when printing the GDB config, explicitly say if configured without python
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
e2882c85 3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
28335dcc 29#include "vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
396af9a1 33#include "parser-defs.h"
8b93c638 34
b6313243
TT
35#if HAVE_PYTHON
36#include "python/python.h"
37#include "python/python-internal.h"
bde7b3e3 38#include "python/py-ref.h"
50389644
PA
39#else
40typedef int PyObject;
b6313243
TT
41#endif
42
8b93c638
JM
43/* Non-zero if we want to see trace of varobj level stuff. */
44
ccce17b0 45unsigned int varobjdebug = 0;
920d2a44
AC
46static void
47show_varobjdebug (struct ui_file *file, int from_tty,
48 struct cmd_list_element *c, const char *value)
49{
50 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51}
8b93c638 52
581e13c1 53/* String representations of gdb's format codes. */
a121b7c1 54const char *varobj_format_string[] =
1c35a88f 55 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
8b93c638 56
0cc7d26f 57/* True if we want to allow Python-based pretty-printing. */
4c37490d 58static bool pretty_printing = false;
0cc7d26f
TT
59
60void
61varobj_enable_pretty_printing (void)
62{
4c37490d 63 pretty_printing = true;
0cc7d26f
TT
64}
65
8b93c638
JM
66/* Data structures */
67
68/* Every root variable has one of these structures saved in its
4d01a485 69 varobj. */
8b93c638 70struct varobj_root
72330bd6 71{
4d01a485
PA
72 /* The expression for this parent. */
73 expression_up exp;
8b93c638 74
581e13c1 75 /* Block for which this expression is valid. */
9e5b9d2b 76 const struct block *valid_block = NULL;
8b93c638 77
44a67aa7
VP
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
9e5b9d2b 80 struct frame_id frame = null_frame_id;
8b93c638 81
5d5658a1 82 /* The global thread ID that this varobj_root belongs to. This field
581e13c1 83 is only valid if valid_block is not NULL.
c5b48eac
VP
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
9e5b9d2b 87 int thread_id = 0;
c5b48eac 88
4c37490d 89 /* If true, the -var-update always recomputes the value in the
a5defcdc 90 current thread and frame. Otherwise, variable object is
581e13c1 91 always updated in the specific scope/thread/frame. */
4c37490d 92 bool floating = false;
73a93a32 93
4c37490d 94 /* Flag that indicates validity: set to false when this varobj_root refers
8756216b 95 to symbols that do not exist anymore. */
4c37490d 96 bool is_valid = true;
8756216b 97
99ad9427
YQ
98 /* Language-related operations for this variable and its
99 children. */
9e5b9d2b 100 const struct lang_varobj_ops *lang_ops = NULL;
8b93c638 101
581e13c1 102 /* The varobj for this root node. */
9e5b9d2b 103 struct varobj *rootvar = NULL;
8b93c638 104
72330bd6 105 /* Next root variable */
9e5b9d2b 106 struct varobj_root *next = NULL;
72330bd6 107};
8b93c638 108
bb5ce47a 109/* Dynamic part of varobj. */
8b93c638 110
bb5ce47a
YQ
111struct varobj_dynamic
112{
b6313243
TT
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
116 can avoid that. */
bd046f64 117 bool children_requested = false;
b6313243 118
0cc7d26f
TT
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
9e5b9d2b 122 PyObject *constructor = NULL;
0cc7d26f 123
b6313243
TT
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
9e5b9d2b 126 PyObject *pretty_printer = NULL;
0cc7d26f
TT
127
128 /* The iterator returned by the printer's 'children' method, or NULL
129 if not available. */
9e5b9d2b 130 struct varobj_iter *child_iter = NULL;
0cc7d26f
TT
131
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
9e5b9d2b 137 varobj_item *saved_item = NULL;
72330bd6 138};
8b93c638 139
8b93c638
JM
140/* A list of varobjs */
141
142struct vlist
72330bd6
AC
143{
144 struct varobj *var;
145 struct vlist *next;
146};
8b93c638
JM
147
148/* Private function prototypes */
149
581e13c1 150/* Helper functions for the above subcommands. */
8b93c638 151
4c37490d 152static int delete_variable (struct varobj *, bool);
8b93c638 153
4c37490d 154static void delete_variable_1 (int *, struct varobj *, bool, bool);
8b93c638 155
4c37490d 156static bool install_variable (struct varobj *);
8b93c638 157
a14ed312 158static void uninstall_variable (struct varobj *);
8b93c638 159
2f408ecb 160static struct varobj *create_child (struct varobj *, int, std::string &);
8b93c638 161
b6313243 162static struct varobj *
5a2e0d6e
YQ
163create_child_with_value (struct varobj *parent, int index,
164 struct varobj_item *item);
b6313243 165
8b93c638
JM
166/* Utility routines */
167
a14ed312 168static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 169
4c37490d
SM
170static bool update_type_if_necessary (struct varobj *var,
171 struct value *new_value);
8264ba82 172
4c37490d
SM
173static bool install_new_value (struct varobj *var, struct value *value,
174 bool initial);
acd65feb 175
581e13c1 176/* Language-specific routines. */
8b93c638 177
b09e2c59 178static int number_of_children (const struct varobj *);
8b93c638 179
2f408ecb 180static std::string name_of_variable (const struct varobj *);
8b93c638 181
2f408ecb 182static std::string name_of_child (struct varobj *, int);
8b93c638 183
4c37490d 184static struct value *value_of_root (struct varobj **var_handle, bool *);
8b93c638 185
c1cc6152 186static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 187
2f408ecb
PA
188static std::string my_value_of_variable (struct varobj *var,
189 enum varobj_display_formats format);
8b93c638 190
4c37490d 191static bool is_root_p (const struct varobj *var);
8b93c638 192
9a1edae6 193static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 194 struct varobj_item *item);
b6313243 195
8b93c638
JM
196/* Private data */
197
581e13c1 198/* Mappings of varobj_display_formats enums to gdb's format codes. */
1c35a88f 199static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
8b93c638 200
581e13c1 201/* Header of the list of root variable objects. */
8b93c638 202static struct varobj_root *rootlist;
8b93c638 203
581e13c1 204/* Prime number indicating the number of buckets in the hash table. */
5fa13070 205/* A prime large enough to avoid too many collisions. */
8b93c638
JM
206#define VAROBJ_TABLE_SIZE 227
207
581e13c1 208/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
209static struct vlist **varobj_table;
210
8b93c638
JM
211\f
212
213/* API Implementation */
4c37490d 214static bool
b09e2c59 215is_root_p (const struct varobj *var)
b2c2bd75
VP
216{
217 return (var->root->rootvar == var);
218}
8b93c638 219
d452c4bc 220#ifdef HAVE_PYTHON
6cd67bea
TT
221
222/* See python-internal.h. */
223gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
224: gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
225{
226}
227
d452c4bc
UW
228#endif
229
7d8547c9
AC
230/* Return the full FRAME which corresponds to the given CORE_ADDR
231 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
232
233static struct frame_info *
234find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
235{
236 struct frame_info *frame = NULL;
237
238 if (frame_addr == (CORE_ADDR) 0)
239 return NULL;
240
9d49bdc2
PA
241 for (frame = get_current_frame ();
242 frame != NULL;
243 frame = get_prev_frame (frame))
7d8547c9 244 {
1fac167a
UW
245 /* The CORE_ADDR we get as argument was parsed from a string GDB
246 output as $fp. This output got truncated to gdbarch_addr_bit.
247 Truncate the frame base address in the same manner before
248 comparing it against our argument. */
249 CORE_ADDR frame_base = get_frame_base_address (frame);
250 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 251
1fac167a
UW
252 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
253 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
254
255 if (frame_base == frame_addr)
7d8547c9
AC
256 return frame;
257 }
9d49bdc2
PA
258
259 return NULL;
7d8547c9
AC
260}
261
5fa13070
SM
262/* Creates a varobj (not its children). */
263
8b93c638 264struct varobj *
2f408ecb
PA
265varobj_create (const char *objname,
266 const char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638 267{
581e13c1 268 /* Fill out a varobj structure for the (root) variable being constructed. */
9e5b9d2b 269 std::unique_ptr<varobj> var (new varobj (new varobj_root));
8b93c638
JM
270
271 if (expression != NULL)
272 {
e4195b40 273 struct frame_info *fi;
35633fef 274 struct frame_id old_id = null_frame_id;
3977b71f 275 const struct block *block;
bbc13ae3 276 const char *p;
e55dccf0 277 struct value *value = NULL;
1bb9788d 278 CORE_ADDR pc;
8b93c638 279
9d49bdc2
PA
280 /* Parse and evaluate the expression, filling in as much of the
281 variable's data as possible. */
282
283 if (has_stack_frames ())
284 {
581e13c1 285 /* Allow creator to specify context of variable. */
9d49bdc2
PA
286 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
287 fi = get_selected_frame (NULL);
288 else
289 /* FIXME: cagney/2002-11-23: This code should be doing a
290 lookup using the frame ID and not just the frame's
291 ``address''. This, of course, means an interface
292 change. However, with out that interface change ISAs,
293 such as the ia64 with its two stacks, won't work.
294 Similar goes for the case where there is a frameless
295 function. */
296 fi = find_frame_addr_in_frame_chain (frame);
297 }
8b93c638 298 else
9d49bdc2 299 fi = NULL;
8b93c638 300
73a93a32 301 if (type == USE_SELECTED_FRAME)
4c37490d 302 var->root->floating = true;
73a93a32 303
1bb9788d 304 pc = 0;
8b93c638
JM
305 block = NULL;
306 if (fi != NULL)
1bb9788d
TT
307 {
308 block = get_frame_block (fi, 0);
309 pc = get_frame_pc (fi);
310 }
8b93c638
JM
311
312 p = expression;
ae451627
AB
313 innermost_block.reset (INNERMOST_BLOCK_FOR_SYMBOLS
314 | INNERMOST_BLOCK_FOR_REGISTERS);
73a93a32 315 /* Wrap the call to parse expression, so we can
581e13c1 316 return a sensible error. */
492d29ea 317 TRY
8e7b59a5 318 {
1bb9788d 319 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
320 }
321
492d29ea 322 CATCH (except, RETURN_MASK_ERROR)
73a93a32
JI
323 {
324 return NULL;
325 }
492d29ea 326 END_CATCH
8b93c638 327
581e13c1 328 /* Don't allow variables to be created for types. */
608b4967
TT
329 if (var->root->exp->elts[0].opcode == OP_TYPE
330 || var->root->exp->elts[0].opcode == OP_TYPEOF
331 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638 332 {
bc8332bb
AC
333 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
334 " as an expression.\n");
8b93c638
JM
335 return NULL;
336 }
337
9e5b9d2b 338 var->format = variable_default_display (var.get ());
e707fc44
AB
339 var->root->valid_block =
340 var->root->floating ? NULL : innermost_block.block ();
2f408ecb 341 var->name = expression;
02142340 342 /* For a root var, the name and the expr are the same. */
2f408ecb 343 var->path_expr = expression;
8b93c638
JM
344
345 /* When the frame is different from the current frame,
346 we must select the appropriate frame before parsing
347 the expression, otherwise the value will not be current.
