Commit | Line | Data |
---|---|---|
8b93c638 | 1 | /* Implementation of the GDB variable objects API. |
bc8332bb | 2 | |
0fb0cc75 | 3 | Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, |
4c38e0a4 | 4 | 2009, 2010 Free Software Foundation, Inc. |
8b93c638 JM |
5 | |
6 | This program is free software; you can redistribute it and/or modify | |
7 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 8 | the Free Software Foundation; either version 3 of the License, or |
8b93c638 JM |
9 | (at your option) any later version. |
10 | ||
11 | This program is distributed in the hope that it will be useful, | |
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
14 | GNU General Public License for more details. | |
15 | ||
16 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 17 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
8b93c638 JM |
18 | |
19 | #include "defs.h" | |
a6c442d8 | 20 | #include "exceptions.h" |
8b93c638 JM |
21 | #include "value.h" |
22 | #include "expression.h" | |
23 | #include "frame.h" | |
8b93c638 JM |
24 | #include "language.h" |
25 | #include "wrapper.h" | |
26 | #include "gdbcmd.h" | |
d2353924 | 27 | #include "block.h" |
79a45b7d | 28 | #include "valprint.h" |
a6c442d8 MK |
29 | |
30 | #include "gdb_assert.h" | |
b66d6d2e | 31 | #include "gdb_string.h" |
0cc7d26f | 32 | #include "gdb_regex.h" |
8b93c638 JM |
33 | |
34 | #include "varobj.h" | |
28335dcc | 35 | #include "vec.h" |
6208b47d VP |
36 | #include "gdbthread.h" |
37 | #include "inferior.h" | |
8b93c638 | 38 | |
b6313243 TT |
39 | #if HAVE_PYTHON |
40 | #include "python/python.h" | |
41 | #include "python/python-internal.h" | |
42 | #else | |
43 | typedef int PyObject; | |
44 | #endif | |
45 | ||
8b93c638 JM |
46 | /* Non-zero if we want to see trace of varobj level stuff. */ |
47 | ||
48 | int varobjdebug = 0; | |
920d2a44 AC |
49 | static void |
50 | show_varobjdebug (struct ui_file *file, int from_tty, | |
51 | struct cmd_list_element *c, const char *value) | |
52 | { | |
53 | fprintf_filtered (file, _("Varobj debugging is %s.\n"), value); | |
54 | } | |
8b93c638 JM |
55 | |
56 | /* String representations of gdb's format codes */ | |
57 | char *varobj_format_string[] = | |
72330bd6 | 58 | { "natural", "binary", "decimal", "hexadecimal", "octal" }; |
8b93c638 JM |
59 | |
60 | /* String representations of gdb's known languages */ | |
72330bd6 | 61 | char *varobj_language_string[] = { "unknown", "C", "C++", "Java" }; |
8b93c638 | 62 | |
0cc7d26f TT |
63 | /* True if we want to allow Python-based pretty-printing. */ |
64 | static int pretty_printing = 0; | |
65 | ||
66 | void | |
67 | varobj_enable_pretty_printing (void) | |
68 | { | |
69 | pretty_printing = 1; | |
70 | } | |
71 | ||
8b93c638 JM |
72 | /* Data structures */ |
73 | ||
74 | /* Every root variable has one of these structures saved in its | |
75 | varobj. Members which must be free'd are noted. */ | |
76 | struct varobj_root | |
72330bd6 | 77 | { |
8b93c638 | 78 | |
72330bd6 AC |
79 | /* Alloc'd expression for this parent. */ |
80 | struct expression *exp; | |
8b93c638 | 81 | |
72330bd6 AC |
82 | /* Block for which this expression is valid */ |
83 | struct block *valid_block; | |
8b93c638 | 84 | |
44a67aa7 VP |
85 | /* The frame for this expression. This field is set iff valid_block is |
86 | not NULL. */ | |
e64d9b3d | 87 | struct frame_id frame; |
8b93c638 | 88 | |
c5b48eac VP |
89 | /* The thread ID that this varobj_root belong to. This field |
90 | is only valid if valid_block is not NULL. | |
91 | When not 0, indicates which thread 'frame' belongs to. | |
92 | When 0, indicates that the thread list was empty when the varobj_root | |
93 | was created. */ | |
94 | int thread_id; | |
95 | ||
a5defcdc VP |
96 | /* If 1, the -var-update always recomputes the value in the |
97 | current thread and frame. Otherwise, variable object is | |
98 | always updated in the specific scope/thread/frame */ | |
99 | int floating; | |
73a93a32 | 100 | |
8756216b DP |
101 | /* Flag that indicates validity: set to 0 when this varobj_root refers |
102 | to symbols that do not exist anymore. */ | |
103 | int is_valid; | |
104 | ||
72330bd6 AC |
105 | /* Language info for this variable and its children */ |
106 | struct language_specific *lang; | |
8b93c638 | 107 | |
72330bd6 AC |
108 | /* The varobj for this root node. */ |
109 | struct varobj *rootvar; | |
8b93c638 | 110 | |
72330bd6 AC |
111 | /* Next root variable */ |
112 | struct varobj_root *next; | |
113 | }; | |
8b93c638 JM |
114 | |
115 | /* Every variable in the system has a structure of this type defined | |
116 | for it. This structure holds all information necessary to manipulate | |
117 | a particular object variable. Members which must be freed are noted. */ | |
118 | struct varobj | |
72330bd6 | 119 | { |
8b93c638 | 120 | |
72330bd6 AC |
121 | /* Alloc'd name of the variable for this object.. If this variable is a |
122 | child, then this name will be the child's source name. | |
123 | (bar, not foo.bar) */ | |
124 | /* NOTE: This is the "expression" */ | |
125 | char *name; | |
8b93c638 | 126 | |
02142340 VP |
127 | /* Alloc'd expression for this child. Can be used to create a |
128 | root variable corresponding to this child. */ | |
129 | char *path_expr; | |
130 | ||
72330bd6 AC |
131 | /* The alloc'd name for this variable's object. This is here for |
132 | convenience when constructing this object's children. */ | |
133 | char *obj_name; | |
8b93c638 | 134 | |
72330bd6 AC |
135 | /* Index of this variable in its parent or -1 */ |
136 | int index; | |
8b93c638 | 137 | |
202ddcaa VP |
138 | /* The type of this variable. This can be NULL |
139 | for artifial variable objects -- currently, the "accessibility" | |
140 | variable objects in C++. */ | |
72330bd6 | 141 | struct type *type; |
8b93c638 | 142 | |
b20d8971 VP |
143 | /* The value of this expression or subexpression. A NULL value |
144 | indicates there was an error getting this value. | |
b2c2bd75 VP |
145 | Invariant: if varobj_value_is_changeable_p (this) is non-zero, |
146 | the value is either NULL, or not lazy. */ | |
30b28db1 | 147 | struct value *value; |
8b93c638 | 148 | |
72330bd6 AC |
149 | /* The number of (immediate) children this variable has */ |
150 | int num_children; | |
8b93c638 | 151 | |
72330bd6 AC |
152 | /* If this object is a child, this points to its immediate parent. */ |
153 | struct varobj *parent; | |
8b93c638 | 154 | |
28335dcc VP |
155 | /* Children of this object. */ |
156 | VEC (varobj_p) *children; | |
8b93c638 | 157 | |
b6313243 TT |
158 | /* Whether the children of this varobj were requested. This field is |
159 | used to decide if dynamic varobj should recompute their children. | |
160 | In the event that the frontend never asked for the children, we | |
161 | can avoid that. */ | |
162 | int children_requested; | |
163 | ||
72330bd6 AC |
164 | /* Description of the root variable. Points to root variable for children. */ |
165 | struct varobj_root *root; | |
8b93c638 | 166 | |
72330bd6 AC |
167 | /* The format of the output for this object */ |
168 | enum varobj_display_formats format; | |
fb9b6b35 JJ |
169 | |
170 | /* Was this variable updated via a varobj_set_value operation */ | |
171 | int updated; | |
85265413 NR |
172 | |
173 | /* Last print value. */ | |
174 | char *print_value; | |
25d5ea92 VP |
175 | |
176 | /* Is this variable frozen. Frozen variables are never implicitly | |
177 | updated by -var-update * | |
178 | or -var-update <direct-or-indirect-parent>. */ | |
179 | int frozen; | |
180 | ||
181 | /* Is the value of this variable intentionally not fetched? It is | |
182 | not fetched if either the variable is frozen, or any parents is | |
183 | frozen. */ | |
184 | int not_fetched; | |
b6313243 | 185 | |
0cc7d26f TT |
186 | /* Sub-range of children which the MI consumer has requested. If |
187 | FROM < 0 or TO < 0, means that all children have been | |
188 | requested. */ | |
189 | int from; | |
190 | int to; | |
191 | ||
192 | /* The pretty-printer constructor. If NULL, then the default | |
193 | pretty-printer will be looked up. If None, then no | |
194 | pretty-printer will be installed. */ | |
195 | PyObject *constructor; | |
196 | ||
b6313243 TT |
197 | /* The pretty-printer that has been constructed. If NULL, then a |
198 | new printer object is needed, and one will be constructed. */ | |
199 | PyObject *pretty_printer; | |
0cc7d26f TT |
200 | |
201 | /* The iterator returned by the printer's 'children' method, or NULL | |
202 | if not available. */ | |
203 | PyObject *child_iter; | |
204 | ||
205 | /* We request one extra item from the iterator, so that we can | |
206 | report to the caller whether there are more items than we have | |
207 | already reported. However, we don't want to install this value | |
208 | when we read it, because that will mess up future updates. So, | |
209 | we stash it here instead. */ | |
210 | PyObject *saved_item; | |
72330bd6 | 211 | }; |
8b93c638 | 212 | |
8b93c638 | 213 | struct cpstack |
72330bd6 AC |
214 | { |
215 | char *name; | |
216 | struct cpstack *next; | |
217 | }; | |
8b93c638 JM |
218 | |
219 | /* A list of varobjs */ | |
220 | ||
221 | struct vlist | |
72330bd6 AC |
222 | { |
223 | struct varobj *var; | |
224 | struct vlist *next; | |
225 | }; | |
8b93c638 JM |
226 | |
227 | /* Private function prototypes */ | |
228 | ||
229 | /* Helper functions for the above subcommands. */ | |
230 | ||
a14ed312 | 231 | static int delete_variable (struct cpstack **, struct varobj *, int); |
8b93c638 | 232 | |
a14ed312 KB |
233 | static void delete_variable_1 (struct cpstack **, int *, |
234 | struct varobj *, int, int); | |
8b93c638 | 235 | |
a14ed312 | 236 | static int install_variable (struct varobj *); |
8b93c638 | 237 | |
a14ed312 | 238 | static void uninstall_variable (struct varobj *); |
8b93c638 | 239 | |
a14ed312 | 240 | static struct varobj *create_child (struct varobj *, int, char *); |
8b93c638 | 241 | |
b6313243 TT |
242 | static struct varobj * |
243 | create_child_with_value (struct varobj *parent, int index, const char *name, | |
244 | struct value *value); | |
245 | ||
8b93c638 JM |
246 | /* Utility routines */ |
247 | ||
a14ed312 | 248 | static struct varobj *new_variable (void); |
8b93c638 | 249 | |
a14ed312 | 250 | static struct varobj *new_root_variable (void); |
8b93c638 | 251 | |
a14ed312 | 252 | static void free_variable (struct varobj *var); |
8b93c638 | 253 | |
74b7792f AC |
254 | static struct cleanup *make_cleanup_free_variable (struct varobj *var); |
255 | ||
a14ed312 | 256 | static struct type *get_type (struct varobj *var); |
8b93c638 | 257 | |
6e2a9270 VP |
258 | static struct type *get_value_type (struct varobj *var); |
259 | ||
a14ed312 | 260 | static struct type *get_target_type (struct type *); |
8b93c638 | 261 | |
a14ed312 | 262 | static enum varobj_display_formats variable_default_display (struct varobj *); |
8b93c638 | 263 | |
a14ed312 | 264 | static void cppush (struct cpstack **pstack, char *name); |
8b93c638 | 265 | |
a14ed312 | 266 | static char *cppop (struct cpstack **pstack); |
8b93c638 | 267 | |
acd65feb VP |
268 | static int install_new_value (struct varobj *var, struct value *value, |
269 | int initial); | |
270 | ||
8b93c638 JM |
271 | /* Language-specific routines. */ |
272 | ||
a14ed312 | 273 | static enum varobj_languages variable_language (struct varobj *var); |
8b93c638 | 274 | |
a14ed312 | 275 | static int number_of_children (struct varobj *); |
8b93c638 | 276 | |
a14ed312 | 277 | static char *name_of_variable (struct varobj *); |
8b93c638 | 278 | |
a14ed312 | 279 | static char *name_of_child (struct varobj *, int); |
8b93c638 | 280 | |
30b28db1 | 281 | static struct value *value_of_root (struct varobj **var_handle, int *); |
8b93c638 | 282 | |
30b28db1 | 283 | static struct value *value_of_child (struct varobj *parent, int index); |
8b93c638 | 284 | |
de051565 MK |
285 | static char *my_value_of_variable (struct varobj *var, |
286 | enum varobj_display_formats format); | |
8b93c638 | 287 | |
85265413 | 288 | static char *value_get_print_value (struct value *value, |
b6313243 | 289 | enum varobj_display_formats format, |
d452c4bc | 290 | struct varobj *var); |
85265413 | 291 | |
b2c2bd75 VP |
292 | static int varobj_value_is_changeable_p (struct varobj *var); |
293 | ||
294 | static int is_root_p (struct varobj *var); | |
8b93c638 | 295 | |
d8b65138 JK |
296 | #if HAVE_PYTHON |
297 | ||
b6313243 TT |
298 | static struct varobj * |
299 | varobj_add_child (struct varobj *var, const char *name, struct value *value); | |
300 | ||
d8b65138 JK |
301 | #endif /* HAVE_PYTHON */ |
302 | ||
8b93c638 JM |
303 | /* C implementation */ |
304 | ||
a14ed312 | 305 | static int c_number_of_children (struct varobj *var); |
8b93c638 | 306 | |
a14ed312 | 307 | static char *c_name_of_variable (struct varobj *parent); |
8b93c638 | 308 | |
a14ed312 | 309 | static char *c_name_of_child (struct varobj *parent, int index); |
8b93c638 | 310 | |
02142340 VP |
311 | static char *c_path_expr_of_child (struct varobj *child); |
312 | ||
30b28db1 | 313 | static struct value *c_value_of_root (struct varobj **var_handle); |
8b93c638 | 314 | |
30b28db1 | 315 | static struct value *c_value_of_child (struct varobj *parent, int index); |
8b93c638 | 316 | |
a14ed312 | 317 | static struct type *c_type_of_child (struct varobj *parent, int index); |
8b93c638 | 318 | |
de051565 MK |
319 | static char *c_value_of_variable (struct varobj *var, |
320 | enum varobj_display_formats format); | |
8b93c638 JM |
321 | |
322 | /* C++ implementation */ | |
323 | ||
a14ed312 | 324 | static int cplus_number_of_children (struct varobj *var); |
8b93c638 | 325 | |
a14ed312 | 326 | static void cplus_class_num_children (struct type *type, int children[3]); |
8b93c638 | 327 | |
a14ed312 | 328 | static char *cplus_name_of_variable (struct varobj *parent); |
8b93c638 | 329 | |
a14ed312 | 330 | static char *cplus_name_of_child (struct varobj *parent, int index); |
8b93c638 | 331 | |
02142340 VP |
332 | static char *cplus_path_expr_of_child (struct varobj *child); |
333 | ||
30b28db1 | 334 | static struct value *cplus_value_of_root (struct varobj **var_handle); |
8b93c638 | 335 | |
30b28db1 | 336 | static struct value *cplus_value_of_child (struct varobj *parent, int index); |
8b93c638 | 337 | |
a14ed312 | 338 | static struct type *cplus_type_of_child (struct varobj *parent, int index); |
8b93c638 | 339 | |
de051565 MK |
340 | static char *cplus_value_of_variable (struct varobj *var, |
341 | enum varobj_display_formats format); | |
8b93c638 JM |
342 | |
343 | /* Java implementation */ | |
344 | ||
a14ed312 | 345 | static int java_number_of_children (struct varobj *var); |
8b93c638 | 346 | |
a14ed312 | 347 | static char *java_name_of_variable (struct varobj *parent); |
8b93c638 | 348 | |
a14ed312 | 349 | static char *java_name_of_child (struct varobj *parent, int index); |
8b93c638 | 350 | |
02142340 VP |
351 | static char *java_path_expr_of_child (struct varobj *child); |
352 | ||
30b28db1 | 353 | static struct value *java_value_of_root (struct varobj **var_handle); |
8b93c638 | 354 | |
30b28db1 | 355 | static struct value *java_value_of_child (struct varobj *parent, int index); |
8b93c638 | 356 | |
a14ed312 | 357 | static struct type *java_type_of_child (struct varobj *parent, int index); |
8b93c638 | 358 | |
de051565 MK |
359 | static char *java_value_of_variable (struct varobj *var, |
360 | enum varobj_display_formats format); | |
8b93c638 JM |
361 | |
362 | /* The language specific vector */ | |
363 | ||
364 | struct language_specific | |
72330bd6 | 365 | { |
8b93c638 | 366 | |
72330bd6 AC |
367 | /* The language of this variable */ |
368 | enum varobj_languages language; | |
8b93c638 | 369 | |
72330bd6 AC |
370 | /* The number of children of PARENT. */ |
371 | int (*number_of_children) (struct varobj * parent); | |
8b93c638 | 372 | |
72330bd6 AC |
373 | /* The name (expression) of a root varobj. */ |
374 | char *(*name_of_variable) (struct varobj * parent); | |
8b93c638 | 375 | |
72330bd6 AC |
376 | /* The name of the INDEX'th child of PARENT. */ |
377 | char *(*name_of_child) (struct varobj * parent, int index); | |
8b93c638 | 378 | |
02142340 VP |
379 | /* Returns the rooted expression of CHILD, which is a variable |
380 | obtain that has some parent. */ | |
381 | char *(*path_expr_of_child) (struct varobj * child); | |
382 | ||
30b28db1 AC |
383 | /* The ``struct value *'' of the root variable ROOT. */ |
384 | struct value *(*value_of_root) (struct varobj ** root_handle); | |
8b93c638 | 385 | |
30b28db1 AC |
386 | /* The ``struct value *'' of the INDEX'th child of PARENT. */ |
387 | struct value *(*value_of_child) (struct varobj * parent, int index); | |
8b93c638 | 388 | |
72330bd6 AC |
389 | /* The type of the INDEX'th child of PARENT. */ |
390 | struct type *(*type_of_child) (struct varobj * parent, int index); | |
