Fix formatting
[deliverable/binutils-gdb.git] / gdb / values.c
CommitLineData
c906108c
SS
1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
33#include "scm-lang.h"
34#include "demangle.h"
35
36/* Prototypes for exported functions. */
37
a14ed312 38void _initialize_values (void);
c906108c
SS
39
40/* Prototypes for local functions. */
41
a14ed312 42static value_ptr value_headof (value_ptr, struct type *, struct type *);
c906108c 43
a14ed312 44static void show_values (char *, int);
c906108c 45
a14ed312 46static void show_convenience (char *, int);
c906108c 47
a14ed312 48static int vb_match (struct type *, int, struct type *);
c906108c
SS
49
50/* The value-history records all the values printed
51 by print commands during this session. Each chunk
52 records 60 consecutive values. The first chunk on
53 the chain records the most recent values.
54 The total number of values is in value_history_count. */
55
56#define VALUE_HISTORY_CHUNK 60
57
58struct value_history_chunk
c5aa993b
JM
59 {
60 struct value_history_chunk *next;
61 value_ptr values[VALUE_HISTORY_CHUNK];
62 };
c906108c
SS
63
64/* Chain of chunks now in use. */
65
66static struct value_history_chunk *value_history_chain;
67
68static int value_history_count; /* Abs number of last entry stored */
69\f
70/* List of all value objects currently allocated
71 (except for those released by calls to release_value)
72 This is so they can be freed after each command. */
73
74static value_ptr all_values;
75
76/* Allocate a value that has the correct length for type TYPE. */
77
78value_ptr
79allocate_value (type)
80 struct type *type;
81{
82 register value_ptr val;
83 struct type *atype = check_typedef (type);
84
85 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
86 VALUE_NEXT (val) = all_values;
87 all_values = val;
88 VALUE_TYPE (val) = type;
89 VALUE_ENCLOSING_TYPE (val) = type;
90 VALUE_LVAL (val) = not_lval;
91 VALUE_ADDRESS (val) = 0;
92 VALUE_FRAME (val) = 0;
93 VALUE_OFFSET (val) = 0;
94 VALUE_BITPOS (val) = 0;
95 VALUE_BITSIZE (val) = 0;
96 VALUE_REGNO (val) = -1;
97 VALUE_LAZY (val) = 0;
98 VALUE_OPTIMIZED_OUT (val) = 0;
99 VALUE_BFD_SECTION (val) = NULL;
100 VALUE_EMBEDDED_OFFSET (val) = 0;
101 VALUE_POINTED_TO_OFFSET (val) = 0;
102 val->modifiable = 1;
103 return val;
104}
105
106/* Allocate a value that has the correct length
107 for COUNT repetitions type TYPE. */
108
109value_ptr
110allocate_repeat_value (type, count)
111 struct type *type;
112 int count;
113{
c5aa993b 114 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
115 /* FIXME-type-allocation: need a way to free this type when we are
116 done with it. */
117 struct type *range_type
c5aa993b
JM
118 = create_range_type ((struct type *) NULL, builtin_type_int,
119 low_bound, count + low_bound - 1);
c906108c
SS
120 /* FIXME-type-allocation: need a way to free this type when we are
121 done with it. */
122 return allocate_value (create_array_type ((struct type *) NULL,
123 type, range_type));
124}
125
126/* Return a mark in the value chain. All values allocated after the
127 mark is obtained (except for those released) are subject to being freed
128 if a subsequent value_free_to_mark is passed the mark. */
129value_ptr
130value_mark ()
131{
132 return all_values;
133}
134
135/* Free all values allocated since MARK was obtained by value_mark
136 (except for those released). */
137void
138value_free_to_mark (mark)
139 value_ptr mark;
140{
141 value_ptr val, next;
142
143 for (val = all_values; val && val != mark; val = next)
144 {
145 next = VALUE_NEXT (val);
146 value_free (val);
147 }
148 all_values = val;
149}
150
151/* Free all the values that have been allocated (except for those released).
152 Called after each command, successful or not. */
153
154void
155free_all_values ()
156{
157 register value_ptr val, next;
158
159 for (val = all_values; val; val = next)
160 {
161 next = VALUE_NEXT (val);
162 value_free (val);
163 }
164
165 all_values = 0;
166}
167
168/* Remove VAL from the chain all_values
169 so it will not be freed automatically. */
170
171void
172release_value (val)
173 register value_ptr val;
174{
175 register value_ptr v;
176
177 if (all_values == val)
178 {
179 all_values = val->next;
180 return;
181 }
182
183 for (v = all_values; v; v = v->next)
184 {
185 if (v->next == val)
186 {
187 v->next = val->next;
188 break;
189 }
190 }
191}
192
193/* Release all values up to mark */
194value_ptr
195value_release_to_mark (mark)
196 value_ptr mark;
197{
198 value_ptr val, next;
199
200 for (val = next = all_values; next; next = VALUE_NEXT (next))
201 if (VALUE_NEXT (next) == mark)
202 {
203 all_values = VALUE_NEXT (next);
204 VALUE_NEXT (next) = 0;
205 return val;
206 }
207 all_values = 0;
208 return val;
209}
210
211/* Return a copy of the value ARG.
212 It contains the same contents, for same memory address,
213 but it's a different block of storage. */
214
215value_ptr
216value_copy (arg)
217 value_ptr arg;
218{
219 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
220 register value_ptr val = allocate_value (encl_type);
221 VALUE_TYPE (val) = VALUE_TYPE (arg);
222 VALUE_LVAL (val) = VALUE_LVAL (arg);
223 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
224 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
225 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
226 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
227 VALUE_FRAME (val) = VALUE_FRAME (arg);
228 VALUE_REGNO (val) = VALUE_REGNO (arg);
229 VALUE_LAZY (val) = VALUE_LAZY (arg);
230 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
231 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
232 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
233 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
234 val->modifiable = arg->modifiable;
235 if (!VALUE_LAZY (val))
236 {
237 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
238 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
239
240 }
241 return val;
242}
243\f
244/* Access to the value history. */
245
246/* Record a new value in the value history.
247 Returns the absolute history index of the entry.
248 Result of -1 indicates the value was not saved; otherwise it is the
249 value history index of this new item. */
250
251int
252record_latest_value (val)
253 value_ptr val;
254{
255 int i;
256
257 /* We don't want this value to have anything to do with the inferior anymore.