581e13c1 348 Since select_frame is so benign, just call it for all cases. */
aee1fcdf 349 if (var->root->valid_block)
8b93c638 350 {
4e22772d
JK
351 /* User could specify explicit FRAME-ADDR which was not found but
352 EXPRESSION is frame specific and we would not be able to evaluate
353 it correctly next time. With VALID_BLOCK set we must also set
354 FRAME and THREAD_ID. */
355 if (fi == NULL)
356 error (_("Failed to find the specified frame"));
357
7a424e99 358 var->root->frame = get_frame_id (fi);
00431a78 359 var->root->thread_id = inferior_thread ()->global_num;
35633fef 360 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 361 select_frame (fi);
8b93c638
JM
362 }
363
340a7723 364 /* We definitely need to catch errors here.
8b93c638 365 If evaluate_expression succeeds we got the value we wanted.
581e13c1 366 But if it fails, we still go on with a call to evaluate_type(). */
492d29ea 367 TRY
8e7b59a5 368 {
4d01a485 369 value = evaluate_expression (var->root->exp.get ());
8e7b59a5 370 }
492d29ea 371 CATCH (except, RETURN_MASK_ERROR)
e55dccf0
VP
372 {
373 /* Error getting the value. Try to at least get the
374 right type. */
4d01a485 375 struct value *type_only_value = evaluate_type (var->root->exp.get ());
a109c7c1 376
e55dccf0
VP
377 var->type = value_type (type_only_value);
378 }
492d29ea 379 END_CATCH
8264ba82 380
492d29ea
PA
381 if (value != NULL)
382 {
383 int real_type_found = 0;
384
385 var->type = value_actual_type (value, 0, &real_type_found);
386 if (real_type_found)
387 value = value_cast (var->type, value);
388 }
acd65feb 389
8b93c638 390 /* Set language info */
ca20d462 391 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 392
9e5b9d2b 393 install_new_value (var.get (), value, 1 /* Initial assignment */);
d32cafc7 394
581e13c1 395 /* Set ourselves as our root. */
9e5b9d2b 396 var->root->rootvar = var.get ();
8b93c638 397
581e13c1 398 /* Reset the selected frame. */
35633fef
JK
399 if (frame_id_p (old_id))
400 select_frame (frame_find_by_id (old_id));
8b93c638
JM
401 }
402
73a93a32 403 /* If the variable object name is null, that means this
581e13c1 404 is a temporary variable, so don't install it. */
73a93a32
JI
405
406 if ((var != NULL) && (objname != NULL))
8b93c638 407 {
2f408ecb 408 var->obj_name = objname;
8b93c638
JM
409
410 /* If a varobj name is duplicated, the install will fail so
581e13c1 411 we must cleanup. */
9e5b9d2b
SM
412 if (!install_variable (var.get ()))
413 return NULL;
8b93c638
JM
414 }
415
9e5b9d2b 416 return var.release ();
8b93c638
JM
417}
418
581e13c1 419/* Generates an unique name that can be used for a varobj. */
8b93c638 420
2d6960b4 421std::string
8b93c638
JM
422varobj_gen_name (void)
423{
424 static int id = 0;
8b93c638 425
581e13c1 426 /* Generate a name for this object. */
8b93c638 427 id++;
2d6960b4 428 return string_printf ("var%d", id);
8b93c638
JM
429}
430
61d8f275
JK
431/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
432 error if OBJNAME cannot be found. */
8b93c638
JM
433
434struct varobj *
2f408ecb 435varobj_get_handle (const char *objname)
8b93c638
JM
436{
437 struct vlist *cv;
438 const char *chp;
439 unsigned int index = 0;
440 unsigned int i = 1;
441
442 for (chp = objname; *chp; chp++)
443 {
444 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
445 }
446
447 cv = *(varobj_table + index);
2f408ecb 448 while (cv != NULL && cv->var->obj_name != objname)
8b93c638
JM
449 cv = cv->next;
450
451 if (cv == NULL)
8a3fe4f8 452 error (_("Variable object not found"));
8b93c638
JM
453
454 return cv->var;
455}
456
581e13c1 457/* Given the handle, return the name of the object. */
8b93c638 458
2f408ecb 459const char *
b09e2c59 460varobj_get_objname (const struct varobj *var)
8b93c638 461{
2f408ecb 462 return var->obj_name.c_str ();
8b93c638
JM
463}
464
2f408ecb
PA
465/* Given the handle, return the expression represented by the
466 object. */
8b93c638 467
2f408ecb 468std::string
b09e2c59 469varobj_get_expression (const struct varobj *var)
8b93c638
JM
470{
471 return name_of_variable (var);
472}
473
30914ca8 474/* See varobj.h. */
8b93c638
JM
475
476int
4c37490d 477varobj_delete (struct varobj *var, bool only_children)
8b93c638 478{
30914ca8 479 return delete_variable (var, only_children);
8b93c638
JM
480}
481
d8b65138
JK
482#if HAVE_PYTHON
483
b6313243
TT
484/* Convenience function for varobj_set_visualizer. Instantiate a
485 pretty-printer for a given value. */
486static PyObject *
487instantiate_pretty_printer (PyObject *constructor, struct value *value)
488{
b6313243
TT
489 PyObject *val_obj = NULL;
490 PyObject *printer;
b6313243 491
b6313243 492 val_obj = value_to_value_object (value);
b6313243
TT
493 if (! val_obj)
494 return NULL;
495
496 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
497 Py_DECREF (val_obj);
498 return printer;
b6313243
TT
499}
500
d8b65138
JK
501#endif
502
581e13c1 503/* Set/Get variable object display format. */
8b93c638
JM
504
505enum varobj_display_formats
506varobj_set_display_format (struct varobj *var,
507 enum varobj_display_formats format)
508{
509 switch (format)
510 {
511 case FORMAT_NATURAL:
512 case FORMAT_BINARY:
513 case FORMAT_DECIMAL:
514 case FORMAT_HEXADECIMAL:
515 case FORMAT_OCTAL:
1c35a88f 516 case FORMAT_ZHEXADECIMAL:
8b93c638
JM
517 var->format = format;
518 break;
519
520 default:
521 var->format = variable_default_display (var);
522 }
523
ae7d22a6 524 if (varobj_value_is_changeable_p (var)
b4d61099 525 && var->value != nullptr && !value_lazy (var->value.get ()))
ae7d22a6 526 {
b4d61099 527 var->print_value = varobj_value_get_print_value (var->value.get (),
99ad9427 528 var->format, var);
ae7d22a6
VP
529 }
530
8b93c638
JM
531 return var->format;
532}
533
534enum varobj_display_formats
b09e2c59 535varobj_get_display_format (const struct varobj *var)
8b93c638
JM
536{
537 return var->format;
538}
539
9b972014 540gdb::unique_xmalloc_ptr<char>
b09e2c59 541varobj_get_display_hint (const struct varobj *var)
b6313243 542{
9b972014 543 gdb::unique_xmalloc_ptr<char> result;
b6313243
TT
544
545#if HAVE_PYTHON
0646da15
TT
546 if (!gdb_python_initialized)
547 return NULL;
548
bde7b3e3 549 gdbpy_enter_varobj enter_py (var);
d452c4bc 550
bb5ce47a
YQ
551 if (var->dynamic->pretty_printer != NULL)
552 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
b6313243
TT
553#endif
554
555 return result;
556}
557
0cc7d26f
TT
558/* Return true if the varobj has items after TO, false otherwise. */
559
4c37490d 560bool
b09e2c59 561varobj_has_more (const struct varobj *var, int to)
0cc7d26f 562{
ddf0ea08 563 if (var->children.size () > to)
4c37490d 564 return true;
ddf0ea08
SM
565
566 return ((to == -1 || var->children.size () == to)
bb5ce47a 567 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
568}
569
c5b48eac
VP
570/* If the variable object is bound to a specific thread, that
571 is its evaluation can always be done in context of a frame
572 inside that thread, returns GDB id of the thread -- which
581e13c1 573 is always positive. Otherwise, returns -1. */
c5b48eac 574int
b09e2c59 575varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
576{
577 if (var->root->valid_block && var->root->thread_id > 0)
578 return var->root->thread_id;
579 else
580 return -1;
581}
582
25d5ea92 583void
4c37490d 584varobj_set_frozen (struct varobj *var, bool frozen)
25d5ea92
VP
585{
586 /* When a variable is unfrozen, we don't fetch its value.
587 The 'not_fetched' flag remains set, so next -var-update
588 won't complain.
