C++ changes for 5.0, finally committed.
[deliverable/binutils-gdb.git] / gdb / values.c
CommitLineData
c906108c
SS
1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
33#include "scm-lang.h"
34#include "demangle.h"
35
36/* Prototypes for exported functions. */
37
38void _initialize_values PARAMS ((void));
39
40/* Prototypes for local functions. */
41
42static value_ptr value_headof PARAMS ((value_ptr, struct type *,
43 struct type *));
44
45static void show_values PARAMS ((char *, int));
46
47static void show_convenience PARAMS ((char *, int));
48
49static int vb_match PARAMS ((struct type *, int, struct type *));
50
51/* The value-history records all the values printed
52 by print commands during this session. Each chunk
53 records 60 consecutive values. The first chunk on
54 the chain records the most recent values.
55 The total number of values is in value_history_count. */
56
57#define VALUE_HISTORY_CHUNK 60
58
59struct value_history_chunk
c5aa993b
JM
60 {
61 struct value_history_chunk *next;
62 value_ptr values[VALUE_HISTORY_CHUNK];
63 };
c906108c
SS
64
65/* Chain of chunks now in use. */
66
67static struct value_history_chunk *value_history_chain;
68
69static int value_history_count; /* Abs number of last entry stored */
70\f
71/* List of all value objects currently allocated
72 (except for those released by calls to release_value)
73 This is so they can be freed after each command. */
74
75static value_ptr all_values;
76
77/* Allocate a value that has the correct length for type TYPE. */
78
79value_ptr
80allocate_value (type)
81 struct type *type;
82{
83 register value_ptr val;
84 struct type *atype = check_typedef (type);
85
86 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
87 VALUE_NEXT (val) = all_values;
88 all_values = val;
89 VALUE_TYPE (val) = type;
90 VALUE_ENCLOSING_TYPE (val) = type;
91 VALUE_LVAL (val) = not_lval;
92 VALUE_ADDRESS (val) = 0;
93 VALUE_FRAME (val) = 0;
94 VALUE_OFFSET (val) = 0;
95 VALUE_BITPOS (val) = 0;
96 VALUE_BITSIZE (val) = 0;
97 VALUE_REGNO (val) = -1;
98 VALUE_LAZY (val) = 0;
99 VALUE_OPTIMIZED_OUT (val) = 0;
100 VALUE_BFD_SECTION (val) = NULL;
101 VALUE_EMBEDDED_OFFSET (val) = 0;
102 VALUE_POINTED_TO_OFFSET (val) = 0;
103 val->modifiable = 1;
104 return val;
105}
106
107/* Allocate a value that has the correct length
108 for COUNT repetitions type TYPE. */
109
110value_ptr
111allocate_repeat_value (type, count)
112 struct type *type;
113 int count;
114{
c5aa993b 115 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
116 /* FIXME-type-allocation: need a way to free this type when we are
117 done with it. */
118 struct type *range_type
c5aa993b
JM
119 = create_range_type ((struct type *) NULL, builtin_type_int,
120 low_bound, count + low_bound - 1);
c906108c
SS
121 /* FIXME-type-allocation: need a way to free this type when we are
122 done with it. */
123 return allocate_value (create_array_type ((struct type *) NULL,
124 type, range_type));
125}
126
127/* Return a mark in the value chain. All values allocated after the
128 mark is obtained (except for those released) are subject to being freed
129 if a subsequent value_free_to_mark is passed the mark. */
130value_ptr
131value_mark ()
132{
133 return all_values;
134}
135
136/* Free all values allocated since MARK was obtained by value_mark
137 (except for those released). */
138void
139value_free_to_mark (mark)
140 value_ptr mark;
141{
142 value_ptr val, next;
143
144 for (val = all_values; val && val != mark; val = next)
145 {
146 next = VALUE_NEXT (val);
147 value_free (val);
148 }
149 all_values = val;
150}
151
152/* Free all the values that have been allocated (except for those released).
153 Called after each command, successful or not. */
154
155void
156free_all_values ()
157{
158 register value_ptr val, next;
159
160 for (val = all_values; val; val = next)
161 {
162 next = VALUE_NEXT (val);
163 value_free (val);
164 }
165
166 all_values = 0;
167}
168
169/* Remove VAL from the chain all_values
170 so it will not be freed automatically. */
171
172void
173release_value (val)
174 register value_ptr val;
175{
176 register value_ptr v;
177
178 if (all_values == val)
179 {
180 all_values = val->next;
181 return;
182 }
183
184 for (v = all_values; v; v = v->next)
185 {
186 if (v->next == val)
187 {
188 v->next = val->next;
189 break;
190 }
191 }
192}
193
194/* Release all values up to mark */
195value_ptr
196value_release_to_mark (mark)
197 value_ptr mark;
198{
199 value_ptr val, next;
200
201 for (val = next = all_values; next; next = VALUE_NEXT (next))
202 if (VALUE_NEXT (next) == mark)
203 {
204 all_values = VALUE_NEXT (next);
205 VALUE_NEXT (next) = 0;
206 return val;
207 }
208 all_values = 0;
209 return val;
210}
211
212/* Return a copy of the value ARG.
213 It contains the same contents, for same memory address,
214 but it's a different block of storage. */
215
216value_ptr
217value_copy (arg)
218 value_ptr arg;
219{
220 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
221 register value_ptr val = allocate_value (encl_type);
222 VALUE_TYPE (val) = VALUE_TYPE (arg);
223 VALUE_LVAL (val) = VALUE_LVAL (arg);
224 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
225 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
226 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
227 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
228 VALUE_FRAME (val) = VALUE_FRAME (arg);
229 VALUE_REGNO (val) = VALUE_REGNO (arg);
230 VALUE_LAZY (val) = VALUE_LAZY (arg);
231 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
232 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
233 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
234 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
235 val->modifiable = arg->modifiable;
236 if (!VALUE_LAZY (val))
237 {
238 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
239 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
240
241 }
242 return val;
243}
244\f
245/* Access to the value history. */
246
247/* Record a new value in the value history.
248 Returns the absolute history index of the entry.
249 Result of -1 indicates the value was not saved; otherwise it is the
250 value history index of this new item. */
251
252int
253record_latest_value (val)
254 value_ptr val;
255{
256 int i;
257
258 /* We don't want this value to have anything to do with the inferior anymore.