258 In particular, "set $1 = 50" should not affect the variable from which
259 the value was taken, and fast watchpoints should be able to assume that
260 a value on the value history never changes. */
261 if (VALUE_LAZY (val))
262 value_fetch_lazy (val);
263 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
264 from. This is a bit dubious, because then *&$1 does not just return $1
265 but the current contents of that location. c'est la vie... */
266 val->modifiable = 0;
267 release_value (val);
268
269 /* Here we treat value_history_count as origin-zero
270 and applying to the value being stored now. */
271
272 i = value_history_count % VALUE_HISTORY_CHUNK;
273 if (i == 0)
274 {
275 register struct value_history_chunk *new
c5aa993b
JM
276 = (struct value_history_chunk *)
277 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
278 memset (new->values, 0, sizeof new->values);
279 new->next = value_history_chain;
280 value_history_chain = new;
281 }
282
283 value_history_chain->values[i] = val;
284
285 /* Now we regard value_history_count as origin-one
286 and applying to the value just stored. */
287
288 return ++value_history_count;
289}
290
291/* Return a copy of the value in the history with sequence number NUM. */
292
293value_ptr
294access_value_history (num)
295 int num;
296{
297 register struct value_history_chunk *chunk;
298 register int i;
299 register int absnum = num;
300
301 if (absnum <= 0)
302 absnum += value_history_count;
303
304 if (absnum <= 0)
305 {
306 if (num == 0)
307 error ("The history is empty.");
308 else if (num == 1)
309 error ("There is only one value in the history.");
310 else
311 error ("History does not go back to $$%d.", -num);
312 }
313 if (absnum > value_history_count)
314 error ("History has not yet reached $%d.", absnum);
315
316 absnum--;
317
318 /* Now absnum is always absolute and origin zero. */
319
320 chunk = value_history_chain;
321 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
322 i > 0; i--)
323 chunk = chunk->next;
324
325 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
326}
327
328/* Clear the value history entirely.
329 Must be done when new symbol tables are loaded,
330 because the type pointers become invalid. */
331
332void
333clear_value_history ()
334{
335 register struct value_history_chunk *next;
336 register int i;
337 register value_ptr val;
338
339 while (value_history_chain)
340 {
341 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
342 if ((val = value_history_chain->values[i]) != NULL)
c5aa993b 343 free ((PTR) val);
c906108c 344 next = value_history_chain->next;
c5aa993b 345 free ((PTR) value_history_chain);
c906108c
SS
346 value_history_chain = next;
347 }
348 value_history_count = 0;
349}
350
351static void
352show_values (num_exp, from_tty)
353 char *num_exp;
354 int from_tty;
355{
356 register int i;
357 register value_ptr val;
358 static int num = 1;
359
360 if (num_exp)
361 {
c5aa993b
JM
362 /* "info history +" should print from the stored position.
363 "info history <exp>" should print around value number <exp>. */
c906108c
SS
364 if (num_exp[0] != '+' || num_exp[1] != '\0')
365 num = parse_and_eval_address (num_exp) - 5;
366 }
367 else
368 {
369 /* "info history" means print the last 10 values. */
370 num = value_history_count - 9;
371 }
372
373 if (num <= 0)
374 num = 1;
375
376 for (i = num; i < num + 10 && i <= value_history_count; i++)
377 {
378 val = access_value_history (i);
379 printf_filtered ("$%d = ", i);
380 value_print (val, gdb_stdout, 0, Val_pretty_default);
381 printf_filtered ("\n");
382 }
383
384 /* The next "info history +" should start after what we just printed. */
385 num += 10;
386
387 /* Hitting just return after this command should do the same thing as
388 "info history +". If num_exp is null, this is unnecessary, since
389 "info history +" is not useful after "info history". */
390 if (from_tty && num_exp)
391 {
392 num_exp[0] = '+';
393 num_exp[1] = '\0';
394 }
395}
396\f
397/* Internal variables. These are variables within the debugger
398 that hold values assigned by debugger commands.
399 The user refers to them with a '$' prefix
400 that does not appear in the variable names stored internally. */
401
402static struct internalvar *internalvars;
403
404/* Look up an internal variable with name NAME. NAME should not
405 normally include a dollar sign.
406
407 If the specified internal variable does not exist,
408 one is created, with a void value. */
409
410struct internalvar *
411lookup_internalvar (name)
412 char *name;
413{
414 register struct internalvar *var;
415
416 for (var = internalvars; var; var = var->next)
417 if (STREQ (var->name, name))
418 return var;
419
420 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
421 var->name = concat (name, NULL);
422 var->value = allocate_value (builtin_type_void);
423 release_value (var->value);
424 var->next = internalvars;
425 internalvars = var;
426 return var;
427}
428
429value_ptr
430value_of_internalvar (var)
431 struct internalvar *var;
432{
433 register value_ptr val;
434
435#ifdef IS_TRAPPED_INTERNALVAR
436 if (IS_TRAPPED_INTERNALVAR (var->name))
437 return VALUE_OF_TRAPPED_INTERNALVAR (var);
c5aa993b 438#endif
c906108c
SS
439
440 val = value_copy (var->value);
441 if (VALUE_LAZY (val))
442 value_fetch_lazy (val);
443 VALUE_LVAL (val) = lval_internalvar;
444 VALUE_INTERNALVAR (val) = var;
445 return val;
446}
447
448void
449set_internalvar_component (var, offset, bitpos, bitsize, newval)
450 struct internalvar *var;
451 int offset, bitpos, bitsize;
452 value_ptr newval;
453{
454 register char *addr = VALUE_CONTENTS (var->value) + offset;
455
456#ifdef IS_TRAPPED_INTERNALVAR
457 if (IS_TRAPPED_INTERNALVAR (var->name))
458 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
459#endif
460
461 if (bitsize)
462 modify_field (addr, value_as_long (newval),
463 bitpos, bitsize);
464 else
465 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
466}
467
468void
469set_internalvar (var, val)
470 struct internalvar *var;
471 value_ptr val;
472{
473 value_ptr newval;
474
475#ifdef IS_TRAPPED_INTERNALVAR
476 if (IS_TRAPPED_INTERNALVAR (var->name))
477 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
478#endif
479
480 newval = value_copy (val);
481 newval->modifiable = 1;
482
483 /* Force the value to be fetched from the target now, to avoid problems
484 later when this internalvar is referenced and the target is gone or
485 has changed. */
486 if (VALUE_LAZY (newval))
487 value_fetch_lazy (newval);
488
489 /* Begin code which must not call error(). If var->value points to
490 something free'd, an error() obviously leaves a dangling pointer.