8b93c638 | 391 | |
72330bd6 | 392 | /* The current value of VAR. */ |
de051565 MK |
393 | char *(*value_of_variable) (struct varobj * var, |
394 | enum varobj_display_formats format); | |
72330bd6 | 395 | }; |
8b93c638 JM |
396 | |
397 | /* Array of known source language routines. */ | |
d5d6fca5 | 398 | static struct language_specific languages[vlang_end] = { |
8b93c638 JM |
399 | /* Unknown (try treating as C */ |
400 | { | |
72330bd6 AC |
401 | vlang_unknown, |
402 | c_number_of_children, | |
403 | c_name_of_variable, | |
404 | c_name_of_child, | |
02142340 | 405 | c_path_expr_of_child, |
72330bd6 AC |
406 | c_value_of_root, |
407 | c_value_of_child, | |
408 | c_type_of_child, | |
72330bd6 | 409 | c_value_of_variable} |
8b93c638 JM |
410 | , |
411 | /* C */ | |
412 | { | |
72330bd6 AC |
413 | vlang_c, |
414 | c_number_of_children, | |
415 | c_name_of_variable, | |
416 | c_name_of_child, | |
02142340 | 417 | c_path_expr_of_child, |
72330bd6 AC |
418 | c_value_of_root, |
419 | c_value_of_child, | |
420 | c_type_of_child, | |
72330bd6 | 421 | c_value_of_variable} |
8b93c638 JM |
422 | , |
423 | /* C++ */ | |
424 | { | |
72330bd6 AC |
425 | vlang_cplus, |
426 | cplus_number_of_children, | |
427 | cplus_name_of_variable, | |
428 | cplus_name_of_child, | |
02142340 | 429 | cplus_path_expr_of_child, |
72330bd6 AC |
430 | cplus_value_of_root, |
431 | cplus_value_of_child, | |
432 | cplus_type_of_child, | |
72330bd6 | 433 | cplus_value_of_variable} |
8b93c638 JM |
434 | , |
435 | /* Java */ | |
436 | { | |
72330bd6 AC |
437 | vlang_java, |
438 | java_number_of_children, | |
439 | java_name_of_variable, | |
440 | java_name_of_child, | |
02142340 | 441 | java_path_expr_of_child, |
72330bd6 AC |
442 | java_value_of_root, |
443 | java_value_of_child, | |
444 | java_type_of_child, | |
72330bd6 | 445 | java_value_of_variable} |
8b93c638 JM |
446 | }; |
447 | ||
448 | /* A little convenience enum for dealing with C++/Java */ | |
449 | enum vsections | |
72330bd6 AC |
450 | { |
451 | v_public = 0, v_private, v_protected | |
452 | }; | |
8b93c638 JM |
453 | |
454 | /* Private data */ | |
455 | ||
456 | /* Mappings of varobj_display_formats enums to gdb's format codes */ | |
72330bd6 | 457 | static int format_code[] = { 0, 't', 'd', 'x', 'o' }; |
8b93c638 JM |
458 | |
459 | /* Header of the list of root variable objects */ | |
460 | static struct varobj_root *rootlist; | |
8b93c638 JM |
461 | |
462 | /* Prime number indicating the number of buckets in the hash table */ | |
463 | /* A prime large enough to avoid too many colisions */ | |
464 | #define VAROBJ_TABLE_SIZE 227 | |
465 | ||
466 | /* Pointer to the varobj hash table (built at run time) */ | |
467 | static struct vlist **varobj_table; | |
468 | ||
8b93c638 JM |
469 | /* Is the variable X one of our "fake" children? */ |
470 | #define CPLUS_FAKE_CHILD(x) \ | |
471 | ((x) != NULL && (x)->type == NULL && (x)->value == NULL) | |
472 | \f | |
473 | ||
474 | /* API Implementation */ | |
b2c2bd75 VP |
475 | static int |
476 | is_root_p (struct varobj *var) | |
477 | { | |
478 | return (var->root->rootvar == var); | |
479 | } | |
8b93c638 | 480 | |
d452c4bc UW |
481 | #ifdef HAVE_PYTHON |
482 | /* Helper function to install a Python environment suitable for | |
483 | use during operations on VAR. */ | |
484 | struct cleanup * | |
485 | varobj_ensure_python_env (struct varobj *var) | |
486 | { | |
487 | return ensure_python_env (var->root->exp->gdbarch, | |
488 | var->root->exp->language_defn); | |
489 | } | |
490 | #endif | |
491 | ||
8b93c638 JM |
492 | /* Creates a varobj (not its children) */ |
493 | ||
7d8547c9 AC |
494 | /* Return the full FRAME which corresponds to the given CORE_ADDR |
495 | or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ | |
496 | ||
497 | static struct frame_info * | |
498 | find_frame_addr_in_frame_chain (CORE_ADDR frame_addr) | |
499 | { | |
500 | struct frame_info *frame = NULL; | |
501 | ||
502 | if (frame_addr == (CORE_ADDR) 0) | |
503 | return NULL; | |
504 | ||
9d49bdc2 PA |
505 | for (frame = get_current_frame (); |
506 | frame != NULL; | |
507 | frame = get_prev_frame (frame)) | |
7d8547c9 | 508 | { |
1fac167a UW |
509 | /* The CORE_ADDR we get as argument was parsed from a string GDB |
510 | output as $fp. This output got truncated to gdbarch_addr_bit. | |
511 | Truncate the frame base address in the same manner before | |
512 | comparing it against our argument. */ | |
513 | CORE_ADDR frame_base = get_frame_base_address (frame); | |
514 | int addr_bit = gdbarch_addr_bit (get_frame_arch (frame)); | |
a109c7c1 | 515 | |
1fac167a UW |
516 | if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) |
517 | frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1; | |
518 | ||
519 | if (frame_base == frame_addr) | |
7d8547c9 AC |
520 | return frame; |
521 | } | |
9d49bdc2 PA |
522 | |
523 | return NULL; | |
7d8547c9 AC |
524 | } |
525 | ||
8b93c638 JM |
526 | struct varobj * |
527 | varobj_create (char *objname, | |
72330bd6 | 528 | char *expression, CORE_ADDR frame, enum varobj_type type) |
8b93c638 JM |
529 | { |
530 | struct varobj *var; | |
8b93c638 JM |
531 | struct cleanup *old_chain; |
532 | ||
533 | /* Fill out a varobj structure for the (root) variable being constructed. */ | |
534 | var = new_root_variable (); | |
74b7792f | 535 | old_chain = make_cleanup_free_variable (var); |
8b93c638 JM |
536 | |
537 | if (expression != NULL) | |
538 | { | |
e4195b40 | 539 | struct frame_info *fi; |
35633fef | 540 | struct frame_id old_id = null_frame_id; |
e4195b40 | 541 | struct block *block; |
8b93c638 JM |
542 | char *p; |
543 | enum varobj_languages lang; | |
e55dccf0 | 544 | struct value *value = NULL; |
8b93c638 | 545 | |
9d49bdc2 PA |
546 | /* Parse and evaluate the expression, filling in as much of the |
547 | variable's data as possible. */ | |
548 | ||
549 | if (has_stack_frames ()) | |
550 | { | |
551 | /* Allow creator to specify context of variable */ | |
552 | if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME)) | |
553 | fi = get_selected_frame (NULL); | |
554 | else | |
555 | /* FIXME: cagney/2002-11-23: This code should be doing a | |
556 | lookup using the frame ID and not just the frame's | |
557 | ``address''. This, of course, means an interface | |
558 | change. However, with out that interface change ISAs, | |
559 | such as the ia64 with its two stacks, won't work. | |
560 | Similar goes for the case where there is a frameless | |
561 | function. */ | |
562 | fi = find_frame_addr_in_frame_chain (frame); | |
563 | } | |
8b93c638 | 564 | else |
9d49bdc2 | 565 | fi = NULL; |
8b93c638 | 566 | |
73a93a32 JI |
567 | /* frame = -2 means always use selected frame */ |
568 | if (type == USE_SELECTED_FRAME) | |
a5defcdc | 569 | var->root->floating = 1; |
73a93a32 | 570 | |
8b93c638 JM |
571 | block = NULL; |
572 | if (fi != NULL) | |
ae767bfb | 573 | block = get_frame_block (fi, 0); |
8b93c638 JM |
574 | |
575 | p = expression; | |
576 | innermost_block = NULL; | |
73a93a32 JI |
577 | /* Wrap the call to parse expression, so we can |
578 | return a sensible error. */ | |
579 | if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp)) | |
580 | { | |
581 | return NULL; | |
582 | } | |
8b93c638 JM |
583 | |
584 | /* Don't allow variables to be created for types. */ | |
585 | if (var->root->exp->elts[0].opcode == OP_TYPE) | |
586 | { | |
587 | do_cleanups (old_chain); | |
bc8332bb AC |
588 | fprintf_unfiltered (gdb_stderr, "Attempt to use a type name" |
589 | " as an expression.\n"); | |
8b93c638 JM |
590 | return NULL; |
591 | } | |
592 | ||
593 | var->format = variable_default_display (var); | |
594 | var->root->valid_block = innermost_block; | |
1b36a34b | 595 | var->name = xstrdup (expression); |
02142340 | 596 | /* For a root var, the name and the expr are the same. */ |
1b36a34b | 597 | var->path_expr = xstrdup (expression); |
8b93c638 JM |
598 | |
599 | /* When the frame is different from the current frame, | |
600 | we must select the appropriate frame before parsing | |
601 | the expression, otherwise the value will not be current. | |
602 | Since select_frame is so benign, just call it for all cases. */ | |
4e22772d | 603 | if (innermost_block) |
8b93c638 | 604 | { |
4e22772d JK |
605 | /* User could specify explicit FRAME-ADDR which was not found but |
606 | EXPRESSION is frame specific and we would not be able to evaluate | |
607 | it correctly next time. With VALID_BLOCK set we must also set | |
608 | FRAME and THREAD_ID. */ | |
609 | if (fi == NULL) | |
610 | error (_("Failed to find the specified frame")); | |
611 | ||
7a424e99 | 612 | var->root->frame = get_frame_id (fi); |
c5b48eac | 613 | var->root->thread_id = pid_to_thread_id (inferior_ptid); |
35633fef | 614 | old_id = get_frame_id (get_selected_frame (NULL)); |
c5b48eac | 615 | select_frame (fi); |
8b93c638 JM |
616 | } |
617 | ||
340a7723 | 618 | /* We definitely need to catch errors here. |
8b93c638 JM |
619 | If evaluate_expression succeeds we got the value we wanted. |
620 | But if it fails, we still go on with a call to evaluate_type() */ | |
acd65feb | 621 | if (!gdb_evaluate_expression (var->root->exp, &value)) |
e55dccf0 VP |
622 | { |
623 | /* Error getting the value. Try to at least get the | |
624 | right type. */ | |
625 | struct value *type_only_value = evaluate_type (var->root->exp); | |
a109c7c1 | 626 | |
e55dccf0 VP |
627 | var->type = value_type (type_only_value); |
628 | } | |
629 | else | |
630 | var->type = value_type (value); | |
acd65feb | 631 | |
acd65feb | 632 | install_new_value (var, value, 1 /* Initial assignment */); |
8b93c638 JM |
633 | |
634 | /* Set language info */ | |
635 | lang = variable_language (var); | |
d5d6fca5 | 636 | var->root->lang = &languages[lang]; |
8b93c638 JM |
637 | |
638 | /* Set ourselves as our root */ | |
639 | var->root->rootvar = var; | |
640 | ||
641 | /* Reset the selected frame */ | |
35633fef JK |
642 | if (frame_id_p (old_id)) |
643 | select_frame (frame_find_by_id (old_id)); | |
8b93c638 JM |
644 | } |
645 | ||
73a93a32 JI |
646 | /* If the variable object name is null, that means this |
647 | is a temporary variable, so don't install it. */ | |
648 | ||
649 | if ((var != NULL) && (objname != NULL)) | |
8b93c638 | 650 | { |
1b36a34b | 651 | var->obj_name = xstrdup (objname); |
8b93c638 JM |
652 | |
653 | /* If a varobj name is duplicated, the install will fail so | |
654 | we must clenup */ | |
655 | if (!install_variable (var)) | |
656 | { | |
657 | do_cleanups (old_chain); | |
658 | return NULL; | |
659 | } | |
660 | } | |
661 | ||
662 | discard_cleanups (old_chain); | |
663 | return var; | |
664 | } | |
665 | ||
666 | /* Generates an unique name that can be used for a varobj */ | |
667 | ||
668 | char * | |
669 | varobj_gen_name (void) | |
670 | { | |
671 | static int id = 0; | |
e64d9b3d | 672 | char *obj_name; |
8b93c638 JM |
673 | |
674 | /* generate a name for this object */ | |
675 | id++; | |
b435e160 | 676 | obj_name = xstrprintf ("var%d", id); |
8b93c638 | 677 | |
e64d9b3d | 678 | return obj_name; |
8b93c638 JM |
679 | } |
680 | ||
61d8f275 JK |
681 | /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call |
682 | error if OBJNAME cannot be found. */ | |
8b93c638 JM |
683 | |
684 | struct varobj * | |
685 | varobj_get_handle (char *objname) | |
686 | { | |
687 | struct vlist *cv; | |
688 | const char *chp; | |
689 | unsigned int index = 0; | |
690 | unsigned int i = 1; | |
691 | ||
692 | for (chp = objname; *chp; chp++) | |
693 | { | |
694 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
695 | } | |
696 | ||
697 | cv = *(varobj_table + index); | |
698 | while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0)) | |
699 | cv = cv->next; | |
700 | ||
701 | if (cv == NULL) | |
8a3fe4f8 | 702 | error (_("Variable object not found")); |
8b93c638 JM |
703 | |
704 | return cv->var; | |
705 | } | |
706 | ||
707 | /* Given the handle, return the name of the object */ | |
708 | ||
709 | char * | |
710 | varobj_get_objname (struct varobj *var) | |
711 | { | |
712 | return var->obj_name; | |
713 | } | |
714 | ||
715 | /* Given the handle, return the expression represented by the object */ | |
716 | ||
717 | char * | |
718 | varobj_get_expression (struct varobj *var) | |
719 | { | |
720 | return name_of_variable (var); | |
721 | } | |
722 | ||
723 | /* Deletes a varobj and all its children if only_children == 0, | |
724 | otherwise deletes only the children; returns a malloc'ed list of all the | |
725 | (malloc'ed) names of the variables that have been deleted (NULL terminated) */ | |
726 | ||
727 | int | |
728 | varobj_delete (struct varobj *var, char ***dellist, int only_children) | |
729 | { | |
730 | int delcount; | |
731 | int mycount; | |
732 | struct cpstack *result = NULL; | |
733 | char **cp; | |
734 | ||
735 | /* Initialize a stack for temporary results */ | |
736 | cppush (&result, NULL); | |
737 | ||
738 | if (only_children) | |
739 | /* Delete only the variable children */ | |
740 | delcount = delete_variable (&result, var, 1 /* only the children */ ); | |
741 | else | |
742 | /* Delete the variable and all its children */ | |
743 | delcount = delete_variable (&result, var, 0 /* parent+children */ ); | |
744 | ||
745 | /* We may have been asked to return a list of what has been deleted */ | |
746 | if (dellist != NULL) | |
747 | { | |
748 | *dellist = xmalloc ((delcount + 1) * sizeof (char *)); | |
749 | ||
750 | cp = *dellist; | |
751 | mycount = delcount; | |
752 | *cp = cppop (&result); | |
753 | while ((*cp != NULL) && (mycount > 0)) | |
754 | { | |
755 | mycount--; | |
756 | cp++; | |
757 | *cp = cppop (&result); | |
758 | } | |
759 | ||
760 | if (mycount || (*cp != NULL)) | |
8a3fe4f8 | 761 | warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"), |
72330bd6 | 762 | mycount); |
8b93c638 JM |
763 | } |
764 | ||
765 | return delcount; | |
766 | } | |
767 | ||
d8b65138 JK |
768 | #if HAVE_PYTHON |
769 | ||
b6313243 TT |
770 | /* Convenience function for varobj_set_visualizer. Instantiate a |
771 | pretty-printer for a given value. */ | |
772 | static PyObject * | |
773 | instantiate_pretty_printer (PyObject *constructor, struct value *value) | |
774 | { | |
b6313243 TT |
775 | PyObject *val_obj = NULL; |
776 | PyObject *printer; | |
b6313243 | 777 | |
b6313243 | 778 | val_obj = value_to_value_object (value); |
b6313243 TT |
779 | if (! val_obj) |
780 | return NULL; | |
781 | ||
782 | printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL); | |
783 | Py_DECREF (val_obj); | |
784 | return printer; | |
b6313243 TT |
785 | return NULL; |
786 | } | |
787 | ||
d8b65138 JK |
788 | #endif |
789 | ||
8b93c638 JM |
790 | /* Set/Get variable object display format */ |
791 | ||
792 | enum varobj_display_formats | |
793 | varobj_set_display_format (struct varobj *var, | |
794 | enum varobj_display_formats format) | |
795 | { | |
796 | switch (format) | |
797 | { | |
798 | case FORMAT_NATURAL: | |
799 | case FORMAT_BINARY: | |
800 | case FORMAT_DECIMAL: | |
801 | case FORMAT_HEXADECIMAL: | |
802 | case FORMAT_OCTAL: | |
803 | var->format = format; | |
804 | break; | |
805 | ||
806 | default: | |
807 | var->format = variable_default_display (var); | |
808 | } | |
809 | ||
ae7d22a6 VP |
810 | if (varobj_value_is_changeable_p (var) |
811 | && var->value && !value_lazy (var->value)) | |
812 | { | |
6c761d9c | 813 | xfree (var->print_value); |
d452c4bc | 814 | var->print_value = value_get_print_value (var->value, var->format, var); |
ae7d22a6 VP |
815 | } |
816 | ||
8b93c638 JM |
817 | return var->format; |
818 | } | |
819 | ||
820 | enum varobj_display_formats | |
821 | varobj_get_display_format (struct varobj *var) | |
822 | { | |
823 | return var->format; | |
824 | } | |
825 | ||
b6313243 TT |
826 | char * |
827 | varobj_get_display_hint (struct varobj *var) | |
828 | { | |
829 | char *result = NULL; | |
830 | ||
831 | #if HAVE_PYTHON | |
d452c4bc UW |
832 | struct cleanup *back_to = varobj_ensure_python_env (var); |
833 | ||
b6313243 TT |
834 | if (var->pretty_printer) |
835 | result = gdbpy_get_display_hint (var->pretty_printer); | |
d452c4bc UW |
836 | |
837 | do_cleanups (back_to); | |
b6313243 TT |
838 | #endif |
839 | ||
840 | return result; | |
841 | } | |
842 | ||
0cc7d26f TT |
843 | /* Return true if the varobj has items after TO, false otherwise. */ |
844 | ||
845 | int | |
846 | varobj_has_more (struct varobj *var, int to) | |
847 | { | |
848 | if (VEC_length (varobj_p, var->children) > to) | |
849 | return 1; | |
850 | return ((to == -1 || VEC_length (varobj_p, var->children) == to) | |
851 | && var->saved_item != NULL); | |
852 | } | |
853 | ||
c5b48eac VP |
854 | /* If the variable object is bound to a specific thread, that |
855 | is its evaluation can always be done in context of a frame | |
856 | inside that thread, returns GDB id of the thread -- which | |
