spelling fix.
[deliverable/binutils-gdb.git] / gdb / values.c
CommitLineData
7d9884b9 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
879c0417 2 Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998
8918bce0 3 Free Software Foundation, Inc.
dd3b648e
RP
4
5This file is part of GDB.
6
99a7de40 7This program is free software; you can redistribute it and/or modify
dd3b648e 8it under the terms of the GNU General Public License as published by
99a7de40
JG
9the Free Software Foundation; either version 2 of the License, or
10(at your option) any later version.
dd3b648e 11
99a7de40 12This program is distributed in the hope that it will be useful,
dd3b648e
RP
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
99a7de40 18along with this program; if not, write to the Free Software
6c9638b4 19Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. */
dd3b648e 20
dd3b648e 21#include "defs.h"
2b576293 22#include "gdb_string.h"
dd3b648e 23#include "symtab.h"
1ab3bf1b 24#include "gdbtypes.h"
dd3b648e
RP
25#include "value.h"
26#include "gdbcore.h"
27#include "frame.h"
28#include "command.h"
f266e564 29#include "gdbcmd.h"
ac88ca20 30#include "target.h"
acc4efde 31#include "language.h"
b52cac6b 32#include "scm-lang.h"
8050a57b 33#include "demangle.h"
dd3b648e 34
879c0417
JM
35/* Prototypes for exported functions. */
36
37void _initialize_values PARAMS ((void));
38
39/* Prototypes for local functions. */
1ab3bf1b 40
849d0896
PS
41static value_ptr value_headof PARAMS ((value_ptr, struct type *,
42 struct type *));
1ab3bf1b 43
82a2edfb 44static void show_values PARAMS ((char *, int));
1ab3bf1b 45
82a2edfb 46static void show_convenience PARAMS ((char *, int));
71b16efa 47
b607efe7
FF
48static int vb_match PARAMS ((struct type *, int, struct type *));
49
dd3b648e
RP
50/* The value-history records all the values printed
51 by print commands during this session. Each chunk
52 records 60 consecutive values. The first chunk on
53 the chain records the most recent values.
54 The total number of values is in value_history_count. */
55
56#define VALUE_HISTORY_CHUNK 60
57
58struct value_history_chunk
59{
60 struct value_history_chunk *next;
82a2edfb 61 value_ptr values[VALUE_HISTORY_CHUNK];
dd3b648e
RP
62};
63
64/* Chain of chunks now in use. */
65
66static struct value_history_chunk *value_history_chain;
67
68static int value_history_count; /* Abs number of last entry stored */
dd3b648e
RP
69\f
70/* List of all value objects currently allocated
71 (except for those released by calls to release_value)
72 This is so they can be freed after each command. */
73
82a2edfb 74static value_ptr all_values;
dd3b648e
RP
75
76/* Allocate a value that has the correct length for type TYPE. */
77
82a2edfb 78value_ptr
dd3b648e
RP
79allocate_value (type)
80 struct type *type;
81{
82a2edfb 82 register value_ptr val;
5e548861 83 struct type *atype = check_typedef (type);
dd3b648e 84
5e548861 85 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
dd3b648e
RP
86 VALUE_NEXT (val) = all_values;
87 all_values = val;
88 VALUE_TYPE (val) = type;
4ef1f467 89 VALUE_ENCLOSING_TYPE (val) = type;
dd3b648e
RP
90 VALUE_LVAL (val) = not_lval;
91 VALUE_ADDRESS (val) = 0;
92 VALUE_FRAME (val) = 0;
93 VALUE_OFFSET (val) = 0;
94 VALUE_BITPOS (val) = 0;
95 VALUE_BITSIZE (val) = 0;
dd3b648e
RP
96 VALUE_REGNO (val) = -1;
97 VALUE_LAZY (val) = 0;
98 VALUE_OPTIMIZED_OUT (val) = 0;
6c310da8 99 VALUE_BFD_SECTION (val) = NULL;
4ef1f467
DT
100 VALUE_EMBEDDED_OFFSET (val) = 0;
101 VALUE_POINTED_TO_OFFSET (val) = 0;
30974778 102 val->modifiable = 1;
dd3b648e
RP
103 return val;
104}
105
106/* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
82a2edfb 109value_ptr
dd3b648e
RP
110allocate_repeat_value (type, count)
111 struct type *type;
112 int count;
113{
398f584f
PB
114 int low_bound = current_language->string_lower_bound; /* ??? */
115 /* FIXME-type-allocation: need a way to free this type when we are
116 done with it. */
117 struct type *range_type
118 = create_range_type ((struct type *) NULL, builtin_type_int,
119 low_bound, count + low_bound - 1);
120 /* FIXME-type-allocation: need a way to free this type when we are
121 done with it. */
122 return allocate_value (create_array_type ((struct type *) NULL,
123 type, range_type));
dd3b648e
RP
124}
125
fcb887ff
JK
126/* Return a mark in the value chain. All values allocated after the
127 mark is obtained (except for those released) are subject to being freed
128 if a subsequent value_free_to_mark is passed the mark. */
82a2edfb 129value_ptr
fcb887ff
JK
130value_mark ()
131{
132 return all_values;
133}
134
135/* Free all values allocated since MARK was obtained by value_mark
136 (except for those released). */
137void
138value_free_to_mark (mark)
82a2edfb 139 value_ptr mark;
fcb887ff 140{
82a2edfb 141 value_ptr val, next;
fcb887ff
JK
142
143 for (val = all_values; val && val != mark; val = next)
144 {
145 next = VALUE_NEXT (val);
146 value_free (val);
147 }
148 all_values = val;
149}
150
dd3b648e
RP
151/* Free all the values that have been allocated (except for those released).
152 Called after each command, successful or not. */
153
154void
155free_all_values ()
156{
82a2edfb 157 register value_ptr val, next;
dd3b648e
RP
158
159 for (val = all_values; val; val = next)
160 {
161 next = VALUE_NEXT (val);
162 value_free (val);
163 }
164
165 all_values = 0;
166}
167
168/* Remove VAL from the chain all_values
169 so it will not be freed automatically. */
170
171void
172release_value (val)
82a2edfb 173 register value_ptr val;
dd3b648e 174{
82a2edfb 175 register value_ptr v;
dd3b648e
RP
176
177 if (all_values == val)
178 {
179 all_values = val->next;
180 return;
181 }
182
183 for (v = all_values; v; v = v->next)
184 {
185 if (v->next == val)
186 {
187 v->next = val->next;
188 break;
189 }
190 }
191}
192
999dd04b
JL
193/* Release all values up to mark */
194value_ptr
195value_release_to_mark (mark)
196 value_ptr mark;
197{
198 value_ptr val, next;
199
200 for (val = next = all_values; next; next = VALUE_NEXT (next))
201 if (VALUE_NEXT (next) == mark)
202 {
203 all_values = VALUE_NEXT (next);
204 VALUE_NEXT (next) = 0;
205 return val;
206 }
207 all_values = 0;
208 return val;
209}
210
dd3b648e
RP
211/* Return a copy of the value ARG.
