* value.h (struct value): Doc fix, and rearrange members to place
[deliverable/binutils-gdb.git] / gdb / values.c
CommitLineData
c906108c 1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
b6ba6518
KB
2 Copyright 1986, 1987, 1988, 1989, 1990, 1991, 1992, 1993, 1994, 1995,
3 1996, 1997, 1998, 1999, 2000
c906108c
SS
4 Free Software Foundation, Inc.
5
c5aa993b 6 This file is part of GDB.
c906108c 7
c5aa993b
JM
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2 of the License, or
11 (at your option) any later version.
c906108c 12
c5aa993b
JM
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
c906108c 17
c5aa993b
JM
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 59 Temple Place - Suite 330,
21 Boston, MA 02111-1307, USA. */
c906108c
SS
22
23#include "defs.h"
24#include "gdb_string.h"
25#include "symtab.h"
26#include "gdbtypes.h"
27#include "value.h"
28#include "gdbcore.h"
c906108c
SS
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
33#include "scm-lang.h"
34#include "demangle.h"
35
36/* Prototypes for exported functions. */
37
a14ed312 38void _initialize_values (void);
c906108c
SS
39
40/* Prototypes for local functions. */
41
a14ed312 42static value_ptr value_headof (value_ptr, struct type *, struct type *);
c906108c 43
a14ed312 44static void show_values (char *, int);
c906108c 45
a14ed312 46static void show_convenience (char *, int);
c906108c 47
c906108c
SS
48
49/* The value-history records all the values printed
50 by print commands during this session. Each chunk
51 records 60 consecutive values. The first chunk on
52 the chain records the most recent values.
53 The total number of values is in value_history_count. */
54
55#define VALUE_HISTORY_CHUNK 60
56
57struct value_history_chunk
c5aa993b
JM
58 {
59 struct value_history_chunk *next;
60 value_ptr values[VALUE_HISTORY_CHUNK];
61 };
c906108c
SS
62
63/* Chain of chunks now in use. */
64
65static struct value_history_chunk *value_history_chain;
66
67static int value_history_count; /* Abs number of last entry stored */
68\f
69/* List of all value objects currently allocated
70 (except for those released by calls to release_value)
71 This is so they can be freed after each command. */
72
73static value_ptr all_values;
74
75/* Allocate a value that has the correct length for type TYPE. */
76
77value_ptr
fba45db2 78allocate_value (struct type *type)
c906108c
SS
79{
80 register value_ptr val;
81 struct type *atype = check_typedef (type);
82
83 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
84 VALUE_NEXT (val) = all_values;
85 all_values = val;
86 VALUE_TYPE (val) = type;
87 VALUE_ENCLOSING_TYPE (val) = type;
88 VALUE_LVAL (val) = not_lval;
89 VALUE_ADDRESS (val) = 0;
90 VALUE_FRAME (val) = 0;
91 VALUE_OFFSET (val) = 0;
92 VALUE_BITPOS (val) = 0;
93 VALUE_BITSIZE (val) = 0;
94 VALUE_REGNO (val) = -1;
95 VALUE_LAZY (val) = 0;
96 VALUE_OPTIMIZED_OUT (val) = 0;
97 VALUE_BFD_SECTION (val) = NULL;
98 VALUE_EMBEDDED_OFFSET (val) = 0;
99 VALUE_POINTED_TO_OFFSET (val) = 0;
100 val->modifiable = 1;
101 return val;
102}
103
104/* Allocate a value that has the correct length
105 for COUNT repetitions type TYPE. */
106
107value_ptr
fba45db2 108allocate_repeat_value (struct type *type, int count)
c906108c 109{
c5aa993b 110 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
111 /* FIXME-type-allocation: need a way to free this type when we are
112 done with it. */
113 struct type *range_type
c5aa993b
JM
114 = create_range_type ((struct type *) NULL, builtin_type_int,
115 low_bound, count + low_bound - 1);
c906108c
SS
116 /* FIXME-type-allocation: need a way to free this type when we are
117 done with it. */
118 return allocate_value (create_array_type ((struct type *) NULL,
119 type, range_type));
120}
121
122/* Return a mark in the value chain. All values allocated after the
123 mark is obtained (except for those released) are subject to being freed
124 if a subsequent value_free_to_mark is passed the mark. */
125value_ptr
fba45db2 126value_mark (void)
c906108c
SS
127{
128 return all_values;
129}
130
131/* Free all values allocated since MARK was obtained by value_mark
132 (except for those released). */
133void
fba45db2 134value_free_to_mark (value_ptr mark)
c906108c
SS
135{
136 value_ptr val, next;
137
138 for (val = all_values; val && val != mark; val = next)
139 {
140 next = VALUE_NEXT (val);
141 value_free (val);
142 }
143 all_values = val;
144}
145
146/* Free all the values that have been allocated (except for those released).
147 Called after each command, successful or not. */
148
149void
fba45db2 150free_all_values (void)
c906108c
SS
151{
152 register value_ptr val, next;
153
154 for (val = all_values; val; val = next)
155 {
156 next = VALUE_NEXT (val);
157 value_free (val);
158 }
159
160 all_values = 0;
161}
162
163/* Remove VAL from the chain all_values
164 so it will not be freed automatically. */
165
166void
fba45db2 167release_value (register value_ptr val)
c906108c
SS
168{
169 register value_ptr v;
170
171 if (all_values == val)
172 {
173 all_values = val->next;
174 return;
175 }
176
177 for (v = all_values; v; v = v->next)
178 {
179 if (v->next == val)
180 {
181 v->next = val->next;
182 break;
183 }
184 }
185}
186
187/* Release all values up to mark */
188value_ptr
fba45db2 189value_release_to_mark (value_ptr mark)
c906108c
SS
190{
191 value_ptr val, next;
192
193 for (val = next = all_values; next; next = VALUE_NEXT (next))
194 if (VALUE_NEXT (next) == mark)
195 {
196 all_values = VALUE_NEXT (next);
197 VALUE_NEXT (next) = 0;
198 return val;
199 }
200 all_values = 0;
201 return val;
202}
203
204/* Return a copy of the value ARG.