857 | is always positive. Otherwise, returns -1. */ | |
858 | int | |
859 | varobj_get_thread_id (struct varobj *var) | |
860 | { | |
861 | if (var->root->valid_block && var->root->thread_id > 0) | |
862 | return var->root->thread_id; | |
863 | else | |
864 | return -1; | |
865 | } | |
866 | ||
25d5ea92 VP |
867 | void |
868 | varobj_set_frozen (struct varobj *var, int frozen) | |
869 | { | |
870 | /* When a variable is unfrozen, we don't fetch its value. | |
871 | The 'not_fetched' flag remains set, so next -var-update | |
872 | won't complain. | |
873 | ||
874 | We don't fetch the value, because for structures the client | |
875 | should do -var-update anyway. It would be bad to have different | |
876 | client-size logic for structure and other types. */ | |
877 | var->frozen = frozen; | |
878 | } | |
879 | ||
880 | int | |
881 | varobj_get_frozen (struct varobj *var) | |
882 | { | |
883 | return var->frozen; | |
884 | } | |
885 | ||
0cc7d26f TT |
886 | /* A helper function that restricts a range to what is actually |
887 | available in a VEC. This follows the usual rules for the meaning | |
888 | of FROM and TO -- if either is negative, the entire range is | |
889 | used. */ | |
890 | ||
891 | static void | |
892 | restrict_range (VEC (varobj_p) *children, int *from, int *to) | |
893 | { | |
894 | if (*from < 0 || *to < 0) | |
895 | { | |
896 | *from = 0; | |
897 | *to = VEC_length (varobj_p, children); | |
898 | } | |
899 | else | |
900 | { | |
901 | if (*from > VEC_length (varobj_p, children)) | |
902 | *from = VEC_length (varobj_p, children); | |
903 | if (*to > VEC_length (varobj_p, children)) | |
904 | *to = VEC_length (varobj_p, children); | |
905 | if (*from > *to) | |
906 | *from = *to; | |
907 | } | |
908 | } | |
909 | ||
d8b65138 JK |
910 | #if HAVE_PYTHON |
911 | ||
0cc7d26f TT |
912 | /* A helper for update_dynamic_varobj_children that installs a new |
913 | child when needed. */ | |
914 | ||
915 | static void | |
916 | install_dynamic_child (struct varobj *var, | |
917 | VEC (varobj_p) **changed, | |
918 | VEC (varobj_p) **new, | |
919 | VEC (varobj_p) **unchanged, | |
920 | int *cchanged, | |
921 | int index, | |
922 | const char *name, | |
923 | struct value *value) | |
924 | { | |
925 | if (VEC_length (varobj_p, var->children) < index + 1) | |
926 | { | |
927 | /* There's no child yet. */ | |
928 | struct varobj *child = varobj_add_child (var, name, value); | |
a109c7c1 | 929 | |
0cc7d26f TT |
930 | if (new) |
931 | { | |
932 | VEC_safe_push (varobj_p, *new, child); | |
933 | *cchanged = 1; | |
934 | } | |
935 | } | |
936 | else | |
937 | { | |
938 | varobj_p existing = VEC_index (varobj_p, var->children, index); | |
a109c7c1 | 939 | |
0cc7d26f TT |
940 | if (install_new_value (existing, value, 0)) |
941 | { | |
942 | if (changed) | |
943 | VEC_safe_push (varobj_p, *changed, existing); | |
944 | } | |
945 | else if (unchanged) | |
946 | VEC_safe_push (varobj_p, *unchanged, existing); | |
947 | } | |
948 | } | |
949 | ||
0cc7d26f TT |
950 | static int |
951 | dynamic_varobj_has_child_method (struct varobj *var) | |
952 | { | |
953 | struct cleanup *back_to; | |
954 | PyObject *printer = var->pretty_printer; | |
955 | int result; | |
956 | ||
957 | back_to = varobj_ensure_python_env (var); | |
958 | result = PyObject_HasAttr (printer, gdbpy_children_cst); | |
959 | do_cleanups (back_to); | |
960 | return result; | |
961 | } | |
962 | ||
963 | #endif | |
964 | ||
b6313243 TT |
965 | static int |
966 | update_dynamic_varobj_children (struct varobj *var, | |
967 | VEC (varobj_p) **changed, | |
0cc7d26f TT |
968 | VEC (varobj_p) **new, |
969 | VEC (varobj_p) **unchanged, | |
970 | int *cchanged, | |
971 | int update_children, | |
972 | int from, | |
973 | int to) | |
b6313243 TT |
974 | { |
975 | #if HAVE_PYTHON | |
b6313243 TT |
976 | struct cleanup *back_to; |
977 | PyObject *children; | |
b6313243 | 978 | int i; |
b6313243 | 979 | PyObject *printer = var->pretty_printer; |
b6313243 | 980 | |
d452c4bc | 981 | back_to = varobj_ensure_python_env (var); |
b6313243 TT |
982 | |
983 | *cchanged = 0; | |
984 | if (!PyObject_HasAttr (printer, gdbpy_children_cst)) | |
985 | { | |
986 | do_cleanups (back_to); | |
987 | return 0; | |
988 | } | |
989 | ||
0cc7d26f | 990 | if (update_children || !var->child_iter) |
b6313243 | 991 | { |
0cc7d26f TT |
992 | children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst, |
993 | NULL); | |
b6313243 | 994 | |
0cc7d26f TT |
995 | if (!children) |
996 | { | |
997 | gdbpy_print_stack (); | |
998 | error (_("Null value returned for children")); | |
999 | } | |
b6313243 | 1000 | |
0cc7d26f | 1001 | make_cleanup_py_decref (children); |
b6313243 | 1002 | |
0cc7d26f TT |
1003 | if (!PyIter_Check (children)) |
1004 | error (_("Returned value is not iterable")); | |
1005 | ||
1006 | Py_XDECREF (var->child_iter); | |
1007 | var->child_iter = PyObject_GetIter (children); | |
1008 | if (!var->child_iter) | |
1009 | { | |
1010 | gdbpy_print_stack (); | |
1011 | error (_("Could not get children iterator")); | |
1012 | } | |
1013 | ||
1014 | Py_XDECREF (var->saved_item); | |
1015 | var->saved_item = NULL; | |
1016 | ||
1017 | i = 0; | |
b6313243 | 1018 | } |
0cc7d26f TT |
1019 | else |
1020 | i = VEC_length (varobj_p, var->children); | |
b6313243 | 1021 | |
0cc7d26f TT |
1022 | /* We ask for one extra child, so that MI can report whether there |
1023 | are more children. */ | |
1024 | for (; to < 0 || i < to + 1; ++i) | |
b6313243 | 1025 | { |
0cc7d26f | 1026 | PyObject *item; |
b6313243 | 1027 | |
0cc7d26f TT |
1028 | /* See if there was a leftover from last time. */ |
1029 | if (var->saved_item) | |
1030 | { | |
1031 | item = var->saved_item; | |
1032 | var->saved_item = NULL; | |
1033 | } | |
1034 | else | |
1035 | item = PyIter_Next (var->child_iter); | |
b6313243 | 1036 | |
0cc7d26f TT |
1037 | if (!item) |
1038 | break; | |
b6313243 | 1039 | |
0cc7d26f TT |
1040 | /* We don't want to push the extra child on any report list. */ |
1041 | if (to < 0 || i < to) | |
b6313243 | 1042 | { |
0cc7d26f TT |
1043 | PyObject *py_v; |
1044 | char *name; | |
1045 | struct value *v; | |
1046 | struct cleanup *inner; | |
1047 | int can_mention = from < 0 || i >= from; | |
1048 | ||
1049 | inner = make_cleanup_py_decref (item); | |
1050 | ||
1051 | if (!PyArg_ParseTuple (item, "sO", &name, &py_v)) | |
1052 | error (_("Invalid item from the child list")); | |
1053 | ||
1054 | v = convert_value_from_python (py_v); | |
8dc78533 JK |
1055 | if (v == NULL) |
1056 | gdbpy_print_stack (); | |
0cc7d26f TT |
1057 | install_dynamic_child (var, can_mention ? changed : NULL, |
1058 | can_mention ? new : NULL, | |
1059 | can_mention ? unchanged : NULL, | |
1060 | can_mention ? cchanged : NULL, i, name, v); | |
1061 | do_cleanups (inner); | |
b6313243 | 1062 | } |
0cc7d26f | 1063 | else |
b6313243 | 1064 | { |
0cc7d26f TT |
1065 | Py_XDECREF (var->saved_item); |
1066 | var->saved_item = item; | |
b6313243 | 1067 | |
0cc7d26f TT |
1068 | /* We want to truncate the child list just before this |
1069 | element. */ | |
1070 | break; | |
1071 | } | |
b6313243 TT |
1072 | } |
1073 | ||
1074 | if (i < VEC_length (varobj_p, var->children)) | |
1075 | { | |
0cc7d26f | 1076 | int j; |
a109c7c1 | 1077 | |
0cc7d26f TT |
1078 | *cchanged = 1; |
1079 | for (j = i; j < VEC_length (varobj_p, var->children); ++j) | |
1080 | varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0); | |
1081 | VEC_truncate (varobj_p, var->children, i); | |
b6313243 | 1082 | } |
0cc7d26f TT |
1083 | |
1084 | /* If there are fewer children than requested, note that the list of | |
1085 | children changed. */ | |
1086 | if (to >= 0 && VEC_length (varobj_p, var->children) < to) | |
1087 | *cchanged = 1; | |
1088 | ||
b6313243 TT |
1089 | var->num_children = VEC_length (varobj_p, var->children); |
1090 | ||
1091 | do_cleanups (back_to); | |
1092 | ||
b6313243 TT |
1093 | return 1; |
1094 | #else | |
1095 | gdb_assert (0 && "should never be called if Python is not enabled"); | |
1096 | #endif | |
1097 | } | |
25d5ea92 | 1098 | |
8b93c638 JM |
1099 | int |
1100 | varobj_get_num_children (struct varobj *var) | |
1101 | { | |
1102 | if (var->num_children == -1) | |
b6313243 | 1103 | { |
0cc7d26f TT |
1104 | if (var->pretty_printer) |
1105 | { | |
1106 | int dummy; | |
1107 | ||
1108 | /* If we have a dynamic varobj, don't report -1 children. | |
1109 | So, try to fetch some children first. */ | |
1110 | update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy, | |
1111 | 0, 0, 0); | |
1112 | } | |
1113 | else | |
b6313243 TT |
1114 | var->num_children = number_of_children (var); |
1115 | } | |
8b93c638 | 1116 | |
0cc7d26f | 1117 | return var->num_children >= 0 ? var->num_children : 0; |
8b93c638 JM |
1118 | } |
1119 | ||
1120 | /* Creates a list of the immediate children of a variable object; | |
1121 | the return code is the number of such children or -1 on error */ | |
1122 | ||
d56d46f5 | 1123 | VEC (varobj_p)* |
0cc7d26f | 1124 | varobj_list_children (struct varobj *var, int *from, int *to) |
8b93c638 | 1125 | { |
8b93c638 | 1126 | char *name; |
b6313243 TT |
1127 | int i, children_changed; |
1128 | ||
1129 | var->children_requested = 1; | |
1130 | ||
0cc7d26f TT |
1131 | if (var->pretty_printer) |
1132 | { | |
b6313243 TT |
1133 | /* This, in theory, can result in the number of children changing without |
1134 | frontend noticing. But well, calling -var-list-children on the same | |
1135 | varobj twice is not something a sane frontend would do. */ | |
0cc7d26f TT |
1136 | update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed, |
1137 | 0, 0, *to); | |
1138 | restrict_range (var->children, from, to); | |
1139 | return var->children; | |
1140 | } | |
8b93c638 | 1141 | |
8b93c638 JM |
1142 | if (var->num_children == -1) |
1143 | var->num_children = number_of_children (var); | |
1144 | ||
74a44383 DJ |
1145 | /* If that failed, give up. */ |
1146 | if (var->num_children == -1) | |
d56d46f5 | 1147 | return var->children; |
74a44383 | 1148 | |
28335dcc VP |
1149 | /* If we're called when the list of children is not yet initialized, |
1150 | allocate enough elements in it. */ | |
1151 | while (VEC_length (varobj_p, var->children) < var->num_children) | |
1152 | VEC_safe_push (varobj_p, var->children, NULL); | |
1153 | ||
8b93c638 JM |
1154 | for (i = 0; i < var->num_children; i++) |
1155 | { | |
d56d46f5 | 1156 | varobj_p existing = VEC_index (varobj_p, var->children, i); |
28335dcc VP |
1157 | |
1158 | if (existing == NULL) | |
1159 | { | |
1160 | /* Either it's the first call to varobj_list_children for | |
1161 | this variable object, and the child was never created, | |
1162 | or it was explicitly deleted by the client. */ | |
1163 | name = name_of_child (var, i); | |
1164 | existing = create_child (var, i, name); | |
1165 | VEC_replace (varobj_p, var->children, i, existing); | |
1166 | } | |
8b93c638 JM |
1167 | } |
1168 | ||
0cc7d26f | 1169 | restrict_range (var->children, from, to); |
d56d46f5 | 1170 | return var->children; |
8b93c638 JM |
1171 | } |
1172 | ||
d8b65138 JK |
1173 | #if HAVE_PYTHON |
1174 | ||
b6313243 TT |
1175 | static struct varobj * |
1176 | varobj_add_child (struct varobj *var, const char *name, struct value *value) | |
1177 | { | |
1178 | varobj_p v = create_child_with_value (var, | |
1179 | VEC_length (varobj_p, var->children), | |
1180 | name, value); | |
a109c7c1 | 1181 | |
b6313243 | 1182 | VEC_safe_push (varobj_p, var->children, v); |
b6313243 TT |
1183 | return v; |
1184 | } | |
1185 | ||
d8b65138 JK |
1186 | #endif /* HAVE_PYTHON */ |
1187 | ||
8b93c638 JM |
1188 | /* Obtain the type of an object Variable as a string similar to the one gdb |
1189 | prints on the console */ | |
1190 | ||
1191 | char * | |
1192 | varobj_get_type (struct varobj *var) | |
1193 | { | |
8b93c638 | 1194 | /* For the "fake" variables, do not return a type. (It's type is |
8756216b DP |
1195 | NULL, too.) |
1196 | Do not return a type for invalid variables as well. */ | |
1197 | if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid) | |
8b93c638 JM |
1198 | return NULL; |
1199 | ||
1a4300e9 | 1200 | return type_to_string (var->type); |
8b93c638 JM |
1201 | } |
1202 | ||
1ecb4ee0 DJ |
1203 | /* Obtain the type of an object variable. */ |
1204 | ||
1205 | struct type * | |
1206 | varobj_get_gdb_type (struct varobj *var) | |
1207 | { | |
1208 | return var->type; | |
1209 | } | |
1210 | ||
02142340 VP |
1211 | /* Return a pointer to the full rooted expression of varobj VAR. |
1212 | If it has not been computed yet, compute it. */ | |
1213 | char * | |
1214 | varobj_get_path_expr (struct varobj *var) | |
1215 | { | |
1216 | if (var->path_expr != NULL) | |
1217 | return var->path_expr; | |
1218 | else | |
1219 | { | |
1220 | /* For root varobjs, we initialize path_expr | |
1221 | when creating varobj, so here it should be | |
1222 | child varobj. */ | |
1223 | gdb_assert (!is_root_p (var)); | |
1224 | return (*var->root->lang->path_expr_of_child) (var); | |
1225 | } | |
1226 | } | |
1227 | ||
8b93c638 JM |
1228 | enum varobj_languages |
1229 | varobj_get_language (struct varobj *var) | |
1230 | { | |
1231 | return variable_language (var); | |
1232 | } | |
1233 | ||
1234 | int | |
1235 | varobj_get_attributes (struct varobj *var) | |
1236 | { | |
1237 | int attributes = 0; | |
1238 | ||
340a7723 | 1239 | if (varobj_editable_p (var)) |
8b93c638 JM |
1240 | /* FIXME: define masks for attributes */ |
1241 | attributes |= 0x00000001; /* Editable */ | |
1242 | ||
1243 | return attributes; | |
1244 | } | |
1245 | ||
0cc7d26f TT |
1246 | int |
1247 | varobj_pretty_printed_p (struct varobj *var) | |
1248 | { | |
1249 | return var->pretty_printer != NULL; | |
1250 | } | |
1251 | ||
de051565 MK |
1252 | char * |
1253 | varobj_get_formatted_value (struct varobj *var, | |
1254 | enum varobj_display_formats format) | |
1255 | { | |
1256 | return my_value_of_variable (var, format); | |
1257 | } | |
1258 | ||
8b93c638 JM |
1259 | char * |
1260 | varobj_get_value (struct varobj *var) | |
1261 | { | |
de051565 | 1262 | return my_value_of_variable (var, var->format); |
8b93c638 JM |
1263 | } |
1264 | ||
1265 | /* Set the value of an object variable (if it is editable) to the | |
1266 | value of the given expression */ | |
1267 | /* Note: Invokes functions that can call error() */ | |
1268 | ||
1269 | int | |
1270 | varobj_set_value (struct varobj *var, char *expression) | |
1271 | { | |
30b28db1 | 1272 | struct value *val; |
8b93c638 JM |
1273 | |
1274 | /* The argument "expression" contains the variable's new value. | |
1275 | We need to first construct a legal expression for this -- ugh! */ | |
1276 | /* Does this cover all the bases? */ | |
1277 | struct expression *exp; | |
30b28db1 | 1278 | struct value *value; |
8b93c638 | 1279 | int saved_input_radix = input_radix; |
340a7723 | 1280 | char *s = expression; |
8b93c638 | 1281 | |
340a7723 | 1282 | gdb_assert (varobj_editable_p (var)); |
8b93c638 | 1283 | |
340a7723 NR |
1284 | input_radix = 10; /* ALWAYS reset to decimal temporarily */ |
1285 | exp = parse_exp_1 (&s, 0, 0); | |
1286 | if (!gdb_evaluate_expression (exp, &value)) | |
1287 | { | |
1288 | /* We cannot proceed without a valid expression. */ | |
1289 | xfree (exp); | |
1290 | return 0; | |
8b93c638 JM |
1291 | } |
1292 | ||
340a7723 NR |
1293 | /* All types that are editable must also be changeable. */ |
1294 | gdb_assert (varobj_value_is_changeable_p (var)); | |
1295 | ||
1296 | /* The value of a changeable variable object must not be lazy. */ | |
1297 | gdb_assert (!value_lazy (var->value)); | |
1298 | ||
1299 | /* Need to coerce the input. We want to check if the | |
1300 | value of the variable object will be different | |
1301 | after assignment, and the first thing value_assign | |
1302 | does is coerce the input. | |
1303 | For example, if we are assigning an array to a pointer variable we | |
1304 | should compare the pointer with the the array's address, not with the | |
1305 | array's content. */ | |
1306 | value = coerce_array (value); | |
1307 | ||
1308 | /* The new value may be lazy. gdb_value_assign, or | |
1309 | rather value_contents, will take care of this. | |
1310 | If fetching of the new value will fail, gdb_value_assign | |
1311 | with catch the exception. */ | |
1312 | if (!gdb_value_assign (var->value, value, &val)) | |
1313 | return 0; | |
1314 | ||
1315 | /* If the value has changed, record it, so that next -var-update can | |
1316 | report this change. If a variable had a value of '1', we've set it | |
1317 | to '333' and then set again to '1', when -var-update will report this | |
1318 | variable as changed -- because the first assignment has set the | |
1319 | 'updated' flag. There's no need to optimize that, because return value | |
1320 | of -var-update should be considered an approximation. */ | |