212 It contains the same contents, for same memory address,
213 but it's a different block of storage. */
214
82a2edfb 215value_ptr
dd3b648e 216value_copy (arg)
82a2edfb 217 value_ptr arg;
dd3b648e 218{
4ef1f467
DT
219 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
220 register value_ptr val = allocate_value (encl_type);
221 VALUE_TYPE (val) = VALUE_TYPE (arg);
dd3b648e
RP
222 VALUE_LVAL (val) = VALUE_LVAL (arg);
223 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
224 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
225 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
226 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
5e711e7f 227 VALUE_FRAME (val) = VALUE_FRAME (arg);
dd3b648e
RP
228 VALUE_REGNO (val) = VALUE_REGNO (arg);
229 VALUE_LAZY (val) = VALUE_LAZY (arg);
5e711e7f 230 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
4ef1f467
DT
231 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
232 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
6c310da8 233 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
30974778 234 val->modifiable = arg->modifiable;
dd3b648e
RP
235 if (!VALUE_LAZY (val))
236 {
4ef1f467
DT
237 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
238 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
239
dd3b648e
RP
240 }
241 return val;
242}
243\f
244/* Access to the value history. */
245
246/* Record a new value in the value history.
247 Returns the absolute history index of the entry.
248 Result of -1 indicates the value was not saved; otherwise it is the
249 value history index of this new item. */
250
251int
252record_latest_value (val)
82a2edfb 253 value_ptr val;
dd3b648e
RP
254{
255 int i;
256
26a859ec
PS
257 /* We don't want this value to have anything to do with the inferior anymore.
258 In particular, "set $1 = 50" should not affect the variable from which
259 the value was taken, and fast watchpoints should be able to assume that
260 a value on the value history never changes. */
261 if (VALUE_LAZY (val))
262 value_fetch_lazy (val);
263 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
264 from. This is a bit dubious, because then *&$1 does not just return $1
265 but the current contents of that location. c'est la vie... */
266 val->modifiable = 0;
267 release_value (val);
268
dd3b648e
RP
269 /* Here we treat value_history_count as origin-zero
270 and applying to the value being stored now. */
271
272 i = value_history_count % VALUE_HISTORY_CHUNK;
273 if (i == 0)
274 {
275 register struct value_history_chunk *new
276 = (struct value_history_chunk *)
277 xmalloc (sizeof (struct value_history_chunk));
4ed3a9ea 278 memset (new->values, 0, sizeof new->values);
dd3b648e
RP
279 new->next = value_history_chain;
280 value_history_chain = new;
281 }
282
283 value_history_chain->values[i] = val;
4abc83b9 284
dd3b648e
RP
285 /* Now we regard value_history_count as origin-one
286 and applying to the value just stored. */
287
288 return ++value_history_count;
289}
290
291/* Return a copy of the value in the history with sequence number NUM. */
292
82a2edfb 293value_ptr
dd3b648e
RP
294access_value_history (num)
295 int num;
296{
297 register struct value_history_chunk *chunk;
298 register int i;
299 register int absnum = num;
300
301 if (absnum <= 0)
302 absnum += value_history_count;
303
304 if (absnum <= 0)
305 {
306 if (num == 0)
307 error ("The history is empty.");
308 else if (num == 1)
309 error ("There is only one value in the history.");
310 else
311 error ("History does not go back to $$%d.", -num);
312 }
313 if (absnum > value_history_count)
314 error ("History has not yet reached $%d.", absnum);
315
316 absnum--;
317
318 /* Now absnum is always absolute and origin zero. */
319
320 chunk = value_history_chain;
321 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
322 i > 0; i--)
323 chunk = chunk->next;
324
325 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
326}
327
328/* Clear the value history entirely.
329 Must be done when new symbol tables are loaded,
330 because the type pointers become invalid. */
331
332void
333clear_value_history ()
334{
335 register struct value_history_chunk *next;
336 register int i;
82a2edfb 337 register value_ptr val;
dd3b648e
RP
338
339 while (value_history_chain)
340 {
341 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
a8a69e63 342 if ((val = value_history_chain->values[i]) != NULL)
be772100 343 free ((PTR)val);
dd3b648e 344 next = value_history_chain->next;
be772100 345 free ((PTR)value_history_chain);
dd3b648e
RP
346 value_history_chain = next;
347 }
348 value_history_count = 0;
349}
350
351static void
f266e564 352show_values (num_exp, from_tty)
dd3b648e
RP
353 char *num_exp;
354 int from_tty;
355{
356 register int i;
82a2edfb 357 register value_ptr val;
dd3b648e
RP
358 static int num = 1;
359
360 if (num_exp)
361 {
46c28185
RP
362 /* "info history +" should print from the stored position.
363 "info history <exp>" should print around value number <exp>. */
364 if (num_exp[0] != '+' || num_exp[1] != '\0')
dd3b648e
RP
365 num = parse_and_eval_address (num_exp) - 5;
366 }
367 else
368 {
369 /* "info history" means print the last 10 values. */
370 num = value_history_count - 9;
371 }
372
373 if (num <= 0)
374 num = 1;
375
376 for (i = num; i < num + 10 && i <= value_history_count; i++)
377 {
378 val = access_value_history (i);
379 printf_filtered ("$%d = ", i);
199b2450 380 value_print (val, gdb_stdout, 0, Val_pretty_default);
dd3b648e
RP
381 printf_filtered ("\n");
382 }
383
384 /* The next "info history +" should start after what we just printed. */
385 num += 10;
386
387 /* Hitting just return after this command should do the same thing as
388 "info history +". If num_exp is null, this is unnecessary, since
389 "info history +" is not useful after "info history". */
390 if (from_tty && num_exp)
391 {
392 num_exp[0] = '+';
393 num_exp[1] = '\0';
394 }
395}
396\f
397/* Internal variables. These are variables within the debugger
398 that hold values assigned by debugger commands.
399 The user refers to them with a '$' prefix
400 that does not appear in the variable names stored internally. */
401
402static struct internalvar *internalvars;
403
404/* Look up an internal variable with name NAME. NAME should not
405 normally include a dollar sign.
406
407 If the specified internal variable does not exist,
408 one is created, with a void value. */
409
410struct internalvar *
411lookup_internalvar (name)
412 char *name;
413{
414 register struct internalvar *var;
415
416 for (var = internalvars; var; var = var->next)
2e4964ad 417 if (STREQ (var->name, name))
dd3b648e
RP
418 return var;
419
420 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
58ae87f6 421 var->name = concat (name, NULL);
dd3b648e
RP
422 var->value = allocate_value (builtin_type_void);
423 release_value (var->value);
424 var->next = internalvars;
425 internalvars = var;
426 return var;
427}
428
82a2edfb 429value_ptr
dd3b648e
RP
430value_of_internalvar (var)
431 struct internalvar *var;
432{
82a2edfb 433 register value_ptr val;
dd3b648e
RP
434
435#ifdef IS_TRAPPED_INTERNALVAR
436 if (IS_TRAPPED_INTERNALVAR (var->name))
437 return VALUE_OF_TRAPPED_INTERNALVAR (var);
438#endif
439
440 val = value_copy (var->value);
441 if (VALUE_LAZY (val))
442 value_fetch_lazy (val);
443 VALUE_LVAL (val) = lval_internalvar;
444 VALUE_INTERNALVAR (val) = var;
445 return val;
446}
447
448void
449set_internalvar_component (var, offset, bitpos, bitsize, newval)
450 struct internalvar *var;
451 int offset, bitpos, bitsize;
82a2edfb 452 value_ptr newval;
dd3b648e
RP
453{
454 register char *addr = VALUE_CONTENTS (var->value) + offset;
455
456#ifdef IS_TRAPPED_INTERNALVAR
457 if (IS_TRAPPED_INTERNALVAR (var->name))
458 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
459#endif
460
461 if (bitsize)
58e49e21 462 modify_field (addr, value_as_long (newval),
dd3b648e
RP
463 bitpos, bitsize);
464 else
4ed3a9ea 465 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
dd3b648e
RP
466}
467
468void
469set_internalvar (var, val)
470 struct internalvar *var;
82a2edfb 471 value_ptr val;
dd3b648e 472{
51f83933
JK
473 value_ptr newval;
474
dd3b648e
RP
475#ifdef IS_TRAPPED_INTERNALVAR
476 if (IS_TRAPPED_INTERNALVAR (var->name))
477 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
478#endif
479
51f83933 480 newval = value_copy (val);
ade01652 481 newval->modifiable = 1;
51f83933 482
6fab5bef
JG
483 /* Force the value to be fetched from the target now, to avoid problems
484 later when this internalvar is referenced and the target is gone or
485 has changed. */
51f83933
JK
486 if (VALUE_LAZY (newval))
487 value_fetch_lazy (newval);
488
489 /* Begin code which must not call error(). If var->value points to
490 something free'd, an error() obviously leaves a dangling pointer.