259 In particular, "set $1 = 50" should not affect the variable from which
260 the value was taken, and fast watchpoints should be able to assume that
261 a value on the value history never changes. */
262 if (VALUE_LAZY (val))
263 value_fetch_lazy (val);
264 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
265 from. This is a bit dubious, because then *&$1 does not just return $1
266 but the current contents of that location. c'est la vie... */
267 val->modifiable = 0;
268 release_value (val);
269
270 /* Here we treat value_history_count as origin-zero
271 and applying to the value being stored now. */
272
273 i = value_history_count % VALUE_HISTORY_CHUNK;
274 if (i == 0)
275 {
276 register struct value_history_chunk *new
c5aa993b
JM
277 = (struct value_history_chunk *)
278 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
279 memset (new->values, 0, sizeof new->values);
280 new->next = value_history_chain;
281 value_history_chain = new;
282 }
283
284 value_history_chain->values[i] = val;
285
286 /* Now we regard value_history_count as origin-one
287 and applying to the value just stored. */
288
289 return ++value_history_count;
290}
291
292/* Return a copy of the value in the history with sequence number NUM. */
293
294value_ptr
295access_value_history (num)
296 int num;
297{
298 register struct value_history_chunk *chunk;
299 register int i;
300 register int absnum = num;
301
302 if (absnum <= 0)
303 absnum += value_history_count;
304
305 if (absnum <= 0)
306 {
307 if (num == 0)
308 error ("The history is empty.");
309 else if (num == 1)
310 error ("There is only one value in the history.");
311 else
312 error ("History does not go back to $$%d.", -num);
313 }
314 if (absnum > value_history_count)
315 error ("History has not yet reached $%d.", absnum);
316
317 absnum--;
318
319 /* Now absnum is always absolute and origin zero. */
320
321 chunk = value_history_chain;
322 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
323 i > 0; i--)
324 chunk = chunk->next;
325
326 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
327}
328
329/* Clear the value history entirely.
330 Must be done when new symbol tables are loaded,
331 because the type pointers become invalid. */
332
333void
334clear_value_history ()
335{
336 register struct value_history_chunk *next;
337 register int i;
338 register value_ptr val;
339
340 while (value_history_chain)
341 {
342 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
343 if ((val = value_history_chain->values[i]) != NULL)
c5aa993b 344 free ((PTR) val);
c906108c 345 next = value_history_chain->next;
c5aa993b 346 free ((PTR) value_history_chain);
c906108c
SS
347 value_history_chain = next;
348 }
349 value_history_count = 0;
350}
351
352static void
353show_values (num_exp, from_tty)
354 char *num_exp;
355 int from_tty;
356{
357 register int i;
358 register value_ptr val;
359 static int num = 1;
360
361 if (num_exp)
362 {
c5aa993b
JM
363 /* "info history +" should print from the stored position.
364 "info history <exp>" should print around value number <exp>. */
c906108c
SS
365 if (num_exp[0] != '+' || num_exp[1] != '\0')
366 num = parse_and_eval_address (num_exp) - 5;
367 }
368 else
369 {
370 /* "info history" means print the last 10 values. */
371 num = value_history_count - 9;
372 }
373
374 if (num <= 0)
375 num = 1;
376
377 for (i = num; i < num + 10 && i <= value_history_count; i++)
378 {
379 val = access_value_history (i);
380 printf_filtered ("$%d = ", i);
381 value_print (val, gdb_stdout, 0, Val_pretty_default);
382 printf_filtered ("\n");
383 }
384
385 /* The next "info history +" should start after what we just printed. */
386 num += 10;
387
388 /* Hitting just return after this command should do the same thing as
389 "info history +". If num_exp is null, this is unnecessary, since
390 "info history +" is not useful after "info history". */
391 if (from_tty && num_exp)
392 {
393 num_exp[0] = '+';
394 num_exp[1] = '\0';
395 }
396}
397\f
398/* Internal variables. These are variables within the debugger
399 that hold values assigned by debugger commands.
400 The user refers to them with a '$' prefix
401 that does not appear in the variable names stored internally. */
402
403static struct internalvar *internalvars;
404
405/* Look up an internal variable with name NAME. NAME should not
406 normally include a dollar sign.
407
408 If the specified internal variable does not exist,
409 one is created, with a void value. */
410
411struct internalvar *
412lookup_internalvar (name)
413 char *name;
414{
415 register struct internalvar *var;
416
417 for (var = internalvars; var; var = var->next)
418 if (STREQ (var->name, name))
419 return var;
420
421 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
422 var->name = concat (name, NULL);
423 var->value = allocate_value (builtin_type_void);
424 release_value (var->value);
425 var->next = internalvars;
426 internalvars = var;
427 return var;
428}
429
430value_ptr
431value_of_internalvar (var)
432 struct internalvar *var;
433{
434 register value_ptr val;
435
436#ifdef IS_TRAPPED_INTERNALVAR
437 if (IS_TRAPPED_INTERNALVAR (var->name))
438 return VALUE_OF_TRAPPED_INTERNALVAR (var);
c5aa993b 439#endif
c906108c
SS
440
441 val = value_copy (var->value);
442 if (VALUE_LAZY (val))
443 value_fetch_lazy (val);
444 VALUE_LVAL (val) = lval_internalvar;
445 VALUE_INTERNALVAR (val) = var;
446 return val;
447}
448
449void
450set_internalvar_component (var, offset, bitpos, bitsize, newval)
451 struct internalvar *var;
452 int offset, bitpos, bitsize;
453 value_ptr newval;
454{
455 register char *addr = VALUE_CONTENTS (var->value) + offset;
456
457#ifdef IS_TRAPPED_INTERNALVAR
458 if (IS_TRAPPED_INTERNALVAR (var->name))
459 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
460#endif
461
462 if (bitsize)
463 modify_field (addr, value_as_long (newval),
464 bitpos, bitsize);
465 else
466 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
467}
468
469void
470set_internalvar (var, val)
471 struct internalvar *var;
472 value_ptr val;
473{
474 value_ptr newval;
475
476#ifdef IS_TRAPPED_INTERNALVAR
477 if (IS_TRAPPED_INTERNALVAR (var->name))
478 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
479#endif
480
481 newval = value_copy (val);
482 newval->modifiable = 1;
483
484 /* Force the value to be fetched from the target now, to avoid problems
485 later when this internalvar is referenced and the target is gone or
486 has changed. */
487 if (VALUE_LAZY (newval))
488 value_fetch_lazy (newval);
489
490 /* Begin code which must not call error(). If var->value points to
491 something free'd, an error() obviously leaves a dangling pointer.