1321 | var->updated = install_new_value (var, val, 0 /* Compare values. */); | |
1322 | input_radix = saved_input_radix; | |
1323 | return 1; | |
8b93c638 JM |
1324 | } |
1325 | ||
0cc7d26f TT |
1326 | #if HAVE_PYTHON |
1327 | ||
1328 | /* A helper function to install a constructor function and visualizer | |
1329 | in a varobj. */ | |
1330 | ||
1331 | static void | |
1332 | install_visualizer (struct varobj *var, PyObject *constructor, | |
1333 | PyObject *visualizer) | |
1334 | { | |
1335 | Py_XDECREF (var->constructor); | |
1336 | var->constructor = constructor; | |
1337 | ||
1338 | Py_XDECREF (var->pretty_printer); | |
1339 | var->pretty_printer = visualizer; | |
1340 | ||
1341 | Py_XDECREF (var->child_iter); | |
1342 | var->child_iter = NULL; | |
1343 | } | |
1344 | ||
1345 | /* Install the default visualizer for VAR. */ | |
1346 | ||
1347 | static void | |
1348 | install_default_visualizer (struct varobj *var) | |
1349 | { | |
1350 | if (pretty_printing) | |
1351 | { | |
1352 | PyObject *pretty_printer = NULL; | |
1353 | ||
1354 | if (var->value) | |
1355 | { | |
1356 | pretty_printer = gdbpy_get_varobj_pretty_printer (var->value); | |
1357 | if (! pretty_printer) | |
1358 | { | |
1359 | gdbpy_print_stack (); | |
1360 | error (_("Cannot instantiate printer for default visualizer")); | |
1361 | } | |
1362 | } | |
1363 | ||
1364 | if (pretty_printer == Py_None) | |
1365 | { | |
1366 | Py_DECREF (pretty_printer); | |
1367 | pretty_printer = NULL; | |
1368 | } | |
1369 | ||
1370 | install_visualizer (var, NULL, pretty_printer); | |
1371 | } | |
1372 | } | |
1373 | ||
1374 | /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to | |
1375 | make a new object. */ | |
1376 | ||
1377 | static void | |
1378 | construct_visualizer (struct varobj *var, PyObject *constructor) | |
1379 | { | |
1380 | PyObject *pretty_printer; | |
1381 | ||
1382 | Py_INCREF (constructor); | |
1383 | if (constructor == Py_None) | |
1384 | pretty_printer = NULL; | |
1385 | else | |
1386 | { | |
1387 | pretty_printer = instantiate_pretty_printer (constructor, var->value); | |
1388 | if (! pretty_printer) | |
1389 | { | |
1390 | gdbpy_print_stack (); | |
1391 | Py_DECREF (constructor); | |
1392 | constructor = Py_None; | |
1393 | Py_INCREF (constructor); | |
1394 | } | |
1395 | ||
1396 | if (pretty_printer == Py_None) | |
1397 | { | |
1398 | Py_DECREF (pretty_printer); | |
1399 | pretty_printer = NULL; | |
1400 | } | |
1401 | } | |
1402 | ||
1403 | install_visualizer (var, constructor, pretty_printer); | |
1404 | } | |
1405 | ||
1406 | #endif /* HAVE_PYTHON */ | |
1407 | ||
1408 | /* A helper function for install_new_value. This creates and installs | |
1409 | a visualizer for VAR, if appropriate. */ | |
1410 | ||
1411 | static void | |
1412 | install_new_value_visualizer (struct varobj *var) | |
1413 | { | |
1414 | #if HAVE_PYTHON | |
1415 | /* If the constructor is None, then we want the raw value. If VAR | |
1416 | does not have a value, just skip this. */ | |
1417 | if (var->constructor != Py_None && var->value) | |
1418 | { | |
1419 | struct cleanup *cleanup; | |
0cc7d26f TT |
1420 | |
1421 | cleanup = varobj_ensure_python_env (var); | |
1422 | ||
1423 | if (!var->constructor) | |
1424 | install_default_visualizer (var); | |
1425 | else | |
1426 | construct_visualizer (var, var->constructor); | |
1427 | ||
1428 | do_cleanups (cleanup); | |
1429 | } | |
1430 | #else | |
1431 | /* Do nothing. */ | |
1432 | #endif | |
1433 | } | |
1434 | ||
acd65feb VP |
1435 | /* Assign a new value to a variable object. If INITIAL is non-zero, |
1436 | this is the first assignement after the variable object was just | |
1437 | created, or changed type. In that case, just assign the value | |
1438 | and return 0. | |
ee342b23 VP |
1439 | Otherwise, assign the new value, and return 1 if the value is different |
1440 | from the current one, 0 otherwise. The comparison is done on textual | |
1441 | representation of value. Therefore, some types need not be compared. E.g. | |
1442 | for structures the reported value is always "{...}", so no comparison is | |
1443 | necessary here. If the old value was NULL and new one is not, or vice versa, | |
1444 | we always return 1. | |
b26ed50d VP |
1445 | |
1446 | The VALUE parameter should not be released -- the function will | |
1447 | take care of releasing it when needed. */ | |
acd65feb VP |
1448 | static int |
1449 | install_new_value (struct varobj *var, struct value *value, int initial) | |
1450 | { | |
1451 | int changeable; | |
1452 | int need_to_fetch; | |
1453 | int changed = 0; | |
25d5ea92 | 1454 | int intentionally_not_fetched = 0; |
7a4d50bf | 1455 | char *print_value = NULL; |
acd65feb | 1456 | |
acd65feb VP |
1457 | /* We need to know the varobj's type to decide if the value should |
1458 | be fetched or not. C++ fake children (public/protected/private) don't have | |
1459 | a type. */ | |
1460 | gdb_assert (var->type || CPLUS_FAKE_CHILD (var)); | |
b2c2bd75 | 1461 | changeable = varobj_value_is_changeable_p (var); |
b6313243 TT |
1462 | |
1463 | /* If the type has custom visualizer, we consider it to be always | |
1464 | changeable. FIXME: need to make sure this behaviour will not | |
1465 | mess up read-sensitive values. */ | |
1466 | if (var->pretty_printer) | |
1467 | changeable = 1; | |
1468 | ||
acd65feb VP |
1469 | need_to_fetch = changeable; |
1470 | ||
b26ed50d VP |
1471 | /* We are not interested in the address of references, and given |
1472 | that in C++ a reference is not rebindable, it cannot | |
1473 | meaningfully change. So, get hold of the real value. */ | |
1474 | if (value) | |
0cc7d26f | 1475 | value = coerce_ref (value); |
b26ed50d | 1476 | |
acd65feb VP |
1477 | if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION) |
1478 | /* For unions, we need to fetch the value implicitly because | |
1479 | of implementation of union member fetch. When gdb | |
1480 | creates a value for a field and the value of the enclosing | |
1481 | structure is not lazy, it immediately copies the necessary | |
1482 | bytes from the enclosing values. If the enclosing value is | |
1483 | lazy, the call to value_fetch_lazy on the field will read | |
1484 | the data from memory. For unions, that means we'll read the | |
1485 | same memory more than once, which is not desirable. So | |
1486 | fetch now. */ | |
1487 | need_to_fetch = 1; | |
1488 | ||
1489 | /* The new value might be lazy. If the type is changeable, | |
1490 | that is we'll be comparing values of this type, fetch the | |
1491 | value now. Otherwise, on the next update the old value | |
1492 | will be lazy, which means we've lost that old value. */ | |
1493 | if (need_to_fetch && value && value_lazy (value)) | |
1494 | { | |
25d5ea92 VP |
1495 | struct varobj *parent = var->parent; |
1496 | int frozen = var->frozen; | |
a109c7c1 | 1497 | |
25d5ea92 VP |
1498 | for (; !frozen && parent; parent = parent->parent) |
1499 | frozen |= parent->frozen; | |
1500 | ||
1501 | if (frozen && initial) | |
1502 | { | |
1503 | /* For variables that are frozen, or are children of frozen | |
1504 | variables, we don't do fetch on initial assignment. | |
1505 | For non-initial assignemnt we do the fetch, since it means we're | |
1506 | explicitly asked to compare the new value with the old one. */ | |
1507 | intentionally_not_fetched = 1; | |
1508 | } | |
1509 | else if (!gdb_value_fetch_lazy (value)) | |
acd65feb | 1510 | { |
acd65feb VP |
1511 | /* Set the value to NULL, so that for the next -var-update, |
1512 | we don't try to compare the new value with this value, | |
1513 | that we couldn't even read. */ | |
1514 | value = NULL; | |
1515 | } | |
acd65feb VP |
1516 | } |
1517 | ||
b6313243 | 1518 | |
7a4d50bf VP |
1519 | /* Below, we'll be comparing string rendering of old and new |
1520 | values. Don't get string rendering if the value is | |
1521 | lazy -- if it is, the code above has decided that the value | |
1522 | should not be fetched. */ | |
0cc7d26f | 1523 | if (value && !value_lazy (value) && !var->pretty_printer) |
d452c4bc | 1524 | print_value = value_get_print_value (value, var->format, var); |
7a4d50bf | 1525 | |
acd65feb VP |
1526 | /* If the type is changeable, compare the old and the new values. |
1527 | If this is the initial assignment, we don't have any old value | |
1528 | to compare with. */ | |
7a4d50bf | 1529 | if (!initial && changeable) |
acd65feb VP |
1530 | { |
1531 | /* If the value of the varobj was changed by -var-set-value, then the | |
1532 | value in the varobj and in the target is the same. However, that value | |
1533 | is different from the value that the varobj had after the previous | |
57e66780 | 1534 | -var-update. So need to the varobj as changed. */ |
acd65feb | 1535 | if (var->updated) |
57e66780 | 1536 | { |
57e66780 DJ |
1537 | changed = 1; |
1538 | } | |
0cc7d26f | 1539 | else if (! var->pretty_printer) |
acd65feb VP |
1540 | { |
1541 | /* Try to compare the values. That requires that both | |
1542 | values are non-lazy. */ | |
25d5ea92 VP |
1543 | if (var->not_fetched && value_lazy (var->value)) |
1544 | { | |
1545 | /* This is a frozen varobj and the value was never read. | |
1546 | Presumably, UI shows some "never read" indicator. | |
1547 | Now that we've fetched the real value, we need to report | |
1548 | this varobj as changed so that UI can show the real | |
1549 | value. */ | |
1550 | changed = 1; | |
1551 | } | |
1552 | else if (var->value == NULL && value == NULL) | |
acd65feb VP |
1553 | /* Equal. */ |
1554 | ; | |
1555 | else if (var->value == NULL || value == NULL) | |
57e66780 | 1556 | { |
57e66780 DJ |
1557 | changed = 1; |
1558 | } | |
acd65feb VP |
1559 | else |
1560 | { | |
1561 | gdb_assert (!value_lazy (var->value)); | |
1562 | gdb_assert (!value_lazy (value)); | |
85265413 | 1563 | |
57e66780 | 1564 | gdb_assert (var->print_value != NULL && print_value != NULL); |
85265413 | 1565 | if (strcmp (var->print_value, print_value) != 0) |
7a4d50bf | 1566 | changed = 1; |
acd65feb VP |
1567 | } |
1568 | } | |
1569 | } | |
85265413 | 1570 | |
ee342b23 VP |
1571 | if (!initial && !changeable) |
1572 | { | |
1573 | /* For values that are not changeable, we don't compare the values. | |
1574 | However, we want to notice if a value was not NULL and now is NULL, | |
1575 | or vise versa, so that we report when top-level varobjs come in scope | |
1576 | and leave the scope. */ | |
1577 | changed = (var->value != NULL) != (value != NULL); | |
1578 | } | |
1579 | ||
acd65feb | 1580 | /* We must always keep the new value, since children depend on it. */ |
25d5ea92 | 1581 | if (var->value != NULL && var->value != value) |
acd65feb VP |
1582 | value_free (var->value); |
1583 | var->value = value; | |
0cc7d26f TT |
1584 | if (value != NULL) |
1585 | value_incref (value); | |
25d5ea92 VP |
1586 | if (value && value_lazy (value) && intentionally_not_fetched) |
1587 | var->not_fetched = 1; | |
1588 | else | |
1589 | var->not_fetched = 0; | |
acd65feb | 1590 | var->updated = 0; |
85265413 | 1591 | |
0cc7d26f TT |
1592 | install_new_value_visualizer (var); |
1593 | ||
1594 | /* If we installed a pretty-printer, re-compare the printed version | |
1595 | to see if the variable changed. */ | |
1596 | if (var->pretty_printer) | |
1597 | { | |
1598 | xfree (print_value); | |
1599 | print_value = value_get_print_value (var->value, var->format, var); | |
e8f781e2 TT |
1600 | if ((var->print_value == NULL && print_value != NULL) |
1601 | || (var->print_value != NULL && print_value == NULL) | |
1602 | || (var->print_value != NULL && print_value != NULL | |
1603 | && strcmp (var->print_value, print_value) != 0)) | |
0cc7d26f TT |
1604 | changed = 1; |
1605 | } | |
1606 | if (var->print_value) | |
1607 | xfree (var->print_value); | |
1608 | var->print_value = print_value; | |
1609 | ||
b26ed50d | 1610 | gdb_assert (!var->value || value_type (var->value)); |
acd65feb VP |
1611 | |
1612 | return changed; | |
1613 | } | |
acd65feb | 1614 | |
0cc7d26f TT |
1615 | /* Return the requested range for a varobj. VAR is the varobj. FROM |
1616 | and TO are out parameters; *FROM and *TO will be set to the | |
1617 | selected sub-range of VAR. If no range was selected using | |
1618 | -var-set-update-range, then both will be -1. */ | |
1619 | void | |
1620 | varobj_get_child_range (struct varobj *var, int *from, int *to) | |
b6313243 | 1621 | { |
0cc7d26f TT |
1622 | *from = var->from; |
1623 | *to = var->to; | |
b6313243 TT |
1624 | } |
1625 | ||
0cc7d26f TT |
1626 | /* Set the selected sub-range of children of VAR to start at index |
1627 | FROM and end at index TO. If either FROM or TO is less than zero, | |
1628 | this is interpreted as a request for all children. */ | |
1629 | void | |
1630 | varobj_set_child_range (struct varobj *var, int from, int to) | |
b6313243 | 1631 | { |
0cc7d26f TT |
1632 | var->from = from; |
1633 | var->to = to; | |
b6313243 TT |
1634 | } |
1635 | ||
1636 | void | |
1637 | varobj_set_visualizer (struct varobj *var, const char *visualizer) | |
1638 | { | |
1639 | #if HAVE_PYTHON | |
34fa1d9d MS |
1640 | PyObject *mainmod, *globals, *constructor; |
1641 | struct cleanup *back_to; | |
b6313243 | 1642 | |
d452c4bc | 1643 | back_to = varobj_ensure_python_env (var); |
b6313243 TT |
1644 | |
1645 | mainmod = PyImport_AddModule ("__main__"); | |
1646 | globals = PyModule_GetDict (mainmod); | |
1647 | Py_INCREF (globals); | |
1648 | make_cleanup_py_decref (globals); | |
1649 | ||
1650 | constructor = PyRun_String (visualizer, Py_eval_input, globals, globals); | |
b6313243 | 1651 | |
0cc7d26f | 1652 | if (! constructor) |
b6313243 TT |
1653 | { |
1654 | gdbpy_print_stack (); | |
da1f2771 | 1655 | error (_("Could not evaluate visualizer expression: %s"), visualizer); |
b6313243 TT |
1656 | } |
1657 | ||
0cc7d26f TT |
1658 | construct_visualizer (var, constructor); |
1659 | Py_XDECREF (constructor); | |
b6313243 | 1660 | |
0cc7d26f TT |
1661 | /* If there are any children now, wipe them. */ |
1662 | varobj_delete (var, NULL, 1 /* children only */); | |
1663 | var->num_children = -1; | |
b6313243 TT |
1664 | |
1665 | do_cleanups (back_to); | |
1666 | #else | |
da1f2771 | 1667 | error (_("Python support required")); |
b6313243 TT |
1668 | #endif |
1669 | } | |
1670 | ||
8b93c638 JM |
1671 | /* Update the values for a variable and its children. This is a |
1672 | two-pronged attack. First, re-parse the value for the root's | |
1673 | expression to see if it's changed. Then go all the way | |
1674 | through its children, reconstructing them and noting if they've | |
1675 | changed. | |
1676 | ||
25d5ea92 VP |
1677 | The EXPLICIT parameter specifies if this call is result |
1678 | of MI request to update this specific variable, or | |
1679 | result of implicit -var-update *. For implicit request, we don't | |
1680 | update frozen variables. | |
705da579 KS |
1681 | |
1682 | NOTE: This function may delete the caller's varobj. If it | |
8756216b DP |
1683 | returns TYPE_CHANGED, then it has done this and VARP will be modified |
1684 | to point to the new varobj. */ | |
8b93c638 | 1685 | |
f7f9ae2c | 1686 | VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit) |
8b93c638 JM |
1687 | { |
1688 | int changed = 0; | |
25d5ea92 | 1689 | int type_changed = 0; |
8b93c638 | 1690 | int i; |
30b28db1 | 1691 | struct value *new; |
b6313243 | 1692 | VEC (varobj_update_result) *stack = NULL; |
f7f9ae2c | 1693 | VEC (varobj_update_result) *result = NULL; |
8b93c638 | 1694 | |
25d5ea92 VP |
1695 | /* Frozen means frozen -- we don't check for any change in |
1696 | this varobj, including its going out of scope, or | |
1697 | changing type. One use case for frozen varobjs is | |
1698 | retaining previously evaluated expressions, and we don't | |
1699 | want them to be reevaluated at all. */ | |
1700 | if (!explicit && (*varp)->frozen) | |
f7f9ae2c | 1701 | return result; |
8756216b DP |
1702 | |
1703 | if (!(*varp)->root->is_valid) | |
f7f9ae2c | 1704 | { |
cfce2ea2 | 1705 | varobj_update_result r = {0}; |
a109c7c1 | 1706 | |
cfce2ea2 | 1707 | r.varobj = *varp; |
f7f9ae2c VP |
1708 | r.status = VAROBJ_INVALID; |
1709 | VEC_safe_push (varobj_update_result, result, &r); | |
1710 | return result; | |
1711 | } | |
8b93c638 | 1712 | |
25d5ea92 | 1713 | if ((*varp)->root->rootvar == *varp) |
ae093f96 | 1714 | { |
cfce2ea2 | 1715 | varobj_update_result r = {0}; |
a109c7c1 | 1716 | |
cfce2ea2 | 1717 | r.varobj = *varp; |
f7f9ae2c VP |
1718 | r.status = VAROBJ_IN_SCOPE; |
1719 | ||
25d5ea92 VP |
1720 | /* Update the root variable. value_of_root can return NULL |
1721 | if the variable is no longer around, i.e. we stepped out of | |
1722 | the frame in which a local existed. We are letting the | |
1723 | value_of_root variable dispose of the varobj if the type | |
1724 | has changed. */ | |
25d5ea92 | 1725 | new = value_of_root (varp, &type_changed); |
f7f9ae2c VP |