491 But we also get a danling pointer if var->value points to
492 something in the value chain (i.e., before release_value is
493 called), because after the error free_all_values will get called before
494 long. */
495 free ((PTR)var->value);
496 var->value = newval;
497 release_value (newval);
498 /* End code which must not call error(). */
dd3b648e
RP
499}
500
501char *
502internalvar_name (var)
503 struct internalvar *var;
504{
505 return var->name;
506}
507
508/* Free all internalvars. Done when new symtabs are loaded,
509 because that makes the values invalid. */
510
511void
512clear_internalvars ()
513{
514 register struct internalvar *var;
515
516 while (internalvars)
517 {
518 var = internalvars;
519 internalvars = var->next;
be772100
JG
520 free ((PTR)var->name);
521 free ((PTR)var->value);
522 free ((PTR)var);
dd3b648e
RP
523 }
524}
525
526static void
ac88ca20
JG
527show_convenience (ignore, from_tty)
528 char *ignore;
529 int from_tty;
dd3b648e
RP
530{
531 register struct internalvar *var;
532 int varseen = 0;
533
534 for (var = internalvars; var; var = var->next)
535 {
536#ifdef IS_TRAPPED_INTERNALVAR
537 if (IS_TRAPPED_INTERNALVAR (var->name))
538 continue;
539#endif
540 if (!varseen)
541 {
dd3b648e
RP
542 varseen = 1;
543 }
afe4ca15 544 printf_filtered ("$%s = ", var->name);
199b2450 545 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
afe4ca15 546 printf_filtered ("\n");
dd3b648e
RP
547 }
548 if (!varseen)
199b2450 549 printf_unfiltered ("No debugger convenience variables now defined.\n\
dd3b648e
RP
550Convenience variables have names starting with \"$\";\n\
551use \"set\" as in \"set $foo = 5\" to define them.\n");
552}
553\f
554/* Extract a value as a C number (either long or double).
555 Knows how to convert fixed values to double, or
556 floating values to long.
557 Does not deallocate the value. */
558
559LONGEST
560value_as_long (val)
82a2edfb 561 register value_ptr val;
dd3b648e
RP
562{
563 /* This coerces arrays and functions, which is necessary (e.g.
564 in disassemble_command). It also dereferences references, which
565 I suspect is the most logical thing to do. */
533bda77 566 COERCE_ARRAY (val);
dd3b648e
RP
567 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
568}
569
aa220473 570DOUBLEST
dd3b648e 571value_as_double (val)
82a2edfb 572 register value_ptr val;
dd3b648e 573{
aa220473 574 DOUBLEST foo;
dd3b648e
RP
575 int inv;
576
577 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
578 if (inv)
579 error ("Invalid floating value found in program.");
580 return foo;
581}
e1ce8aa5
JK
582/* Extract a value as a C pointer.
583 Does not deallocate the value. */
584CORE_ADDR
585value_as_pointer (val)
82a2edfb 586 value_ptr val;
e1ce8aa5 587{
2bff8e38
JK
588 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
589 whether we want this to be true eventually. */
b2ccb6a4
JK
590#if 0
591 /* ADDR_BITS_REMOVE is wrong if we are being called for a
592 non-address (e.g. argument to "signal", "info break", etc.), or
593 for pointers to char, in which the low bits *are* significant. */
ae0ea72e 594 return ADDR_BITS_REMOVE(value_as_long (val));
b2ccb6a4
JK
595#else
596 return value_as_long (val);
597#endif
e1ce8aa5 598}
dd3b648e
RP
599\f
600/* Unpack raw data (copied from debugee, target byte order) at VALADDR
601 as a long, or as a double, assuming the raw data is described
602 by type TYPE. Knows how to convert different sizes of values
603 and can convert between fixed and floating point. We don't assume
604 any alignment for the raw data. Return value is in host byte order.
605
606 If you want functions and arrays to be coerced to pointers, and
607 references to be dereferenced, call value_as_long() instead.
608
609 C++: It is assumed that the front-end has taken care of
610 all matters concerning pointers to members. A pointer
611 to member which reaches here is considered to be equivalent
612 to an INT (or some size). After all, it is only an offset. */
613
614LONGEST
615unpack_long (type, valaddr)
616 struct type *type;
617 char *valaddr;
618{
619 register enum type_code code = TYPE_CODE (type);
620 register int len = TYPE_LENGTH (type);
621 register int nosign = TYPE_UNSIGNED (type);
622
3c02944a
PB
623 if (current_language->la_language == language_scm
624 && is_scmvalue_type (type))
625 return scm_unpack (type, valaddr, TYPE_CODE_INT);
626
bf5c0d64 627 switch (code)
dd3b648e 628 {
5e548861
PB
629 case TYPE_CODE_TYPEDEF:
630 return unpack_long (check_typedef (type), valaddr);
bf5c0d64
JK
631 case TYPE_CODE_ENUM:
632 case TYPE_CODE_BOOL:
633 case TYPE_CODE_INT:
634 case TYPE_CODE_CHAR:
b96bc1e4 635 case TYPE_CODE_RANGE:
bf5c0d64
JK
636 if (nosign)
637 return extract_unsigned_integer (valaddr, len);
dd3b648e 638 else
bf5c0d64
JK
639 return extract_signed_integer (valaddr, len);
640
641 case TYPE_CODE_FLT:
642 return extract_floating (valaddr, len);
643
644 case TYPE_CODE_PTR:
645 case TYPE_CODE_REF:
646 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
647 whether we want this to be true eventually. */
77636dea
FF
648#ifdef GDB_TARGET_IS_D10V
649 if (len == 2)
650 return D10V_MAKE_DADDR(extract_address (valaddr, len));
651#endif
34df79fc 652 return extract_address (valaddr, len);
dd3b648e 653
bf5c0d64
JK
654 case TYPE_CODE_MEMBER:
655 error ("not implemented: member types in unpack_long");
656
657 default:
ca0865db 658 error ("Value can't be converted to integer.");
bf5c0d64
JK
659 }
660 return 0; /* Placate lint. */
dd3b648e
RP
661}
662
663/* Return a double value from the specified type and address.