492 But we also get a danling pointer if var->value points to
493 something in the value chain (i.e., before release_value is
494 called), because after the error free_all_values will get called before
495 long. */
c5aa993b 496 free ((PTR) var->value);
c906108c
SS
497 var->value = newval;
498 release_value (newval);
499 /* End code which must not call error(). */
500}
501
502char *
503internalvar_name (var)
504 struct internalvar *var;
505{
506 return var->name;
507}
508
509/* Free all internalvars. Done when new symtabs are loaded,
510 because that makes the values invalid. */
511
512void
513clear_internalvars ()
514{
515 register struct internalvar *var;
516
517 while (internalvars)
518 {
519 var = internalvars;
520 internalvars = var->next;
c5aa993b
JM
521 free ((PTR) var->name);
522 free ((PTR) var->value);
523 free ((PTR) var);
c906108c
SS
524 }
525}
526
527static void
528show_convenience (ignore, from_tty)
529 char *ignore;
530 int from_tty;
531{
532 register struct internalvar *var;
533 int varseen = 0;
534
535 for (var = internalvars; var; var = var->next)
536 {
537#ifdef IS_TRAPPED_INTERNALVAR
538 if (IS_TRAPPED_INTERNALVAR (var->name))
539 continue;
540#endif
541 if (!varseen)
542 {
543 varseen = 1;
544 }
545 printf_filtered ("$%s = ", var->name);
546 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
547 printf_filtered ("\n");
548 }
549 if (!varseen)
550 printf_unfiltered ("No debugger convenience variables now defined.\n\
551Convenience variables have names starting with \"$\";\n\
552use \"set\" as in \"set $foo = 5\" to define them.\n");
553}
554\f
555/* Extract a value as a C number (either long or double).
556 Knows how to convert fixed values to double, or
557 floating values to long.
558 Does not deallocate the value. */
559
560LONGEST
561value_as_long (val)
562 register value_ptr val;
563{
564 /* This coerces arrays and functions, which is necessary (e.g.
565 in disassemble_command). It also dereferences references, which
566 I suspect is the most logical thing to do. */
567 COERCE_ARRAY (val);
568 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
569}
570
571DOUBLEST
572value_as_double (val)
573 register value_ptr val;
574{
575 DOUBLEST foo;
576 int inv;
c5aa993b 577
c906108c
SS
578 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
579 if (inv)
580 error ("Invalid floating value found in program.");
581 return foo;
582}
583/* Extract a value as a C pointer.
584 Does not deallocate the value. */
585CORE_ADDR
586value_as_pointer (val)
587 value_ptr val;
588{
589 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
590 whether we want this to be true eventually. */
591#if 0
592 /* ADDR_BITS_REMOVE is wrong if we are being called for a
593 non-address (e.g. argument to "signal", "info break", etc.), or
594 for pointers to char, in which the low bits *are* significant. */
c5aa993b 595 return ADDR_BITS_REMOVE (value_as_long (val));
c906108c
SS
596#else
597 return value_as_long (val);
598#endif
599}
600\f
601/* Unpack raw data (copied from debugee, target byte order) at VALADDR
602 as a long, or as a double, assuming the raw data is described
603 by type TYPE. Knows how to convert different sizes of values
604 and can convert between fixed and floating point. We don't assume
605 any alignment for the raw data. Return value is in host byte order.
606
607 If you want functions and arrays to be coerced to pointers, and
608 references to be dereferenced, call value_as_long() instead.
609
610 C++: It is assumed that the front-end has taken care of
611 all matters concerning pointers to members. A pointer
612 to member which reaches here is considered to be equivalent
613 to an INT (or some size). After all, it is only an offset. */
614
615LONGEST
616unpack_long (type, valaddr)
617 struct type *type;
618 char *valaddr;
619{
620 register enum type_code code = TYPE_CODE (type);
621 register int len = TYPE_LENGTH (type);
622 register int nosign = TYPE_UNSIGNED (type);
623
624 if (current_language->la_language == language_scm
625 && is_scmvalue_type (type))
626 return scm_unpack (type, valaddr, TYPE_CODE_INT);
627
628 switch (code)
629 {
630 case TYPE_CODE_TYPEDEF:
631 return unpack_long (check_typedef (type), valaddr);
632 case TYPE_CODE_ENUM:
633 case TYPE_CODE_BOOL:
634 case TYPE_CODE_INT:
635 case TYPE_CODE_CHAR:
636 case TYPE_CODE_RANGE:
637 if (nosign)
638 return extract_unsigned_integer (valaddr, len);
639 else
640 return extract_signed_integer (valaddr, len);
641
642 case TYPE_CODE_FLT:
643 return extract_floating (valaddr, len);
644
645 case TYPE_CODE_PTR:
646 case TYPE_CODE_REF:
647 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 648 whether we want this to be true eventually. */
7a292a7a
SS
649 if (GDB_TARGET_IS_D10V
650 && len == 2)
c5aa993b 651 return D10V_MAKE_DADDR (extract_address (valaddr, len));
c906108c
SS
652 return extract_address (valaddr, len);
653
654 case TYPE_CODE_MEMBER:
655 error ("not implemented: member types in unpack_long");
656
657 default:
658 error ("Value can't be converted to integer.");
659 }
c5aa993b 660 return 0; /* Placate lint. */
c906108c
SS
661}
662
663/* Return a double value from the specified type and address.
664 INVP points to an int which is set to 0 for valid value,
665 1 for invalid value (bad float format). In either case,
666 the returned double is OK to use. Argument is in target
667 format, result is in host format. */
668
669DOUBLEST
670unpack_double (type, valaddr, invp)
671 struct type *type;
672 char *valaddr;
673 int *invp;
674{
675 enum type_code code;
676 int len;
677 int nosign;
678
679 *invp = 0; /* Assume valid. */
680 CHECK_TYPEDEF (type);
681 code = TYPE_CODE (type);
682 len = TYPE_LENGTH (type);
683 nosign = TYPE_UNSIGNED (type);
684 if (code == TYPE_CODE_FLT)
685 {
686#ifdef INVALID_FLOAT
687 if (INVALID_FLOAT (valaddr, len))
688 {
689 *invp = 1;
690 return 1.234567891011121314;
691 }
692#endif
693 return extract_floating (valaddr, len);
694 }
695 else if (nosign)
696 {
697 /* Unsigned -- be sure we compensate for signed LONGEST. */
698#if !defined (_MSC_VER) || (_MSC_VER > 900)
699 return (ULONGEST) unpack_long (type, valaddr);
700#else
701 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
702 return (LONGEST) unpack_long (type, valaddr);
703#endif /* _MSC_VER */
704 }
705 else
706 {
707 /* Signed -- we are OK with unpack_long. */
708 return unpack_long (type, valaddr);
709 }
710}
711
712/* Unpack raw data (copied from debugee, target byte order) at VALADDR
713 as a CORE_ADDR, assuming the raw data is described by type TYPE.