1726 | r.varobj = *varp; |
1727 | ||
1728 | r.type_changed = type_changed; | |
ea56f9c2 | 1729 | if (install_new_value ((*varp), new, type_changed)) |
f7f9ae2c | 1730 | r.changed = 1; |
ea56f9c2 | 1731 | |
25d5ea92 | 1732 | if (new == NULL) |
f7f9ae2c | 1733 | r.status = VAROBJ_NOT_IN_SCOPE; |
b6313243 | 1734 | r.value_installed = 1; |
f7f9ae2c VP |
1735 | |
1736 | if (r.status == VAROBJ_NOT_IN_SCOPE) | |
b6313243 | 1737 | { |
0b4bc29a JK |
1738 | if (r.type_changed || r.changed) |
1739 | VEC_safe_push (varobj_update_result, result, &r); | |
b6313243 TT |
1740 | return result; |
1741 | } | |
1742 | ||
1743 | VEC_safe_push (varobj_update_result, stack, &r); | |
1744 | } | |
1745 | else | |
1746 | { | |
cfce2ea2 | 1747 | varobj_update_result r = {0}; |
a109c7c1 | 1748 | |
cfce2ea2 | 1749 | r.varobj = *varp; |
b6313243 | 1750 | VEC_safe_push (varobj_update_result, stack, &r); |
b20d8971 | 1751 | } |
8b93c638 | 1752 | |
8756216b | 1753 | /* Walk through the children, reconstructing them all. */ |
b6313243 | 1754 | while (!VEC_empty (varobj_update_result, stack)) |
8b93c638 | 1755 | { |
b6313243 TT |
1756 | varobj_update_result r = *(VEC_last (varobj_update_result, stack)); |
1757 | struct varobj *v = r.varobj; | |
1758 | ||
1759 | VEC_pop (varobj_update_result, stack); | |
1760 | ||
1761 | /* Update this variable, unless it's a root, which is already | |
1762 | updated. */ | |
1763 | if (!r.value_installed) | |
1764 | { | |
1765 | new = value_of_child (v->parent, v->index); | |
1766 | if (install_new_value (v, new, 0 /* type not changed */)) | |
1767 | { | |
1768 | r.changed = 1; | |
1769 | v->updated = 0; | |
1770 | } | |
1771 | } | |
1772 | ||
1773 | /* We probably should not get children of a varobj that has a | |
1774 | pretty-printer, but for which -var-list-children was never | |
0cc7d26f | 1775 | invoked. */ |
b6313243 TT |
1776 | if (v->pretty_printer) |
1777 | { | |
0cc7d26f | 1778 | VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0; |
26f9bcee | 1779 | int i, children_changed = 0; |
b6313243 TT |
1780 | |
1781 | if (v->frozen) | |
1782 | continue; | |
1783 | ||
0cc7d26f TT |
1784 | if (!v->children_requested) |
1785 | { | |
1786 | int dummy; | |
1787 | ||
1788 | /* If we initially did not have potential children, but | |
1789 | now we do, consider the varobj as changed. | |
1790 | Otherwise, if children were never requested, consider | |
1791 | it as unchanged -- presumably, such varobj is not yet | |
1792 | expanded in the UI, so we need not bother getting | |
1793 | it. */ | |
1794 | if (!varobj_has_more (v, 0)) | |
1795 | { | |
1796 | update_dynamic_varobj_children (v, NULL, NULL, NULL, | |
1797 | &dummy, 0, 0, 0); | |
1798 | if (varobj_has_more (v, 0)) | |
1799 | r.changed = 1; | |
1800 | } | |
1801 | ||
1802 | if (r.changed) | |
1803 | VEC_safe_push (varobj_update_result, result, &r); | |
1804 | ||
1805 | continue; | |
1806 | } | |
1807 | ||
b6313243 TT |
1808 | /* If update_dynamic_varobj_children returns 0, then we have |
1809 | a non-conforming pretty-printer, so we skip it. */ | |
0cc7d26f TT |
1810 | if (update_dynamic_varobj_children (v, &changed, &new, &unchanged, |
1811 | &children_changed, 1, | |
1812 | v->from, v->to)) | |
b6313243 | 1813 | { |
0cc7d26f | 1814 | if (children_changed || new) |
b6313243 | 1815 | { |
0cc7d26f TT |
1816 | r.children_changed = 1; |
1817 | r.new = new; | |
b6313243 | 1818 | } |
0cc7d26f TT |
1819 | /* Push in reverse order so that the first child is |
1820 | popped from the work stack first, and so will be | |
1821 | added to result first. This does not affect | |
1822 | correctness, just "nicer". */ | |
1823 | for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i) | |
b6313243 | 1824 | { |
0cc7d26f | 1825 | varobj_p tmp = VEC_index (varobj_p, changed, i); |
cfce2ea2 | 1826 | varobj_update_result r = {0}; |
a109c7c1 | 1827 | |
cfce2ea2 | 1828 | r.varobj = tmp; |
0cc7d26f | 1829 | r.changed = 1; |
b6313243 TT |
1830 | r.value_installed = 1; |
1831 | VEC_safe_push (varobj_update_result, stack, &r); | |
1832 | } | |
0cc7d26f TT |
1833 | for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i) |
1834 | { | |
1835 | varobj_p tmp = VEC_index (varobj_p, unchanged, i); | |
a109c7c1 | 1836 | |
0cc7d26f TT |
1837 | if (!tmp->frozen) |
1838 | { | |
cfce2ea2 | 1839 | varobj_update_result r = {0}; |
a109c7c1 | 1840 | |
cfce2ea2 | 1841 | r.varobj = tmp; |
0cc7d26f TT |
1842 | r.value_installed = 1; |
1843 | VEC_safe_push (varobj_update_result, stack, &r); | |
1844 | } | |
1845 | } | |
b6313243 TT |
1846 | if (r.changed || r.children_changed) |
1847 | VEC_safe_push (varobj_update_result, result, &r); | |
0cc7d26f TT |
1848 | |
1849 | /* Free CHANGED and UNCHANGED, but not NEW, because NEW | |
1850 | has been put into the result vector. */ | |
1851 | VEC_free (varobj_p, changed); | |
1852 | VEC_free (varobj_p, unchanged); | |
1853 | ||
b6313243 TT |
1854 | continue; |
1855 | } | |
1856 | } | |
28335dcc VP |
1857 | |
1858 | /* Push any children. Use reverse order so that the first | |
1859 | child is popped from the work stack first, and so | |
1860 | will be added to result first. This does not | |
1861 | affect correctness, just "nicer". */ | |
1862 | for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i) | |
8b93c638 | 1863 | { |
28335dcc | 1864 | varobj_p c = VEC_index (varobj_p, v->children, i); |
a109c7c1 | 1865 | |
28335dcc | 1866 | /* Child may be NULL if explicitly deleted by -var-delete. */ |
25d5ea92 | 1867 | if (c != NULL && !c->frozen) |
28335dcc | 1868 | { |
cfce2ea2 | 1869 | varobj_update_result r = {0}; |
a109c7c1 | 1870 | |
cfce2ea2 | 1871 | r.varobj = c; |
b6313243 | 1872 | VEC_safe_push (varobj_update_result, stack, &r); |
28335dcc | 1873 | } |
8b93c638 | 1874 | } |
b6313243 TT |
1875 | |
1876 | if (r.changed || r.type_changed) | |
1877 | VEC_safe_push (varobj_update_result, result, &r); | |
8b93c638 JM |
1878 | } |
1879 | ||
b6313243 TT |
1880 | VEC_free (varobj_update_result, stack); |
1881 | ||
f7f9ae2c | 1882 | return result; |
8b93c638 JM |
1883 | } |
1884 | \f | |
1885 | ||
1886 | /* Helper functions */ | |
1887 | ||
1888 | /* | |
1889 | * Variable object construction/destruction | |
1890 | */ | |
1891 | ||
1892 | static int | |
fba45db2 KB |
1893 | delete_variable (struct cpstack **resultp, struct varobj *var, |
1894 | int only_children_p) | |
8b93c638 JM |
1895 | { |
1896 | int delcount = 0; | |
1897 | ||
1898 | delete_variable_1 (resultp, &delcount, var, | |
1899 | only_children_p, 1 /* remove_from_parent_p */ ); | |
1900 | ||
1901 | return delcount; | |
1902 | } | |
1903 | ||
1904 | /* Delete the variable object VAR and its children */ | |
1905 | /* IMPORTANT NOTE: If we delete a variable which is a child | |
1906 | and the parent is not removed we dump core. It must be always | |
1907 | initially called with remove_from_parent_p set */ | |
1908 | static void | |
72330bd6 AC |
1909 | delete_variable_1 (struct cpstack **resultp, int *delcountp, |
1910 | struct varobj *var, int only_children_p, | |
1911 | int remove_from_parent_p) | |
8b93c638 | 1912 | { |
28335dcc | 1913 | int i; |
8b93c638 JM |
1914 | |
1915 | /* Delete any children of this variable, too. */ | |
28335dcc VP |
1916 | for (i = 0; i < VEC_length (varobj_p, var->children); ++i) |
1917 | { | |
1918 | varobj_p child = VEC_index (varobj_p, var->children, i); | |
a109c7c1 | 1919 | |
214270ab VP |
1920 | if (!child) |
1921 | continue; | |
8b93c638 | 1922 | if (!remove_from_parent_p) |
28335dcc VP |
1923 | child->parent = NULL; |
1924 | delete_variable_1 (resultp, delcountp, child, 0, only_children_p); | |
8b93c638 | 1925 | } |
28335dcc | 1926 | VEC_free (varobj_p, var->children); |
8b93c638 JM |
1927 | |
1928 | /* if we were called to delete only the children we are done here */ | |
1929 | if (only_children_p) | |
1930 | return; | |
1931 | ||
1932 | /* Otherwise, add it to the list of deleted ones and proceed to do so */ | |
73a93a32 JI |
1933 | /* If the name is null, this is a temporary variable, that has not |
1934 | yet been installed, don't report it, it belongs to the caller... */ | |
1935 | if (var->obj_name != NULL) | |
8b93c638 | 1936 | { |
5b616ba1 | 1937 | cppush (resultp, xstrdup (var->obj_name)); |
8b93c638 JM |
1938 | *delcountp = *delcountp + 1; |
1939 | } | |
1940 | ||
1941 | /* If this variable has a parent, remove it from its parent's list */ | |
1942 | /* OPTIMIZATION: if the parent of this variable is also being deleted, | |
1943 | (as indicated by remove_from_parent_p) we don't bother doing an | |
1944 | expensive list search to find the element to remove when we are | |
1945 | discarding the list afterwards */ | |
72330bd6 | 1946 | if ((remove_from_parent_p) && (var->parent != NULL)) |
8b93c638 | 1947 | { |
28335dcc | 1948 | VEC_replace (varobj_p, var->parent->children, var->index, NULL); |
8b93c638 | 1949 | } |
72330bd6 | 1950 | |
73a93a32 JI |
1951 | if (var->obj_name != NULL) |
1952 | uninstall_variable (var); | |
8b93c638 JM |
1953 | |
1954 | /* Free memory associated with this variable */ | |
1955 | free_variable (var); | |
1956 | } | |
1957 | ||
1958 | /* Install the given variable VAR with the object name VAR->OBJ_NAME. */ | |
1959 | static int | |
fba45db2 | 1960 | install_variable (struct varobj *var) |
8b93c638 JM |
1961 | { |
1962 | struct vlist *cv; | |
1963 | struct vlist *newvl; | |
1964 | const char *chp; | |
1965 | unsigned int index = 0; | |
1966 | unsigned int i = 1; | |
1967 | ||
1968 | for (chp = var->obj_name; *chp; chp++) | |
1969 | { | |
1970 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
1971 | } | |
1972 | ||
1973 | cv = *(varobj_table + index); | |
1974 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
1975 | cv = cv->next; | |
1976 | ||
1977 | if (cv != NULL) | |
8a3fe4f8 | 1978 | error (_("Duplicate variable object name")); |
8b93c638 JM |
1979 | |
1980 | /* Add varobj to hash table */ | |
1981 | newvl = xmalloc (sizeof (struct vlist)); | |
1982 | newvl->next = *(varobj_table + index); | |
1983 | newvl->var = var; | |
1984 | *(varobj_table + index) = newvl; | |
1985 | ||
1986 | /* If root, add varobj to root list */ | |
b2c2bd75 | 1987 | if (is_root_p (var)) |
8b93c638 JM |
1988 | { |
1989 | /* Add to list of root variables */ | |
1990 | if (rootlist == NULL) | |
1991 | var->root->next = NULL; | |
1992 | else | |
1993 | var->root->next = rootlist; | |
1994 | rootlist = var->root; | |
8b93c638 JM |
1995 | } |
1996 | ||
1997 | return 1; /* OK */ | |
1998 | } | |
1999 | ||
2000 | /* Unistall the object VAR. */ | |
2001 | static void | |
fba45db2 | 2002 | uninstall_variable (struct varobj *var) |
8b93c638 JM |
2003 | { |
2004 | struct vlist *cv; | |
2005 | struct vlist *prev; | |
2006 | struct varobj_root *cr; | |
2007 | struct varobj_root *prer; | |
2008 | const char *chp; | |
2009 | unsigned int index = 0; | |
2010 | unsigned int i = 1; | |
2011 | ||
2012 | /* Remove varobj from hash table */ | |
2013 | for (chp = var->obj_name; *chp; chp++) | |
2014 | { | |
2015 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
2016 | } | |
2017 | ||
2018 | cv = *(varobj_table + index); | |
2019 | prev = NULL; | |
2020 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
2021 | { | |
2022 | prev = cv; | |
2023 | cv = cv->next; | |
2024 | } | |
2025 | ||
2026 | if (varobjdebug) | |
2027 | fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name); | |
2028 | ||
2029 | if (cv == NULL) | |
2030 | { | |
72330bd6 AC |
2031 | warning |
2032 | ("Assertion failed: Could not find variable object \"%s\" to delete", | |
2033 | var->obj_name); | |
8b93c638 JM |
2034 | return; |
2035 | } | |
2036 | ||
2037 | if (prev == NULL) | |
2038 | *(varobj_table + index) = cv->next; | |
2039 | else | |
2040 | prev->next = cv->next; | |
2041 | ||
b8c9b27d | 2042 | xfree (cv); |
8b93c638 JM |
2043 | |
2044 | /* If root, remove varobj from root list */ | |
b2c2bd75 | 2045 | if (is_root_p (var)) |
8b93c638 JM |
2046 | { |
2047 | /* Remove from list of root variables */ | |
2048 | if (rootlist == var->root) | |
2049 | rootlist = var->root->next; | |
2050 | else | |
2051 | { | |
2052 | prer = NULL; | |
2053 | cr = rootlist; | |
2054 | while ((cr != NULL) && (cr->rootvar != var)) | |
2055 | { | |
2056 | prer = cr; | |
2057 | cr = cr->next; | |
2058 | } | |
2059 | if (cr == NULL) | |
2060 | { | |
72330bd6 AC |
2061 | warning |
2062 | ("Assertion failed: Could not find varobj \"%s\" in root list", | |
2063 | var->obj_name); | |
8b93c638 JM |
2064 | return; |
2065 | } | |
2066 | if (prer == NULL) | |
2067 | rootlist = NULL; | |
2068 | else | |
2069 | prer->next = cr->next; | |
2070 | } | |
8b93c638 JM |
2071 | } |
2072 | ||
2073 | } | |
2074 | ||
8b93c638 JM |
2075 | /* Create and install a child of the parent of the given name */ |
2076 | static struct varobj * | |
fba45db2 | 2077 | create_child (struct varobj *parent, int index, char *name) |
b6313243 TT |
2078 | { |
2079 | return create_child_with_value (parent, index, name, | |
2080 | value_of_child (parent, index)); | |
2081 | } | |
2082 | ||
2083 | static struct varobj * | |
2084 | create_child_with_value (struct varobj *parent, int index, const char *name, | |
2085 | struct value *value) | |
8b93c638 JM |
2086 | { |
2087 | struct varobj *child; | |
2088 | char *childs_name; | |
2089 | ||
2090 | child = new_variable (); | |
2091 | ||
2092 | /* name is allocated by name_of_child */ | |
b6313243 TT |
2093 | /* FIXME: xstrdup should not be here. */ |
2094 | child->name = xstrdup (name); | |
8b93c638 | 2095 | child->index = index; |
8b93c638 JM |
2096 | child->parent = parent; |
2097 | child->root = parent->root; | |
b435e160 | 2098 | childs_name = xstrprintf ("%s.%s", parent->obj_name, name); |
8b93c638 JM |
2099 | child->obj_name = childs_name; |
2100 | install_variable (child); | |
2101 | ||
acd65feb VP |
2102 | /* Compute the type of the child. Must do this before |
2103 | calling install_new_value. */ | |
2104 | if (value != NULL) | |
2105 | /* If the child had no evaluation errors, var->value | |
2106 | will be non-NULL and contain a valid type. */ | |
2107 | child->type = value_type (value); | |
2108 | else | |
2109 | /* Otherwise, we must compute the type. */ | |
2110 | child->type = (*child->root->lang->type_of_child) (child->parent, | |
2111 | child->index); | |
2112 | install_new_value (child, value, 1); | |
2113 | ||
8b93c638 JM |
2114 | return child; |
2115 | } | |
8b93c638 JM |
2116 | \f |
2117 | ||
2118 | /* | |
2119 | * Miscellaneous utility functions. | |
2120 | */ | |
2121 | ||
2122 | /* Allocate memory and initialize a new variable */ | |
2123 | static struct varobj * | |
2124 | new_variable (void) | |
2125 | { | |
2126 | struct varobj *var; | |
2127 | ||
2128 | var = (struct varobj *) xmalloc (sizeof (struct varobj)); | |
2129 | var->name = NULL; | |
02142340 | 2130 | var->path_expr = NULL; |
8b93c638 JM |
2131 | var->obj_name = NULL; |
2132 | var->index = -1; | |
2133 | var->type = NULL; | |
2134 | var->value = NULL; | |
8b93c638 JM |
2135 | var->num_children = -1; |
2136 | var->parent = NULL; | |
2137 | var->children = NULL; | |
2138 | var->format = 0; | |
2139 | var->root = NULL; | |
fb9b6b35 | 2140 | var->updated = 0; |
85265413 | 2141 | var->print_value = NULL; |
25d5ea92 VP |
2142 | var->frozen = 0; |
2143 | var->not_fetched = 0; | |
b6313243 | 2144 | var->children_requested = 0; |
0cc7d26f TT |
2145 | var->from = -1; |
2146 | var->to = -1; | |
2147 | var->constructor = 0; | |
b6313243 | 2148 | var->pretty_printer = 0; |
0cc7d26f TT |
2149 | var->child_iter = 0; |
2150 | var->saved_item = 0; | |
8b93c638 JM |
2151 | |
2152 | return var; | |
2153 | } | |
2154 | ||
2155 | /* Allocate memory and initialize a new root variable */ | |
2156 | static struct varobj * | |
2157 | new_root_variable (void) | |
2158 | { | |
2159 | struct varobj *var = new_variable (); | |
a109c7c1 | 2160 | |
8b93c638 JM |
2161 | var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));; |
2162 | var->root->lang = NULL; | |
2163 | var->root->exp = NULL; | |
2164 | var->root->valid_block = NULL; | |
7a424e99 | 2165 | var->root->frame = null_frame_id; |
a5defcdc | 2166 | var->root->floating = 0; |
8b93c638 | 2167 | var->root->rootvar = NULL; |
8756216b | 2168 | var->root->is_valid = 1; |
8b93c638 JM |
2169 | |
2170 | return var; | |
2171 | } | |
2172 | ||
2173 | /* Free any allocated memory associated with VAR. */ | |
2174 | static void | |
fba45db2 | 2175 | free_variable (struct varobj *var) |
8b93c638 | 2176 | { |
d452c4bc UW |
2177 | #if HAVE_PYTHON |
2178 | if (var->pretty_printer) | |
2179 | { | |
2180 | struct cleanup *cleanup = varobj_ensure_python_env (var); | |
0cc7d26f TT |
2181 | Py_XDECREF (var->constructor); |
2182 | Py_XDECREF (var->pretty_printer); | |
2183 | Py_XDECREF (var->child_iter); | |
2184 | Py_XDECREF (var->saved_item); | |
d452c4bc UW |
2185 | do_cleanups (cleanup); |
2186 | } | |
2187 | #endif | |
2188 | ||
