s, ranges, i, r); i++)
624 if (ranges_overlap (r->offset, r->length, offset, length))
625 return i;
626
627 return -1;
628}
629
bdf22206
AB
630/* Compare LENGTH_BITS of memory at PTR1 + OFFSET1_BITS with the memory at
631 PTR2 + OFFSET2_BITS. Return 0 if the memory is the same, otherwise
632 return non-zero.
633
634 It must always be the case that:
635 OFFSET1_BITS % TARGET_CHAR_BIT == OFFSET2_BITS % TARGET_CHAR_BIT
636
637 It is assumed that memory can be accessed from:
638 PTR + (OFFSET_BITS / TARGET_CHAR_BIT)
639 to:
640 PTR + ((OFFSET_BITS + LENGTH_BITS + TARGET_CHAR_BIT - 1)
641 / TARGET_CHAR_BIT) */
642static int
643memcmp_with_bit_offsets (const gdb_byte *ptr1, size_t offset1_bits,
644 const gdb_byte *ptr2, size_t offset2_bits,
645 size_t length_bits)
646{
647 gdb_assert (offset1_bits % TARGET_CHAR_BIT
648 == offset2_bits % TARGET_CHAR_BIT);
649
650 if (offset1_bits % TARGET_CHAR_BIT != 0)
651 {
652 size_t bits;
653 gdb_byte mask, b1, b2;
654
655 /* The offset from the base pointers PTR1 and PTR2 is not a complete
656 number of bytes. A number of bits up to either the next exact
657 byte boundary, or LENGTH_BITS (which ever is sooner) will be
658 compared. */
659 bits = TARGET_CHAR_BIT - offset1_bits % TARGET_CHAR_BIT;
660 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
661 mask = (1 << bits) - 1;
662
663 if (length_bits < bits)
664 {
665 mask &= ~(gdb_byte) ((1 << (bits - length_bits)) - 1);
666 bits = length_bits;
667 }
668
669 /* Now load the two bytes and mask off the bits we care about. */
670 b1 = *(ptr1 + offset1_bits / TARGET_CHAR_BIT) & mask;
671 b2 = *(ptr2 + offset2_bits / TARGET_CHAR_BIT) & mask;
672
673 if (b1 != b2)
674 return 1;
675
676 /* Now update the length and offsets to take account of the bits
677 we've just compared. */
678 length_bits -= bits;
679 offset1_bits += bits;
680 offset2_bits += bits;
681 }
682
683 if (length_bits % TARGET_CHAR_BIT != 0)
684 {
685 size_t bits;
686 size_t o1, o2;
687 gdb_byte mask, b1, b2;
688
689 /* The length is not an exact number of bytes. After the previous
690 IF.. block then the offsets are byte aligned, or the
691 length is zero (in which case this code is not reached). Compare
692 a number of bits at the end of the region, starting from an exact
693 byte boundary. */
694 bits = length_bits % TARGET_CHAR_BIT;
695 o1 = offset1_bits + length_bits - bits;
696 o2 = offset2_bits + length_bits - bits;
697
698 gdb_assert (bits < sizeof (mask) * TARGET_CHAR_BIT);
699 mask = ((1 << bits) - 1) << (TARGET_CHAR_BIT - bits);
700
701 gdb_assert (o1 % TARGET_CHAR_BIT == 0);
702 gdb_assert (o2 % TARGET_CHAR_BIT == 0);
703
704 b1 = *(ptr1 + o1 / TARGET_CHAR_BIT) & mask;
705 b2 = *(ptr2 + o2 / TARGET_CHAR_BIT) & mask;
706
707 if (b1 != b2)
708 return 1;
709
710 length_bits -= bits;
711 }
712
713 if (length_bits > 0)
714 {
715 /* We've now taken care of any stray "bits" at the start, or end of
716 the region to compare, the remainder can be covered with a simple
717 memcmp. */
718 gdb_assert (offset1_bits % TARGET_CHAR_BIT == 0);
719 gdb_assert (offset2_bits % TARGET_CHAR_BIT == 0);
720 gdb_assert (length_bits % TARGET_CHAR_BIT == 0);
721
722 return memcmp (ptr1 + offset1_bits / TARGET_CHAR_BIT,
723 ptr2 + offset2_bits / TARGET_CHAR_BIT,
724 length_bits / TARGET_CHAR_BIT);
725 }
726
727 /* Length is zero, regions match. */
728 return 0;
729}
730
9a0dc9e3
PA
731/* Helper struct for find_first_range_overlap_and_match and
732 value_contents_bits_eq. Keep track of which slot of a given ranges
733 vector have we last looked at. */
bdf22206 734
9a0dc9e3
PA
735struct ranges_and_idx
736{
737 /* The ranges. */
738 VEC(range_s) *ranges;
739
740 /* The range we've last found in RANGES. Given ranges are sorted,
741 we can start the next lookup here. */
742 int idx;
743};
744
745/* Helper function for value_contents_bits_eq. Compare LENGTH bits of
746 RP1's ranges starting at OFFSET1 bits with LENGTH bits of RP2's
747 ranges starting at OFFSET2 bits. Return true if the ranges match
748 and fill in *L and *H with the overlapping window relative to
749 (both) OFFSET1 or OFFSET2. */
bdf22206
AB
750
751static int
9a0dc9e3
PA
752find_first_range_overlap_and_match (struct ranges_and_idx *rp1,
753 struct ranges_and_idx *rp2,
6b850546
DT
754 LONGEST offset1, LONGEST offset2,
755 LONGEST length, ULONGEST *l, ULONGEST *h)
c8c1c22f 756{
9a0dc9e3
PA
757 rp1->idx = find_first_range_overlap (rp1->ranges, rp1->idx,
758 offset1, length);
759 rp2->idx = find_first_range_overlap (rp2->ranges, rp2->idx,
760 offset2, length);
c8c1c22f 761
9a0dc9e3
PA
762 if (rp1->idx == -1 && rp2->idx == -1)
763 {
764 *l = length;
765 *h = length;
766 return 1;
767 }
768 else if (rp1->idx == -1 || rp2->idx == -1)
769 return 0;
770 else
c8c1c22f
PA
771 {
772 range_s *r1, *r2;
773 ULONGEST l1, h1;
774 ULONGEST l2, h2;
775
9a0dc9e3
PA
776 r1 = VEC_index (range_s, rp1->ranges, rp1->idx);
777 r2 = VEC_index (range_s, rp2->ranges, rp2->idx);
c8c1c22f
PA
778
779 /* Get the unavailable windows intersected by the incoming
780 ranges. The first and last ranges that overlap the argument
781 range may be wider than said incoming arguments ranges. */
325fac50
PA
782 l1 = std::max (offset1, r1->offset);
783 h1 = std::min (offset1 + length, r1->offset + r1->length);
c8c1c22f 784
325fac50
PA
785 l2 = std::max (offset2, r2->offset);
786 h2 = std::min (offset2 + length, offset2 + r2->length);
c8c1c22f
PA
787
788 /* Make them relative to the respective start offsets, so we can
789 compare them for equality. */
790 l1 -= offset1;
791 h1 -= offset1;
792
793 l2 -= offset2;
794 h2 -= offset2;
795
9a0dc9e3 796 /* Different ranges, no match. */
c8c1c22f
PA
797 if (l1 != l2 || h1 != h2)
798 return 0;
799
9a0dc9e3
PA
800 *h = h1;
801 *l = l1;
802 return 1;
803 }
804}
805
806/* Helper function for value_contents_eq. The only difference is that
807 this function is bit rather than byte based.
808
809 Compare LENGTH bits of VAL1's contents starting at OFFSET1 bits
810 with LENGTH bits of VAL2's contents starting at OFFSET2 bits.
811 Return true if the available bits match. */
812
813static int
814value_contents_bits_eq (const struct value *val1, int offset1,
815 const struct value *val2, int offset2,
816 int length)
817{
818 /* Each array element corresponds to a ranges source (unavailable,
819 optimized out). '1' is for VAL1, '2' for VAL2. */
820 struct ranges_and_idx rp1[2], rp2[2];
821
822 /* See function description in value.h. */
823 gdb_assert (!val1->lazy && !val2->lazy);
824
825 /* We shouldn't be trying to compare past the end of the values. */
826 gdb_assert (offset1 + length
827 <= TYPE_LENGTH (val1->enclosing_type) * TARGET_CHAR_BIT);
828 gdb_assert (offset2 + length
829 <= TYPE_LENGTH (val2->enclosing_type) * TARGET_CHAR_BIT);
830
831 memset (&rp1, 0, sizeof (rp1));
832 memset (&rp2, 0, sizeof (rp2));
833 rp1[0].ranges = val1->unavailable;
834 rp2[0].ranges = val2->unavailable;
835 rp1[1].ranges = val1->optimized_out;
836 rp2[1].ranges = val2->optimized_out;
837
838 while (length > 0)
839 {
000339af 840 ULONGEST l = 0, h = 0; /* init for gcc -Wall */
9a0dc9e3
PA
841 int i;
842
843 for (i = 0; i < 2; i++)
844 {
845 ULONGEST l_tmp, h_tmp;
846
847 /* The contents only match equal if the invalid/unavailable
848 contents ranges match as well. */
849 if (!find_first_range_overlap_and_match (&rp1[i], &rp2[i],
850 offset1, offset2, length,
851 &l_tmp, &h_tmp))
852 return 0;
853
854 /* We're interested in the lowest/first range found. */
855 if (i == 0 || l_tmp < l)
856 {
857 l = l_tmp;
858 h = h_tmp;
859 }
860 }
861
862 /* Compare the available/valid contents. */
bdf22206 863 if (memcmp_with_bit_offsets (val1->contents, offset1,
9a0dc9e3 864 val2->contents, offset2, l) != 0)
c8c1c22f
PA
865 return 0;
866
9a0dc9e3
PA
867 length -= h;
868 offset1 += h;
869 offset2 += h;
c8c1c22f
PA
870 }
871
872 return 1;
873}
874
bdf22206 875int
6b850546
DT
876value_contents_eq (const struct value *val1, LONGEST offset1,
877 const struct value *val2, LONGEST offset2,
878 LONGEST length)
bdf22206 879{
9a0dc9e3
PA
880 return value_contents_bits_eq (val1, offset1 * TARGET_CHAR_BIT,
881 val2, offset2 * TARGET_CHAR_BIT,
882 length * TARGET_CHAR_BIT);
bdf22206
AB
883}
884
581e13c1 885/* Prototypes for local functions. */
c906108c 886
a14ed312 887static void show_values (char *, int);
c906108c 888
c906108c
SS
889
890/* The value-history records all the values printed
891 by print commands during this session. Each chunk
892 records 60 consecutive values. The first chunk on
893 the chain records the most recent values.
894 The total number of values is in value_history_count. */
895
896#define VALUE_HISTORY_CHUNK 60
897
898struct value_history_chunk
c5aa993b
JM
899 {
900 struct value_history_chunk *next;
f23631e4 901 struct value *values[VALUE_HISTORY_CHUNK];
c5aa993b 902 };
c906108c
SS
903
904/* Chain of chunks now in use. */
905
906static struct value_history_chunk *value_history_chain;
907
581e13c1 908static int value_history_count; /* Abs number of last entry stored. */
bc3b79fd 909
c906108c
SS
910\f
911/* List of all value objects currently allocated
912 (except for those released by calls to release_value)
913 This is so they can be freed after each command. */
914
f23631e4 915static struct value *all_values;
c906108c 916
3e3d7139
JG
917/* Allocate a lazy value for type TYPE. Its actual content is
918 "lazily" allocated too: the content field of the return value is
919 NULL; it will be allocated when it is fetched from the target. */
c906108c 920
f23631e4 921struct value *
3e3d7139 922allocate_value_lazy (struct type *type)
c906108c 923{
f23631e4 924 struct value *val;
c54eabfa
JK
925
926 /* Call check_typedef on our type to make sure that, if TYPE
927 is a TYPE_CODE_TYPEDEF, its length is set to the length
928 of the target type instead of zero. However, we do not
929 replace the typedef type by the target type, because we want
930 to keep the typedef in order to be able to set the VAL's type
931 description correctly. */
932 check_typedef (type);
c906108c 933
8d749320 934 val = XCNEW (struct value);
3e3d7139 935 val->contents = NULL;
df407dfe 936 val->next = all_values;
c906108c 937 all_values = val;
df407dfe 938 val->type = type;
4754a64e 939 val->enclosing_type = type;
c906108c 940 VALUE_LVAL (val) = not_lval;
42ae5230 941 val->location.address = 0;
df407dfe
AC
942 val->offset = 0;
943 val->bitpos = 0;
944 val->bitsize = 0;
3e3d7139 945 val->lazy = 1;
13c3b5f5 946 val->embedded_offset = 0;
b44d461b 947 val->pointed_to_offset = 0;
c906108c 948 val->modifiable = 1;
42be36b3 949 val->initialized = 1; /* Default to initialized. */
828d3400
DJ
950
951 /* Values start out on the all_values chain. */
952 val->reference_count = 1;
953
c906108c
SS
954 return val;
955}
956
5fdf6324
AB
957/* The maximum size, in bytes, that GDB will try to allocate for a value.
958 The initial value of 64k was not selected for any specific reason, it is
959 just a reasonable starting point. */
960
961static int max_value_size = 65536; /* 64k bytes */
962
963/* It is critical that the MAX_VALUE_SIZE is at least as big as the size of
964 LONGEST, otherwise GDB will not be able to parse integer values from the
965 CLI; for example if the MAX_VALUE_SIZE could be set to 1 then GDB would
966 be unable to parse "set max-value-size 2".
