Replace free() with xfree().
[deliverable/binutils-gdb.git] / gdb / values.c
CommitLineData
c906108c
SS
1/* Low level packing and unpacking of values for GDB, the GNU Debugger.
2 Copyright 1986, 87, 89, 91, 93, 94, 95, 96, 97, 1998
3 Free Software Foundation, Inc.
4
c5aa993b 5 This file is part of GDB.
c906108c 6
c5aa993b
JM
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
c906108c 11
c5aa993b
JM
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
c906108c 16
c5aa993b
JM
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
c906108c
SS
21
22#include "defs.h"
23#include "gdb_string.h"
24#include "symtab.h"
25#include "gdbtypes.h"
26#include "value.h"
27#include "gdbcore.h"
28#include "frame.h"
29#include "command.h"
30#include "gdbcmd.h"
31#include "target.h"
32#include "language.h"
33#include "scm-lang.h"
34#include "demangle.h"
35
36/* Prototypes for exported functions. */
37
a14ed312 38void _initialize_values (void);
c906108c
SS
39
40/* Prototypes for local functions. */
41
a14ed312 42static value_ptr value_headof (value_ptr, struct type *, struct type *);
c906108c 43
a14ed312 44static void show_values (char *, int);
c906108c 45
a14ed312 46static void show_convenience (char *, int);
c906108c 47
a14ed312 48static int vb_match (struct type *, int, struct type *);
c906108c
SS
49
50/* The value-history records all the values printed
51 by print commands during this session. Each chunk
52 records 60 consecutive values. The first chunk on
53 the chain records the most recent values.
54 The total number of values is in value_history_count. */
55
56#define VALUE_HISTORY_CHUNK 60
57
58struct value_history_chunk
c5aa993b
JM
59 {
60 struct value_history_chunk *next;
61 value_ptr values[VALUE_HISTORY_CHUNK];
62 };
c906108c
SS
63
64/* Chain of chunks now in use. */
65
66static struct value_history_chunk *value_history_chain;
67
68static int value_history_count; /* Abs number of last entry stored */
69\f
70/* List of all value objects currently allocated
71 (except for those released by calls to release_value)
72 This is so they can be freed after each command. */
73
74static value_ptr all_values;
75
76/* Allocate a value that has the correct length for type TYPE. */
77
78value_ptr
fba45db2 79allocate_value (struct type *type)
c906108c
SS
80{
81 register value_ptr val;
82 struct type *atype = check_typedef (type);
83
84 val = (struct value *) xmalloc (sizeof (struct value) + TYPE_LENGTH (atype));
85 VALUE_NEXT (val) = all_values;
86 all_values = val;
87 VALUE_TYPE (val) = type;
88 VALUE_ENCLOSING_TYPE (val) = type;
89 VALUE_LVAL (val) = not_lval;
90 VALUE_ADDRESS (val) = 0;
91 VALUE_FRAME (val) = 0;
92 VALUE_OFFSET (val) = 0;
93 VALUE_BITPOS (val) = 0;
94 VALUE_BITSIZE (val) = 0;
95 VALUE_REGNO (val) = -1;
96 VALUE_LAZY (val) = 0;
97 VALUE_OPTIMIZED_OUT (val) = 0;
98 VALUE_BFD_SECTION (val) = NULL;
99 VALUE_EMBEDDED_OFFSET (val) = 0;
100 VALUE_POINTED_TO_OFFSET (val) = 0;
101 val->modifiable = 1;
102 return val;
103}
104
105/* Allocate a value that has the correct length
106 for COUNT repetitions type TYPE. */
107
108value_ptr
fba45db2 109allocate_repeat_value (struct type *type, int count)
c906108c 110{
c5aa993b 111 int low_bound = current_language->string_lower_bound; /* ??? */
c906108c
SS
112 /* FIXME-type-allocation: need a way to free this type when we are
113 done with it. */
114 struct type *range_type
c5aa993b
JM
115 = create_range_type ((struct type *) NULL, builtin_type_int,
116 low_bound, count + low_bound - 1);
c906108c
SS
117 /* FIXME-type-allocation: need a way to free this type when we are
118 done with it. */
119 return allocate_value (create_array_type ((struct type *) NULL,
120 type, range_type));
121}
122
123/* Return a mark in the value chain. All values allocated after the
124 mark is obtained (except for those released) are subject to being freed
125 if a subsequent value_free_to_mark is passed the mark. */
126value_ptr
fba45db2 127value_mark (void)
c906108c
SS
128{
129 return all_values;
130}
131
132/* Free all values allocated since MARK was obtained by value_mark
133 (except for those released). */
134void
fba45db2 135value_free_to_mark (value_ptr mark)
c906108c
SS
136{
137 value_ptr val, next;
138
139 for (val = all_values; val && val != mark; val = next)
140 {
141 next = VALUE_NEXT (val);
142 value_free (val);
143 }
144 all_values = val;
145}
146
147/* Free all the values that have been allocated (except for those released).
148 Called after each command, successful or not. */
149
150void
fba45db2 151free_all_values (void)
c906108c
SS
152{
153 register value_ptr val, next;
154
155 for (val = all_values; val; val = next)
156 {
157 next = VALUE_NEXT (val);
158 value_free (val);
159 }
160
161 all_values = 0;
162}
163
164/* Remove VAL from the chain all_values
165 so it will not be freed automatically. */
166
167void
fba45db2 168release_value (register value_ptr val)
c906108c
SS
169{
170 register value_ptr v;
171
172 if (all_values == val)
173 {
174 all_values = val->next;
175 return;
176 }
177
178 for (v = all_values; v; v = v->next)
179 {
180 if (v->next == val)
181 {
182 v->next = val->next;
183 break;
184 }
185 }
186}
187
188/* Release all values up to mark */
189value_ptr
fba45db2 190value_release_to_mark (value_ptr mark)
c906108c
SS
191{
192 value_ptr val, next;
193
194 for (val = next = all_values; next; next = VALUE_NEXT (next))
195 if (VALUE_NEXT (next) == mark)
196 {
197 all_values = VALUE_NEXT (next);
198 VALUE_NEXT (next) = 0;
199 return val;
200 }
201 all_values = 0;
202 return val;
203}
204
205/* Return a copy of the value ARG.
206 It contains the same contents, for same memory address,
207 but it's a different block of storage. */
208
209value_ptr
fba45db2 210value_copy (value_ptr arg)
c906108c
SS
211{
212 register struct type *encl_type = VALUE_ENCLOSING_TYPE (arg);
213 register value_ptr val = allocate_value (encl_type);
214 VALUE_TYPE (val) = VALUE_TYPE (arg);
215 VALUE_LVAL (val) = VALUE_LVAL (arg);
216 VALUE_ADDRESS (val) = VALUE_ADDRESS (arg);
217 VALUE_OFFSET (val) = VALUE_OFFSET (arg);
218 VALUE_BITPOS (val) = VALUE_BITPOS (arg);
219 VALUE_BITSIZE (val) = VALUE_BITSIZE (arg);
220 VALUE_FRAME (val) = VALUE_FRAME (arg);
221 VALUE_REGNO (val) = VALUE_REGNO (arg);
222 VALUE_LAZY (val) = VALUE_LAZY (arg);
223 VALUE_OPTIMIZED_OUT (val) = VALUE_OPTIMIZED_OUT (arg);
224 VALUE_EMBEDDED_OFFSET (val) = VALUE_EMBEDDED_OFFSET (arg);
225 VALUE_POINTED_TO_OFFSET (val) = VALUE_POINTED_TO_OFFSET (arg);
226 VALUE_BFD_SECTION (val) = VALUE_BFD_SECTION (arg);
227 val->modifiable = arg->modifiable;
228 if (!VALUE_LAZY (val))
229 {
230 memcpy (VALUE_CONTENTS_ALL_RAW (val), VALUE_CONTENTS_ALL_RAW (arg),
231 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg)));
232
233 }
234 return val;
235}
236\f
237/* Access to the value history. */
238
239/* Record a new value in the value history.