205 It contains the same contents, for same memory address,
206 but it's a different block of storage. */
207
208value_ptr
fba45db2 209value_copy (value_ptr arg)
c906108c
SS
210{
211 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
212 register value_ptr val = allocate_value (encl_type);
213 VALUE_TYPE (val) = VALUE_TYPE (arg);
214 VALUE_LVAL (val) = VALUE_LVAL (arg);
215 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
216 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
217 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
218 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
219 VALUE_FRAME (val) = VALUE_FRAME (arg);
220 VALUE_REGNO (val) = VALUE_REGNO (arg);
221 VALUE_LAZY (val) = VALUE_LAZY (arg);
222 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
223 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
224 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
225 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
226 val->modifiable = arg->modifiable;
227 if (!VALUE_LAZY (val))
228 {
229 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
230 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
231
232 }
233 return val;
234}
235\f
236/* Access to the value history. */
237
238/* Record a new value in the value history.
239 Returns the absolute history index of the entry.
240 Result of -1 indicates the value was not saved; otherwise it is the
241 value history index of this new item. */
242
243int
fba45db2 244record_latest_value (value_ptr val)
c906108c
SS
245{
246 int i;
247
248 /* We don't want this value to have anything to do with the inferior anymore.
249 In particular, "set $1 = 50" should not affect the variable from which
250 the value was taken, and fast watchpoints should be able to assume that
251 a value on the value history never changes. */
252 if (VALUE_LAZY (val))
253 value_fetch_lazy (val);
254 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
255 from. This is a bit dubious, because then *&$1 does not just return $1
256 but the current contents of that location. c'est la vie... */
257 val->modifiable = 0;
258 release_value (val);
259
260 /* Here we treat value_history_count as origin-zero
261 and applying to the value being stored now. */
262
263 i = value_history_count % VALUE_HISTORY_CHUNK;
264 if (i == 0)
265 {
266 register struct value_history_chunk *new
c5aa993b
JM
267 = (struct value_history_chunk *)
268 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
269 memset (new->values, 0, sizeof new->values);
270 new->next = value_history_chain;
271 value_history_chain = new;
272 }
273
274 value_history_chain->values[i] = val;
275
276 /* Now we regard value_history_count as origin-one
277 and applying to the value just stored. */
278
279 return ++value_history_count;
280}
281
282/* Return a copy of the value in the history with sequence number NUM. */
283
284value_ptr
fba45db2 285access_value_history (int num)
c906108c
SS
286{
287 register struct value_history_chunk *chunk;
288 register int i;
289 register int absnum = num;
290
291 if (absnum <= 0)
292 absnum += value_history_count;
293
294 if (absnum <= 0)
295 {
296 if (num == 0)
297 error ("The history is empty.");
298 else if (num == 1)
299 error ("There is only one value in the history.");
300 else
301 error ("History does not go back to $$%d.", -num);
302 }
303 if (absnum > value_history_count)
304 error ("History has not yet reached $%d.", absnum);
305
306 absnum--;
307
308 /* Now absnum is always absolute and origin zero. */
309
310 chunk = value_history_chain;
311 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
312 i > 0; i--)
313 chunk = chunk->next;
314
315 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
316}
317
318/* Clear the value history entirely.
319 Must be done when new symbol tables are loaded,
320 because the type pointers become invalid. */
321
322void
fba45db2 323clear_value_history (void)
c906108c
SS
324{
325 register struct value_history_chunk *next;
326 register int i;
327 register value_ptr val;
328
329 while (value_history_chain)
330 {
331 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
332 if ((val = value_history_chain->values[i]) != NULL)
b8c9b27d 333 xfree (val);
c906108c 334 next = value_history_chain->next;
b8c9b27d 335 xfree (value_history_chain);
c906108c
SS
336 value_history_chain = next;
337 }
338 value_history_count = 0;
339}
340
341static void
fba45db2 342show_values (char *num_exp, int from_tty)
c906108c
SS
343{
344 register int i;
345 register value_ptr val;
346 static int num = 1;
347
348 if (num_exp)
349 {
c5aa993b
JM
350 /* "info history +" should print from the stored position.
351 "info history <exp>" should print around value number <exp>. */
c906108c 352 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 353 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
354 }
355 else
356 {
357 /* "info history" means print the last 10 values. */
358 num = value_history_count - 9;
359 }
360
361 if (num <= 0)
362 num = 1;
363
364 for (i = num; i < num + 10 && i <= value_history_count; i++)
365 {
366 val = access_value_history (i);
367 printf_filtered ("$%d = ", i);
368 value_print (val, gdb_stdout, 0, Val_pretty_default);
369 printf_filtered ("\n");
370 }
371
372 /* The next "info history +" should start after what we just printed. */
373 num += 10;
374
375 /* Hitting just return after this command should do the same thing as
376 "info history +". If num_exp is null, this is unnecessary, since
377 "info history +" is not useful after "info history". */
378 if (from_tty && num_exp)
379 {
380 num_exp[0] = '+';
381 num_exp[1] = '\0';
382 }
383}
384\f
385/* Internal variables. These are variables within the debugger
386 that hold values assigned by debugger commands.
387 The user refers to them with a '$' prefix
388 that does not appear in the variable names stored internally. */
389
390static struct internalvar *internalvars;
391
392/* Look up an internal variable with name NAME. NAME should not
393 normally include a dollar sign.