967
968 As we want a consistent GDB experience across hosts with different sizes
969 of LONGEST, this arbitrary minimum value was selected, so long as this
970 is bigger than LONGEST on all GDB supported hosts we're fine. */
971
972#define MIN_VALUE_FOR_MAX_VALUE_SIZE 16
973gdb_static_assert (sizeof (LONGEST) <= MIN_VALUE_FOR_MAX_VALUE_SIZE);
974
975/* Implement the "set max-value-size" command. */
976
977static void
978set_max_value_size (char *args, int from_tty,
979 struct cmd_list_element *c)
980{
981 gdb_assert (max_value_size == -1 || max_value_size >= 0);
982
983 if (max_value_size > -1 && max_value_size < MIN_VALUE_FOR_MAX_VALUE_SIZE)
984 {
985 max_value_size = MIN_VALUE_FOR_MAX_VALUE_SIZE;
986 error (_("max-value-size set too low, increasing to %d bytes"),
987 max_value_size);
988 }
989}
990
991/* Implement the "show max-value-size" command. */
992
993static void
994show_max_value_size (struct ui_file *file, int from_tty,
995 struct cmd_list_element *c, const char *value)
996{
997 if (max_value_size == -1)
998 fprintf_filtered (file, _("Maximum value size is unlimited.\n"));
999 else
1000 fprintf_filtered (file, _("Maximum value size is %d bytes.\n"),
1001 max_value_size);
1002}
1003
1004/* Called before we attempt to allocate or reallocate a buffer for the
1005 contents of a value. TYPE is the type of the value for which we are
1006 allocating the buffer. If the buffer is too large (based on the user
1007 controllable setting) then throw an error. If this function returns
1008 then we should attempt to allocate the buffer. */
1009
1010static void
1011check_type_length_before_alloc (const struct type *type)
1012{
1013 unsigned int length = TYPE_LENGTH (type);
1014
1015 if (max_value_size > -1 && length > max_value_size)
1016 {
1017 if (TYPE_NAME (type) != NULL)
1018 error (_("value of type `%s' requires %u bytes, which is more "
1019 "than max-value-size"), TYPE_NAME (type), length);
1020 else
1021 error (_("value requires %u bytes, which is more than "
1022 "max-value-size"), length);
1023 }
1024}
1025
3e3d7139
JG
1026/* Allocate the contents of VAL if it has not been allocated yet. */
1027
548b762d 1028static void
3e3d7139
JG
1029allocate_value_contents (struct value *val)
1030{
1031 if (!val->contents)
5fdf6324
AB
1032 {
1033 check_type_length_before_alloc (val->enclosing_type);
1034 val->contents
1035 = (gdb_byte *) xzalloc (TYPE_LENGTH (val->enclosing_type));
1036 }
3e3d7139
JG
1037}
1038
1039/* Allocate a value and its contents for type TYPE. */
1040
1041struct value *
1042allocate_value (struct type *type)
1043{
1044 struct value *val = allocate_value_lazy (type);
a109c7c1 1045
3e3d7139
JG
1046 allocate_value_contents (val);
1047 val->lazy = 0;
1048 return val;
1049}
1050
c906108c 1051/* Allocate a value that has the correct length
938f5214 1052 for COUNT repetitions of type TYPE. */
c906108c 1053
f23631e4 1054struct value *
fba45db2 1055allocate_repeat_value (struct type *type, int count)
c906108c 1056{
c5aa993b 1057 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
1058 /* FIXME-type-allocation: need a way to free this type when we are
1059 done with it. */
e3506a9f
UW
1060 struct type *array_type
1061 = lookup_array_range_type (type, low_bound, count + low_bound - 1);
a109c7c1 1062
e3506a9f 1063 return allocate_value (array_type);
c906108c
SS
1064}
1065
5f5233d4
PA
1066struct value *
1067allocate_computed_value (struct type *type,
c8f2448a 1068 const struct lval_funcs *funcs,
5f5233d4
PA
1069 void *closure)
1070{
41e8491f 1071 struct value *v = allocate_value_lazy (type);
a109c7c1 1072
5f5233d4
PA
1073 VALUE_LVAL (v) = lval_computed;
1074 v->location.computed.funcs = funcs;
1075 v->location.computed.closure = closure;
5f5233d4
PA
1076
1077 return v;
1078}
1079
a7035dbb
JK
1080/* Allocate NOT_LVAL value for type TYPE being OPTIMIZED_OUT. */
1081
1082struct value *
1083allocate_optimized_out_value (struct type *type)
1084{
1085 struct value *retval = allocate_value_lazy (type);
1086
9a0dc9e3
PA
1087 mark_value_bytes_optimized_out (retval, 0, TYPE_LENGTH (type));
1088 set_value_lazy (retval, 0);
a7035dbb
JK
1089 return retval;
1090}
1091
df407dfe
AC
1092/* Accessor methods. */
1093
17cf0ecd 1094struct value *
4bf7b526 1095value_next (const struct value *value)
17cf0ecd
AC
1096{
1097 return value->next;
1098}
1099
df407dfe 1100struct type *
0e03807e 1101value_type (const struct value *value)
df407dfe
AC
1102{
1103 return value->type;
1104}
04624583
AC
1105void
1106deprecated_set_value_type (struct value *value, struct type *type)
1107{
1108 value->type = type;
1109}
df407dfe 1110
6b850546 1111LONGEST
0e03807e 1112value_offset (const struct value *value)
df407dfe
AC
1113{
1114 return value->offset;
1115}
f5cf64a7 1116void
6b850546 1117set_value_offset (struct value *value, LONGEST offset)
f5cf64a7
AC
1118{
1119 value->offset = offset;
1120}
df407dfe 1121
6b850546 1122LONGEST
0e03807e 1123value_bitpos (const struct value *value)
df407dfe
AC
1124{
1125 return value->bitpos;
1126}
9bbda503 1127void
6b850546 1128set_value_bitpos (struct value *value, LONGEST bit)
9bbda503
AC
1129{
1130 value->bitpos = bit;
1131}
df407dfe 1132
6b850546 1133LONGEST
0e03807e 1134value_bitsize (const struct value *value)
df407dfe
AC
1135{
1136 return value->bitsize;
1137}
9bbda503 1138void
6b850546 1139set_value_bitsize (struct value *value, LONGEST bit)
9bbda503
AC
1140{
1141 value->bitsize = bit;
1142}
df407dfe 1143
4ea48cc1 1144struct value *
4bf7b526 1145value_parent (const struct value *value)
4ea48cc1
DJ
1146{
1147 return value->parent;
1148}
1149
53ba8333
JB
1150/* See value.h. */
1151
1152void
1153set_value_parent (struct value *value, struct value *parent)
1154{
40501e00
TT
1155 struct value *old = value->parent;
1156
53ba8333 1157 value->parent = parent;
40501e00
TT
1158 if (parent != NULL)
1159 value_incref (parent);
1160 value_free (old);
53ba8333
JB
1161}
1162
fc1a4b47 1163gdb_byte *
990a07ab
AC
1164value_contents_raw (struct value *value)
1165{
3ae385af
SM
1166 struct gdbarch *arch = get_value_arch (value);
1167 int unit_size = gdbarch_addressable_memory_unit_size (arch);
1168
3e3d7139 1169 allocate_value_contents (value);
3ae385af 1170 return value->contents + value->embedded_offset * unit_size;
990a07ab
AC
1171}
1172
fc1a4b47 1173gdb_byte *
990a07ab
AC
1174value_contents_all_raw (struct value *value)
1175{
3e3d7139
JG
1176 allocate_value_contents (value);
1177 return value->contents;
990a07ab
AC
1178}
1179
4754a64e 1180struct type *
4bf7b526 1181value_enclosing_type (const struct value *value)
4754a64e
AC
1182{
1183 return value->enclosing_type;
1184}
1185
8264ba82
AG
1186/* Look at value.h for description. */
1187
1188struct type *
1189value_actual_type (struct value *value, int resolve_simple_types,
1190 int *real_type_found)
1191{
1192 struct value_print_options opts;
8264ba82
AG
1193 struct type *result;
1194
1195 get_user_print_options (&opts);
1196
1197 if (real_type_found)
1198 *real_type_found = 0;
1199 result = value_type (value);
1200 if (opts.objectprint)
1201 {
5e34c6c3
LM
1202 /* If result's target type is TYPE_CODE_STRUCT, proceed to
1203 fetch its rtti type. */
aa006118 1204 if ((TYPE_CODE (result) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (result))
5e34c6c3 1205 && TYPE_CODE (check_typedef (TYPE_TARGET_TYPE (result)))
ecf2e90c
DB
1206 == TYPE_CODE_STRUCT
1207 && !value_optimized_out (value))
8264ba82
AG
1208 {
1209 struct type *real_type;
1210
1211 real_type = value_rtti_indirect_type (value, NULL, NULL, NULL);
1212 if (real_type)
1213 {
1214 if (real_type_found)
1215 *real_type_found = 1;
1216 result = real_type;
1217 }
1218 }
1219 else if (resolve_simple_types)
1220 {
1221 if (real_type_found)
1222 *real_type_found = 1;
1223 result = value_enclosing_type (value);
1224 }
1225 }
1226
1227 return result;
1228}
1229
901461f8
PA
1230void
1231error_value_optimized_out (void)
1232{
1233 error (_("value has been optimized out"));
1234}
1235
0e03807e 1236static void
4e07d55f 1237require_not_optimized_out (const struct value *value)
0e03807e 1238{
9a0dc9e3 1239 if (!VEC_empty (range_s, value->optimized_out))
901461f8
PA
1240 {
1241 if (value->lval == lval_register)
1242 error (_("register has not been saved in frame"));
1243 else
1244 error_value_optimized_out ();
1245 }
0e03807e
TT
1246}
1247
4e07d55f
PA
1248static void
1249require_available (const struct value *value)
1250{
1251 if (!VEC_empty (range_s, value->unavailable))
8af8e3bc 1252 throw_error (NOT_AVAILABLE_ERROR, _("value is not available"));
4e07d55f
PA
1253}
1254
fc1a4b47 1255const gdb_byte *
0e03807e 1256value_contents_for_printing (struct value *value)
46615f07
AC
1257{
1258 if (value->lazy)
1259 value_fetch_lazy (value);
3e3d7139 1260 return value->contents;
46615f07
AC
1261}
1262
de4127a3
PA
1263const gdb_byte *
1264value_contents_for_printing_const (const struct value *value)
1265{
1266 gdb_assert (!value->lazy);
1267 return value->contents;
1268}
1269
0e03807e
TT
1270const gdb_byte *
1271value_contents_all (struct value *value)
1272{
1273 const gdb_byte *result = value_contents_for_printing (value);
1274 require_not_optimized_out (value);
4e07d55f 1275 require_available (value);
0e03807e
TT
1276 return result;
1277}
1278
9a0dc9e3
PA
1279/* Copy ranges in SRC_RANGE that overlap [SRC_BIT_OFFSET,
1280 SRC_BIT_OFFSET+BIT_LENGTH) ranges into *DST_RANGE, adjusted. */
1281
1282static void
1283ranges_copy_adjusted (VEC (range_s) **dst_range, int dst_bit_offset,
1284 VEC (range_s) *src_range, int src_bit_offset,
1285 int bit_length)
1286{
1287 range_s *r;
1288 int i;
1289
1290 for (i = 0; VEC_iterate (range_s, src_range, i, r); i++)
1291 {
1292 ULONGEST h, l;
1293
325fac50
PA
1294 l = std::max (r->offset, (LONGEST) src_bit_offset);
1295 h = std::min (r->offset + r->length,
1296 (LONGEST) src_bit_offset + bit_length);
9a0dc9e3
PA
1297
1298 if (l < h)
1299 insert_into_bit_range_vector (dst_range,
1300 dst_bit_offset + (l - src_bit_offset),
1301 h - l);
1302 }
1303}
1304
4875ffdb
PA
1305/* Copy the ranges metadata in SRC that overlaps [SRC_BIT_OFFSET,
1306 SRC_BIT_OFFSET+BIT_LENGTH) into DST, adjusted. */
1307
1308static void
1309value_ranges_copy_adjusted (struct value *dst, int dst_bit_offset,
1310 const struct value *src, int src_bit_offset,
1311 int bit_length)
1312{
1313 ranges_copy_adjusted (&dst->unavailable, dst_bit_offset,
1314 src->unavailable, src_bit_offset,
1315 bit_length);
1316 ranges_copy_adjusted (&dst->optimized_out, dst_bit_offset,
1317 src->optimized_out, src_bit_offset,
1318 bit_length);
1319}
1320
3ae385af 1321/* Copy LENGTH target addressable memory units of SRC value's (all) contents
29976f3f
PA
1322 (value_contents_all) starting at SRC_OFFSET, into DST value's (all)
1323 contents, starting at DST_OFFSET. If unavailable contents are
1324 being copied from SRC, the corresponding DST contents are marked
1325 unavailable accordingly. Neither DST nor SRC may be lazy
1326 values.
1327
1328 It is assumed the contents of DST in the [DST_OFFSET,
1329 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1330
1331void
6b850546
DT
1332value_contents_copy_raw (struct value *dst, LONGEST dst_offset,
1333 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1334{
6b850546 1335 LONGEST src_bit_offset, dst_bit_offset, bit_length;
3ae385af
SM
1336 struct gdbarch *arch = get_value_arch (src);
1337 int unit_size = gdbarch_addressable_memory_unit_size (arch);
39d37385
PA
1338
1339 /* A lazy DST would make that this copy operation useless, since as
1340 soon as DST's contents were un-lazied (by a later value_contents
1341 call, say), the contents would be overwritten. A lazy SRC would
1342 mean we'd be copying garbage. */
1343 gdb_assert (!dst->lazy && !src->lazy);
1344
29976f3f
PA
1345 /* The overwritten DST range gets unavailability ORed in, not
1346 replaced. Make sure to remember to implement replacing if it
1347 turns out actually necessary. */
1348 gdb_assert (value_bytes_available (dst, dst_offset, length));
9a0dc9e3
PA
1349 gdb_assert (!value_bits_any_optimized_out (dst,
1350 TARGET_CHAR_BIT * dst_offset,
1351 TARGET_CHAR_BIT * length));
29976f3f 1352
39d37385 1353 /* Copy the data. */
3ae385af
SM
1354 memcpy (value_contents_all_raw (dst) + dst_offset * unit_size,
1355 value_contents_all_raw (src) + src_offset * unit_size,
1356 length * unit_size);
39d37385
PA
1357
1358 /* Copy the meta-data, adjusted. */
3ae385af
SM
1359 src_bit_offset = src_offset * unit_size * HOST_CHAR_BIT;
1360 dst_bit_offset = dst_offset * unit_size * HOST_CHAR_BIT;
1361 bit_length = length * unit_size * HOST_CHAR_BIT;
39d37385 1362
4875ffdb
PA
1363 value_ranges_copy_adjusted (dst, dst_bit_offset,
1364 src, src_bit_offset,
1365 bit_length);
39d37385
PA
1366}
1367
29976f3f
PA
1368/* Copy LENGTH bytes of SRC value's (all) contents
1369 (value_contents_all) starting at SRC_OFFSET byte, into DST value's
1370 (all) contents, starting at DST_OFFSET. If unavailable contents
1371 are being copied from SRC, the corresponding DST contents are
1372 marked unavailable accordingly. DST must not be lazy. If SRC is
9a0dc9e3 1373 lazy, it will be fetched now.
29976f3f
PA
1374
1375 It is assumed the contents of DST in the [DST_OFFSET,
1376 DST_OFFSET+LENGTH) range are wholly available. */
39d37385
PA
1377
1378void
6b850546
DT
1379value_contents_copy (struct value *dst, LONGEST dst_offset,
1380 struct value *src, LONGEST src_offset, LONGEST length)
39d37385 1381{
39d37385
PA
1382 if (src->lazy)
1383 value_fetch_lazy (src);
1384
1385 value_contents_copy_raw (dst, dst_offset, src, src_offset, length);
1386}
1387
d69fe07e 1388int
4bf7b526 1389value_lazy (const struct value *value)
d69fe07e
AC
1390{
1391 return value->lazy;
1392}
1393
dfa52d88
AC
1394void
1395set_value_lazy (struct value *value, int val)
1396{
1397 value->lazy = val;
1398}
1399
4e5d721f 1400int
4bf7b526 1401value_stack (const struct value *value)
4e5d721f
DE
1402{
1403 return value->stack;
1404}
1405
1406void
1407set_value_stack (struct value *value, int val)
1408{
1409 value->stack = val;
1410}
1411
fc1a4b47 1412const gdb_byte *
0fd88904
AC
1413value_contents (struct value *value)
1414{
0e03807e
TT
1415 const gdb_byte *result = value_contents_writeable (value);
1416 require_not_optimized_out (value);
4e07d55f 1417 require_available (value);
0e03807e 1418 return result;
0fd88904
AC
1419}
1420
fc1a4b47 1421gdb_byte *
0fd88904
AC
1422value_contents_writeable (struct value *value)
1423{
1424 if (value->lazy)
1425 value_fetch_lazy (value);
fc0c53a0 1426 return value_contents_raw (value);
0fd88904
AC
1427}
1428
feb13ab0
AC
1429int
1430value_optimized_out (struct value *value)
1431{
691a26f5
AB
1432 /* We can only know if a value is optimized out once we have tried to
1433 fetch it. */
9a0dc9e3 1434 if (VEC_empty (range_s, value->optimized_out) && value->lazy)
ecf2e90c
DB
1435 {
1436 TRY
1437 {
1438 value_fetch_lazy (value);
1439 }
1440 CATCH (ex, RETURN_MASK_ERROR)
1441 {
1442 /* Fall back to checking value->optimized_out. */
1443 }
1444 END_CATCH
1445 }
691a26f5 1446
9a0dc9e3 1447 return !VEC_empty (range_s, value->optimized_out);
feb13ab0
AC
1448}
1449
9a0dc9e3
PA
1450/* Mark contents of VALUE as optimized out, starting at OFFSET bytes, and
1451 the following LENGTH bytes. */
eca07816 1452
feb13ab0 1453void
9a0dc9e3 1454mark_value_bytes_optimized_out (struct value *value, int offset, int length)
feb13ab0 1455{
9a0dc9e3
PA
1456 mark_value_bits_optimized_out (value,
1457 offset * TARGET_CHAR_BIT,
1458 length * TARGET_CHAR_BIT);
feb13ab0 1459}
13c3b5f5 1460
9a0dc9e3 1461/* See value.h. */
0e03807e 1462
9a0dc9e3 1463void
6b850546
DT
1464mark_value_bits_optimized_out (struct value *value,
1465 LONGEST offset, LONGEST length)
0e03807e 1466{
9a0dc9e3 1467 insert_into_bit_range_vector (&value->optimized_out, offset, length);
0e03807e
TT
1468}
1469
8cf6f0b1
TT
1470int
1471value_bits_synthetic_pointer (const struct value *value,
6b850546 1472 LONGEST offset, LONGEST length)
8cf6f0b1 1473{
e7303042 1474 if (value->lval != lval_computed
8cf6f0b1
TT
1475 || !value->location.computed.funcs->check_synthetic_pointer)
1476 return 0;
1477 return value->location.computed.funcs->check_synthetic_pointer (value,
1478 offset,
1479 length);
1480}
1481
6b850546 1482LONGEST
4bf7b526 1483value_embedded_offset (const struct value *value)
13c3b5f5
AC
1484{
1485 return value->embedded_offset;
1486}
1487
1488void
6b850546 1489set_value_embedded_offset (struct value *value, LONGEST val)
13c3b5f5
AC
1490{
1491 value->embedded_offset = val;
1492}
b44d461b 1493
6b850546 1494LONGEST
4bf7b526 1495value_pointed_to_offset (const struct value *value)
b44d461b
AC
1496{
1497 return value->pointed_to_offset;
1498}
1499
1500void
6b850546 1501set_value_pointed_to_offset (struct value *value, LONGEST val)
b44d461b
AC
1502{
1503 value->pointed_to_offset = val;
1504}
13bb5560 1505
c8f2448a 1506const struct lval_funcs *
a471c594 1507value_computed_funcs (const struct value *v)
5f5233d4 1508{
a471c594 1509 gdb_assert (value_lval_const (v) == lval_computed);
5f5233d4
PA
1510
1511 return v->location.computed.funcs;
1512}
1513
1514void *
0e03807e 1515value_computed_closure (const struct value *v)
5f5233d4 1516{
0e03807e 1517 gdb_assert (v->lval == lval_computed);
5f5233d4
PA
1518
1519 return v->location.computed.closure;
1520}
1521
13bb5560
AC
1522enum lval_type *
1523deprecated_value_lval_hack (struct value *value)
1524{
1525 return &value->lval;
1526}
1527
a471c594
JK
1528enum lval_type
1529value_lval_const (const struct value *value)
1530{
1531 return value->lval;
1532}
1533
42ae5230 1534CORE_ADDR
de4127a3 1535value_address (const struct value *value)
42ae5230 1536{
1a088441 1537 if (value->lval != lval_memory)
42ae5230 1538 return 0;
53ba8333
JB
1539 if (value->parent != NULL)
1540 return value_address (value->parent) + value->offset;
9920b434
BH
1541 if (NULL != TYPE_DATA_LOCATION (value_type (value)))
1542 {
1543 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (value_type (value)));
1544 return TYPE_DATA_LOCATION_ADDR (value_type (value));
1545 }
1546
1547 return value->location.address + value->offset;
42ae5230
TT
1548}
1549
1550CORE_ADDR
4bf7b526 1551value_raw_address (const struct value *value)
42ae5230 1552{
1a088441 1553 if (value->lval != lval_memory)
42ae5230
TT
1554 return 0;
1555 return value->location.address;
1556}
1557
1558void
1559set_value_address (struct value *value, CORE_ADDR addr)
13bb5560 1560{
1a088441 1561 gdb_assert (value->lval == lval_memory);
42ae5230 1562 value->location.address = addr;
13bb5560
AC
1563}
1564
1565struct internalvar **
1566deprecated_value_internalvar_hack (struct value *value)
1567{
1568 return &value->location.internalvar;
1569}
1570
1571struct frame_id *
41b56feb 1572deprecated_value_next_frame_id_hack (struct value *value)
13bb5560 1573{
7c2ba67e 1574 gdb_assert (value->lval == lval_register);
7dc54575 1575 return &value->location.reg.next_frame_id;
13bb5560
AC
1576}
1577
7dc54575 1578int *
13bb5560
AC
1579deprecated_value_regnum_hack (struct value *value)
1580{
7c2ba67e 1581 gdb_assert (value->lval == lval_register);
7dc54575 1582 return &value->location.reg.regnum;
13bb5560 1583}
88e3b34b
AC
1584
1585int
4bf7b526 1586deprecated_value_modifiable (const struct value *value)
88e3b34b
AC
1587{
1588 return value->modifiable;
1589}
990a07ab 1590\f
c906108c
SS
1591/* Return a mark in the value chain. All values allocated after the
1592 mark is obtained (except for those released) are subject to being freed
1593 if a subsequent value_free_to_mark is passed the mark. */
f23631e4 1594struct value *
fba45db2 1595value_mark (void)
c906108c
SS
1596{
1597 return all_values;
1598}
1599
828d3400
DJ
1600/* Take a reference to VAL. VAL will not be deallocated until all
1601 references are released. */
1602
1603void
1604value_incref (struct value *val)
1605{
1606 val->reference_count++;
1607}
1608
1609/* Release a reference to VAL, which was acquired with value_incref.