589
590 We don't fetch the value, because for structures the client
591 should do -var-update anyway. It would be bad to have different
592 client-size logic for structure and other types. */
593 var->frozen = frozen;
594}
595
4c37490d 596bool
b09e2c59 597varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
598{
599 return var->frozen;
600}
601
0cc7d26f
TT
602/* A helper function that restricts a range to what is actually
603 available in a VEC. This follows the usual rules for the meaning
604 of FROM and TO -- if either is negative, the entire range is
605 used. */
606
99ad9427 607void
ddf0ea08
SM
608varobj_restrict_range (const std::vector<varobj *> &children,
609 int *from, int *to)
0cc7d26f 610{
ddf0ea08
SM
611 int len = children.size ();
612
0cc7d26f
TT
613 if (*from < 0 || *to < 0)
614 {
615 *from = 0;
ddf0ea08 616 *to = len;
0cc7d26f
TT
617 }
618 else
619 {
ddf0ea08
SM
620 if (*from > len)
621 *from = len;
622 if (*to > len)
623 *to = len;
0cc7d26f
TT
624 if (*from > *to)
625 *from = *to;
626 }
627}
628
629/* A helper for update_dynamic_varobj_children that installs a new
630 child when needed. */
631
632static void
633install_dynamic_child (struct varobj *var,
0604393c
SM
634 std::vector<varobj *> *changed,
635 std::vector<varobj *> *type_changed,
636 std::vector<varobj *> *newobj,
637 std::vector<varobj *> *unchanged,
4c37490d 638 bool *cchanged,
0cc7d26f 639 int index,
5a2e0d6e 640 struct varobj_item *item)
0cc7d26f 641{
ddf0ea08 642 if (var->children.size () < index + 1)
0cc7d26f
TT
643 {
644 /* There's no child yet. */
5a2e0d6e 645 struct varobj *child = varobj_add_child (var, item);
a109c7c1 646
0604393c 647 if (newobj != NULL)
0cc7d26f 648 {
0604393c 649 newobj->push_back (child);
4c37490d 650 *cchanged = true;
0cc7d26f
TT
651 }
652 }
bf8793bb 653 else
0cc7d26f 654 {
ddf0ea08 655 varobj *existing = var->children[index];
4c37490d 656 bool type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 657
8264ba82
AG
658 if (type_updated)
659 {
0604393c
SM
660 if (type_changed != NULL)
661 type_changed->push_back (existing);
8264ba82 662 }
5a2e0d6e 663 if (install_new_value (existing, item->value, 0))
0cc7d26f 664 {
0604393c
SM
665 if (!type_updated && changed != NULL)
666 changed->push_back (existing);
0cc7d26f 667 }
0604393c
SM
668 else if (!type_updated && unchanged != NULL)
669 unchanged->push_back (existing);
0cc7d26f
TT
670 }
671}
672
576ea091
YQ
673#if HAVE_PYTHON
674
4c37490d 675static bool
b09e2c59 676dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f 677{
bb5ce47a 678 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f 679
0646da15 680 if (!gdb_python_initialized)
4c37490d 681 return false;
0646da15 682
bde7b3e3
TT
683 gdbpy_enter_varobj enter_py (var);
684 return PyObject_HasAttr (printer, gdbpy_children_cst);
0cc7d26f 685}
576ea091 686#endif
0cc7d26f 687
e5250216
YQ
688/* A factory for creating dynamic varobj's iterators. Returns an
689 iterator object suitable for iterating over VAR's children. */
690
691static struct varobj_iter *
692varobj_get_iterator (struct varobj *var)
693{
576ea091 694#if HAVE_PYTHON
e5250216
YQ
695 if (var->dynamic->pretty_printer)
696 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 697#endif
e5250216
YQ
698
699 gdb_assert_not_reached (_("\
700requested an iterator from a non-dynamic varobj"));
701}
702
827f100c
YQ
703/* Release and clear VAR's saved item, if any. */
704
705static void
706varobj_clear_saved_item (struct varobj_dynamic *var)
707{
708 if (var->saved_item != NULL)
709 {
22bc8444 710 value_decref (var->saved_item->value);
0a8beaba 711 delete var->saved_item;
827f100c
YQ
712 var->saved_item = NULL;
713 }
714}
0cc7d26f 715
4c37490d 716static bool
b6313243 717update_dynamic_varobj_children (struct varobj *var,
0604393c
SM
718 std::vector<varobj *> *changed,
719 std::vector<varobj *> *type_changed,
720 std::vector<varobj *> *newobj,
721 std::vector<varobj *> *unchanged,
4c37490d
SM
722 bool *cchanged,
723 bool update_children,
0cc7d26f
TT
724 int from,
725 int to)
b6313243 726{
b6313243 727 int i;
b6313243 728
4c37490d 729 *cchanged = false;
b6313243 730
bb5ce47a 731 if (update_children || var->dynamic->child_iter == NULL)
b6313243 732 {
e5250216
YQ
733 varobj_iter_delete (var->dynamic->child_iter);
734 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 735
827f100c 736 varobj_clear_saved_item (var->dynamic);
b6313243 737
e5250216 738 i = 0;
b6313243 739
bb5ce47a 740 if (var->dynamic->child_iter == NULL)
4c37490d 741 return false;
b6313243 742 }
0cc7d26f 743 else
ddf0ea08 744 i = var->children.size ();
b6313243 745
0cc7d26f
TT
746 /* We ask for one extra child, so that MI can report whether there
747 are more children. */
748 for (; to < 0 || i < to + 1; ++i)
b6313243 749 {
827f100c 750 varobj_item *item;
b6313243 751
0cc7d26f 752 /* See if there was a leftover from last time. */
827f100c 753 if (var->dynamic->saved_item != NULL)
0cc7d26f 754 {
bb5ce47a
YQ
755 item = var->dynamic->saved_item;
756 var->dynamic->saved_item = NULL;
0cc7d26f
TT
757 }
758 else
a4c8e806 759 {
e5250216 760 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
761 /* Release vitem->value so its lifetime is not bound to the
762 execution of a command. */
763 if (item != NULL && item->value != NULL)
22bc8444 764 release_value (item->value).release ();
a4c8e806 765 }
b6313243 766
e5250216
YQ
767 if (item == NULL)
768 {
769 /* Iteration is done. Remove iterator from VAR. */
770 varobj_iter_delete (var->dynamic->child_iter);
771 var->dynamic->child_iter = NULL;
772 break;
773 }
0cc7d26f
TT
774 /* We don't want to push the extra child on any report list. */
775 if (to < 0 || i < to)
b6313243 776 {
4c37490d 777 bool can_mention = from < 0 || i >= from;
0cc7d26f 778
0cc7d26f 779 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 780 can_mention ? type_changed : NULL,
fe978cb0 781 can_mention ? newobj : NULL,
0cc7d26f 782 can_mention ? unchanged : NULL,
5e5ac9a5 783 can_mention ? cchanged : NULL, i,
827f100c
YQ
784 item);
785
0a8beaba 786 delete item;
b6313243 787 }
0cc7d26f 788 else
b6313243 789 {
bb5ce47a 790 var->dynamic->saved_item = item;
b6313243 791
0cc7d26f
TT
792 /* We want to truncate the child list just before this
793 element. */
794 break;
795 }
b6313243
TT
796 }
797
ddf0ea08 798 if (i < var->children.size ())
b6313243 799 {
4c37490d 800 *cchanged = true;
ddf0ea08
SM
801 for (int j = i; j < var->children.size (); ++j)
802 varobj_delete (var->children[j], 0);
803
804 var->children.resize (i);
b6313243 805 }
0cc7d26f
TT
806
807 /* If there are fewer children than requested, note that the list of
808 children changed. */
ddf0ea08 809 if (to >= 0 && var->children.size () < to)
4c37490d 810 *cchanged = true;
0cc7d26f 811
ddf0ea08 812 var->num_children = var->children.size ();
b6313243 813
4c37490d 814 return true;
b6313243 815}
25d5ea92 816
8b93c638
JM
817int
818varobj_get_num_children (struct varobj *var)
819{
820 if (var->num_children == -1)
b6313243 821 {
31f628ae 822 if (varobj_is_dynamic_p (var))
0cc7d26f 823 {
4c37490d 824 bool dummy;
0cc7d26f
TT
825
826 /* If we have a dynamic varobj, don't report -1 children.
827 So, try to fetch some children first. */
8264ba82 828 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
4c37490d 829 false, 0, 0);
0cc7d26f
TT
830 }
831 else
b6313243
TT
832 var->num_children = number_of_children (var);
833 }
8b93c638 834
0cc7d26f 835 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
836}
837
838/* Creates a list of the immediate children of a variable object;
581e13c1 839 the return code is the number of such children or -1 on error. */
8b93c638 840
ddf0ea08 841const std::vector<varobj *> &
0cc7d26f 842varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 843{
bd046f64 844 var->dynamic->children_requested = true;
b6313243 845
31f628ae 846 if (varobj_is_dynamic_p (var))
0cc7d26f 847 {
4c37490d
SM
848 bool children_changed;
849
b6313243
TT
850 /* This, in theory, can result in the number of children changing without
851 frontend noticing. But well, calling -var-list-children on the same
852 varobj twice is not something a sane frontend would do. */
8264ba82 853 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
4c37490d 854 &children_changed, false, 0, *to);
99ad9427 855 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
856 return var->children;
857 }
8b93c638 858
8b93c638
JM
859 if (var->num_children == -1)
860 var->num_children = number_of_children (var);
861
74a44383
DJ
862 /* If that failed, give up. */
863 if (var->num_children == -1)
d56d46f5 864 return var->children;
74a44383 865
28335dcc
VP
866 /* If we're called when the list of children is not yet initialized,
867 allocate enough elements in it. */
ddf0ea08
SM
868 while (var->children.size () < var->num_children)
869 var->children.push_back (NULL);
28335dcc 870
ddf0ea08 871 for (int i = 0; i < var->num_children; i++)
8b93c638 872 {
ddf0ea08 873 if (var->children[i] == NULL)
28335dcc
VP
874 {
875 /* Either it's the first call to varobj_list_children for
876 this variable object, and the child was never created,
877 or it was explicitly deleted by the client. */
2f408ecb 878 std::string name = name_of_child (var, i);
ddf0ea08 879 var->children[i] = create_child (var, i, name);
28335dcc 880 }
8b93c638
JM
881 }
882
99ad9427 883 varobj_restrict_range (var->children, from, to);
d56d46f5 884 return var->children;
8b93c638
JM
885}
886
b6313243 887static struct varobj *
5a2e0d6e 888varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 889{
ddf0ea08
SM
890 varobj *v = create_child_with_value (var, var->children.size (), item);
891
892 var->children.push_back (v);
a109c7c1 893
b6313243
TT
894 return v;
895}
896
8b93c638 897/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
898 prints on the console. The caller is responsible for freeing the string.
899 */
8b93c638 900
2f408ecb 901std::string
8b93c638
JM
902varobj_get_type (struct varobj *var)
903{
8ab91b96 904 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
905 NULL, too.)
906 Do not return a type for invalid variables as well. */
907 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
2f408ecb 908 return std::string ();
8b93c638 909
1a4300e9 910 return type_to_string (var->type);
8b93c638
JM
911}
912
1ecb4ee0
DJ
913/* Obtain the type of an object variable. */
914
915struct type *
b09e2c59 916varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
917{
918 return var->type;
919}
920
85254831
KS
921/* Is VAR a path expression parent, i.e., can it be used to construct
922 a valid path expression? */
923
4c37490d 924static bool
b09e2c59 925is_path_expr_parent (const struct varobj *var)
85254831 926{
9a9a7608
AB
927 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
928 return var->root->lang_ops->is_path_expr_parent (var);
929}
85254831 930
9a9a7608
AB
931/* Is VAR a path expression parent, i.e., can it be used to construct
932 a valid path expression? By default we assume any VAR can be a path
933 parent. */
85254831 934
4c37490d 935bool
b09e2c59 936varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608 937{
4c37490d 938 return true;
85254831
KS
939}
940
941/* Return the path expression parent for VAR. */
942
c1cc6152
SM
943const struct varobj *
944varobj_get_path_expr_parent (const struct varobj *var)
85254831 945{
c1cc6152 946 const struct varobj *parent = var;
85254831
KS
947
948 while (!is_root_p (parent) && !is_path_expr_parent (parent))
949 parent = parent->parent;
950
5abe0f0c
JV
951 /* Computation of full rooted expression for children of dynamic
952 varobjs is not supported. */
953 if (varobj_is_dynamic_p (parent))
954 error (_("Invalid variable object (child of a dynamic varobj)"));
955
85254831
KS
956 return parent;
957}
958
02142340
VP
959/* Return a pointer to the full rooted expression of varobj VAR.