664 INVP points to an int which is set to 0 for valid value,
665 1 for invalid value (bad float format). In either case,
666 the returned double is OK to use. Argument is in target
667 format, result is in host format. */
668
aa220473 669DOUBLEST
dd3b648e
RP
670unpack_double (type, valaddr, invp)
671 struct type *type;
672 char *valaddr;
673 int *invp;
674{
47b8a5ce
PS
675 enum type_code code;
676 int len;
677 int nosign;
dd3b648e
RP
678
679 *invp = 0; /* Assume valid. */
5e548861 680 CHECK_TYPEDEF (type);
47b8a5ce
PS
681 code = TYPE_CODE (type);
682 len = TYPE_LENGTH (type);
683 nosign = TYPE_UNSIGNED (type);
dd3b648e
RP
684 if (code == TYPE_CODE_FLT)
685 {
ac57e5ad 686#ifdef INVALID_FLOAT
dd3b648e
RP
687 if (INVALID_FLOAT (valaddr, len))
688 {
689 *invp = 1;
690 return 1.234567891011121314;
691 }
ac57e5ad 692#endif
89ce0c8f
JK
693 return extract_floating (valaddr, len);
694 }
695 else if (nosign)
696 {
697 /* Unsigned -- be sure we compensate for signed LONGEST. */
6c310da8 698#if !defined (_MSC_VER) || (_MSC_VER > 900)
119dfbb7 699 return (ULONGEST) unpack_long (type, valaddr);
28444bf3
DP
700#else
701 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
702 return (LONGEST) unpack_long (type, valaddr);
28444bf3 703#endif /* _MSC_VER */
89ce0c8f
JK
704 }
705 else
706 {
707 /* Signed -- we are OK with unpack_long. */
708 return unpack_long (type, valaddr);
dd3b648e 709 }
dd3b648e 710}
e1ce8aa5
JK
711
712/* Unpack raw data (copied from debugee, target byte order) at VALADDR
713 as a CORE_ADDR, assuming the raw data is described by type TYPE.
714 We don't assume any alignment for the raw data. Return value is in
715 host byte order.
716
717 If you want functions and arrays to be coerced to pointers, and
718 references to be dereferenced, call value_as_pointer() instead.
719
720 C++: It is assumed that the front-end has taken care of
721 all matters concerning pointers to members. A pointer
722 to member which reaches here is considered to be equivalent
723 to an INT (or some size). After all, it is only an offset. */
724
725CORE_ADDR
726unpack_pointer (type, valaddr)
727 struct type *type;
728 char *valaddr;
729{
2bff8e38
JK
730 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
731 whether we want this to be true eventually. */
732 return unpack_long (type, valaddr);
e1ce8aa5 733}
dd3b648e 734\f
f7f37388
PB
735/* Get the value of the FIELDN'th field (which must be static) of TYPE. */
736
737value_ptr
738value_static_field (type, fieldno)
739 struct type *type;
740 int fieldno;
741{
742 CORE_ADDR addr;
743 asection *sect;
744 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
745 {
746 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
747 sect = NULL;
748 }
749 else
750 {
751 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
752 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
753 if (sym == NULL)
4ef1f467
DT
754 {
755 /* With some compilers, e.g. HP aCC, static data members are reported
756 as non-debuggable symbols */
757 struct minimal_symbol * msym = lookup_minimal_symbol (phys_name, NULL, NULL);
758 if (!msym)
759 return NULL;
760 else
761 {
762 addr = SYMBOL_VALUE_ADDRESS (msym);
763 sect = SYMBOL_BFD_SECTION (msym);
764 }
765 }
766 else
767 {
768 addr = SYMBOL_VALUE_ADDRESS (sym);
769 sect = SYMBOL_BFD_SECTION (sym);
770 }
f7f37388
PB
771 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
772 }
773 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
774}
775
dd3b648e
RP
776/* Given a value ARG1 (offset by OFFSET bytes)
777 of a struct or union type ARG_TYPE,
f7f37388
PB
778 extract and return the value of one of its (non-static) fields.
779 FIELDNO says which field. */
dd3b648e 780
82a2edfb 781value_ptr
dd3b648e 782value_primitive_field (arg1, offset, fieldno, arg_type)
82a2edfb 783 register value_ptr arg1;
dd3b648e
RP
784 int offset;
785 register int fieldno;
786 register struct type *arg_type;
787{
82a2edfb 788 register value_ptr v;
dd3b648e
RP
789 register struct type *type;
790
5e548861 791 CHECK_TYPEDEF (arg_type);
dd3b648e
RP
792 type = TYPE_FIELD_TYPE (arg_type, fieldno);
793
794 /* Handle packed fields */
795
dd3b648e
RP
796 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
797 {
96b2f51c 798 v = value_from_longest (type,
93e7a07f
PS
799 unpack_field_as_long (arg_type,
800 VALUE_CONTENTS (arg1)
801 + offset,
802 fieldno));
dd3b648e
RP
803 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
804 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
805 }
4ef1f467
DT
806 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
807 {
808 /* This field is actually a base subobject, so preserve the
809 entire object's contents for later references to virtual
810 bases, etc. */
811 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
812 VALUE_TYPE (v) = arg_type;
813 if (VALUE_LAZY (arg1))
814 VALUE_LAZY (v) = 1;
815 else
816 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
817 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
818 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
819 VALUE_EMBEDDED_OFFSET (v)
820 = offset +
821 VALUE_EMBEDDED_OFFSET (arg1) +
822 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
823 }
dd3b648e
RP
824 else
825 {
4ef1f467
DT
826 /* Plain old data member */
827 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
dd3b648e
RP
828 v = allocate_value (type);
829 if (VALUE_LAZY (arg1))
830 VALUE_LAZY (v) = 1;
831 else
93e7a07f 832 memcpy (VALUE_CONTENTS_RAW (v),
4ef1f467 833 VALUE_CONTENTS_RAW (arg1) + offset,
4ed3a9ea 834 TYPE_LENGTH (type));
4ef1f467 835 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
dd3b648e
RP
836 }
837 VALUE_LVAL (v) = VALUE_LVAL (arg1);
838 if (VALUE_LVAL (arg1) == lval_internalvar)
839 VALUE_LVAL (v) = lval_internalvar_component;
840 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
4ef1f467
DT
841/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
842 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
dd3b648e
RP
843 return v;
844}
845
846/* Given a value ARG1 of a struct or union type,
f7f37388
PB
847 extract and return the value of one of its (non-static) fields.
848 FIELDNO says which field. */
dd3b648e 849
82a2edfb 850value_ptr
dd3b648e 851value_field (arg1, fieldno)
82a2edfb 852 register value_ptr arg1;
dd3b648e
RP
853 register int fieldno;
854{
855 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
856}
857
545af6ce
PB
858/* Return a non-virtual function as a value.
859 F is the list of member functions which contains the desired method.
860 J is an index into F which provides the desired method. */
861
82a2edfb 862value_ptr
94603999 863value_fn_field (arg1p, f, j, type, offset)
82a2edfb 864 value_ptr *arg1p;
545af6ce
PB
865 struct fn_field *f;
866 int j;
94603999
JG
867 struct type *type;
868 int offset;
dd3b648e 869{
82a2edfb 870 register value_ptr v;
94603999 871 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
dd3b648e
RP
872 struct symbol *sym;
873
545af6ce 874 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
dd3b648e 875 0, VAR_NAMESPACE, 0, NULL);
f1c6dbf6 876 if (! sym)
82a2edfb 877 return NULL;
f1c6dbf6
KH
878/*
879 error ("Internal error: could not find physical method named %s",
545af6ce 880 TYPE_FN_FIELD_PHYSNAME (f, j));
f1c6dbf6 881*/
dd3b648e 882
94603999 883 v = allocate_value (ftype);
dd3b648e 884 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
94603999
JG
885 VALUE_TYPE (v) = ftype;
886
887 if (arg1p)
888 {
889 if (type != VALUE_TYPE (*arg1p))
890 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
891 value_addr (*arg1p)));
892
dcd8fd8c 893 /* Move the `this' pointer according to the offset.