1610 This function is also called to deallocate values from the value
1611 chain. */
1612
3e3d7139
JG
1613void
1614value_free (struct value *val)
1615{
1616 if (val)
5f5233d4 1617 {
828d3400
DJ
1618 gdb_assert (val->reference_count > 0);
1619 val->reference_count--;
1620 if (val->reference_count > 0)
1621 return;
1622
4ea48cc1
DJ
1623 /* If there's an associated parent value, drop our reference to
1624 it. */
1625 if (val->parent != NULL)
1626 value_free (val->parent);
1627
5f5233d4
PA
1628 if (VALUE_LVAL (val) == lval_computed)
1629 {
c8f2448a 1630 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1631
1632 if (funcs->free_closure)
1633 funcs->free_closure (val);
1634 }
e81e7f5e
SC
1635 else if (VALUE_LVAL (val) == lval_xcallable)
1636 free_xmethod_worker (val->location.xm_worker);
5f5233d4
PA
1637
1638 xfree (val->contents);
4e07d55f 1639 VEC_free (range_s, val->unavailable);
5f5233d4 1640 }
3e3d7139
JG
1641 xfree (val);
1642}
1643
c906108c
SS
1644/* Free all values allocated since MARK was obtained by value_mark
1645 (except for those released). */
1646void
4bf7b526 1647value_free_to_mark (const struct value *mark)
c906108c 1648{
f23631e4
AC
1649 struct value *val;
1650 struct value *next;
c906108c
SS
1651
1652 for (val = all_values; val && val != mark; val = next)
1653 {
df407dfe 1654 next = val->next;
e848a8a5 1655 val->released = 1;
c906108c
SS
1656 value_free (val);
1657 }
1658 all_values = val;
1659}
1660
1661/* Free all the values that have been allocated (except for those released).
725e88af
DE
1662 Call after each command, successful or not.
1663 In practice this is called before each command, which is sufficient. */
c906108c
SS
1664
1665void
fba45db2 1666free_all_values (void)
c906108c 1667{
f23631e4
AC
1668 struct value *val;
1669 struct value *next;
c906108c
SS
1670
1671 for (val = all_values; val; val = next)
1672 {
df407dfe 1673 next = val->next;
e848a8a5 1674 val->released = 1;
c906108c
SS
1675 value_free (val);
1676 }
1677
1678 all_values = 0;
1679}
1680
0cf6dd15
TJB
1681/* Frees all the elements in a chain of values. */
1682
1683void
1684free_value_chain (struct value *v)
1685{
1686 struct value *next;
1687
1688 for (; v; v = next)
1689 {
1690 next = value_next (v);
1691 value_free (v);
1692 }
1693}
1694
c906108c
SS
1695/* Remove VAL from the chain all_values
1696 so it will not be freed automatically. */
1697
1698void
f23631e4 1699release_value (struct value *val)
c906108c 1700{
f23631e4 1701 struct value *v;
c906108c
SS
1702
1703 if (all_values == val)
1704 {
1705 all_values = val->next;
06a64a0b 1706 val->next = NULL;
e848a8a5 1707 val->released = 1;
c906108c
SS
1708 return;
1709 }
1710
1711 for (v = all_values; v; v = v->next)
1712 {
1713 if (v->next == val)
1714 {
1715 v->next = val->next;
06a64a0b 1716 val->next = NULL;
e848a8a5 1717 val->released = 1;
c906108c
SS
1718 break;
1719 }
1720 }
1721}
1722
e848a8a5
TT
1723/* If the value is not already released, release it.
1724 If the value is already released, increment its reference count.
1725 That is, this function ensures that the value is released from the
1726 value chain and that the caller owns a reference to it. */
1727
1728void
1729release_value_or_incref (struct value *val)
1730{
1731 if (val->released)
1732 value_incref (val);
1733 else
1734 release_value (val);
1735}
1736
c906108c 1737/* Release all values up to mark */
f23631e4 1738struct value *
4bf7b526 1739value_release_to_mark (const struct value *mark)
c906108c 1740{
f23631e4
AC
1741 struct value *val;
1742 struct value *next;
c906108c 1743
df407dfe 1744 for (val = next = all_values; next; next = next->next)
e848a8a5
TT
1745 {
1746 if (next->next == mark)
1747 {
1748 all_values = next->next;
1749 next->next = NULL;
1750 return val;
1751 }
1752 next->released = 1;
1753 }
c906108c
SS
1754 all_values = 0;
1755 return val;
1756}
1757
1758/* Return a copy of the value ARG.
1759 It contains the same contents, for same memory address,
1760 but it's a different block of storage. */
1761
f23631e4
AC
1762struct value *
1763value_copy (struct value *arg)
c906108c 1764{
4754a64e 1765 struct type *encl_type = value_enclosing_type (arg);
3e3d7139
JG
1766 struct value *val;
1767
1768 if (value_lazy (arg))
1769 val = allocate_value_lazy (encl_type);
1770 else
1771 val = allocate_value (encl_type);
df407dfe 1772 val->type = arg->type;
c906108c 1773 VALUE_LVAL (val) = VALUE_LVAL (arg);
6f7c8fc2 1774 val->location = arg->location;
df407dfe
AC
1775 val->offset = arg->offset;
1776 val->bitpos = arg->bitpos;
1777 val->bitsize = arg->bitsize;
d69fe07e 1778 val->lazy = arg->lazy;
13c3b5f5 1779 val->embedded_offset = value_embedded_offset (arg);
b44d461b 1780 val->pointed_to_offset = arg->pointed_to_offset;
c906108c 1781 val->modifiable = arg->modifiable;
d69fe07e 1782 if (!value_lazy (val))
c906108c 1783 {
990a07ab 1784 memcpy (value_contents_all_raw (val), value_contents_all_raw (arg),
4754a64e 1785 TYPE_LENGTH (value_enclosing_type (arg)));
c906108c
SS
1786
1787 }
4e07d55f 1788 val->unavailable = VEC_copy (range_s, arg->unavailable);
9a0dc9e3 1789 val->optimized_out = VEC_copy (range_s, arg->optimized_out);
40501e00 1790 set_value_parent (val, arg->parent);
5f5233d4
PA
1791 if (VALUE_LVAL (val) == lval_computed)
1792 {
c8f2448a 1793 const struct lval_funcs *funcs = val->location.computed.funcs;
5f5233d4
PA
1794
1795 if (funcs->copy_closure)
1796 val->location.computed.closure = funcs->copy_closure (val);
1797 }
c906108c
SS
1798 return val;
1799}
74bcbdf3 1800
4c082a81
SC
1801/* Return a "const" and/or "volatile" qualified version of the value V.
1802 If CNST is true, then the returned value will be qualified with
1803 "const".
1804 if VOLTL is true, then the returned value will be qualified with
1805 "volatile". */
1806
1807struct value *
1808make_cv_value (int cnst, int voltl, struct value *v)
1809{
1810 struct type *val_type = value_type (v);
1811 struct type *enclosing_type = value_enclosing_type (v);
1812 struct value *cv_val = value_copy (v);
1813
1814 deprecated_set_value_type (cv_val,
1815 make_cv_type (cnst, voltl, val_type, NULL));
1816 set_value_enclosing_type (cv_val,
1817 make_cv_type (cnst, voltl, enclosing_type, NULL));
1818
1819 return cv_val;
1820}
1821
c37f7098
KW
1822/* Return a version of ARG that is non-lvalue. */
1823
1824struct value *
1825value_non_lval (struct value *arg)
1826{
1827 if (VALUE_LVAL (arg) != not_lval)
1828 {
1829 struct type *enc_type = value_enclosing_type (arg);
1830 struct value *val = allocate_value (enc_type);
1831
1832 memcpy (value_contents_all_raw (val), value_contents_all (arg),
1833 TYPE_LENGTH (enc_type));
1834 val->type = arg->type;
1835 set_value_embedded_offset (val, value_embedded_offset (arg));
1836 set_value_pointed_to_offset (val, value_pointed_to_offset (arg));
1837 return val;
1838 }
1839 return arg;
1840}
1841
6c659fc2
SC
1842/* Write contents of V at ADDR and set its lval type to be LVAL_MEMORY. */
1843
1844void
1845value_force_lval (struct value *v, CORE_ADDR addr)
1846{
1847 gdb_assert (VALUE_LVAL (v) == not_lval);
1848
1849 write_memory (addr, value_contents_raw (v), TYPE_LENGTH (value_type (v)));
1850 v->lval = lval_memory;
1851 v->location.address = addr;
1852}
1853
74bcbdf3 1854void
0e03807e
TT
1855set_value_component_location (struct value *component,
1856 const struct value *whole)
74bcbdf3 1857{
9920b434
BH
1858 struct type *type;
1859
e81e7f5e
SC
1860 gdb_assert (whole->lval != lval_xcallable);
1861
0e03807e 1862 if (whole->lval == lval_internalvar)
74bcbdf3
PA
1863 VALUE_LVAL (component) = lval_internalvar_component;
1864 else
0e03807e 1865 VALUE_LVAL (component) = whole->lval;
5f5233d4 1866
74bcbdf3 1867 component->location = whole->location;
0e03807e 1868 if (whole->lval == lval_computed)
5f5233d4 1869 {
c8f2448a 1870 const struct lval_funcs *funcs = whole->location.computed.funcs;
5f5233d4
PA
1871
1872 if (funcs->copy_closure)
1873 component->location.computed.closure = funcs->copy_closure (whole);
1874 }
9920b434
BH
1875
1876 /* If type has a dynamic resolved location property
1877 update it's value address. */
1878 type = value_type (whole);
1879 if (NULL != TYPE_DATA_LOCATION (type)
1880 && TYPE_DATA_LOCATION_KIND (type) == PROP_CONST)
1881 set_value_address (component, TYPE_DATA_LOCATION_ADDR (type));
74bcbdf3
PA
1882}
1883
c906108c
SS
1884/* Access to the value history. */
1885
1886/* Record a new value in the value history.
eddf0bae 1887 Returns the absolute history index of the entry. */
c906108c
SS
1888
1889int
f23631e4 1890record_latest_value (struct value *val)
c906108c
SS
1891{
1892 int i;
1893
1894 /* We don't want this value to have anything to do with the inferior anymore.
1895 In particular, "set $1 = 50" should not affect the variable from which
1896 the value was taken, and fast watchpoints should be able to assume that
1897 a value on the value history never changes. */
d69fe07e 1898 if (value_lazy (val))
c906108c
SS
1899 value_fetch_lazy (val);
1900 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
1901 from. This is a bit dubious, because then *&$1 does not just return $1
1902 but the current contents of that location. c'est la vie... */
1903 val->modifiable = 0;
350e1a76
DE
1904
1905 /* The value may have already been released, in which case we're adding a
1906 new reference for its entry in the history. That is why we call
1907 release_value_or_incref here instead of release_value. */
1908 release_value_or_incref (val);
c906108c
SS
1909
1910 /* Here we treat value_history_count as origin-zero
1911 and applying to the value being stored now. */
1912
1913 i = value_history_count % VALUE_HISTORY_CHUNK;
1914 if (i == 0)
1915 {
8d749320 1916 struct value_history_chunk *newobj = XCNEW (struct value_history_chunk);
a109c7c1 1917
fe978cb0
PA
1918 newobj->next = value_history_chain;
1919 value_history_chain = newobj;
c906108c
SS
1920 }
1921
1922 value_history_chain->values[i] = val;
1923
1924 /* Now we regard value_history_count as origin-one
1925 and applying to the value just stored. */
1926
1927 return ++value_history_count;
1928}
1929
1930/* Return a copy of the value in the history with sequence number NUM. */
1931
f23631e4 1932struct value *
fba45db2 1933access_value_history (int num)
c906108c 1934{
f23631e4 1935 struct value_history_chunk *chunk;
52f0bd74
AC
1936 int i;
1937 int absnum = num;
c906108c
SS
1938
1939 if (absnum <= 0)
1940 absnum += value_history_count;
1941
1942 if (absnum <= 0)
1943 {
1944 if (num == 0)
8a3fe4f8 1945 error (_("The history is empty."));
c906108c 1946 else if (num == 1)
8a3fe4f8 1947 error (_("There is only one value in the history."));
c906108c 1948 else
8a3fe4f8 1949 error (_("History does not go back to $$%d."), -num);
c906108c
SS
1950 }
1951 if (absnum > value_history_count)
8a3fe4f8 1952 error (_("History has not yet reached $%d."), absnum);
c906108c
SS
1953
1954 absnum--;
1955
1956 /* Now absnum is always absolute and origin zero. */
1957
1958 chunk = value_history_chain;
3e43a32a
MS
1959 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK
1960 - absnum / VALUE_HISTORY_CHUNK;
c906108c
SS
1961 i > 0; i--)
1962 chunk = chunk->next;
1963
1964 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
1965}
1966
c906108c 1967static void
fba45db2 1968show_values (char *num_exp, int from_tty)
c906108c 1969{
52f0bd74 1970 int i;
f23631e4 1971 struct value *val;
c906108c
SS
1972 static int num = 1;
1973
1974 if (num_exp)
1975 {
f132ba9d
TJB
1976 /* "show values +" should print from the stored position.
1977 "show values <exp>" should print around value number <exp>. */
c906108c 1978 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 1979 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
1980 }
1981 else
1982 {
f132ba9d 1983 /* "show values" means print the last 10 values. */
c906108c
SS
1984 num = value_history_count - 9;
1985 }
1986
1987 if (num <= 0)
1988 num = 1;
1989
1990 for (i = num; i < num + 10 && i <= value_history_count; i++)
1991 {
79a45b7d 1992 struct value_print_options opts;
a109c7c1 1993
c906108c 1994 val = access_value_history (i);
a3f17187 1995 printf_filtered (("$%d = "), i);
79a45b7d
TT
1996 get_user_print_options (&opts);
1997 value_print (val, gdb_stdout, &opts);
a3f17187 1998 printf_filtered (("\n"));
c906108c
SS
1999 }
2000
f132ba9d 2001 /* The next "show values +" should start after what we just printed. */
c906108c
SS
2002 num += 10;
2003
2004 /* Hitting just return after this command should do the same thing as
f132ba9d
TJB
2005 "show values +". If num_exp is null, this is unnecessary, since
2006 "show values +" is not useful after "show values". */
c906108c
SS
2007 if (from_tty && num_exp)
2008 {
2009 num_exp[0] = '+';
2010 num_exp[1] = '\0';
2011 }
2012}
2013\f
52059ffd
TT
2014enum internalvar_kind
2015{
2016 /* The internal variable is empty. */
2017 INTERNALVAR_VOID,
2018
2019 /* The value of the internal variable is provided directly as
2020 a GDB value object. */
2021 INTERNALVAR_VALUE,
2022
2023 /* A fresh value is computed via a call-back routine on every
2024 access to the internal variable. */
2025 INTERNALVAR_MAKE_VALUE,
2026
2027 /* The internal variable holds a GDB internal convenience function. */
2028 INTERNALVAR_FUNCTION,
2029
2030 /* The variable holds an integer value. */
2031 INTERNALVAR_INTEGER,
2032
2033 /* The variable holds a GDB-provided string. */
2034 INTERNALVAR_STRING,
2035};
2036
2037union internalvar_data
2038{
2039 /* A value object used with INTERNALVAR_VALUE. */
2040 struct value *value;
2041
2042 /* The call-back routine used with INTERNALVAR_MAKE_VALUE. */
2043 struct
2044 {
2045 /* The functions to call. */
2046 const struct internalvar_funcs *functions;
2047
2048 /* The function's user-data. */
2049 void *data;
2050 } make_value;
2051
2052 /* The internal function used with INTERNALVAR_FUNCTION. */
2053 struct
2054 {
2055 struct internal_function *function;
2056 /* True if this is the canonical name for the function. */
2057 int canonical;
2058 } fn;
2059
2060 /* An integer value used with INTERNALVAR_INTEGER. */
2061 struct
2062 {
2063 /* If type is non-NULL, it will be used as the type to generate
2064 a value for this internal variable. If type is NULL, a default
2065 integer type for the architecture is used. */
2066 struct type *type;
2067 LONGEST val;
2068 } integer;
2069
2070 /* A string value used with INTERNALVAR_STRING. */
2071 char *string;
2072};
2073
c906108c
SS
2074/* Internal variables. These are variables within the debugger
2075 that hold values assigned by debugger commands.