960 If it has not been computed yet, compute it. */
2f408ecb
PA
961
962const char *
c1cc6152 963varobj_get_path_expr (const struct varobj *var)
02142340 964{
2f408ecb 965 if (var->path_expr.empty ())
02142340
VP
966 {
967 /* For root varobjs, we initialize path_expr
968 when creating varobj, so here it should be
969 child varobj. */
c1cc6152 970 struct varobj *mutable_var = (struct varobj *) var;
02142340 971 gdb_assert (!is_root_p (var));
2568868e 972
c1cc6152 973 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 974 }
2568868e 975
2f408ecb 976 return var->path_expr.c_str ();
02142340
VP
977}
978
fa4d0c40 979const struct language_defn *
b09e2c59 980varobj_get_language (const struct varobj *var)
8b93c638 981{
fa4d0c40 982 return var->root->exp->language_defn;
8b93c638
JM
983}
984
985int
b09e2c59 986varobj_get_attributes (const struct varobj *var)
8b93c638
JM
987{
988 int attributes = 0;
989
340a7723 990 if (varobj_editable_p (var))
581e13c1 991 /* FIXME: define masks for attributes. */
8b93c638
JM
992 attributes |= 0x00000001; /* Editable */
993
994 return attributes;
995}
996
cde5ef40
YQ
997/* Return true if VAR is a dynamic varobj. */
998
4c37490d 999bool
b09e2c59 1000varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 1001{
bb5ce47a 1002 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1003}
1004
2f408ecb 1005std::string
de051565
MK
1006varobj_get_formatted_value (struct varobj *var,
1007 enum varobj_display_formats format)
1008{
1009 return my_value_of_variable (var, format);
1010}
1011
2f408ecb 1012std::string
8b93c638
JM
1013varobj_get_value (struct varobj *var)
1014{
de051565 1015 return my_value_of_variable (var, var->format);
8b93c638
JM
1016}
1017
1018/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1019 value of the given expression. */
1020/* Note: Invokes functions that can call error(). */
8b93c638 1021
4c37490d 1022bool
2f408ecb 1023varobj_set_value (struct varobj *var, const char *expression)
8b93c638 1024{
34365054 1025 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1026 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1027 We need to first construct a legal expression for this -- ugh! */
1028 /* Does this cover all the bases? */
34365054 1029 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1030 int saved_input_radix = input_radix;
bbc13ae3 1031 const char *s = expression;
8b93c638 1032
340a7723 1033 gdb_assert (varobj_editable_p (var));
8b93c638 1034
581e13c1 1035 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
4d01a485 1036 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
492d29ea 1037 TRY
8e7b59a5 1038 {
4d01a485 1039 value = evaluate_expression (exp.get ());
8e7b59a5
KS
1040 }
1041
492d29ea 1042 CATCH (except, RETURN_MASK_ERROR)
340a7723 1043 {
581e13c1 1044 /* We cannot proceed without a valid expression. */
4c37490d 1045 return false;
8b93c638 1046 }
492d29ea 1047 END_CATCH
8b93c638 1048
340a7723
NR
1049 /* All types that are editable must also be changeable. */
1050 gdb_assert (varobj_value_is_changeable_p (var));
1051
1052 /* The value of a changeable variable object must not be lazy. */
b4d61099 1053 gdb_assert (!value_lazy (var->value.get ()));
340a7723
NR
1054
1055 /* Need to coerce the input. We want to check if the
1056 value of the variable object will be different
1057 after assignment, and the first thing value_assign
1058 does is coerce the input.
1059 For example, if we are assigning an array to a pointer variable we
b021a221 1060 should compare the pointer with the array's address, not with the
340a7723
NR
1061 array's content. */
1062 value = coerce_array (value);
1063
8e7b59a5
KS
1064 /* The new value may be lazy. value_assign, or
1065 rather value_contents, will take care of this. */
492d29ea 1066 TRY
8e7b59a5 1067 {
b4d61099 1068 val = value_assign (var->value.get (), value);
8e7b59a5
KS
1069 }
1070
492d29ea
PA
1071 CATCH (except, RETURN_MASK_ERROR)
1072 {
4c37490d 1073 return false;
492d29ea
PA
1074 }
1075 END_CATCH
8e7b59a5 1076
340a7723
NR
1077 /* If the value has changed, record it, so that next -var-update can
1078 report this change. If a variable had a value of '1', we've set it
1079 to '333' and then set again to '1', when -var-update will report this
1080 variable as changed -- because the first assignment has set the
1081 'updated' flag. There's no need to optimize that, because return value
1082 of -var-update should be considered an approximation. */
4c37490d 1083 var->updated = install_new_value (var, val, false /* Compare values. */);
340a7723 1084 input_radix = saved_input_radix;
4c37490d 1085 return true;
8b93c638
JM
1086}
1087
0cc7d26f
TT
1088#if HAVE_PYTHON
1089
1090/* A helper function to install a constructor function and visualizer
bb5ce47a 1091 in a varobj_dynamic. */
0cc7d26f
TT
1092
1093static void
bb5ce47a 1094install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1095 PyObject *visualizer)
1096{
1097 Py_XDECREF (var->constructor);
1098 var->constructor = constructor;
1099
1100 Py_XDECREF (var->pretty_printer);
1101 var->pretty_printer = visualizer;
1102
e5250216 1103 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1104 var->child_iter = NULL;
1105}
1106
1107/* Install the default visualizer for VAR. */
1108
1109static void
1110install_default_visualizer (struct varobj *var)
1111{
d65aec65
PM
1112 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1113 if (CPLUS_FAKE_CHILD (var))
1114 return;
1115
0cc7d26f
TT
1116 if (pretty_printing)
1117 {
a31abe80 1118 gdbpy_ref<> pretty_printer;
0cc7d26f 1119
b4d61099 1120 if (var->value != nullptr)
0cc7d26f 1121 {
b4d61099 1122 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
a31abe80 1123 if (pretty_printer == nullptr)
0cc7d26f
TT
1124 {
1125 gdbpy_print_stack ();
1126 error (_("Cannot instantiate printer for default visualizer"));
1127 }
1128 }
a31abe80 1129
0cc7d26f 1130 if (pretty_printer == Py_None)
a31abe80 1131 pretty_printer.release ();
0cc7d26f 1132
a31abe80 1133 install_visualizer (var->dynamic, NULL, pretty_printer.release ());
0cc7d26f
TT
1134 }
1135}
1136
1137/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1138 make a new object. */
1139
1140static void
1141construct_visualizer (struct varobj *var, PyObject *constructor)
1142{
1143 PyObject *pretty_printer;
1144
d65aec65
PM
1145 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1146 if (CPLUS_FAKE_CHILD (var))
1147 return;
1148
0cc7d26f
TT
1149 Py_INCREF (constructor);
1150 if (constructor == Py_None)
1151 pretty_printer = NULL;
1152 else
1153 {
b4d61099
TT
1154 pretty_printer = instantiate_pretty_printer (constructor,
1155 var->value.get ());
0cc7d26f
TT
1156 if (! pretty_printer)
1157 {
1158 gdbpy_print_stack ();
1159 Py_DECREF (constructor);
1160 constructor = Py_None;
1161 Py_INCREF (constructor);
1162 }
1163
1164 if (pretty_printer == Py_None)
1165 {
1166 Py_DECREF (pretty_printer);
1167 pretty_printer = NULL;
1168 }
1169 }
1170
bb5ce47a 1171 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1172}
1173
1174#endif /* HAVE_PYTHON */
1175
1176/* A helper function for install_new_value. This creates and installs
1177 a visualizer for VAR, if appropriate. */
1178
1179static void
1180install_new_value_visualizer (struct varobj *var)
1181{
1182#if HAVE_PYTHON
1183 /* If the constructor is None, then we want the raw value. If VAR
1184 does not have a value, just skip this. */
0646da15
TT
1185 if (!gdb_python_initialized)
1186 return;
1187
bb5ce47a 1188 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f 1189 {
bde7b3e3 1190 gdbpy_enter_varobj enter_py (var);
0cc7d26f 1191
bb5ce47a 1192 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1193 install_default_visualizer (var);
1194 else
bb5ce47a 1195 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1196 }
1197#else
1198 /* Do nothing. */
1199#endif
1200}
1201
8264ba82
AG
1202/* When using RTTI to determine variable type it may be changed in runtime when
1203 the variable value is changed. This function checks whether type of varobj
1204 VAR will change when a new value NEW_VALUE is assigned and if it is so
1205 updates the type of VAR. */
1206
4c37490d 1207static bool
8264ba82
AG
1208update_type_if_necessary (struct varobj *var, struct value *new_value)
1209{
1210 if (new_value)
1211 {
1212 struct value_print_options opts;
1213
1214 get_user_print_options (&opts);
1215 if (opts.objectprint)
1216 {
2f408ecb
PA
1217 struct type *new_type = value_actual_type (new_value, 0, 0);
1218 std::string new_type_str = type_to_string (new_type);
1219 std::string curr_type_str = varobj_get_type (var);
8264ba82 1220
2f408ecb
PA
1221 /* Did the type name change? */
1222 if (curr_type_str != new_type_str)
8264ba82
AG
1223 {
1224 var->type = new_type;
1225
1226 /* This information may be not valid for a new type. */
30914ca8 1227 varobj_delete (var, 1);
ddf0ea08 1228 var->children.clear ();
8264ba82 1229 var->num_children = -1;
4c37490d 1230 return true;
8264ba82
AG
1231 }
1232 }
1233 }
1234
4c37490d 1235 return false;
8264ba82
AG
1236}
1237
4c37490d
SM
1238/* Assign a new value to a variable object. If INITIAL is true,
1239 this is the first assignment after the variable object was just
acd65feb 1240 created, or changed type. In that case, just assign the value
4c37490d
SM
1241 and return false.
1242 Otherwise, assign the new value, and return true if the value is
1243 different from the current one, false otherwise. The comparison is
581e13c1
MS
1244 done on textual representation of value. Therefore, some types
1245 need not be compared. E.g. for structures the reported value is
1246 always "{...}", so no comparison is necessary here. If the old
4c37490d 1247 value was NULL and new one is not, or vice versa, we always return true.
b26ed50d
VP
1248
1249 The VALUE parameter should not be released -- the function will
1250 take care of releasing it when needed. */
4c37490d
SM
1251static bool
1252install_new_value (struct varobj *var, struct value *value, bool initial)
acd65feb 1253{
4c37490d
SM
1254 bool changeable;
1255 bool need_to_fetch;
1256 bool changed = false;
1257 bool intentionally_not_fetched = false;
acd65feb 1258
acd65feb 1259 /* We need to know the varobj's type to decide if the value should
3e43a32a 1260 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1261 don't have a type. */
acd65feb 1262 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1263 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1264
1265 /* If the type has custom visualizer, we consider it to be always
581e13c1 1266 changeable. FIXME: need to make sure this behaviour will not
b6313243 1267 mess up read-sensitive values. */
bb5ce47a 1268 if (var->dynamic->pretty_printer != NULL)
4c37490d 1269 changeable = true;
b6313243 1270
acd65feb
VP
1271 need_to_fetch = changeable;
1272
b26ed50d
VP
1273 /* We are not interested in the address of references, and given
1274 that in C++ a reference is not rebindable, it cannot
1275 meaningfully change. So, get hold of the real value. */
1276 if (value)
0cc7d26f 1277 value = coerce_ref (value);
b26ed50d 1278
acd65feb
VP
1279 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1280 /* For unions, we need to fetch the value implicitly because
1281 of implementation of union member fetch. When gdb
1282 creates a value for a field and the value of the enclosing
1283 structure is not lazy, it immediately copies the necessary
1284 bytes from the enclosing values. If the enclosing value is
1285 lazy, the call to value_fetch_lazy on the field will read
1286 the data from memory. For unions, that means we'll read the
1287 same memory more than once, which is not desirable. So
1288 fetch now. */
4c37490d 1289 need_to_fetch = true;
acd65feb
VP
1290
1291 /* The new value might be lazy. If the type is changeable,
1292 that is we'll be comparing values of this type, fetch the
1293 value now. Otherwise, on the next update the old value
1294 will be lazy, which means we've lost that old value. */
1295 if (need_to_fetch && value && value_lazy (value))
1296 {
c1cc6152 1297 const struct varobj *parent = var->parent;
4c37490d 1298 bool frozen = var->frozen;
a109c7c1 1299
25d5ea92
VP
1300 for (; !frozen && parent; parent = parent->parent)
1301 frozen |= parent->frozen;
1302
1303 if (frozen && initial)
1304 {
1305 /* For variables that are frozen, or are children of frozen
1306 variables, we don't do fetch on initial assignment.