240 Returns the absolute history index of the entry.
241 Result of -1 indicates the value was not saved; otherwise it is the
242 value history index of this new item. */
243
244int
fba45db2 245record_latest_value (value_ptr val)
c906108c
SS
246{
247 int i;
248
249 /* We don't want this value to have anything to do with the inferior anymore.
250 In particular, "set $1 = 50" should not affect the variable from which
251 the value was taken, and fast watchpoints should be able to assume that
252 a value on the value history never changes. */
253 if (VALUE_LAZY (val))
254 value_fetch_lazy (val);
255 /* We preserve VALUE_LVAL so that the user can find out where it was fetched
256 from. This is a bit dubious, because then *&$1 does not just return $1
257 but the current contents of that location. c'est la vie... */
258 val->modifiable = 0;
259 release_value (val);
260
261 /* Here we treat value_history_count as origin-zero
262 and applying to the value being stored now. */
263
264 i = value_history_count % VALUE_HISTORY_CHUNK;
265 if (i == 0)
266 {
267 register struct value_history_chunk *new
c5aa993b
JM
268 = (struct value_history_chunk *)
269 xmalloc (sizeof (struct value_history_chunk));
c906108c
SS
270 memset (new->values, 0, sizeof new->values);
271 new->next = value_history_chain;
272 value_history_chain = new;
273 }
274
275 value_history_chain->values[i] = val;
276
277 /* Now we regard value_history_count as origin-one
278 and applying to the value just stored. */
279
280 return ++value_history_count;
281}
282
283/* Return a copy of the value in the history with sequence number NUM. */
284
285value_ptr
fba45db2 286access_value_history (int num)
c906108c
SS
287{
288 register struct value_history_chunk *chunk;
289 register int i;
290 register int absnum = num;
291
292 if (absnum <= 0)
293 absnum += value_history_count;
294
295 if (absnum <= 0)
296 {
297 if (num == 0)
298 error ("The history is empty.");
299 else if (num == 1)
300 error ("There is only one value in the history.");
301 else
302 error ("History does not go back to $$%d.", -num);
303 }
304 if (absnum > value_history_count)
305 error ("History has not yet reached $%d.", absnum);
306
307 absnum--;
308
309 /* Now absnum is always absolute and origin zero. */
310
311 chunk = value_history_chain;
312 for (i = (value_history_count - 1) / VALUE_HISTORY_CHUNK - absnum / VALUE_HISTORY_CHUNK;
313 i > 0; i--)
314 chunk = chunk->next;
315
316 return value_copy (chunk->values[absnum % VALUE_HISTORY_CHUNK]);
317}
318
319/* Clear the value history entirely.
320 Must be done when new symbol tables are loaded,
321 because the type pointers become invalid. */
322
323void
fba45db2 324clear_value_history (void)
c906108c
SS
325{
326 register struct value_history_chunk *next;
327 register int i;
328 register value_ptr val;
329
330 while (value_history_chain)
331 {
332 for (i = 0; i < VALUE_HISTORY_CHUNK; i++)
333 if ((val = value_history_chain->values[i]) != NULL)
b8c9b27d 334 xfree (val);
c906108c 335 next = value_history_chain->next;
b8c9b27d 336 xfree (value_history_chain);
c906108c
SS
337 value_history_chain = next;
338 }
339 value_history_count = 0;
340}
341
342static void
fba45db2 343show_values (char *num_exp, int from_tty)
c906108c
SS
344{
345 register int i;
346 register value_ptr val;
347 static int num = 1;
348
349 if (num_exp)
350 {
c5aa993b
JM
351 /* "info history +" should print from the stored position.
352 "info history <exp>" should print around value number <exp>. */
c906108c 353 if (num_exp[0] != '+' || num_exp[1] != '\0')
bb518678 354 num = parse_and_eval_long (num_exp) - 5;
c906108c
SS
355 }
356 else
357 {
358 /* "info history" means print the last 10 values. */
359 num = value_history_count - 9;
360 }
361
362 if (num <= 0)
363 num = 1;
364
365 for (i = num; i < num + 10 && i <= value_history_count; i++)
366 {
367 val = access_value_history (i);
368 printf_filtered ("$%d = ", i);
369 value_print (val, gdb_stdout, 0, Val_pretty_default);
370 printf_filtered ("\n");
371 }
372
373 /* The next "info history +" should start after what we just printed. */
374 num += 10;
375
376 /* Hitting just return after this command should do the same thing as
377 "info history +". If num_exp is null, this is unnecessary, since
378 "info history +" is not useful after "info history". */
379 if (from_tty && num_exp)
380 {
381 num_exp[0] = '+';
382 num_exp[1] = '\0';
383 }
384}
385\f
386/* Internal variables. These are variables within the debugger
387 that hold values assigned by debugger commands.
388 The user refers to them with a '$' prefix
389 that does not appear in the variable names stored internally. */
390
391static struct internalvar *internalvars;
392
393/* Look up an internal variable with name NAME. NAME should not
394 normally include a dollar sign.
395
396 If the specified internal variable does not exist,
397 one is created, with a void value. */
398
399struct internalvar *
fba45db2 400lookup_internalvar (char *name)
c906108c
SS
401{
402 register struct internalvar *var;
403
404 for (var = internalvars; var; var = var->next)
405 if (STREQ (var->name, name))
406 return var;
407
408 var = (struct internalvar *) xmalloc (sizeof (struct internalvar));
409 var->name = concat (name, NULL);
410 var->value = allocate_value (builtin_type_void);
411 release_value (var->value);
412 var->next = internalvars;
413 internalvars = var;
414 return var;
415}
416
417value_ptr
fba45db2 418value_of_internalvar (struct internalvar *var)
c906108c
SS
419{
420 register value_ptr val;
421
422#ifdef IS_TRAPPED_INTERNALVAR
423 if (IS_TRAPPED_INTERNALVAR (var->name))
424 return VALUE_OF_TRAPPED_INTERNALVAR (var);
c5aa993b 425#endif
c906108c
SS
426
427 val = value_copy (var->value);
428 if (VALUE_LAZY (val))
429 value_fetch_lazy (val);
430 VALUE_LVAL (val) = lval_internalvar;
431 VALUE_INTERNALVAR (val) = var;
432 return val;
433}
434
435void
fba45db2
KB
436set_internalvar_component (struct internalvar *var, int offset, int bitpos,
437 int bitsize, value_ptr newval)
c906108c
SS
438{
439 register char *addr = VALUE_CONTENTS (var->value) + offset;
440
441#ifdef IS_TRAPPED_INTERNALVAR
442 if (IS_TRAPPED_INTERNALVAR (var->name))
443 SET_TRAPPED_INTERNALVAR (var, newval, bitpos, bitsize, offset);
444#endif
445
446 if (bitsize)
447 modify_field (addr, value_as_long (newval),
448 bitpos, bitsize);
449 else
450 memcpy (addr, VALUE_CONTENTS (newval), TYPE_LENGTH (VALUE_TYPE (newval)));
451}
452
453void
fba45db2 454set_internalvar (struct internalvar *var, value_ptr val)
c906108c
SS
455{
456 value_ptr newval;
457
458#ifdef IS_TRAPPED_INTERNALVAR
459 if (IS_TRAPPED_INTERNALVAR (var->name))
460 SET_TRAPPED_INTERNALVAR (var, val, 0, 0, 0);
461#endif
462
463 newval = value_copy (val);
464 newval->modifiable = 1;
465
466 /* Force the value to be fetched from the target now, to avoid problems
467 later when this internalvar is referenced and the target is gone or
468 has changed. */
469 if (VALUE_LAZY (newval))
470 value_fetch_lazy (newval);
471
472 /* Begin code which must not call error(). If var->value points to
473 something free'd, an error() obviously leaves a dangling pointer.