2076 The user refers to them with a '$' prefix
2077 that does not appear in the variable names stored internally. */
2078
4fa62494
UW
2079struct internalvar
2080{
2081 struct internalvar *next;
2082 char *name;
4fa62494 2083
78267919
UW
2084 /* We support various different kinds of content of an internal variable.
2085 enum internalvar_kind specifies the kind, and union internalvar_data
2086 provides the data associated with this particular kind. */
2087
52059ffd 2088 enum internalvar_kind kind;
4fa62494 2089
52059ffd 2090 union internalvar_data u;
4fa62494
UW
2091};
2092
c906108c
SS
2093static struct internalvar *internalvars;
2094
3e43a32a
MS
2095/* If the variable does not already exist create it and give it the
2096 value given. If no value is given then the default is zero. */
53e5f3cf
AS
2097static void
2098init_if_undefined_command (char* args, int from_tty)
2099{
2100 struct internalvar* intvar;
2101
2102 /* Parse the expression - this is taken from set_command(). */
4d01a485 2103 expression_up expr = parse_expression (args);
53e5f3cf
AS
2104
2105 /* Validate the expression.
2106 Was the expression an assignment?
2107 Or even an expression at all? */
2108 if (expr->nelts == 0 || expr->elts[0].opcode != BINOP_ASSIGN)
2109 error (_("Init-if-undefined requires an assignment expression."));
2110
2111 /* Extract the variable from the parsed expression.
2112 In the case of an assign the lvalue will be in elts[1] and elts[2]. */
2113 if (expr->elts[1].opcode != OP_INTERNALVAR)
3e43a32a
MS
2114 error (_("The first parameter to init-if-undefined "
2115 "should be a GDB variable."));
53e5f3cf
AS
2116 intvar = expr->elts[2].internalvar;
2117
2118 /* Only evaluate the expression if the lvalue is void.
2119 This may still fail if the expresssion is invalid. */
78267919 2120 if (intvar->kind == INTERNALVAR_VOID)
4d01a485 2121 evaluate_expression (expr.get ());
53e5f3cf
AS
2122}
2123
2124
c906108c
SS
2125/* Look up an internal variable with name NAME. NAME should not
2126 normally include a dollar sign.
2127
2128 If the specified internal variable does not exist,
c4a3d09a 2129 the return value is NULL. */
c906108c
SS
2130
2131struct internalvar *
bc3b79fd 2132lookup_only_internalvar (const char *name)
c906108c 2133{
52f0bd74 2134 struct internalvar *var;
c906108c
SS
2135
2136 for (var = internalvars; var; var = var->next)
5cb316ef 2137 if (strcmp (var->name, name) == 0)
c906108c
SS
2138 return var;
2139
c4a3d09a
MF
2140 return NULL;
2141}
2142
eb3ff9a5
PA
2143/* Complete NAME by comparing it to the names of internal
2144 variables. */
d55637df 2145
eb3ff9a5
PA
2146void
2147complete_internalvar (completion_tracker &tracker, const char *name)
d55637df 2148{
d55637df
TT
2149 struct internalvar *var;
2150 int len;
2151
2152 len = strlen (name);
2153
2154 for (var = internalvars; var; var = var->next)
2155 if (strncmp (var->name, name, len) == 0)
2156 {
eb3ff9a5 2157 gdb::unique_xmalloc_ptr<char> copy (xstrdup (var->name));
d55637df 2158
eb3ff9a5 2159 tracker.add_completion (std::move (copy));
d55637df 2160 }
d55637df 2161}
c4a3d09a
MF
2162
2163/* Create an internal variable with name NAME and with a void value.
2164 NAME should not normally include a dollar sign. */
2165
2166struct internalvar *
bc3b79fd 2167create_internalvar (const char *name)
c4a3d09a 2168{
8d749320 2169 struct internalvar *var = XNEW (struct internalvar);
a109c7c1 2170
1754f103 2171 var->name = concat (name, (char *)NULL);
78267919 2172 var->kind = INTERNALVAR_VOID;
c906108c
SS
2173 var->next = internalvars;
2174 internalvars = var;
2175 return var;
2176}
2177
4aa995e1
PA
2178/* Create an internal variable with name NAME and register FUN as the
2179 function that value_of_internalvar uses to create a value whenever
2180 this variable is referenced. NAME should not normally include a
22d2b532
SDJ
2181 dollar sign. DATA is passed uninterpreted to FUN when it is
2182 called. CLEANUP, if not NULL, is called when the internal variable
2183 is destroyed. It is passed DATA as its only argument. */
4aa995e1
PA
2184
2185struct internalvar *
22d2b532
SDJ
2186create_internalvar_type_lazy (const char *name,
2187 const struct internalvar_funcs *funcs,
2188 void *data)
4aa995e1 2189{
4fa62494 2190 struct internalvar *var = create_internalvar (name);
a109c7c1 2191
78267919 2192 var->kind = INTERNALVAR_MAKE_VALUE;
22d2b532
SDJ
2193 var->u.make_value.functions = funcs;
2194 var->u.make_value.data = data;
4aa995e1
PA
2195 return var;
2196}
c4a3d09a 2197
22d2b532
SDJ
2198/* See documentation in value.h. */
2199
2200int
2201compile_internalvar_to_ax (struct internalvar *var,
2202 struct agent_expr *expr,
2203 struct axs_value *value)
2204{
2205 if (var->kind != INTERNALVAR_MAKE_VALUE
2206 || var->u.make_value.functions->compile_to_ax == NULL)
2207 return 0;
2208
2209 var->u.make_value.functions->compile_to_ax (var, expr, value,
2210 var->u.make_value.data);
2211 return 1;
2212}
2213
c4a3d09a
MF
2214/* Look up an internal variable with name NAME. NAME should not
2215 normally include a dollar sign.
2216
2217 If the specified internal variable does not exist,
2218 one is created, with a void value. */
2219
2220struct internalvar *
bc3b79fd 2221lookup_internalvar (const char *name)
c4a3d09a
MF
2222{
2223 struct internalvar *var;
2224
2225 var = lookup_only_internalvar (name);
2226 if (var)
2227 return var;
2228
2229 return create_internalvar (name);
2230}
2231
78267919
UW
2232/* Return current value of internal variable VAR. For variables that
2233 are not inherently typed, use a value type appropriate for GDBARCH. */
2234
f23631e4 2235struct value *
78267919 2236value_of_internalvar (struct gdbarch *gdbarch, struct internalvar *var)
c906108c 2237{
f23631e4 2238 struct value *val;
0914bcdb
SS
2239 struct trace_state_variable *tsv;
2240
2241 /* If there is a trace state variable of the same name, assume that
2242 is what we really want to see. */
2243 tsv = find_trace_state_variable (var->name);
2244 if (tsv)
2245 {
2246 tsv->value_known = target_get_trace_state_variable_value (tsv->number,
2247 &(tsv->value));
2248 if (tsv->value_known)
2249 val = value_from_longest (builtin_type (gdbarch)->builtin_int64,
2250 tsv->value);
2251 else
2252 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2253 return val;
2254 }
c906108c 2255
78267919 2256 switch (var->kind)
5f5233d4 2257 {
78267919
UW
2258 case INTERNALVAR_VOID:
2259 val = allocate_value (builtin_type (gdbarch)->builtin_void);
2260 break;
4fa62494 2261
78267919
UW
2262 case INTERNALVAR_FUNCTION:
2263 val = allocate_value (builtin_type (gdbarch)->internal_fn);
2264 break;
4fa62494 2265
cab0c772
UW
2266 case INTERNALVAR_INTEGER:
2267 if (!var->u.integer.type)
78267919 2268 val = value_from_longest (builtin_type (gdbarch)->builtin_int,
cab0c772 2269 var->u.integer.val);
78267919 2270 else
cab0c772
UW
2271 val = value_from_longest (var->u.integer.type, var->u.integer.val);
2272 break;
2273
78267919
UW
2274 case INTERNALVAR_STRING:
2275 val = value_cstring (var->u.string, strlen (var->u.string),
2276 builtin_type (gdbarch)->builtin_char);
2277 break;
4fa62494 2278
78267919
UW
2279 case INTERNALVAR_VALUE:
2280 val = value_copy (var->u.value);
4aa995e1
PA
2281 if (value_lazy (val))
2282 value_fetch_lazy (val);
78267919 2283 break;
4aa995e1 2284
78267919 2285 case INTERNALVAR_MAKE_VALUE:
22d2b532
SDJ
2286 val = (*var->u.make_value.functions->make_value) (gdbarch, var,
2287 var->u.make_value.data);
78267919
UW
2288 break;
2289
2290 default:
9b20d036 2291 internal_error (__FILE__, __LINE__, _("bad kind"));
78267919
UW
2292 }
2293
2294 /* Change the VALUE_LVAL to lval_internalvar so that future operations
2295 on this value go back to affect the original internal variable.
2296
2297 Do not do this for INTERNALVAR_MAKE_VALUE variables, as those have
2298 no underlying modifyable state in the internal variable.
2299
2300 Likewise, if the variable's value is a computed lvalue, we want
2301 references to it to produce another computed lvalue, where
2302 references and assignments actually operate through the
2303 computed value's functions.
2304
2305 This means that internal variables with computed values
2306 behave a little differently from other internal variables:
2307 assignments to them don't just replace the previous value
2308 altogether. At the moment, this seems like the behavior we
2309 want. */
2310
2311 if (var->kind != INTERNALVAR_MAKE_VALUE
2312 && val->lval != lval_computed)
2313 {
2314 VALUE_LVAL (val) = lval_internalvar;
2315 VALUE_INTERNALVAR (val) = var;
5f5233d4 2316 }
d3c139e9 2317
4fa62494
UW
2318 return val;
2319}
d3c139e9 2320
4fa62494
UW
2321int
2322get_internalvar_integer (struct internalvar *var, LONGEST *result)
2323{
3158c6ed 2324 if (var->kind == INTERNALVAR_INTEGER)
4fa62494 2325 {
cab0c772
UW
2326 *result = var->u.integer.val;
2327 return 1;
3158c6ed 2328 }
d3c139e9 2329
3158c6ed
PA
2330 if (var->kind == INTERNALVAR_VALUE)
2331 {
2332 struct type *type = check_typedef (value_type (var->u.value));
2333
2334 if (TYPE_CODE (type) == TYPE_CODE_INT)
2335 {
2336 *result = value_as_long (var->u.value);
2337 return 1;
2338 }
4fa62494 2339 }
3158c6ed
PA
2340
2341 return 0;
4fa62494 2342}
d3c139e9 2343
4fa62494
UW
2344static int
2345get_internalvar_function (struct internalvar *var,
2346 struct internal_function **result)
2347{
78267919 2348 switch (var->kind)
d3c139e9 2349 {
78267919
UW
2350 case INTERNALVAR_FUNCTION:
2351 *result = var->u.fn.function;
4fa62494 2352 return 1;
d3c139e9 2353
4fa62494
UW
2354 default:
2355 return 0;
2356 }
c906108c
SS
2357}
2358
2359void
6b850546
DT
2360set_internalvar_component (struct internalvar *var,
2361 LONGEST offset, LONGEST bitpos,
2362 LONGEST bitsize, struct value *newval)
c906108c 2363{
4fa62494 2364 gdb_byte *addr;
3ae385af
SM
2365 struct gdbarch *arch;
2366 int unit_size;
c906108c 2367
78267919 2368 switch (var->kind)
4fa62494 2369 {
78267919
UW
2370 case INTERNALVAR_VALUE:
2371 addr = value_contents_writeable (var->u.value);
3ae385af
SM
2372 arch = get_value_arch (var->u.value);
2373 unit_size = gdbarch_addressable_memory_unit_size (arch);
4fa62494
UW
2374
2375 if (bitsize)
50810684 2376 modify_field (value_type (var->u.value), addr + offset,
4fa62494
UW
2377 value_as_long (newval), bitpos, bitsize);
2378 else
3ae385af 2379 memcpy (addr + offset * unit_size, value_contents (newval),
4fa62494
UW
2380 TYPE_LENGTH (value_type (newval)));
2381 break;
78267919
UW
2382
2383 default:
2384 /* We can never get a component of any other kind. */
9b20d036 2385 internal_error (__FILE__, __LINE__, _("set_internalvar_component"));
4fa62494 2386 }
c906108c
SS
2387}
2388
2389void
f23631e4 2390set_internalvar (struct internalvar *var, struct value *val)
c906108c 2391{
78267919 2392 enum internalvar_kind new_kind;
4fa62494 2393 union internalvar_data new_data = { 0 };
c906108c 2394
78267919 2395 if (var->kind == INTERNALVAR_FUNCTION && var->u.fn.canonical)
bc3b79fd
TJB
2396 error (_("Cannot overwrite convenience function %s"), var->name);
2397
4fa62494 2398 /* Prepare new contents. */
78267919 2399 switch (TYPE_CODE (check_typedef (value_type (val))))
4fa62494
UW
2400 {
2401 case TYPE_CODE_VOID:
78267919 2402 new_kind = INTERNALVAR_VOID;
4fa62494
UW
2403 break;
2404
2405 case TYPE_CODE_INTERNAL_FUNCTION:
2406 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
78267919
UW
2407 new_kind = INTERNALVAR_FUNCTION;
2408 get_internalvar_function (VALUE_INTERNALVAR (val),
2409 &new_data.fn.function);
2410 /* Copies created here are never canonical. */
4fa62494
UW
2411 break;
2412
4fa62494 2413 default:
78267919
UW
2414 new_kind = INTERNALVAR_VALUE;
2415 new_data.value = value_copy (val);
2416 new_data.value->modifiable = 1;
4fa62494
UW
2417
2418 /* Force the value to be fetched from the target now, to avoid problems
2419 later when this internalvar is referenced and the target is gone or
2420 has changed. */
78267919
UW
2421 if (value_lazy (new_data.value))
2422 value_fetch_lazy (new_data.value);
4fa62494
UW
2423
2424 /* Release the value from the value chain to prevent it from being
2425 deleted by free_all_values. From here on this function should not
2426 call error () until new_data is installed into the var->u to avoid
2427 leaking memory. */
78267919 2428 release_value (new_data.value);
9920b434
BH
2429
2430 /* Internal variables which are created from values with a dynamic
2431 location don't need the location property of the origin anymore.
2432 The resolved dynamic location is used prior then any other address
2433 when accessing the value.