36746093 JK |
2189 | value_free (var->value); |
2190 | ||
8b93c638 | 2191 | /* Free the expression if this is a root variable. */ |
b2c2bd75 | 2192 | if (is_root_p (var)) |
8b93c638 | 2193 | { |
3038237c | 2194 | xfree (var->root->exp); |
8038e1e2 | 2195 | xfree (var->root); |
8b93c638 JM |
2196 | } |
2197 | ||
8038e1e2 AC |
2198 | xfree (var->name); |
2199 | xfree (var->obj_name); | |
85265413 | 2200 | xfree (var->print_value); |
02142340 | 2201 | xfree (var->path_expr); |
8038e1e2 | 2202 | xfree (var); |
8b93c638 JM |
2203 | } |
2204 | ||
74b7792f AC |
2205 | static void |
2206 | do_free_variable_cleanup (void *var) | |
2207 | { | |
2208 | free_variable (var); | |
2209 | } | |
2210 | ||
2211 | static struct cleanup * | |
2212 | make_cleanup_free_variable (struct varobj *var) | |
2213 | { | |
2214 | return make_cleanup (do_free_variable_cleanup, var); | |
2215 | } | |
2216 | ||
6766a268 DJ |
2217 | /* This returns the type of the variable. It also skips past typedefs |
2218 | to return the real type of the variable. | |
94b66fa7 KS |
2219 | |
2220 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
2221 | except within get_target_type and get_type. */ | |
8b93c638 | 2222 | static struct type * |
fba45db2 | 2223 | get_type (struct varobj *var) |
8b93c638 JM |
2224 | { |
2225 | struct type *type; | |
8b93c638 | 2226 | |
a109c7c1 | 2227 | type = var->type; |
6766a268 DJ |
2228 | if (type != NULL) |
2229 | type = check_typedef (type); | |
8b93c638 JM |
2230 | |
2231 | return type; | |
2232 | } | |
2233 | ||
6e2a9270 VP |
2234 | /* Return the type of the value that's stored in VAR, |
2235 | or that would have being stored there if the | |
2236 | value were accessible. | |
2237 | ||
2238 | This differs from VAR->type in that VAR->type is always | |
2239 | the true type of the expession in the source language. | |
2240 | The return value of this function is the type we're | |
2241 | actually storing in varobj, and using for displaying | |
2242 | the values and for comparing previous and new values. | |
2243 | ||
2244 | For example, top-level references are always stripped. */ | |
2245 | static struct type * | |
2246 | get_value_type (struct varobj *var) | |
2247 | { | |
2248 | struct type *type; | |
2249 | ||
2250 | if (var->value) | |
2251 | type = value_type (var->value); | |
2252 | else | |
2253 | type = var->type; | |
2254 | ||
2255 | type = check_typedef (type); | |
2256 | ||
2257 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
2258 | type = get_target_type (type); | |
2259 | ||
2260 | type = check_typedef (type); | |
2261 | ||
2262 | return type; | |
2263 | } | |
2264 | ||
8b93c638 | 2265 | /* This returns the target type (or NULL) of TYPE, also skipping |
94b66fa7 KS |
2266 | past typedefs, just like get_type (). |
2267 | ||
2268 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
2269 | except within get_target_type and get_type. */ | |
8b93c638 | 2270 | static struct type * |
fba45db2 | 2271 | get_target_type (struct type *type) |
8b93c638 JM |
2272 | { |
2273 | if (type != NULL) | |
2274 | { | |
2275 | type = TYPE_TARGET_TYPE (type); | |
6766a268 DJ |
2276 | if (type != NULL) |
2277 | type = check_typedef (type); | |
8b93c638 JM |
2278 | } |
2279 | ||
2280 | return type; | |
2281 | } | |
2282 | ||
2283 | /* What is the default display for this variable? We assume that | |
2284 | everything is "natural". Any exceptions? */ | |
2285 | static enum varobj_display_formats | |
fba45db2 | 2286 | variable_default_display (struct varobj *var) |
8b93c638 JM |
2287 | { |
2288 | return FORMAT_NATURAL; | |
2289 | } | |
2290 | ||
8b93c638 JM |
2291 | /* FIXME: The following should be generic for any pointer */ |
2292 | static void | |
fba45db2 | 2293 | cppush (struct cpstack **pstack, char *name) |
8b93c638 JM |
2294 | { |
2295 | struct cpstack *s; | |
2296 | ||
2297 | s = (struct cpstack *) xmalloc (sizeof (struct cpstack)); | |
2298 | s->name = name; | |
2299 | s->next = *pstack; | |
2300 | *pstack = s; | |
2301 | } | |
2302 | ||
2303 | /* FIXME: The following should be generic for any pointer */ | |
2304 | static char * | |
fba45db2 | 2305 | cppop (struct cpstack **pstack) |
8b93c638 JM |
2306 | { |
2307 | struct cpstack *s; | |
2308 | char *v; | |
2309 | ||
2310 | if ((*pstack)->name == NULL && (*pstack)->next == NULL) | |
2311 | return NULL; | |
2312 | ||
2313 | s = *pstack; | |
2314 | v = s->name; | |
2315 | *pstack = (*pstack)->next; | |
b8c9b27d | 2316 | xfree (s); |
8b93c638 JM |
2317 | |
2318 | return v; | |
2319 | } | |
2320 | \f | |
2321 | /* | |
2322 | * Language-dependencies | |
2323 | */ | |
2324 | ||
2325 | /* Common entry points */ | |
2326 | ||
2327 | /* Get the language of variable VAR. */ | |
2328 | static enum varobj_languages | |
fba45db2 | 2329 | variable_language (struct varobj *var) |
8b93c638 JM |
2330 | { |
2331 | enum varobj_languages lang; | |
2332 | ||
2333 | switch (var->root->exp->language_defn->la_language) | |
2334 | { | |
2335 | default: | |
2336 | case language_c: | |
2337 | lang = vlang_c; | |
2338 | break; | |
2339 | case language_cplus: | |
2340 | lang = vlang_cplus; | |
2341 | break; | |
2342 | case language_java: | |
2343 | lang = vlang_java; | |
2344 | break; | |
2345 | } | |
2346 | ||
2347 | return lang; | |
2348 | } | |
2349 | ||
2350 | /* Return the number of children for a given variable. | |
2351 | The result of this function is defined by the language | |
2352 | implementation. The number of children returned by this function | |
2353 | is the number of children that the user will see in the variable | |
2354 | display. */ | |
2355 | static int | |
fba45db2 | 2356 | number_of_children (struct varobj *var) |
8b93c638 JM |
2357 | { |
2358 | return (*var->root->lang->number_of_children) (var);; | |
2359 | } | |
2360 | ||
2361 | /* What is the expression for the root varobj VAR? Returns a malloc'd string. */ | |
2362 | static char * | |
fba45db2 | 2363 | name_of_variable (struct varobj *var) |
8b93c638 JM |
2364 | { |
2365 | return (*var->root->lang->name_of_variable) (var); | |
2366 | } | |
2367 | ||
2368 | /* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */ | |
2369 | static char * | |
fba45db2 | 2370 | name_of_child (struct varobj *var, int index) |
8b93c638 JM |
2371 | { |
2372 | return (*var->root->lang->name_of_child) (var, index); | |
2373 | } | |
2374 | ||
a5defcdc VP |
2375 | /* What is the ``struct value *'' of the root variable VAR? |
2376 | For floating variable object, evaluation can get us a value | |
2377 | of different type from what is stored in varobj already. In | |
2378 | that case: | |
2379 | - *type_changed will be set to 1 | |
2380 | - old varobj will be freed, and new one will be | |
2381 | created, with the same name. | |
2382 | - *var_handle will be set to the new varobj | |
2383 | Otherwise, *type_changed will be set to 0. */ | |
30b28db1 | 2384 | static struct value * |
fba45db2 | 2385 | value_of_root (struct varobj **var_handle, int *type_changed) |
8b93c638 | 2386 | { |
73a93a32 JI |
2387 | struct varobj *var; |
2388 | ||
2389 | if (var_handle == NULL) | |
2390 | return NULL; | |
2391 | ||
2392 | var = *var_handle; | |
2393 | ||
2394 | /* This should really be an exception, since this should | |
2395 | only get called with a root variable. */ | |
2396 | ||
b2c2bd75 | 2397 | if (!is_root_p (var)) |
73a93a32 JI |
2398 | return NULL; |
2399 | ||
a5defcdc | 2400 | if (var->root->floating) |
73a93a32 JI |
2401 | { |
2402 | struct varobj *tmp_var; | |
2403 | char *old_type, *new_type; | |
6225abfa | 2404 | |
73a93a32 JI |
2405 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, |
2406 | USE_SELECTED_FRAME); | |
2407 | if (tmp_var == NULL) | |
2408 | { | |
2409 | return NULL; | |
2410 | } | |
6225abfa | 2411 | old_type = varobj_get_type (var); |
73a93a32 | 2412 | new_type = varobj_get_type (tmp_var); |
72330bd6 | 2413 | if (strcmp (old_type, new_type) == 0) |
73a93a32 | 2414 | { |
fcacd99f VP |
2415 | /* The expression presently stored inside var->root->exp |
2416 | remembers the locations of local variables relatively to | |
2417 | the frame where the expression was created (in DWARF location | |
2418 | button, for example). Naturally, those locations are not | |
2419 | correct in other frames, so update the expression. */ | |
2420 | ||
2421 | struct expression *tmp_exp = var->root->exp; | |
a109c7c1 | 2422 | |
fcacd99f VP |
2423 | var->root->exp = tmp_var->root->exp; |
2424 | tmp_var->root->exp = tmp_exp; | |
2425 | ||
73a93a32 JI |
2426 | varobj_delete (tmp_var, NULL, 0); |
2427 | *type_changed = 0; | |
2428 | } | |
2429 | else | |
2430 | { | |
1b36a34b | 2431 | tmp_var->obj_name = xstrdup (var->obj_name); |
0cc7d26f TT |
2432 | tmp_var->from = var->from; |
2433 | tmp_var->to = var->to; | |
a5defcdc VP |
2434 | varobj_delete (var, NULL, 0); |
2435 | ||
73a93a32 JI |
2436 | install_variable (tmp_var); |
2437 | *var_handle = tmp_var; | |
705da579 | 2438 | var = *var_handle; |
73a93a32 JI |
2439 | *type_changed = 1; |
2440 | } | |
74dddad3 MS |
2441 | xfree (old_type); |
2442 | xfree (new_type); | |
73a93a32 JI |
2443 | } |
2444 | else | |
2445 | { | |
2446 | *type_changed = 0; | |
2447 | } | |
2448 | ||
2449 | return (*var->root->lang->value_of_root) (var_handle); | |
8b93c638 JM |
2450 | } |
2451 | ||
30b28db1 AC |
2452 | /* What is the ``struct value *'' for the INDEX'th child of PARENT? */ |
2453 | static struct value * | |
fba45db2 | 2454 | value_of_child (struct varobj *parent, int index) |
8b93c638 | 2455 | { |
30b28db1 | 2456 | struct value *value; |
8b93c638 JM |
2457 | |
2458 | value = (*parent->root->lang->value_of_child) (parent, index); | |
2459 | ||
8b93c638 JM |
2460 | return value; |
2461 | } | |
2462 | ||
8b93c638 JM |
2463 | /* GDB already has a command called "value_of_variable". Sigh. */ |
2464 | static char * | |
de051565 | 2465 | my_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 2466 | { |
8756216b | 2467 | if (var->root->is_valid) |
0cc7d26f TT |
2468 | { |
2469 | if (var->pretty_printer) | |
2470 | return value_get_print_value (var->value, var->format, var); | |
2471 | return (*var->root->lang->value_of_variable) (var, format); | |
2472 | } | |
8756216b DP |
2473 | else |
2474 | return NULL; | |
8b93c638 JM |
2475 | } |
2476 | ||
85265413 | 2477 | static char * |
b6313243 | 2478 | value_get_print_value (struct value *value, enum varobj_display_formats format, |
d452c4bc | 2479 | struct varobj *var) |
85265413 | 2480 | { |
57e66780 | 2481 | struct ui_file *stb; |
09ca9e2e | 2482 | struct cleanup *old_chain = make_cleanup (null_cleanup, NULL); |
fbb8f299 | 2483 | gdb_byte *thevalue = NULL; |
79a45b7d | 2484 | struct value_print_options opts; |
be759fcf PM |
2485 | struct type *type = NULL; |
2486 | long len = 0; | |
2487 | char *encoding = NULL; | |
2488 | struct gdbarch *gdbarch = NULL; | |
3a182a69 JK |
2489 | /* Initialize it just to avoid a GCC false warning. */ |
2490 | CORE_ADDR str_addr = 0; | |
09ca9e2e | 2491 | int string_print = 0; |
57e66780 DJ |
2492 | |
2493 | if (value == NULL) | |
2494 | return NULL; | |
2495 | ||
be759fcf | 2496 | gdbarch = get_type_arch (value_type (value)); |
b6313243 TT |
2497 | #if HAVE_PYTHON |
2498 | { | |
d452c4bc UW |
2499 | PyObject *value_formatter = var->pretty_printer; |
2500 | ||
09ca9e2e TT |
2501 | varobj_ensure_python_env (var); |
2502 | ||
0cc7d26f | 2503 | if (value_formatter) |
b6313243 | 2504 | { |
0cc7d26f TT |
2505 | /* First check to see if we have any children at all. If so, |
2506 | we simply return {...}. */ | |
2507 | if (dynamic_varobj_has_child_method (var)) | |
2508 | return xstrdup ("{...}"); | |
b6313243 | 2509 | |
0cc7d26f | 2510 | if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst)) |
b6313243 | 2511 | { |
0cc7d26f TT |
2512 | char *hint; |
2513 | struct value *replacement; | |
0cc7d26f TT |
2514 | PyObject *output = NULL; |
2515 | ||
2516 | hint = gdbpy_get_display_hint (value_formatter); | |
2517 | if (hint) | |
2518 | { | |
2519 | if (!strcmp (hint, "string")) | |
2520 | string_print = 1; | |
2521 | xfree (hint); | |
2522 | } | |
b6313243 | 2523 | |
0cc7d26f TT |
2524 | output = apply_varobj_pretty_printer (value_formatter, |
2525 | &replacement); | |
2526 | if (output) | |
2527 | { | |
09ca9e2e TT |
2528 | make_cleanup_py_decref (output); |
2529 | ||
be759fcf | 2530 | if (gdbpy_is_lazy_string (output)) |
0cc7d26f | 2531 | { |
09ca9e2e TT |
2532 | gdbpy_extract_lazy_string (output, &str_addr, &type, |
2533 | &len, &encoding); | |
2534 | make_cleanup (free_current_contents, &encoding); | |
be759fcf PM |
2535 | string_print = 1; |
2536 | } | |
2537 | else | |
2538 | { | |
2539 | PyObject *py_str | |
2540 | = python_string_to_target_python_string (output); | |
a109c7c1 | 2541 | |
be759fcf PM |
2542 | if (py_str) |
2543 | { | |
2544 | char *s = PyString_AsString (py_str); | |
a109c7c1 | 2545 | |
be759fcf PM |
2546 | len = PyString_Size (py_str); |
2547 | thevalue = xmemdup (s, len + 1, len + 1); | |
2548 | type = builtin_type (gdbarch)->builtin_char; | |
2549 | Py_DECREF (py_str); | |
09ca9e2e TT |
2550 | |
2551 | if (!string_print) | |
2552 | { | |
2553 | do_cleanups (old_chain); | |
2554 | return thevalue; | |
2555 | } | |
2556 | ||
2557 | make_cleanup (xfree, thevalue); | |
be759fcf | 2558 | } |
8dc78533 JK |
2559 | else |
2560 | gdbpy_print_stack (); | |
0cc7d26f | 2561 | } |
0cc7d26f TT |
2562 | } |
2563 | if (replacement) | |
2564 | value = replacement; | |
b6313243 | 2565 | } |
b6313243 | 2566 | } |
b6313243 TT |
2567 | } |
2568 | #endif | |
2569 | ||
57e66780 | 2570 | stb = mem_fileopen (); |
09ca9e2e | 2571 | make_cleanup_ui_file_delete (stb); |
57e66780 | 2572 | |
79a45b7d TT |
2573 | get_formatted_print_options (&opts, format_code[(int) format]); |
2574 | opts.deref_ref = 0; | |
b6313243 TT |
2575 | opts.raw = 1; |
2576 | if (thevalue) | |
09ca9e2e TT |
2577 | LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts); |
2578 | else if (string_print) | |
2579 | val_print_string (type, encoding, str_addr, len, stb, &opts); | |
b6313243 TT |
2580 | else |
2581 | common_val_print (value, stb, 0, &opts, current_language); | |
759ef836 | 2582 | thevalue = ui_file_xstrdup (stb, NULL); |
57e66780 | 2583 | |
85265413 NR |
2584 | do_cleanups (old_chain); |
2585 | return thevalue; | |
2586 | } | |
2587 | ||
340a7723 NR |
2588 | int |
2589 | varobj_editable_p (struct varobj *var) | |
2590 | { | |
2591 | struct type *type; | |
340a7723 NR |
2592 | |
2593 | if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value))) | |
2594 | return 0; | |
2595 | ||
2596 | type = get_value_type (var); | |
2597 | ||
2598 | switch (TYPE_CODE (type)) | |
2599 | { | |
2600 | case TYPE_CODE_STRUCT: | |
2601 | case TYPE_CODE_UNION: | |
2602 | case TYPE_CODE_ARRAY: | |
2603 | case TYPE_CODE_FUNC: | |
2604 | case TYPE_CODE_METHOD: | |
2605 | return 0; | |
2606 | break; | |
2607 | ||
2608 | default: | |
2609 | return 1; | |
2610 | break; | |
2611 | } | |
2612 | } | |
2613 | ||
acd65feb VP |
2614 | /* Return non-zero if changes in value of VAR |
2615 | must be detected and reported by -var-update. | |
2616 | Return zero is -var-update should never report | |
2617 | changes of such values. This makes sense for structures | |
2618 | (since the changes in children values will be reported separately), | |
2619 | or for artifical objects (like 'public' pseudo-field in C++). | |
2620 | ||
2621 | Return value of 0 means that gdb need not call value_fetch_lazy | |
2622 | for the value of this variable object. */ | |
8b93c638 | 2623 | static int |
b2c2bd75 | 2624 | varobj_value_is_changeable_p (struct varobj *var) |
8b93c638 JM |
2625 | { |
2626 | int r; | |
2627 | struct type *type; | |
2628 | ||
2629 | if (CPLUS_FAKE_CHILD (var)) | |
2630 | return 0; | |
2631 | ||
6e2a9270 | 2632 | type = get_value_type (var); |
8b93c638 JM |
2633 | |
2634 | switch (TYPE_CODE (type)) | |
2635 | { | |
72330bd6 AC |
2636 | case TYPE_CODE_STRUCT: |
2637 | case TYPE_CODE_UNION: | |
2638 | case TYPE_CODE_ARRAY: | |
2639 | r = 0; | |
2640 | break; | |
8b93c638 | 2641 | |
72330bd6 AC |
2642 | default: |
2643 | r = 1; | |
8b93c638 JM |
2644 | } |
2645 | ||
2646 | return r; | |
2647 | } | |
2648 | ||
5a413362 VP |
2649 | /* Return 1 if that varobj is floating, that is is always evaluated in the |
2650 | selected frame, and not bound to thread/frame. Such variable objects | |
2651 | are created using '@' as frame specifier to -var-create. */ | |
2652 | int | |
2653 | varobj_floating_p (struct varobj *var) | |
2654 | { | |
2655 | return var->root->floating; | |
2656 | } | |
2657 | ||
2024f65a VP |
2658 | /* Given the value and the type of a variable object, |
2659 | adjust the value and type to those necessary | |
2660 | for getting children of the variable object. | |
2661 | This includes dereferencing top-level references | |
2662 | to all types and dereferencing pointers to | |
2663 | structures. | |
2664 | ||