714 We don't assume any alignment for the raw data. Return value is in
715 host byte order.
716
717 If you want functions and arrays to be coerced to pointers, and
718 references to be dereferenced, call value_as_pointer() instead.
719
720 C++: It is assumed that the front-end has taken care of
721 all matters concerning pointers to members. A pointer
722 to member which reaches here is considered to be equivalent
723 to an INT (or some size). After all, it is only an offset. */
724
725CORE_ADDR
726unpack_pointer (type, valaddr)
727 struct type *type;
728 char *valaddr;
729{
730 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
731 whether we want this to be true eventually. */
732 return unpack_long (type, valaddr);
733}
734\f
735/* Get the value of the FIELDN'th field (which must be static) of TYPE. */
736
737value_ptr
738value_static_field (type, fieldno)
739 struct type *type;
740 int fieldno;
741{
742 CORE_ADDR addr;
743 asection *sect;
744 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
745 {
746 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
747 sect = NULL;
748 }
749 else
750 {
751 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
752 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
753 if (sym == NULL)
754 {
755 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
756 as non-debuggable symbols */
757 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
758 if (!msym)
759 return NULL;
760 else
c5aa993b 761 {
c906108c
SS
762 addr = SYMBOL_VALUE_ADDRESS (msym);
763 sect = SYMBOL_BFD_SECTION (msym);
764 }
765 }
766 else
767 {
768 addr = SYMBOL_VALUE_ADDRESS (sym);
769 sect = SYMBOL_BFD_SECTION (sym);
770 }
771 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
772 }
773 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
774}
775
776/* Given a value ARG1 (offset by OFFSET bytes)
777 of a struct or union type ARG_TYPE,
778 extract and return the value of one of its (non-static) fields.
779 FIELDNO says which field. */
780
781value_ptr
782value_primitive_field (arg1, offset, fieldno, arg_type)
783 register value_ptr arg1;
784 int offset;
785 register int fieldno;
786 register struct type *arg_type;
787{
788 register value_ptr v;
789 register struct type *type;
790
791 CHECK_TYPEDEF (arg_type);
792 type = TYPE_FIELD_TYPE (arg_type, fieldno);
793
794 /* Handle packed fields */
795
796 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
797 {
798 v = value_from_longest (type,
799 unpack_field_as_long (arg_type,
800 VALUE_CONTENTS (arg1)
c5aa993b 801 + offset,
c906108c
SS
802 fieldno));
803 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
804 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2e70b7b9
MS
805 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
806 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
807 }
808 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
809 {
810 /* This field is actually a base subobject, so preserve the
811 entire object's contents for later references to virtual
812 bases, etc. */
813 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
814 VALUE_TYPE (v) = arg_type;
815 if (VALUE_LAZY (arg1))
816 VALUE_LAZY (v) = 1;
817 else
818 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
819 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
820 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
821 VALUE_EMBEDDED_OFFSET (v)
c5aa993b
JM
822 = offset +
823 VALUE_EMBEDDED_OFFSET (arg1) +
824 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
825 }
826 else
827 {
828 /* Plain old data member */
829 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
830 v = allocate_value (type);
831 if (VALUE_LAZY (arg1))
832 VALUE_LAZY (v) = 1;
833 else
834 memcpy (VALUE_CONTENTS_RAW (v),
835 VALUE_CONTENTS_RAW (arg1) + offset,
836 TYPE_LENGTH (type));
837 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
838 }
839 VALUE_LVAL (v) = VALUE_LVAL (arg1);
840 if (VALUE_LVAL (arg1) == lval_internalvar)
841 VALUE_LVAL (v) = lval_internalvar_component;
842 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
843/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
c5aa993b 844 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
c906108c
SS
845 return v;
846}
847
848/* Given a value ARG1 of a struct or union type,
849 extract and return the value of one of its (non-static) fields.
850 FIELDNO says which field. */
851
852value_ptr
853value_field (arg1, fieldno)
854 register value_ptr arg1;
855 register int fieldno;
856{
857 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
858}
859
860/* Return a non-virtual function as a value.
861 F is the list of member functions which contains the desired method.
862 J is an index into F which provides the desired method. */
863
864value_ptr
865value_fn_field (arg1p, f, j, type, offset)
866 value_ptr *arg1p;
867 struct fn_field *f;
868 int j;
869 struct type *type;
870 int offset;
871{
872 register value_ptr v;
873 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
874 struct symbol *sym;
875
876 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
877 0, VAR_NAMESPACE, 0, NULL);
c5aa993b
JM
878 if (!sym)
879 return NULL;
c906108c 880/*
c5aa993b
JM
881 error ("Internal error: could not find physical method named %s",
882 TYPE_FN_FIELD_PHYSNAME (f, j));
883 */
884
c906108c
SS
885 v = allocate_value (ftype);
886 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
887 VALUE_TYPE (v) = ftype;
888
889 if (arg1p)
c5aa993b
JM
890 {
891 if (type != VALUE_TYPE (*arg1p))
892 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
893 value_addr (*arg1p)));
894
070ad9f0 895 /* Move the `this' pointer according to the offset.
c5aa993b
JM
896 VALUE_OFFSET (*arg1p) += offset;
897 */
c906108c
SS
898 }
899
900 return v;
901}
902
903/* Return a virtual function as a value.
904 ARG1 is the object which provides the virtual function
905 table pointer. *ARG1P is side-effected in calling this function.
906 F is the list of member functions which contains the desired virtual
907 function.