491 But we also get a danling pointer if var->value points to
492 something in the value chain (i.e., before release_value is
493 called), because after the error free_all_values will get called before
494 long. */
c5aa993b 495 free ((PTR) var->value);
c906108c
SS
496 var->value = newval;
497 release_value (newval);
498 /* End code which must not call error(). */
499}
500
501char *
502internalvar_name (var)
503 struct internalvar *var;
504{
505 return var->name;
506}
507
508/* Free all internalvars. Done when new symtabs are loaded,
509 because that makes the values invalid. */
510
511void
512clear_internalvars ()
513{
514 register struct internalvar *var;
515
516 while (internalvars)
517 {
518 var = internalvars;
519 internalvars = var->next;
c5aa993b
JM
520 free ((PTR) var->name);
521 free ((PTR) var->value);
522 free ((PTR) var);
c906108c
SS
523 }
524}
525
526static void
527show_convenience (ignore, from_tty)
528 char *ignore;
529 int from_tty;
530{
531 register struct internalvar *var;
532 int varseen = 0;
533
534 for (var = internalvars; var; var = var->next)
535 {
536#ifdef IS_TRAPPED_INTERNALVAR
537 if (IS_TRAPPED_INTERNALVAR (var->name))
538 continue;
539#endif
540 if (!varseen)
541 {
542 varseen = 1;
543 }
544 printf_filtered ("$%s = ", var->name);
545 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
546 printf_filtered ("\n");
547 }
548 if (!varseen)
549 printf_unfiltered ("No debugger convenience variables now defined.\n\
550Convenience variables have names starting with \"$\";\n\
551use \"set\" as in \"set $foo = 5\" to define them.\n");
552}
553\f
554/* Extract a value as a C number (either long or double).
555 Knows how to convert fixed values to double, or
556 floating values to long.
557 Does not deallocate the value. */
558
559LONGEST
560value_as_long (val)
561 register value_ptr val;
562{
563 /* This coerces arrays and functions, which is necessary (e.g.
564 in disassemble_command). It also dereferences references, which
565 I suspect is the most logical thing to do. */
566 COERCE_ARRAY (val);
567 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
568}
569
570DOUBLEST
571value_as_double (val)
572 register value_ptr val;
573{
574 DOUBLEST foo;
575 int inv;
c5aa993b 576
c906108c
SS
577 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
578 if (inv)
579 error ("Invalid floating value found in program.");
580 return foo;
581}
4478b372
JB
582/* Extract a value as a C pointer. Does not deallocate the value.
583 Note that val's type may not actually be a pointer; value_as_long
584 handles all the cases. */
c906108c
SS
585CORE_ADDR
586value_as_pointer (val)
587 value_ptr val;
588{
589 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
590 whether we want this to be true eventually. */
591#if 0
592 /* ADDR_BITS_REMOVE is wrong if we are being called for a
593 non-address (e.g. argument to "signal", "info break", etc.), or
594 for pointers to char, in which the low bits *are* significant. */
c5aa993b 595 return ADDR_BITS_REMOVE (value_as_long (val));
c906108c 596#else
67b2adb2
AC
597 COERCE_ARRAY (val);
598 /* In converting VAL to an address (CORE_ADDR), any small integers
599 are first cast to a generic pointer. The function unpack_long
600 will then correctly convert that pointer into a canonical address
601 (using POINTER_TO_ADDRESS).
602
603 Without the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
604 0xa0000000 -> (LONGEST) 0x00000000a0000000
605
606 With the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
607 0xa0000000 -> (void*) 0xa0000000 -> (LONGEST) 0xffffffffa0000000.
608
609 If the user specifies an integer that is larger than the target
610 pointer type, it is assumed that it was intentional and the value
611 is converted directly into an ADDRESS. This ensures that no
612 information is discarded.
613
614 NOTE: The cast operation may eventualy be converted into a TARGET
615 method (see POINTER_TO_ADDRESS() and ADDRESS_TO_POINTER()) so
616 that the TARGET ISA/ABI can apply an arbitrary conversion.
617
618 NOTE: In pure harvard architectures function and data pointers
619 can be different and may require different integer to pointer
620 conversions. */
621 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT
622 && TYPE_LENGTH (VALUE_TYPE (val)) <= TYPE_LENGTH (builtin_type_ptr))
623 {
624 val = value_cast (builtin_type_ptr, val);
625 }
626 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
c906108c
SS
627#endif
628}
629\f
630/* Unpack raw data (copied from debugee, target byte order) at VALADDR
631 as a long, or as a double, assuming the raw data is described
632 by type TYPE. Knows how to convert different sizes of values
633 and can convert between fixed and floating point. We don't assume
634 any alignment for the raw data. Return value is in host byte order.
635
636 If you want functions and arrays to be coerced to pointers, and
637 references to be dereferenced, call value_as_long() instead.
638
639 C++: It is assumed that the front-end has taken care of
640 all matters concerning pointers to members. A pointer
641 to member which reaches here is considered to be equivalent
642 to an INT (or some size). After all, it is only an offset. */
643
644LONGEST
645unpack_long (type, valaddr)
646 struct type *type;
647 char *valaddr;
648{
649 register enum type_code code = TYPE_CODE (type);
650 register int len = TYPE_LENGTH (type);
651 register int nosign = TYPE_UNSIGNED (type);
652
653 if (current_language->la_language == language_scm
654 && is_scmvalue_type (type))
655 return scm_unpack (type, valaddr, TYPE_CODE_INT);
656
657 switch (code)
658 {
659 case TYPE_CODE_TYPEDEF:
660 return unpack_long (check_typedef (type), valaddr);
661 case TYPE_CODE_ENUM:
662 case TYPE_CODE_BOOL:
663 case TYPE_CODE_INT:
664 case TYPE_CODE_CHAR:
665 case TYPE_CODE_RANGE:
666 if (nosign)
667 return extract_unsigned_integer (valaddr, len);
668 else
669 return extract_signed_integer (valaddr, len);
670
671 case TYPE_CODE_FLT:
672 return extract_floating (valaddr, len);
673
674 case TYPE_CODE_PTR:
675 case TYPE_CODE_REF:
676 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 677 whether we want this to be true eventually. */
7a292a7a
SS
678 if (GDB_TARGET_IS_D10V
679 && len == 2)
c5aa993b 680 return D10V_MAKE_DADDR (extract_address (valaddr, len));
4478b372 681 return extract_typed_address (valaddr, type);
c906108c
SS
682
683 case TYPE_CODE_MEMBER:
684 error ("not implemented: member types in unpack_long");
685
686 default:
687 error ("Value can't be converted to integer.");
688 }
c5aa993b 689 return 0; /* Placate lint. */
c906108c
SS
690}
691
692/* Return a double value from the specified type and address.