474 But we also get a danling pointer if var->value points to
475 something in the value chain (i.e., before release_value is
476 called), because after the error free_all_values will get called before
477 long. */
b8c9b27d 478 xfree (var->value);
c906108c
SS
479 var->value = newval;
480 release_value (newval);
481 /* End code which must not call error(). */
482}
483
484char *
fba45db2 485internalvar_name (struct internalvar *var)
c906108c
SS
486{
487 return var->name;
488}
489
490/* Free all internalvars. Done when new symtabs are loaded,
491 because that makes the values invalid. */
492
493void
fba45db2 494clear_internalvars (void)
c906108c
SS
495{
496 register struct internalvar *var;
497
498 while (internalvars)
499 {
500 var = internalvars;
501 internalvars = var->next;
b8c9b27d
KB
502 xfree (var->name);
503 xfree (var->value);
504 xfree (var);
c906108c
SS
505 }
506}
507
508static void
fba45db2 509show_convenience (char *ignore, int from_tty)
c906108c
SS
510{
511 register struct internalvar *var;
512 int varseen = 0;
513
514 for (var = internalvars; var; var = var->next)
515 {
516#ifdef IS_TRAPPED_INTERNALVAR
517 if (IS_TRAPPED_INTERNALVAR (var->name))
518 continue;
519#endif
520 if (!varseen)
521 {
522 varseen = 1;
523 }
524 printf_filtered ("$%s = ", var->name);
525 value_print (var->value, gdb_stdout, 0, Val_pretty_default);
526 printf_filtered ("\n");
527 }
528 if (!varseen)
529 printf_unfiltered ("No debugger convenience variables now defined.\n\
530Convenience variables have names starting with \"$\";\n\
531use \"set\" as in \"set $foo = 5\" to define them.\n");
532}
533\f
534/* Extract a value as a C number (either long or double).
535 Knows how to convert fixed values to double, or
536 floating values to long.
537 Does not deallocate the value. */
538
539LONGEST
fba45db2 540value_as_long (register value_ptr val)
c906108c
SS
541{
542 /* This coerces arrays and functions, which is necessary (e.g.
543 in disassemble_command). It also dereferences references, which
544 I suspect is the most logical thing to do. */
545 COERCE_ARRAY (val);
546 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
547}
548
549DOUBLEST
fba45db2 550value_as_double (register value_ptr val)
c906108c
SS
551{
552 DOUBLEST foo;
553 int inv;
c5aa993b 554
c906108c
SS
555 foo = unpack_double (VALUE_TYPE (val), VALUE_CONTENTS (val), &inv);
556 if (inv)
557 error ("Invalid floating value found in program.");
558 return foo;
559}
4478b372
JB
560/* Extract a value as a C pointer. Does not deallocate the value.
561 Note that val's type may not actually be a pointer; value_as_long
562 handles all the cases. */
c906108c 563CORE_ADDR
fba45db2 564value_as_pointer (value_ptr val)
c906108c
SS
565{
566 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
567 whether we want this to be true eventually. */
568#if 0
569 /* ADDR_BITS_REMOVE is wrong if we are being called for a
570 non-address (e.g. argument to "signal", "info break", etc.), or
571 for pointers to char, in which the low bits *are* significant. */
c5aa993b 572 return ADDR_BITS_REMOVE (value_as_long (val));
c906108c 573#else
67b2adb2
AC
574 COERCE_ARRAY (val);
575 /* In converting VAL to an address (CORE_ADDR), any small integers
576 are first cast to a generic pointer. The function unpack_long
577 will then correctly convert that pointer into a canonical address
578 (using POINTER_TO_ADDRESS).
579
580 Without the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
581 0xa0000000 -> (LONGEST) 0x00000000a0000000
582
583 With the cast, the MIPS gets: 0xa0000000 -> (unsigned int)
584 0xa0000000 -> (void*) 0xa0000000 -> (LONGEST) 0xffffffffa0000000.
585
586 If the user specifies an integer that is larger than the target
587 pointer type, it is assumed that it was intentional and the value
588 is converted directly into an ADDRESS. This ensures that no
589 information is discarded.
590
591 NOTE: The cast operation may eventualy be converted into a TARGET
592 method (see POINTER_TO_ADDRESS() and ADDRESS_TO_POINTER()) so
593 that the TARGET ISA/ABI can apply an arbitrary conversion.
594
595 NOTE: In pure harvard architectures function and data pointers
596 can be different and may require different integer to pointer
597 conversions. */
598 if (TYPE_CODE (VALUE_TYPE (val)) == TYPE_CODE_INT
599 && TYPE_LENGTH (VALUE_TYPE (val)) <= TYPE_LENGTH (builtin_type_ptr))
600 {
601 val = value_cast (builtin_type_ptr, val);
602 }
603 return unpack_long (VALUE_TYPE (val), VALUE_CONTENTS (val));
c906108c
SS
604#endif
605}
606\f
607/* Unpack raw data (copied from debugee, target byte order) at VALADDR
608 as a long, or as a double, assuming the raw data is described
609 by type TYPE. Knows how to convert different sizes of values
610 and can convert between fixed and floating point. We don't assume
611 any alignment for the raw data. Return value is in host byte order.
612
613 If you want functions and arrays to be coerced to pointers, and
614 references to be dereferenced, call value_as_long() instead.
615
616 C++: It is assumed that the front-end has taken care of
617 all matters concerning pointers to members. A pointer
618 to member which reaches here is considered to be equivalent
619 to an INT (or some size). After all, it is only an offset. */
620
621LONGEST
fba45db2 622unpack_long (struct type *type, char *valaddr)
c906108c
SS
623{
624 register enum type_code code = TYPE_CODE (type);
625 register int len = TYPE_LENGTH (type);
626 register int nosign = TYPE_UNSIGNED (type);
627
628 if (current_language->la_language == language_scm
629 && is_scmvalue_type (type))
630 return scm_unpack (type, valaddr, TYPE_CODE_INT);
631
632 switch (code)
633 {
634 case TYPE_CODE_TYPEDEF:
635 return unpack_long (check_typedef (type), valaddr);
636 case TYPE_CODE_ENUM:
637 case TYPE_CODE_BOOL:
638 case TYPE_CODE_INT:
639 case TYPE_CODE_CHAR:
640 case TYPE_CODE_RANGE:
641 if (nosign)
642 return extract_unsigned_integer (valaddr, len);
643 else
644 return extract_signed_integer (valaddr, len);
645
646 case TYPE_CODE_FLT:
647 return extract_floating (valaddr, len);
648
649 case TYPE_CODE_PTR:
650 case TYPE_CODE_REF:
651 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
c5aa993b 652 whether we want this to be true eventually. */
7a292a7a
SS
653 if (GDB_TARGET_IS_D10V
654 && len == 2)
c5aa993b 655 return D10V_MAKE_DADDR (extract_address (valaddr, len));
4478b372 656 return extract_typed_address (valaddr, type);
c906108c
SS
657
658 case TYPE_CODE_MEMBER:
659 error ("not implemented: member types in unpack_long");
660
661 default:
662 error ("Value can't be converted to integer.");
663 }
c5aa993b 664 return 0; /* Placate lint. */
c906108c
SS
665}
666
667/* Return a double value from the specified type and address.
668 INVP points to an int which is set to 0 for valid value,
669 1 for invalid value (bad float format). In either case,
670 the returned double is OK to use. Argument is in target
671 format, result is in host format. */
672
673DOUBLEST
fba45db2 674unpack_double (struct type *type, char *valaddr, int *invp)
c906108c
SS
675{
676 enum type_code code;
677 int len;
678 int nosign;
679
680 *invp = 0; /* Assume valid. */
681 CHECK_TYPEDEF (type);
682 code = TYPE_CODE (type);
683 len = TYPE_LENGTH (type);
684 nosign = TYPE_UNSIGNED (type);
685 if (code == TYPE_CODE_FLT)
686 {
687#ifdef INVALID_FLOAT
688 if (INVALID_FLOAT (valaddr, len))
689 {
690 *invp = 1;
691 return 1.234567891011121314;
692 }
693#endif
694 return extract_floating (valaddr, len);
695 }
696 else if (nosign)
697 {
698 /* Unsigned -- be sure we compensate for signed LONGEST. */
699#if !defined (_MSC_VER) || (_MSC_VER > 900)
700 return (ULONGEST) unpack_long (type, valaddr);
701#else
702 /* FIXME!!! msvc22 doesn't support unsigned __int64 -> double */
703 return (LONGEST) unpack_long (type, valaddr);
704#endif /* _MSC_VER */
705 }
706 else
707 {
708 /* Signed -- we are OK with unpack_long. */
709 return unpack_long (type, valaddr);
710 }
711}
712
713/* Unpack raw data (copied from debugee, target byte order) at VALADDR
714 as a CORE_ADDR, assuming the raw data is described by type TYPE.
