Add tiny memory model GD test cases.
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
32d0add0 3 Copyright (C) 1999-2015 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
28335dcc 29#include "vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
8b93c638 33
b6313243
TT
34#if HAVE_PYTHON
35#include "python/python.h"
36#include "python/python-internal.h"
50389644
PA
37#else
38typedef int PyObject;
b6313243
TT
39#endif
40
8b93c638
JM
41/* Non-zero if we want to see trace of varobj level stuff. */
42
ccce17b0 43unsigned int varobjdebug = 0;
920d2a44
AC
44static void
45show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
47{
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
49}
8b93c638 50
581e13c1 51/* String representations of gdb's format codes. */
8b93c638 52char *varobj_format_string[] =
72330bd6 53 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 54
0cc7d26f
TT
55/* True if we want to allow Python-based pretty-printing. */
56static int pretty_printing = 0;
57
58void
59varobj_enable_pretty_printing (void)
60{
61 pretty_printing = 1;
62}
63
8b93c638
JM
64/* Data structures */
65
66/* Every root variable has one of these structures saved in its
581e13c1 67 varobj. Members which must be free'd are noted. */
8b93c638 68struct varobj_root
72330bd6 69{
8b93c638 70
581e13c1 71 /* Alloc'd expression for this parent. */
72330bd6 72 struct expression *exp;
8b93c638 73
581e13c1 74 /* Block for which this expression is valid. */
270140bd 75 const struct block *valid_block;
8b93c638 76
44a67aa7
VP
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
e64d9b3d 79 struct frame_id frame;
8b93c638 80
c5b48eac 81 /* The thread ID that this varobj_root belong to. This field
581e13c1 82 is only valid if valid_block is not NULL.
c5b48eac
VP
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id;
87
a5defcdc
VP
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
581e13c1 90 always updated in the specific scope/thread/frame. */
a5defcdc 91 int floating;
73a93a32 92
8756216b
DP
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
95 int is_valid;
96
99ad9427
YQ
97 /* Language-related operations for this variable and its
98 children. */
ca20d462 99 const struct lang_varobj_ops *lang_ops;
8b93c638 100
581e13c1 101 /* The varobj for this root node. */
72330bd6 102 struct varobj *rootvar;
8b93c638 103
72330bd6
AC
104 /* Next root variable */
105 struct varobj_root *next;
106};
8b93c638 107
bb5ce47a 108/* Dynamic part of varobj. */
8b93c638 109
bb5ce47a
YQ
110struct varobj_dynamic
111{
b6313243
TT
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 int children_requested;
117
0cc7d26f
TT
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
122
b6313243
TT
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
0cc7d26f
TT
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
e5250216 129 struct varobj_iter *child_iter;
0cc7d26f
TT
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
e5250216 136 varobj_item *saved_item;
72330bd6 137};
8b93c638 138
8b93c638 139struct cpstack
72330bd6
AC
140{
141 char *name;
142 struct cpstack *next;
143};
8b93c638
JM
144
145/* A list of varobjs */
146
147struct vlist
72330bd6
AC
148{
149 struct varobj *var;
150 struct vlist *next;
151};
8b93c638
JM
152
153/* Private function prototypes */
154
581e13c1 155/* Helper functions for the above subcommands. */
8b93c638 156
a14ed312 157static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 158
a14ed312
KB
159static void delete_variable_1 (struct cpstack **, int *,
160 struct varobj *, int, int);
8b93c638 161
a14ed312 162static int install_variable (struct varobj *);
8b93c638 163
a14ed312 164static void uninstall_variable (struct varobj *);
8b93c638 165
a14ed312 166static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 167
b6313243 168static struct varobj *
5a2e0d6e
YQ
169create_child_with_value (struct varobj *parent, int index,
170 struct varobj_item *item);
b6313243 171
8b93c638
JM
172/* Utility routines */
173
a14ed312 174static struct varobj *new_variable (void);
8b93c638 175
a14ed312 176static struct varobj *new_root_variable (void);
8b93c638 177
a14ed312 178static void free_variable (struct varobj *var);
8b93c638 179
74b7792f
AC
180static struct cleanup *make_cleanup_free_variable (struct varobj *var);
181
a14ed312 182static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 183
a14ed312 184static void cppush (struct cpstack **pstack, char *name);
8b93c638 185
a14ed312 186static char *cppop (struct cpstack **pstack);
8b93c638 187
8264ba82
AG
188static int update_type_if_necessary (struct varobj *var,
189 struct value *new_value);
190
acd65feb
VP
191static int install_new_value (struct varobj *var, struct value *value,
192 int initial);
193
581e13c1 194/* Language-specific routines. */
8b93c638 195
b09e2c59 196static int number_of_children (const struct varobj *);
8b93c638 197
b09e2c59 198static char *name_of_variable (const struct varobj *);
8b93c638 199
a14ed312 200static char *name_of_child (struct varobj *, int);
8b93c638 201
30b28db1 202static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 203
c1cc6152 204static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 205
de051565
MK
206static char *my_value_of_variable (struct varobj *var,
207 enum varobj_display_formats format);
8b93c638 208
b09e2c59 209static int is_root_p (const struct varobj *var);
8b93c638 210
9a1edae6 211static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 212 struct varobj_item *item);
b6313243 213
8b93c638
JM
214/* Private data */
215
581e13c1 216/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 217static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 218
581e13c1 219/* Header of the list of root variable objects. */
8b93c638 220static struct varobj_root *rootlist;
8b93c638 221
581e13c1
MS
222/* Prime number indicating the number of buckets in the hash table. */
223/* A prime large enough to avoid too many colisions. */
8b93c638
JM
224#define VAROBJ_TABLE_SIZE 227
225
581e13c1 226/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
227static struct vlist **varobj_table;
228
8b93c638
JM
229\f
230
231/* API Implementation */
b2c2bd75 232static int
b09e2c59 233is_root_p (const struct varobj *var)
b2c2bd75
VP
234{
235 return (var->root->rootvar == var);
236}
8b93c638 237
d452c4bc
UW
238#ifdef HAVE_PYTHON
239/* Helper function to install a Python environment suitable for
240 use during operations on VAR. */
e5250216 241struct cleanup *
b09e2c59 242varobj_ensure_python_env (const struct varobj *var)
d452c4bc
UW
243{
244 return ensure_python_env (var->root->exp->gdbarch,
245 var->root->exp->language_defn);
246}
247#endif
248
581e13c1 249/* Creates a varobj (not its children). */
8b93c638 250
7d8547c9
AC
251/* Return the full FRAME which corresponds to the given CORE_ADDR
252 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
253
254static struct frame_info *
255find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
256{
257 struct frame_info *frame = NULL;
258
259 if (frame_addr == (CORE_ADDR) 0)
260 return NULL;
261
9d49bdc2
PA
262 for (frame = get_current_frame ();
263 frame != NULL;
264 frame = get_prev_frame (frame))
7d8547c9 265 {
1fac167a
UW
266 /* The CORE_ADDR we get as argument was parsed from a string GDB
267 output as $fp. This output got truncated to gdbarch_addr_bit.
268 Truncate the frame base address in the same manner before
269 comparing it against our argument. */
270 CORE_ADDR frame_base = get_frame_base_address (frame);
271 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 272
1fac167a
UW
273 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
274 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
275
276 if (frame_base == frame_addr)
7d8547c9
AC
277 return frame;
278 }
9d49bdc2
PA
279
280 return NULL;
7d8547c9
AC
281}
282
8b93c638
JM
283struct varobj *
284varobj_create (char *objname,
72330bd6 285 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
286{
287 struct varobj *var;
8b93c638
JM
288 struct cleanup *old_chain;
289
581e13c1 290 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 291 var = new_root_variable ();
74b7792f 292 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
293
294 if (expression != NULL)
295 {
e4195b40 296 struct frame_info *fi;
35633fef 297 struct frame_id old_id = null_frame_id;
3977b71f 298 const struct block *block;
bbc13ae3 299 const char *p;
e55dccf0 300 struct value *value = NULL;
8e7b59a5 301 volatile struct gdb_exception except;
1bb9788d 302 CORE_ADDR pc;
8b93c638 303
9d49bdc2
PA
304 /* Parse and evaluate the expression, filling in as much of the
305 variable's data as possible. */
306
307 if (has_stack_frames ())
308 {
581e13c1 309 /* Allow creator to specify context of variable. */
9d49bdc2
PA
310 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
311 fi = get_selected_frame (NULL);
312 else
313 /* FIXME: cagney/2002-11-23: This code should be doing a
314 lookup using the frame ID and not just the frame's
315 ``address''. This, of course, means an interface
316 change. However, with out that interface change ISAs,
317 such as the ia64 with its two stacks, won't work.
318 Similar goes for the case where there is a frameless
319 function. */
320 fi = find_frame_addr_in_frame_chain (frame);
321 }
8b93c638 322 else
9d49bdc2 323 fi = NULL;
8b93c638 324
581e13c1 325 /* frame = -2 means always use selected frame. */
73a93a32 326 if (type == USE_SELECTED_FRAME)
a5defcdc 327 var->root->floating = 1;
73a93a32 328
1bb9788d 329 pc = 0;
8b93c638
JM
330 block = NULL;
331 if (fi != NULL)
1bb9788d
TT
332 {
333 block = get_frame_block (fi, 0);
334 pc = get_frame_pc (fi);
335 }
8b93c638
JM
336
337 p = expression;
338 innermost_block = NULL;
73a93a32 339 /* Wrap the call to parse expression, so we can
581e13c1 340 return a sensible error. */
8e7b59a5
KS
341 TRY_CATCH (except, RETURN_MASK_ERROR)
342 {
1bb9788d 343 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
344 }
345
346 if (except.reason < 0)
73a93a32 347 {
f748fb40 348 do_cleanups (old_chain);
73a93a32
JI
349 return NULL;
350 }
8b93c638 351
581e13c1 352 /* Don't allow variables to be created for types. */
608b4967
TT
353 if (var->root->exp->elts[0].opcode == OP_TYPE
354 || var->root->exp->elts[0].opcode == OP_TYPEOF
355 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638
JM
356 {
357 do_cleanups (old_chain);
bc8332bb
AC
358 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
359 " as an expression.\n");
8b93c638
JM
360 return NULL;
361 }
362
363 var->format = variable_default_display (var);
364 var->root->valid_block = innermost_block;
1b36a34b 365 var->name = xstrdup (expression);
02142340 366 /* For a root var, the name and the expr are the same. */
1b36a34b 367 var->path_expr = xstrdup (expression);
8b93c638
JM
368
369 /* When the frame is different from the current frame,
370 we must select the appropriate frame before parsing
371 the expression, otherwise the value will not be current.