693 INVP points to an int which is set to 0 for valid value,
694 1 for invalid value (bad float format). In either case,
695 the returned double is OK to use. Argument is in target
696 format, result is in host format. */
697
698DOUBLEST
699unpack_double (type, valaddr, invp)
700 struct type *type;
701 char *valaddr;
702 int *invp;
703{
704 enum type_code code;
705 int len;
706 int nosign;
707
708 *invp = 0; /* Assume valid. */
709 CHECK_TYPEDEF (type);
710 code = TYPE_CODE (type);
711 len = TYPE_LENGTH (type);
712 nosign = TYPE_UNSIGNED (type);
713 if (code == TYPE_CODE_FLT)
714 {
715#ifdef INVALID_FLOAT
716 if (INVALID_FLOAT (valaddr, len))
717 {
718 *invp = 1;
719 return 1.234567891011121314;
720 }
721#endif
722 return extract_floating (valaddr, len);
723 }
724 else if (nosign)
725 {
726 /* Unsigned -- be sure we compensate for signed LONGEST. */
727#if !defined (_MSC_VER) || (_MSC_VER > 900)
728 return (ULONGEST) unpack_long (type, valaddr);
729#else
730 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
731 return (LONGEST) unpack_long (type, valaddr);
732#endif /* _MSC_VER */
733 }
734 else
735 {
736 /* Signed -- we are OK with unpack_long. */
737 return unpack_long (type, valaddr);
738 }
739}
740
741/* Unpack raw data (copied from debugee, target byte order) at VALADDR
742 as a CORE_ADDR, assuming the raw data is described by type TYPE.
743 We don't assume any alignment for the raw data. Return value is in
744 host byte order.
745
746 If you want functions and arrays to be coerced to pointers, and
747 references to be dereferenced, call value_as_pointer() instead.
748
749 C++: It is assumed that the front-end has taken care of
750 all matters concerning pointers to members. A pointer
751 to member which reaches here is considered to be equivalent
752 to an INT (or some size). After all, it is only an offset. */
753
754CORE_ADDR
755unpack_pointer (type, valaddr)
756 struct type *type;
757 char *valaddr;
758{
759 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
760 whether we want this to be true eventually. */
761 return unpack_long (type, valaddr);
762}
4478b372 763
c906108c
SS
764\f
765/* Get the value of the FIELDN'th field (which must be static) of TYPE. */
766
767value_ptr
768value_static_field (type, fieldno)
769 struct type *type;
770 int fieldno;
771{
772 CORE_ADDR addr;
773 asection *sect;
774 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
775 {
776 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
777 sect = NULL;
778 }
779 else
780 {
781 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
782 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
783 if (sym == NULL)
784 {
785 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
786 as non-debuggable symbols */
787 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
788 if (!msym)
789 return NULL;
790 else
c5aa993b 791 {
c906108c
SS
792 addr = SYMBOL_VALUE_ADDRESS (msym);
793 sect = SYMBOL_BFD_SECTION (msym);
794 }
795 }
796 else
797 {
798 addr = SYMBOL_VALUE_ADDRESS (sym);
799 sect = SYMBOL_BFD_SECTION (sym);
800 }
801 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
802 }
803 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
804}
805
806/* Given a value ARG1 (offset by OFFSET bytes)
807 of a struct or union type ARG_TYPE,
808 extract and return the value of one of its (non-static) fields.
809 FIELDNO says which field. */
810
811value_ptr
812value_primitive_field (arg1, offset, fieldno, arg_type)
813 register value_ptr arg1;
814 int offset;
815 register int fieldno;
816 register struct type *arg_type;
817{
818 register value_ptr v;
819 register struct type *type;
820
821 CHECK_TYPEDEF (arg_type);
822 type = TYPE_FIELD_TYPE (arg_type, fieldno);
823
824 /* Handle packed fields */
825
826 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
827 {
828 v = value_from_longest (type,
829 unpack_field_as_long (arg_type,
830 VALUE_CONTENTS (arg1)
c5aa993b 831 + offset,
c906108c
SS
832 fieldno));
833 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
834 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2e70b7b9
MS
835 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
836 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
837 }
838 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
839 {
840 /* This field is actually a base subobject, so preserve the
841 entire object's contents for later references to virtual
842 bases, etc. */
843 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
844 VALUE_TYPE (v) = arg_type;
845 if (VALUE_LAZY (arg1))
846 VALUE_LAZY (v) = 1;
847 else
848 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
849 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
850 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
851 VALUE_EMBEDDED_OFFSET (v)
c5aa993b
JM
852 = offset +
853 VALUE_EMBEDDED_OFFSET (arg1) +
854 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
855 }
856 else
857 {
858 /* Plain old data member */
859 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
860 v = allocate_value (type);
861 if (VALUE_LAZY (arg1))
862 VALUE_LAZY (v) = 1;
863 else
864 memcpy (VALUE_CONTENTS_RAW (v),
865 VALUE_CONTENTS_RAW (arg1) + offset,
866 TYPE_LENGTH (type));
867 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
868 }
869 VALUE_LVAL (v) = VALUE_LVAL (arg1);
870 if (VALUE_LVAL (arg1) == lval_internalvar)
871 VALUE_LVAL (v) = lval_internalvar_component;
872 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
a88c1392 873 VALUE_REGNO (v) = VALUE_REGNO (arg1);
c906108c 874/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
c5aa993b 875 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
c906108c
SS
876 return v;
877}
878
879/* Given a value ARG1 of a struct or union type,
880 extract and return the value of one of its (non-static) fields.
881 FIELDNO says which field. */
882
883value_ptr
884value_field (arg1, fieldno)
885 register value_ptr arg1;
886 register int fieldno;
887{
888 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
889}
890
891/* Return a non-virtual function as a value.
892 F is the list of member functions which contains the desired method.
893 J is an index into F which provides the desired method. */
894
895value_ptr
896value_fn_field (arg1p, f, j, type, offset)
897 value_ptr *arg1p;
898 struct fn_field *f;
899 int j;
900 struct type *type;
901 int offset;
902{
903 register value_ptr v;
904 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
905 struct symbol *sym;
906
907 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
908 0, VAR_NAMESPACE, 0, NULL);
c5aa993b
JM
909 if (!sym)
910 return NULL;
c906108c 911/*
c5aa993b
JM
912 error ("Internal error: could not find physical method named %s",
913 TYPE_FN_FIELD_PHYSNAME (f, j));
914 */
915
c906108c
SS
916 v = allocate_value (ftype);
917 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
918 VALUE_TYPE (v) = ftype;
919
920 if (arg1p)
c5aa993b
JM
921 {
922 if (type != VALUE_TYPE (*arg1p))
923 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
924 value_addr (*arg1p)));
925
070ad9f0 926 /* Move the `this' pointer according to the offset.
c5aa993b
JM
927 VALUE_OFFSET (*arg1p) += offset;
928 */
c906108c
SS
929 }
930
931 return v;
932}
933
934/* Return a virtual function as a value.