715 We don't assume any alignment for the raw data. Return value is in
716 host byte order.
717
718 If you want functions and arrays to be coerced to pointers, and
719 references to be dereferenced, call value_as_pointer() instead.
720
721 C++: It is assumed that the front-end has taken care of
722 all matters concerning pointers to members. A pointer
723 to member which reaches here is considered to be equivalent
724 to an INT (or some size). After all, it is only an offset. */
725
726CORE_ADDR
fba45db2 727unpack_pointer (struct type *type, char *valaddr)
c906108c
SS
728{
729 /* Assume a CORE_ADDR can fit in a LONGEST (for now). Not sure
730 whether we want this to be true eventually. */
731 return unpack_long (type, valaddr);
732}
4478b372 733
c906108c
SS
734\f
735/* Get the value of the FIELDN'th field (which must be static) of TYPE. */
736
737value_ptr
fba45db2 738value_static_field (struct type *type, int fieldno)
c906108c
SS
739{
740 CORE_ADDR addr;
741 asection *sect;
742 if (TYPE_FIELD_STATIC_HAS_ADDR (type, fieldno))
743 {
744 addr = TYPE_FIELD_STATIC_PHYSADDR (type, fieldno);
745 sect = NULL;
746 }
747 else
748 {
749 char *phys_name = TYPE_FIELD_STATIC_PHYSNAME (type, fieldno);
750 struct symbol *sym = lookup_symbol (phys_name, 0, VAR_NAMESPACE, 0, NULL);
751 if (sym == NULL)
752 {
753 /* With some compilers, e.g. HP aCC, static data members are reported
c5aa993b
JM
754 as non-debuggable symbols */
755 struct minimal_symbol *msym = lookup_minimal_symbol (phys_name, NULL, NULL);
c906108c
SS
756 if (!msym)
757 return NULL;
758 else
c5aa993b 759 {
c906108c
SS
760 addr = SYMBOL_VALUE_ADDRESS (msym);
761 sect = SYMBOL_BFD_SECTION (msym);
762 }
763 }
764 else
765 {
766 addr = SYMBOL_VALUE_ADDRESS (sym);
767 sect = SYMBOL_BFD_SECTION (sym);
768 }
769 SET_FIELD_PHYSADDR (TYPE_FIELD (type, fieldno), addr);
770 }
771 return value_at (TYPE_FIELD_TYPE (type, fieldno), addr, sect);
772}
773
774/* Given a value ARG1 (offset by OFFSET bytes)
775 of a struct or union type ARG_TYPE,
776 extract and return the value of one of its (non-static) fields.
777 FIELDNO says which field. */
778
779value_ptr
fba45db2
KB
780value_primitive_field (register value_ptr arg1, int offset,
781 register int fieldno, register struct type *arg_type)
c906108c
SS
782{
783 register value_ptr v;
784 register struct type *type;
785
786 CHECK_TYPEDEF (arg_type);
787 type = TYPE_FIELD_TYPE (arg_type, fieldno);
788
789 /* Handle packed fields */
790
791 if (TYPE_FIELD_BITSIZE (arg_type, fieldno))
792 {
793 v = value_from_longest (type,
794 unpack_field_as_long (arg_type,
795 VALUE_CONTENTS (arg1)
c5aa993b 796 + offset,
c906108c
SS
797 fieldno));
798 VALUE_BITPOS (v) = TYPE_FIELD_BITPOS (arg_type, fieldno) % 8;
799 VALUE_BITSIZE (v) = TYPE_FIELD_BITSIZE (arg_type, fieldno);
2e70b7b9
MS
800 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
801 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
802 }
803 else if (fieldno < TYPE_N_BASECLASSES (arg_type))
804 {
805 /* This field is actually a base subobject, so preserve the
806 entire object's contents for later references to virtual
807 bases, etc. */
808 v = allocate_value (VALUE_ENCLOSING_TYPE (arg1));
809 VALUE_TYPE (v) = arg_type;
810 if (VALUE_LAZY (arg1))
811 VALUE_LAZY (v) = 1;
812 else
813 memcpy (VALUE_CONTENTS_ALL_RAW (v), VALUE_CONTENTS_ALL_RAW (arg1),
814 TYPE_LENGTH (VALUE_ENCLOSING_TYPE (arg1)));
815 VALUE_OFFSET (v) = VALUE_OFFSET (arg1);
816 VALUE_EMBEDDED_OFFSET (v)
c5aa993b
JM
817 = offset +
818 VALUE_EMBEDDED_OFFSET (arg1) +
819 TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
c906108c
SS
820 }
821 else
822 {
823 /* Plain old data member */
824 offset += TYPE_FIELD_BITPOS (arg_type, fieldno) / 8;
825 v = allocate_value (type);
826 if (VALUE_LAZY (arg1))
827 VALUE_LAZY (v) = 1;
828 else
829 memcpy (VALUE_CONTENTS_RAW (v),
830 VALUE_CONTENTS_RAW (arg1) + offset,
831 TYPE_LENGTH (type));
832 VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset;
833 }
834 VALUE_LVAL (v) = VALUE_LVAL (arg1);
835 if (VALUE_LVAL (arg1) == lval_internalvar)
836 VALUE_LVAL (v) = lval_internalvar_component;
837 VALUE_ADDRESS (v) = VALUE_ADDRESS (arg1);
a88c1392 838 VALUE_REGNO (v) = VALUE_REGNO (arg1);
c906108c 839/* VALUE_OFFSET (v) = VALUE_OFFSET (arg1) + offset
c5aa993b 840 + TYPE_FIELD_BITPOS (arg_type, fieldno) / 8; */
c906108c
SS
841 return v;
842}
843
844/* Given a value ARG1 of a struct or union type,
845 extract and return the value of one of its (non-static) fields.
846 FIELDNO says which field. */
847
848value_ptr
fba45db2 849value_field (register value_ptr arg1, register int fieldno)
c906108c
SS
850{
851 return value_primitive_field (arg1, 0, fieldno, VALUE_TYPE (arg1));
852}
853
854/* Return a non-virtual function as a value.
855 F is the list of member functions which contains the desired method.
856 J is an index into F which provides the desired method. */
857
858value_ptr
fba45db2
KB
859value_fn_field (value_ptr *arg1p, struct fn_field *f, int j, struct type *type,
860 int offset)
c906108c
SS
861{
862 register value_ptr v;
863 register struct type *ftype = TYPE_FN_FIELD_TYPE (f, j);
864 struct symbol *sym;
865
866 sym = lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
867 0, VAR_NAMESPACE, 0, NULL);
c5aa993b
JM
868 if (!sym)
869 return NULL;
c906108c 870/*
c5aa993b
JM
871 error ("Internal error: could not find physical method named %s",
872 TYPE_FN_FIELD_PHYSNAME (f, j));
873 */
874
c906108c
SS
875 v = allocate_value (ftype);
876 VALUE_ADDRESS (v) = BLOCK_START (SYMBOL_BLOCK_VALUE (sym));
877 VALUE_TYPE (v) = ftype;
878
879 if (arg1p)
c5aa993b
JM
880 {
881 if (type != VALUE_TYPE (*arg1p))
882 *arg1p = value_ind (value_cast (lookup_pointer_type (type),
883 value_addr (*arg1p)));
884
070ad9f0 885 /* Move the `this' pointer according to the offset.
c5aa993b
JM
886 VALUE_OFFSET (*arg1p) += offset;
887 */
c906108c
SS
888 }
889
890 return v;
891}
892
893/* Return a virtual function as a value.