2434 If we keep it, we would still refer to the origin value.
2435 Remove the location property in case it exist. */
2436 remove_dyn_prop (DYN_PROP_DATA_LOCATION, value_type (new_data.value));
2437
4fa62494
UW
2438 break;
2439 }
2440
2441 /* Clean up old contents. */
2442 clear_internalvar (var);
2443
2444 /* Switch over. */
78267919 2445 var->kind = new_kind;
4fa62494 2446 var->u = new_data;
c906108c
SS
2447 /* End code which must not call error(). */
2448}
2449
4fa62494
UW
2450void
2451set_internalvar_integer (struct internalvar *var, LONGEST l)
2452{
2453 /* Clean up old contents. */
2454 clear_internalvar (var);
2455
cab0c772
UW
2456 var->kind = INTERNALVAR_INTEGER;
2457 var->u.integer.type = NULL;
2458 var->u.integer.val = l;
78267919
UW
2459}
2460
2461void
2462set_internalvar_string (struct internalvar *var, const char *string)
2463{
2464 /* Clean up old contents. */
2465 clear_internalvar (var);
2466
2467 var->kind = INTERNALVAR_STRING;
2468 var->u.string = xstrdup (string);
4fa62494
UW
2469}
2470
2471static void
2472set_internalvar_function (struct internalvar *var, struct internal_function *f)
2473{
2474 /* Clean up old contents. */
2475 clear_internalvar (var);
2476
78267919
UW
2477 var->kind = INTERNALVAR_FUNCTION;
2478 var->u.fn.function = f;
2479 var->u.fn.canonical = 1;
2480 /* Variables installed here are always the canonical version. */
4fa62494
UW
2481}
2482
2483void
2484clear_internalvar (struct internalvar *var)
2485{
2486 /* Clean up old contents. */
78267919 2487 switch (var->kind)
4fa62494 2488 {
78267919
UW
2489 case INTERNALVAR_VALUE:
2490 value_free (var->u.value);
2491 break;
2492
2493 case INTERNALVAR_STRING:
2494 xfree (var->u.string);
4fa62494
UW
2495 break;
2496
22d2b532
SDJ
2497 case INTERNALVAR_MAKE_VALUE:
2498 if (var->u.make_value.functions->destroy != NULL)
2499 var->u.make_value.functions->destroy (var->u.make_value.data);
2500 break;
2501
4fa62494 2502 default:
4fa62494
UW
2503 break;
2504 }
2505
78267919
UW
2506 /* Reset to void kind. */
2507 var->kind = INTERNALVAR_VOID;
4fa62494
UW
2508}
2509
c906108c 2510char *
4bf7b526 2511internalvar_name (const struct internalvar *var)
c906108c
SS
2512{
2513 return var->name;
2514}
2515
4fa62494
UW
2516static struct internal_function *
2517create_internal_function (const char *name,
2518 internal_function_fn handler, void *cookie)
bc3b79fd 2519{
bc3b79fd 2520 struct internal_function *ifn = XNEW (struct internal_function);
a109c7c1 2521
bc3b79fd
TJB
2522 ifn->name = xstrdup (name);
2523 ifn->handler = handler;
2524 ifn->cookie = cookie;
4fa62494 2525 return ifn;
bc3b79fd
TJB
2526}
2527
2528char *
2529value_internal_function_name (struct value *val)
2530{
4fa62494
UW
2531 struct internal_function *ifn;
2532 int result;
2533
2534 gdb_assert (VALUE_LVAL (val) == lval_internalvar);
2535 result = get_internalvar_function (VALUE_INTERNALVAR (val), &ifn);
2536 gdb_assert (result);
2537
bc3b79fd
TJB
2538 return ifn->name;
2539}
2540
2541struct value *
d452c4bc
UW
2542call_internal_function (struct gdbarch *gdbarch,
2543 const struct language_defn *language,
2544 struct value *func, int argc, struct value **argv)
bc3b79fd 2545{
4fa62494
UW
2546 struct internal_function *ifn;
2547 int result;
2548
2549 gdb_assert (VALUE_LVAL (func) == lval_internalvar);
2550 result = get_internalvar_function (VALUE_INTERNALVAR (func), &ifn);
2551 gdb_assert (result);
2552
d452c4bc 2553 return (*ifn->handler) (gdbarch, language, ifn->cookie, argc, argv);
bc3b79fd
TJB
2554}
2555
2556/* The 'function' command. This does nothing -- it is just a
2557 placeholder to let "help function NAME" work. This is also used as
2558 the implementation of the sub-command that is created when
2559 registering an internal function. */
2560static void
2561function_command (char *command, int from_tty)
2562{
2563 /* Do nothing. */
2564}
2565
2566/* Clean up if an internal function's command is destroyed. */
2567static void
2568function_destroyer (struct cmd_list_element *self, void *ignore)
2569{
6f937416 2570 xfree ((char *) self->name);
1947513d 2571 xfree ((char *) self->doc);
bc3b79fd
TJB
2572}
2573
2574/* Add a new internal function. NAME is the name of the function; DOC
2575 is a documentation string describing the function. HANDLER is
2576 called when the function is invoked. COOKIE is an arbitrary
2577 pointer which is passed to HANDLER and is intended for "user
2578 data". */
2579void
2580add_internal_function (const char *name, const char *doc,
2581 internal_function_fn handler, void *cookie)
2582{
2583 struct cmd_list_element *cmd;
4fa62494 2584 struct internal_function *ifn;
bc3b79fd 2585 struct internalvar *var = lookup_internalvar (name);
4fa62494
UW
2586
2587 ifn = create_internal_function (name, handler, cookie);
2588 set_internalvar_function (var, ifn);
bc3b79fd
TJB
2589
2590 cmd = add_cmd (xstrdup (name), no_class, function_command, (char *) doc,
2591 &functionlist);
2592 cmd->destroyer = function_destroyer;
2593}
2594
ae5a43e0
DJ
2595/* Update VALUE before discarding OBJFILE. COPIED_TYPES is used to
2596 prevent cycles / duplicates. */
2597
4e7a5ef5 2598void
ae5a43e0
DJ
2599preserve_one_value (struct value *value, struct objfile *objfile,
2600 htab_t copied_types)
2601{
2602 if (TYPE_OBJFILE (value->type) == objfile)
2603 value->type = copy_type_recursive (objfile, value->type, copied_types);
2604
2605 if (TYPE_OBJFILE (value->enclosing_type) == objfile)
2606 value->enclosing_type = copy_type_recursive (objfile,
2607 value->enclosing_type,
2608 copied_types);
2609}
2610
78267919
UW
2611/* Likewise for internal variable VAR. */
2612
2613static void
2614preserve_one_internalvar (struct internalvar *var, struct objfile *objfile,
2615 htab_t copied_types)
2616{
2617 switch (var->kind)
2618 {
cab0c772
UW
2619 case INTERNALVAR_INTEGER:
2620 if (var->u.integer.type && TYPE_OBJFILE (var->u.integer.type) == objfile)
2621 var->u.integer.type
2622 = copy_type_recursive (objfile, var->u.integer.type, copied_types);
2623 break;
2624
78267919
UW
2625 case INTERNALVAR_VALUE:
2626 preserve_one_value (var->u.value, objfile, copied_types);
2627 break;
2628 }
2629}
2630
ae5a43e0
DJ
2631/* Update the internal variables and value history when OBJFILE is
2632 discarded; we must copy the types out of the objfile. New global types
2633 will be created for every convenience variable which currently points to
2634 this objfile's types, and the convenience variables will be adjusted to
2635 use the new global types. */
c906108c
SS
2636
2637void
ae5a43e0 2638preserve_values (struct objfile *objfile)
c906108c 2639{
ae5a43e0
DJ
2640 htab_t copied_types;
2641 struct value_history_chunk *cur;
52f0bd74 2642 struct internalvar *var;
ae5a43e0 2643 int i;
c906108c 2644
ae5a43e0
DJ
2645 /* Create the hash table. We allocate on the objfile's obstack, since
2646 it is soon to be deleted. */
2647 copied_types = create_copied_types_hash (objfile);
2648
2649 for (cur = value_history_chain; cur; cur = cur->next)
2650 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
2651 if (cur->values[i])
2652 preserve_one_value (cur->values[i], objfile, copied_types);
2653
2654 for (var = internalvars; var; var = var->next)
78267919 2655 preserve_one_internalvar (var, objfile, copied_types);
ae5a43e0 2656
6dddc817 2657 preserve_ext_lang_values (objfile, copied_types);
a08702d6 2658
ae5a43e0 2659 htab_delete (copied_types);
c906108c
SS
2660}
2661
2662static void
ad25e423 2663show_convenience (const char *ignore, int from_tty)
c906108c 2664{
e17c207e 2665 struct gdbarch *gdbarch = get_current_arch ();
52f0bd74 2666 struct internalvar *var;
c906108c 2667 int varseen = 0;
79a45b7d 2668 struct value_print_options opts;
c906108c 2669
79a45b7d 2670 get_user_print_options (&opts);
c906108c
SS
2671 for (var = internalvars; var; var = var->next)
2672 {
c709acd1 2673
c906108c
SS
2674 if (!varseen)
2675 {
2676 varseen = 1;
2677 }
a3f17187 2678 printf_filtered (("$%s = "), var->name);
c709acd1 2679
492d29ea 2680 TRY
c709acd1
PA
2681 {
2682 struct value *val;
2683
2684 val = value_of_internalvar (gdbarch, var);
2685 value_print (val, gdb_stdout, &opts);
2686 }
492d29ea
PA
2687 CATCH (ex, RETURN_MASK_ERROR)
2688 {
2689 fprintf_filtered (gdb_stdout, _("<error: %s>"), ex.message);
2690 }
2691 END_CATCH
2692
a3f17187 2693 printf_filtered (("\n"));
c906108c
SS
2694 }
2695 if (!varseen)
f47f77df
DE
2696 {
2697 /* This text does not mention convenience functions on purpose.
2698 The user can't create them except via Python, and if Python support
2699 is installed this message will never be printed ($_streq will
2700 exist). */
2701 printf_unfiltered (_("No debugger convenience variables now defined.\n"
2702 "Convenience variables have "
2703 "names starting with \"$\";\n"
2704 "use \"set\" as in \"set "
2705 "$foo = 5\" to define them.\n"));
2706 }
c906108c
SS
2707}
2708\f
e81e7f5e
SC
2709/* Return the TYPE_CODE_XMETHOD value corresponding to WORKER. */
2710
2711struct value *
2712value_of_xmethod (struct xmethod_worker *worker)
2713{
2714 if (worker->value == NULL)
2715 {
2716 struct value *v;
2717
2718 v = allocate_value (builtin_type (target_gdbarch ())->xmethod);
2719 v->lval = lval_xcallable;
2720 v->location.xm_worker = worker;
2721 v->modifiable = 0;
2722 worker->value = v;
2723 }
2724
2725 return worker->value;
2726}
2727
2ce1cdbf
DE
2728/* Return the type of the result of TYPE_CODE_XMETHOD value METHOD. */
2729
2730struct type *
2731result_type_of_xmethod (struct value *method, int argc, struct value **argv)
2732{
2733 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2734 && method->lval == lval_xcallable && argc > 0);
2735
2736 return get_xmethod_result_type (method->location.xm_worker,
2737 argv[0], argv + 1, argc - 1);
2738}
2739
e81e7f5e
SC
2740/* Call the xmethod corresponding to the TYPE_CODE_XMETHOD value METHOD. */
2741
2742struct value *
2743call_xmethod (struct value *method, int argc, struct value **argv)
2744{
2745 gdb_assert (TYPE_CODE (value_type (method)) == TYPE_CODE_XMETHOD
2746 && method->lval == lval_xcallable && argc > 0);
2747
2748 return invoke_xmethod (method->location.xm_worker,
2749 argv[0], argv + 1, argc - 1);
2750}
2751\f
c906108c
SS
2752/* Extract a value as a C number (either long or double).
2753 Knows how to convert fixed values to double, or
2754 floating values to long.
2755 Does not deallocate the value. */
2756
2757LONGEST
f23631e4 2758value_as_long (struct value *val)
c906108c
SS
2759{
2760 /* This coerces arrays and functions, which is necessary (e.g.
2761 in disassemble_command). It also dereferences references, which
2762 I suspect is the most logical thing to do. */
994b9211 2763 val = coerce_array (val);
0fd88904 2764 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2765}
2766
2767DOUBLEST
f23631e4 2768value_as_double (struct value *val)
c906108c
SS
2769{
2770 DOUBLEST foo;
2771 int inv;
c5aa993b 2772
0fd88904 2773 foo = unpack_double (value_type (val), value_contents (val), &inv);
c906108c 2774 if (inv)
8a3fe4f8 2775 error (_("Invalid floating value found in program."));
c906108c
SS
2776 return foo;
2777}
4ef30785 2778
581e13c1 2779/* Extract a value as a C pointer. Does not deallocate the value.
4478b372
JB
2780 Note that val's type may not actually be a pointer; value_as_long
2781 handles all the cases. */
c906108c 2782CORE_ADDR
f23631e4 2783value_as_address (struct value *val)
c906108c 2784{
50810684
UW
2785 struct gdbarch *gdbarch = get_type_arch (value_type (val));
2786
c906108c
SS
2787 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
2788 whether we want this to be true eventually. */
2789#if 0
bf6ae464 2790 /* gdbarch_addr_bits_remove is wrong if we are being called for a
c906108c
SS
2791 non-address (e.g. argument to "signal", "info break", etc.), or
2792 for pointers to char, in which the low bits *are* significant. */
50810684 2793 return gdbarch_addr_bits_remove (gdbarch, value_as_long (val));
c906108c 2794#else
f312f057
JB
2795
2796 /* There are several targets (IA-64, PowerPC, and others) which
2797 don't represent pointers to functions as simply the address of
2798 the function's entry point. For example, on the IA-64, a
2799 function pointer points to a two-word descriptor, generated by
2800 the linker, which contains the function's entry point, and the
2801 value the IA-64 "global pointer" register should have --- to
2802 support position-independent code. The linker generates
2803 descriptors only for those functions whose addresses are taken.
2804
2805 On such targets, it's difficult for GDB to convert an arbitrary
2806 function address into a function pointer; it has to either find
2807 an existing descriptor for that function, or call malloc and
2808 build its own. On some targets, it is impossible for GDB to
2809 build a descriptor at all: the descriptor must contain a jump
2810 instruction; data memory cannot be executed; and code memory
2811 cannot be modified.
2812
2813 Upon entry to this function, if VAL is a value of type `function'
2814 (that is, TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_FUNC), then
42ae5230 2815 value_address (val) is the address of the function. This is what
f312f057
JB
2816 you'll get if you evaluate an expression like `main'. The call
2817 to COERCE_ARRAY below actually does all the usual unary
2818 conversions, which includes converting values of type `function'
2819 to `pointer to function'. This is the challenging conversion
2820 discussed above. Then, `unpack_long' will convert that pointer
2821 back into an address.
2822
2823 So, suppose the user types `disassemble foo' on an architecture
2824 with a strange function pointer representation, on which GDB
2825 cannot build its own descriptors, and suppose further that `foo'
2826 has no linker-built descriptor. The address->pointer conversion
2827 will signal an error and prevent the command from running, even
2828 though the next step would have been to convert the pointer
2829 directly back into the same address.
2830
2831 The following shortcut avoids this whole mess. If VAL is a
2832 function, just return its address directly. */
df407dfe
AC
2833 if (TYPE_CODE (value_type (val)) == TYPE_CODE_FUNC
2834 || TYPE_CODE (value_type (val)) == TYPE_CODE_METHOD)
42ae5230 2835 return value_address (val);
f312f057 2836
994b9211 2837 val = coerce_array (val);
fc0c74b1
AC
2838
2839 /* Some architectures (e.g. Harvard), map instruction and data
2840 addresses onto a single large unified address space. For
2841 instance: An architecture may consider a large integer in the
2842 range 0x10000000 .. 0x1000ffff to already represent a data
2843 addresses (hence not need a pointer to address conversion) while
2844 a small integer would still need to be converted integer to
2845 pointer to address. Just assume such architectures handle all
2846 integer conversions in a single function. */
2847
2848 /* JimB writes:
2849
2850 I think INTEGER_TO_ADDRESS is a good idea as proposed --- but we
2851 must admonish GDB hackers to make sure its behavior matches the
2852 compiler's, whenever possible.
2853
2854 In general, I think GDB should evaluate expressions the same way
2855 the compiler does. When the user copies an expression out of
2856 their source code and hands it to a `print' command, they should
2857 get the same value the compiler would have computed. Any
2858 deviation from this rule can cause major confusion and annoyance,
2859 and needs to be justified carefully. In other words, GDB doesn't
2860 really have the freedom to do these conversions in clever and
2861 useful ways.
2862
2863 AndrewC pointed out that users aren't complaining about how GDB
2864 casts integers to pointers; they are complaining that they can't
2865 take an address from a disassembly listing and give it to `x/i'.
2866 This is certainly important.
2867
79dd2d24 2868 Adding an architecture method like integer_to_address() certainly
fc0c74b1
AC
2869 makes it possible for GDB to "get it right" in all circumstances
2870 --- the target has complete control over how things get done, so
2871 people can Do The Right Thing for their target without breaking
2872 anyone else. The standard doesn't specify how integers get
2873 converted to pointers; usually, the ABI doesn't either, but
2874 ABI-specific code is a more reasonable place to handle it. */
2875
df407dfe 2876 if (TYPE_CODE (value_type (val)) != TYPE_CODE_PTR
aa006118 2877 && !TYPE_IS_REFERENCE (value_type (val))
50810684
UW
2878 && gdbarch_integer_to_address_p (gdbarch))
2879 return gdbarch_integer_to_address (gdbarch, value_type (val),
0fd88904 2880 value_contents (val));
fc0c74b1 2881
0fd88904 2882 return unpack_long (value_type (val), value_contents (val));
c906108c
SS
2883#endif
2884}
2885\f
2886/* Unpack raw data (copied from debugee, target byte order) at VALADDR
2887 as a long, or as a double, assuming the raw data is described
2888 by type TYPE. Knows how to convert different sizes of values
2889 and can convert between fixed and floating point. We don't assume
2890 any alignment for the raw data. Return value is in host byte order.
2891
2892 If you want functions and arrays to be coerced to pointers, and
2893 references to be dereferenced, call value_as_long() instead.
2894
2895 C++: It is assumed that the front-end has taken care of
2896 all matters concerning pointers to members. A pointer
2897 to member which reaches here is considered to be equivalent
2898 to an INT (or some size). After all, it is only an offset. */
2899
2900LONGEST
fc1a4b47 2901unpack_long (struct type *type, const gdb_byte *valaddr)
c906108c 2902{
e17a4113 2903 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
52f0bd74
AC
2904 enum type_code code = TYPE_CODE (type);
2905 int len = TYPE_LENGTH (type);
2906 int nosign = TYPE_UNSIGNED (type);
c906108c 2907
c906108c
SS
2908 switch (code)
2909 {
2910 case TYPE_CODE_TYPEDEF:
2911 return unpack_long (check_typedef (type), valaddr);
2912 case TYPE_CODE_ENUM:
4f2aea11 2913 case TYPE_CODE_FLAGS:
c906108c
SS
2914 case TYPE_CODE_BOOL:
2915 case TYPE_CODE_INT:
2916 case TYPE_CODE_CHAR:
2917 case TYPE_CODE_RANGE:
0d5de010 2918 case TYPE_CODE_MEMBERPTR:
c906108c 2919 if (nosign)
e17a4113 2920 return extract_unsigned_integer (valaddr, len, byte_order);
c906108c 2921 else
e17a4113 2922 return extract_signed_integer (valaddr, len, byte_order);
c906108c
SS
2923
2924 case TYPE_CODE_FLT:
aebf07fc 2925 return (LONGEST) extract_typed_floating (valaddr, type);
c906108c 2926
4ef30785 2927 case TYPE_CODE_DECFLOAT:
3b4b2f16 2928 return decimal_to_longest (valaddr, len, byte_order);
4ef30785 2929
c906108c
SS
2930 case TYPE_CODE_PTR:
2931 case TYPE_CODE_REF:
aa006118 2932 case TYPE_CODE_RVALUE_REF:
c906108c 2933 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 2934 whether we want this to be true eventually. */
4478b372 2935 return extract_typed_address (valaddr, type);
c906108c 2936
c906108c 2937 default:
8a3fe4f8 2938 error (_("Value can't be converted to integer."));
c906108c 2939 }
c5aa993b 2940 return 0; /* Placate lint. */
c906108c
SS
2941}
2942
2943/* Return a double value from the specified type and address.