935 ARG1 is the object which provides the virtual function
936 table pointer. *ARG1P is side-effected in calling this function.
937 F is the list of member functions which contains the desired virtual
938 function.
939 J is an index into F which provides the desired virtual function.
940
941 TYPE is the type in which F is located. */
942value_ptr
943value_virtual_fn_field (arg1p, f, j, type, offset)
944 value_ptr *arg1p;
945 struct fn_field *f;
946 int j;
947 struct type *type;
948 int offset;
949{
950 value_ptr arg1 = *arg1p;
951 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
952
953 if (TYPE_HAS_VTABLE (type))
954 {
955 /* Deal with HP/Taligent runtime model for virtual functions */
956 value_ptr vp;
c5aa993b 957 value_ptr argp; /* arg1 cast to base */
c5aa993b
JM
958 CORE_ADDR coreptr; /* pointer to target address */
959 int class_index; /* which class segment pointer to use */
960 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); /* method type */
c906108c
SS
961
962 argp = value_cast (type, *arg1p);
963
964 if (VALUE_ADDRESS (argp) == 0)
c5aa993b
JM
965 error ("Address of object is null; object may not have been created.");
966
c906108c
SS
967 /* pai: FIXME -- 32x64 possible problem? */
968 /* First word (4 bytes) in object layout is the vtable pointer */
c5aa993b
JM
969 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (argp)); /* pai: (temp) */
970 /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */
c906108c
SS
971
972 if (!coreptr)
c5aa993b
JM
973 error ("Virtual table pointer is null for object; object may not have been created.");
974
c906108c
SS
975 /* pai/1997-05-09
976 * FIXME: The code here currently handles only
977 * the non-RRBC case of the Taligent/HP runtime spec; when RRBC
978 * is introduced, the condition for the "if" below will have to
979 * be changed to be a test for the RRBC case. */
c5aa993b 980
c906108c 981 if (1)
c5aa993b
JM
982 {
983 /* Non-RRBC case; the virtual function pointers are stored at fixed
984 * offsets in the virtual table. */
985
986 /* Retrieve the offset in the virtual table from the debug
987 * info. The offset of the vfunc's entry is in words from
988 * the beginning of the vtable; but first we have to adjust
989 * by HP_ACC_VFUNC_START to account for other entries */
990
991 /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
992 * which case the multiplier should be 8 and values should be long */
993 vp = value_at (builtin_type_int,
994 coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL);
995
996 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
997 /* coreptr now contains the address of the virtual function */
998 /* (Actually, it contains the pointer to the plabel for the function. */
999 }
c906108c 1000 else
c5aa993b
JM
1001 {
1002 /* RRBC case; the virtual function pointers are found by double
1003 * indirection through the class segment tables. */
1004
1005 /* Choose class segment depending on type we were passed */
1006 class_index = class_index_in_primary_list (type);
1007
1008 /* Find class segment pointer. These are in the vtable slots after
1009 * some other entries, so adjust by HP_ACC_VFUNC_START for that. */
1010 /* pai: FIXME 32x64 problem here, if words are 8 bytes long
1011 * the multiplier below has to be 8 and value should be long. */
1012 vp = value_at (builtin_type_int,
1013 coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL);
1014 /* Indirect once more, offset by function index */
1015 /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
1016 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j));
1017 vp = value_at (builtin_type_int, coreptr, NULL);
1018 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
1019
1020 /* coreptr now contains the address of the virtual function */
1021 /* (Actually, it contains the pointer to the plabel for the function.) */
1022
1023 }
c906108c
SS
1024
1025 if (!coreptr)
c5aa993b 1026 error ("Address of virtual function is null; error in virtual table?");
c906108c 1027
c5aa993b 1028 /* Wrap this addr in a value and return pointer */
c906108c
SS
1029 vp = allocate_value (ftype);
1030 VALUE_TYPE (vp) = ftype;
1031 VALUE_ADDRESS (vp) = coreptr;
c5aa993b 1032
c906108c
SS
1033 /* pai: (temp) do we need the value_ind stuff in value_fn_field? */
1034 return vp;
1035 }
c5aa993b
JM
1036 else
1037 { /* Not using HP/Taligent runtime conventions; so try to
1038 * use g++ conventions for virtual table */
1039
c906108c
SS
1040 struct type *entry_type;
1041 /* First, get the virtual function table pointer. That comes
1042 with a strange type, so cast it to type `pointer to long' (which
1043 should serve just fine as a function type). Then, index into
1044 the table, and convert final value to appropriate function type. */
1045 value_ptr entry, vfn, vtbl;
c5aa993b
JM
1046 value_ptr vi = value_from_longest (builtin_type_int,
1047 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
c906108c
SS
1048 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
1049 struct type *context;
1050 if (fcontext == NULL)
c5aa993b
JM
1051 /* We don't have an fcontext (e.g. the program was compiled with
1052 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
1053 This won't work right for multiple inheritance, but at least we
1054 should do as well as GDB 3.x did. */
1055 fcontext = TYPE_VPTR_BASETYPE (type);
c906108c
SS
1056 context = lookup_pointer_type (fcontext);
1057 /* Now context is a pointer to the basetype containing the vtbl. */
1058 if (TYPE_TARGET_TYPE (context) != type1)
c5aa993b 1059 {
c906108c
SS
1060 value_ptr tmp = value_cast (context, value_addr (arg1));
1061 VALUE_POINTED_TO_OFFSET (tmp) = 0;
c5aa993b
JM
1062 arg1 = value_ind (tmp);
1063 type1 = check_typedef (VALUE_TYPE (arg1));
1064 }
c906108c
SS
1065
1066 context = type1;
1067 /* Now context is the basetype containing the vtbl. */
1068
1069 /* This type may have been defined before its virtual function table
1070 was. If so, fill in the virtual function table entry for the
1071 type now. */
1072 if (TYPE_VPTR_FIELDNO (context) < 0)
c5aa993b 1073 fill_in_vptr_fieldno (context);
c906108c
SS
1074
1075 /* The virtual function table is now an array of structures
1076 which have the form { int16 offset, delta; void *pfn; }. */
1077 vtbl = value_primitive_field (arg1, 0, TYPE_VPTR_FIELDNO (context),
1078 TYPE_VPTR_BASETYPE (context));
c5aa993b 1079
c906108c 1080 /* With older versions of g++, the vtbl field pointed to an array
c5aa993b 1081 of structures. Nowadays it points directly to the structure. */
c906108c 1082 if (TYPE_CODE (VALUE_TYPE (vtbl)) == TYPE_CODE_PTR
c5aa993b 1083 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl))) == TYPE_CODE_ARRAY)
c906108c
SS
1084 {
1085 /* Handle the case where the vtbl field points to an
1086 array of structures. */
1087 vtbl = value_ind (vtbl);
1088
1089 /* Index into the virtual function table. This is hard-coded because
1090 looking up a field is not cheap, and it may be important to save
1091 time, e.g. if the user has set a conditional breakpoint calling
1092 a virtual function. */
1093 entry = value_subscript (vtbl, vi);
1094 }
1095 else
1096 {
1097 /* Handle the case where the vtbl field points directly to a structure. */
1098 vtbl = value_add (vtbl, vi);
1099 entry = value_ind (vtbl);
1100 }
1101
1102 entry_type = check_typedef (VALUE_TYPE (entry));
1103
1104 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
c5aa993b
JM
1105 {
1106 /* Move the `this' pointer according to the virtual function table. */
1107 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
1108
1109 if (!VALUE_LAZY (arg1))
1110 {
1111 VALUE_LAZY (arg1) = 1;
1112 value_fetch_lazy (arg1);
1113 }
1114
1115 vfn = value_field (entry, 2);
1116 }
c906108c 1117 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
c5aa993b 1118 vfn = entry;
c906108c 1119 else
c5aa993b 1120 error ("I'm confused: virtual function table has bad type");
c906108c
SS
1121 /* Reinstantiate the function pointer with the correct type. */
1122 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
1123
1124 *arg1p = arg1;
1125 return vfn;
1126 }
1127}
1128
1129/* ARG is a pointer to an object we know to be at least
1130 a DTYPE. BTYPE is the most derived basetype that has
1131 already been searched (and need not be searched again).