908 J is an index into F which provides the desired virtual function.
909
910 TYPE is the type in which F is located. */
911value_ptr
912value_virtual_fn_field (arg1p, f, j, type, offset)
913 value_ptr *arg1p;
914 struct fn_field *f;
915 int j;
916 struct type *type;
917 int offset;
918{
919 value_ptr arg1 = *arg1p;
920 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
921
922 if (TYPE_HAS_VTABLE (type))
923 {
924 /* Deal with HP/Taligent runtime model for virtual functions */
925 value_ptr vp;
c5aa993b 926 value_ptr argp; /* arg1 cast to base */
c5aa993b
JM
927 CORE_ADDR coreptr; /* pointer to target address */
928 int class_index; /* which class segment pointer to use */
929 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); /* method type */
c906108c
SS
930
931 argp = value_cast (type, *arg1p);
932
933 if (VALUE_ADDRESS (argp) == 0)
c5aa993b
JM
934 error ("Address of object is null; object may not have been created.");
935
c906108c
SS
936 /* pai: FIXME -- 32x64 possible problem? */
937 /* First word (4 bytes) in object layout is the vtable pointer */
c5aa993b
JM
938 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (argp)); /* pai: (temp) */
939 /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */
c906108c
SS
940
941 if (!coreptr)
c5aa993b
JM
942 error ("Virtual table pointer is null for object; object may not have been created.");
943
c906108c
SS
944 /* pai/1997-05-09
945 * FIXME: The code here currently handles only
946 * the non-RRBC case of the Taligent/HP runtime spec; when RRBC
947 * is introduced, the condition for the "if" below will have to
948 * be changed to be a test for the RRBC case. */
c5aa993b 949
c906108c 950 if (1)
c5aa993b
JM
951 {
952 /* Non-RRBC case; the virtual function pointers are stored at fixed
953 * offsets in the virtual table. */
954
955 /* Retrieve the offset in the virtual table from the debug
956 * info. The offset of the vfunc's entry is in words from
957 * the beginning of the vtable; but first we have to adjust
958 * by HP_ACC_VFUNC_START to account for other entries */
959
960 /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
961 * which case the multiplier should be 8 and values should be long */
962 vp = value_at (builtin_type_int,
963 coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL);
964
965 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
966 /* coreptr now contains the address of the virtual function */
967 /* (Actually, it contains the pointer to the plabel for the function. */
968 }
c906108c 969 else
c5aa993b
JM
970 {
971 /* RRBC case; the virtual function pointers are found by double
972 * indirection through the class segment tables. */
973
974 /* Choose class segment depending on type we were passed */
975 class_index = class_index_in_primary_list (type);
976
977 /* Find class segment pointer. These are in the vtable slots after
978 * some other entries, so adjust by HP_ACC_VFUNC_START for that. */
979 /* pai: FIXME 32x64 problem here, if words are 8 bytes long
980 * the multiplier below has to be 8 and value should be long. */
981 vp = value_at (builtin_type_int,
982 coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL);
983 /* Indirect once more, offset by function index */
984 /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
985 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j));
986 vp = value_at (builtin_type_int, coreptr, NULL);
987 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
988
989 /* coreptr now contains the address of the virtual function */
990 /* (Actually, it contains the pointer to the plabel for the function.) */
991
992 }
c906108c
SS
993
994 if (!coreptr)
c5aa993b 995 error ("Address of virtual function is null; error in virtual table?");
c906108c 996
c5aa993b 997 /* Wrap this addr in a value and return pointer */
c906108c
SS
998 vp = allocate_value (ftype);
999 VALUE_TYPE (vp) = ftype;
1000 VALUE_ADDRESS (vp) = coreptr;
c5aa993b 1001
c906108c
SS
1002 /* pai: (temp) do we need the value_ind stuff in value_fn_field? */
1003 return vp;
1004 }
c5aa993b
JM
1005 else
1006 { /* Not using HP/Taligent runtime conventions; so try to
1007 * use g++ conventions for virtual table */
1008
c906108c
SS
1009 struct type *entry_type;
1010 /* First, get the virtual function table pointer. That comes
1011 with a strange type, so cast it to type `pointer to long' (which
1012 should serve just fine as a function type). Then, index into
1013 the table, and convert final value to appropriate function type. */
1014 value_ptr entry, vfn, vtbl;
c5aa993b
JM
1015 value_ptr vi = value_from_longest (builtin_type_int,
1016 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
c906108c
SS
1017 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
1018 struct type *context;
1019 if (fcontext == NULL)
c5aa993b
JM
1020 /* We don't have an fcontext (e.g. the program was compiled with
1021 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
1022 This won't work right for multiple inheritance, but at least we
1023 should do as well as GDB 3.x did. */
1024 fcontext = TYPE_VPTR_BASETYPE (type);
c906108c
SS
1025 context = lookup_pointer_type (fcontext);
1026 /* Now context is a pointer to the basetype containing the vtbl. */
1027 if (TYPE_TARGET_TYPE (context) != type1)
c5aa993b 1028 {
c906108c
SS
1029 value_ptr tmp = value_cast (context, value_addr (arg1));
1030 VALUE_POINTED_TO_OFFSET (tmp) = 0;
c5aa993b
JM
1031 arg1 = value_ind (tmp);
1032 type1 = check_typedef (VALUE_TYPE (arg1));
1033 }
c906108c
SS
1034
1035 context = type1;
1036 /* Now context is the basetype containing the vtbl. */
1037
1038 /* This type may have been defined before its virtual function table
1039 was. If so, fill in the virtual function table entry for the
1040 type now. */
1041 if (TYPE_VPTR_FIELDNO (context) < 0)
c5aa993b 1042 fill_in_vptr_fieldno (context);
c906108c
SS
1043
1044 /* The virtual function table is now an array of structures
1045 which have the form { int16 offset, delta; void *pfn; }. */
1046 vtbl = value_primitive_field (arg1, 0, TYPE_VPTR_FIELDNO (context),
1047 TYPE_VPTR_BASETYPE (context));
c5aa993b 1048
c906108c 1049 /* With older versions of g++, the vtbl field pointed to an array
c5aa993b 1050 of structures. Nowadays it points directly to the structure. */
c906108c 1051 if (TYPE_CODE (VALUE_TYPE (vtbl)) == TYPE_CODE_PTR
c5aa993b 1052 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl))) == TYPE_CODE_ARRAY)
c906108c
SS
1053 {
1054 /* Handle the case where the vtbl field points to an
1055 array of structures. */
1056 vtbl = value_ind (vtbl);
1057
1058 /* Index into the virtual function table. This is hard-coded because
1059 looking up a field is not cheap, and it may be important to save
1060 time, e.g. if the user has set a conditional breakpoint calling
1061 a virtual function. */
1062 entry = value_subscript (vtbl, vi);
1063 }
1064 else
1065 {
1066 /* Handle the case where the vtbl field points directly to a structure. */
1067 vtbl = value_add (vtbl, vi);
1068 entry = value_ind (vtbl);
1069 }
1070
1071 entry_type = check_typedef (VALUE_TYPE (entry));
1072
1073 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
c5aa993b
JM
1074 {
1075 /* Move the `this' pointer according to the virtual function table. */
1076 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
1077
1078 if (!VALUE_LAZY (arg1))
1079 {
1080 VALUE_LAZY (arg1) = 1;
1081 value_fetch_lazy (arg1);
1082 }
1083
1084 vfn = value_field (entry, 2);
1085 }
c906108c 1086 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
c5aa993b 1087 vfn = entry;
c906108c 1088 else
c5aa993b 1089 error ("I'm confused: virtual function table has bad type");
c906108c
SS
1090 /* Reinstantiate the function pointer with the correct type. */
1091 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
1092
1093 *arg1p = arg1;
1094 return vfn;
1095 }
1096}
1097
1098/* ARG is a pointer to an object we know to be at least
1099 a DTYPE. BTYPE is the most derived basetype that has
1100 already been searched (and need not be searched again).