1307 For non-initial assignemnt we do the fetch, since it means we're
1308 explicitly asked to compare the new value with the old one. */
4c37490d 1309 intentionally_not_fetched = true;
25d5ea92 1310 }
8e7b59a5 1311 else
acd65feb 1312 {
8e7b59a5 1313
492d29ea 1314 TRY
8e7b59a5
KS
1315 {
1316 value_fetch_lazy (value);
1317 }
1318
492d29ea 1319 CATCH (except, RETURN_MASK_ERROR)
8e7b59a5
KS
1320 {
1321 /* Set the value to NULL, so that for the next -var-update,
1322 we don't try to compare the new value with this value,
1323 that we couldn't even read. */
1324 value = NULL;
1325 }
492d29ea 1326 END_CATCH
acd65feb 1327 }
acd65feb
VP
1328 }
1329
e848a8a5
TT
1330 /* Get a reference now, before possibly passing it to any Python
1331 code that might release it. */
b4d61099 1332 value_ref_ptr value_holder;
e848a8a5 1333 if (value != NULL)
bbfa6f00 1334 value_holder = value_ref_ptr::new_reference (value);
b6313243 1335
7a4d50bf
VP
1336 /* Below, we'll be comparing string rendering of old and new
1337 values. Don't get string rendering if the value is
1338 lazy -- if it is, the code above has decided that the value
1339 should not be fetched. */
2f408ecb 1340 std::string print_value;
bb5ce47a
YQ
1341 if (value != NULL && !value_lazy (value)
1342 && var->dynamic->pretty_printer == NULL)
99ad9427 1343 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1344
acd65feb
VP
1345 /* If the type is changeable, compare the old and the new values.
1346 If this is the initial assignment, we don't have any old value
1347 to compare with. */
7a4d50bf 1348 if (!initial && changeable)
acd65feb 1349 {
3e43a32a
MS
1350 /* If the value of the varobj was changed by -var-set-value,
1351 then the value in the varobj and in the target is the same.
1352 However, that value is different from the value that the
581e13c1 1353 varobj had after the previous -var-update. So need to the
3e43a32a 1354 varobj as changed. */
acd65feb 1355 if (var->updated)
4c37490d 1356 changed = true;
bb5ce47a 1357 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1358 {
1359 /* Try to compare the values. That requires that both
1360 values are non-lazy. */
b4d61099 1361 if (var->not_fetched && value_lazy (var->value.get ()))
25d5ea92
VP
1362 {
1363 /* This is a frozen varobj and the value was never read.
1364 Presumably, UI shows some "never read" indicator.
1365 Now that we've fetched the real value, we need to report
1366 this varobj as changed so that UI can show the real
1367 value. */
4c37490d 1368 changed = true;
25d5ea92
VP
1369 }
1370 else if (var->value == NULL && value == NULL)
581e13c1 1371 /* Equal. */
acd65feb
VP
1372 ;
1373 else if (var->value == NULL || value == NULL)
57e66780 1374 {
4c37490d 1375 changed = true;
57e66780 1376 }
acd65feb
VP
1377 else
1378 {
b4d61099 1379 gdb_assert (!value_lazy (var->value.get ()));
acd65feb 1380 gdb_assert (!value_lazy (value));
85265413 1381
2f408ecb
PA
1382 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1383 if (var->print_value != print_value)
4c37490d 1384 changed = true;
acd65feb
VP
1385 }
1386 }
1387 }
85265413 1388
ee342b23
VP
1389 if (!initial && !changeable)
1390 {
1391 /* For values that are not changeable, we don't compare the values.
1392 However, we want to notice if a value was not NULL and now is NULL,
1393 or vise versa, so that we report when top-level varobjs come in scope
1394 and leave the scope. */
1395 changed = (var->value != NULL) != (value != NULL);
1396 }
1397
acd65feb 1398 /* We must always keep the new value, since children depend on it. */
b4d61099 1399 var->value = value_holder;
25d5ea92 1400 if (value && value_lazy (value) && intentionally_not_fetched)
4c37490d 1401 var->not_fetched = true;
25d5ea92 1402 else
4c37490d
SM
1403 var->not_fetched = false;
1404 var->updated = false;
85265413 1405
0cc7d26f
TT
1406 install_new_value_visualizer (var);
1407
1408 /* If we installed a pretty-printer, re-compare the printed version
1409 to see if the variable changed. */
bb5ce47a 1410 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 1411 {
b4d61099
TT
1412 print_value = varobj_value_get_print_value (var->value.get (),
1413 var->format, var);
2f408ecb
PA
1414 if ((var->print_value.empty () && !print_value.empty ())
1415 || (!var->print_value.empty () && print_value.empty ())
1416 || (!var->print_value.empty () && !print_value.empty ()
1417 && var->print_value != print_value))
4c37490d 1418 changed = true;
0cc7d26f 1419 }
0cc7d26f
TT
1420 var->print_value = print_value;
1421
b4d61099 1422 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
acd65feb
VP
1423
1424 return changed;
1425}
acd65feb 1426
0cc7d26f
TT
1427/* Return the requested range for a varobj. VAR is the varobj. FROM
1428 and TO are out parameters; *FROM and *TO will be set to the
1429 selected sub-range of VAR. If no range was selected using
1430 -var-set-update-range, then both will be -1. */
1431void
b09e2c59 1432varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1433{
0cc7d26f
TT
1434 *from = var->from;
1435 *to = var->to;
b6313243
TT
1436}
1437
0cc7d26f
TT
1438/* Set the selected sub-range of children of VAR to start at index
1439 FROM and end at index TO. If either FROM or TO is less than zero,
1440 this is interpreted as a request for all children. */
1441void
1442varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1443{
0cc7d26f
TT
1444 var->from = from;
1445 var->to = to;
b6313243
TT
1446}
1447
1448void
1449varobj_set_visualizer (struct varobj *var, const char *visualizer)
1450{
1451#if HAVE_PYTHON
bde7b3e3 1452 PyObject *mainmod;
b6313243 1453
0646da15
TT
1454 if (!gdb_python_initialized)
1455 return;
1456
bde7b3e3 1457 gdbpy_enter_varobj enter_py (var);
b6313243
TT
1458
1459 mainmod = PyImport_AddModule ("__main__");
7c66fffc
TT
1460 gdbpy_ref<> globals
1461 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
7780f186
TT
1462 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1463 globals.get (), globals.get ()));
b6313243 1464
bde7b3e3 1465 if (constructor == NULL)
b6313243
TT
1466 {
1467 gdbpy_print_stack ();
da1f2771 1468 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1469 }
1470
bde7b3e3 1471 construct_visualizer (var, constructor.get ());
b6313243 1472
0cc7d26f 1473 /* If there are any children now, wipe them. */
30914ca8 1474 varobj_delete (var, 1 /* children only */);
0cc7d26f 1475 var->num_children = -1;
b6313243 1476#else
da1f2771 1477 error (_("Python support required"));
b6313243
TT
1478#endif
1479}
1480
7a290c40 1481/* If NEW_VALUE is the new value of the given varobj (var), return
4c37490d 1482 true if var has mutated. In other words, if the type of
7a290c40
JB
1483 the new value is different from the type of the varobj's old
1484 value.
1485
1486 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1487
4c37490d 1488static bool
b09e2c59 1489varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1490 struct type *new_type)
1491{
1492 /* If we haven't previously computed the number of children in var,
1493 it does not matter from the front-end's perspective whether
1494 the type has mutated or not. For all intents and purposes,
1495 it has not mutated. */
1496 if (var->num_children < 0)
4c37490d 1497 return false;
7a290c40 1498
4c37490d 1499 if (var->root->lang_ops->value_has_mutated != NULL)
8776cfe9
JB
1500 {
1501 /* The varobj module, when installing new values, explicitly strips
1502 references, saying that we're not interested in those addresses.
1503 But detection of mutation happens before installing the new
1504 value, so our value may be a reference that we need to strip
1505 in order to remain consistent. */
1506 if (new_value != NULL)
1507 new_value = coerce_ref (new_value);
1508 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1509 }
7a290c40 1510 else
4c37490d 1511 return false;
7a290c40
JB
1512}
1513
8b93c638
JM
1514/* Update the values for a variable and its children. This is a
1515 two-pronged attack. First, re-parse the value for the root's
1516 expression to see if it's changed. Then go all the way
1517 through its children, reconstructing them and noting if they've
1518 changed.
1519
4c37490d 1520 The IS_EXPLICIT parameter specifies if this call is result
25d5ea92 1521 of MI request to update this specific variable, or
581e13c1 1522 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1523 update frozen variables.
705da579 1524
581e13c1 1525 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1526 returns TYPE_CHANGED, then it has done this and VARP will be modified
1527 to point to the new varobj. */
8b93c638 1528
0604393c 1529std::vector<varobj_update_result>
4c37490d 1530varobj_update (struct varobj **varp, bool is_explicit)
8b93c638 1531{
4c37490d 1532 bool type_changed = false;
fe978cb0 1533 struct value *newobj;
0604393c
SM
1534 std::vector<varobj_update_result> stack;
1535 std::vector<varobj_update_result> result;
8b93c638 1536
25d5ea92
VP
1537 /* Frozen means frozen -- we don't check for any change in
1538 this varobj, including its going out of scope, or
1539 changing type. One use case for frozen varobjs is
1540 retaining previously evaluated expressions, and we don't
1541 want them to be reevaluated at all. */
fe978cb0 1542 if (!is_explicit && (*varp)->frozen)
f7f9ae2c 1543 return result;
8756216b
DP
1544
1545 if (!(*varp)->root->is_valid)
f7f9ae2c 1546 {
0604393c 1547 result.emplace_back (*varp, VAROBJ_INVALID);
f7f9ae2c
VP
1548 return result;
1549 }
8b93c638 1550
25d5ea92 1551 if ((*varp)->root->rootvar == *varp)
ae093f96 1552 {
0604393c 1553 varobj_update_result r (*varp);
f7f9ae2c 1554
581e13c1 1555 /* Update the root variable. value_of_root can return NULL
25d5ea92 1556 if the variable is no longer around, i.e. we stepped out of
581e13c1 1557 the frame in which a local existed. We are letting the
25d5ea92
VP
1558 value_of_root variable dispose of the varobj if the type
1559 has changed. */
fe978cb0 1560 newobj = value_of_root (varp, &type_changed);
4c37490d
SM
1561 if (update_type_if_necessary (*varp, newobj))
1562 type_changed = true;
f7f9ae2c 1563 r.varobj = *varp;
f7f9ae2c 1564 r.type_changed = type_changed;
fe978cb0 1565 if (install_new_value ((*varp), newobj, type_changed))
4c37490d 1566 r.changed = true;
ea56f9c2 1567
fe978cb0 1568 if (newobj == NULL)
f7f9ae2c 1569 r.status = VAROBJ_NOT_IN_SCOPE;
4c37490d 1570 r.value_installed = true;
f7f9ae2c
VP
1571
1572 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1573 {
0b4bc29a 1574 if (r.type_changed || r.changed)
0604393c
SM
1575 result.push_back (std::move (r));
1576
b6313243
TT
1577 return result;
1578 }
a109c7c1 1579
0604393c 1580 stack.push_back (std::move (r));
b20d8971 1581 }
0604393c
SM
1582 else
1583 stack.emplace_back (*varp);
8b93c638 1584
8756216b 1585 /* Walk through the children, reconstructing them all. */
0604393c 1586 while (!stack.empty ())
8b93c638 1587 {
0604393c
SM
1588 varobj_update_result r = std::move (stack.back ());
1589 stack.pop_back ();
b6313243
TT
1590 struct varobj *v = r.varobj;
1591
b6313243
TT
1592 /* Update this variable, unless it's a root, which is already
1593 updated. */
1594 if (!r.value_installed)
7a290c40
JB
1595 {
1596 struct type *new_type;
1597
fe978cb0 1598 newobj = value_of_child (v->parent, v->index);
4c37490d
SM
1599 if (update_type_if_necessary (v, newobj))
1600 r.type_changed = true;
fe978cb0
PA
1601 if (newobj)
1602 new_type = value_type (newobj);
7a290c40 1603 else
ca20d462 1604 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40 1605
fe978cb0 1606 if (varobj_value_has_mutated (v, newobj, new_type))
7a290c40
JB
1607 {
1608 /* The children are no longer valid; delete them now.