581e13c1 372 Since select_frame is so benign, just call it for all cases. */
4e22772d 373 if (innermost_block)
8b93c638 374 {
4e22772d
JK
375 /* User could specify explicit FRAME-ADDR which was not found but
376 EXPRESSION is frame specific and we would not be able to evaluate
377 it correctly next time. With VALID_BLOCK set we must also set
378 FRAME and THREAD_ID. */
379 if (fi == NULL)
380 error (_("Failed to find the specified frame"));
381
7a424e99 382 var->root->frame = get_frame_id (fi);
c5b48eac 383 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 384 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 385 select_frame (fi);
8b93c638
JM
386 }
387
340a7723 388 /* We definitely need to catch errors here.
8b93c638 389 If evaluate_expression succeeds we got the value we wanted.
581e13c1 390 But if it fails, we still go on with a call to evaluate_type(). */
8e7b59a5
KS
391 TRY_CATCH (except, RETURN_MASK_ERROR)
392 {
393 value = evaluate_expression (var->root->exp);
394 }
395
396 if (except.reason < 0)
e55dccf0
VP
397 {
398 /* Error getting the value. Try to at least get the
399 right type. */
400 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 401
e55dccf0
VP
402 var->type = value_type (type_only_value);
403 }
8264ba82
AG
404 else
405 {
406 int real_type_found = 0;
407
408 var->type = value_actual_type (value, 0, &real_type_found);
409 if (real_type_found)
410 value = value_cast (var->type, value);
411 }
acd65feb 412
8b93c638 413 /* Set language info */
ca20d462 414 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 415
d32cafc7
JB
416 install_new_value (var, value, 1 /* Initial assignment */);
417
581e13c1 418 /* Set ourselves as our root. */
8b93c638
JM
419 var->root->rootvar = var;
420
581e13c1 421 /* Reset the selected frame. */
35633fef
JK
422 if (frame_id_p (old_id))
423 select_frame (frame_find_by_id (old_id));
8b93c638
JM
424 }
425
73a93a32 426 /* If the variable object name is null, that means this
581e13c1 427 is a temporary variable, so don't install it. */
73a93a32
JI
428
429 if ((var != NULL) && (objname != NULL))
8b93c638 430 {
1b36a34b 431 var->obj_name = xstrdup (objname);
8b93c638
JM
432
433 /* If a varobj name is duplicated, the install will fail so
581e13c1 434 we must cleanup. */
8b93c638
JM
435 if (!install_variable (var))
436 {
437 do_cleanups (old_chain);
438 return NULL;
439 }
440 }
441
442 discard_cleanups (old_chain);
443 return var;
444}
445
581e13c1 446/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
447
448char *
449varobj_gen_name (void)
450{
451 static int id = 0;
e64d9b3d 452 char *obj_name;
8b93c638 453
581e13c1 454 /* Generate a name for this object. */
8b93c638 455 id++;
b435e160 456 obj_name = xstrprintf ("var%d", id);
8b93c638 457
e64d9b3d 458 return obj_name;
8b93c638
JM
459}
460
61d8f275
JK
461/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
462 error if OBJNAME cannot be found. */
8b93c638
JM
463
464struct varobj *
465varobj_get_handle (char *objname)
466{
467 struct vlist *cv;
468 const char *chp;
469 unsigned int index = 0;
470 unsigned int i = 1;
471
472 for (chp = objname; *chp; chp++)
473 {
474 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
475 }
476
477 cv = *(varobj_table + index);
478 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
479 cv = cv->next;
480
481 if (cv == NULL)
8a3fe4f8 482 error (_("Variable object not found"));
8b93c638
JM
483
484 return cv->var;
485}
486
581e13c1 487/* Given the handle, return the name of the object. */
8b93c638
JM
488
489char *
b09e2c59 490varobj_get_objname (const struct varobj *var)
8b93c638
JM
491{
492 return var->obj_name;
493}
494
ca83fa81
SM
495/* Given the handle, return the expression represented by the object. The
496 result must be freed by the caller. */
8b93c638
JM
497
498char *
b09e2c59 499varobj_get_expression (const struct varobj *var)
8b93c638
JM
500{
501 return name_of_variable (var);
502}
503
504/* Deletes a varobj and all its children if only_children == 0,
6da58d3e
SM
505 otherwise deletes only the children. If DELLIST is non-NULL, it is
506 assigned a malloc'ed list of all the (malloc'ed) names of the variables
507 that have been deleted (NULL terminated). Returns the number of deleted
508 variables. */
8b93c638
JM
509
510int
511varobj_delete (struct varobj *var, char ***dellist, int only_children)
512{
513 int delcount;
514 int mycount;
515 struct cpstack *result = NULL;
516 char **cp;
517
581e13c1 518 /* Initialize a stack for temporary results. */
8b93c638
JM
519 cppush (&result, NULL);
520
521 if (only_children)
581e13c1 522 /* Delete only the variable children. */
8b93c638
JM
523 delcount = delete_variable (&result, var, 1 /* only the children */ );
524 else
581e13c1 525 /* Delete the variable and all its children. */
8b93c638
JM
526 delcount = delete_variable (&result, var, 0 /* parent+children */ );
527
581e13c1 528 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
529 if (dellist != NULL)
530 {
531 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
532
533 cp = *dellist;
534 mycount = delcount;
535 *cp = cppop (&result);
536 while ((*cp != NULL) && (mycount > 0))
537 {
538 mycount--;
539 cp++;
540 *cp = cppop (&result);
541 }
542
543 if (mycount || (*cp != NULL))
8a3fe4f8 544 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 545 mycount);
8b93c638
JM
546 }
547
548 return delcount;
549}
550
d8b65138
JK
551#if HAVE_PYTHON
552
b6313243
TT
553/* Convenience function for varobj_set_visualizer. Instantiate a
554 pretty-printer for a given value. */
555static PyObject *
556instantiate_pretty_printer (PyObject *constructor, struct value *value)
557{
b6313243
TT
558 PyObject *val_obj = NULL;
559 PyObject *printer;
b6313243 560
b6313243 561 val_obj = value_to_value_object (value);
b6313243
TT
562 if (! val_obj)
563 return NULL;
564
565 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
566 Py_DECREF (val_obj);
567 return printer;
b6313243
TT
568}
569
d8b65138
JK
570#endif
571
581e13c1 572/* Set/Get variable object display format. */
8b93c638
JM
573
574enum varobj_display_formats
575varobj_set_display_format (struct varobj *var,
576 enum varobj_display_formats format)
577{
578 switch (format)
579 {
580 case FORMAT_NATURAL:
581 case FORMAT_BINARY:
582 case FORMAT_DECIMAL:
583 case FORMAT_HEXADECIMAL:
584 case FORMAT_OCTAL:
585 var->format = format;
586 break;
587
588 default:
589 var->format = variable_default_display (var);
590 }
591
ae7d22a6
VP
592 if (varobj_value_is_changeable_p (var)
593 && var->value && !value_lazy (var->value))
594 {
6c761d9c 595 xfree (var->print_value);
99ad9427
YQ
596 var->print_value = varobj_value_get_print_value (var->value,
597 var->format, var);
ae7d22a6
VP
598 }
599
8b93c638
JM
600 return var->format;
601}
602
603enum varobj_display_formats
b09e2c59 604varobj_get_display_format (const struct varobj *var)
8b93c638
JM
605{
606 return var->format;
607}
608
b6313243 609char *
b09e2c59 610varobj_get_display_hint (const struct varobj *var)
b6313243
TT
611{
612 char *result = NULL;
613
614#if HAVE_PYTHON
0646da15
TT
615 struct cleanup *back_to;
616
617 if (!gdb_python_initialized)
618 return NULL;
619
620 back_to = varobj_ensure_python_env (var);
d452c4bc 621
bb5ce47a
YQ
622 if (var->dynamic->pretty_printer != NULL)
623 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
d452c4bc
UW
624
625 do_cleanups (back_to);
b6313243
TT
626#endif
627
628 return result;
629}
630
0cc7d26f
TT
631/* Return true if the varobj has items after TO, false otherwise. */
632
633int
b09e2c59 634varobj_has_more (const struct varobj *var, int to)
0cc7d26f
TT
635{
636 if (VEC_length (varobj_p, var->children) > to)
637 return 1;
638 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
bb5ce47a 639 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
640}
641
c5b48eac
VP
642/* If the variable object is bound to a specific thread, that
643 is its evaluation can always be done in context of a frame
644 inside that thread, returns GDB id of the thread -- which
581e13c1 645 is always positive. Otherwise, returns -1. */
c5b48eac 646int
b09e2c59 647varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
648{
649 if (var->root->valid_block && var->root->thread_id > 0)
650 return var->root->thread_id;
651 else
652 return -1;
653}
654
25d5ea92
VP
655void
656varobj_set_frozen (struct varobj *var, int frozen)
657{
658 /* When a variable is unfrozen, we don't fetch its value.
659 The 'not_fetched' flag remains set, so next -var-update
660 won't complain.