2665 | Both TYPE and *TYPE should be non-null. VALUE | |
2666 | can be null if we want to only translate type. | |
2667 | *VALUE can be null as well -- if the parent | |
02142340 VP |
2668 | value is not known. |
2669 | ||
2670 | If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1 | |
b6313243 | 2671 | depending on whether pointer was dereferenced |
02142340 | 2672 | in this function. */ |
2024f65a VP |
2673 | static void |
2674 | adjust_value_for_child_access (struct value **value, | |
02142340 VP |
2675 | struct type **type, |
2676 | int *was_ptr) | |
2024f65a VP |
2677 | { |
2678 | gdb_assert (type && *type); | |
2679 | ||
02142340 VP |
2680 | if (was_ptr) |
2681 | *was_ptr = 0; | |
2682 | ||
2024f65a VP |
2683 | *type = check_typedef (*type); |
2684 | ||
2685 | /* The type of value stored in varobj, that is passed | |
2686 | to us, is already supposed to be | |
2687 | reference-stripped. */ | |
2688 | ||
2689 | gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF); | |
2690 | ||
2691 | /* Pointers to structures are treated just like | |
2692 | structures when accessing children. Don't | |
2693 | dererences pointers to other types. */ | |
2694 | if (TYPE_CODE (*type) == TYPE_CODE_PTR) | |
2695 | { | |
2696 | struct type *target_type = get_target_type (*type); | |
2697 | if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT | |
2698 | || TYPE_CODE (target_type) == TYPE_CODE_UNION) | |
2699 | { | |
2700 | if (value && *value) | |
3f4178d6 | 2701 | { |
a109c7c1 MS |
2702 | int success = gdb_value_ind (*value, value); |
2703 | ||
3f4178d6 DJ |
2704 | if (!success) |
2705 | *value = NULL; | |
2706 | } | |
2024f65a | 2707 | *type = target_type; |
02142340 VP |
2708 | if (was_ptr) |
2709 | *was_ptr = 1; | |
2024f65a VP |
2710 | } |
2711 | } | |
2712 | ||
2713 | /* The 'get_target_type' function calls check_typedef on | |
2714 | result, so we can immediately check type code. No | |
2715 | need to call check_typedef here. */ | |
2716 | } | |
2717 | ||
8b93c638 JM |
2718 | /* C */ |
2719 | static int | |
fba45db2 | 2720 | c_number_of_children (struct varobj *var) |
8b93c638 | 2721 | { |
2024f65a VP |
2722 | struct type *type = get_value_type (var); |
2723 | int children = 0; | |
8b93c638 | 2724 | struct type *target; |
8b93c638 | 2725 | |
02142340 | 2726 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 | 2727 | target = get_target_type (type); |
8b93c638 JM |
2728 | |
2729 | switch (TYPE_CODE (type)) | |
2730 | { | |
2731 | case TYPE_CODE_ARRAY: | |
2732 | if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0 | |
d78df370 | 2733 | && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) |
8b93c638 JM |
2734 | children = TYPE_LENGTH (type) / TYPE_LENGTH (target); |
2735 | else | |
74a44383 DJ |
2736 | /* If we don't know how many elements there are, don't display |
2737 | any. */ | |
2738 | children = 0; | |
8b93c638 JM |
2739 | break; |
2740 | ||
2741 | case TYPE_CODE_STRUCT: | |
2742 | case TYPE_CODE_UNION: | |
2743 | children = TYPE_NFIELDS (type); | |
2744 | break; | |
2745 | ||
2746 | case TYPE_CODE_PTR: | |
2024f65a VP |
2747 | /* The type here is a pointer to non-struct. Typically, pointers |
2748 | have one child, except for function ptrs, which have no children, | |
2749 | and except for void*, as we don't know what to show. | |
2750 | ||
0755e6c1 FN |
2751 | We can show char* so we allow it to be dereferenced. If you decide |
2752 | to test for it, please mind that a little magic is necessary to | |
2753 | properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and | |
2754 | TYPE_NAME == "char" */ | |
2024f65a VP |
2755 | if (TYPE_CODE (target) == TYPE_CODE_FUNC |
2756 | || TYPE_CODE (target) == TYPE_CODE_VOID) | |
2757 | children = 0; | |
2758 | else | |
2759 | children = 1; | |
8b93c638 JM |
2760 | break; |
2761 | ||
2762 | default: | |
2763 | /* Other types have no children */ | |
2764 | break; | |
2765 | } | |
2766 | ||
2767 | return children; | |
2768 | } | |
2769 | ||
2770 | static char * | |
fba45db2 | 2771 | c_name_of_variable (struct varobj *parent) |
8b93c638 | 2772 | { |
1b36a34b | 2773 | return xstrdup (parent->name); |
8b93c638 JM |
2774 | } |
2775 | ||
bbec2603 VP |
2776 | /* Return the value of element TYPE_INDEX of a structure |
2777 | value VALUE. VALUE's type should be a structure, | |
2778 | or union, or a typedef to struct/union. | |
2779 | ||
2780 | Returns NULL if getting the value fails. Never throws. */ | |
2781 | static struct value * | |
2782 | value_struct_element_index (struct value *value, int type_index) | |
8b93c638 | 2783 | { |
bbec2603 VP |
2784 | struct value *result = NULL; |
2785 | volatile struct gdb_exception e; | |
bbec2603 | 2786 | struct type *type = value_type (value); |
a109c7c1 | 2787 | |
bbec2603 VP |
2788 | type = check_typedef (type); |
2789 | ||
2790 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
2791 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
8b93c638 | 2792 | |
bbec2603 VP |
2793 | TRY_CATCH (e, RETURN_MASK_ERROR) |
2794 | { | |
d6a843b5 | 2795 | if (field_is_static (&TYPE_FIELD (type, type_index))) |
bbec2603 VP |
2796 | result = value_static_field (type, type_index); |
2797 | else | |
2798 | result = value_primitive_field (value, 0, type_index, type); | |
2799 | } | |
2800 | if (e.reason < 0) | |
2801 | { | |
2802 | return NULL; | |
2803 | } | |
2804 | else | |
2805 | { | |
2806 | return result; | |
2807 | } | |
2808 | } | |
2809 | ||
2810 | /* Obtain the information about child INDEX of the variable | |
2811 | object PARENT. | |
2812 | If CNAME is not null, sets *CNAME to the name of the child relative | |
2813 | to the parent. | |
2814 | If CVALUE is not null, sets *CVALUE to the value of the child. | |
2815 | If CTYPE is not null, sets *CTYPE to the type of the child. | |
2816 | ||
2817 | If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding | |
2818 | information cannot be determined, set *CNAME, *CVALUE, or *CTYPE | |
2819 | to NULL. */ | |
2820 | static void | |
2821 | c_describe_child (struct varobj *parent, int index, | |
02142340 VP |
2822 | char **cname, struct value **cvalue, struct type **ctype, |
2823 | char **cfull_expression) | |
bbec2603 VP |
2824 | { |
2825 | struct value *value = parent->value; | |
2024f65a | 2826 | struct type *type = get_value_type (parent); |
02142340 VP |
2827 | char *parent_expression = NULL; |
2828 | int was_ptr; | |
bbec2603 VP |
2829 | |
2830 | if (cname) | |
2831 | *cname = NULL; | |
2832 | if (cvalue) | |
2833 | *cvalue = NULL; | |
2834 | if (ctype) | |
2835 | *ctype = NULL; | |
02142340 VP |
2836 | if (cfull_expression) |
2837 | { | |
2838 | *cfull_expression = NULL; | |
2839 | parent_expression = varobj_get_path_expr (parent); | |
2840 | } | |
2841 | adjust_value_for_child_access (&value, &type, &was_ptr); | |
bbec2603 | 2842 | |
8b93c638 JM |
2843 | switch (TYPE_CODE (type)) |
2844 | { | |
2845 | case TYPE_CODE_ARRAY: | |
bbec2603 | 2846 | if (cname) |
43bbcdc2 PH |
2847 | *cname = xstrdup (int_string (index |
2848 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)), | |
2849 | 10, 1, 0, 0)); | |
bbec2603 VP |
2850 | |
2851 | if (cvalue && value) | |
2852 | { | |
2853 | int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)); | |
a109c7c1 | 2854 | |
2497b498 | 2855 | gdb_value_subscript (value, real_index, cvalue); |
bbec2603 VP |
2856 | } |
2857 | ||
2858 | if (ctype) | |
2859 | *ctype = get_target_type (type); | |
2860 | ||
02142340 | 2861 | if (cfull_expression) |
43bbcdc2 PH |
2862 | *cfull_expression = |
2863 | xstrprintf ("(%s)[%s]", parent_expression, | |
2864 | int_string (index | |
2865 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)), | |
2866 | 10, 1, 0, 0)); | |
02142340 VP |
2867 | |
2868 | ||
8b93c638 JM |
2869 | break; |
2870 | ||
2871 | case TYPE_CODE_STRUCT: | |
2872 | case TYPE_CODE_UNION: | |
bbec2603 | 2873 | if (cname) |
1b36a34b | 2874 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); |
bbec2603 VP |
2875 | |
2876 | if (cvalue && value) | |
2877 | { | |
2878 | /* For C, varobj index is the same as type index. */ | |
2879 | *cvalue = value_struct_element_index (value, index); | |
2880 | } | |
2881 | ||
2882 | if (ctype) | |
2883 | *ctype = TYPE_FIELD_TYPE (type, index); | |
2884 | ||
02142340 VP |
2885 | if (cfull_expression) |
2886 | { | |
2887 | char *join = was_ptr ? "->" : "."; | |
a109c7c1 | 2888 | |
02142340 VP |
2889 | *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join, |
2890 | TYPE_FIELD_NAME (type, index)); | |
2891 | } | |
2892 | ||
8b93c638 JM |
2893 | break; |
2894 | ||
2895 | case TYPE_CODE_PTR: | |
bbec2603 VP |
2896 | if (cname) |
2897 | *cname = xstrprintf ("*%s", parent->name); | |
8b93c638 | 2898 | |
bbec2603 | 2899 | if (cvalue && value) |
3f4178d6 DJ |
2900 | { |
2901 | int success = gdb_value_ind (value, cvalue); | |
a109c7c1 | 2902 | |
3f4178d6 DJ |
2903 | if (!success) |
2904 | *cvalue = NULL; | |
2905 | } | |
bbec2603 | 2906 | |
2024f65a VP |
2907 | /* Don't use get_target_type because it calls |
2908 | check_typedef and here, we want to show the true | |
2909 | declared type of the variable. */ | |
bbec2603 | 2910 | if (ctype) |
2024f65a | 2911 | *ctype = TYPE_TARGET_TYPE (type); |
02142340 VP |
2912 | |
2913 | if (cfull_expression) | |
2914 | *cfull_expression = xstrprintf ("*(%s)", parent_expression); | |
bbec2603 | 2915 | |
8b93c638 JM |
2916 | break; |
2917 | ||
2918 | default: | |
2919 | /* This should not happen */ | |
bbec2603 VP |
2920 | if (cname) |
2921 | *cname = xstrdup ("???"); | |
02142340 VP |
2922 | if (cfull_expression) |
2923 | *cfull_expression = xstrdup ("???"); | |
bbec2603 | 2924 | /* Don't set value and type, we don't know then. */ |
8b93c638 | 2925 | } |
bbec2603 | 2926 | } |
8b93c638 | 2927 | |
bbec2603 VP |
2928 | static char * |
2929 | c_name_of_child (struct varobj *parent, int index) | |
2930 | { | |
2931 | char *name; | |
a109c7c1 | 2932 | |
02142340 | 2933 | c_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
2934 | return name; |
2935 | } | |
2936 | ||
02142340 VP |
2937 | static char * |
2938 | c_path_expr_of_child (struct varobj *child) | |
2939 | { | |
2940 | c_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
2941 | &child->path_expr); | |
2942 | return child->path_expr; | |
2943 | } | |
2944 | ||
c5b48eac VP |
2945 | /* If frame associated with VAR can be found, switch |
2946 | to it and return 1. Otherwise, return 0. */ | |
2947 | static int | |
2948 | check_scope (struct varobj *var) | |
2949 | { | |
2950 | struct frame_info *fi; | |
2951 | int scope; | |
2952 | ||
2953 | fi = frame_find_by_id (var->root->frame); | |
2954 | scope = fi != NULL; | |
2955 | ||
2956 | if (fi) | |
2957 | { | |
2958 | CORE_ADDR pc = get_frame_pc (fi); | |
a109c7c1 | 2959 | |
c5b48eac VP |
2960 | if (pc < BLOCK_START (var->root->valid_block) || |
2961 | pc >= BLOCK_END (var->root->valid_block)) | |
2962 | scope = 0; | |
2963 | else | |
2964 | select_frame (fi); | |
2965 | } | |
2966 | return scope; | |
2967 | } | |
2968 | ||
30b28db1 | 2969 | static struct value * |
fba45db2 | 2970 | c_value_of_root (struct varobj **var_handle) |
8b93c638 | 2971 | { |
5e572bb4 | 2972 | struct value *new_val = NULL; |
73a93a32 | 2973 | struct varobj *var = *var_handle; |
c5b48eac | 2974 | int within_scope = 0; |
6208b47d VP |
2975 | struct cleanup *back_to; |
2976 | ||
73a93a32 | 2977 | /* Only root variables can be updated... */ |
b2c2bd75 | 2978 | if (!is_root_p (var)) |
73a93a32 JI |
2979 | /* Not a root var */ |
2980 | return NULL; | |
2981 | ||
4f8d22e3 | 2982 | back_to = make_cleanup_restore_current_thread (); |
72330bd6 | 2983 | |
8b93c638 | 2984 | /* Determine whether the variable is still around. */ |
a5defcdc | 2985 | if (var->root->valid_block == NULL || var->root->floating) |
8b93c638 | 2986 | within_scope = 1; |
c5b48eac VP |
2987 | else if (var->root->thread_id == 0) |
2988 | { | |
2989 | /* The program was single-threaded when the variable object was | |
2990 | created. Technically, it's possible that the program became | |
2991 | multi-threaded since then, but we don't support such | |
2992 | scenario yet. */ | |
2993 | within_scope = check_scope (var); | |
2994 | } | |
8b93c638 JM |
2995 | else |
2996 | { | |
c5b48eac VP |
2997 | ptid_t ptid = thread_id_to_pid (var->root->thread_id); |
2998 | if (in_thread_list (ptid)) | |
d2353924 | 2999 | { |
c5b48eac VP |
3000 | switch_to_thread (ptid); |
3001 | within_scope = check_scope (var); | |
3002 | } | |
8b93c638 | 3003 | } |
72330bd6 | 3004 | |
8b93c638 JM |
3005 | if (within_scope) |
3006 | { | |
73a93a32 | 3007 | /* We need to catch errors here, because if evaluate |
85d93f1d VP |
3008 | expression fails we want to just return NULL. */ |
3009 | gdb_evaluate_expression (var->root->exp, &new_val); | |
8b93c638 JM |
3010 | return new_val; |
3011 | } | |
3012 | ||
6208b47d VP |
3013 | do_cleanups (back_to); |
3014 | ||
8b93c638 JM |
3015 | return NULL; |
3016 | } | |
3017 | ||
30b28db1 | 3018 | static struct value * |
fba45db2 | 3019 | c_value_of_child (struct varobj *parent, int index) |
8b93c638 | 3020 | { |
bbec2603 | 3021 | struct value *value = NULL; |
8b93c638 | 3022 | |
a109c7c1 | 3023 | c_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
3024 | return value; |
3025 | } | |
3026 | ||
3027 | static struct type * | |
fba45db2 | 3028 | c_type_of_child (struct varobj *parent, int index) |
8b93c638 | 3029 | { |
bbec2603 | 3030 | struct type *type = NULL; |
a109c7c1 | 3031 | |
02142340 | 3032 | c_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
3033 | return type; |
3034 | } | |
3035 | ||
8b93c638 | 3036 | static char * |
de051565 | 3037 | c_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 3038 | { |
14b3d9c9 JB |
3039 | /* BOGUS: if val_print sees a struct/class, or a reference to one, |
3040 | it will print out its children instead of "{...}". So we need to | |
3041 | catch that case explicitly. */ | |
3042 | struct type *type = get_type (var); | |
e64d9b3d | 3043 | |
b6313243 TT |
3044 | /* If we have a custom formatter, return whatever string it has |
3045 | produced. */ | |
3046 | if (var->pretty_printer && var->print_value) | |
3047 | return xstrdup (var->print_value); | |
3048 | ||
14b3d9c9 JB |
3049 | /* Strip top-level references. */ |
3050 | while (TYPE_CODE (type) == TYPE_CODE_REF) | |
3051 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
3052 | ||
3053 | switch (TYPE_CODE (type)) | |
8b93c638 JM |
3054 | { |
3055 | case TYPE_CODE_STRUCT: | |
3056 | case TYPE_CODE_UNION: | |
3057 | return xstrdup ("{...}"); | |
3058 | /* break; */ | |
3059 | ||
3060 | case TYPE_CODE_ARRAY: | |
3061 | { | |
e64d9b3d | 3062 | char *number; |
a109c7c1 | 3063 | |
b435e160 | 3064 | number = xstrprintf ("[%d]", var->num_children); |
e64d9b3d | 3065 | return (number); |
8b93c638 JM |
3066 | } |
3067 | /* break; */ | |
3068 | ||
3069 | default: | |
3070 | { | |
575bbeb6 KS |
3071 | if (var->value == NULL) |
3072 | { | |
3073 | /* This can happen if we attempt to get the value of a struct | |
3074 | member when the parent is an invalid pointer. This is an | |
3075 | error condition, so we should tell the caller. */ | |
3076 | return NULL; | |
3077 | } | |
3078 | else | |
3079 | { | |
25d5ea92 VP |
3080 | if (var->not_fetched && value_lazy (var->value)) |
3081 | /* Frozen variable and no value yet. We don't | |
3082 | implicitly fetch the value. MI response will | |
3083 | use empty string for the value, which is OK. */ | |
3084 | return NULL; | |
3085 | ||
b2c2bd75 | 3086 | gdb_assert (varobj_value_is_changeable_p (var)); |
acd65feb | 3087 | gdb_assert (!value_lazy (var->value)); |
de051565 MK |
3088 | |
3089 | /* If the specified format is the current one, | |
3090 | we can reuse print_value */ | |
3091 | if (format == var->format) | |
3092 | return xstrdup (var->print_value); | |
3093 | else | |
d452c4bc | 3094 | return value_get_print_value (var->value, format, var); |
85265413 | 3095 | } |
e64d9b3d | 3096 | } |
8b93c638 JM |
3097 | } |
3098 | } | |
3099 | \f | |
3100 | ||
3101 | /* C++ */ | |
3102 | ||
3103 | static int | |
fba45db2 | 3104 | cplus_number_of_children (struct varobj *var) |
8b93c638 JM |
3105 | { |
3106 | struct type *type; | |
3107 | int children, dont_know; | |
3108 | ||
3109 | dont_know = 1; | |
3110 | children = 0; | |
3111 | ||
3112 | if (!CPLUS_FAKE_CHILD (var)) | |
3113 | { | |
2024f65a | 3114 | type = get_value_type (var); |
02142340 | 3115 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
3116 | |
3117 | if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) || | |
72330bd6 | 3118 | ((TYPE_CODE (type)) == TYPE_CODE_UNION)) |
8b93c638 JM |
3119 | { |
3120 | int kids[3]; | |
3121 | ||
3122 | cplus_class_num_children (type, kids); | |
3123 | if (kids[v_public] != 0) | |
3124 | children++; | |
3125 | if (kids[v_private] != 0) | |
3126 | children++; | |
3127 | if (kids[v_protected] != 0) | |
3128 | children++; | |