1101 After looking at the vtables between BTYPE and DTYPE,
1102 return the most derived type we find. The caller must
1103 be satisfied when the return value == DTYPE.
1104
070ad9f0
DB
1105 FIXME-tiemann: should work with dossier entries as well.
1106 NOTICE - djb: I see no good reason at all to keep this function now that
1107 we have RTTI support. It's used in literally one place, and it's
1108 hard to keep this function up to date when it's purpose is served
1109 by value_rtti_type efficiently.
1110 Consider it gone for 5.1. */
c906108c
SS
1111
1112static value_ptr
1113value_headof (in_arg, btype, dtype)
1114 value_ptr in_arg;
1115 struct type *btype, *dtype;
1116{
1117 /* First collect the vtables we must look at for this object. */
070ad9f0 1118 value_ptr arg, vtbl;
c906108c 1119 struct symbol *sym;
c906108c
SS
1120 char *demangled_name;
1121 struct minimal_symbol *msymbol;
1122
1123 btype = TYPE_VPTR_BASETYPE (dtype);
1124 CHECK_TYPEDEF (btype);
1125 arg = in_arg;
1126 if (btype != dtype)
070ad9f0
DB
1127 arg = value_cast (lookup_pointer_type (btype), arg);
1128 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_REF)
1129 {
1130 /*
1131 * Copy the value, but change the type from (T&) to (T*).
1132 * We keep the same location information, which is efficient,
1133 * and allows &(&X) to get the location containing the reference.
1134 */
1135 arg = value_copy (arg);
1136 VALUE_TYPE (arg) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg)));
1137 }
1138 if (VALUE_ADDRESS(value_field (value_ind(arg), TYPE_VPTR_FIELDNO (btype)))==0)
1139 return arg;
1140
c906108c 1141 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
070ad9f0
DB
1142 /* Turn vtable into typeinfo function */
1143 VALUE_OFFSET(vtbl)+=4;
c906108c 1144
070ad9f0 1145 msymbol = lookup_minimal_symbol_by_pc ( value_as_pointer(value_ind(vtbl)) );
c906108c 1146 if (msymbol == NULL
070ad9f0
DB
1147 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL)
1148 {
1149 /* If we expected to find a vtable, but did not, let the user
1150 know that we aren't happy, but don't throw an error.
1151 FIXME: there has to be a better way to do this. */
1152 struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
1153 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1154 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1155 VALUE_TYPE (in_arg) = error_type;
1156 return in_arg;
1157 }
1158 demangled_name = cplus_demangle(demangled_name,DMGL_ANSI);
1159 *(strchr (demangled_name, ' ')) = '\0';
c906108c 1160
c906108c
SS
1161 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1162 if (sym == NULL)
070ad9f0
DB
1163 error ("could not find type declaration for `%s'", demangled_name);
1164
1165 arg = in_arg;
c906108c
SS
1166 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1167 return arg;
1168}
1169
1170/* ARG is a pointer object of type TYPE. If TYPE has virtual
1171 function tables, probe ARG's tables (including the vtables
1172 of its baseclasses) to figure out the most derived type that ARG
1173 could actually be a pointer to. */
1174
1175value_ptr
1176value_from_vtable_info (arg, type)
1177 value_ptr arg;
1178 struct type *type;
1179{
1180 /* Take care of preliminaries. */
1181 if (TYPE_VPTR_FIELDNO (type) < 0)
1182 fill_in_vptr_fieldno (type);
1183 if (TYPE_VPTR_FIELDNO (type) < 0)
1184 return 0;
1185
1186 return value_headof (arg, 0, type);
1187}
1188
1189/* Return true if the INDEXth field of TYPE is a virtual baseclass
1190 pointer which is for the base class whose type is BASECLASS. */
1191
1192static int
1193vb_match (type, index, basetype)
1194 struct type *type;
1195 int index;
1196 struct type *basetype;
1197{
1198 struct type *fieldtype;
1199 char *name = TYPE_FIELD_NAME (type, index);
1200 char *field_class_name = NULL;
1201
1202 if (*name != '_')
1203 return 0;
1204 /* gcc 2.4 uses _vb$. */
1205 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1206 field_class_name = name + 4;
1207 /* gcc 2.5 will use __vb_. */
1208 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1209 field_class_name = name + 5;
1210
1211 if (field_class_name == NULL)
1212 /* This field is not a virtual base class pointer. */
1213 return 0;
1214
1215 /* It's a virtual baseclass pointer, now we just need to find out whether
1216 it is for this baseclass. */
1217 fieldtype = TYPE_FIELD_TYPE (type, index);
1218 if (fieldtype == NULL
1219 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1220 /* "Can't happen". */
1221 return 0;
1222
1223 /* What we check for is that either the types are equal (needed for
1224 nameless types) or have the same name. This is ugly, and a more
1225 elegant solution should be devised (which would probably just push
1226 the ugliness into symbol reading unless we change the stabs format). */
1227 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1228 return 1;
1229
1230 if (TYPE_NAME (basetype) != NULL
1231 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1232 && STREQ (TYPE_NAME (basetype),
1233 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1234 return 1;
1235 return 0;
1236}
1237
1238/* Compute the offset of the baseclass which is
1239 the INDEXth baseclass of class TYPE,
1240 for value at VALADDR (in host) at ADDRESS (in target).
1241 The result is the offset of the baseclass value relative
1242 to (the address of)(ARG) + OFFSET.