394
395 If the specified internal variable does not exist,
396 one is created, with a void value. */
397
398struct internalvar *
fba45db2 399lookup_internalvar (char *name)
c906108c
SS
400{
401 register struct internalvar *var;
402
403 for (var = internalvars; var; var = var->next)
404 if (STREQ (var->name, name))
405 return var;
406
407 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
408 var->name = concat (name, NULL);
409 var->value = allocate_value (builtin_type_void);
410 release_value (var->value);
411 var->next = internalvars;
412 internalvars = var;
413 return var;
414}
415
416value_ptr
fba45db2 417value_of_internalvar (struct internalvar *var)
c906108c
SS
418{
419 register value_ptr val;
420
421#ifdef IS_TRAPPED_INTERNALVAR
422 if (IS_TRAPPED_INTERNALVAR (var->name))
423 return VALUE_OF_TRAPPED_INTERNALVAR (var);
c5aa993b 424#endif
c906108c
SS
425
426 val = value_copy (var->value);
427 if (VALUE_LAZY (val))
428 value_fetch_lazy (val);
429 VALUE_LVAL (val) = lval_internalvar;
430 VALUE_INTERNALVAR (val) = var;
431 return val;
432}
433
434void
fba45db2
KB
435set_internalvar_component (struct internalvar *var, int offset, int bitpos,
436 int bitsize, value_ptr newval)
c906108c
SS
437{
438 register char *addr = VALUE_CONTENTS (var->value) + offset;
439
440#ifdef IS_TRAPPED_INTERNALVAR
441 if (IS_TRAPPED_INTERNALVAR (var->name))
442 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
443#endif
444
445 if (bitsize)
446 modify_field (addr, value_as_long (newval),
447 bitpos, bitsize);
448 else
449 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
450}
451
452void
fba45db2 453set_internalvar (struct internalvar *var, value_ptr val)
c906108c
SS
454{
455 value_ptr newval;
456
457#ifdef IS_TRAPPED_INTERNALVAR
458 if (IS_TRAPPED_INTERNALVAR (var->name))
459 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
460#endif
461
462 newval = value_copy (val);
463 newval->modifiable = 1;
464
465 /* Force the value to be fetched from the target now, to avoid problems
466 later when this internalvar is referenced and the target is gone or
467 has changed. */
468 if (VALUE_LAZY (newval))
469 value_fetch_lazy (newval);
470
471 /* Begin code which must not call error(). If var->value points to
472 something free'd, an error() obviously leaves a dangling pointer.
473 But we also get a danling pointer if var->value points to
474 something in the value chain (i.e., before release_value is
475 called), because after the error free_all_values will get called before
476 long. */
b8c9b27d 477 xfree (var->value);
c906108c
SS
478 var->value = newval;
479 release_value (newval);
480 /* End code which must not call error(). */
481}
482
483char *
fba45db2 484internalvar_name (struct internalvar *var)
c906108c
SS
485{
486 return var->name;
487}
488
489/* Free all internalvars. Done when new symtabs are loaded,
490 because that makes the values invalid. */
491
492void
fba45db2 493clear_internalvars (void)
c906108c
SS
494{
495 register struct internalvar *var;
496
497 while (internalvars)
498 {
499 var = internalvars;
500 internalvars = var->next;
b8c9b27d
KB
501 xfree (var->name);
502 xfree (var->value);
503 xfree (var);
c906108c
SS
504 }
505}
506
507static void
fba45db2 508show_convenience (char *ignore, int from_tty)
c906108c
SS
509{
510 register struct internalvar *var;
511 int varseen = 0;
512
513 for (var = internalvars; var; var = var->next)
514 {
515#ifdef IS_TRAPPED_INTERNALVAR
516 if (IS_TRAPPED_INTERNALVAR (var->name))
517 continue;
518#endif
519 if (!varseen)
520 {
521 varseen = 1;
522 }
523 printf_filtered ("$%s = ", var->name);
524 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
525 printf_filtered ("\n");
526 }
527 if (!varseen)
528 printf_unfiltered ("No debugger convenience variables now defined.\n\
529Convenience variables have names starting with \"$\";\n\
530use \"set\" as in \"set $foo = 5\" to define them.\n");
531}
532\f
533/* Extract a value as a C number (either long or double).
534 Knows how to convert fixed values to double, or
535 floating values to long.
536 Does not deallocate the value. */
537
538LONGEST
fba45db2 539value_as_long (register value_ptr val)
c906108c
SS
540{
541 /* This coerces arrays and functions, which is necessary (e.g.
542 in disassemble_command). It also dereferences references, which
543 I suspect is the most logical thing to do. */
544 COERCE_ARRAY (val);
545 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
546}
547
548DOUBLEST
fba45db2 549value_as_double (register value_ptr val)
c906108c
SS
550{
551 DOUBLEST foo;
552 int inv;
c5aa993b 553
c906108c
SS
554 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
555 if (inv)
556 error ("Invalid floating value found in program.");
557 return foo;
558}
4478b372
JB
559/* Extract a value as a C pointer. Does not deallocate the value.
560 Note that val's type may not actually be a pointer; value_as_long
561 handles all the cases. */
c906108c 562CORE_ADDR
fba45db2 563value_as_pointer (value_ptr val)
c906108c
SS
564{
565 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
566 whether we want this to be true eventually. */
567#if 0
568 /* ADDR_BITS_REMOVE is wrong if we are being called for a
569 non-address (e.g. argument to "signal", "info break", etc.), or
570 for pointers to char, in which the low bits *are* significant. */
c5aa993b 571 return ADDR_BITS_REMOVE (value_as_long (val));
c906108c 572#else
67b2adb2
AC
573 COERCE_ARRAY (val);
574 /* In converting VAL to an address (CORE_ADDR), any small integers
575 are first cast to a generic pointer. The function unpack_long
576 will then correctly convert that pointer into a canonical address
577 (using POINTER_TO_ADDRESS).
578
579 Without the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
580 0xa0000000 -> (LONGEST) 0x00000000a0000000
581
582 With the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
583 0xa0000000 -> (void*) 0xa0000000 -> (LONGEST) 0xffffffffa0000000.
584
585 If the user specifies an integer that is larger than the target
586 pointer type, it is assumed that it was intentional and the value
587 is converted directly into an ADDRESS. This ensures that no
588 information is discarded.