94603999 894 VALUE_OFFSET (*arg1p) += offset;
dcd8fd8c 895 */
94603999
JG
896 }
897
dd3b648e
RP
898 return v;
899}
900
901/* Return a virtual function as a value.
902 ARG1 is the object which provides the virtual function
94603999 903 table pointer. *ARG1P is side-effected in calling this function.
dd3b648e
RP
904 F is the list of member functions which contains the desired virtual
905 function.
e532974c
JK
906 J is an index into F which provides the desired virtual function.
907
908 TYPE is the type in which F is located. */
82a2edfb 909value_ptr
94603999 910value_virtual_fn_field (arg1p, f, j, type, offset)
82a2edfb 911 value_ptr *arg1p;
dd3b648e
RP
912 struct fn_field *f;
913 int j;
e532974c 914 struct type *type;
94603999 915 int offset;
dd3b648e 916{
82a2edfb 917 value_ptr arg1 = *arg1p;
5e548861 918 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
dd3b648e 919
4ef1f467 920 if (TYPE_HAS_VTABLE (type))
dd3b648e 921 {
4ef1f467
DT
922 /* Deal with HP/Taligent runtime model for virtual functions */
923 value_ptr vp;
924 value_ptr argp; /* arg1 cast to base */
925 CORE_ADDR vfunc_addr; /* address of virtual method */
926 CORE_ADDR coreptr; /* pointer to target address */
927 int class_index; /* which class segment pointer to use */
928 struct type * ftype = TYPE_FN_FIELD_TYPE (f, j); /* method type */
929
930 argp = value_cast (type, *arg1p);
931
932 if (VALUE_ADDRESS (argp) == 0)
933 error ("Address of object is null; object may not have been created.");
36a2283d 934
4ef1f467
DT
935 /* pai: FIXME -- 32x64 possible problem? */
936 /* First word (4 bytes) in object layout is the vtable pointer */
937 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (argp)); /* pai: (temp) */
938 /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */
dd3b648e 939
4ef1f467
DT
940 if (!coreptr)
941 error ("Virtual table pointer is null for object; object may not have been created.");
942
943 /* pai/1997-05-09
944 * FIXME: The code here currently handles only
945 * the non-RRBC case of the Taligent/HP runtime spec; when RRBC
946 * is introduced, the condition for the "if" below will have to
947 * be changed to be a test for the RRBC case. */
948
949 if (1)
950 {
951 /* Non-RRBC case; the virtual function pointers are stored at fixed
952 * offsets in the virtual table. */
953
954 /* Retrieve the offset in the virtual table from the debug
955 * info. The offset of the vfunc's entry is in words from
956 * the beginning of the vtable; but first we have to adjust
957 * by HP_ACC_VFUNC_START to account for other entries */
958
959 /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
960 * which case the multiplier should be 8 and values should be long */
961 vp = value_at (builtin_type_int,
962 coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL);
963
964 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp));
965 /* coreptr now contains the address of the virtual function */
966 /* (Actually, it contains the pointer to the plabel for the function. */
967 }
968 else
969 {
970 /* RRBC case; the virtual function pointers are found by double
971 * indirection through the class segment tables. */
972
973 /* Choose class segment depending on type we were passed */
974 class_index = class_index_in_primary_list (type);
975
976 /* Find class segment pointer. These are in the vtable slots after
977 * some other entries, so adjust by HP_ACC_VFUNC_START for that. */
978 /* pai: FIXME 32x64 problem here, if words are 8 bytes long
979 * the multiplier below has to be 8 and value should be long. */
980 vp = value_at (builtin_type_int,
981 coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL);
982 /* Indirect once more, offset by function index */
983 /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
984 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j));
985 vp = value_at (builtin_type_int, coreptr, NULL);
986 coreptr = * (CORE_ADDR *) (VALUE_CONTENTS (vp));
987
988 /* coreptr now contains the address of the virtual function */
989 /* (Actually, it contains the pointer to the plabel for the function.) */
990
991 }
992
993 if (!coreptr)
994 error ("Address of virtual function is null; error in virtual table?");
995
996 /* Wrap this addr in a value and return pointer */
997 vp = allocate_value (ftype);
998 VALUE_TYPE (vp) = ftype;
999 VALUE_ADDRESS (vp) = coreptr;
1000
1001 /* pai: (temp) do we need the value_ind stuff in value_fn_field? */
1002 return vp;
36a2283d 1003 }
4ef1f467
DT
1004 else
1005 { /* Not using HP/Taligent runtime conventions; so try to
1006 * use g++ conventions for virtual table */
1007
1008 struct type *entry_type;
1009 /* First, get the virtual function table pointer. That comes
1010 with a strange type, so cast it to type `pointer to long' (which
1011 should serve just fine as a function type). Then, index into
1012 the table, and convert final value to appropriate function type. */
1013 value_ptr entry, vfn, vtbl;
1014 value_ptr vi = value_from_longest (builtin_type_int,
1015 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
1016 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
1017 struct type *context;
1018 if (fcontext == NULL)
1019 /* We don't have an fcontext (e.g. the program was compiled with
1020 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
1021 This won't work right for multiple inheritance, but at least we
1022 should do as well as GDB 3.x did. */
1023 fcontext = TYPE_VPTR_BASETYPE (type);
1024 context = lookup_pointer_type (fcontext);
1025 /* Now context is a pointer to the basetype containing the vtbl. */
1026 if (TYPE_TARGET_TYPE (context) != type1)
1027 {
1028 arg1 = value_ind (value_cast (context, value_addr (arg1)));
1029 type1 = check_typedef (VALUE_TYPE (arg1));
1030 }
1031
1032 context = type1;
1033 /* Now context is the basetype containing the vtbl. */
1034
1035 /* This type may have been defined before its virtual function table
1036 was. If so, fill in the virtual function table entry for the
1037 type now. */
1038 if (TYPE_VPTR_FIELDNO (context) < 0)
1039 fill_in_vptr_fieldno (context);
1040
1041 /* The virtual function table is now an array of structures
1042 which have the form { int16 offset, delta; void *pfn; }. */
1b0df0ad
MA
1043 vtbl = value_primitive_field (arg1, 0, TYPE_VPTR_FIELDNO (context),
1044 TYPE_VPTR_BASETYPE (context));
1045
1046 /* With older versions of g++, the vtbl field pointed to an array
1047 of structures. Nowadays it points directly to the structure. */
1048 if (TYPE_CODE (VALUE_TYPE (vtbl)) == TYPE_CODE_PTR
1049 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl))) == TYPE_CODE_ARRAY)
1050 {
1051 /* Handle the case where the vtbl field points to an
1052 array of structures. */
1053 vtbl = value_ind (vtbl);
1054
1055 /* Index into the virtual function table. This is hard-coded because
1056 looking up a field is not cheap, and it may be important to save
1057 time, e.g. if the user has set a conditional breakpoint calling
1058 a virtual function. */
1059 entry = value_subscript (vtbl, vi);
1060 }
1061 else
1062 {
1063 /* Handle the case where the vtbl field points directly to a structure. */
1064 vtbl = value_add (vtbl, vi);
1065 entry = value_ind (vtbl);
1066 }
1067
4ef1f467
DT
1068 entry_type = check_typedef (VALUE_TYPE (entry));
1069
1070 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
1071 {
1072 /* Move the `this' pointer according to the virtual function table. */
1073 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
1074
1075 if (! VALUE_LAZY (arg1))
1076 {
1077 VALUE_LAZY (arg1) = 1;
1078 value_fetch_lazy (arg1);
1079 }
1080
1081 vfn = value_field (entry, 2);
1082 }
1083 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
1084 vfn = entry;
1085 else
1086 error ("I'm confused: virtual function table has bad type");
1087 /* Reinstantiate the function pointer with the correct type. */
1088 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
dd3b648e 1089
4ef1f467
DT
1090 *arg1p = arg1;
1091 return vfn;
1092 }
dd3b648e
RP
1093}
1094
71b16efa
JK
1095/* ARG is a pointer to an object we know to be at least
1096 a DTYPE. BTYPE is the most derived basetype that has
1097 already been searched (and need not be searched again).