1243
1244 -1 is returned on error. */
1245
1246int
1247baseclass_offset (type, index, valaddr, address)
1248 struct type *type;
1249 int index;
1250 char *valaddr;
1251 CORE_ADDR address;
1252{
1253 struct type *basetype = TYPE_BASECLASS (type, index);
1254
1255 if (BASETYPE_VIA_VIRTUAL (type, index))
1256 {
1257 /* Must hunt for the pointer to this virtual baseclass. */
1258 register int i, len = TYPE_NFIELDS (type);
1259 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1260
1261 /* First look for the virtual baseclass pointer
c5aa993b 1262 in the fields. */
c906108c
SS
1263 for (i = n_baseclasses; i < len; i++)
1264 {
1265 if (vb_match (type, i, basetype))
1266 {
1267 CORE_ADDR addr
c5aa993b
JM
1268 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1269 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
c906108c
SS
1270
1271 return addr - (LONGEST) address;
1272 }
1273 }
1274 /* Not in the fields, so try looking through the baseclasses. */
c5aa993b 1275 for (i = index + 1; i < n_baseclasses; i++)
c906108c
SS
1276 {
1277 int boffset =
c5aa993b 1278 baseclass_offset (type, i, valaddr, address);
c906108c
SS
1279 if (boffset)
1280 return boffset;
1281 }
1282 /* Not found. */
1283 return -1;
1284 }
1285
1286 /* Baseclass is easily computed. */
1287 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1288}
1289\f
1290/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1291 VALADDR.
1292
1293 Extracting bits depends on endianness of the machine. Compute the
1294 number of least significant bits to discard. For big endian machines,
1295 we compute the total number of bits in the anonymous object, subtract
1296 off the bit count from the MSB of the object to the MSB of the
1297 bitfield, then the size of the bitfield, which leaves the LSB discard
1298 count. For little endian machines, the discard count is simply the
1299 number of bits from the LSB of the anonymous object to the LSB of the
1300 bitfield.
1301
1302 If the field is signed, we also do sign extension. */
1303
1304LONGEST
1305unpack_field_as_long (type, valaddr, fieldno)
1306 struct type *type;
1307 char *valaddr;
1308 int fieldno;
1309{
1310 ULONGEST val;
1311 ULONGEST valmask;
1312 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1313 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1314 int lsbcount;
1315 struct type *field_type;
1316
1317 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1318 field_type = TYPE_FIELD_TYPE (type, fieldno);
1319 CHECK_TYPEDEF (field_type);
1320
1321 /* Extract bits. See comment above. */
1322
1323 if (BITS_BIG_ENDIAN)
1324 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1325 else
1326 lsbcount = (bitpos % 8);
1327 val >>= lsbcount;
1328
1329 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1330 If the field is signed, and is negative, then sign extend. */
1331
1332 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1333 {
1334 valmask = (((ULONGEST) 1) << bitsize) - 1;
1335 val &= valmask;
1336 if (!TYPE_UNSIGNED (field_type))
1337 {
1338 if (val & (valmask ^ (valmask >> 1)))
1339 {
1340 val |= ~valmask;
1341 }
1342 }
1343 }
1344 return (val);
1345}
1346
1347/* Modify the value of a bitfield. ADDR points to a block of memory in
1348 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1349 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1350 indicate which bits (in target bit order) comprise the bitfield. */
1351
1352void
1353modify_field (addr, fieldval, bitpos, bitsize)
1354 char *addr;
1355 LONGEST fieldval;
1356 int bitpos, bitsize;
1357{
1358 LONGEST oword;
1359
1360 /* If a negative fieldval fits in the field in question, chop
1361 off the sign extension bits. */
1362 if (bitsize < (8 * (int) sizeof (fieldval))
1363 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1364 fieldval = fieldval & ((1 << bitsize) - 1);
1365
1366 /* Warn if value is too big to fit in the field in question. */
1367 if (bitsize < (8 * (int) sizeof (fieldval))
c5aa993b 1368 && 0 != (fieldval & ~((1 << bitsize) - 1)))
c906108c
SS
1369 {
1370 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1371 we don't have a sprintf_longest. */
c906108c
SS
1372 warning ("Value does not fit in %d bits.", bitsize);
1373
1374 /* Truncate it, otherwise adjoining fields may be corrupted. */
1375 fieldval = fieldval & ((1 << bitsize) - 1);
1376 }
1377
1378 oword = extract_signed_integer (addr, sizeof oword);
1379
1380 /* Shifting for bit field depends on endianness of the target machine. */
1381 if (BITS_BIG_ENDIAN)
1382 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1383
1384 /* Mask out old value, while avoiding shifts >= size of oword */
1385 if (bitsize < 8 * (int) sizeof (oword))
c5aa993b 1386 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
c906108c 1387 else
c5aa993b 1388 oword &= ~((~(ULONGEST) 0) << bitpos);
c906108c
SS
1389 oword |= fieldval << bitpos;
1390
1391 store_signed_integer (addr, sizeof oword, oword);
1392}
1393\f
1394/* Convert C numbers into newly allocated values */
1395
1396value_ptr
1397value_from_longest (type, num)
1398 struct type *type;
1399 register LONGEST num;
1400{
1401 register value_ptr val = allocate_value (type);
1402 register enum type_code code;
1403 register int len;
c5aa993b 1404retry:
c906108c
SS
1405 code = TYPE_CODE (type);
1406 len = TYPE_LENGTH (type);
1407
1408 switch (code)
1409 {
1410 case TYPE_CODE_TYPEDEF:
1411 type = check_typedef (type);
1412 goto retry;
1413 case TYPE_CODE_INT:
1414 case TYPE_CODE_CHAR:
1415 case TYPE_CODE_ENUM:
1416 case TYPE_CODE_BOOL:
1417 case TYPE_CODE_RANGE:
1418 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1419 break;
c5aa993b 1420
c906108c
SS
1421 case TYPE_CODE_REF:
1422 case TYPE_CODE_PTR:
1423 /* This assumes that all pointers of a given length
c5aa993b 1424 have the same form. */
c906108c
SS
1425 store_address (VALUE_CONTENTS_RAW (val), len, (CORE_ADDR) num);
1426 break;
c5aa993b 1427
c906108c
SS
1428 default:
1429 error ("Unexpected type (%d) encountered for integer constant.", code);
1430 }
1431 return val;
1432}
1433
0f71a2f6 1434/* Create a value for a string constant to be stored locally
070ad9f0 1435 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1436 This is analogous to value_from_longest, which also does not
1437 use inferior memory. String shall NOT contain embedded nulls. */
1438
1439value_ptr
1440value_from_string (ptr)
1441 char *ptr;
1442{
1443 value_ptr val;
c5aa993b 1444 int len = strlen (ptr);
0f71a2f6 1445 int lowbound = current_language->string_lower_bound;
c5aa993b
JM
1446 struct type *rangetype =
1447 create_range_type ((struct type *) NULL,
1448 builtin_type_int,
1449 lowbound, len + lowbound - 1);
1450 struct type *stringtype =
1451 create_array_type ((struct type *) NULL,
1452 *current_language->string_char_type,
1453 rangetype);
0f71a2f6
JM
1454
1455 val = allocate_value (stringtype);
1456 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1457 return val;
1458}
1459
c906108c
SS
1460value_ptr
1461value_from_double (type, num)
1462 struct type *type;
1463 DOUBLEST num;
1464{
1465 register value_ptr val = allocate_value (type);
1466 struct type *base_type = check_typedef (type);
1467 register enum type_code code = TYPE_CODE (base_type);
1468 register int len = TYPE_LENGTH (base_type);
1469
1470 if (code == TYPE_CODE_FLT)
1471 {
1472 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1473 }
1474 else
1475 error ("Unexpected type encountered for floating constant.");
1476
1477 return val;
1478}
1479\f
1480/* Deal with the value that is "about to be returned". */
1481
1482/* Return the value that a function returning now
1483 would be returning to its caller, assuming its type is VALTYPE.