1132 After looking at the vtables between BTYPE and DTYPE,
1133 return the most derived type we find. The caller must
1134 be satisfied when the return value == DTYPE.
1135
070ad9f0
DB
1136 FIXME-tiemann: should work with dossier entries as well.
1137 NOTICE - djb: I see no good reason at all to keep this function now that
1138 we have RTTI support. It's used in literally one place, and it's
1139 hard to keep this function up to date when it's purpose is served
1140 by value_rtti_type efficiently.
1141 Consider it gone for 5.1. */
c906108c
SS
1142
1143static value_ptr
1144value_headof (in_arg, btype, dtype)
1145 value_ptr in_arg;
1146 struct type *btype, *dtype;
1147{
1148 /* First collect the vtables we must look at for this object. */
070ad9f0 1149 value_ptr arg, vtbl;
c906108c 1150 struct symbol *sym;
c906108c
SS
1151 char *demangled_name;
1152 struct minimal_symbol *msymbol;
1153
1154 btype = TYPE_VPTR_BASETYPE (dtype);
1155 CHECK_TYPEDEF (btype);
1156 arg = in_arg;
1157 if (btype != dtype)
070ad9f0
DB
1158 arg = value_cast (lookup_pointer_type (btype), arg);
1159 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_REF)
1160 {
1161 /*
1162 * Copy the value, but change the type from (T&) to (T*).
1163 * We keep the same location information, which is efficient,
1164 * and allows &(&X) to get the location containing the reference.
1165 */
1166 arg = value_copy (arg);
1167 VALUE_TYPE (arg) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg)));
1168 }
1169 if (VALUE_ADDRESS(value_field (value_ind(arg), TYPE_VPTR_FIELDNO (btype)))==0)
1170 return arg;
1171
c906108c 1172 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
070ad9f0
DB
1173 /* Turn vtable into typeinfo function */
1174 VALUE_OFFSET(vtbl)+=4;
c906108c 1175
070ad9f0 1176 msymbol = lookup_minimal_symbol_by_pc ( value_as_pointer(value_ind(vtbl)) );
c906108c 1177 if (msymbol == NULL
070ad9f0
DB
1178 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL)
1179 {
1180 /* If we expected to find a vtable, but did not, let the user
1181 know that we aren't happy, but don't throw an error.
1182 FIXME: there has to be a better way to do this. */
1183 struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
1184 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1185 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1186 VALUE_TYPE (in_arg) = error_type;
1187 return in_arg;
1188 }
1189 demangled_name = cplus_demangle(demangled_name,DMGL_ANSI);
1190 *(strchr (demangled_name, ' ')) = '\0';
c906108c 1191
c906108c
SS
1192 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1193 if (sym == NULL)
070ad9f0
DB
1194 error ("could not find type declaration for `%s'", demangled_name);
1195
1196 arg = in_arg;
c906108c
SS
1197 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1198 return arg;
1199}
1200
1201/* ARG is a pointer object of type TYPE. If TYPE has virtual
1202 function tables, probe ARG's tables (including the vtables
1203 of its baseclasses) to figure out the most derived type that ARG
1204 could actually be a pointer to. */
1205
1206value_ptr
1207value_from_vtable_info (arg, type)
1208 value_ptr arg;
1209 struct type *type;
1210{
1211 /* Take care of preliminaries. */
1212 if (TYPE_VPTR_FIELDNO (type) < 0)
1213 fill_in_vptr_fieldno (type);
1214 if (TYPE_VPTR_FIELDNO (type) < 0)
1215 return 0;
1216
1217 return value_headof (arg, 0, type);
1218}
1219
1220/* Return true if the INDEXth field of TYPE is a virtual baseclass
1221 pointer which is for the base class whose type is BASECLASS. */
1222
1223static int
1224vb_match (type, index, basetype)
1225 struct type *type;
1226 int index;
1227 struct type *basetype;
1228{
1229 struct type *fieldtype;
1230 char *name = TYPE_FIELD_NAME (type, index);
1231 char *field_class_name = NULL;
1232
1233 if (*name != '_')
1234 return 0;
1235 /* gcc 2.4 uses _vb$. */
1236 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1237 field_class_name = name + 4;
1238 /* gcc 2.5 will use __vb_. */
1239 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1240 field_class_name = name + 5;
1241
1242 if (field_class_name == NULL)
1243 /* This field is not a virtual base class pointer. */
1244 return 0;
1245
1246 /* It's a virtual baseclass pointer, now we just need to find out whether
1247 it is for this baseclass. */
1248 fieldtype = TYPE_FIELD_TYPE (type, index);
1249 if (fieldtype == NULL
1250 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1251 /* "Can't happen". */
1252 return 0;
1253
1254 /* What we check for is that either the types are equal (needed for
1255 nameless types) or have the same name. This is ugly, and a more
1256 elegant solution should be devised (which would probably just push
1257 the ugliness into symbol reading unless we change the stabs format). */
1258 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1259 return 1;
1260
1261 if (TYPE_NAME (basetype) != NULL
1262 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1263 && STREQ (TYPE_NAME (basetype),
1264 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1265 return 1;
1266 return 0;
1267}
1268
1269/* Compute the offset of the baseclass which is
1270 the INDEXth baseclass of class TYPE,
1271 for value at VALADDR (in host) at ADDRESS (in target).