1609 Report the fact that its type changed as well. */
30914ca8 1610 varobj_delete (v, 1 /* only_children */);
7a290c40
JB
1611 v->num_children = -1;
1612 v->to = -1;
1613 v->from = -1;
1614 v->type = new_type;
4c37490d 1615 r.type_changed = true;
7a290c40
JB
1616 }
1617
fe978cb0 1618 if (install_new_value (v, newobj, r.type_changed))
b6313243 1619 {
4c37490d
SM
1620 r.changed = true;
1621 v->updated = false;
b6313243
TT
1622 }
1623 }
1624
31f628ae
YQ
1625 /* We probably should not get children of a dynamic varobj, but
1626 for which -var-list-children was never invoked. */
1627 if (varobj_is_dynamic_p (v))
b6313243 1628 {
b926417a 1629 std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
4c37490d 1630 bool children_changed = false;
b6313243
TT
1631
1632 if (v->frozen)
1633 continue;
1634
bd046f64 1635 if (!v->dynamic->children_requested)
0cc7d26f 1636 {
4c37490d 1637 bool dummy;
0cc7d26f
TT
1638
1639 /* If we initially did not have potential children, but
1640 now we do, consider the varobj as changed.
1641 Otherwise, if children were never requested, consider
1642 it as unchanged -- presumably, such varobj is not yet
1643 expanded in the UI, so we need not bother getting
1644 it. */
1645 if (!varobj_has_more (v, 0))
1646 {
8264ba82 1647 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
4c37490d 1648 &dummy, false, 0, 0);
0cc7d26f 1649 if (varobj_has_more (v, 0))
4c37490d 1650 r.changed = true;
0cc7d26f
TT
1651 }
1652
1653 if (r.changed)
0604393c 1654 result.push_back (std::move (r));
0cc7d26f
TT
1655
1656 continue;
1657 }
1658
4c37490d 1659 /* If update_dynamic_varobj_children returns false, then we have
b6313243 1660 a non-conforming pretty-printer, so we skip it. */
b926417a
TT
1661 if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
1662 &newobj_vec,
1663 &unchanged, &children_changed,
1664 true, v->from, v->to))
b6313243 1665 {
b926417a 1666 if (children_changed || !newobj_vec.empty ())
b6313243 1667 {
4c37490d 1668 r.children_changed = true;
b926417a 1669 r.newobj = std::move (newobj_vec);
b6313243 1670 }
0cc7d26f
TT
1671 /* Push in reverse order so that the first child is
1672 popped from the work stack first, and so will be
1673 added to result first. This does not affect
1674 correctness, just "nicer". */
b926417a 1675 for (int i = type_changed_vec.size () - 1; i >= 0; --i)
8264ba82 1676 {
b926417a 1677 varobj_update_result item (type_changed_vec[i]);
8264ba82
AG
1678
1679 /* Type may change only if value was changed. */
b926417a
TT
1680 item.changed = true;
1681 item.type_changed = true;
1682 item.value_installed = true;
0604393c 1683
b926417a 1684 stack.push_back (std::move (item));
8264ba82 1685 }
0604393c 1686 for (int i = changed.size () - 1; i >= 0; --i)
b6313243 1687 {
b926417a 1688 varobj_update_result item (changed[i]);
a109c7c1 1689
b926417a
TT
1690 item.changed = true;
1691 item.value_installed = true;
0604393c 1692
b926417a 1693 stack.push_back (std::move (item));
b6313243 1694 }
0604393c
SM
1695 for (int i = unchanged.size () - 1; i >= 0; --i)
1696 {
1697 if (!unchanged[i]->frozen)
1698 {
b926417a 1699 varobj_update_result item (unchanged[i]);
0604393c 1700
b926417a 1701 item.value_installed = true;
0cc7d26f 1702
b926417a 1703 stack.push_back (std::move (item));
0604393c
SM
1704 }
1705 }
1706 if (r.changed || r.children_changed)
1707 result.push_back (std::move (r));
0cc7d26f 1708
b6313243
TT
1709 continue;
1710 }
1711 }
28335dcc
VP
1712
1713 /* Push any children. Use reverse order so that the first
1714 child is popped from the work stack first, and so
1715 will be added to result first. This does not
1716 affect correctness, just "nicer". */
0604393c 1717 for (int i = v->children.size () - 1; i >= 0; --i)
8b93c638 1718 {
ddf0ea08 1719 varobj *c = v->children[i];
a109c7c1 1720
28335dcc 1721 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1722 if (c != NULL && !c->frozen)
0604393c 1723 stack.emplace_back (c);
8b93c638 1724 }
b6313243
TT
1725
1726 if (r.changed || r.type_changed)
0604393c 1727 result.push_back (std::move (r));
8b93c638
JM
1728 }
1729
f7f9ae2c 1730 return result;
8b93c638 1731}
8b93c638
JM
1732
1733/* Helper functions */
1734
1735/*
1736 * Variable object construction/destruction
1737 */
1738
1739static int
4c37490d 1740delete_variable (struct varobj *var, bool only_children_p)
8b93c638
JM
1741{
1742 int delcount = 0;
1743
30914ca8 1744 delete_variable_1 (&delcount, var, only_children_p,
4c37490d 1745 true /* remove_from_parent_p */ );
8b93c638
JM
1746
1747 return delcount;
1748}
1749
581e13c1 1750/* Delete the variable object VAR and its children. */
8b93c638
JM
1751/* IMPORTANT NOTE: If we delete a variable which is a child
1752 and the parent is not removed we dump core. It must be always
581e13c1 1753 initially called with remove_from_parent_p set. */
8b93c638 1754static void
4c37490d
SM
1755delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1756 bool remove_from_parent_p)
8b93c638 1757{
581e13c1 1758 /* Delete any children of this variable, too. */
ddf0ea08 1759 for (varobj *child : var->children)
28335dcc 1760 {
214270ab
VP
1761 if (!child)
1762 continue;
ddf0ea08 1763
8b93c638 1764 if (!remove_from_parent_p)
28335dcc 1765 child->parent = NULL;
ddf0ea08 1766
4c37490d 1767 delete_variable_1 (delcountp, child, false, only_children_p);
8b93c638 1768 }
ddf0ea08 1769 var->children.clear ();
8b93c638 1770
581e13c1 1771 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1772 if (only_children_p)
1773 return;
1774
581e13c1 1775 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2f408ecb 1776 /* If the name is empty, this is a temporary variable, that has not
581e13c1 1777 yet been installed, don't report it, it belongs to the caller... */
2f408ecb 1778 if (!var->obj_name.empty ())
8b93c638 1779 {
8b93c638
JM
1780 *delcountp = *delcountp + 1;
1781 }
1782
581e13c1 1783 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1784 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1785 (as indicated by remove_from_parent_p) we don't bother doing an
1786 expensive list search to find the element to remove when we are
581e13c1 1787 discarding the list afterwards. */
72330bd6 1788 if ((remove_from_parent_p) && (var->parent != NULL))
ddf0ea08 1789 var->parent->children[var->index] = NULL;
72330bd6 1790
2f408ecb 1791 if (!var->obj_name.empty ())
73a93a32 1792 uninstall_variable (var);
8b93c638 1793
581e13c1 1794 /* Free memory associated with this variable. */
9e5b9d2b 1795 delete var;
8b93c638
JM
1796}
1797
581e13c1 1798/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
4c37490d 1799static bool
fba45db2 1800install_variable (struct varobj *var)
8b93c638
JM
1801{
1802 struct vlist *cv;
1803 struct vlist *newvl;
1804 const char *chp;
1805 unsigned int index = 0;
1806 unsigned int i = 1;
1807
2f408ecb 1808 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1809 {
1810 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1811 }
1812
1813 cv = *(varobj_table + index);
2f408ecb 1814 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1815 cv = cv->next;
1816
1817 if (cv != NULL)
8a3fe4f8 1818 error (_("Duplicate variable object name"));
8b93c638 1819
581e13c1 1820 /* Add varobj to hash table. */
8d749320 1821 newvl = XNEW (struct vlist);
8b93c638
JM
1822 newvl->next = *(varobj_table + index);
1823 newvl->var = var;
1824 *(varobj_table + index) = newvl;
1825
581e13c1 1826 /* If root, add varobj to root list. */
b2c2bd75 1827 if (is_root_p (var))
8b93c638 1828 {
581e13c1 1829 /* Add to list of root variables. */
8b93c638
JM
1830 if (rootlist == NULL)
1831 var->root->next = NULL;
1832 else
1833 var->root->next = rootlist;
1834 rootlist = var->root;
8b93c638
JM
1835 }
1836
4c37490d 1837 return true; /* OK */
8b93c638
JM
1838}
1839
581e13c1 1840/* Unistall the object VAR. */
8b93c638 1841static void
fba45db2 1842uninstall_variable (struct varobj *var)
8b93c638
JM
1843{
1844 struct vlist *cv;
1845 struct vlist *prev;
1846 struct varobj_root *cr;
1847 struct varobj_root *prer;
1848 const char *chp;
1849 unsigned int index = 0;
1850 unsigned int i = 1;
1851
581e13c1 1852 /* Remove varobj from hash table. */
2f408ecb 1853 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1854 {
1855 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1856 }
1857
1858 cv = *(varobj_table + index);
1859 prev = NULL;
2f408ecb 1860 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1861 {
1862 prev = cv;
1863 cv = cv->next;
1864 }
1865
1866 if (varobjdebug)
2f408ecb 1867 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
8b93c638
JM
1868
1869 if (cv == NULL)
1870 {
72330bd6
AC
1871 warning
1872 ("Assertion failed: Could not find variable object \"%s\" to delete",
2f408ecb 1873 var->obj_name.c_str ());
8b93c638
JM
1874 return;
1875 }
1876
1877 if (prev == NULL)
1878 *(varobj_table + index) = cv->next;
1879 else
1880 prev->next = cv->next;
1881
b8c9b27d 1882 xfree (cv);
8b93c638 1883
581e13c1 1884 /* If root, remove varobj from root list. */
b2c2bd75 1885 if (is_root_p (var))
8b93c638 1886 {
581e13c1 1887 /* Remove from list of root variables. */
8b93c638
JM
1888 if (rootlist == var->root)
1889 rootlist = var->root->next;
1890 else
1891 {
1892 prer = NULL;
1893 cr = rootlist;
1894 while ((cr != NULL) && (cr->rootvar != var))
1895 {
1896 prer = cr;
1897 cr = cr->next;
1898 }
1899 if (cr == NULL)
1900 {
8f7e195f
JB
1901 warning (_("Assertion failed: Could not find "
1902 "varobj \"%s\" in root list"),
2f408ecb 1903 var->obj_name.c_str ());
8b93c638
JM
1904 return;
1905 }
1906 if (prer == NULL)
1907 rootlist = NULL;
1908 else
1909 prer->next = cr->next;
1910 }
8b93c638
JM
1911 }
1912
1913}
1914
837ce252
SM
1915/* Create and install a child of the parent of the given name.