2944 INVP points to an int which is set to 0 for valid value,
2945 1 for invalid value (bad float format). In either case,
2946 the returned double is OK to use. Argument is in target
2947 format, result is in host format. */
2948
2949DOUBLEST
fc1a4b47 2950unpack_double (struct type *type, const gdb_byte *valaddr, int *invp)
c906108c 2951{
e17a4113 2952 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
c906108c
SS
2953 enum type_code code;
2954 int len;
2955 int nosign;
2956
581e13c1 2957 *invp = 0; /* Assume valid. */
f168693b 2958 type = check_typedef (type);
c906108c
SS
2959 code = TYPE_CODE (type);
2960 len = TYPE_LENGTH (type);
2961 nosign = TYPE_UNSIGNED (type);
2962 if (code == TYPE_CODE_FLT)
2963 {
75bc7ddf
AC
2964 /* NOTE: cagney/2002-02-19: There was a test here to see if the
2965 floating-point value was valid (using the macro
2966 INVALID_FLOAT). That test/macro have been removed.
2967
2968 It turns out that only the VAX defined this macro and then
2969 only in a non-portable way. Fixing the portability problem
2970 wouldn't help since the VAX floating-point code is also badly
2971 bit-rotten. The target needs to add definitions for the
ea06eb3d 2972 methods gdbarch_float_format and gdbarch_double_format - these
75bc7ddf
AC
2973 exactly describe the target floating-point format. The
2974 problem here is that the corresponding floatformat_vax_f and
2975 floatformat_vax_d values these methods should be set to are
2976 also not defined either. Oops!
2977
2978 Hopefully someone will add both the missing floatformat
ac79b88b
DJ
2979 definitions and the new cases for floatformat_is_valid (). */
2980
2981 if (!floatformat_is_valid (floatformat_from_type (type), valaddr))
2982 {
2983 *invp = 1;
2984 return 0.0;
2985 }
2986
96d2f608 2987 return extract_typed_floating (valaddr, type);
c906108c 2988 }
4ef30785 2989 else if (code == TYPE_CODE_DECFLOAT)
e17a4113 2990 return decimal_to_doublest (valaddr, len, byte_order);
c906108c
SS
2991 else if (nosign)
2992 {
2993 /* Unsigned -- be sure we compensate for signed LONGEST. */
c906108c 2994 return (ULONGEST) unpack_long (type, valaddr);
c906108c
SS
2995 }
2996 else
2997 {
2998 /* Signed -- we are OK with unpack_long. */
2999 return unpack_long (type, valaddr);
3000 }
3001}
3002
3003/* Unpack raw data (copied from debugee, target byte order) at VALADDR
3004 as a CORE_ADDR, assuming the raw data is described by type TYPE.
3005 We don't assume any alignment for the raw data. Return value is in
3006 host byte order.
3007
3008 If you want functions and arrays to be coerced to pointers, and
1aa20aa8 3009 references to be dereferenced, call value_as_address() instead.
c906108c
SS
3010
3011 C++: It is assumed that the front-end has taken care of
3012 all matters concerning pointers to members. A pointer
3013 to member which reaches here is considered to be equivalent
3014 to an INT (or some size). After all, it is only an offset. */
3015
3016CORE_ADDR
fc1a4b47 3017unpack_pointer (struct type *type, const gdb_byte *valaddr)
c906108c
SS
3018{
3019 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
3020 whether we want this to be true eventually. */
3021 return unpack_long (type, valaddr);
3022}
4478b372 3023
c906108c 3024\f
1596cb5d 3025/* Get the value of the FIELDNO'th field (which must be static) of
686d4def 3026 TYPE. */
c906108c 3027
f23631e4 3028struct value *
fba45db2 3029value_static_field (struct type *type, int fieldno)
c906108c 3030{
948e66d9
DJ
3031 struct value *retval;
3032
1596cb5d 3033 switch (TYPE_FIELD_LOC_KIND (type, fieldno))
c906108c 3034 {
1596cb5d 3035 case FIELD_LOC_KIND_PHYSADDR:
52e9fde8
SS
3036 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
3037 TYPE_FIELD_STATIC_PHYSADDR (type, fieldno));
1596cb5d
DE
3038 break;
3039 case FIELD_LOC_KIND_PHYSNAME:
c906108c 3040 {
ff355380 3041 const char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
581e13c1 3042 /* TYPE_FIELD_NAME (type, fieldno); */
d12307c1 3043 struct block_symbol sym = lookup_symbol (phys_name, 0, VAR_DOMAIN, 0);
94af9270 3044
d12307c1 3045 if (sym.symbol == NULL)
c906108c 3046 {
a109c7c1 3047 /* With some compilers, e.g. HP aCC, static data members are
581e13c1 3048 reported as non-debuggable symbols. */
3b7344d5
TT
3049 struct bound_minimal_symbol msym
3050 = lookup_minimal_symbol (phys_name, NULL, NULL);
a109c7c1 3051
3b7344d5 3052 if (!msym.minsym)
686d4def 3053 return allocate_optimized_out_value (type);
c906108c 3054 else
c5aa993b 3055 {
52e9fde8 3056 retval = value_at_lazy (TYPE_FIELD_TYPE (type, fieldno),
77e371c0 3057 BMSYMBOL_VALUE_ADDRESS (msym));
c906108c
SS
3058 }
3059 }
3060 else
d12307c1 3061 retval = value_of_variable (sym.symbol, sym.block);
1596cb5d 3062 break;
c906108c 3063 }
1596cb5d 3064 default:
f3574227 3065 gdb_assert_not_reached ("unexpected field location kind");
1596cb5d
DE
3066 }
3067
948e66d9 3068 return retval;
c906108c
SS
3069}
3070
4dfea560
DE
3071/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
3072 You have to be careful here, since the size of the data area for the value
3073 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
3074 than the old enclosing type, you have to allocate more space for the
3075 data. */
2b127877 3076
4dfea560
DE
3077void
3078set_value_enclosing_type (struct value *val, struct type *new_encl_type)
2b127877 3079{
5fdf6324
AB
3080 if (TYPE_LENGTH (new_encl_type) > TYPE_LENGTH (value_enclosing_type (val)))
3081 {
3082 check_type_length_before_alloc (new_encl_type);
3083 val->contents
3084 = (gdb_byte *) xrealloc (val->contents, TYPE_LENGTH (new_encl_type));
3085 }
3e3d7139
JG
3086
3087 val->enclosing_type = new_encl_type;
2b127877
DB
3088}
3089
c906108c
SS
3090/* Given a value ARG1 (offset by OFFSET bytes)
3091 of a struct or union type ARG_TYPE,
3092 extract and return the value of one of its (non-static) fields.
581e13c1 3093 FIELDNO says which field. */
c906108c 3094
f23631e4 3095struct value *
6b850546 3096value_primitive_field (struct value *arg1, LONGEST offset,
aa1ee363 3097 int fieldno, struct type *arg_type)
c906108c 3098{
f23631e4 3099 struct value *v;
52f0bd74 3100 struct type *type;
3ae385af
SM
3101 struct gdbarch *arch = get_value_arch (arg1);
3102 int unit_size = gdbarch_addressable_memory_unit_size (arch);
c906108c 3103
f168693b 3104 arg_type = check_typedef (arg_type);
c906108c 3105 type = TYPE_FIELD_TYPE (arg_type, fieldno);
c54eabfa
JK
3106
3107 /* Call check_typedef on our type to make sure that, if TYPE
3108 is a TYPE_CODE_TYPEDEF, its length is set to the length
3109 of the target type instead of zero. However, we do not
3110 replace the typedef type by the target type, because we want
3111 to keep the typedef in order to be able to print the type
3112 description correctly. */
3113 check_typedef (type);
c906108c 3114
691a26f5 3115 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
c906108c 3116 {
22c05d8a
JK
3117 /* Handle packed fields.
3118
3119 Create a new value for the bitfield, with bitpos and bitsize
4ea48cc1
DJ
3120 set. If possible, arrange offset and bitpos so that we can
3121 do a single aligned read of the size of the containing type.
3122 Otherwise, adjust offset to the byte containing the first
3123 bit. Assume that the address, offset, and embedded offset
3124 are sufficiently aligned. */
22c05d8a 3125
6b850546
DT
3126 LONGEST bitpos = TYPE_FIELD_BITPOS (arg_type, fieldno);
3127 LONGEST container_bitsize = TYPE_LENGTH (type) * 8;
4ea48cc1 3128
9a0dc9e3
PA
3129 v = allocate_value_lazy (type);
3130 v->bitsize = TYPE_FIELD_BITSIZE (arg_type, fieldno);
3131 if ((bitpos % container_bitsize) + v->bitsize <= container_bitsize
3132 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST))
3133 v->bitpos = bitpos % container_bitsize;
4ea48cc1 3134 else
9a0dc9e3
PA
3135 v->bitpos = bitpos % 8;
3136 v->offset = (value_embedded_offset (arg1)
3137 + offset
3138 + (bitpos - v->bitpos) / 8);
3139 set_value_parent (v, arg1);
3140 if (!value_lazy (arg1))
3141 value_fetch_lazy (v);
c906108c
SS
3142 }
3143 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
3144 {
3145 /* This field is actually a base subobject, so preserve the
39d37385
PA
3146 entire object's contents for later references to virtual
3147 bases, etc. */
6b850546 3148 LONGEST boffset;
a4e2ee12
DJ
3149
3150 /* Lazy register values with offsets are not supported. */
3151 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3152 value_fetch_lazy (arg1);
3153
9a0dc9e3
PA
3154 /* We special case virtual inheritance here because this
3155 requires access to the contents, which we would rather avoid
3156 for references to ordinary fields of unavailable values. */
3157 if (BASETYPE_VIA_VIRTUAL (arg_type, fieldno))
3158 boffset = baseclass_offset (arg_type, fieldno,
3159 value_contents (arg1),
3160 value_embedded_offset (arg1),
3161 value_address (arg1),
3162 arg1);
c906108c 3163 else
9a0dc9e3 3164 boffset = TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
691a26f5 3165
9a0dc9e3
PA
3166 if (value_lazy (arg1))
3167 v = allocate_value_lazy (value_enclosing_type (arg1));
3168 else
3169 {
3170 v = allocate_value (value_enclosing_type (arg1));
3171 value_contents_copy_raw (v, 0, arg1, 0,
3172 TYPE_LENGTH (value_enclosing_type (arg1)));
3e3d7139 3173 }
9a0dc9e3
PA
3174 v->type = type;
3175 v->offset = value_offset (arg1);
3176 v->embedded_offset = offset + value_embedded_offset (arg1) + boffset;
c906108c 3177 }
9920b434
BH
3178 else if (NULL != TYPE_DATA_LOCATION (type))
3179 {
3180 /* Field is a dynamic data member. */
3181
3182 gdb_assert (0 == offset);
3183 /* We expect an already resolved data location. */
3184 gdb_assert (PROP_CONST == TYPE_DATA_LOCATION_KIND (type));
3185 /* For dynamic data types defer memory allocation
3186 until we actual access the value. */
3187 v = allocate_value_lazy (type);
3188 }
c906108c
SS
3189 else
3190 {
3191 /* Plain old data member */
3ae385af
SM
3192 offset += (TYPE_FIELD_BITPOS (arg_type, fieldno)
3193 / (HOST_CHAR_BIT * unit_size));
a4e2ee12
DJ
3194
3195 /* Lazy register values with offsets are not supported. */
3196 if (VALUE_LVAL (arg1) == lval_register && value_lazy (arg1))
3197 value_fetch_lazy (arg1);
3198
9a0dc9e3 3199 if (value_lazy (arg1))
3e3d7139 3200 v = allocate_value_lazy (type);
c906108c 3201 else
3e3d7139
JG
3202 {
3203 v = allocate_value (type);
39d37385
PA
3204 value_contents_copy_raw (v, value_embedded_offset (v),
3205 arg1, value_embedded_offset (arg1) + offset,
3ae385af 3206 type_length_units (type));
3e3d7139 3207 }
df407dfe 3208 v->offset = (value_offset (arg1) + offset
13c3b5f5 3209 + value_embedded_offset (arg1));
c906108c 3210 }
74bcbdf3 3211 set_value_component_location (v, arg1);
c906108c
SS
3212 return v;
3213}
3214
3215/* Given a value ARG1 of a struct or union type,
3216 extract and return the value of one of its (non-static) fields.
581e13c1 3217 FIELDNO says which field. */
c906108c 3218
f23631e4 3219struct value *
aa1ee363 3220value_field (struct value *arg1, int fieldno)
c906108c 3221{
df407dfe 3222 return value_primitive_field (arg1, 0, fieldno, value_type (arg1));
c906108c
SS
3223}
3224
3225/* Return a non-virtual function as a value.
3226 F is the list of member functions which contains the desired method.
0478d61c
FF
3227 J is an index into F which provides the desired method.
3228
3229 We only use the symbol for its address, so be happy with either a
581e13c1 3230 full symbol or a minimal symbol. */
c906108c 3231
f23631e4 3232struct value *
3e43a32a
MS
3233value_fn_field (struct value **arg1p, struct fn_field *f,
3234 int j, struct type *type,
6b850546 3235 LONGEST offset)
c906108c 3236{
f23631e4 3237 struct value *v;
52f0bd74 3238 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
1d06ead6 3239 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, j);
c906108c 3240 struct symbol *sym;
7c7b6655 3241 struct bound_minimal_symbol msym;
c906108c 3242
d12307c1 3243 sym = lookup_symbol (physname, 0, VAR_DOMAIN, 0).symbol;
5ae326fa 3244 if (sym != NULL)
0478d61c 3245 {
7c7b6655 3246 memset (&msym, 0, sizeof (msym));
5ae326fa
AC
3247 }
3248 else
3249 {
3250 gdb_assert (sym == NULL);
7c7b6655
TT
3251 msym = lookup_bound_minimal_symbol (physname);
3252 if (msym.minsym == NULL)
5ae326fa 3253 return NULL;
0478d61c
FF
3254 }
3255
c906108c 3256 v = allocate_value (ftype);
1a088441 3257 VALUE_LVAL (v) = lval_memory;
0478d61c
FF
3258 if (sym)
3259 {
42ae5230 3260 set_value_address (v, BLOCK_START (SYMBOL_BLOCK_VALUE (sym)));
0478d61c
FF
3261 }
3262 else
3263 {
bccdca4a
UW
3264 /* The minimal symbol might point to a function descriptor;
3265 resolve it to the actual code address instead. */
7c7b6655 3266 struct objfile *objfile = msym.objfile;
bccdca4a
UW
3267 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3268
42ae5230
TT
3269 set_value_address (v,
3270 gdbarch_convert_from_func_ptr_addr
77e371c0 3271 (gdbarch, BMSYMBOL_VALUE_ADDRESS (msym), &current_target));
0478d61c 3272 }
c906108c
SS
3273
3274 if (arg1p)
c5aa993b 3275 {
df407dfe 3276 if (type != value_type (*arg1p))
c5aa993b
JM
3277 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
3278 value_addr (*arg1p)));
3279
070ad9f0 3280 /* Move the `this' pointer according to the offset.
581e13c1 3281 VALUE_OFFSET (*arg1p) += offset; */
c906108c
SS
3282 }
3283
3284 return v;
3285}
3286
c906108c 3287\f
c906108c 3288
4875ffdb
PA
3289/* Unpack a bitfield of the specified FIELD_TYPE, from the object at
3290 VALADDR, and store the result in *RESULT.
3291 The bitfield starts at BITPOS bits and contains BITSIZE bits.
c906108c 3292
4875ffdb
PA
3293 Extracting bits depends on endianness of the machine. Compute the
3294 number of least significant bits to discard. For big endian machines,
3295 we compute the total number of bits in the anonymous object, subtract
3296 off the bit count from the MSB of the object to the MSB of the
3297 bitfield, then the size of the bitfield, which leaves the LSB discard
3298 count. For little endian machines, the discard count is simply the
3299 number of bits from the LSB of the anonymous object to the LSB of the
3300 bitfield.