1272 The result is the offset of the baseclass value relative
1273 to (the address of)(ARG) + OFFSET.
1274
1275 -1 is returned on error. */
1276
1277int
1278baseclass_offset (type, index, valaddr, address)
1279 struct type *type;
1280 int index;
1281 char *valaddr;
1282 CORE_ADDR address;
1283{
1284 struct type *basetype = TYPE_BASECLASS (type, index);
1285
1286 if (BASETYPE_VIA_VIRTUAL (type, index))
1287 {
1288 /* Must hunt for the pointer to this virtual baseclass. */
1289 register int i, len = TYPE_NFIELDS (type);
1290 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1291
1292 /* First look for the virtual baseclass pointer
c5aa993b 1293 in the fields. */
c906108c
SS
1294 for (i = n_baseclasses; i < len; i++)
1295 {
1296 if (vb_match (type, i, basetype))
1297 {
1298 CORE_ADDR addr
c5aa993b
JM
1299 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1300 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
c906108c
SS
1301
1302 return addr - (LONGEST) address;
1303 }
1304 }
1305 /* Not in the fields, so try looking through the baseclasses. */
c5aa993b 1306 for (i = index + 1; i < n_baseclasses; i++)
c906108c
SS
1307 {
1308 int boffset =
c5aa993b 1309 baseclass_offset (type, i, valaddr, address);
c906108c
SS
1310 if (boffset)
1311 return boffset;
1312 }
1313 /* Not found. */
1314 return -1;
1315 }
1316
1317 /* Baseclass is easily computed. */
1318 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1319}
1320\f
1321/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1322 VALADDR.
1323
1324 Extracting bits depends on endianness of the machine. Compute the
1325 number of least significant bits to discard. For big endian machines,
1326 we compute the total number of bits in the anonymous object, subtract
1327 off the bit count from the MSB of the object to the MSB of the
1328 bitfield, then the size of the bitfield, which leaves the LSB discard
1329 count. For little endian machines, the discard count is simply the
1330 number of bits from the LSB of the anonymous object to the LSB of the
1331 bitfield.
1332
1333 If the field is signed, we also do sign extension. */
1334
1335LONGEST
1336unpack_field_as_long (type, valaddr, fieldno)
1337 struct type *type;
1338 char *valaddr;
1339 int fieldno;
1340{
1341 ULONGEST val;
1342 ULONGEST valmask;
1343 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1344 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1345 int lsbcount;
1346 struct type *field_type;
1347
1348 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1349 field_type = TYPE_FIELD_TYPE (type, fieldno);
1350 CHECK_TYPEDEF (field_type);
1351
1352 /* Extract bits. See comment above. */
1353
1354 if (BITS_BIG_ENDIAN)
1355 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1356 else
1357 lsbcount = (bitpos % 8);
1358 val >>= lsbcount;
1359
1360 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1361 If the field is signed, and is negative, then sign extend. */
1362
1363 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1364 {
1365 valmask = (((ULONGEST) 1) << bitsize) - 1;
1366 val &= valmask;
1367 if (!TYPE_UNSIGNED (field_type))
1368 {
1369 if (val & (valmask ^ (valmask >> 1)))
1370 {
1371 val |= ~valmask;
1372 }
1373 }
1374 }
1375 return (val);
1376}
1377
1378/* Modify the value of a bitfield. ADDR points to a block of memory in
1379 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1380 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1381 indicate which bits (in target bit order) comprise the bitfield. */
1382
1383void
1384modify_field (addr, fieldval, bitpos, bitsize)
1385 char *addr;
1386 LONGEST fieldval;
1387 int bitpos, bitsize;
1388{
1389 LONGEST oword;
1390
1391 /* If a negative fieldval fits in the field in question, chop
1392 off the sign extension bits. */
1393 if (bitsize < (8 * (int) sizeof (fieldval))
1394 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1395 fieldval = fieldval & ((1 << bitsize) - 1);
1396
1397 /* Warn if value is too big to fit in the field in question. */
1398 if (bitsize < (8 * (int) sizeof (fieldval))
c5aa993b 1399 && 0 != (fieldval & ~((1 << bitsize) - 1)))
c906108c
SS
1400 {
1401 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1402 we don't have a sprintf_longest. */
c906108c
SS
1403 warning ("Value does not fit in %d bits.", bitsize);
1404
1405 /* Truncate it, otherwise adjoining fields may be corrupted. */
1406 fieldval = fieldval & ((1 << bitsize) - 1);
1407 }
1408
1409 oword = extract_signed_integer (addr, sizeof oword);
1410
1411 /* Shifting for bit field depends on endianness of the target machine. */
1412 if (BITS_BIG_ENDIAN)
1413 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1414
1415 /* Mask out old value, while avoiding shifts >= size of oword */
1416 if (bitsize < 8 * (int) sizeof (oword))
c5aa993b 1417 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
c906108c 1418 else
c5aa993b 1419 oword &= ~((~(ULONGEST) 0) << bitpos);
c906108c
SS
1420 oword |= fieldval << bitpos;
1421
1422 store_signed_integer (addr, sizeof oword, oword);
1423}
1424\f
1425/* Convert C numbers into newly allocated values */
1426
1427value_ptr
1428value_from_longest (type, num)
1429 struct type *type;
1430 register LONGEST num;
1431{
1432 register value_ptr val = allocate_value (type);
1433 register enum type_code code;
1434 register int len;
c5aa993b 1435retry:
c906108c
SS
1436 code = TYPE_CODE (type);
1437 len = TYPE_LENGTH (type);
1438
1439 switch (code)
1440 {
1441 case TYPE_CODE_TYPEDEF:
1442 type = check_typedef (type);
1443 goto retry;
1444 case TYPE_CODE_INT:
1445 case TYPE_CODE_CHAR:
1446 case TYPE_CODE_ENUM:
1447 case TYPE_CODE_BOOL:
1448 case TYPE_CODE_RANGE:
1449 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1450 break;
c5aa993b 1451
c906108c
SS
1452 case TYPE_CODE_REF:
1453 case TYPE_CODE_PTR:
4478b372 1454 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
c906108c 1455 break;
c5aa993b 1456
c906108c
SS
1457 default:
1458 error ("Unexpected type (%d) encountered for integer constant.", code);
1459 }
1460 return val;
1461}
1462
4478b372
JB
1463
1464/* Create a value representing a pointer of type TYPE to the address
1465 ADDR. */
1466value_ptr
1467value_from_pointer (struct type *type, CORE_ADDR addr)
1468{
1469 value_ptr val = allocate_value (type);
1470 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1471 return val;
1472}
1473
1474
0f71a2f6 1475/* Create a value for a string constant to be stored locally
070ad9f0 1476 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1477 This is analogous to value_from_longest, which also does not
1478 use inferior memory. String shall NOT contain embedded nulls. */
1479
1480value_ptr
1481value_from_string (ptr)
1482 char *ptr;
1483{
1484 value_ptr val;
c5aa993b 1485 int len = strlen (ptr);
0f71a2f6 1486 int lowbound = current_language->string_lower_bound;
c5aa993b
JM
1487 struct type *rangetype =
1488 create_range_type ((struct type *) NULL,
1489 builtin_type_int,
1490 lowbound, len + lowbound - 1);
1491 struct type *stringtype =
1492 create_array_type ((struct type *) NULL,
1493 *current_language->string_char_type,
1494 rangetype);
0f71a2f6
JM
1495
1496 val = allocate_value (stringtype);
1497 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1498 return val;
1499}
1500
c906108c
SS
1501value_ptr
1502value_from_double (type, num)
1503 struct type *type;
1504 DOUBLEST num;
1505{
1506 register value_ptr val = allocate_value (type);
1507 struct type *base_type = check_typedef (type);
1508 register enum type_code code = TYPE_CODE (base_type);
1509 register int len = TYPE_LENGTH (base_type);
1510
1511 if (code == TYPE_CODE_FLT)
1512 {
1513 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1514 }
1515 else
1516 error ("Unexpected type encountered for floating constant.");
1517
1518 return val;
1519}
1520\f
1521/* Deal with the value that is "about to be returned". */
1522
1523/* Return the value that a function returning now
1524 would be returning to its caller, assuming its type is VALTYPE.