1916
1917 The created VAROBJ takes ownership of the allocated NAME. */
1918
8b93c638 1919static struct varobj *
2f408ecb 1920create_child (struct varobj *parent, int index, std::string &name)
b6313243 1921{
5a2e0d6e
YQ
1922 struct varobj_item item;
1923
2f408ecb 1924 std::swap (item.name, name);
5a2e0d6e
YQ
1925 item.value = value_of_child (parent, index);
1926
1927 return create_child_with_value (parent, index, &item);
b6313243
TT
1928}
1929
1930static struct varobj *
5a2e0d6e
YQ
1931create_child_with_value (struct varobj *parent, int index,
1932 struct varobj_item *item)
8b93c638 1933{
9e5b9d2b 1934 varobj *child = new varobj (parent->root);
8b93c638 1935
5e5ac9a5 1936 /* NAME is allocated by caller. */
2f408ecb 1937 std::swap (child->name, item->name);
8b93c638 1938 child->index = index;
8b93c638 1939 child->parent = parent;
85254831 1940
99ad9427 1941 if (varobj_is_anonymous_child (child))
2f408ecb
PA
1942 child->obj_name = string_printf ("%s.%d_anonymous",
1943 parent->obj_name.c_str (), index);
85254831 1944 else
2f408ecb
PA
1945 child->obj_name = string_printf ("%s.%s",
1946 parent->obj_name.c_str (),
1947 child->name.c_str ());
85254831 1948
8b93c638
JM
1949 install_variable (child);
1950
acd65feb
VP
1951 /* Compute the type of the child. Must do this before
1952 calling install_new_value. */
5a2e0d6e 1953 if (item->value != NULL)
acd65feb 1954 /* If the child had no evaluation errors, var->value
581e13c1 1955 will be non-NULL and contain a valid type. */
5a2e0d6e 1956 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 1957 else
581e13c1 1958 /* Otherwise, we must compute the type. */
ca20d462
YQ
1959 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1960 child->index);
5a2e0d6e 1961 install_new_value (child, item->value, 1);
acd65feb 1962
8b93c638
JM
1963 return child;
1964}
8b93c638
JM
1965\f
1966
1967/*
1968 * Miscellaneous utility functions.
1969 */
1970
581e13c1 1971/* Allocate memory and initialize a new variable. */
9e5b9d2b
SM
1972varobj::varobj (varobj_root *root_)
1973: root (root_), dynamic (new varobj_dynamic)
8b93c638 1974{
8b93c638
JM
1975}
1976
581e13c1 1977/* Free any allocated memory associated with VAR. */
9e5b9d2b
SM
1978
1979varobj::~varobj ()
8b93c638 1980{
9e5b9d2b
SM
1981 varobj *var = this;
1982
d452c4bc 1983#if HAVE_PYTHON
bb5ce47a 1984 if (var->dynamic->pretty_printer != NULL)
d452c4bc 1985 {
bde7b3e3 1986 gdbpy_enter_varobj enter_py (var);
bb5ce47a
YQ
1987
1988 Py_XDECREF (var->dynamic->constructor);
1989 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
1990 }
1991#endif
1992
827f100c
YQ
1993 varobj_iter_delete (var->dynamic->child_iter);
1994 varobj_clear_saved_item (var->dynamic);
36746093 1995
b2c2bd75 1996 if (is_root_p (var))
4d01a485 1997 delete var->root;
8b93c638 1998
9e5b9d2b 1999 delete var->dynamic;
74b7792f
AC
2000}
2001
6e2a9270
VP
2002/* Return the type of the value that's stored in VAR,
2003 or that would have being stored there if the
581e13c1 2004 value were accessible.
6e2a9270
VP
2005
2006 This differs from VAR->type in that VAR->type is always
2007 the true type of the expession in the source language.
2008 The return value of this function is the type we're
2009 actually storing in varobj, and using for displaying
2010 the values and for comparing previous and new values.
2011
2012 For example, top-level references are always stripped. */
99ad9427 2013struct type *
b09e2c59 2014varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2015{
2016 struct type *type;
2017
b4d61099
TT
2018 if (var->value != nullptr)
2019 type = value_type (var->value.get ());
6e2a9270
VP
2020 else
2021 type = var->type;
2022
2023 type = check_typedef (type);
2024
aa006118 2025 if (TYPE_IS_REFERENCE (type))
6e2a9270
VP
2026 type = get_target_type (type);
2027
2028 type = check_typedef (type);
2029
2030 return type;
2031}
2032
8b93c638 2033/* What is the default display for this variable? We assume that
581e13c1 2034 everything is "natural". Any exceptions? */
8b93c638 2035static enum varobj_display_formats
fba45db2 2036variable_default_display (struct varobj *var)
8b93c638
JM
2037{
2038 return FORMAT_NATURAL;
2039}
2040
8b93c638
JM
2041/*
2042 * Language-dependencies
2043 */
2044
2045/* Common entry points */
2046
8b93c638
JM
2047/* Return the number of children for a given variable.
2048 The result of this function is defined by the language
581e13c1 2049 implementation. The number of children returned by this function
8b93c638 2050 is the number of children that the user will see in the variable
581e13c1 2051 display. */
8b93c638 2052static int
b09e2c59 2053number_of_children (const struct varobj *var)
8b93c638 2054{
ca20d462 2055 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2056}
2057
2f408ecb
PA
2058/* What is the expression for the root varobj VAR? */
2059
2060static std::string
b09e2c59 2061name_of_variable (const struct varobj *var)
8b93c638 2062{
ca20d462 2063 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2064}
2065
2f408ecb
PA
2066/* What is the name of the INDEX'th child of VAR? */
2067
2068static std::string
fba45db2 2069name_of_child (struct varobj *var, int index)
8b93c638 2070{
ca20d462 2071 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2072}
2073
2213e2be 2074/* If frame associated with VAR can be found, switch
4c37490d 2075 to it and return true. Otherwise, return false. */
2213e2be 2076
4c37490d 2077static bool
b09e2c59 2078check_scope (const struct varobj *var)
2213e2be
YQ
2079{
2080 struct frame_info *fi;
4c37490d 2081 bool scope;
2213e2be
YQ
2082
2083 fi = frame_find_by_id (var->root->frame);
2084 scope = fi != NULL;
2085
2086 if (fi)
2087 {
2088 CORE_ADDR pc = get_frame_pc (fi);
2089
2090 if (pc < BLOCK_START (var->root->valid_block) ||
2091 pc >= BLOCK_END (var->root->valid_block))
4c37490d 2092 scope = false;
2213e2be
YQ
2093 else
2094 select_frame (fi);
2095 }
2096 return scope;
2097}
2098
2099/* Helper function to value_of_root. */
2100
2101static struct value *
2102value_of_root_1 (struct varobj **var_handle)
2103{
2104 struct value *new_val = NULL;
2105 struct varobj *var = *var_handle;
4c37490d 2106 bool within_scope = false;
2213e2be
YQ
2107
2108 /* Only root variables can be updated... */
2109 if (!is_root_p (var))
2110 /* Not a root var. */
2111 return NULL;
2112
5ed8105e 2113 scoped_restore_current_thread restore_thread;
2213e2be
YQ
2114
2115 /* Determine whether the variable is still around. */
2116 if (var->root->valid_block == NULL || var->root->floating)
4c37490d 2117 within_scope = true;
2213e2be
YQ
2118 else if (var->root->thread_id == 0)
2119 {
2120 /* The program was single-threaded when the variable object was
2121 created. Technically, it's possible that the program became
2122 multi-threaded since then, but we don't support such
2123 scenario yet. */
2124 within_scope = check_scope (var);
2125 }
2126 else
2127 {
00431a78 2128 thread_info *thread = find_thread_global_id (var->root->thread_id);
5d5658a1 2129
00431a78 2130 if (thread != NULL)
2213e2be 2131 {
00431a78 2132 switch_to_thread (thread);
2213e2be
YQ
2133 within_scope = check_scope (var);
2134 }
2135 }
2136
2137 if (within_scope)
2138 {
2213e2be
YQ
2139
2140 /* We need to catch errors here, because if evaluate
2141 expression fails we want to just return NULL. */
492d29ea 2142 TRY
2213e2be 2143 {
4d01a485 2144 new_val = evaluate_expression (var->root->exp.get ());
2213e2be 2145 }
492d29ea
PA
2146 CATCH (except, RETURN_MASK_ERROR)
2147 {
2148 }
2149 END_CATCH
2213e2be
YQ
2150 }
2151
2213e2be
YQ
2152 return new_val;
2153}
2154
a5defcdc
VP
2155/* What is the ``struct value *'' of the root variable VAR?
2156 For floating variable object, evaluation can get us a value
2157 of different type from what is stored in varobj already. In
2158 that case:
2159 - *type_changed will be set to 1
2160 - old varobj will be freed, and new one will be
2161 created, with the same name.
2162 - *var_handle will be set to the new varobj
2163 Otherwise, *type_changed will be set to 0. */
30b28db1 2164static struct value *
4c37490d 2165value_of_root (struct varobj **var_handle, bool *type_changed)
8b93c638 2166{
73a93a32
JI
2167 struct varobj *var;
2168
2169 if (var_handle == NULL)
2170 return NULL;
2171
2172 var = *var_handle;
2173
2174 /* This should really be an exception, since this should
581e13c1 2175 only get called with a root variable. */
73a93a32 2176
b2c2bd75 2177 if (!is_root_p (var))
73a93a32
JI
2178 return NULL;
2179
a5defcdc 2180 if (var->root->floating)
73a93a32
JI
2181 {
2182 struct varobj *tmp_var;
6225abfa 2183
2f408ecb 2184 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
73a93a32
JI
2185 USE_SELECTED_FRAME);
2186 if (tmp_var == NULL)
2187 {
2188 return NULL;
2189 }
2f408ecb
PA
2190 std::string old_type = varobj_get_type (var);
2191 std::string new_type = varobj_get_type (tmp_var);
2192 if (old_type == new_type)
73a93a32 2193 {
fcacd99f
VP
2194 /* The expression presently stored inside var->root->exp
2195 remembers the locations of local variables relatively to
2196 the frame where the expression was created (in DWARF location
2197 button, for example). Naturally, those locations are not
2198 correct in other frames, so update the expression. */
2199
4d01a485 2200 std::swap (var->root->exp, tmp_var->root->exp);
fcacd99f 2201
30914ca8 2202 varobj_delete (tmp_var, 0);
73a93a32
JI
2203 *type_changed = 0;
2204 }
2205 else
2206 {
2f408ecb 2207 tmp_var->obj_name = var->obj_name;
0cc7d26f
TT
2208 tmp_var->from = var->from;
2209 tmp_var->to = var->to;
30914ca8 2210 varobj_delete (var, 0);
a5defcdc 2211
73a93a32
JI
2212 install_variable (tmp_var);
2213 *var_handle = tmp_var;
705da579 2214 var = *var_handle;
4c37490d 2215 *type_changed = true;
73a93a32
JI
2216 }
2217 }
2218 else
2219 {
2220 *type_changed = 0;
2221 }
2222
7a290c40
JB
2223 {
2224 struct value *value;
2225
2213e2be 2226 value = value_of_root_1 (var_handle);
7a290c40
JB
2227 if (var->value == NULL || value == NULL)
2228 {
2229 /* For root varobj-s, a NULL value indicates a scoping issue.