589
590 NOTE: The cast operation may eventualy be converted into a TARGET
591 method (see POINTER_TO_ADDRESS() and ADDRESS_TO_POINTER()) so
592 that the TARGET ISA/ABI can apply an arbitrary conversion.
593
594 NOTE: In pure harvard architectures function and data pointers
595 can be different and may require different integer to pointer
596 conversions. */
597 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT
598 && TYPE_LENGTH (VALUE_TYPE (val)) <= TYPE_LENGTH (builtin_type_ptr))
599 {
600 val = value_cast (builtin_type_ptr, val);
601 }
602 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
c906108c
SS
603#endif
604}
605\f
606/* Unpack raw data (copied from debugee, target byte order) at VALADDR
607 as a long, or as a double, assuming the raw data is described
608 by type TYPE. Knows how to convert different sizes of values
609 and can convert between fixed and floating point. We don't assume
610 any alignment for the raw data. Return value is in host byte order.
611
612 If you want functions and arrays to be coerced to pointers, and
613 references to be dereferenced, call value_as_long() instead.
614
615 C++: It is assumed that the front-end has taken care of
616 all matters concerning pointers to members. A pointer
617 to member which reaches here is considered to be equivalent
618 to an INT (or some size). After all, it is only an offset. */
619
620LONGEST
fba45db2 621unpack_long (struct type *type, char *valaddr)
c906108c
SS
622{
623 register enum type_code code = TYPE_CODE (type);
624 register int len = TYPE_LENGTH (type);
625 register int nosign = TYPE_UNSIGNED (type);
626
627 if (current_language->la_language == language_scm
628 && is_scmvalue_type (type))
629 return scm_unpack (type, valaddr, TYPE_CODE_INT);
630
631 switch (code)
632 {
633 case TYPE_CODE_TYPEDEF:
634 return unpack_long (check_typedef (type), valaddr);
635 case TYPE_CODE_ENUM:
636 case TYPE_CODE_BOOL:
637 case TYPE_CODE_INT:
638 case TYPE_CODE_CHAR:
639 case TYPE_CODE_RANGE:
640 if (nosign)
641 return extract_unsigned_integer (valaddr, len);
642 else
643 return extract_signed_integer (valaddr, len);
644
645 case TYPE_CODE_FLT:
646 return extract_floating (valaddr, len);
647
648 case TYPE_CODE_PTR:
649 case TYPE_CODE_REF:
650 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 651 whether we want this to be true eventually. */
7a292a7a
SS
652 if (GDB_TARGET_IS_D10V
653 && len == 2)
c5aa993b 654 return D10V_MAKE_DADDR (extract_address (valaddr, len));
4478b372 655 return extract_typed_address (valaddr, type);
c906108c
SS
656
657 case TYPE_CODE_MEMBER:
658 error ("not implemented: member types in unpack_long");
659
660 default:
661 error ("Value can't be converted to integer.");
662 }
c5aa993b 663 return 0; /* Placate lint. */
c906108c
SS
664}
665
666/* Return a double value from the specified type and address.
667 INVP points to an int which is set to 0 for valid value,
668 1 for invalid value (bad float format). In either case,
669 the returned double is OK to use. Argument is in target
670 format, result is in host format. */
671
672DOUBLEST
fba45db2 673unpack_double (struct type *type, char *valaddr, int *invp)
c906108c
SS
674{
675 enum type_code code;
676 int len;
677 int nosign;
678
679 *invp = 0; /* Assume valid. */
680 CHECK_TYPEDEF (type);
681 code = TYPE_CODE (type);
682 len = TYPE_LENGTH (type);
683 nosign = TYPE_UNSIGNED (type);
684 if (code == TYPE_CODE_FLT)
685 {
686#ifdef INVALID_FLOAT
687 if (INVALID_FLOAT (valaddr, len))
688 {
689 *invp = 1;
690 return 1.234567891011121314;
691 }
692#endif
693 return extract_floating (valaddr, len);
694 }
695 else if (nosign)
696 {
697 /* Unsigned -- be sure we compensate for signed LONGEST. */
698#if !defined (_MSC_VER) || (_MSC_VER > 900)
699 return (ULONGEST) unpack_long (type, valaddr);
700#else
701 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
702 return (LONGEST) unpack_long (type, valaddr);
703#endif /* _MSC_VER */
704 }
705 else
706 {
707 /* Signed -- we are OK with unpack_long. */
708 return unpack_long (type, valaddr);
709 }
710}
711
712/* Unpack raw data (copied from debugee, target byte order) at VALADDR
713 as a CORE_ADDR, assuming the raw data is described by type TYPE.
714 We don't assume any alignment for the raw data. Return value is in
715 host byte order.
716
717 If you want functions and arrays to be coerced to pointers, and
718 references to be dereferenced, call value_as_pointer() instead.
719
720 C++: It is assumed that the front-end has taken care of
721 all matters concerning pointers to members. A pointer
722 to member which reaches here is considered to be equivalent
723 to an INT (or some size). After all, it is only an offset. */
724
725CORE_ADDR
fba45db2 726unpack_pointer (struct type *type, char *valaddr)
c906108c
SS
727{
728 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
729 whether we want this to be true eventually. */
730 return unpack_long (type, valaddr);
731}
4478b372 732
c906108c
SS
733\f
734/* Get the value of the FIELDN'th field (which must be static) of TYPE. */
735
736value_ptr
fba45db2 737value_static_field (struct type *type, int fieldno)
c906108c
SS
738{
739 CORE_ADDR addr;
740 asection *sect;
741 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
742 {
743 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
744 sect = NULL;
745 }
746 else
747 {
748 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
749 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
750 if (sym == NULL)
751 {
752 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
753 as non-debuggable symbols */
754 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
755 if (!msym)
756 return NULL;
757 else
c5aa993b 758 {
c906108c
SS
759 addr = SYMBOL_VALUE_ADDRESS (msym);
760 sect = SYMBOL_BFD_SECTION (msym);
761 }
762 }
763 else
764 {
2b127877
DB
765 /* Anything static that isn't a constant, has an address */
766 if (SYMBOL_CLASS (sym) != LOC_CONST)
767 {
768 addr = SYMBOL_VALUE_ADDRESS (sym);
769 sect = SYMBOL_BFD_SECTION (sym);
770 }
771 /* However, static const's do not, the value is already known. */
772 else
773 {
774 return value_from_longest (TYPE_FIELD_TYPE (type, fieldno), SYMBOL_VALUE (sym));
775 }
776 }
c906108c
SS
777 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
778 }
779 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
780}
781
2b127877
DB
782/* Change the enclosing type of a value object VAL to NEW_ENCL_TYPE.