1484 RETBUF is where we look for what ought to be the contents
1485 of the registers (in raw form). This is because it is often
1486 desirable to restore old values to those registers
1487 after saving the contents of interest, and then call
1488 this function using the saved values.
1489 struct_return is non-zero when the function in question is
1490 using the structure return conventions on the machine in question;
1491 0 when it is using the value returning conventions (this often
1492 means returning pointer to where structure is vs. returning value). */
1493
1494value_ptr
1495value_being_returned (valtype, retbuf, struct_return)
1496 register struct type *valtype;
7a292a7a 1497 char *retbuf;
c906108c 1498 int struct_return;
c5aa993b 1499 /*ARGSUSED */
c906108c
SS
1500{
1501 register value_ptr val;
1502 CORE_ADDR addr;
1503
c906108c 1504 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
ac9a91a7
JM
1505 if (EXTRACT_STRUCT_VALUE_ADDRESS_P)
1506 if (struct_return)
1507 {
1508 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1509 if (!addr)
1510 error ("Function return value unknown");
1511 return value_at (valtype, addr, NULL);
1512 }
c906108c
SS
1513
1514 val = allocate_value (valtype);
1515 CHECK_TYPEDEF (valtype);
1516 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1517
1518 return val;
1519}
1520
1521/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1522 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1523 and TYPE is the type (which is known to be struct, union or array).
1524
1525 On most machines, the struct convention is used unless we are
1526 using gcc and the type is of a special size. */
1527/* As of about 31 Mar 93, GCC was changed to be compatible with the
1528 native compiler. GCC 2.3.3 was the last release that did it the
1529 old way. Since gcc2_compiled was not changed, we have no
1530 way to correctly win in all cases, so we just do the right thing
1531 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1532 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1533 would cause more chaos than dealing with some struct returns being
1534 handled wrong. */
1535
1536int
1537generic_use_struct_convention (gcc_p, value_type)
1538 int gcc_p;
1539 struct type *value_type;
c5aa993b 1540{
c906108c 1541 return !((gcc_p == 1)
c5aa993b
JM
1542 && (TYPE_LENGTH (value_type) == 1
1543 || TYPE_LENGTH (value_type) == 2
1544 || TYPE_LENGTH (value_type) == 4
1545 || TYPE_LENGTH (value_type) == 8));
c906108c
SS
1546}
1547
1548#ifndef USE_STRUCT_CONVENTION
1549#define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
1550#endif
1551
1552/* Some fundamental types (such as long double) are returned on the stack for
1553 certain architectures. This macro should return true for any type besides
1554 struct, union or array that gets returned on the stack. */
1555
1556#ifndef RETURN_VALUE_ON_STACK
1557#define RETURN_VALUE_ON_STACK(TYPE) 0
1558#endif
1559
1560/* Return true if the function specified is using the structure returning
1561 convention on this machine to return arguments, or 0 if it is using
1562 the value returning convention. FUNCTION is the value representing
1563 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1564 is the type returned by the function. GCC_P is nonzero if compiled
1565 with GCC. */
1566
1567int
1568using_struct_return (function, funcaddr, value_type, gcc_p)
1569 value_ptr function;
1570 CORE_ADDR funcaddr;
1571 struct type *value_type;
1572 int gcc_p;
c5aa993b 1573 /*ARGSUSED */
c906108c
SS
1574{
1575 register enum type_code code = TYPE_CODE (value_type);
1576
1577 if (code == TYPE_CODE_ERROR)
1578 error ("Function return type unknown.");
1579
1580 if (code == TYPE_CODE_STRUCT
1581 || code == TYPE_CODE_UNION
1582 || code == TYPE_CODE_ARRAY
1583 || RETURN_VALUE_ON_STACK (value_type))
1584 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1585
1586 return 0;
1587}
1588
1589/* Store VAL so it will be returned if a function returns now.
1590 Does not verify that VAL's type matches what the current
1591 function wants to return. */
1592
1593void
1594set_return_value (val)
1595 value_ptr val;
1596{
1597 struct type *type = check_typedef (VALUE_TYPE (val));
1598 register enum type_code code = TYPE_CODE (type);
1599
1600 if (code == TYPE_CODE_ERROR)
1601 error ("Function return type unknown.");
1602
c5aa993b 1603 if (code == TYPE_CODE_STRUCT
c906108c
SS
1604 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1605 error ("GDB does not support specifying a struct or union return value.");
1606
1607 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1608}
1609\f
1610void
1611_initialize_values ()
1612{
1613 add_cmd ("convenience", no_class, show_convenience,
c5aa993b 1614 "Debugger convenience (\"$foo\") variables.\n\
c906108c
SS
1615These variables are created when you assign them values;\n\
1616thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1617A few convenience variables are given values automatically:\n\
1618\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1619\"$__\" holds the contents of the last address examined with \"x\".",
1620 &showlist);
1621
1622 add_cmd ("values", no_class, show_values,
1623 "Elements of value history around item number IDX (or last ten).",
1624 &showlist);
1625}
This page took 0.124959 seconds and 4 git commands to generate.