661
662 We don't fetch the value, because for structures the client
663 should do -var-update anyway. It would be bad to have different
664 client-size logic for structure and other types. */
665 var->frozen = frozen;
666}
667
668int
b09e2c59 669varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
670{
671 return var->frozen;
672}
673
0cc7d26f
TT
674/* A helper function that restricts a range to what is actually
675 available in a VEC. This follows the usual rules for the meaning
676 of FROM and TO -- if either is negative, the entire range is
677 used. */
678
99ad9427
YQ
679void
680varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
0cc7d26f
TT
681{
682 if (*from < 0 || *to < 0)
683 {
684 *from = 0;
685 *to = VEC_length (varobj_p, children);
686 }
687 else
688 {
689 if (*from > VEC_length (varobj_p, children))
690 *from = VEC_length (varobj_p, children);
691 if (*to > VEC_length (varobj_p, children))
692 *to = VEC_length (varobj_p, children);
693 if (*from > *to)
694 *from = *to;
695 }
696}
697
698/* A helper for update_dynamic_varobj_children that installs a new
699 child when needed. */
700
701static void
702install_dynamic_child (struct varobj *var,
703 VEC (varobj_p) **changed,
8264ba82 704 VEC (varobj_p) **type_changed,
0cc7d26f
TT
705 VEC (varobj_p) **new,
706 VEC (varobj_p) **unchanged,
707 int *cchanged,
708 int index,
5a2e0d6e 709 struct varobj_item *item)
0cc7d26f
TT
710{
711 if (VEC_length (varobj_p, var->children) < index + 1)
712 {
713 /* There's no child yet. */
5a2e0d6e 714 struct varobj *child = varobj_add_child (var, item);
a109c7c1 715
0cc7d26f
TT
716 if (new)
717 {
718 VEC_safe_push (varobj_p, *new, child);
719 *cchanged = 1;
720 }
721 }
bf8793bb 722 else
0cc7d26f
TT
723 {
724 varobj_p existing = VEC_index (varobj_p, var->children, index);
5a2e0d6e 725 int type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 726
8264ba82
AG
727 if (type_updated)
728 {
729 if (type_changed)
730 VEC_safe_push (varobj_p, *type_changed, existing);
731 }
5a2e0d6e 732 if (install_new_value (existing, item->value, 0))
0cc7d26f 733 {
8264ba82 734 if (!type_updated && changed)
0cc7d26f
TT
735 VEC_safe_push (varobj_p, *changed, existing);
736 }
8264ba82 737 else if (!type_updated && unchanged)
0cc7d26f
TT
738 VEC_safe_push (varobj_p, *unchanged, existing);
739 }
740}
741
576ea091
YQ
742#if HAVE_PYTHON
743
0cc7d26f 744static int
b09e2c59 745dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f
TT
746{
747 struct cleanup *back_to;
bb5ce47a 748 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f
TT
749 int result;
750
0646da15
TT
751 if (!gdb_python_initialized)
752 return 0;
753
0cc7d26f
TT
754 back_to = varobj_ensure_python_env (var);
755 result = PyObject_HasAttr (printer, gdbpy_children_cst);
756 do_cleanups (back_to);
757 return result;
758}
576ea091 759#endif
0cc7d26f 760
e5250216
YQ
761/* A factory for creating dynamic varobj's iterators. Returns an
762 iterator object suitable for iterating over VAR's children. */
763
764static struct varobj_iter *
765varobj_get_iterator (struct varobj *var)
766{
576ea091 767#if HAVE_PYTHON
e5250216
YQ
768 if (var->dynamic->pretty_printer)
769 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 770#endif
e5250216
YQ
771
772 gdb_assert_not_reached (_("\
773requested an iterator from a non-dynamic varobj"));
774}
775
827f100c
YQ
776/* Release and clear VAR's saved item, if any. */
777
778static void
779varobj_clear_saved_item (struct varobj_dynamic *var)
780{
781 if (var->saved_item != NULL)
782 {
783 value_free (var->saved_item->value);
784 xfree (var->saved_item);
785 var->saved_item = NULL;
786 }
787}
0cc7d26f 788
b6313243
TT
789static int
790update_dynamic_varobj_children (struct varobj *var,
791 VEC (varobj_p) **changed,
8264ba82 792 VEC (varobj_p) **type_changed,
0cc7d26f
TT
793 VEC (varobj_p) **new,
794 VEC (varobj_p) **unchanged,
795 int *cchanged,
796 int update_children,
797 int from,
798 int to)
b6313243 799{
b6313243 800 int i;
b6313243 801
b6313243 802 *cchanged = 0;
b6313243 803
bb5ce47a 804 if (update_children || var->dynamic->child_iter == NULL)
b6313243 805 {
e5250216
YQ
806 varobj_iter_delete (var->dynamic->child_iter);
807 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 808
827f100c 809 varobj_clear_saved_item (var->dynamic);
b6313243 810
e5250216 811 i = 0;
b6313243 812
bb5ce47a 813 if (var->dynamic->child_iter == NULL)
827f100c 814 return 0;
b6313243 815 }
0cc7d26f
TT
816 else
817 i = VEC_length (varobj_p, var->children);
b6313243 818
0cc7d26f
TT
819 /* We ask for one extra child, so that MI can report whether there
820 are more children. */
821 for (; to < 0 || i < to + 1; ++i)
b6313243 822 {
827f100c 823 varobj_item *item;
b6313243 824
0cc7d26f 825 /* See if there was a leftover from last time. */
827f100c 826 if (var->dynamic->saved_item != NULL)
0cc7d26f 827 {
bb5ce47a
YQ
828 item = var->dynamic->saved_item;
829 var->dynamic->saved_item = NULL;
0cc7d26f
TT
830 }
831 else
a4c8e806 832 {
e5250216 833 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
834 /* Release vitem->value so its lifetime is not bound to the
835 execution of a command. */
836 if (item != NULL && item->value != NULL)
837 release_value_or_incref (item->value);
a4c8e806 838 }
b6313243 839
e5250216
YQ
840 if (item == NULL)
841 {
842 /* Iteration is done. Remove iterator from VAR. */
843 varobj_iter_delete (var->dynamic->child_iter);
844 var->dynamic->child_iter = NULL;
845 break;
846 }
0cc7d26f
TT
847 /* We don't want to push the extra child on any report list. */
848 if (to < 0 || i < to)
b6313243 849 {
0cc7d26f
TT
850 int can_mention = from < 0 || i >= from;
851
0cc7d26f 852 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 853 can_mention ? type_changed : NULL,
0cc7d26f
TT
854 can_mention ? new : NULL,
855 can_mention ? unchanged : NULL,
5e5ac9a5 856 can_mention ? cchanged : NULL, i,
827f100c
YQ
857 item);
858
859 xfree (item);
b6313243 860 }
0cc7d26f 861 else
b6313243 862 {
bb5ce47a 863 var->dynamic->saved_item = item;
b6313243 864
0cc7d26f
TT
865 /* We want to truncate the child list just before this
866 element. */
867 break;
868 }
b6313243
TT
869 }
870
871 if (i < VEC_length (varobj_p, var->children))
872 {
0cc7d26f 873 int j;
a109c7c1 874
0cc7d26f
TT
875 *cchanged = 1;
876 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
877 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
878 VEC_truncate (varobj_p, var->children, i);
b6313243 879 }
0cc7d26f
TT
880
881 /* If there are fewer children than requested, note that the list of
882 children changed. */
883 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
884 *cchanged = 1;
885
b6313243 886 var->num_children = VEC_length (varobj_p, var->children);
b6313243 887
b6313243 888 return 1;
b6313243 889}
25d5ea92 890
8b93c638
JM
891int
892varobj_get_num_children (struct varobj *var)
893{
894 if (var->num_children == -1)
b6313243 895 {
31f628ae 896 if (varobj_is_dynamic_p (var))
0cc7d26f
TT
897 {
898 int dummy;
899
900 /* If we have a dynamic varobj, don't report -1 children.
901 So, try to fetch some children first. */
8264ba82 902 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
903 0, 0, 0);
904 }
905 else
b6313243
TT
906 var->num_children = number_of_children (var);
907 }
8b93c638 908
0cc7d26f 909 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
910}
911
912/* Creates a list of the immediate children of a variable object;
581e13c1 913 the return code is the number of such children or -1 on error. */
8b93c638 914
d56d46f5 915VEC (varobj_p)*
0cc7d26f 916varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 917{
8b93c638 918 char *name;
b6313243
TT
919 int i, children_changed;
920
bb5ce47a 921 var->dynamic->children_requested = 1;
b6313243 922
31f628ae 923 if (varobj_is_dynamic_p (var))
0cc7d26f 924 {
b6313243
TT
925 /* This, in theory, can result in the number of children changing without
926 frontend noticing. But well, calling -var-list-children on the same
927 varobj twice is not something a sane frontend would do. */
8264ba82
AG
928 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
929 &children_changed, 0, 0, *to);
99ad9427 930 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
931 return var->children;
932 }
8b93c638 933
8b93c638
JM
934 if (var->num_children == -1)
935 var->num_children = number_of_children (var);
936
74a44383
DJ
937 /* If that failed, give up. */
938 if (var->num_children == -1)
d56d46f5 939 return var->children;
74a44383 940
28335dcc
VP
941 /* If we're called when the list of children is not yet initialized,
942 allocate enough elements in it. */
943 while (VEC_length (varobj_p, var->children) < var->num_children)
944 VEC_safe_push (varobj_p, var->children, NULL);
945
8b93c638
JM
946 for (i = 0; i < var->num_children; i++)
947 {
d56d46f5 948 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
949
950 if (existing == NULL)
951 {
952 /* Either it's the first call to varobj_list_children for
953 this variable object, and the child was never created,
954 or it was explicitly deleted by the client. */
955 name = name_of_child (var, i);
956 existing = create_child (var, i, name);
957 VEC_replace (varobj_p, var->children, i, existing);
958 }
8b93c638
JM
959 }
960
99ad9427 961 varobj_restrict_range (var->children, from, to);
d56d46f5 962 return var->children;
8b93c638
JM
963}
964
b6313243 965static struct varobj *
5a2e0d6e 966varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 967{
5a2e0d6e 968 varobj_p v = create_child_with_value (var,
b6313243 969 VEC_length (varobj_p, var->children),
5a2e0d6e 970 item);
a109c7c1 971
b6313243 972 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
973 return v;
974}
975
8b93c638 976/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
977 prints on the console. The caller is responsible for freeing the string.