894 ARG1 is the object which provides the virtual function
895 table pointer. *ARG1P is side-effected in calling this function.
896 F is the list of member functions which contains the desired virtual
897 function.
898 J is an index into F which provides the desired virtual function.
899
900 TYPE is the type in which F is located. */
901value_ptr
fba45db2
KB
902value_virtual_fn_field (value_ptr *arg1p, struct fn_field *f, int j,
903 struct type *type, int offset)
c906108c
SS
904{
905 value_ptr arg1 = *arg1p;
906 struct type *type1 = check_typedef (VALUE_TYPE (arg1));
907
908 if (TYPE_HAS_VTABLE (type))
909 {
910 /* Deal with HP/Taligent runtime model for virtual functions */
911 value_ptr vp;
c5aa993b 912 value_ptr argp; /* arg1 cast to base */
c5aa993b
JM
913 CORE_ADDR coreptr; /* pointer to target address */
914 int class_index; /* which class segment pointer to use */
915 struct type *ftype = TYPE_FN_FIELD_TYPE (f, j); /* method type */
c906108c
SS
916
917 argp = value_cast (type, *arg1p);
918
919 if (VALUE_ADDRESS (argp) == 0)
c5aa993b
JM
920 error ("Address of object is null; object may not have been created.");
921
c906108c
SS
922 /* pai: FIXME -- 32x64 possible problem? */
923 /* First word (4 bytes) in object layout is the vtable pointer */
c5aa993b
JM
924 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (argp)); /* pai: (temp) */
925 /* + offset + VALUE_EMBEDDED_OFFSET (argp)); */
c906108c
SS
926
927 if (!coreptr)
c5aa993b
JM
928 error ("Virtual table pointer is null for object; object may not have been created.");
929
c906108c
SS
930 /* pai/1997-05-09
931 * FIXME: The code here currently handles only
932 * the non-RRBC case of the Taligent/HP runtime spec; when RRBC
933 * is introduced, the condition for the "if" below will have to
934 * be changed to be a test for the RRBC case. */
c5aa993b 935
c906108c 936 if (1)
c5aa993b
JM
937 {
938 /* Non-RRBC case; the virtual function pointers are stored at fixed
939 * offsets in the virtual table. */
940
941 /* Retrieve the offset in the virtual table from the debug
942 * info. The offset of the vfunc's entry is in words from
943 * the beginning of the vtable; but first we have to adjust
944 * by HP_ACC_VFUNC_START to account for other entries */
945
946 /* pai: FIXME: 32x64 problem here, a word may be 8 bytes in
947 * which case the multiplier should be 8 and values should be long */
948 vp = value_at (builtin_type_int,
949 coreptr + 4 * (TYPE_FN_FIELD_VOFFSET (f, j) + HP_ACC_VFUNC_START), NULL);
950
951 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
952 /* coreptr now contains the address of the virtual function */
953 /* (Actually, it contains the pointer to the plabel for the function. */
954 }
c906108c 955 else
c5aa993b
JM
956 {
957 /* RRBC case; the virtual function pointers are found by double
958 * indirection through the class segment tables. */
959
960 /* Choose class segment depending on type we were passed */
961 class_index = class_index_in_primary_list (type);
962
963 /* Find class segment pointer. These are in the vtable slots after
964 * some other entries, so adjust by HP_ACC_VFUNC_START for that. */
965 /* pai: FIXME 32x64 problem here, if words are 8 bytes long
966 * the multiplier below has to be 8 and value should be long. */
967 vp = value_at (builtin_type_int,
968 coreptr + 4 * (HP_ACC_VFUNC_START + class_index), NULL);
969 /* Indirect once more, offset by function index */
970 /* pai: FIXME 32x64 problem here, again multiplier could be 8 and value long */
971 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp) + 4 * TYPE_FN_FIELD_VOFFSET (f, j));
972 vp = value_at (builtin_type_int, coreptr, NULL);
973 coreptr = *(CORE_ADDR *) (VALUE_CONTENTS (vp));
974
975 /* coreptr now contains the address of the virtual function */
976 /* (Actually, it contains the pointer to the plabel for the function.) */
977
978 }
c906108c
SS
979
980 if (!coreptr)
c5aa993b 981 error ("Address of virtual function is null; error in virtual table?");
c906108c 982
c5aa993b 983 /* Wrap this addr in a value and return pointer */
c906108c
SS
984 vp = allocate_value (ftype);
985 VALUE_TYPE (vp) = ftype;
986 VALUE_ADDRESS (vp) = coreptr;
c5aa993b 987
c906108c
SS
988 /* pai: (temp) do we need the value_ind stuff in value_fn_field? */
989 return vp;
990 }
c5aa993b
JM
991 else
992 { /* Not using HP/Taligent runtime conventions; so try to
993 * use g++ conventions for virtual table */
994
c906108c
SS
995 struct type *entry_type;
996 /* First, get the virtual function table pointer. That comes
997 with a strange type, so cast it to type `pointer to long' (which
998 should serve just fine as a function type). Then, index into
999 the table, and convert final value to appropriate function type. */
1000 value_ptr entry, vfn, vtbl;
c5aa993b
JM
1001 value_ptr vi = value_from_longest (builtin_type_int,
1002 (LONGEST) TYPE_FN_FIELD_VOFFSET (f, j));
c906108c
SS
1003 struct type *fcontext = TYPE_FN_FIELD_FCONTEXT (f, j);
1004 struct type *context;
1005 if (fcontext == NULL)
c5aa993b
JM
1006 /* We don't have an fcontext (e.g. the program was compiled with
1007 g++ version 1). Try to get the vtbl from the TYPE_VPTR_BASETYPE.
1008 This won't work right for multiple inheritance, but at least we
1009 should do as well as GDB 3.x did. */
1010 fcontext = TYPE_VPTR_BASETYPE (type);
c906108c
SS
1011 context = lookup_pointer_type (fcontext);
1012 /* Now context is a pointer to the basetype containing the vtbl. */
1013 if (TYPE_TARGET_TYPE (context) != type1)
c5aa993b 1014 {
c906108c
SS
1015 value_ptr tmp = value_cast (context, value_addr (arg1));
1016 VALUE_POINTED_TO_OFFSET (tmp) = 0;
c5aa993b
JM
1017 arg1 = value_ind (tmp);
1018 type1 = check_typedef (VALUE_TYPE (arg1));
1019 }
c906108c
SS
1020
1021 context = type1;
1022 /* Now context is the basetype containing the vtbl. */
1023
1024 /* This type may have been defined before its virtual function table
1025 was. If so, fill in the virtual function table entry for the
1026 type now. */
1027 if (TYPE_VPTR_FIELDNO (context) < 0)
c5aa993b 1028 fill_in_vptr_fieldno (context);
c906108c
SS
1029
1030 /* The virtual function table is now an array of structures
1031 which have the form { int16 offset, delta; void *pfn; }. */
1032 vtbl = value_primitive_field (arg1, 0, TYPE_VPTR_FIELDNO (context),
1033 TYPE_VPTR_BASETYPE (context));
c5aa993b 1034
c906108c 1035 /* With older versions of g++, the vtbl field pointed to an array
c5aa993b 1036 of structures. Nowadays it points directly to the structure. */
c906108c 1037 if (TYPE_CODE (VALUE_TYPE (vtbl)) == TYPE_CODE_PTR
c5aa993b 1038 && TYPE_CODE (TYPE_TARGET_TYPE (VALUE_TYPE (vtbl))) == TYPE_CODE_ARRAY)
c906108c
SS
1039 {
1040 /* Handle the case where the vtbl field points to an
1041 array of structures. */
1042 vtbl = value_ind (vtbl);
1043
1044 /* Index into the virtual function table. This is hard-coded because
1045 looking up a field is not cheap, and it may be important to save
1046 time, e.g. if the user has set a conditional breakpoint calling
1047 a virtual function. */
1048 entry = value_subscript (vtbl, vi);
1049 }
1050 else
1051 {
1052 /* Handle the case where the vtbl field points directly to a structure. */
1053 vtbl = value_add (vtbl, vi);
1054 entry = value_ind (vtbl);
1055 }
1056
1057 entry_type = check_typedef (VALUE_TYPE (entry));
1058
1059 if (TYPE_CODE (entry_type) == TYPE_CODE_STRUCT)
c5aa993b
JM
1060 {
1061 /* Move the `this' pointer according to the virtual function table. */
1062 VALUE_OFFSET (arg1) += value_as_long (value_field (entry, 0));
1063
1064 if (!VALUE_LAZY (arg1))
1065 {
1066 VALUE_LAZY (arg1) = 1;
1067 value_fetch_lazy (arg1);
1068 }
1069
1070 vfn = value_field (entry, 2);
1071 }
c906108c 1072 else if (TYPE_CODE (entry_type) == TYPE_CODE_PTR)
c5aa993b 1073 vfn = entry;
c906108c 1074 else
c5aa993b 1075 error ("I'm confused: virtual function table has bad type");
c906108c
SS
1076 /* Reinstantiate the function pointer with the correct type. */
1077 VALUE_TYPE (vfn) = lookup_pointer_type (TYPE_FN_FIELD_TYPE (f, j));
1078
1079 *arg1p = arg1;
1080 return vfn;
1081 }
1082}
1083
1084/* ARG is a pointer to an object we know to be at least
1085 a DTYPE. BTYPE is the most derived basetype that has
1086 already been searched (and need not be searched again).