3129 | ||
3130 | /* Add any baseclasses */ | |
3131 | children += TYPE_N_BASECLASSES (type); | |
3132 | dont_know = 0; | |
3133 | ||
3134 | /* FIXME: save children in var */ | |
3135 | } | |
3136 | } | |
3137 | else | |
3138 | { | |
3139 | int kids[3]; | |
3140 | ||
2024f65a | 3141 | type = get_value_type (var->parent); |
02142340 | 3142 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
3143 | |
3144 | cplus_class_num_children (type, kids); | |
6e382aa3 | 3145 | if (strcmp (var->name, "public") == 0) |
8b93c638 | 3146 | children = kids[v_public]; |
6e382aa3 | 3147 | else if (strcmp (var->name, "private") == 0) |
8b93c638 JM |
3148 | children = kids[v_private]; |
3149 | else | |
3150 | children = kids[v_protected]; | |
3151 | dont_know = 0; | |
3152 | } | |
3153 | ||
3154 | if (dont_know) | |
3155 | children = c_number_of_children (var); | |
3156 | ||
3157 | return children; | |
3158 | } | |
3159 | ||
3160 | /* Compute # of public, private, and protected variables in this class. | |
3161 | That means we need to descend into all baseclasses and find out | |
3162 | how many are there, too. */ | |
3163 | static void | |
1669605f | 3164 | cplus_class_num_children (struct type *type, int children[3]) |
8b93c638 | 3165 | { |
d48cc9dd DJ |
3166 | int i, vptr_fieldno; |
3167 | struct type *basetype = NULL; | |
8b93c638 JM |
3168 | |
3169 | children[v_public] = 0; | |
3170 | children[v_private] = 0; | |
3171 | children[v_protected] = 0; | |
3172 | ||
d48cc9dd | 3173 | vptr_fieldno = get_vptr_fieldno (type, &basetype); |
8b93c638 JM |
3174 | for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++) |
3175 | { | |
d48cc9dd DJ |
3176 | /* If we have a virtual table pointer, omit it. Even if virtual |
3177 | table pointers are not specifically marked in the debug info, | |
3178 | they should be artificial. */ | |
3179 | if ((type == basetype && i == vptr_fieldno) | |
3180 | || TYPE_FIELD_ARTIFICIAL (type, i)) | |
8b93c638 JM |
3181 | continue; |
3182 | ||
3183 | if (TYPE_FIELD_PROTECTED (type, i)) | |
3184 | children[v_protected]++; | |
3185 | else if (TYPE_FIELD_PRIVATE (type, i)) | |
3186 | children[v_private]++; | |
3187 | else | |
3188 | children[v_public]++; | |
3189 | } | |
3190 | } | |
3191 | ||
3192 | static char * | |
fba45db2 | 3193 | cplus_name_of_variable (struct varobj *parent) |
8b93c638 JM |
3194 | { |
3195 | return c_name_of_variable (parent); | |
3196 | } | |
3197 | ||
2024f65a VP |
3198 | enum accessibility { private_field, protected_field, public_field }; |
3199 | ||
3200 | /* Check if field INDEX of TYPE has the specified accessibility. | |
3201 | Return 0 if so and 1 otherwise. */ | |
3202 | static int | |
3203 | match_accessibility (struct type *type, int index, enum accessibility acc) | |
8b93c638 | 3204 | { |
2024f65a VP |
3205 | if (acc == private_field && TYPE_FIELD_PRIVATE (type, index)) |
3206 | return 1; | |
3207 | else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index)) | |
3208 | return 1; | |
3209 | else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index) | |
3210 | && !TYPE_FIELD_PROTECTED (type, index)) | |
3211 | return 1; | |
3212 | else | |
3213 | return 0; | |
3214 | } | |
3215 | ||
3216 | static void | |
3217 | cplus_describe_child (struct varobj *parent, int index, | |
02142340 VP |
3218 | char **cname, struct value **cvalue, struct type **ctype, |
3219 | char **cfull_expression) | |
2024f65a | 3220 | { |
2024f65a | 3221 | struct value *value; |
8b93c638 | 3222 | struct type *type; |
02142340 VP |
3223 | int was_ptr; |
3224 | char *parent_expression = NULL; | |
8b93c638 | 3225 | |
2024f65a VP |
3226 | if (cname) |
3227 | *cname = NULL; | |
3228 | if (cvalue) | |
3229 | *cvalue = NULL; | |
3230 | if (ctype) | |
3231 | *ctype = NULL; | |
02142340 VP |
3232 | if (cfull_expression) |
3233 | *cfull_expression = NULL; | |
2024f65a | 3234 | |
8b93c638 JM |
3235 | if (CPLUS_FAKE_CHILD (parent)) |
3236 | { | |
2024f65a VP |
3237 | value = parent->parent->value; |
3238 | type = get_value_type (parent->parent); | |
02142340 VP |
3239 | if (cfull_expression) |
3240 | parent_expression = varobj_get_path_expr (parent->parent); | |
8b93c638 JM |
3241 | } |
3242 | else | |
2024f65a VP |
3243 | { |
3244 | value = parent->value; | |
3245 | type = get_value_type (parent); | |
02142340 VP |
3246 | if (cfull_expression) |
3247 | parent_expression = varobj_get_path_expr (parent); | |
2024f65a | 3248 | } |
8b93c638 | 3249 | |
02142340 | 3250 | adjust_value_for_child_access (&value, &type, &was_ptr); |
2024f65a VP |
3251 | |
3252 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3f4178d6 | 3253 | || TYPE_CODE (type) == TYPE_CODE_UNION) |
8b93c638 | 3254 | { |
02142340 | 3255 | char *join = was_ptr ? "->" : "."; |
a109c7c1 | 3256 | |
8b93c638 JM |
3257 | if (CPLUS_FAKE_CHILD (parent)) |
3258 | { | |
6e382aa3 JJ |
3259 | /* The fields of the class type are ordered as they |
3260 | appear in the class. We are given an index for a | |
3261 | particular access control type ("public","protected", | |
3262 | or "private"). We must skip over fields that don't | |
3263 | have the access control we are looking for to properly | |
3264 | find the indexed field. */ | |
3265 | int type_index = TYPE_N_BASECLASSES (type); | |
2024f65a | 3266 | enum accessibility acc = public_field; |
d48cc9dd DJ |
3267 | int vptr_fieldno; |
3268 | struct type *basetype = NULL; | |
3269 | ||
3270 | vptr_fieldno = get_vptr_fieldno (type, &basetype); | |
6e382aa3 | 3271 | if (strcmp (parent->name, "private") == 0) |
2024f65a | 3272 | acc = private_field; |
6e382aa3 | 3273 | else if (strcmp (parent->name, "protected") == 0) |
2024f65a VP |
3274 | acc = protected_field; |
3275 | ||
3276 | while (index >= 0) | |
6e382aa3 | 3277 | { |
d48cc9dd DJ |
3278 | if ((type == basetype && type_index == vptr_fieldno) |
3279 | || TYPE_FIELD_ARTIFICIAL (type, type_index)) | |
2024f65a VP |
3280 | ; /* ignore vptr */ |
3281 | else if (match_accessibility (type, type_index, acc)) | |
6e382aa3 JJ |
3282 | --index; |
3283 | ++type_index; | |
6e382aa3 | 3284 | } |
2024f65a VP |
3285 | --type_index; |
3286 | ||
3287 | if (cname) | |
3288 | *cname = xstrdup (TYPE_FIELD_NAME (type, type_index)); | |
3289 | ||
3290 | if (cvalue && value) | |
3291 | *cvalue = value_struct_element_index (value, type_index); | |
3292 | ||
3293 | if (ctype) | |
3294 | *ctype = TYPE_FIELD_TYPE (type, type_index); | |
02142340 VP |
3295 | |
3296 | if (cfull_expression) | |
3297 | *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression, | |
3298 | join, | |
3299 | TYPE_FIELD_NAME (type, type_index)); | |
2024f65a VP |
3300 | } |
3301 | else if (index < TYPE_N_BASECLASSES (type)) | |
3302 | { | |
3303 | /* This is a baseclass. */ | |
3304 | if (cname) | |
3305 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); | |
3306 | ||
3307 | if (cvalue && value) | |
0cc7d26f | 3308 | *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value); |
6e382aa3 | 3309 | |
2024f65a VP |
3310 | if (ctype) |
3311 | { | |
3312 | *ctype = TYPE_FIELD_TYPE (type, index); | |
3313 | } | |
02142340 VP |
3314 | |
3315 | if (cfull_expression) | |
3316 | { | |
3317 | char *ptr = was_ptr ? "*" : ""; | |
a109c7c1 | 3318 | |
02142340 VP |
3319 | /* Cast the parent to the base' type. Note that in gdb, |
3320 | expression like | |
3321 | (Base1)d | |
3322 | will create an lvalue, for all appearences, so we don't | |
3323 | need to use more fancy: | |
3324 | *(Base1*)(&d) | |
3325 | construct. */ | |
3326 | *cfull_expression = xstrprintf ("(%s(%s%s) %s)", | |
3327 | ptr, | |
3328 | TYPE_FIELD_NAME (type, index), | |
3329 | ptr, | |
3330 | parent_expression); | |
3331 | } | |
8b93c638 | 3332 | } |
8b93c638 JM |
3333 | else |
3334 | { | |
348144ba | 3335 | char *access = NULL; |
6e382aa3 | 3336 | int children[3]; |
a109c7c1 | 3337 | |
2024f65a | 3338 | cplus_class_num_children (type, children); |
6e382aa3 | 3339 | |
8b93c638 | 3340 | /* Everything beyond the baseclasses can |
6e382aa3 JJ |
3341 | only be "public", "private", or "protected" |
3342 | ||
3343 | The special "fake" children are always output by varobj in | |
3344 | this order. So if INDEX == 2, it MUST be "protected". */ | |
8b93c638 JM |
3345 | index -= TYPE_N_BASECLASSES (type); |
3346 | switch (index) | |
3347 | { | |
3348 | case 0: | |
6e382aa3 | 3349 | if (children[v_public] > 0) |
2024f65a | 3350 | access = "public"; |
6e382aa3 | 3351 | else if (children[v_private] > 0) |
2024f65a | 3352 | access = "private"; |
6e382aa3 | 3353 | else |
2024f65a | 3354 | access = "protected"; |
6e382aa3 | 3355 | break; |
8b93c638 | 3356 | case 1: |
6e382aa3 | 3357 | if (children[v_public] > 0) |
8b93c638 | 3358 | { |
6e382aa3 | 3359 | if (children[v_private] > 0) |
2024f65a | 3360 | access = "private"; |
6e382aa3 | 3361 | else |
2024f65a | 3362 | access = "protected"; |
8b93c638 | 3363 | } |
6e382aa3 | 3364 | else if (children[v_private] > 0) |
2024f65a | 3365 | access = "protected"; |
6e382aa3 | 3366 | break; |
8b93c638 | 3367 | case 2: |
6e382aa3 | 3368 | /* Must be protected */ |
2024f65a | 3369 | access = "protected"; |
6e382aa3 | 3370 | break; |
8b93c638 JM |
3371 | default: |
3372 | /* error! */ | |
3373 | break; | |
3374 | } | |
348144ba MS |
3375 | |
3376 | gdb_assert (access); | |
2024f65a VP |
3377 | if (cname) |
3378 | *cname = xstrdup (access); | |
8b93c638 | 3379 | |
02142340 | 3380 | /* Value and type and full expression are null here. */ |
2024f65a | 3381 | } |
8b93c638 | 3382 | } |
8b93c638 JM |
3383 | else |
3384 | { | |
02142340 | 3385 | c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression); |
2024f65a VP |
3386 | } |
3387 | } | |
8b93c638 | 3388 | |
2024f65a VP |
3389 | static char * |
3390 | cplus_name_of_child (struct varobj *parent, int index) | |
3391 | { | |
3392 | char *name = NULL; | |
a109c7c1 | 3393 | |
02142340 | 3394 | cplus_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
3395 | return name; |
3396 | } | |
3397 | ||
02142340 VP |
3398 | static char * |
3399 | cplus_path_expr_of_child (struct varobj *child) | |
3400 | { | |
3401 | cplus_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
3402 | &child->path_expr); | |
3403 | return child->path_expr; | |
3404 | } | |
3405 | ||
30b28db1 | 3406 | static struct value * |
fba45db2 | 3407 | cplus_value_of_root (struct varobj **var_handle) |
8b93c638 | 3408 | { |
73a93a32 | 3409 | return c_value_of_root (var_handle); |
8b93c638 JM |
3410 | } |
3411 | ||
30b28db1 | 3412 | static struct value * |
fba45db2 | 3413 | cplus_value_of_child (struct varobj *parent, int index) |
8b93c638 | 3414 | { |
2024f65a | 3415 | struct value *value = NULL; |
a109c7c1 | 3416 | |
02142340 | 3417 | cplus_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
3418 | return value; |
3419 | } | |
3420 | ||
3421 | static struct type * | |
fba45db2 | 3422 | cplus_type_of_child (struct varobj *parent, int index) |
8b93c638 | 3423 | { |
2024f65a | 3424 | struct type *type = NULL; |
a109c7c1 | 3425 | |
02142340 | 3426 | cplus_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
3427 | return type; |
3428 | } | |
3429 | ||
8b93c638 | 3430 | static char * |
a109c7c1 MS |
3431 | cplus_value_of_variable (struct varobj *var, |
3432 | enum varobj_display_formats format) | |
8b93c638 JM |
3433 | { |
3434 | ||
3435 | /* If we have one of our special types, don't print out | |
3436 | any value. */ | |
3437 | if (CPLUS_FAKE_CHILD (var)) | |
3438 | return xstrdup (""); | |
3439 | ||
de051565 | 3440 | return c_value_of_variable (var, format); |
8b93c638 JM |
3441 | } |
3442 | \f | |
3443 | /* Java */ | |
3444 | ||
3445 | static int | |
fba45db2 | 3446 | java_number_of_children (struct varobj *var) |
8b93c638 JM |
3447 | { |
3448 | return cplus_number_of_children (var); | |
3449 | } | |
3450 | ||
3451 | static char * | |
fba45db2 | 3452 | java_name_of_variable (struct varobj *parent) |
8b93c638 JM |
3453 | { |
3454 | char *p, *name; | |
3455 | ||
3456 | name = cplus_name_of_variable (parent); | |
3457 | /* If the name has "-" in it, it is because we | |
3458 | needed to escape periods in the name... */ | |
3459 | p = name; | |
3460 | ||
3461 | while (*p != '\000') | |
3462 | { | |
3463 | if (*p == '-') | |
3464 | *p = '.'; | |
3465 | p++; | |
3466 | } | |
3467 | ||
3468 | return name; | |
3469 | } | |
3470 | ||
3471 | static char * | |
fba45db2 | 3472 | java_name_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3473 | { |
3474 | char *name, *p; | |
3475 | ||
3476 | name = cplus_name_of_child (parent, index); | |
3477 | /* Escape any periods in the name... */ | |
3478 | p = name; | |
3479 | ||
3480 | while (*p != '\000') | |
3481 | { | |
3482 | if (*p == '.') | |
3483 | *p = '-'; | |
3484 | p++; | |
3485 | } | |
3486 | ||
3487 | return name; | |
3488 | } | |
3489 | ||
02142340 VP |
3490 | static char * |
3491 | java_path_expr_of_child (struct varobj *child) | |
3492 | { | |
3493 | return NULL; | |
3494 | } | |
3495 | ||
30b28db1 | 3496 | static struct value * |
fba45db2 | 3497 | java_value_of_root (struct varobj **var_handle) |
8b93c638 | 3498 | { |
73a93a32 | 3499 | return cplus_value_of_root (var_handle); |
8b93c638 JM |
3500 | } |
3501 | ||
30b28db1 | 3502 | static struct value * |
fba45db2 | 3503 | java_value_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3504 | { |
3505 | return cplus_value_of_child (parent, index); | |
3506 | } | |
3507 | ||
3508 | static struct type * | |
fba45db2 | 3509 | java_type_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3510 | { |
3511 | return cplus_type_of_child (parent, index); | |
3512 | } | |
3513 | ||
8b93c638 | 3514 | static char * |
de051565 | 3515 | java_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 3516 | { |
de051565 | 3517 | return cplus_value_of_variable (var, format); |
8b93c638 | 3518 | } |
54333c3b JK |
3519 | |
3520 | /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them | |
3521 | with an arbitrary caller supplied DATA pointer. */ | |
3522 | ||
3523 | void | |
3524 | all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data) | |
3525 | { | |
3526 | struct varobj_root *var_root, *var_root_next; | |
3527 | ||
3528 | /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */ | |
3529 | ||
3530 | for (var_root = rootlist; var_root != NULL; var_root = var_root_next) | |
3531 | { | |
3532 | var_root_next = var_root->next; | |
3533 | ||
3534 | (*func) (var_root->rootvar, data); | |
3535 | } | |
3536 | } | |
8b93c638 JM |
3537 | \f |
3538 | extern void _initialize_varobj (void); | |
3539 | void | |
3540 | _initialize_varobj (void) | |
3541 | { | |
3542 | int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE; | |
3543 | ||
3544 | varobj_table = xmalloc (sizeof_table); | |
3545 | memset (varobj_table, 0, sizeof_table); | |
3546 | ||
85c07804 AC |
3547 | add_setshow_zinteger_cmd ("debugvarobj", class_maintenance, |
3548 | &varobjdebug, _("\ | |
3549 | Set varobj debugging."), _("\ | |
3550 | Show varobj debugging."), _("\ | |
3551 | When non-zero, varobj debugging is enabled."), | |
3552 | NULL, | |
920d2a44 | 3553 | show_varobjdebug, |
85c07804 | 3554 | &setlist, &showlist); |
8b93c638 | 3555 | } |
8756216b | 3556 | |
54333c3b JK |
3557 | /* Invalidate varobj VAR if it is tied to locals and re-create it if it is |
3558 | defined on globals. It is a helper for varobj_invalidate. */ | |
2dbd25e5 | 3559 | |
54333c3b JK |
3560 | static void |
3561 | varobj_invalidate_iter (struct varobj *var, void *unused) | |
8756216b | 3562 | { |
54333c3b JK |
3563 | /* Floating varobjs are reparsed on each stop, so we don't care if the |
3564 | presently parsed expression refers to something that's gone. */ | |
3565 | if (var->root->floating) | |
3566 | return; | |
8756216b | 3567 | |
54333c3b JK |
3568 | /* global var must be re-evaluated. */ |
3569 | if (var->root->valid_block == NULL) | |
2dbd25e5 | 3570 | { |
54333c3b | 3571 | struct varobj *tmp_var; |
2dbd25e5 | 3572 | |
54333c3b JK |
3573 | /* Try to create a varobj with same expression. If we succeed |
3574 | replace the old varobj, otherwise invalidate it. */ | |
3575 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, | |
3576 | USE_CURRENT_FRAME); | |
3577 | if (tmp_var != NULL) | |
3578 | { | |
3579 | tmp_var->obj_name = xstrdup (var->obj_name); | |
3580 | varobj_delete (var, NULL, 0); | |
3581 | install_variable (tmp_var); | |
2dbd25e5 | 3582 | } |
54333c3b JK |
3583 | else |
3584 | var->root->is_valid = 0; | |
2dbd25e5 | 3585 | } |
54333c3b JK |
3586 | else /* locals must be invalidated. */ |
3587 | var->root->is_valid = 0; | |
3588 | } | |
3589 | ||
3590 | /* Invalidate the varobjs that are tied to locals and re-create the ones that | |
3591 | are defined on globals. | |
3592 | Invalidated varobjs will be always printed in_scope="invalid". */ | |
3593 | ||
3594 | void | |
3595 | varobj_invalidate (void) | |
3596 | { | |
3597 | all_root_varobjs (varobj_invalidate_iter, NULL); | |
8756216b | 3598 | } |