978 */
8b93c638
JM
979
980char *
981varobj_get_type (struct varobj *var)
982{
8ab91b96 983 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
984 NULL, too.)
985 Do not return a type for invalid variables as well. */
986 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
987 return NULL;
988
1a4300e9 989 return type_to_string (var->type);
8b93c638
JM
990}
991
1ecb4ee0
DJ
992/* Obtain the type of an object variable. */
993
994struct type *
b09e2c59 995varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
996{
997 return var->type;
998}
999
85254831
KS
1000/* Is VAR a path expression parent, i.e., can it be used to construct
1001 a valid path expression? */
1002
1003static int
b09e2c59 1004is_path_expr_parent (const struct varobj *var)
85254831 1005{
9a9a7608
AB
1006 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1007 return var->root->lang_ops->is_path_expr_parent (var);
1008}
85254831 1009
9a9a7608
AB
1010/* Is VAR a path expression parent, i.e., can it be used to construct
1011 a valid path expression? By default we assume any VAR can be a path
1012 parent. */
85254831 1013
9a9a7608 1014int
b09e2c59 1015varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608
AB
1016{
1017 return 1;
85254831
KS
1018}
1019
1020/* Return the path expression parent for VAR. */
1021
c1cc6152
SM
1022const struct varobj *
1023varobj_get_path_expr_parent (const struct varobj *var)
85254831 1024{
c1cc6152 1025 const struct varobj *parent = var;
85254831
KS
1026
1027 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1028 parent = parent->parent;
1029
1030 return parent;
1031}
1032
02142340
VP
1033/* Return a pointer to the full rooted expression of varobj VAR.
1034 If it has not been computed yet, compute it. */
1035char *
c1cc6152 1036varobj_get_path_expr (const struct varobj *var)
02142340 1037{
2568868e 1038 if (var->path_expr == NULL)
02142340
VP
1039 {
1040 /* For root varobjs, we initialize path_expr
1041 when creating varobj, so here it should be
1042 child varobj. */
c1cc6152 1043 struct varobj *mutable_var = (struct varobj *) var;
02142340 1044 gdb_assert (!is_root_p (var));
2568868e 1045
c1cc6152 1046 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 1047 }
2568868e
SM
1048
1049 return var->path_expr;
02142340
VP
1050}
1051
fa4d0c40 1052const struct language_defn *
b09e2c59 1053varobj_get_language (const struct varobj *var)
8b93c638 1054{
fa4d0c40 1055 return var->root->exp->language_defn;
8b93c638
JM
1056}
1057
1058int
b09e2c59 1059varobj_get_attributes (const struct varobj *var)
8b93c638
JM
1060{
1061 int attributes = 0;
1062
340a7723 1063 if (varobj_editable_p (var))
581e13c1 1064 /* FIXME: define masks for attributes. */
8b93c638
JM
1065 attributes |= 0x00000001; /* Editable */
1066
1067 return attributes;
1068}
1069
cde5ef40
YQ
1070/* Return true if VAR is a dynamic varobj. */
1071
0cc7d26f 1072int
b09e2c59 1073varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 1074{
bb5ce47a 1075 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1076}
1077
de051565
MK
1078char *
1079varobj_get_formatted_value (struct varobj *var,
1080 enum varobj_display_formats format)
1081{
1082 return my_value_of_variable (var, format);
1083}
1084
8b93c638
JM
1085char *
1086varobj_get_value (struct varobj *var)
1087{
de051565 1088 return my_value_of_variable (var, var->format);
8b93c638
JM
1089}
1090
1091/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1092 value of the given expression. */
1093/* Note: Invokes functions that can call error(). */
8b93c638
JM
1094
1095int
1096varobj_set_value (struct varobj *var, char *expression)
1097{
34365054 1098 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1099 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1100 We need to first construct a legal expression for this -- ugh! */
1101 /* Does this cover all the bases? */
8b93c638 1102 struct expression *exp;
34365054 1103 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1104 int saved_input_radix = input_radix;
bbc13ae3 1105 const char *s = expression;
8e7b59a5 1106 volatile struct gdb_exception except;
8b93c638 1107
340a7723 1108 gdb_assert (varobj_editable_p (var));
8b93c638 1109
581e13c1 1110 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1bb9788d 1111 exp = parse_exp_1 (&s, 0, 0, 0);
8e7b59a5
KS
1112 TRY_CATCH (except, RETURN_MASK_ERROR)
1113 {
1114 value = evaluate_expression (exp);
1115 }
1116
1117 if (except.reason < 0)
340a7723 1118 {
581e13c1 1119 /* We cannot proceed without a valid expression. */
340a7723
NR
1120 xfree (exp);
1121 return 0;
8b93c638
JM
1122 }
1123
340a7723
NR
1124 /* All types that are editable must also be changeable. */
1125 gdb_assert (varobj_value_is_changeable_p (var));
1126
1127 /* The value of a changeable variable object must not be lazy. */
1128 gdb_assert (!value_lazy (var->value));
1129
1130 /* Need to coerce the input. We want to check if the
1131 value of the variable object will be different
1132 after assignment, and the first thing value_assign
1133 does is coerce the input.
1134 For example, if we are assigning an array to a pointer variable we
b021a221 1135 should compare the pointer with the array's address, not with the
340a7723
NR
1136 array's content. */
1137 value = coerce_array (value);
1138
8e7b59a5
KS
1139 /* The new value may be lazy. value_assign, or
1140 rather value_contents, will take care of this. */
1141 TRY_CATCH (except, RETURN_MASK_ERROR)
1142 {
1143 val = value_assign (var->value, value);
1144 }
1145
1146 if (except.reason < 0)
340a7723 1147 return 0;
8e7b59a5 1148
340a7723
NR
1149 /* If the value has changed, record it, so that next -var-update can
1150 report this change. If a variable had a value of '1', we've set it
1151 to '333' and then set again to '1', when -var-update will report this
1152 variable as changed -- because the first assignment has set the
1153 'updated' flag. There's no need to optimize that, because return value
1154 of -var-update should be considered an approximation. */
581e13c1 1155 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1156 input_radix = saved_input_radix;
1157 return 1;
8b93c638
JM
1158}
1159
0cc7d26f
TT
1160#if HAVE_PYTHON
1161
1162/* A helper function to install a constructor function and visualizer
bb5ce47a 1163 in a varobj_dynamic. */
0cc7d26f
TT
1164
1165static void
bb5ce47a 1166install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1167 PyObject *visualizer)
1168{
1169 Py_XDECREF (var->constructor);
1170 var->constructor = constructor;
1171
1172 Py_XDECREF (var->pretty_printer);
1173 var->pretty_printer = visualizer;
1174
e5250216 1175 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1176 var->child_iter = NULL;
1177}
1178
1179/* Install the default visualizer for VAR. */
1180
1181static void
1182install_default_visualizer (struct varobj *var)
1183{
d65aec65
PM
1184 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1185 if (CPLUS_FAKE_CHILD (var))
1186 return;
1187
0cc7d26f
TT
1188 if (pretty_printing)
1189 {
1190 PyObject *pretty_printer = NULL;
1191
1192 if (var->value)
1193 {
1194 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1195 if (! pretty_printer)
1196 {
1197 gdbpy_print_stack ();
1198 error (_("Cannot instantiate printer for default visualizer"));
1199 }
1200 }
1201
1202 if (pretty_printer == Py_None)
1203 {
1204 Py_DECREF (pretty_printer);
1205 pretty_printer = NULL;
1206 }
1207
bb5ce47a 1208 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1209 }
1210}
1211
1212/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1213 make a new object. */
1214
1215static void
1216construct_visualizer (struct varobj *var, PyObject *constructor)
1217{
1218 PyObject *pretty_printer;
1219
d65aec65
PM
1220 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1221 if (CPLUS_FAKE_CHILD (var))
1222 return;
1223
0cc7d26f
TT
1224 Py_INCREF (constructor);
1225 if (constructor == Py_None)
1226 pretty_printer = NULL;
1227 else
1228 {
1229 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1230 if (! pretty_printer)
1231 {
1232 gdbpy_print_stack ();
1233 Py_DECREF (constructor);
1234 constructor = Py_None;
1235 Py_INCREF (constructor);
1236 }
1237
1238 if (pretty_printer == Py_None)
1239 {
1240 Py_DECREF (pretty_printer);
1241 pretty_printer = NULL;
1242 }
1243 }
1244
bb5ce47a 1245 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1246}
1247
1248#endif /* HAVE_PYTHON */
1249
1250/* A helper function for install_new_value. This creates and installs
1251 a visualizer for VAR, if appropriate. */
1252
1253static void
1254install_new_value_visualizer (struct varobj *var)
1255{
1256#if HAVE_PYTHON
1257 /* If the constructor is None, then we want the raw value. If VAR
1258 does not have a value, just skip this. */
0646da15
TT
1259 if (!gdb_python_initialized)
1260 return;
1261
bb5ce47a 1262 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f
TT
1263 {
1264 struct cleanup *cleanup;
0cc7d26f
TT
1265
1266 cleanup = varobj_ensure_python_env (var);
1267
bb5ce47a 1268 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1269 install_default_visualizer (var);
1270 else
bb5ce47a 1271 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1272
1273 do_cleanups (cleanup);
1274 }
1275#else
1276 /* Do nothing. */
1277#endif
1278}
1279
8264ba82
AG
1280/* When using RTTI to determine variable type it may be changed in runtime when
1281 the variable value is changed. This function checks whether type of varobj
1282 VAR will change when a new value NEW_VALUE is assigned and if it is so
1283 updates the type of VAR. */
1284
1285static int
1286update_type_if_necessary (struct varobj *var, struct value *new_value)
1287{
1288 if (new_value)
1289 {
1290 struct value_print_options opts;
1291
1292 get_user_print_options (&opts);
1293 if (opts.objectprint)
1294 {
1295 struct type *new_type;
1296 char *curr_type_str, *new_type_str;
afa269ae 1297 int type_name_changed;
8264ba82
AG
1298
1299 new_type = value_actual_type (new_value, 0, 0);
1300 new_type_str = type_to_string (new_type);
1301 curr_type_str = varobj_get_type (var);
afa269ae
SM
1302 type_name_changed = strcmp (curr_type_str, new_type_str) != 0;
1303 xfree (curr_type_str);
1304 xfree (new_type_str);
1305
1306 if (type_name_changed)
8264ba82
AG
1307 {
1308 var->type = new_type;
1309
1310 /* This information may be not valid for a new type. */
1311 varobj_delete (var, NULL, 1);
1312 VEC_free (varobj_p, var->children);
1313 var->num_children = -1;
1314 return 1;
1315 }
1316 }
1317 }
1318
1319 return 0;
1320}
1321
acd65feb
VP
1322/* Assign a new value to a variable object. If INITIAL is non-zero,
1323 this is the first assignement after the variable object was just
1324 created, or changed type. In that case, just assign the value
1325 and return 0.