1087 After looking at the vtables between BTYPE and DTYPE,
1088 return the most derived type we find. The caller must
1089 be satisfied when the return value == DTYPE.
1090
070ad9f0
DB
1091 FIXME-tiemann: should work with dossier entries as well.
1092 NOTICE - djb: I see no good reason at all to keep this function now that
1093 we have RTTI support. It's used in literally one place, and it's
1094 hard to keep this function up to date when it's purpose is served
1095 by value_rtti_type efficiently.
1096 Consider it gone for 5.1. */
c906108c
SS
1097
1098static value_ptr
fba45db2 1099value_headof (value_ptr in_arg, struct type *btype, struct type *dtype)
c906108c
SS
1100{
1101 /* First collect the vtables we must look at for this object. */
070ad9f0 1102 value_ptr arg, vtbl;
c906108c 1103 struct symbol *sym;
c906108c
SS
1104 char *demangled_name;
1105 struct minimal_symbol *msymbol;
1106
1107 btype = TYPE_VPTR_BASETYPE (dtype);
1108 CHECK_TYPEDEF (btype);
1109 arg = in_arg;
1110 if (btype != dtype)
070ad9f0
DB
1111 arg = value_cast (lookup_pointer_type (btype), arg);
1112 if (TYPE_CODE (VALUE_TYPE (arg)) == TYPE_CODE_REF)
1113 {
1114 /*
1115 * Copy the value, but change the type from (T&) to (T*).
1116 * We keep the same location information, which is efficient,
1117 * and allows &(&X) to get the location containing the reference.
1118 */
1119 arg = value_copy (arg);
1120 VALUE_TYPE (arg) = lookup_pointer_type (TYPE_TARGET_TYPE (VALUE_TYPE (arg)));
1121 }
1122 if (VALUE_ADDRESS(value_field (value_ind(arg), TYPE_VPTR_FIELDNO (btype)))==0)
1123 return arg;
1124
c906108c 1125 vtbl = value_ind (value_field (value_ind (arg), TYPE_VPTR_FIELDNO (btype)));
070ad9f0
DB
1126 /* Turn vtable into typeinfo function */
1127 VALUE_OFFSET(vtbl)+=4;
c906108c 1128
070ad9f0 1129 msymbol = lookup_minimal_symbol_by_pc ( value_as_pointer(value_ind(vtbl)) );
c906108c 1130 if (msymbol == NULL
070ad9f0
DB
1131 || (demangled_name = SYMBOL_NAME (msymbol)) == NULL)
1132 {
1133 /* If we expected to find a vtable, but did not, let the user
1134 know that we aren't happy, but don't throw an error.
1135 FIXME: there has to be a better way to do this. */
1136 struct type *error_type = (struct type *) xmalloc (sizeof (struct type));
1137 memcpy (error_type, VALUE_TYPE (in_arg), sizeof (struct type));
1138 TYPE_NAME (error_type) = savestring ("suspicious *", sizeof ("suspicious *"));
1139 VALUE_TYPE (in_arg) = error_type;
1140 return in_arg;
1141 }
1142 demangled_name = cplus_demangle(demangled_name,DMGL_ANSI);
1143 *(strchr (demangled_name, ' ')) = '\0';
c906108c 1144
c906108c
SS
1145 sym = lookup_symbol (demangled_name, 0, VAR_NAMESPACE, 0, 0);
1146 if (sym == NULL)
070ad9f0
DB
1147 error ("could not find type declaration for `%s'", demangled_name);
1148
1149 arg = in_arg;
c906108c
SS
1150 VALUE_TYPE (arg) = lookup_pointer_type (SYMBOL_TYPE (sym));
1151 return arg;
1152}
1153
1154/* ARG is a pointer object of type TYPE. If TYPE has virtual
1155 function tables, probe ARG's tables (including the vtables
1156 of its baseclasses) to figure out the most derived type that ARG
1157 could actually be a pointer to. */
1158
1159value_ptr
fba45db2 1160value_from_vtable_info (value_ptr arg, struct type *type)
c906108c
SS
1161{
1162 /* Take care of preliminaries. */
1163 if (TYPE_VPTR_FIELDNO (type) < 0)
1164 fill_in_vptr_fieldno (type);
1165 if (TYPE_VPTR_FIELDNO (type) < 0)
1166 return 0;
1167
1168 return value_headof (arg, 0, type);
1169}
1170
1171/* Return true if the INDEXth field of TYPE is a virtual baseclass
1172 pointer which is for the base class whose type is BASECLASS. */
1173
1174static int
fba45db2 1175vb_match (struct type *type, int index, struct type *basetype)
c906108c
SS
1176{
1177 struct type *fieldtype;
1178 char *name = TYPE_FIELD_NAME (type, index);
1179 char *field_class_name = NULL;
1180
1181 if (*name != '_')
1182 return 0;
1183 /* gcc 2.4 uses _vb$. */
1184 if (name[1] == 'v' && name[2] == 'b' && is_cplus_marker (name[3]))
1185 field_class_name = name + 4;
1186 /* gcc 2.5 will use __vb_. */
1187 if (name[1] == '_' && name[2] == 'v' && name[3] == 'b' && name[4] == '_')
1188 field_class_name = name + 5;
1189
1190 if (field_class_name == NULL)
1191 /* This field is not a virtual base class pointer. */
1192 return 0;
1193
1194 /* It's a virtual baseclass pointer, now we just need to find out whether
1195 it is for this baseclass. */
1196 fieldtype = TYPE_FIELD_TYPE (type, index);
1197 if (fieldtype == NULL
1198 || TYPE_CODE (fieldtype) != TYPE_CODE_PTR)
1199 /* "Can't happen". */
1200 return 0;
1201
1202 /* What we check for is that either the types are equal (needed for
1203 nameless types) or have the same name. This is ugly, and a more
1204 elegant solution should be devised (which would probably just push
1205 the ugliness into symbol reading unless we change the stabs format). */
1206 if (TYPE_TARGET_TYPE (fieldtype) == basetype)
1207 return 1;
1208
1209 if (TYPE_NAME (basetype) != NULL
1210 && TYPE_NAME (TYPE_TARGET_TYPE (fieldtype)) != NULL
1211 && STREQ (TYPE_NAME (basetype),
1212 TYPE_NAME (TYPE_TARGET_TYPE (fieldtype))))
1213 return 1;
1214 return 0;
1215}
1216
1217/* Compute the offset of the baseclass which is
1218 the INDEXth baseclass of class TYPE,
1219 for value at VALADDR (in host) at ADDRESS (in target).