2230 So, nothing to do in terms of checking for mutations. */
2231 }
2232 else if (varobj_value_has_mutated (var, value, value_type (value)))
2233 {
2234 /* The type has mutated, so the children are no longer valid.
2235 Just delete them, and tell our caller that the type has
2236 changed. */
30914ca8 2237 varobj_delete (var, 1 /* only_children */);
7a290c40
JB
2238 var->num_children = -1;
2239 var->to = -1;
2240 var->from = -1;
4c37490d 2241 *type_changed = true;
7a290c40
JB
2242 }
2243 return value;
2244 }
8b93c638
JM
2245}
2246
581e13c1 2247/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2248static struct value *
c1cc6152 2249value_of_child (const struct varobj *parent, int index)
8b93c638 2250{
30b28db1 2251 struct value *value;
8b93c638 2252
ca20d462 2253 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2254
8b93c638
JM
2255 return value;
2256}
2257
581e13c1 2258/* GDB already has a command called "value_of_variable". Sigh. */
2f408ecb 2259static std::string
de051565 2260my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2261{
8756216b 2262 if (var->root->is_valid)
0cc7d26f 2263 {
bb5ce47a 2264 if (var->dynamic->pretty_printer != NULL)
b4d61099
TT
2265 return varobj_value_get_print_value (var->value.get (), var->format,
2266 var);
ca20d462 2267 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2268 }
8756216b 2269 else
2f408ecb 2270 return std::string ();
8b93c638
JM
2271}
2272
99ad9427
YQ
2273void
2274varobj_formatted_print_options (struct value_print_options *opts,
2275 enum varobj_display_formats format)
2276{
2277 get_formatted_print_options (opts, format_code[(int) format]);
2278 opts->deref_ref = 0;
0625771b 2279 opts->raw = !pretty_printing;
99ad9427
YQ
2280}
2281
2f408ecb 2282std::string
99ad9427
YQ
2283varobj_value_get_print_value (struct value *value,
2284 enum varobj_display_formats format,
b09e2c59 2285 const struct varobj *var)
85265413 2286{
79a45b7d 2287 struct value_print_options opts;
be759fcf
PM
2288 struct type *type = NULL;
2289 long len = 0;
1eba6383 2290 gdb::unique_xmalloc_ptr<char> encoding;
3a182a69
JK
2291 /* Initialize it just to avoid a GCC false warning. */
2292 CORE_ADDR str_addr = 0;
4c37490d 2293 bool string_print = false;
57e66780
DJ
2294
2295 if (value == NULL)
2f408ecb 2296 return std::string ();
57e66780 2297
d7e74731 2298 string_file stb;
2f408ecb
PA
2299 std::string thevalue;
2300
b6313243 2301#if HAVE_PYTHON
0646da15
TT
2302 if (gdb_python_initialized)
2303 {
bb5ce47a 2304 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2305
68cdc557 2306 gdbpy_enter_varobj enter_py (var);
09ca9e2e 2307
0646da15
TT
2308 if (value_formatter)
2309 {
2310 /* First check to see if we have any children at all. If so,
2311 we simply return {...}. */
2312 if (dynamic_varobj_has_child_method (var))
d7e74731 2313 return "{...}";
b6313243 2314
0646da15
TT
2315 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2316 {
2317 struct value *replacement;
0646da15 2318
a5c5eda7
SM
2319 gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
2320 &replacement,
2321 &stb);
0646da15
TT
2322
2323 /* If we have string like output ... */
68cdc557 2324 if (output != NULL)
0646da15 2325 {
0646da15
TT
2326 /* If this is a lazy string, extract it. For lazy
2327 strings we always print as a string, so set
2328 string_print. */
68cdc557 2329 if (gdbpy_is_lazy_string (output.get ()))
0646da15 2330 {
68cdc557
TT
2331 gdbpy_extract_lazy_string (output.get (), &str_addr,
2332 &type, &len, &encoding);
4c37490d 2333 string_print = true;
0646da15
TT
2334 }
2335 else
2336 {
2337 /* If it is a regular (non-lazy) string, extract
2338 it and copy the contents into THEVALUE. If the
2339 hint says to print it as a string, set
2340 string_print. Otherwise just return the extracted
2341 string as a value. */
2342
9b972014 2343 gdb::unique_xmalloc_ptr<char> s
68cdc557 2344 = python_string_to_target_string (output.get ());
0646da15
TT
2345
2346 if (s)
2347 {
e3821cca 2348 struct gdbarch *gdbarch;
0646da15 2349
9b972014
TT
2350 gdb::unique_xmalloc_ptr<char> hint
2351 = gdbpy_get_display_hint (value_formatter);
0646da15
TT
2352 if (hint)
2353 {
9b972014 2354 if (!strcmp (hint.get (), "string"))
4c37490d 2355 string_print = true;
0646da15
TT
2356 }
2357
9b972014 2358 thevalue = std::string (s.get ());
2f408ecb 2359 len = thevalue.size ();
e3821cca 2360 gdbarch = get_type_arch (value_type (value));
0646da15 2361 type = builtin_type (gdbarch)->builtin_char;
0646da15
TT
2362
2363 if (!string_print)
d7e74731 2364 return thevalue;
0646da15
TT
2365 }
2366 else
2367 gdbpy_print_stack ();
2368 }
2369 }
2370 /* If the printer returned a replacement value, set VALUE
2371 to REPLACEMENT. If there is not a replacement value,
2372 just use the value passed to this function. */
2373 if (replacement)
2374 value = replacement;
2375 }
2376 }
2377 }
b6313243
TT
2378#endif
2379
99ad9427 2380 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2381
2382 /* If the THEVALUE has contents, it is a regular string. */
2f408ecb 2383 if (!thevalue.empty ())
d7e74731 2384 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
1eba6383 2385 len, encoding.get (), 0, &opts);
09ca9e2e 2386 else if (string_print)
00bd41d6
PM
2387 /* Otherwise, if string_print is set, and it is not a regular
2388 string, it is a lazy string. */
d7e74731 2389 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
b6313243 2390 else
00bd41d6 2391 /* All other cases. */
d7e74731 2392 common_val_print (value, &stb, 0, &opts, current_language);
57e66780 2393
d7e74731 2394 return std::move (stb.string ());
85265413
NR
2395}
2396
4c37490d 2397bool
b09e2c59 2398varobj_editable_p (const struct varobj *var)
340a7723
NR
2399{
2400 struct type *type;
340a7723 2401
b4d61099
TT
2402 if (!(var->root->is_valid && var->value != nullptr
2403 && VALUE_LVAL (var->value.get ())))
4c37490d 2404 return false;
340a7723 2405
99ad9427 2406 type = varobj_get_value_type (var);
340a7723
NR
2407
2408 switch (TYPE_CODE (type))
2409 {
2410 case TYPE_CODE_STRUCT:
2411 case TYPE_CODE_UNION:
2412 case TYPE_CODE_ARRAY:
2413 case TYPE_CODE_FUNC:
2414 case TYPE_CODE_METHOD:
4c37490d 2415 return false;
340a7723
NR
2416 break;
2417
2418 default:
4c37490d 2419 return true;
340a7723
NR
2420 break;
2421 }
2422}
2423
d32cafc7 2424/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2425
4c37490d 2426bool
b09e2c59 2427varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2428{
ca20d462 2429 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2430}
2431
4c37490d 2432/* Return true if that varobj is floating, that is is always evaluated in the
5a413362
VP
2433 selected frame, and not bound to thread/frame. Such variable objects
2434 are created using '@' as frame specifier to -var-create. */
4c37490d 2435bool
b09e2c59 2436varobj_floating_p (const struct varobj *var)
5a413362
VP
2437{
2438 return var->root->floating;
2439}
2440
d32cafc7
JB
2441/* Implement the "value_is_changeable_p" varobj callback for most
2442 languages. */
2443
4c37490d 2444bool
b09e2c59 2445varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7 2446{
4c37490d 2447 bool r;
d32cafc7
JB
2448 struct type *type;
2449
2450 if (CPLUS_FAKE_CHILD (var))
4c37490d 2451 return false;
d32cafc7 2452
99ad9427 2453 type = varobj_get_value_type (var);
d32cafc7
JB
2454
2455 switch (TYPE_CODE (type))
2456 {
2457 case TYPE_CODE_STRUCT:
2458 case TYPE_CODE_UNION:
2459 case TYPE_CODE_ARRAY:
4c37490d 2460 r = false;
d32cafc7
JB
2461 break;
2462
2463 default:
4c37490d 2464 r = true;
d32cafc7
JB
2465 }
2466
2467 return r;
2468}
2469
54333c3b
JK
2470/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2471 with an arbitrary caller supplied DATA pointer. */
2472
2473void
2474all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2475{
2476 struct varobj_root *var_root, *var_root_next;
2477
2478 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2479
2480 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2481 {
2482 var_root_next = var_root->next;
2483
2484 (*func) (var_root->rootvar, data);
2485 }
2486}
8756216b 2487
54333c3b 2488/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2489 defined on globals. It is a helper for varobj_invalidate.
2490
2491 This function is called after changing the symbol file, in this case the
2492 pointers to "struct type" stored by the varobj are no longer valid. All
2493 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2494
54333c3b
JK
2495static void
2496varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2497{
4e969b4f
AB
2498 /* global and floating var must be re-evaluated. */
2499 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2500 {
54333c3b 2501 struct varobj *tmp_var;
2dbd25e5 2502
54333c3b
JK
2503 /* Try to create a varobj with same expression. If we succeed
2504 replace the old varobj, otherwise invalidate it. */
2f408ecb 2505 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
54333c3b
JK
2506 USE_CURRENT_FRAME);
2507 if (tmp_var != NULL)
2508 {
2f408ecb 2509 tmp_var->obj_name = var->obj_name;
30914ca8 2510 varobj_delete (var, 0);
54333c3b 2511 install_variable (tmp_var);
2dbd25e5 2512 }
54333c3b 2513 else
4c37490d 2514 var->root->is_valid = false;
2dbd25e5 2515 }
54333c3b 2516 else /* locals must be invalidated. */
4c37490d 2517 var->root->is_valid = false;
54333c3b
JK
2518}
2519
2520/* Invalidate the varobjs that are tied to locals and re-create the ones that
2521 are defined on globals.
2522 Invalidated varobjs will be always printed in_scope="invalid". */
2523
2524void
2525varobj_invalidate (void)
2526{
2527 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2528}
481695ed 2529
1c3569d4
MR
2530void
2531_initialize_varobj (void)
2532{
8d749320 2533 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
1c3569d4
MR
2534
2535 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2536 &varobjdebug,
2537 _("Set varobj debugging."),
2538 _("Show varobj debugging."),
2539 _("When non-zero, varobj debugging is enabled."),
2540 NULL, show_varobjdebug,
2541 &setdebuglist, &showdebuglist);
2542}
This page took 2.406763 seconds and 4 git commands to generate.