1098 After looking at the vtables between BTYPE and DTYPE,
1099 return the most derived type we find. The caller must
1100 be satisfied when the return value == DTYPE.
1101
1102 FIXME-tiemann: should work with dossier entries as well. */
1103
82a2edfb 1104static value_ptr
7cb0f870 1105value_headof (in_arg, btype, dtype)
82a2edfb 1106 value_ptr in_arg;
71b16efa
JK
1107 struct type *btype, *dtype;
1108{
1109 /* First collect the vtables we must look at for this object. */
1110 /* FIXME-tiemann: right now, just look at top-most vtable. */
82a2edfb 1111 value_ptr arg, vtbl, entry, best_entry = 0;
71b16efa
JK
1112 int i, nelems;
1113 int offset, best_offset = 0;
1114 struct symbol *sym;
1115 CORE_ADDR pc_for_sym;
1116 char *demangled_name;
1ab3bf1b
JG
1117 struct minimal_symbol *msymbol;
1118
aec4cb91 1119 btype = TYPE_VPTR_BASETYPE (dtype);
5e548861 1120 CHECK_TYPEDEF (btype);
7cb0f870 1121 arg = in_arg;
aec4cb91 1122 if (btype != dtype)
7cb0f870
MT
1123 arg = value_cast (lookup_pointer_type (btype), arg);
1124 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
71b16efa
JK
1125
1126 /* Check that VTBL looks like it points to a virtual function table. */
1ab3bf1b
JG
1127 msymbol = lookup_minimal_symbol_by_pc (VALUE_ADDRESS (vtbl));
1128 if (msymbol == NULL
36a2283d
PB
1129 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL
1130 || !VTBL_PREFIX_P (demangled_name))
71b16efa
JK
1131 {
1132 /* If we expected to find a vtable, but did not, let the user
1133 know that we aren't happy, but don't throw an error.
1134 FIXME: there has to be a better way to do this. */
1135 struct type *error_type = (struct type *)xmalloc (sizeof (struct type));
7cb0f870 1136 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
71b16efa 1137 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
7cb0f870
MT
1138 VALUE_TYPE (in_arg) = error_type;
1139 return in_arg;
71b16efa
JK
1140 }
1141
1142 /* Now search through the virtual function table. */
1143 entry = value_ind (vtbl);
e1ce8aa5 1144 nelems = longest_to_int (value_as_long (value_field (entry, 2)));
71b16efa
JK
1145 for (i = 1; i <= nelems; i++)
1146 {
96b2f51c
JG
1147 entry = value_subscript (vtbl, value_from_longest (builtin_type_int,
1148 (LONGEST) i));
36a2283d 1149 /* This won't work if we're using thunks. */
5e548861 1150 if (TYPE_CODE (check_typedef (VALUE_TYPE (entry))) != TYPE_CODE_STRUCT)
36a2283d 1151 break;
e1ce8aa5 1152 offset = longest_to_int (value_as_long (value_field (entry, 0)));
bcccec8c
PB
1153 /* If we use '<=' we can handle single inheritance
1154 * where all offsets are zero - just use the first entry found. */
1155 if (offset <= best_offset)
71b16efa
JK
1156 {
1157 best_offset = offset;
1158 best_entry = entry;
1159 }
1160 }
71b16efa
JK
1161 /* Move the pointer according to BEST_ENTRY's offset, and figure
1162 out what type we should return as the new pointer. */
bcccec8c
PB
1163 if (best_entry == 0)
1164 {
1165 /* An alternative method (which should no longer be necessary).
1166 * But we leave it in for future use, when we will hopefully
1167 * have optimizes the vtable to use thunks instead of offsets. */
1168 /* Use the name of vtable itself to extract a base type. */
f1c6dbf6 1169 demangled_name += 4; /* Skip _vt$ prefix. */
bcccec8c
PB
1170 }
1171 else
1172 {
1173 pc_for_sym = value_as_pointer (value_field (best_entry, 2));
1174 sym = find_pc_function (pc_for_sym);
8050a57b 1175 demangled_name = cplus_demangle (SYMBOL_NAME (sym), DMGL_ANSI);
bcccec8c
PB
1176 *(strchr (demangled_name, ':')) = '\0';
1177 }
71b16efa 1178 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
2e4964ad
FF
1179 if (sym == NULL)
1180 error ("could not find type declaration for `%s'", demangled_name);
bcccec8c
PB
1181 if (best_entry)
1182 {
1183 free (demangled_name);
1184 arg = value_add (value_cast (builtin_type_int, arg),
1185 value_field (best_entry, 0));
1186 }
7cb0f870 1187 else arg = in_arg;
71b16efa
JK
1188 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1189 return arg;
1190}
1191
1192/* ARG is a pointer object of type TYPE. If TYPE has virtual
1193 function tables, probe ARG's tables (including the vtables
1194 of its baseclasses) to figure out the most derived type that ARG
1195 could actually be a pointer to. */
1196
82a2edfb 1197value_ptr
71b16efa 1198value_from_vtable_info (arg, type)
82a2edfb 1199 value_ptr arg;
71b16efa
JK
1200 struct type *type;
1201{
1202 /* Take care of preliminaries. */
1203 if (TYPE_VPTR_FIELDNO (type) < 0)
1204 fill_in_vptr_fieldno (type);
398f584f 1205 if (TYPE_VPTR_FIELDNO (type) < 0)
71b16efa
JK
1206 return 0;
1207
1208 return value_headof (arg, 0, type);
1209}
1210
1410f5f1
JK
1211/* Return true if the INDEXth field of TYPE is a virtual baseclass
1212 pointer which is for the base class whose type is BASECLASS. */
1213
1214static int
1215vb_match (type, index, basetype)
1216 struct type *type;
1217 int index;
1218 struct type *basetype;
1219{
1220 struct type *fieldtype;
1410f5f1
JK
1221 char *name = TYPE_FIELD_NAME (type, index);
1222 char *field_class_name = NULL;
1223
1224 if (*name != '_')
1225 return 0;
f1c6dbf6 1226 /* gcc 2.4 uses _vb$. */
81afee37 1227 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1410f5f1 1228 field_class_name = name + 4;
f1c6dbf6 1229 /* gcc 2.5 will use __vb_. */
1410f5f1
JK
1230 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1231 field_class_name = name + 5;
1232
1233 if (field_class_name == NULL)
1234 /* This field is not a virtual base class pointer. */
1235 return 0;
1236
1237 /* It's a virtual baseclass pointer, now we just need to find out whether
1238 it is for this baseclass. */
1239 fieldtype = TYPE_FIELD_TYPE (type, index);
1240 if (fieldtype == NULL
1241 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1242 /* "Can't happen". */
1243 return 0;
1244
1245 /* What we check for is that either the types are equal (needed for
1246 nameless types) or have the same name. This is ugly, and a more
1247 elegant solution should be devised (which would probably just push
1248 the ugliness into symbol reading unless we change the stabs format). */
1249 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1250 return 1;
1251
1252 if (TYPE_NAME (basetype) != NULL
1253 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1254 && STREQ (TYPE_NAME (basetype),
1255 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1256 return 1;
1257 return 0;
1258}
1259
94603999 1260/* Compute the offset of the baseclass which is
5e548861
PB
1261 the INDEXth baseclass of class TYPE,
1262 for value at VALADDR (in host) at ADDRESS (in target).