1220 The result is the offset of the baseclass value relative
1221 to (the address of)(ARG) + OFFSET.
1222
1223 -1 is returned on error. */
1224
1225int
fba45db2
KB
1226baseclass_offset (struct type *type, int index, char *valaddr,
1227 CORE_ADDR address)
c906108c
SS
1228{
1229 struct type *basetype = TYPE_BASECLASS (type, index);
1230
1231 if (BASETYPE_VIA_VIRTUAL (type, index))
1232 {
1233 /* Must hunt for the pointer to this virtual baseclass. */
1234 register int i, len = TYPE_NFIELDS (type);
1235 register int n_baseclasses = TYPE_N_BASECLASSES (type);
1236
1237 /* First look for the virtual baseclass pointer
c5aa993b 1238 in the fields. */
c906108c
SS
1239 for (i = n_baseclasses; i < len; i++)
1240 {
1241 if (vb_match (type, i, basetype))
1242 {
1243 CORE_ADDR addr
c5aa993b
JM
1244 = unpack_pointer (TYPE_FIELD_TYPE (type, i),
1245 valaddr + (TYPE_FIELD_BITPOS (type, i) / 8));
c906108c
SS
1246
1247 return addr - (LONGEST) address;
1248 }
1249 }
1250 /* Not in the fields, so try looking through the baseclasses. */
c5aa993b 1251 for (i = index + 1; i < n_baseclasses; i++)
c906108c
SS
1252 {
1253 int boffset =
c5aa993b 1254 baseclass_offset (type, i, valaddr, address);
c906108c
SS
1255 if (boffset)
1256 return boffset;
1257 }
1258 /* Not found. */
1259 return -1;
1260 }
1261
1262 /* Baseclass is easily computed. */
1263 return TYPE_BASECLASS_BITPOS (type, index) / 8;
1264}
1265\f
1266/* Unpack a field FIELDNO of the specified TYPE, from the anonymous object at
1267 VALADDR.
1268
1269 Extracting bits depends on endianness of the machine. Compute the
1270 number of least significant bits to discard. For big endian machines,
1271 we compute the total number of bits in the anonymous object, subtract
1272 off the bit count from the MSB of the object to the MSB of the
1273 bitfield, then the size of the bitfield, which leaves the LSB discard
1274 count. For little endian machines, the discard count is simply the
1275 number of bits from the LSB of the anonymous object to the LSB of the
1276 bitfield.
1277
1278 If the field is signed, we also do sign extension. */
1279
1280LONGEST
fba45db2 1281unpack_field_as_long (struct type *type, char *valaddr, int fieldno)
c906108c
SS
1282{
1283 ULONGEST val;
1284 ULONGEST valmask;
1285 int bitpos = TYPE_FIELD_BITPOS (type, fieldno);
1286 int bitsize = TYPE_FIELD_BITSIZE (type, fieldno);
1287 int lsbcount;
1288 struct type *field_type;
1289
1290 val = extract_unsigned_integer (valaddr + bitpos / 8, sizeof (val));
1291 field_type = TYPE_FIELD_TYPE (type, fieldno);
1292 CHECK_TYPEDEF (field_type);
1293
1294 /* Extract bits. See comment above. */
1295
1296 if (BITS_BIG_ENDIAN)
1297 lsbcount = (sizeof val * 8 - bitpos % 8 - bitsize);
1298 else
1299 lsbcount = (bitpos % 8);
1300 val >>= lsbcount;
1301
1302 /* If the field does not entirely fill a LONGEST, then zero the sign bits.
1303 If the field is signed, and is negative, then sign extend. */
1304
1305 if ((bitsize > 0) && (bitsize < 8 * (int) sizeof (val)))
1306 {
1307 valmask = (((ULONGEST) 1) << bitsize) - 1;
1308 val &= valmask;
1309 if (!TYPE_UNSIGNED (field_type))
1310 {
1311 if (val & (valmask ^ (valmask >> 1)))
1312 {
1313 val |= ~valmask;
1314 }
1315 }
1316 }
1317 return (val);
1318}
1319
1320/* Modify the value of a bitfield. ADDR points to a block of memory in
1321 target byte order; the bitfield starts in the byte pointed to. FIELDVAL
1322 is the desired value of the field, in host byte order. BITPOS and BITSIZE
1323 indicate which bits (in target bit order) comprise the bitfield. */
1324
1325void
fba45db2 1326modify_field (char *addr, LONGEST fieldval, int bitpos, int bitsize)
c906108c
SS
1327{
1328 LONGEST oword;
1329
1330 /* If a negative fieldval fits in the field in question, chop
1331 off the sign extension bits. */
1332 if (bitsize < (8 * (int) sizeof (fieldval))
1333 && (~fieldval & ~((1 << (bitsize - 1)) - 1)) == 0)
1334 fieldval = fieldval & ((1 << bitsize) - 1);
1335
1336 /* Warn if value is too big to fit in the field in question. */
1337 if (bitsize < (8 * (int) sizeof (fieldval))
c5aa993b 1338 && 0 != (fieldval & ~((1 << bitsize) - 1)))
c906108c
SS
1339 {
1340 /* FIXME: would like to include fieldval in the message, but
c5aa993b 1341 we don't have a sprintf_longest. */
c906108c
SS
1342 warning ("Value does not fit in %d bits.", bitsize);
1343
1344 /* Truncate it, otherwise adjoining fields may be corrupted. */
1345 fieldval = fieldval & ((1 << bitsize) - 1);
1346 }
1347
1348 oword = extract_signed_integer (addr, sizeof oword);
1349
1350 /* Shifting for bit field depends on endianness of the target machine. */
1351 if (BITS_BIG_ENDIAN)
1352 bitpos = sizeof (oword) * 8 - bitpos - bitsize;
1353
1354 /* Mask out old value, while avoiding shifts >= size of oword */
1355 if (bitsize < 8 * (int) sizeof (oword))
c5aa993b 1356 oword &= ~(((((ULONGEST) 1) << bitsize) - 1) << bitpos);
c906108c 1357 else
c5aa993b 1358 oword &= ~((~(ULONGEST) 0) << bitpos);
c906108c
SS
1359 oword |= fieldval << bitpos;
1360
1361 store_signed_integer (addr, sizeof oword, oword);
1362}
1363\f
1364/* Convert C numbers into newly allocated values */
1365
1366value_ptr
fba45db2 1367value_from_longest (struct type *type, register LONGEST num)
c906108c
SS
1368{
1369 register value_ptr val = allocate_value (type);
1370 register enum type_code code;
1371 register int len;
c5aa993b 1372retry:
c906108c
SS
1373 code = TYPE_CODE (type);
1374 len = TYPE_LENGTH (type);
1375
1376 switch (code)
1377 {
1378 case TYPE_CODE_TYPEDEF:
1379 type = check_typedef (type);
1380 goto retry;
1381 case TYPE_CODE_INT:
1382 case TYPE_CODE_CHAR:
1383 case TYPE_CODE_ENUM:
1384 case TYPE_CODE_BOOL:
1385 case TYPE_CODE_RANGE:
1386 store_signed_integer (VALUE_CONTENTS_RAW (val), len, num);
1387 break;
c5aa993b 1388
c906108c
SS
1389 case TYPE_CODE_REF:
1390 case TYPE_CODE_PTR:
4478b372 1391 store_typed_address (VALUE_CONTENTS_RAW (val), type, (CORE_ADDR) num);
c906108c 1392 break;
c5aa993b 1393
c906108c
SS
1394 default:
1395 error ("Unexpected type (%d) encountered for integer constant.", code);
1396 }
1397 return val;
1398}
1399
4478b372
JB
1400
1401/* Create a value representing a pointer of type TYPE to the address
1402 ADDR. */
1403value_ptr
1404value_from_pointer (struct type *type, CORE_ADDR addr)
1405{
1406 value_ptr val = allocate_value (type);
1407 store_typed_address (VALUE_CONTENTS_RAW (val), type, addr);
1408 return val;
1409}
1410
1411
0f71a2f6 1412/* Create a value for a string constant to be stored locally
070ad9f0 1413 (not in the inferior's memory space, but in GDB memory).