581e13c1
MS
1326 Otherwise, assign the new value, and return 1 if the value is
1327 different from the current one, 0 otherwise. The comparison is
1328 done on textual representation of value. Therefore, some types
1329 need not be compared. E.g. for structures the reported value is
1330 always "{...}", so no comparison is necessary here. If the old
1331 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1332
1333 The VALUE parameter should not be released -- the function will
1334 take care of releasing it when needed. */
acd65feb
VP
1335static int
1336install_new_value (struct varobj *var, struct value *value, int initial)
1337{
1338 int changeable;
1339 int need_to_fetch;
1340 int changed = 0;
25d5ea92 1341 int intentionally_not_fetched = 0;
7a4d50bf 1342 char *print_value = NULL;
acd65feb 1343
acd65feb 1344 /* We need to know the varobj's type to decide if the value should
3e43a32a 1345 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1346 don't have a type. */
acd65feb 1347 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1348 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1349
1350 /* If the type has custom visualizer, we consider it to be always
581e13c1 1351 changeable. FIXME: need to make sure this behaviour will not
b6313243 1352 mess up read-sensitive values. */
bb5ce47a 1353 if (var->dynamic->pretty_printer != NULL)
b6313243
TT
1354 changeable = 1;
1355
acd65feb
VP
1356 need_to_fetch = changeable;
1357
b26ed50d
VP
1358 /* We are not interested in the address of references, and given
1359 that in C++ a reference is not rebindable, it cannot
1360 meaningfully change. So, get hold of the real value. */
1361 if (value)
0cc7d26f 1362 value = coerce_ref (value);
b26ed50d 1363
acd65feb
VP
1364 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1365 /* For unions, we need to fetch the value implicitly because
1366 of implementation of union member fetch. When gdb
1367 creates a value for a field and the value of the enclosing
1368 structure is not lazy, it immediately copies the necessary
1369 bytes from the enclosing values. If the enclosing value is
1370 lazy, the call to value_fetch_lazy on the field will read
1371 the data from memory. For unions, that means we'll read the
1372 same memory more than once, which is not desirable. So
1373 fetch now. */
1374 need_to_fetch = 1;
1375
1376 /* The new value might be lazy. If the type is changeable,
1377 that is we'll be comparing values of this type, fetch the
1378 value now. Otherwise, on the next update the old value
1379 will be lazy, which means we've lost that old value. */
1380 if (need_to_fetch && value && value_lazy (value))
1381 {
c1cc6152 1382 const struct varobj *parent = var->parent;
25d5ea92 1383 int frozen = var->frozen;
a109c7c1 1384
25d5ea92
VP
1385 for (; !frozen && parent; parent = parent->parent)
1386 frozen |= parent->frozen;
1387
1388 if (frozen && initial)
1389 {
1390 /* For variables that are frozen, or are children of frozen
1391 variables, we don't do fetch on initial assignment.
1392 For non-initial assignemnt we do the fetch, since it means we're
1393 explicitly asked to compare the new value with the old one. */
1394 intentionally_not_fetched = 1;
1395 }
8e7b59a5 1396 else
acd65feb 1397 {
8e7b59a5
KS
1398 volatile struct gdb_exception except;
1399
1400 TRY_CATCH (except, RETURN_MASK_ERROR)
1401 {
1402 value_fetch_lazy (value);
1403 }
1404
1405 if (except.reason < 0)
1406 {
1407 /* Set the value to NULL, so that for the next -var-update,
1408 we don't try to compare the new value with this value,
1409 that we couldn't even read. */
1410 value = NULL;
1411 }
acd65feb 1412 }
acd65feb
VP
1413 }
1414
e848a8a5
TT
1415 /* Get a reference now, before possibly passing it to any Python
1416 code that might release it. */
1417 if (value != NULL)
1418 value_incref (value);
b6313243 1419
7a4d50bf
VP
1420 /* Below, we'll be comparing string rendering of old and new
1421 values. Don't get string rendering if the value is
1422 lazy -- if it is, the code above has decided that the value
1423 should not be fetched. */
bb5ce47a
YQ
1424 if (value != NULL && !value_lazy (value)
1425 && var->dynamic->pretty_printer == NULL)
99ad9427 1426 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1427
acd65feb
VP
1428 /* If the type is changeable, compare the old and the new values.
1429 If this is the initial assignment, we don't have any old value
1430 to compare with. */
7a4d50bf 1431 if (!initial && changeable)
acd65feb 1432 {
3e43a32a
MS
1433 /* If the value of the varobj was changed by -var-set-value,
1434 then the value in the varobj and in the target is the same.
1435 However, that value is different from the value that the
581e13c1 1436 varobj had after the previous -var-update. So need to the
3e43a32a 1437 varobj as changed. */
acd65feb 1438 if (var->updated)
57e66780 1439 {
57e66780
DJ
1440 changed = 1;
1441 }
bb5ce47a 1442 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1443 {
1444 /* Try to compare the values. That requires that both
1445 values are non-lazy. */
25d5ea92
VP
1446 if (var->not_fetched && value_lazy (var->value))
1447 {
1448 /* This is a frozen varobj and the value was never read.
1449 Presumably, UI shows some "never read" indicator.
1450 Now that we've fetched the real value, we need to report
1451 this varobj as changed so that UI can show the real
1452 value. */
1453 changed = 1;
1454 }
1455 else if (var->value == NULL && value == NULL)
581e13c1 1456 /* Equal. */
acd65feb
VP
1457 ;
1458 else if (var->value == NULL || value == NULL)
57e66780 1459 {
57e66780
DJ
1460 changed = 1;
1461 }
acd65feb
VP
1462 else
1463 {
1464 gdb_assert (!value_lazy (var->value));
1465 gdb_assert (!value_lazy (value));
85265413 1466
57e66780 1467 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1468 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1469 changed = 1;
acd65feb
VP
1470 }
1471 }
1472 }
85265413 1473
ee342b23
VP
1474 if (!initial && !changeable)
1475 {
1476 /* For values that are not changeable, we don't compare the values.
1477 However, we want to notice if a value was not NULL and now is NULL,
1478 or vise versa, so that we report when top-level varobjs come in scope
1479 and leave the scope. */
1480 changed = (var->value != NULL) != (value != NULL);
1481 }
1482
acd65feb 1483 /* We must always keep the new value, since children depend on it. */
25d5ea92 1484 if (var->value != NULL && var->value != value)
acd65feb
VP
1485 value_free (var->value);
1486 var->value = value;
25d5ea92
VP
1487 if (value && value_lazy (value) && intentionally_not_fetched)
1488 var->not_fetched = 1;
1489 else
1490 var->not_fetched = 0;
acd65feb 1491 var->updated = 0;
85265413 1492
0cc7d26f
TT
1493 install_new_value_visualizer (var);
1494
1495 /* If we installed a pretty-printer, re-compare the printed version
1496 to see if the variable changed. */
bb5ce47a 1497 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
1498 {
1499 xfree (print_value);
99ad9427
YQ
1500 print_value = varobj_value_get_print_value (var->value, var->format,
1501 var);
e8f781e2
TT
1502 if ((var->print_value == NULL && print_value != NULL)
1503 || (var->print_value != NULL && print_value == NULL)
1504 || (var->print_value != NULL && print_value != NULL
1505 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1506 changed = 1;
1507 }
1508 if (var->print_value)
1509 xfree (var->print_value);
1510 var->print_value = print_value;
1511
b26ed50d 1512 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1513
1514 return changed;
1515}
acd65feb 1516
0cc7d26f
TT
1517/* Return the requested range for a varobj. VAR is the varobj. FROM
1518 and TO are out parameters; *FROM and *TO will be set to the
1519 selected sub-range of VAR. If no range was selected using
1520 -var-set-update-range, then both will be -1. */
1521void
b09e2c59 1522varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1523{
0cc7d26f
TT
1524 *from = var->from;
1525 *to = var->to;
b6313243
TT
1526}
1527
0cc7d26f
TT
1528/* Set the selected sub-range of children of VAR to start at index
1529 FROM and end at index TO. If either FROM or TO is less than zero,
1530 this is interpreted as a request for all children. */
1531void
1532varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1533{
0cc7d26f
TT
1534 var->from = from;
1535 var->to = to;
b6313243
TT
1536}
1537
1538void
1539varobj_set_visualizer (struct varobj *var, const char *visualizer)
1540{
1541#if HAVE_PYTHON
34fa1d9d
MS
1542 PyObject *mainmod, *globals, *constructor;
1543 struct cleanup *back_to;
b6313243 1544
0646da15
TT
1545 if (!gdb_python_initialized)
1546 return;
1547
d452c4bc 1548 back_to = varobj_ensure_python_env (var);
b6313243
TT
1549
1550 mainmod = PyImport_AddModule ("__main__");
1551 globals = PyModule_GetDict (mainmod);
1552 Py_INCREF (globals);
1553 make_cleanup_py_decref (globals);
1554
1555 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1556
0cc7d26f 1557 if (! constructor)
b6313243
TT
1558 {
1559 gdbpy_print_stack ();
da1f2771 1560 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1561 }
1562
0cc7d26f
TT
1563 construct_visualizer (var, constructor);
1564 Py_XDECREF (constructor);
b6313243 1565
0cc7d26f
TT
1566 /* If there are any children now, wipe them. */
1567 varobj_delete (var, NULL, 1 /* children only */);
1568 var->num_children = -1;
b6313243
TT
1569
1570 do_cleanups (back_to);
1571#else
da1f2771 1572 error (_("Python support required"));
b6313243
TT
1573#endif
1574}
1575
7a290c40
JB
1576/* If NEW_VALUE is the new value of the given varobj (var), return
1577 non-zero if var has mutated. In other words, if the type of
1578 the new value is different from the type of the varobj's old
1579 value.