783 You have to be careful here, since the size of the data area for the value
784 is set by the length of the enclosing type. So if NEW_ENCL_TYPE is bigger
785 than the old enclosing type, you have to allocate more space for the data.
786 The return value is a pointer to the new version of this value structure. */
787
788value_ptr
789value_change_enclosing_type (value_ptr val, struct type *new_encl_type)
790{
791 if (TYPE_LENGTH (new_encl_type) <= TYPE_LENGTH (VALUE_ENCLOSING_TYPE (val)))
792 {
793 VALUE_ENCLOSING_TYPE (val) = new_encl_type;
794 return val;
795 }
796 else
797 {
798 value_ptr new_val;
799 register value_ptr prev;
800
801 new_val = (value_ptr) xrealloc (val, sizeof (struct value) + TYPE_LENGTH (new_encl_type));
802
803 /* We have to make sure this ends up in the same place in the value
804 chain as the original copy, so it's clean-up behavior is the same.
805 If the value has been released, this is a waste of time, but there
806 is no way to tell that in advance, so... */
807
808 if (val != all_values)
809 {
810 for (prev = all_values; prev != NULL; prev = prev->next)
811 {
812 if (prev->next == val)
813 {
814 prev->next = new_val;
815 break;
816 }
817 }
818 }
819
820 return new_val;
821 }
822}
823
c906108c
SS
824/* Given a value ARG1 (offset by OFFSET bytes)
825 of a struct or union type ARG_TYPE,
826 extract and return the value of one of its (non-static) fields.
827 FIELDNO says which field. */
828
829value_ptr
fba45db2
KB
830value_primitive_field (register value_ptr arg1, int offset,
831 register int fieldno, register struct type *arg_type)
c906108c
SS
832{
833 register value_ptr v;
834 register struct type *type;
835
836 CHECK_TYPEDEF (arg_type);
837 type = TYPE_FIELD_TYPE (arg_type, fieldno);
838
839 /* Handle packed fields */
840
841 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
842 {
843 v = value_from_longest (type,
844 unpack_field_as_long (arg_type,
845 VALUE_CONTENTS (arg1)
c5aa993b 846 + offset,
c906108c
SS
847 fieldno));
848 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
849 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2e70b7b9
MS
850 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
851 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
852 }
853 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
854 {
855 /* This field is actually a base subobject, so preserve the
856 entire object's contents for later references to virtual
857 bases, etc. */
858 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
859 VALUE_TYPE (v) = arg_type;
860 if (VALUE_LAZY (arg1))
861 VALUE_LAZY (v) = 1;
862 else
863 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
864 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
865 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
866 VALUE_EMBEDDED_OFFSET (v)
c5aa993b
JM
867 = offset +
868 VALUE_EMBEDDED_OFFSET (arg1) +
869 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
870 }
871 else
872 {
873 /* Plain old data member */
874 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
875 v = allocate_value (type);
876 if (VALUE_LAZY (arg1))
877 VALUE_LAZY (v) = 1;
878 else
879 memcpy (VALUE_CONTENTS_RAW (v),
880 VALUE_CONTENTS_RAW (arg1) + offset,
881 TYPE_LENGTH (type));
882 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
883 }
884 VALUE_LVAL (v) = VALUE_LVAL (arg1);
885 if (VALUE_LVAL (arg1) == lval_internalvar)
886 VALUE_LVAL (v) = lval_internalvar_component;
887 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
a88c1392 888 VALUE_REGNO (v) = VALUE_REGNO (arg1);
c906108c 889/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
c5aa993b 890 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
c906108c
SS
891 return v;
892}
893
894/* Given a value ARG1 of a struct or union type,
895 extract and return the value of one of its (non-static) fields.
896 FIELDNO says which field. */
897
898value_ptr
fba45db2 899value_field (register value_ptr arg1, register int fieldno)
c906108c
SS
900{
901 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
902}
903
904/* Return a non-virtual function as a value.
905 F is the list of member functions which contains the desired method.
906 J is an index into F which provides the desired method. */
907
908value_ptr
fba45db2
KB
909value_fn_field (value_ptr *arg1p, struct fn_field *f, int j, struct type *type,
910 int offset)
c906108c
SS
911{
912 register value_ptr v;
913 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
914 struct symbol *sym;
915
916 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
917 0, VAR_NAMESPACE, 0, NULL);
c5aa993b
JM
918 if (!sym)
919 return NULL;
c906108c 920/*
c5aa993b
JM
921 error ("Internal error: could not find physical method named %s",
922 TYPE_FN_FIELD_PHYSNAME (f, j));
923 */
924
c906108c
SS
925 v = allocate_value (ftype);
926 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
927 VALUE_TYPE (v) = ftype;
928
929 if (arg1p)
c5aa993b
JM
930 {
931 if (type != VALUE_TYPE (*arg1p))
932 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
933 value_addr (*arg1p)));
934
070ad9f0 935 /* Move the `this' pointer according to the offset.
c5aa993b
JM
936 VALUE_OFFSET (*arg1p) += offset;
937 */
c906108c
SS
938 }
939
940 return v;
941}
942
c906108c
SS
943/* ARG is a pointer to an object we know to be at least
944 a DTYPE. BTYPE is the most derived basetype that has
945 already been searched (and need not be searched again).