3301
3302 If the field is signed, we also do sign extension. */
3303
3304static LONGEST
3305unpack_bits_as_long (struct type *field_type, const gdb_byte *valaddr,
6b850546 3306 LONGEST bitpos, LONGEST bitsize)
c906108c 3307{
4ea48cc1 3308 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (field_type));
c906108c
SS
3309 ULONGEST val;
3310 ULONGEST valmask;
c906108c 3311 int lsbcount;
6b850546
DT
3312 LONGEST bytes_read;
3313 LONGEST read_offset;
c906108c 3314
4a76eae5
DJ
3315 /* Read the minimum number of bytes required; there may not be
3316 enough bytes to read an entire ULONGEST. */
f168693b 3317 field_type = check_typedef (field_type);
4a76eae5
DJ
3318 if (bitsize)
3319 bytes_read = ((bitpos % 8) + bitsize + 7) / 8;
3320 else
3321 bytes_read = TYPE_LENGTH (field_type);
3322
5467c6c8
PA
3323 read_offset = bitpos / 8;
3324
4875ffdb 3325 val = extract_unsigned_integer (valaddr + read_offset,
4a76eae5 3326 bytes_read, byte_order);
c906108c 3327
581e13c1 3328 /* Extract bits. See comment above. */
c906108c 3329
4ea48cc1 3330 if (gdbarch_bits_big_endian (get_type_arch (field_type)))
4a76eae5 3331 lsbcount = (bytes_read * 8 - bitpos % 8 - bitsize);
c906108c
SS
3332 else
3333 lsbcount = (bitpos % 8);
3334 val >>= lsbcount;
3335
3336 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
581e13c1 3337 If the field is signed, and is negative, then sign extend. */
c906108c
SS
3338
3339 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
3340 {
3341 valmask = (((ULONGEST) 1) << bitsize) - 1;
3342 val &= valmask;
3343 if (!TYPE_UNSIGNED (field_type))
3344 {
3345 if (val & (valmask ^ (valmask >> 1)))
3346 {
3347 val |= ~valmask;
3348 }
3349 }
3350 }
5467c6c8 3351
4875ffdb 3352 return val;
5467c6c8
PA
3353}
3354
3355/* Unpack a field FIELDNO of the specified TYPE, from the object at
3356 VALADDR + EMBEDDED_OFFSET. VALADDR points to the contents of
3357 ORIGINAL_VALUE, which must not be NULL. See
3358 unpack_value_bits_as_long for more details. */
3359
3360int
3361unpack_value_field_as_long (struct type *type, const gdb_byte *valaddr,
6b850546 3362 LONGEST embedded_offset, int fieldno,
5467c6c8
PA
3363 const struct value *val, LONGEST *result)
3364{
4875ffdb
PA
3365 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3366 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3367 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
3368 int bit_offset;
3369
5467c6c8
PA
3370 gdb_assert (val != NULL);
3371
4875ffdb
PA
3372 bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3373 if (value_bits_any_optimized_out (val, bit_offset, bitsize)
3374 || !value_bits_available (val, bit_offset, bitsize))
3375 return 0;
3376
3377 *result = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3378 bitpos, bitsize);
3379 return 1;
5467c6c8
PA
3380}
3381
3382/* Unpack a field FIELDNO of the specified TYPE, from the anonymous
4875ffdb 3383 object at VALADDR. See unpack_bits_as_long for more details. */
5467c6c8
PA
3384
3385LONGEST
3386unpack_field_as_long (struct type *type, const gdb_byte *valaddr, int fieldno)
3387{
4875ffdb
PA
3388 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3389 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3390 struct type *field_type = TYPE_FIELD_TYPE (type, fieldno);
5467c6c8 3391
4875ffdb
PA
3392 return unpack_bits_as_long (field_type, valaddr, bitpos, bitsize);
3393}
3394
3395/* Unpack a bitfield of BITSIZE bits found at BITPOS in the object at
3396 VALADDR + EMBEDDEDOFFSET that has the type of DEST_VAL and store
3397 the contents in DEST_VAL, zero or sign extending if the type of
3398 DEST_VAL is wider than BITSIZE. VALADDR points to the contents of
3399 VAL. If the VAL's contents required to extract the bitfield from
3400 are unavailable/optimized out, DEST_VAL is correspondingly
3401 marked unavailable/optimized out. */
3402
bb9d5f81 3403void
4875ffdb 3404unpack_value_bitfield (struct value *dest_val,
6b850546
DT
3405 LONGEST bitpos, LONGEST bitsize,
3406 const gdb_byte *valaddr, LONGEST embedded_offset,
4875ffdb
PA
3407 const struct value *val)
3408{
3409 enum bfd_endian byte_order;
3410 int src_bit_offset;
3411 int dst_bit_offset;
4875ffdb
PA
3412 struct type *field_type = value_type (dest_val);
3413
4875ffdb 3414 byte_order = gdbarch_byte_order (get_type_arch (field_type));
e5ca03b4
PA
3415
3416 /* First, unpack and sign extend the bitfield as if it was wholly
3417 valid. Optimized out/unavailable bits are read as zero, but
3418 that's OK, as they'll end up marked below. If the VAL is
3419 wholly-invalid we may have skipped allocating its contents,
3420 though. See allocate_optimized_out_value. */
3421 if (valaddr != NULL)
3422 {
3423 LONGEST num;
3424
3425 num = unpack_bits_as_long (field_type, valaddr + embedded_offset,
3426 bitpos, bitsize);
3427 store_signed_integer (value_contents_raw (dest_val),
3428 TYPE_LENGTH (field_type), byte_order, num);
3429 }
4875ffdb
PA
3430
3431 /* Now copy the optimized out / unavailability ranges to the right
3432 bits. */
3433 src_bit_offset = embedded_offset * TARGET_CHAR_BIT + bitpos;
3434 if (byte_order == BFD_ENDIAN_BIG)
3435 dst_bit_offset = TYPE_LENGTH (field_type) * TARGET_CHAR_BIT - bitsize;
3436 else
3437 dst_bit_offset = 0;
3438 value_ranges_copy_adjusted (dest_val, dst_bit_offset,
3439 val, src_bit_offset, bitsize);
5467c6c8
PA
3440}
3441
3442/* Return a new value with type TYPE, which is FIELDNO field of the
3443 object at VALADDR + EMBEDDEDOFFSET. VALADDR points to the contents
3444 of VAL. If the VAL's contents required to extract the bitfield
4875ffdb
PA
3445 from are unavailable/optimized out, the new value is
3446 correspondingly marked unavailable/optimized out. */
5467c6c8
PA
3447
3448struct value *
3449value_field_bitfield (struct type *type, int fieldno,
3450 const gdb_byte *valaddr,
6b850546 3451 LONGEST embedded_offset, const struct value *val)
5467c6c8 3452{
4875ffdb
PA
3453 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
3454 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
3455 struct value *res_val = allocate_value (TYPE_FIELD_TYPE (type, fieldno));
5467c6c8 3456
4875ffdb
PA
3457 unpack_value_bitfield (res_val, bitpos, bitsize,
3458 valaddr, embedded_offset, val);
3459
3460 return res_val;
4ea48cc1
DJ
3461}
3462
c906108c
SS
3463/* Modify the value of a bitfield. ADDR points to a block of memory in
3464 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
3465 is the desired value of the field, in host byte order. BITPOS and BITSIZE
581e13c1 3466 indicate which bits (in target bit order) comprise the bitfield.
19f220c3 3467 Requires 0 < BITSIZE <= lbits, 0 <= BITPOS % 8 + BITSIZE <= lbits, and
f4e88c8e 3468 0 <= BITPOS, where lbits is the size of a LONGEST in bits. */
c906108c
SS
3469
3470void
50810684 3471modify_field (struct type *type, gdb_byte *addr,
6b850546 3472 LONGEST fieldval, LONGEST bitpos, LONGEST bitsize)
c906108c 3473{
e17a4113 3474 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
f4e88c8e
PH
3475 ULONGEST oword;
3476 ULONGEST mask = (ULONGEST) -1 >> (8 * sizeof (ULONGEST) - bitsize);
6b850546 3477 LONGEST bytesize;
19f220c3
JK
3478
3479 /* Normalize BITPOS. */
3480 addr += bitpos / 8;
3481 bitpos %= 8;
c906108c
SS
3482
3483 /* If a negative fieldval fits in the field in question, chop
3484 off the sign extension bits. */
f4e88c8e
PH
3485 if ((~fieldval & ~(mask >> 1)) == 0)
3486 fieldval &= mask;
c906108c
SS
3487
3488 /* Warn if value is too big to fit in the field in question. */
f4e88c8e 3489 if (0 != (fieldval & ~mask))
c906108c
SS
3490 {
3491 /* FIXME: would like to include fieldval in the message, but
c5aa993b 3492 we don't have a sprintf_longest. */
6b850546 3493 warning (_("Value does not fit in %s bits."), plongest (bitsize));
c906108c
SS
3494
3495 /* Truncate it, otherwise adjoining fields may be corrupted. */
f4e88c8e 3496 fieldval &= mask;
c906108c
SS
3497 }
3498
19f220c3
JK
3499 /* Ensure no bytes outside of the modified ones get accessed as it may cause
3500 false valgrind reports. */
3501
3502 bytesize = (bitpos + bitsize + 7) / 8;
3503 oword = extract_unsigned_integer (addr, bytesize, byte_order);
c906108c
SS
3504
3505 /* Shifting for bit field depends on endianness of the target machine. */
50810684 3506 if (gdbarch_bits_big_endian (get_type_arch (type)))
19f220c3 3507 bitpos = bytesize * 8 - bitpos - bitsize;
c906108c 3508
f4e88c8e 3509 oword &= ~(mask << bitpos);
c906108c
SS
3510 oword |= fieldval << bitpos;
3511
19f220c3 3512 store_unsigned_integer (addr, bytesize, byte_order, oword);
c906108c
SS
3513}
3514\f
14d06750 3515/* Pack NUM into BUF using a target format of TYPE. */
c906108c 3516
14d06750
DJ
3517void
3518pack_long (gdb_byte *buf, struct type *type, LONGEST num)
c906108c 3519{
e17a4113 3520 enum bfd_endian byte_order = gdbarch_byte_order (get_type_arch (type));
6b850546 3521 LONGEST len;
14d06750
DJ
3522
3523 type = check_typedef (type);
c906108c
SS
3524 len = TYPE_LENGTH (type);
3525
14d06750 3526 switch (TYPE_CODE (type))
c906108c 3527 {
c906108c
SS
3528 case TYPE_CODE_INT:
3529 case TYPE_CODE_CHAR:
3530 case TYPE_CODE_ENUM:
4f2aea11 3531 case TYPE_CODE_FLAGS:
c906108c
SS
3532 case TYPE_CODE_BOOL:
3533 case TYPE_CODE_RANGE:
0d5de010 3534 case TYPE_CODE_MEMBERPTR:
e17a4113 3535 store_signed_integer (buf, len, byte_order, num);
c906108c 3536 break;
c5aa993b 3537
c906108c 3538 case TYPE_CODE_REF:
aa006118 3539 case TYPE_CODE_RVALUE_REF:
c906108c 3540 case TYPE_CODE_PTR:
14d06750 3541 store_typed_address (buf, type, (CORE_ADDR) num);
c906108c 3542 break;
c5aa993b 3543
c906108c 3544 default:
14d06750
DJ
3545 error (_("Unexpected type (%d) encountered for integer constant."),
3546 TYPE_CODE (type));
c906108c 3547 }
14d06750
DJ
3548}
3549
3550
595939de
PM
3551/* Pack NUM into BUF using a target format of TYPE. */
3552
70221824 3553static void
595939de
PM
3554pack_unsigned_long (gdb_byte *buf, struct type *type, ULONGEST num)
3555{
6b850546 3556 LONGEST len;
595939de
PM
3557 enum bfd_endian byte_order;
3558
3559 type = check_typedef (type);
3560 len = TYPE_LENGTH (type);
3561 byte_order = gdbarch_byte_order (get_type_arch (type));
3562
3563 switch (TYPE_CODE (type))
3564 {
3565 case TYPE_CODE_INT:
3566 case TYPE_CODE_CHAR:
3567 case TYPE_CODE_ENUM:
3568 case TYPE_CODE_FLAGS:
3569 case TYPE_CODE_BOOL:
3570 case TYPE_CODE_RANGE:
3571 case TYPE_CODE_MEMBERPTR:
3572 store_unsigned_integer (buf, len, byte_order, num);
3573 break;
3574
3575 case TYPE_CODE_REF:
aa006118 3576 case TYPE_CODE_RVALUE_REF:
595939de
PM
3577 case TYPE_CODE_PTR:
3578 store_typed_address (buf, type, (CORE_ADDR) num);
3579 break;
3580
3581 default:
3e43a32a
MS
3582 error (_("Unexpected type (%d) encountered "
3583 "for unsigned integer constant."),
595939de
PM
3584 TYPE_CODE (type));
3585 }
3586}
3587
3588
14d06750
DJ
3589/* Convert C numbers into newly allocated values. */
3590
3591struct value *
3592value_from_longest (struct type *type, LONGEST num)
3593{
3594 struct value *val = allocate_value (type);
3595
3596 pack_long (value_contents_raw (val), type, num);
c906108c
SS
3597 return val;
3598}
3599
4478b372 3600
595939de
PM
3601/* Convert C unsigned numbers into newly allocated values. */
3602
3603struct value *
3604value_from_ulongest (struct type *type, ULONGEST num)
3605{
3606 struct value *val = allocate_value (type);
3607
3608 pack_unsigned_long (value_contents_raw (val), type, num);
3609
3610 return val;
3611}
3612
3613
4478b372 3614/* Create a value representing a pointer of type TYPE to the address
cb417230 3615 ADDR. */
80180f79 3616
f23631e4 3617struct value *
4478b372
JB
3618value_from_pointer (struct type *type, CORE_ADDR addr)
3619{
cb417230 3620 struct value *val = allocate_value (type);
a109c7c1 3621
80180f79 3622 store_typed_address (value_contents_raw (val),
cb417230 3623 check_typedef (type), addr);
4478b372
JB
3624 return val;
3625}
3626
3627
012370f6
TT
3628/* Create a value of type TYPE whose contents come from VALADDR, if it
3629 is non-null, and whose memory address (in the inferior) is
3630 ADDRESS. The type of the created value may differ from the passed
3631 type TYPE. Make sure to retrieve values new type after this call.
3632 Note that TYPE is not passed through resolve_dynamic_type; this is
3633 a special API intended for use only by Ada. */
3634
3635struct value *
3636value_from_contents_and_address_unresolved (struct type *type,
3637 const gdb_byte *valaddr,
3638 CORE_ADDR address)
3639{
3640 struct value *v;
3641
3642 if (valaddr == NULL)
3643 v = allocate_value_lazy (type);
3644 else
3645 v = value_from_contents (type, valaddr);
012370f6 3646 VALUE_LVAL (v) = lval_memory;
1a088441 3647 set_value_address (v, address);
012370f6
TT
3648 return v;
3649}
3650
8acb6b92
TT
3651/* Create a value of type TYPE whose contents come from VALADDR, if it
3652 is non-null, and whose memory address (in the inferior) is
80180f79
SA
3653 ADDRESS. The type of the created value may differ from the passed
3654 type TYPE. Make sure to retrieve values new type after this call. */
8acb6b92
TT
3655
3656struct value *
3657value_from_contents_and_address (struct type *type,
3658 const gdb_byte *valaddr,
3659 CORE_ADDR address)
3660{
c3345124 3661 struct type *resolved_type = resolve_dynamic_type (type, valaddr, address);
d36430db 3662 struct type *resolved_type_no_typedef = check_typedef (resolved_type);
41e8491f 3663 struct value *v;
a109c7c1 3664
8acb6b92 3665 if (valaddr == NULL)
80180f79 3666 v = allocate_value_lazy (resolved_type);
8acb6b92 3667 else
80180f79 3668 v = value_from_contents (resolved_type, valaddr);
d36430db
JB
3669 if (TYPE_DATA_LOCATION (resolved_type_no_typedef) != NULL
3670 && TYPE_DATA_LOCATION_KIND (resolved_type_no_typedef) == PROP_CONST)
3671 address = TYPE_DATA_LOCATION_ADDR (resolved_type_no_typedef);
33d502b4 3672 VALUE_LVAL (v) = lval_memory;
1a088441 3673 set_value_address (v, address);
8acb6b92
TT
3674 return v;
3675}
3676
8a9b8146
TT
3677/* Create a value of type TYPE holding the contents CONTENTS.