1580
1581 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1582
1583static int
b09e2c59 1584varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1585 struct type *new_type)
1586{
1587 /* If we haven't previously computed the number of children in var,
1588 it does not matter from the front-end's perspective whether
1589 the type has mutated or not. For all intents and purposes,
1590 it has not mutated. */
1591 if (var->num_children < 0)
1592 return 0;
1593
ca20d462 1594 if (var->root->lang_ops->value_has_mutated)
8776cfe9
JB
1595 {
1596 /* The varobj module, when installing new values, explicitly strips
1597 references, saying that we're not interested in those addresses.
1598 But detection of mutation happens before installing the new
1599 value, so our value may be a reference that we need to strip
1600 in order to remain consistent. */
1601 if (new_value != NULL)
1602 new_value = coerce_ref (new_value);
1603 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1604 }
7a290c40
JB
1605 else
1606 return 0;
1607}
1608
8b93c638
JM
1609/* Update the values for a variable and its children. This is a
1610 two-pronged attack. First, re-parse the value for the root's
1611 expression to see if it's changed. Then go all the way
1612 through its children, reconstructing them and noting if they've
1613 changed.
1614
25d5ea92
VP
1615 The EXPLICIT parameter specifies if this call is result
1616 of MI request to update this specific variable, or
581e13c1 1617 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1618 update frozen variables.
705da579 1619
581e13c1 1620 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1621 returns TYPE_CHANGED, then it has done this and VARP will be modified
1622 to point to the new varobj. */
8b93c638 1623
1417b39d
JB
1624VEC(varobj_update_result) *
1625varobj_update (struct varobj **varp, int explicit)
8b93c638 1626{
25d5ea92 1627 int type_changed = 0;
8b93c638 1628 int i;
30b28db1 1629 struct value *new;
b6313243 1630 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1631 VEC (varobj_update_result) *result = NULL;
8b93c638 1632
25d5ea92
VP
1633 /* Frozen means frozen -- we don't check for any change in
1634 this varobj, including its going out of scope, or
1635 changing type. One use case for frozen varobjs is
1636 retaining previously evaluated expressions, and we don't
1637 want them to be reevaluated at all. */
1638 if (!explicit && (*varp)->frozen)
f7f9ae2c 1639 return result;
8756216b
DP
1640
1641 if (!(*varp)->root->is_valid)
f7f9ae2c 1642 {
cfce2ea2 1643 varobj_update_result r = {0};
a109c7c1 1644
cfce2ea2 1645 r.varobj = *varp;
f7f9ae2c
VP
1646 r.status = VAROBJ_INVALID;
1647 VEC_safe_push (varobj_update_result, result, &r);
1648 return result;
1649 }
8b93c638 1650
25d5ea92 1651 if ((*varp)->root->rootvar == *varp)
ae093f96 1652 {
cfce2ea2 1653 varobj_update_result r = {0};
a109c7c1 1654
cfce2ea2 1655 r.varobj = *varp;
f7f9ae2c
VP
1656 r.status = VAROBJ_IN_SCOPE;
1657
581e13c1 1658 /* Update the root variable. value_of_root can return NULL
25d5ea92 1659 if the variable is no longer around, i.e. we stepped out of
581e13c1 1660 the frame in which a local existed. We are letting the
25d5ea92
VP
1661 value_of_root variable dispose of the varobj if the type
1662 has changed. */
25d5ea92 1663 new = value_of_root (varp, &type_changed);
8264ba82
AG
1664 if (update_type_if_necessary(*varp, new))
1665 type_changed = 1;
f7f9ae2c 1666 r.varobj = *varp;
f7f9ae2c 1667 r.type_changed = type_changed;
ea56f9c2 1668 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1669 r.changed = 1;
ea56f9c2 1670
25d5ea92 1671 if (new == NULL)
f7f9ae2c 1672 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1673 r.value_installed = 1;
f7f9ae2c
VP
1674
1675 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1676 {
0b4bc29a
JK
1677 if (r.type_changed || r.changed)
1678 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1679 return result;
1680 }
1681
1682 VEC_safe_push (varobj_update_result, stack, &r);
1683 }
1684 else
1685 {
cfce2ea2 1686 varobj_update_result r = {0};
a109c7c1 1687
cfce2ea2 1688 r.varobj = *varp;
b6313243 1689 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1690 }
8b93c638 1691
8756216b 1692 /* Walk through the children, reconstructing them all. */
b6313243 1693 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1694 {
b6313243
TT
1695 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1696 struct varobj *v = r.varobj;
1697
1698 VEC_pop (varobj_update_result, stack);
1699
1700 /* Update this variable, unless it's a root, which is already
1701 updated. */
1702 if (!r.value_installed)
7a290c40
JB
1703 {
1704 struct type *new_type;
1705
b6313243 1706 new = value_of_child (v->parent, v->index);
8264ba82
AG
1707 if (update_type_if_necessary(v, new))
1708 r.type_changed = 1;
7a290c40
JB
1709 if (new)
1710 new_type = value_type (new);
1711 else
ca20d462 1712 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40
JB
1713
1714 if (varobj_value_has_mutated (v, new, new_type))
1715 {
1716 /* The children are no longer valid; delete them now.
1717 Report the fact that its type changed as well. */
1718 varobj_delete (v, NULL, 1 /* only_children */);
1719 v->num_children = -1;
1720 v->to = -1;
1721 v->from = -1;
1722 v->type = new_type;
1723 r.type_changed = 1;
1724 }
1725
1726 if (install_new_value (v, new, r.type_changed))
b6313243
TT
1727 {
1728 r.changed = 1;
1729 v->updated = 0;
1730 }
1731 }
1732
31f628ae
YQ
1733 /* We probably should not get children of a dynamic varobj, but
1734 for which -var-list-children was never invoked. */
1735 if (varobj_is_dynamic_p (v))
b6313243 1736 {
8264ba82
AG
1737 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1738 VEC (varobj_p) *new = 0;
26f9bcee 1739 int i, children_changed = 0;
b6313243
TT
1740
1741 if (v->frozen)
1742 continue;
1743
bb5ce47a 1744 if (!v->dynamic->children_requested)
0cc7d26f
TT
1745 {
1746 int dummy;
1747
1748 /* If we initially did not have potential children, but
1749 now we do, consider the varobj as changed.