946 After looking at the vtables between BTYPE and DTYPE,
947 return the most derived type we find. The caller must
948 be satisfied when the return value == DTYPE.
949
070ad9f0
DB
950 FIXME-tiemann: should work with dossier entries as well.
951 NOTICE - djb: I see no good reason at all to keep this function now that
952 we have RTTI support. It's used in literally one place, and it's
953 hard to keep this function up to date when it's purpose is served
954 by value_rtti_type efficiently.
955 Consider it gone for 5.1. */
c906108c
SS
956
957static value_ptr
fba45db2 958value_headof (value_ptr in_arg, struct type *btype, struct type *dtype)
c906108c
SS
959{
960 /* First collect the vtables we must look at for this object. */
070ad9f0 961 value_ptr arg, vtbl;
c906108c 962 struct symbol *sym;
c906108c
SS
963 char *demangled_name;
964 struct minimal_symbol *msymbol;
965
966 btype = TYPE_VPTR_BASETYPE (dtype);
967 CHECK_TYPEDEF (btype);
968 arg = in_arg;
969 if (btype != dtype)
070ad9f0
DB
970 arg = value_cast (lookup_pointer_type (btype), arg);
971 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_REF)
972 {
973 /*
974 * Copy the value, but change the type from (T&) to (T*).
975 * We keep the same location information, which is efficient,
976 * and allows &(&X) to get the location containing the reference.
977 */
978 arg = value_copy (arg);
979 VALUE_TYPE (arg) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg)));
980 }
981 if (VALUE_ADDRESS(value_field (value_ind(arg), TYPE_VPTR_FIELDNO (btype)))==0)
982 return arg;
983
c906108c 984 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
070ad9f0
DB
985 /* Turn vtable into typeinfo function */
986 VALUE_OFFSET(vtbl)+=4;
c906108c 987
070ad9f0 988 msymbol = lookup_minimal_symbol_by_pc ( value_as_pointer(value_ind(vtbl)) );
c906108c 989 if (msymbol == NULL
070ad9f0
DB
990 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL)
991 {
992 /* If we expected to find a vtable, but did not, let the user
993 know that we aren't happy, but don't throw an error.
994 FIXME: there has to be a better way to do this. */
995 struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
996 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
997 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
998 VALUE_TYPE (in_arg) = error_type;
999 return in_arg;
1000 }
1001 demangled_name = cplus_demangle(demangled_name,DMGL_ANSI);
1002 *(strchr (demangled_name, ' ')) = '\0';
c906108c 1003
c906108c
SS
1004 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1005 if (sym == NULL)
070ad9f0
DB
1006 error ("could not find type declaration for `%s'", demangled_name);
1007
1008 arg = in_arg;
c906108c
SS
1009 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1010 return arg;
1011}
1012
1013/* ARG is a pointer object of type TYPE. If TYPE has virtual
1014 function tables, probe ARG's tables (including the vtables
1015 of its baseclasses) to figure out the most derived type that ARG
1016 could actually be a pointer to. */
1017
1018value_ptr
fba45db2 1019value_from_vtable_info (value_ptr arg, struct type *type)
c906108c
SS
1020{
1021 /* Take care of preliminaries. */
1022 if (TYPE_VPTR_FIELDNO (type) < 0)
1023 fill_in_vptr_fieldno (type);
1024 if (TYPE_VPTR_FIELDNO (type) < 0)
1025 return 0;
1026
1027 return value_headof (arg, 0, type);
1028}
1029
1030/* Return true if the INDEXth field of TYPE is a virtual baseclass
1031 pointer which is for the base class whose type is BASECLASS. */
1032
1033static int
fba45db2 1034vb_match (struct type *type, int index, struct type *basetype)
c906108c
SS
1035{
1036 struct type *fieldtype;
1037 char *name = TYPE_FIELD_NAME (type, index);
1038 char *field_class_name = NULL;
1039
1040 if (*name != '_')
1041 return 0;
1042 /* gcc 2.4 uses _vb$. */
1043 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1044 field_class_name = name + 4;
1045 /* gcc 2.5 will use __vb_. */
1046 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1047 field_class_name = name + 5;
1048
1049 if (field_class_name == NULL)
1050 /* This field is not a virtual base class pointer. */
1051 return 0;
1052
1053 /* It's a virtual baseclass pointer, now we just need to find out whether
1054 it is for this baseclass. */
1055 fieldtype = TYPE_FIELD_TYPE (type, index);
1056 if (fieldtype == NULL
1057 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1058 /* "Can't happen". */
1059 return 0;
1060
1061 /* What we check for is that either the types are equal (needed for
1062 nameless types) or have the same name. This is ugly, and a more
1063 elegant solution should be devised (which would probably just push
1064 the ugliness into symbol reading unless we change the stabs format). */
1065 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1066 return 1;
1067
1068 if (TYPE_NAME (basetype) != NULL
1069 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1070 && STREQ (TYPE_NAME (basetype),
1071 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1072 return 1;
1073 return 0;
1074}
1075
1076/* Compute the offset of the baseclass which is
1077 the INDEXth baseclass of class TYPE,
1078 for value at VALADDR (in host) at ADDRESS (in target).
1079 The result is the offset of the baseclass value relative
1080 to (the address of)(ARG) + OFFSET.
1081
1082 -1 is returned on error. */
1083
1084int
fba45db2
KB
1085baseclass_offset (struct type *type, int index, char *valaddr,
1086 CORE_ADDR address)
c906108c
SS
1087{
1088 struct type *basetype = TYPE_BASECLASS (type, index);
1089
1090 if (BASETYPE_VIA_VIRTUAL (type, index))
1091 {
1092 /* Must hunt for the pointer to this virtual baseclass. */
1093 register int i, len = TYPE_NFIELDS (type);
1094 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1095
1096 /* First look for the virtual baseclass pointer
c5aa993b 1097 in the fields. */
c906108c
SS
1098 for (i = n_baseclasses; i < len; i++)
1099 {
1100 if (vb_match (type, i, basetype))
1101 {
1102 CORE_ADDR addr
c5aa993b
JM
1103 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1104 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
c906108c
SS
1105
1106 return addr - (LONGEST) address;
1107 }
1108 }
1109 /* Not in the fields, so try looking through the baseclasses. */
c5aa993b 1110 for (i = index + 1; i < n_baseclasses; i++)
c906108c
SS
1111 {
1112 int boffset =
c5aa993b 1113 baseclass_offset (type, i, valaddr, address);
c906108c
SS
1114 if (boffset)
1115 return boffset;
1116 }
1117 /* Not found. */
1118 return -1;
1119 }
1120
1121 /* Baseclass is easily computed. */
1122 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1123}
1124\f
1125/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1126 VALADDR.