3678 The new value is `not_lval'. */
3679
3680struct value *
3681value_from_contents (struct type *type, const gdb_byte *contents)
3682{
3683 struct value *result;
3684
3685 result = allocate_value (type);
3686 memcpy (value_contents_raw (result), contents, TYPE_LENGTH (type));
3687 return result;
3688}
3689
f23631e4 3690struct value *
fba45db2 3691value_from_double (struct type *type, DOUBLEST num)
c906108c 3692{
f23631e4 3693 struct value *val = allocate_value (type);
c906108c 3694 struct type *base_type = check_typedef (type);
52f0bd74 3695 enum type_code code = TYPE_CODE (base_type);
c906108c
SS
3696
3697 if (code == TYPE_CODE_FLT)
3698 {
990a07ab 3699 store_typed_floating (value_contents_raw (val), base_type, num);
c906108c
SS
3700 }
3701 else
8a3fe4f8 3702 error (_("Unexpected type encountered for floating constant."));
c906108c
SS
3703
3704 return val;
3705}
994b9211 3706
27bc4d80 3707struct value *
4ef30785 3708value_from_decfloat (struct type *type, const gdb_byte *dec)
27bc4d80
TJB
3709{
3710 struct value *val = allocate_value (type);
27bc4d80 3711
4ef30785 3712 memcpy (value_contents_raw (val), dec, TYPE_LENGTH (type));
27bc4d80
TJB
3713 return val;
3714}
3715
3bd0f5ef
MS
3716/* Extract a value from the history file. Input will be of the form
3717 $digits or $$digits. See block comment above 'write_dollar_variable'
3718 for details. */
3719
3720struct value *
e799154c 3721value_from_history_ref (const char *h, const char **endp)
3bd0f5ef
MS
3722{
3723 int index, len;
3724
3725 if (h[0] == '$')
3726 len = 1;
3727 else
3728 return NULL;
3729
3730 if (h[1] == '$')
3731 len = 2;
3732
3733 /* Find length of numeral string. */
3734 for (; isdigit (h[len]); len++)
3735 ;
3736
3737 /* Make sure numeral string is not part of an identifier. */
3738 if (h[len] == '_' || isalpha (h[len]))
3739 return NULL;
3740
3741 /* Now collect the index value. */
3742 if (h[1] == '$')
3743 {
3744 if (len == 2)
3745 {
3746 /* For some bizarre reason, "$$" is equivalent to "$$1",
3747 rather than to "$$0" as it ought to be! */
3748 index = -1;
3749 *endp += len;
3750 }
3751 else
e799154c
TT
3752 {
3753 char *local_end;
3754
3755 index = -strtol (&h[2], &local_end, 10);
3756 *endp = local_end;
3757 }
3bd0f5ef
MS
3758 }
3759 else
3760 {
3761 if (len == 1)
3762 {
3763 /* "$" is equivalent to "$0". */
3764 index = 0;
3765 *endp += len;
3766 }
3767 else
e799154c
TT
3768 {
3769 char *local_end;
3770
3771 index = strtol (&h[1], &local_end, 10);
3772 *endp = local_end;
3773 }
3bd0f5ef
MS
3774 }
3775
3776 return access_value_history (index);
3777}
3778
3fff9862
YQ
3779/* Get the component value (offset by OFFSET bytes) of a struct or
3780 union WHOLE. Component's type is TYPE. */
3781
3782struct value *
3783value_from_component (struct value *whole, struct type *type, LONGEST offset)
3784{
3785 struct value *v;
3786
3787 if (VALUE_LVAL (whole) == lval_memory && value_lazy (whole))
3788 v = allocate_value_lazy (type);
3789 else
3790 {
3791 v = allocate_value (type);
3792 value_contents_copy (v, value_embedded_offset (v),
3793 whole, value_embedded_offset (whole) + offset,
3794 type_length_units (type));
3795 }
3796 v->offset = value_offset (whole) + offset + value_embedded_offset (whole);
3797 set_value_component_location (v, whole);
3fff9862
YQ
3798
3799 return v;
3800}
3801
a471c594
JK
3802struct value *
3803coerce_ref_if_computed (const struct value *arg)
3804{
3805 const struct lval_funcs *funcs;
3806
aa006118 3807 if (!TYPE_IS_REFERENCE (check_typedef (value_type (arg))))
a471c594
JK
3808 return NULL;
3809
3810 if (value_lval_const (arg) != lval_computed)
3811 return NULL;
3812
3813 funcs = value_computed_funcs (arg);
3814 if (funcs->coerce_ref == NULL)
3815 return NULL;
3816
3817 return funcs->coerce_ref (arg);
3818}
3819
dfcee124
AG
3820/* Look at value.h for description. */
3821
3822struct value *
3823readjust_indirect_value_type (struct value *value, struct type *enc_type,
4bf7b526
MG
3824 const struct type *original_type,
3825 const struct value *original_value)
dfcee124
AG
3826{
3827 /* Re-adjust type. */
3828 deprecated_set_value_type (value, TYPE_TARGET_TYPE (original_type));
3829
3830 /* Add embedding info. */
3831 set_value_enclosing_type (value, enc_type);
3832 set_value_embedded_offset (value, value_pointed_to_offset (original_value));
3833
3834 /* We may be pointing to an object of some derived type. */
3835 return value_full_object (value, NULL, 0, 0, 0);
3836}
3837
994b9211
AC
3838struct value *
3839coerce_ref (struct value *arg)
3840{
df407dfe 3841 struct type *value_type_arg_tmp = check_typedef (value_type (arg));
a471c594 3842 struct value *retval;
dfcee124 3843 struct type *enc_type;
a109c7c1 3844
a471c594
JK
3845 retval = coerce_ref_if_computed (arg);
3846 if (retval)
3847 return retval;
3848
aa006118 3849 if (!TYPE_IS_REFERENCE (value_type_arg_tmp))
a471c594
JK
3850 return arg;
3851
dfcee124
AG
3852 enc_type = check_typedef (value_enclosing_type (arg));
3853 enc_type = TYPE_TARGET_TYPE (enc_type);
3854
3855 retval = value_at_lazy (enc_type,
3856 unpack_pointer (value_type (arg),
3857 value_contents (arg)));
9f1f738a 3858 enc_type = value_type (retval);
dfcee124
AG
3859 return readjust_indirect_value_type (retval, enc_type,
3860 value_type_arg_tmp, arg);
994b9211
AC
3861}
3862
3863struct value *
3864coerce_array (struct value *arg)
3865{
f3134b88
TT
3866 struct type *type;
3867
994b9211 3868 arg = coerce_ref (arg);
f3134b88
TT
3869 type = check_typedef (value_type (arg));
3870
3871 switch (TYPE_CODE (type))
3872 {
3873 case TYPE_CODE_ARRAY:
7346b668 3874 if (!TYPE_VECTOR (type) && current_language->c_style_arrays)
f3134b88
TT
3875 arg = value_coerce_array (arg);
3876 break;
3877 case TYPE_CODE_FUNC:
3878 arg = value_coerce_function (arg);
3879 break;
3880 }
994b9211
AC
3881 return arg;
3882}
c906108c 3883\f
c906108c 3884
bbfdfe1c
DM
3885/* Return the return value convention that will be used for the
3886 specified type. */
3887
3888enum return_value_convention
3889struct_return_convention (struct gdbarch *gdbarch,
3890 struct value *function, struct type *value_type)
3891{
3892 enum type_code code = TYPE_CODE (value_type);
3893
3894 if (code == TYPE_CODE_ERROR)
3895 error (_("Function return type unknown."));
3896
3897 /* Probe the architecture for the return-value convention. */
3898 return gdbarch_return_value (gdbarch, function, value_type,
3899 NULL, NULL, NULL);
3900}
3901
48436ce6
AC
3902/* Return true if the function returning the specified type is using
3903 the convention of returning structures in memory (passing in the
82585c72 3904 address as a hidden first parameter). */
c906108c
SS
3905
3906int
d80b854b 3907using_struct_return (struct gdbarch *gdbarch,
6a3a010b 3908 struct value *function, struct type *value_type)
c906108c 3909{
bbfdfe1c 3910 if (TYPE_CODE (value_type) == TYPE_CODE_VOID)
667e784f 3911 /* A void return value is never in memory. See also corresponding
44e5158b 3912 code in "print_return_value". */
667e784f
AC
3913 return 0;
3914
bbfdfe1c 3915 return (struct_return_convention (gdbarch, function, value_type)
31db7b6c 3916 != RETURN_VALUE_REGISTER_CONVENTION);
c906108c
SS
3917}
3918
42be36b3
CT
3919/* Set the initialized field in a value struct. */
3920
3921void
3922set_value_initialized (struct value *val, int status)
3923{
3924 val->initialized = status;
3925}
3926
3927/* Return the initialized field in a value struct. */
3928
3929int
4bf7b526 3930value_initialized (const struct value *val)
42be36b3
CT
3931{
3932 return val->initialized;
3933}
3934
a844296a
SM
3935/* Load the actual content of a lazy value. Fetch the data from the
3936 user's process and clear the lazy flag to indicate that the data in
3937 the buffer is valid.
a58e2656
AB
3938
3939 If the value is zero-length, we avoid calling read_memory, which
3940 would abort. We mark the value as fetched anyway -- all 0 bytes of
a844296a 3941 it. */
a58e2656 3942
a844296a 3943void
a58e2656
AB
3944value_fetch_lazy (struct value *val)
3945{
3946 gdb_assert (value_lazy (val));
3947 allocate_value_contents (val);
9a0dc9e3
PA
3948 /* A value is either lazy, or fully fetched. The
3949 availability/validity is only established as we try to fetch a
3950 value. */
3951 gdb_assert (VEC_empty (range_s, val->optimized_out));
3952 gdb_assert (VEC_empty (range_s, val->unavailable));
a58e2656
AB
3953 if (value_bitsize (val))
3954 {
3955 /* To read a lazy bitfield, read the entire enclosing value. This
3956 prevents reading the same block of (possibly volatile) memory once
3957 per bitfield. It would be even better to read only the containing
3958 word, but we have no way to record that just specific bits of a
3959 value have been fetched. */
3960 struct type *type = check_typedef (value_type (val));
a58e2656 3961 struct value *parent = value_parent (val);
a58e2656 3962
b0c54aa5
AB
3963 if (value_lazy (parent))
3964 value_fetch_lazy (parent);
3965
4875ffdb
PA
3966 unpack_value_bitfield (val,
3967 value_bitpos (val), value_bitsize (val),
3968 value_contents_for_printing (parent),
3969 value_offset (val), parent);
a58e2656
AB
3970 }
3971 else if (VALUE_LVAL (val) == lval_memory)
3972 {
3973 CORE_ADDR addr = value_address (val);
3974 struct type *type = check_typedef (value_enclosing_type (val));
3975
3976 if (TYPE_LENGTH (type))
3977 read_value_memory (val, 0, value_stack (val),
3978 addr, value_contents_all_raw (val),
3ae385af 3979 type_length_units (type));
a58e2656
AB
3980 }
3981 else if (VALUE_LVAL (val) == lval_register)
3982 {
41b56feb 3983 struct frame_info *next_frame;
a58e2656
AB
3984 int regnum;
3985 struct type *type = check_typedef (value_type (val));
3986 struct value *new_val = val, *mark = value_mark ();
3987
3988 /* Offsets are not supported here; lazy register values must
3989 refer to the entire register. */
3990 gdb_assert (value_offset (val) == 0);
3991
3992 while (VALUE_LVAL (new_val) == lval_register && value_lazy (new_val))
3993 {
41b56feb 3994 struct frame_id next_frame_id = VALUE_NEXT_FRAME_ID (new_val);
6eeee81c 3995
41b56feb 3996 next_frame = frame_find_by_id (next_frame_id);
a58e2656
AB
3997 regnum = VALUE_REGNUM (new_val);
3998
41b56feb 3999 gdb_assert (next_frame != NULL);
a58e2656
AB
4000
4001 /* Convertible register routines are used for multi-register
4002 values and for interpretation in different types
4003 (e.g. float or int from a double register). Lazy
4004 register values should have the register's natural type,
4005 so they do not apply. */
41b56feb 4006 gdb_assert (!gdbarch_convert_register_p (get_frame_arch (next_frame),
a58e2656
AB
4007 regnum, type));
4008
41b56feb
KB
4009 /* FRAME was obtained, above, via VALUE_NEXT_FRAME_ID.
4010 Since a "->next" operation was performed when setting
4011 this field, we do not need to perform a "next" operation
4012 again when unwinding the register. That's why
4013 frame_unwind_register_value() is called here instead of
4014 get_frame_register_value(). */
4015 new_val = frame_unwind_register_value (next_frame, regnum);
6eeee81c
TT
4016
4017 /* If we get another lazy lval_register value, it means the
41b56feb
KB
4018 register is found by reading it from NEXT_FRAME's next frame.
4019 frame_unwind_register_value should never return a value with
4020 the frame id pointing to NEXT_FRAME. If it does, it means we
6eeee81c
TT
4021 either have two consecutive frames with the same frame id
4022 in the frame chain, or some code is trying to unwind
4023 behind get_prev_frame's back (e.g., a frame unwind
4024 sniffer trying to unwind), bypassing its validations. In
4025 any case, it should always be an internal error to end up
4026 in this situation. */
4027 if (VALUE_LVAL (new_val) == lval_register
4028 && value_lazy (new_val)
41b56feb 4029 && frame_id_eq (VALUE_NEXT_FRAME_ID (new_val), next_frame_id))
6eeee81c
TT
4030 internal_error (__FILE__, __LINE__,
4031 _("infinite loop while fetching a register"));
a58e2656
AB
4032 }
4033
4034 /* If it's still lazy (for instance, a saved register on the
4035 stack), fetch it. */
4036 if (value_lazy (new_val))
4037 value_fetch_lazy (new_val);
4038
9a0dc9e3
PA
4039 /* Copy the contents and the unavailability/optimized-out
4040 meta-data from NEW_VAL to VAL. */
4041 set_value_lazy (val, 0);
4042 value_contents_copy (val, value_embedded_offset (val),
4043 new_val, value_embedded_offset (new_val),
3ae385af 4044 type_length_units (type));
a58e2656
AB
4045
4046 if (frame_debug)
4047 {
4048 struct gdbarch *gdbarch;
41b56feb
KB
4049 struct frame_info *frame;
4050 /* VALUE_FRAME_ID is used here, instead of VALUE_NEXT_FRAME_ID,
4051 so that the frame level will be shown correctly. */
a58e2656
AB
4052 frame = frame_find_by_id (VALUE_FRAME_ID (val));
4053 regnum = VALUE_REGNUM (val);
4054 gdbarch = get_frame_arch (frame);
4055
4056 fprintf_unfiltered (gdb_stdlog,
4057 "{ value_fetch_lazy "
4058 "(frame=%d,regnum=%d(%s),...) ",
4059 frame_relative_level (frame), regnum,
4060 user_reg_map_regnum_to_name (gdbarch, regnum));
4061
4062 fprintf_unfiltered (gdb_stdlog, "->");
4063 if (value_optimized_out (new_val))
f6c01fc5
AB
4064 {
4065 fprintf_unfiltered (gdb_stdlog, " ");
4066 val_print_optimized_out (new_val, gdb_stdlog);
4067 }
a58e2656
AB
4068 else
4069 {
4070 int i;
4071 const gdb_byte *buf = value_contents (new_val);
4072
4073 if (VALUE_LVAL (new_val) == lval_register)
4074 fprintf_unfiltered (gdb_stdlog, " register=%d",
4075 VALUE_REGNUM (new_val));
4076 else if (VALUE_LVAL (new_val) == lval_memory)
4077 fprintf_unfiltered (gdb_stdlog, " address=%s",
4078 paddress (gdbarch,
4079 value_address (new_val)));
4080 else
4081 fprintf_unfiltered (gdb_stdlog, " computed");
4082
4083 fprintf_unfiltered (gdb_stdlog, " bytes=");
4084 fprintf_unfiltered (gdb_stdlog, "[");
4085 for (i = 0; i < register_size (gdbarch, regnum); i++)
4086 fprintf_unfiltered (gdb_stdlog, "%02x", buf[i]);
4087 fprintf_unfiltered (gdb_stdlog, "]");
4088 }
4089
4090 fprintf_unfiltered (gdb_stdlog, " }\n");
4091 }
4092
4093 /* Dispose of the intermediate values. This prevents
4094 watchpoints from trying to watch the saved frame pointer. */
4095 value_free_to_mark (mark);
4096 }
4097 else if (VALUE_LVAL (val) == lval_computed
4098 && value_computed_funcs (val)->read != NULL)
4099 value_computed_funcs (val)->read (val);
a58e2656
AB
4100 else
4101 internal_error (__FILE__, __LINE__, _("Unexpected lazy value type."));
4102
4103 set_value_lazy (val, 0);
a58e2656
AB
4104}
4105
a280dbd1
SDJ
4106/* Implementation of the convenience function $_isvoid. */
4107
4108static struct value *
4109isvoid_internal_fn (struct gdbarch *gdbarch,
4110 const struct language_defn *language,
4111 void *cookie, int argc, struct value **argv)
4112{
4113 int ret;
4114
4115 if (argc != 1)
6bc305f5 4116 error (_("You must provide one argument for $_isvoid."));
a280dbd1
SDJ
4117
4118 ret = TYPE_CODE (value_type (argv[0])) == TYPE_CODE_VOID;
4119
4120 return value_from_longest (builtin_type (gdbarch)->builtin_int, ret);
4121}
4122
c906108c 4123void
fba45db2 4124_initialize_values (void)
c906108c 4125{
1a966eab 4126 add_cmd ("convenience", no_class, show_convenience, _("\
f47f77df
DE
4127Debugger convenience (\"$foo\") variables and functions.\n\
4128Convenience variables are created when you assign them values;\n\
4129thus, \"set $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\
1a966eab 4130\n\
c906108c
SS
4131A few convenience variables are given values automatically:\n\
4132\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f47f77df
DE
4133\"$__\" holds the contents of the last address examined with \"x\"."
4134#ifdef HAVE_PYTHON
4135"\n\n\
4136Convenience functions are defined via the Python API."
4137#endif
4138 ), &showlist);
7e20dfcd 4139 add_alias_cmd ("conv", "convenience", no_class, 1, &showlist);
c906108c 4140
db5f229b 4141 add_cmd ("values", no_set_class, show_values, _("\
3e43a32a 4142Elements of value history around item number IDX (or last ten)."),
c906108c 4143 &showlist);
53e5f3cf
AS
4144
4145 add_com ("init-if-undefined", class_vars, init_if_undefined_command, _("\
4146Initialize a convenience variable if necessary.\n\
4147init-if-undefined VARIABLE = EXPRESSION\n\
4148Set an internal VARIABLE to the result of the EXPRESSION if it does not\n\
4149exist or does not contain a value. The EXPRESSION is not evaluated if the\n\
4150VARIABLE is already initialized."));
bc3b79fd
TJB
4151
4152 add_prefix_cmd ("function", no_class, function_command, _("\
4153Placeholder command for showing help on convenience functions."),
4154 &functionlist, "function ", 0, &cmdlist);
a280dbd1
SDJ
4155
4156 add_internal_function ("_isvoid", _("\
4157Check whether an expression is void.\n\
4158Usage: $_isvoid (expression)\n\
4159Return 1 if the expression is void, zero otherwise."),
4160 isvoid_internal_fn, NULL);
5fdf6324
AB
4161
4162 add_setshow_zuinteger_unlimited_cmd ("max-value-size",
4163 class_support, &max_value_size, _("\
4164Set maximum sized value gdb will load from the inferior."), _("\
4165Show maximum sized value gdb will load from the inferior."), _("\
4166Use this to control the maximum size, in bytes, of a value that gdb\n\
4167will load from the inferior. Setting this value to 'unlimited'\n\
4168disables checking.\n\
4169Setting this does not invalidate already allocated values, it only\n\
4170prevents future values, larger than this size, from being allocated."),
4171 set_max_value_size,
4172 show_max_value_size,
4173 &setlist, &showlist);
c906108c 4174}
This page took 2.288057 seconds and 4 git commands to generate.