1750 Otherwise, if children were never requested, consider
1751 it as unchanged -- presumably, such varobj is not yet
1752 expanded in the UI, so we need not bother getting
1753 it. */
1754 if (!varobj_has_more (v, 0))
1755 {
8264ba82 1756 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
1757 &dummy, 0, 0, 0);
1758 if (varobj_has_more (v, 0))
1759 r.changed = 1;
1760 }
1761
1762 if (r.changed)
1763 VEC_safe_push (varobj_update_result, result, &r);
1764
1765 continue;
1766 }
1767
b6313243
TT
1768 /* If update_dynamic_varobj_children returns 0, then we have
1769 a non-conforming pretty-printer, so we skip it. */
8264ba82
AG
1770 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1771 &unchanged, &children_changed, 1,
0cc7d26f 1772 v->from, v->to))
b6313243 1773 {
0cc7d26f 1774 if (children_changed || new)
b6313243 1775 {
0cc7d26f
TT
1776 r.children_changed = 1;
1777 r.new = new;
b6313243 1778 }
0cc7d26f
TT
1779 /* Push in reverse order so that the first child is
1780 popped from the work stack first, and so will be
1781 added to result first. This does not affect
1782 correctness, just "nicer". */
8264ba82
AG
1783 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1784 {
1785 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1786 varobj_update_result r = {0};
1787
1788 /* Type may change only if value was changed. */
1789 r.varobj = tmp;
1790 r.changed = 1;
1791 r.type_changed = 1;
1792 r.value_installed = 1;
1793 VEC_safe_push (varobj_update_result, stack, &r);
1794 }
0cc7d26f 1795 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1796 {
0cc7d26f 1797 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1798 varobj_update_result r = {0};
a109c7c1 1799
cfce2ea2 1800 r.varobj = tmp;
0cc7d26f 1801 r.changed = 1;
b6313243
TT
1802 r.value_installed = 1;
1803 VEC_safe_push (varobj_update_result, stack, &r);
1804 }
0cc7d26f
TT
1805 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1806 {
1807 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1808
0cc7d26f
TT
1809 if (!tmp->frozen)
1810 {
cfce2ea2 1811 varobj_update_result r = {0};
a109c7c1 1812
cfce2ea2 1813 r.varobj = tmp;
0cc7d26f
TT
1814 r.value_installed = 1;
1815 VEC_safe_push (varobj_update_result, stack, &r);
1816 }
1817 }
b6313243
TT
1818 if (r.changed || r.children_changed)
1819 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 1820
8264ba82
AG
1821 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1822 because NEW has been put into the result vector. */
0cc7d26f 1823 VEC_free (varobj_p, changed);
8264ba82 1824 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
1825 VEC_free (varobj_p, unchanged);
1826
b6313243
TT
1827 continue;
1828 }
1829 }
28335dcc
VP
1830
1831 /* Push any children. Use reverse order so that the first
1832 child is popped from the work stack first, and so
1833 will be added to result first. This does not
1834 affect correctness, just "nicer". */
1835 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1836 {
28335dcc 1837 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1838
28335dcc 1839 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1840 if (c != NULL && !c->frozen)
28335dcc 1841 {
cfce2ea2 1842 varobj_update_result r = {0};
a109c7c1 1843
cfce2ea2 1844 r.varobj = c;
b6313243 1845 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1846 }
8b93c638 1847 }
b6313243
TT
1848
1849 if (r.changed || r.type_changed)
1850 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1851 }
1852
b6313243
TT
1853 VEC_free (varobj_update_result, stack);
1854
f7f9ae2c 1855 return result;
8b93c638
JM
1856}
1857\f
1858
1859/* Helper functions */
1860
1861/*
1862 * Variable object construction/destruction
1863 */
1864
1865static int
fba45db2
KB
1866delete_variable (struct cpstack **resultp, struct varobj *var,
1867 int only_children_p)
8b93c638
JM
1868{
1869 int delcount = 0;
1870
1871 delete_variable_1 (resultp, &delcount, var,
1872 only_children_p, 1 /* remove_from_parent_p */ );
1873
1874 return delcount;
1875}
1876
581e13c1 1877/* Delete the variable object VAR and its children. */
8b93c638
JM
1878/* IMPORTANT NOTE: If we delete a variable which is a child
1879 and the parent is not removed we dump core. It must be always
581e13c1 1880 initially called with remove_from_parent_p set. */
8b93c638 1881static void
72330bd6
AC
1882delete_variable_1 (struct cpstack **resultp, int *delcountp,
1883 struct varobj *var, int only_children_p,
1884 int remove_from_parent_p)
8b93c638 1885{
28335dcc 1886 int i;
8b93c638 1887
581e13c1 1888 /* Delete any children of this variable, too. */
28335dcc
VP
1889 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1890 {
1891 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1892
214270ab
VP
1893 if (!child)
1894 continue;
8b93c638 1895 if (!remove_from_parent_p)
28335dcc
VP
1896 child->parent = NULL;
1897 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1898 }
28335dcc 1899 VEC_free (varobj_p, var->children);
8b93c638 1900
581e13c1 1901 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1902 if (only_children_p)
1903 return;
1904
581e13c1 1905 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 1906 /* If the name is null, this is a temporary variable, that has not
581e13c1 1907 yet been installed, don't report it, it belongs to the caller... */
73a93a32 1908 if (var->obj_name != NULL)
8b93c638 1909 {
5b616ba1 1910 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1911 *delcountp = *delcountp + 1;
1912 }
1913
581e13c1 1914 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1915 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1916 (as indicated by remove_from_parent_p) we don't bother doing an
1917 expensive list search to find the element to remove when we are
581e13c1 1918 discarding the list afterwards. */
72330bd6 1919 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1920 {
28335dcc 1921 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1922 }
72330bd6 1923
73a93a32
JI
1924 if (var->obj_name != NULL)
1925 uninstall_variable (var);
8b93c638 1926
581e13c1 1927 /* Free memory associated with this variable. */
8b93c638
JM
1928 free_variable (var);
1929}
1930
581e13c1 1931/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1932static int
fba45db2 1933install_variable (struct varobj *var)
8b93c638
JM
1934{
1935 struct vlist *cv;
1936 struct vlist *newvl;
1937 const char *chp;
1938 unsigned int index = 0;
1939 unsigned int i = 1;
1940
1941 for (chp = var->obj_name; *chp; chp++)
1942 {
1943 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1944 }
1945
1946 cv = *(varobj_table + index);
1947 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1948 cv = cv->next;
1949
1950 if (cv != NULL)
8a3fe4f8 1951 error (_("Duplicate variable object name"));
8b93c638 1952
581e13c1 1953 /* Add varobj to hash table. */
8b93c638
JM
1954 newvl = xmalloc (sizeof (struct vlist));
1955 newvl->next = *(varobj_table + index);
1956 newvl->var = var;
1957 *(varobj_table + index) = newvl;
1958
581e13c1 1959 /* If root, add varobj to root list. */
b2c2bd75 1960 if (is_root_p (var))
8b93c638 1961 {
581e13c1 1962 /* Add to list of root variables. */
8b93c638
JM
1963 if (rootlist == NULL)
1964 var->root->next = NULL;
1965 else
1966 var->root->next = rootlist;
1967 rootlist = var->root;
8b93c638
JM
1968 }
1969
1970 return 1; /* OK */
1971}
1972
581e13c1 1973/* Unistall the object VAR. */
8b93c638 1974static void
fba45db2 1975uninstall_variable (struct varobj *var)
8b93c638
JM
1976{
1977 struct vlist *cv;
1978 struct vlist *prev;
1979 struct varobj_root *cr;
1980 struct varobj_root *prer;
1981 const char *chp;
1982 unsigned int index = 0;
1983 unsigned int i = 1;
1984
581e13c1 1985 /* Remove varobj from hash table. */
8b93c638
JM
1986 for (chp = var->obj_name; *chp; chp++)
1987 {
1988 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1989 }
1990
1991 cv = *(varobj_table + index);
1992 prev = NULL;
1993 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1994 {
1995 prev = cv;
1996 cv = cv->next;
1997 }
1998
1999 if (varobjdebug)
2000 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2001
2002 if (cv == NULL)
2003 {
72330bd6
AC
2004 warning
2005 ("Assertion failed: Could not find variable object \"%s\" to delete",
2006 var->obj_name);
8b93c638
JM
2007 return;
2008 }
2009
2010 if (prev == NULL)
2011 *(varobj_table + index) = cv->next;
2012 else
2013 prev->next = cv->next;
2014
b8c9b27d 2015 xfree (cv);
8b93c638 2016
581e13c1 2017 /* If root, remove varobj from root list. */
b2c2bd75 2018 if (is_root_p (var))
8b93c638 2019 {
581e13c1 2020 /* Remove from list of root variables. */
8b93c638
JM
2021 if (rootlist == var->root)
2022 rootlist = var->root->next;
2023 else
2024 {
2025 prer = NULL;
2026 cr = rootlist;
2027 while ((cr != NULL) && (cr->rootvar != var))
2028 {
2029 prer = cr;
2030 cr = cr->next;
2031 }
2032 if (cr == NULL)
2033 {
8f7e195f
JB
2034 warning (_("Assertion failed: Could not find "
2035 "varobj \"%s\" in root list"),
3e43a32a 2036 var->obj_name);
8b93c638
JM
2037 return;
2038 }
2039 if (prer == NULL)
2040 rootlist = NULL;
2041 else
2042 prer->next = cr->next;
2043 }
8b93c638
JM
2044 }
2045
2046}
2047
837ce252
SM
2048/* Create and install a child of the parent of the given name.
2049
2050 The created VAROBJ takes ownership of the allocated NAME. */
2051
8b93c638 2052static struct varobj *
fba45db2 2053create_child (struct varobj *parent, int index, char *name)
b6313243 2054{
5a2e0d6e
YQ
2055 struct varobj_item item;
2056
2057 item.name = name;
2058 item.value = value_of_child (parent, index);
2059
2060 return create_child_with_value (parent, index, &item);
b6313243
TT
2061}
2062
2063static struct varobj *
5a2e0d6e
YQ
2064create_child_with_value (struct varobj *parent, int index,
2065 struct varobj_item *item)
8b93c638
JM
2066{
2067 struct varobj *child;
2068 char *childs_name;
2069
2070 child = new_variable ();
2071
5e5ac9a5 2072 /* NAME is allocated by caller. */
5a2e0d6e 2073 child->name = item->name;
8b93c638 2074 child->index = index;
8b93c638
JM
2075 child->parent = parent;
2076 child->root = parent->root;
85254831 2077
99ad9427 2078 if (varobj_is_anonymous_child (child))
85254831
KS
2079 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2080 else
5a2e0d6e 2081 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
8b93c638 2082 child->obj_name = childs_name;
85254831 2083
8b93c638
JM
2084 install_variable (child);
2085
acd65feb
VP
2086 /* Compute the type of the child. Must do this before
2087 calling install_new_value. */
5a2e0d6e 2088 if (item->value != NULL)
acd65feb 2089 /* If the child had no evaluation errors, var->value
581e13c1 2090 will be non-NULL and contain a valid type. */
5a2e0d6e 2091 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 2092 else
581e13c1 2093 /* Otherwise, we must compute the type. */
ca20d462
YQ
2094 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2095 child->index);
5a2e0d6e 2096 install_new_value (child, item->value, 1);
acd65feb 2097
8b93c638
JM
2098 return child;
2099}
8b93c638
JM
2100\f
2101
2102/*
2103 * Miscellaneous utility functions.