1127
1128 Extracting bits depends on endianness of the machine. Compute the
1129 number of least significant bits to discard. For big endian machines,
1130 we compute the total number of bits in the anonymous object, subtract
1131 off the bit count from the MSB of the object to the MSB of the
1132 bitfield, then the size of the bitfield, which leaves the LSB discard
1133 count. For little endian machines, the discard count is simply the
1134 number of bits from the LSB of the anonymous object to the LSB of the
1135 bitfield.
1136
1137 If the field is signed, we also do sign extension. */
1138
1139LONGEST
fba45db2 1140unpack_field_as_long (struct type *type, char *valaddr, int fieldno)
c906108c
SS
1141{
1142 ULONGEST val;
1143 ULONGEST valmask;
1144 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1145 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1146 int lsbcount;
1147 struct type *field_type;
1148
1149 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1150 field_type = TYPE_FIELD_TYPE (type, fieldno);
1151 CHECK_TYPEDEF (field_type);
1152
1153 /* Extract bits. See comment above. */
1154
1155 if (BITS_BIG_ENDIAN)
1156 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1157 else
1158 lsbcount = (bitpos % 8);
1159 val >>= lsbcount;
1160
1161 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1162 If the field is signed, and is negative, then sign extend. */
1163
1164 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1165 {
1166 valmask = (((ULONGEST) 1) << bitsize) - 1;
1167 val &= valmask;
1168 if (!TYPE_UNSIGNED (field_type))
1169 {
1170 if (val & (valmask ^ (valmask >> 1)))
1171 {
1172 val |= ~valmask;
1173 }
1174 }
1175 }
1176 return (val);
1177}
1178
1179/* Modify the value of a bitfield. ADDR points to a block of memory in
1180 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1181 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1182 indicate which bits (in target bit order) comprise the bitfield. */
1183
1184void
fba45db2 1185modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
c906108c
SS
1186{
1187 LONGEST oword;
1188
1189 /* If a negative fieldval fits in the field in question, chop
1190 off the sign extension bits. */
1191 if (bitsize < (8 * (int) sizeof (fieldval))
1192 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1193 fieldval = fieldval & ((1 << bitsize) - 1);
1194
1195 /* Warn if value is too big to fit in the field in question. */
1196 if (bitsize < (8 * (int) sizeof (fieldval))
c5aa993b 1197 && 0 != (fieldval & ~((1 << bitsize) - 1)))
c906108c
SS
1198 {
1199 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1200 we don't have a sprintf_longest. */
c906108c
SS
1201 warning ("Value does not fit in %d bits.", bitsize);
1202
1203 /* Truncate it, otherwise adjoining fields may be corrupted. */
1204 fieldval = fieldval & ((1 << bitsize) - 1);
1205 }
1206
1207 oword = extract_signed_integer (addr, sizeof oword);
1208
1209 /* Shifting for bit field depends on endianness of the target machine. */
1210 if (BITS_BIG_ENDIAN)
1211 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1212
1213 /* Mask out old value, while avoiding shifts >= size of oword */
1214 if (bitsize < 8 * (int) sizeof (oword))
c5aa993b 1215 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
c906108c 1216 else
c5aa993b 1217 oword &= ~((~(ULONGEST) 0) << bitpos);
c906108c
SS
1218 oword |= fieldval << bitpos;
1219
1220 store_signed_integer (addr, sizeof oword, oword);
1221}
1222\f
1223/* Convert C numbers into newly allocated values */
1224
1225value_ptr
fba45db2 1226value_from_longest (struct type *type, register LONGEST num)
c906108c
SS
1227{
1228 register value_ptr val = allocate_value (type);
1229 register enum type_code code;
1230 register int len;
c5aa993b 1231retry:
c906108c
SS
1232 code = TYPE_CODE (type);
1233 len = TYPE_LENGTH (type);
1234
1235 switch (code)
1236 {
1237 case TYPE_CODE_TYPEDEF:
1238 type = check_typedef (type);
1239 goto retry;
1240 case TYPE_CODE_INT:
1241 case TYPE_CODE_CHAR:
1242 case TYPE_CODE_ENUM:
1243 case TYPE_CODE_BOOL:
1244 case TYPE_CODE_RANGE:
1245 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1246 break;
c5aa993b 1247
c906108c
SS
1248 case TYPE_CODE_REF:
1249 case TYPE_CODE_PTR:
4478b372 1250 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
c906108c 1251 break;
c5aa993b 1252
c906108c
SS
1253 default:
1254 error ("Unexpected type (%d) encountered for integer constant.", code);
1255 }
1256 return val;
1257}
1258
4478b372
JB
1259
1260/* Create a value representing a pointer of type TYPE to the address
1261 ADDR. */
1262value_ptr
1263value_from_pointer (struct type *type, CORE_ADDR addr)
1264{
1265 value_ptr val = allocate_value (type);
1266 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1267 return val;
1268}
1269
1270
0f71a2f6 1271/* Create a value for a string constant to be stored locally
070ad9f0 1272 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1273 This is analogous to value_from_longest, which also does not
1274 use inferior memory. String shall NOT contain embedded nulls. */
1275
1276value_ptr
fba45db2 1277value_from_string (char *ptr)
0f71a2f6
JM
1278{
1279 value_ptr val;
c5aa993b 1280 int len = strlen (ptr);
0f71a2f6 1281 int lowbound = current_language->string_lower_bound;
c5aa993b
JM
1282 struct type *rangetype =
1283 create_range_type ((struct type *) NULL,
1284 builtin_type_int,
1285 lowbound, len + lowbound - 1);
1286 struct type *stringtype =
1287 create_array_type ((struct type *) NULL,
1288 *current_language->string_char_type,
1289 rangetype);
0f71a2f6
JM
1290
1291 val = allocate_value (stringtype);
1292 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1293 return val;
1294}
1295
c906108c 1296value_ptr
fba45db2 1297value_from_double (struct type *type, DOUBLEST num)
c906108c
SS
1298{
1299 register value_ptr val = allocate_value (type);
1300 struct type *base_type = check_typedef (type);
1301 register enum type_code code = TYPE_CODE (base_type);
1302 register int len = TYPE_LENGTH (base_type);
1303
1304 if (code == TYPE_CODE_FLT)
1305 {
1306 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1307 }
1308 else
1309 error ("Unexpected type encountered for floating constant.");
1310
1311 return val;
1312}
1313\f
1314/* Deal with the value that is "about to be returned". */
1315
1316/* Return the value that a function returning now
1317 would be returning to its caller, assuming its type is VALTYPE.