1263 The result is the offset of the baseclass value relative
94603999
JG
1264 to (the address of)(ARG) + OFFSET.
1265
1266 -1 is returned on error. */
1267
1268int
5e548861 1269baseclass_offset (type, index, valaddr, address)
94603999
JG
1270 struct type *type;
1271 int index;
5e548861
PB
1272 char *valaddr;
1273 CORE_ADDR address;
94603999
JG
1274{
1275 struct type *basetype = TYPE_BASECLASS (type, index);
1276
1277 if (BASETYPE_VIA_VIRTUAL (type, index))
1278 {
1279 /* Must hunt for the pointer to this virtual baseclass. */
1280 register int i, len = TYPE_NFIELDS (type);
1281 register int n_baseclasses = TYPE_N_BASECLASSES (type);
94603999 1282
94603999
JG
1283 /* First look for the virtual baseclass pointer
1284 in the fields. */
1285 for (i = n_baseclasses; i < len; i++)
1286 {
1410f5f1 1287 if (vb_match (type, i, basetype))
94603999
JG
1288 {
1289 CORE_ADDR addr
1290 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
5e548861 1291 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
94603999 1292
5e548861 1293 return addr - (LONGEST) address;
94603999
JG
1294 }
1295 }
1296 /* Not in the fields, so try looking through the baseclasses. */
1297 for (i = index+1; i < n_baseclasses; i++)
1298 {
1299 int boffset =
5e548861 1300 baseclass_offset (type, i, valaddr, address);
94603999
JG
1301 if (boffset)
1302 return boffset;
1303 }
1304 /* Not found. */
1305 return -1;
1306 }
1307
1308 /* Baseclass is easily computed. */
1309 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1310}
dd3b648e 1311\f
4db8e515
FF
1312/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1313 VALADDR.
1314
1315 Extracting bits depends on endianness of the machine. Compute the
1316 number of least significant bits to discard. For big endian machines,
1317 we compute the total number of bits in the anonymous object, subtract
1318 off the bit count from the MSB of the object to the MSB of the
1319 bitfield, then the size of the bitfield, which leaves the LSB discard
1320 count. For little endian machines, the discard count is simply the
1321 number of bits from the LSB of the anonymous object to the LSB of the
1322 bitfield.
1323
1324 If the field is signed, we also do sign extension. */
1325
1326LONGEST
dd3b648e
RP
1327unpack_field_as_long (type, valaddr, fieldno)
1328 struct type *type;
1329 char *valaddr;
1330 int fieldno;
1331{
119dfbb7
JW
1332 ULONGEST val;
1333 ULONGEST valmask;
dd3b648e
RP
1334 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1335 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
4db8e515 1336 int lsbcount;
7924771e 1337 struct type *field_type;
dd3b648e 1338
34df79fc 1339 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
7924771e
FCE
1340 field_type = TYPE_FIELD_TYPE (type, fieldno);
1341 CHECK_TYPEDEF (field_type);
4db8e515
FF
1342
1343 /* Extract bits. See comment above. */
dd3b648e 1344
b8176214
ILT
1345 if (BITS_BIG_ENDIAN)
1346 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1347 else
1348 lsbcount = (bitpos % 8);
4db8e515 1349 val >>= lsbcount;
dd3b648e 1350
4db8e515
FF
1351 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1352 If the field is signed, and is negative, then sign extend. */
1353
b52cac6b 1354 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
4db8e515 1355 {
119dfbb7 1356 valmask = (((ULONGEST) 1) << bitsize) - 1;
4db8e515 1357 val &= valmask;
7924771e 1358 if (!TYPE_UNSIGNED (field_type))
4db8e515
FF
1359 {
1360 if (val & (valmask ^ (valmask >> 1)))
1361 {
1362 val |= ~valmask;
1363 }
1364 }
1365 }
1366 return (val);
dd3b648e
RP
1367}
1368
3f2e006b
JG
1369/* Modify the value of a bitfield. ADDR points to a block of memory in
1370 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1371 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1372 indicate which bits (in target bit order) comprise the bitfield. */
1373
dd3b648e
RP
1374void
1375modify_field (addr, fieldval, bitpos, bitsize)
1376 char *addr;
58e49e21 1377 LONGEST fieldval;
dd3b648e
RP
1378 int bitpos, bitsize;
1379{
58e49e21 1380 LONGEST oword;
dd3b648e 1381
080868b4
PS
1382 /* If a negative fieldval fits in the field in question, chop
1383 off the sign extension bits. */
b52cac6b 1384 if (bitsize < (8 * (int) sizeof (fieldval))
080868b4
PS
1385 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1386 fieldval = fieldval & ((1 << bitsize) - 1);
1387
1388 /* Warn if value is too big to fit in the field in question. */
b52cac6b 1389 if (bitsize < (8 * (int) sizeof (fieldval))
61a7292f 1390 && 0 != (fieldval & ~((1<<bitsize)-1)))
58e49e21
JK
1391 {
1392 /* FIXME: would like to include fieldval in the message, but
1393 we don't have a sprintf_longest. */
080868b4
PS
1394 warning ("Value does not fit in %d bits.", bitsize);
1395
1396 /* Truncate it, otherwise adjoining fields may be corrupted. */
1397 fieldval = fieldval & ((1 << bitsize) - 1);
58e49e21 1398 }
34df79fc
JK
1399
1400 oword = extract_signed_integer (addr, sizeof oword);
dd3b648e 1401
3f2e006b 1402 /* Shifting for bit field depends on endianness of the target machine. */
b8176214
ILT
1403 if (BITS_BIG_ENDIAN)
1404 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
dd3b648e 1405
58e49e21 1406 /* Mask out old value, while avoiding shifts >= size of oword */
b52cac6b 1407 if (bitsize < 8 * (int) sizeof (oword))
119dfbb7 1408 oword &= ~(((((ULONGEST)1) << bitsize) - 1) << bitpos);
c3a21801 1409 else
119dfbb7 1410 oword &= ~((~(ULONGEST)0) << bitpos);
dd3b648e 1411 oword |= fieldval << bitpos;
3f2e006b 1412
34df79fc 1413 store_signed_integer (addr, sizeof oword, oword);
dd3b648e
RP
1414}
1415\f
1416/* Convert C numbers into newly allocated values */
1417
82a2edfb 1418value_ptr
96b2f51c 1419value_from_longest (type, num)
dd3b648e
RP
1420 struct type *type;
1421 register LONGEST num;
1422{
82a2edfb 1423 register value_ptr val = allocate_value (type);
5e548861
PB
1424 register enum type_code code;
1425 register int len;
1426 retry:
1427 code = TYPE_CODE (type);
1428 len = TYPE_LENGTH (type);
dd3b648e 1429
34df79fc 1430 switch (code)
dd3b648e 1431 {
5e548861
PB
1432 case TYPE_CODE_TYPEDEF:
1433 type = check_typedef (type);
1434 goto retry;
34df79fc
JK
1435 case TYPE_CODE_INT:
1436 case TYPE_CODE_CHAR:
1437 case TYPE_CODE_ENUM:
1438 case TYPE_CODE_BOOL:
b96bc1e4 1439 case TYPE_CODE_RANGE:
34df79fc
JK
1440 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1441 break;
1442
1443 case TYPE_CODE_REF:
1444 case TYPE_CODE_PTR:
1445 /* This assumes that all pointers of a given length
1446 have the same form. */
1447 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1448 break;
d9b9cbf3 1449
34df79fc 1450 default:
fa89ee43 1451 error ("Unexpected type (%d) encountered for integer constant.", code);
dd3b648e 1452 }
dd3b648e
RP
1453 return val;
1454}
1455
82a2edfb 1456value_ptr
dd3b648e
RP
1457value_from_double (type, num)
1458 struct type *type;
aa220473 1459 DOUBLEST num;
dd3b648e 1460{
82a2edfb 1461 register value_ptr val = allocate_value (type);
5e548861
PB
1462 struct type *base_type = check_typedef (type);
1463 register enum type_code code = TYPE_CODE (base_type);
1464 register int len = TYPE_LENGTH (base_type);
dd3b648e
RP
1465
1466 if (code == TYPE_CODE_FLT)
1467 {
bf5c0d64 1468 store_floating (VALUE_CONTENTS_RAW (val), len, num);
dd3b648e
RP
1469 }
1470 else
1471 error ("Unexpected type encountered for floating constant.");
1472
dd3b648e
RP
1473 return val;
1474}
1475\f
1476/* Deal with the value that is "about to be returned". */
1477
1478/* Return the value that a function returning now
1479 would be returning to its caller, assuming its type is VALTYPE.