0f71a2f6
JM
1414 This is analogous to value_from_longest, which also does not
1415 use inferior memory. String shall NOT contain embedded nulls. */
1416
1417value_ptr
fba45db2 1418value_from_string (char *ptr)
0f71a2f6
JM
1419{
1420 value_ptr val;
c5aa993b 1421 int len = strlen (ptr);
0f71a2f6 1422 int lowbound = current_language->string_lower_bound;
c5aa993b
JM
1423 struct type *rangetype =
1424 create_range_type ((struct type *) NULL,
1425 builtin_type_int,
1426 lowbound, len + lowbound - 1);
1427 struct type *stringtype =
1428 create_array_type ((struct type *) NULL,
1429 *current_language->string_char_type,
1430 rangetype);
0f71a2f6
JM
1431
1432 val = allocate_value (stringtype);
1433 memcpy (VALUE_CONTENTS_RAW (val), ptr, len);
1434 return val;
1435}
1436
c906108c 1437value_ptr
fba45db2 1438value_from_double (struct type *type, DOUBLEST num)
c906108c
SS
1439{
1440 register value_ptr val = allocate_value (type);
1441 struct type *base_type = check_typedef (type);
1442 register enum type_code code = TYPE_CODE (base_type);
1443 register int len = TYPE_LENGTH (base_type);
1444
1445 if (code == TYPE_CODE_FLT)
1446 {
1447 store_floating (VALUE_CONTENTS_RAW (val), len, num);
1448 }
1449 else
1450 error ("Unexpected type encountered for floating constant.");
1451
1452 return val;
1453}
1454\f
1455/* Deal with the value that is "about to be returned". */
1456
1457/* Return the value that a function returning now
1458 would be returning to its caller, assuming its type is VALTYPE.
1459 RETBUF is where we look for what ought to be the contents
1460 of the registers (in raw form). This is because it is often
1461 desirable to restore old values to those registers
1462 after saving the contents of interest, and then call
1463 this function using the saved values.
1464 struct_return is non-zero when the function in question is
1465 using the structure return conventions on the machine in question;
1466 0 when it is using the value returning conventions (this often
1467 means returning pointer to where structure is vs. returning value). */
1468
1669605f 1469/* ARGSUSED */
c906108c 1470value_ptr
1669605f 1471value_being_returned (struct type *valtype, char *retbuf, int struct_return)
c906108c
SS
1472{
1473 register value_ptr val;
1474 CORE_ADDR addr;
1475
c906108c 1476 /* If this is not defined, just use EXTRACT_RETURN_VALUE instead. */
ac9a91a7
JM
1477 if (EXTRACT_STRUCT_VALUE_ADDRESS_P)
1478 if (struct_return)
1479 {
1480 addr = EXTRACT_STRUCT_VALUE_ADDRESS (retbuf);
1481 if (!addr)
1482 error ("Function return value unknown");
1483 return value_at (valtype, addr, NULL);
1484 }
c906108c
SS
1485
1486 val = allocate_value (valtype);
1487 CHECK_TYPEDEF (valtype);
1488 EXTRACT_RETURN_VALUE (valtype, retbuf, VALUE_CONTENTS_RAW (val));
1489
1490 return val;
1491}
1492
1493/* Should we use EXTRACT_STRUCT_VALUE_ADDRESS instead of
1494 EXTRACT_RETURN_VALUE? GCC_P is true if compiled with gcc
1495 and TYPE is the type (which is known to be struct, union or array).
1496
1497 On most machines, the struct convention is used unless we are
1498 using gcc and the type is of a special size. */
1499/* As of about 31 Mar 93, GCC was changed to be compatible with the
1500 native compiler. GCC 2.3.3 was the last release that did it the
1501 old way. Since gcc2_compiled was not changed, we have no
1502 way to correctly win in all cases, so we just do the right thing
1503 for gcc1 and for gcc2 after this change. Thus it loses for gcc
1504 2.0-2.3.3. This is somewhat unfortunate, but changing gcc2_compiled
1505 would cause more chaos than dealing with some struct returns being
1506 handled wrong. */
1507
1508int
fba45db2 1509generic_use_struct_convention (int gcc_p, struct type *value_type)
c5aa993b 1510{
c906108c 1511 return !((gcc_p == 1)
c5aa993b
JM
1512 && (TYPE_LENGTH (value_type) == 1
1513 || TYPE_LENGTH (value_type) == 2
1514 || TYPE_LENGTH (value_type) == 4
1515 || TYPE_LENGTH (value_type) == 8));
c906108c
SS
1516}
1517
1518#ifndef USE_STRUCT_CONVENTION
1519#define USE_STRUCT_CONVENTION(gcc_p,type) generic_use_struct_convention (gcc_p, type)
1520#endif
1521
c906108c
SS
1522
1523/* Return true if the function specified is using the structure returning
1524 convention on this machine to return arguments, or 0 if it is using
1525 the value returning convention. FUNCTION is the value representing
1526 the function, FUNCADDR is the address of the function, and VALUE_TYPE
1527 is the type returned by the function. GCC_P is nonzero if compiled
1528 with GCC. */
1529
1669605f 1530/* ARGSUSED */
c906108c 1531int
1669605f
KB
1532using_struct_return (value_ptr function, CORE_ADDR funcaddr,
1533 struct type *value_type, int gcc_p)
c906108c
SS
1534{
1535 register enum type_code code = TYPE_CODE (value_type);
1536
1537 if (code == TYPE_CODE_ERROR)
1538 error ("Function return type unknown.");
1539
1540 if (code == TYPE_CODE_STRUCT
1541 || code == TYPE_CODE_UNION
1542 || code == TYPE_CODE_ARRAY
1543 || RETURN_VALUE_ON_STACK (value_type))
1544 return USE_STRUCT_CONVENTION (gcc_p, value_type);
1545
1546 return 0;
1547}
1548
1549/* Store VAL so it will be returned if a function returns now.
1550 Does not verify that VAL's type matches what the current
1551 function wants to return. */
1552
1553void
fba45db2 1554set_return_value (value_ptr val)
c906108c
SS
1555{
1556 struct type *type = check_typedef (VALUE_TYPE (val));
1557 register enum type_code code = TYPE_CODE (type);
1558
1559 if (code == TYPE_CODE_ERROR)
1560 error ("Function return type unknown.");
1561
c5aa993b 1562 if (code == TYPE_CODE_STRUCT
c906108c
SS
1563 || code == TYPE_CODE_UNION) /* FIXME, implement struct return. */
1564 error ("GDB does not support specifying a struct or union return value.");
1565
1566 STORE_RETURN_VALUE (type, VALUE_CONTENTS (val));
1567}
1568\f
1569void
fba45db2 1570_initialize_values (void)
c906108c
SS
1571{
1572 add_cmd ("convenience", no_class, show_convenience,
c5aa993b 1573 "Debugger convenience (\"$foo\") variables.\n\
c906108c
SS
1574These variables are created when you assign them values;\n\
1575thus, \"print $foo=1\" gives \"$foo\" the value 1. Values may be any type.\n\n\
1576A few convenience variables are given values automatically:\n\
1577\"$_\"holds the last address examined with \"x\" or \"info lines\",\n\
1578\"$__\" holds the contents of the last address examined with \"x\".",
1579 &showlist);
1580
1581 add_cmd ("values", no_class, show_values,
1582 "Elements of value history around item number IDX (or last ten).",
1583 &showlist);
1584}
This page took 0.154207 seconds and 4 git commands to generate.