1318 RETBUF is where we look for what ought to be the contents
1319 of the registers (in raw form). This is because it is often
1320 desirable to restore old values to those registers
1321 after saving the contents of interest, and then call
1322 this function using the saved values.
1323 struct_return is non-zero when the function in question is
1324 using the structure return conventions on the machine in question;
1325 0 when it is using the value returning conventions (this often
1326 means returning pointer to where structure is vs. returning value). */
1327
1669605f 1328/* ARGSUSED */
c906108c 1329value_ptr
1669605f 1330value_being_returned (struct type *valtype, char *retbuf, int struct_return)
c906108c
SS
1331{
1332 register value_ptr val;
1333 CORE_ADDR addr;
1334
c906108c 1335 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
ac9a91a7
JM
1336 if (EXTRACT_STRUCT_VALUE_ADDRESS_P)
1337 if (struct_return)
1338 {
1339 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1340 if (!addr)
1341 error ("Function return value unknown");
1342 return value_at (valtype, addr, NULL);
1343 }
c906108c
SS
1344
1345 val = allocate_value (valtype);
1346 CHECK_TYPEDEF (valtype);
1347 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1348
1349 return val;
1350}
1351
1352/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1353 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1354 and TYPE is the type (which is known to be struct, union or array).
1355
1356 On most machines, the struct convention is used unless we are
1357 using gcc and the type is of a special size. */
1358/* As of about 31 Mar 93, GCC was changed to be compatible with the
1359 native compiler. GCC 2.3.3 was the last release that did it the
1360 old way. Since gcc2_compiled was not changed, we have no
1361 way to correctly win in all cases, so we just do the right thing
1362 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1363 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1364 would cause more chaos than dealing with some struct returns being
1365 handled wrong. */
1366
1367int
fba45db2 1368generic_use_struct_convention (int gcc_p, struct type *value_type)
c5aa993b 1369{
c906108c 1370 return !((gcc_p == 1)
c5aa993b
JM
1371 && (TYPE_LENGTH (value_type) == 1
1372 || TYPE_LENGTH (value_type) == 2
1373 || TYPE_LENGTH (value_type) == 4
1374 || TYPE_LENGTH (value_type) == 8));
c906108c
SS
1375}
1376
1377#ifndef USE_STRUCT_CONVENTION
1378#define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
1379#endif
1380
c906108c
SS
1381
1382/* Return true if the function specified is using the structure returning
1383 convention on this machine to return arguments, or 0 if it is using
1384 the value returning convention. FUNCTION is the value representing
1385 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1386 is the type returned by the function. GCC_P is nonzero if compiled
1387 with GCC. */
1388
1669605f 1389/* ARGSUSED */
c906108c 1390int
1669605f
KB
1391using_struct_return (value_ptr function, CORE_ADDR funcaddr,
1392 struct type *value_type, int gcc_p)
c906108c
SS
1393{
1394 register enum type_code code = TYPE_CODE (value_type);
1395
1396 if (code == TYPE_CODE_ERROR)
1397 error ("Function return type unknown.");
1398
1399 if (code == TYPE_CODE_STRUCT
1400 || code == TYPE_CODE_UNION
1401 || code == TYPE_CODE_ARRAY
1402 || RETURN_VALUE_ON_STACK (value_type))
1403 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1404
1405 return 0;
1406}
1407
1408/* Store VAL so it will be returned if a function returns now.
1409 Does not verify that VAL's type matches what the current
1410 function wants to return. */
1411
1412void
fba45db2 1413set_return_value (value_ptr val)
c906108c
SS
1414{
1415 struct type *type = check_typedef (VALUE_TYPE (val));
1416 register enum type_code code = TYPE_CODE (type);
1417
1418 if (code == TYPE_CODE_ERROR)
1419 error ("Function return type unknown.");
1420
c5aa993b 1421 if (code == TYPE_CODE_STRUCT
c906108c
SS
1422 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1423 error ("GDB does not support specifying a struct or union return value.");
1424
1425 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1426}
1427\f
1428void
fba45db2 1429_initialize_values (void)
c906108c
SS
1430{
1431 add_cmd ("convenience", no_class, show_convenience,
c5aa993b 1432 "Debugger convenience (\"$foo\") variables.\n\
c906108c
SS
1433These variables are created when you assign them values;\n\
1434thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1435A few convenience variables are given values automatically:\n\
1436\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1437\"$__\" holds the contents of the last address examined with \"x\".",
1438 &showlist);
1439
1440 add_cmd ("values", no_class, show_values,
1441 "Elements of value history around item number IDX (or last ten).",
1442 &showlist);
1443}
This page took 0.276253 seconds and 4 git commands to generate.