1480 RETBUF is where we look for what ought to be the contents
1481 of the registers (in raw form). This is because it is often
1482 desirable to restore old values to those registers
1483 after saving the contents of interest, and then call
1484 this function using the saved values.
1485 struct_return is non-zero when the function in question is
1486 using the structure return conventions on the machine in question;
1487 0 when it is using the value returning conventions (this often
1488 means returning pointer to where structure is vs. returning value). */
1489
82a2edfb 1490value_ptr
dd3b648e
RP
1491value_being_returned (valtype, retbuf, struct_return)
1492 register struct type *valtype;
1493 char retbuf[REGISTER_BYTES];
1494 int struct_return;
1495 /*ARGSUSED*/
1496{
82a2edfb 1497 register value_ptr val;
dd3b648e
RP
1498 CORE_ADDR addr;
1499
1500#if defined (EXTRACT_STRUCT_VALUE_ADDRESS)
1501 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
1502 if (struct_return) {
1503 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1504 if (!addr)
1505 error ("Function return value unknown");
6c310da8 1506 return value_at (valtype, addr, NULL);
dd3b648e
RP
1507 }
1508#endif
1509
1510 val = allocate_value (valtype);
5e548861 1511 CHECK_TYPEDEF (valtype);
dd3b648e
RP
1512 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1513
1514 return val;
1515}
1516
1517/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1518 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1519 and TYPE is the type (which is known to be struct, union or array).
1520
1521 On most machines, the struct convention is used unless we are
1522 using gcc and the type is of a special size. */
9925b928
JK
1523/* As of about 31 Mar 93, GCC was changed to be compatible with the
1524 native compiler. GCC 2.3.3 was the last release that did it the
1525 old way. Since gcc2_compiled was not changed, we have no
1526 way to correctly win in all cases, so we just do the right thing
1527 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1528 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1529 would cause more chaos than dealing with some struct returns being
1530 handled wrong. */
98760eab
AC
1531
1532int
1533generic_use_struct_convention (gcc_p, value_type)
1534 int gcc_p;
1535 struct type *value_type;
1536{
1537 return !((gcc_p == 1)
1538 && (TYPE_LENGTH (value_type) == 1
1539 || TYPE_LENGTH (value_type) == 2
1540 || TYPE_LENGTH (value_type) == 4
1541 || TYPE_LENGTH (value_type) == 8));
1542}
1543
1544#ifndef USE_STRUCT_CONVENTION
1545#define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
dd3b648e
RP
1546#endif
1547
aa220473
SG
1548/* Some fundamental types (such as long double) are returned on the stack for
1549 certain architectures. This macro should return true for any type besides
1550 struct, union or array that gets returned on the stack. */
1551
1552#ifndef RETURN_VALUE_ON_STACK
1553#define RETURN_VALUE_ON_STACK(TYPE) 0
1554#endif
1555
dd3b648e
RP
1556/* Return true if the function specified is using the structure returning
1557 convention on this machine to return arguments, or 0 if it is using
1558 the value returning convention. FUNCTION is the value representing
1559 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1560 is the type returned by the function. GCC_P is nonzero if compiled
1561 with GCC. */
1562
1563int
1564using_struct_return (function, funcaddr, value_type, gcc_p)
82a2edfb 1565 value_ptr function;
dd3b648e
RP
1566 CORE_ADDR funcaddr;
1567 struct type *value_type;
1568 int gcc_p;
1569 /*ARGSUSED*/
1570{
1571 register enum type_code code = TYPE_CODE (value_type);
1572
1573 if (code == TYPE_CODE_ERROR)
1574 error ("Function return type unknown.");
1575
aa220473
SG
1576 if (code == TYPE_CODE_STRUCT
1577 || code == TYPE_CODE_UNION
1578 || code == TYPE_CODE_ARRAY
1579 || RETURN_VALUE_ON_STACK (value_type))
dd3b648e
RP
1580 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1581
1582 return 0;
1583}
1584
1585/* Store VAL so it will be returned if a function returns now.
1586 Does not verify that VAL's type matches what the current
1587 function wants to return. */
1588
1589void
1590set_return_value (val)
82a2edfb 1591 value_ptr val;
dd3b648e 1592{
5e548861
PB
1593 struct type *type = check_typedef (VALUE_TYPE (val));
1594 register enum type_code code = TYPE_CODE (type);
dd3b648e
RP
1595
1596 if (code == TYPE_CODE_ERROR)
1597 error ("Function return type unknown.");
1598
f1d77e90
JG
1599 if ( code == TYPE_CODE_STRUCT
1600 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1601 error ("GDB does not support specifying a struct or union return value.");
dd3b648e 1602
5e548861 1603 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
dd3b648e
RP
1604}
1605\f
1606void
1607_initialize_values ()
1608{
f266e564 1609 add_cmd ("convenience", no_class, show_convenience,
dd3b648e
RP
1610 "Debugger convenience (\"$foo\") variables.\n\
1611These variables are created when you assign them values;\n\
1612thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1613A few convenience variables are given values automatically:\n\
1614\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
f266e564
JK
1615\"$__\" holds the contents of the last address examined with \"x\".",
1616 &showlist);
dd3b648e 1617
f266e564
JK
1618 add_cmd ("values", no_class, show_values,
1619 "Elements of value history around item number IDX (or last ten).",
1620 &showlist);
dd3b648e 1621}
This page took 0.495201 seconds and 4 git commands to generate.