1525 RETBUF is where we look for what ought to be the contents
1526 of the registers (in raw form). This is because it is often
1527 desirable to restore old values to those registers
1528 after saving the contents of interest, and then call
1529 this function using the saved values.
1530 struct_return is non-zero when the function in question is
1531 using the structure return conventions on the machine in question;
1532 0 when it is using the value returning conventions (this often
1533 means returning pointer to where structure is vs. returning value). */
1534
1535value_ptr
1536value_being_returned (valtype, retbuf, struct_return)
1537 register struct type *valtype;
7a292a7a 1538 char *retbuf;
c906108c 1539 int struct_return;
c5aa993b 1540 /*ARGSUSED */
c906108c
SS
1541{
1542 register value_ptr val;
1543 CORE_ADDR addr;
1544
c906108c 1545 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
ac9a91a7
JM
1546 if (EXTRACT_STRUCT_VALUE_ADDRESS_P)
1547 if (struct_return)
1548 {
1549 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1550 if (!addr)
1551 error ("Function return value unknown");
1552 return value_at (valtype, addr, NULL);
1553 }
c906108c
SS
1554
1555 val = allocate_value (valtype);
1556 CHECK_TYPEDEF (valtype);
1557 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1558
1559 return val;
1560}
1561
1562/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1563 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1564 and TYPE is the type (which is known to be struct, union or array).
1565
1566 On most machines, the struct convention is used unless we are
1567 using gcc and the type is of a special size. */
1568/* As of about 31 Mar 93, GCC was changed to be compatible with the
1569 native compiler. GCC 2.3.3 was the last release that did it the
1570 old way. Since gcc2_compiled was not changed, we have no
1571 way to correctly win in all cases, so we just do the right thing
1572 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1573 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1574 would cause more chaos than dealing with some struct returns being
1575 handled wrong. */
1576
1577int
1578generic_use_struct_convention (gcc_p, value_type)
1579 int gcc_p;
1580 struct type *value_type;
c5aa993b 1581{
c906108c 1582 return !((gcc_p == 1)
c5aa993b
JM
1583 && (TYPE_LENGTH (value_type) == 1
1584 || TYPE_LENGTH (value_type) == 2
1585 || TYPE_LENGTH (value_type) == 4
1586 || TYPE_LENGTH (value_type) == 8));
c906108c
SS
1587}
1588
1589#ifndef USE_STRUCT_CONVENTION
1590#define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
1591#endif
1592
c906108c
SS
1593
1594/* Return true if the function specified is using the structure returning
1595 convention on this machine to return arguments, or 0 if it is using
1596 the value returning convention. FUNCTION is the value representing
1597 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1598 is the type returned by the function. GCC_P is nonzero if compiled
1599 with GCC. */
1600
1601int
1602using_struct_return (function, funcaddr, value_type, gcc_p)
1603 value_ptr function;
1604 CORE_ADDR funcaddr;
1605 struct type *value_type;
1606 int gcc_p;
c5aa993b 1607 /*ARGSUSED */
c906108c
SS
1608{
1609 register enum type_code code = TYPE_CODE (value_type);
1610
1611 if (code == TYPE_CODE_ERROR)
1612 error ("Function return type unknown.");
1613
1614 if (code == TYPE_CODE_STRUCT
1615 || code == TYPE_CODE_UNION
1616 || code == TYPE_CODE_ARRAY
1617 || RETURN_VALUE_ON_STACK (value_type))
1618 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1619
1620 return 0;
1621}
1622
1623/* Store VAL so it will be returned if a function returns now.
1624 Does not verify that VAL's type matches what the current
1625 function wants to return. */
1626
1627void
1628set_return_value (val)
1629 value_ptr val;
1630{
1631 struct type *type = check_typedef (VALUE_TYPE (val));
1632 register enum type_code code = TYPE_CODE (type);
1633
1634 if (code == TYPE_CODE_ERROR)
1635 error ("Function return type unknown.");
1636
c5aa993b 1637 if (code == TYPE_CODE_STRUCT
c906108c
SS
1638 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1639 error ("GDB does not support specifying a struct or union return value.");
1640
1641 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1642}
1643\f
1644void
1645_initialize_values ()
1646{
1647 add_cmd ("convenience", no_class, show_convenience,
c5aa993b 1648 "Debugger convenience (\"$foo\") variables.\n\
c906108c
SS
1649These variables are created when you assign them values;\n\
1650thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1651A few convenience variables are given values automatically:\n\
1652\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1653\"$__\" holds the contents of the last address examined with \"x\".",
1654 &showlist);
1655
1656 add_cmd ("values", no_class, show_values,
1657 "Elements of value history around item number IDX (or last ten).",
1658 &showlist);
1659}
This page took 0.247607 seconds and 4 git commands to generate.