2104 */
2105
581e13c1 2106/* Allocate memory and initialize a new variable. */
8b93c638
JM
2107static struct varobj *
2108new_variable (void)
2109{
2110 struct varobj *var;
2111
2112 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2113 var->name = NULL;
02142340 2114 var->path_expr = NULL;
8b93c638
JM
2115 var->obj_name = NULL;
2116 var->index = -1;
2117 var->type = NULL;
2118 var->value = NULL;
8b93c638
JM
2119 var->num_children = -1;
2120 var->parent = NULL;
2121 var->children = NULL;
2122 var->format = 0;
2123 var->root = NULL;
fb9b6b35 2124 var->updated = 0;
85265413 2125 var->print_value = NULL;
25d5ea92
VP
2126 var->frozen = 0;
2127 var->not_fetched = 0;
bb5ce47a
YQ
2128 var->dynamic
2129 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2130 var->dynamic->children_requested = 0;
0cc7d26f
TT
2131 var->from = -1;
2132 var->to = -1;
bb5ce47a
YQ
2133 var->dynamic->constructor = 0;
2134 var->dynamic->pretty_printer = 0;
2135 var->dynamic->child_iter = 0;
2136 var->dynamic->saved_item = 0;
8b93c638
JM
2137
2138 return var;
2139}
2140
581e13c1 2141/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2142static struct varobj *
2143new_root_variable (void)
2144{
2145 struct varobj *var = new_variable ();
a109c7c1 2146
3e43a32a 2147 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
ca20d462 2148 var->root->lang_ops = NULL;
8b93c638
JM
2149 var->root->exp = NULL;
2150 var->root->valid_block = NULL;
7a424e99 2151 var->root->frame = null_frame_id;
a5defcdc 2152 var->root->floating = 0;
8b93c638 2153 var->root->rootvar = NULL;
8756216b 2154 var->root->is_valid = 1;
8b93c638
JM
2155
2156 return var;
2157}
2158
581e13c1 2159/* Free any allocated memory associated with VAR. */
8b93c638 2160static void
fba45db2 2161free_variable (struct varobj *var)
8b93c638 2162{
d452c4bc 2163#if HAVE_PYTHON
bb5ce47a 2164 if (var->dynamic->pretty_printer != NULL)
d452c4bc
UW
2165 {
2166 struct cleanup *cleanup = varobj_ensure_python_env (var);
bb5ce47a
YQ
2167
2168 Py_XDECREF (var->dynamic->constructor);
2169 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
2170 do_cleanups (cleanup);
2171 }
2172#endif
2173
827f100c
YQ
2174 varobj_iter_delete (var->dynamic->child_iter);
2175 varobj_clear_saved_item (var->dynamic);
36746093
JK
2176 value_free (var->value);
2177
581e13c1 2178 /* Free the expression if this is a root variable. */
b2c2bd75 2179 if (is_root_p (var))
8b93c638 2180 {
3038237c 2181 xfree (var->root->exp);
8038e1e2 2182 xfree (var->root);
8b93c638
JM
2183 }
2184
8038e1e2
AC
2185 xfree (var->name);
2186 xfree (var->obj_name);
85265413 2187 xfree (var->print_value);
02142340 2188 xfree (var->path_expr);
bb5ce47a 2189 xfree (var->dynamic);
8038e1e2 2190 xfree (var);
8b93c638
JM
2191}
2192
74b7792f
AC
2193static void
2194do_free_variable_cleanup (void *var)
2195{
2196 free_variable (var);
2197}
2198
2199static struct cleanup *
2200make_cleanup_free_variable (struct varobj *var)
2201{
2202 return make_cleanup (do_free_variable_cleanup, var);
2203}
2204
6e2a9270
VP
2205/* Return the type of the value that's stored in VAR,
2206 or that would have being stored there if the
581e13c1 2207 value were accessible.
6e2a9270
VP
2208
2209 This differs from VAR->type in that VAR->type is always
2210 the true type of the expession in the source language.
2211 The return value of this function is the type we're
2212 actually storing in varobj, and using for displaying
2213 the values and for comparing previous and new values.
2214
2215 For example, top-level references are always stripped. */
99ad9427 2216struct type *
b09e2c59 2217varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2218{
2219 struct type *type;
2220
2221 if (var->value)
2222 type = value_type (var->value);
2223 else
2224 type = var->type;
2225
2226 type = check_typedef (type);
2227
2228 if (TYPE_CODE (type) == TYPE_CODE_REF)
2229 type = get_target_type (type);
2230
2231 type = check_typedef (type);
2232
2233 return type;
2234}
2235
8b93c638 2236/* What is the default display for this variable? We assume that
581e13c1 2237 everything is "natural". Any exceptions? */
8b93c638 2238static enum varobj_display_formats
fba45db2 2239variable_default_display (struct varobj *var)
8b93c638
JM
2240{
2241 return FORMAT_NATURAL;
2242}
2243
581e13c1 2244/* FIXME: The following should be generic for any pointer. */
8b93c638 2245static void
fba45db2 2246cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2247{
2248 struct cpstack *s;
2249
2250 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2251 s->name = name;
2252 s->next = *pstack;
2253 *pstack = s;
2254}
2255
581e13c1 2256/* FIXME: The following should be generic for any pointer. */
8b93c638 2257static char *
fba45db2 2258cppop (struct cpstack **pstack)
8b93c638
JM
2259{
2260 struct cpstack *s;
2261 char *v;
2262
2263 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2264 return NULL;
2265
2266 s = *pstack;
2267 v = s->name;
2268 *pstack = (*pstack)->next;
b8c9b27d 2269 xfree (s);
8b93c638
JM
2270
2271 return v;
2272}
2273\f
2274/*
2275 * Language-dependencies
2276 */
2277
2278/* Common entry points */
2279
8b93c638
JM
2280/* Return the number of children for a given variable.
2281 The result of this function is defined by the language
581e13c1 2282 implementation. The number of children returned by this function
8b93c638 2283 is the number of children that the user will see in the variable
581e13c1 2284 display. */
8b93c638 2285static int
b09e2c59 2286number_of_children (const struct varobj *var)
8b93c638 2287{
ca20d462 2288 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2289}
2290
3e43a32a 2291/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2292 string. */
8b93c638 2293static char *
b09e2c59 2294name_of_variable (const struct varobj *var)
8b93c638 2295{
ca20d462 2296 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2297}
2298
3e43a32a 2299/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2300 string. */
8b93c638 2301static char *
fba45db2 2302name_of_child (struct varobj *var, int index)
8b93c638 2303{
ca20d462 2304 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2305}
2306
2213e2be
YQ
2307/* If frame associated with VAR can be found, switch
2308 to it and return 1. Otherwise, return 0. */
2309
2310static int
b09e2c59 2311check_scope (const struct varobj *var)
2213e2be
YQ
2312{
2313 struct frame_info *fi;
2314 int scope;
2315
2316 fi = frame_find_by_id (var->root->frame);
2317 scope = fi != NULL;
2318
2319 if (fi)
2320 {
2321 CORE_ADDR pc = get_frame_pc (fi);
2322
2323 if (pc < BLOCK_START (var->root->valid_block) ||
2324 pc >= BLOCK_END (var->root->valid_block))
2325 scope = 0;
2326 else
2327 select_frame (fi);
2328 }
2329 return scope;
2330}
2331
2332/* Helper function to value_of_root. */
2333
2334static struct value *
2335value_of_root_1 (struct varobj **var_handle)
2336{
2337 struct value *new_val = NULL;
2338 struct varobj *var = *var_handle;
2339 int within_scope = 0;
2340 struct cleanup *back_to;
2341
2342 /* Only root variables can be updated... */
2343 if (!is_root_p (var))
2344 /* Not a root var. */
2345 return NULL;
2346
2347 back_to = make_cleanup_restore_current_thread ();
2348
2349 /* Determine whether the variable is still around. */
2350 if (var->root->valid_block == NULL || var->root->floating)
2351 within_scope = 1;
2352 else if (var->root->thread_id == 0)
2353 {
2354 /* The program was single-threaded when the variable object was
2355 created. Technically, it's possible that the program became
2356 multi-threaded since then, but we don't support such
2357 scenario yet. */
2358 within_scope = check_scope (var);
2359 }
2360 else
2361 {
2362 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2363 if (in_thread_list (ptid))
2364 {
2365 switch_to_thread (ptid);
2366 within_scope = check_scope (var);
2367 }
2368 }
2369
2370 if (within_scope)
2371 {
2372 volatile struct gdb_exception except;
2373
2374 /* We need to catch errors here, because if evaluate
2375 expression fails we want to just return NULL. */
2376 TRY_CATCH (except, RETURN_MASK_ERROR)
2377 {
2378 new_val = evaluate_expression (var->root->exp);
2379 }
2380 }
2381
2382 do_cleanups (back_to);
2383
2384 return new_val;
2385}
2386
a5defcdc
VP
2387/* What is the ``struct value *'' of the root variable VAR?
2388 For floating variable object, evaluation can get us a value
2389 of different type from what is stored in varobj already. In
2390 that case:
2391 - *type_changed will be set to 1
2392 - old varobj will be freed, and new one will be
2393 created, with the same name.
2394 - *var_handle will be set to the new varobj
2395 Otherwise, *type_changed will be set to 0. */
30b28db1 2396static struct value *
fba45db2 2397value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2398{
73a93a32
JI
2399 struct varobj *var;
2400
2401 if (var_handle == NULL)
2402 return NULL;
2403
2404 var = *var_handle;
2405
2406 /* This should really be an exception, since this should
581e13c1 2407 only get called with a root variable. */
73a93a32 2408
b2c2bd75 2409 if (!is_root_p (var))
73a93a32
JI
2410 return NULL;
2411
a5defcdc 2412 if (var->root->floating)
73a93a32
JI
2413 {
2414 struct varobj *tmp_var;
2415 char *old_type, *new_type;
6225abfa 2416
73a93a32
JI
2417 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2418 USE_SELECTED_FRAME);
2419 if (tmp_var == NULL)
2420 {
2421 return NULL;
2422 }
6225abfa 2423 old_type = varobj_get_type (var);
73a93a32 2424 new_type = varobj_get_type (tmp_var);
72330bd6 2425 if (strcmp (old_type, new_type) == 0)
73a93a32 2426 {
fcacd99f
VP
2427 /* The expression presently stored inside var->root->exp
2428 remembers the locations of local variables relatively to
2429 the frame where the expression was created (in DWARF location
2430 button, for example). Naturally, those locations are not
2431 correct in other frames, so update the expression. */
2432
2433 struct expression *tmp_exp = var->root->exp;
a109c7c1 2434
fcacd99f
VP
2435 var->root->exp = tmp_var->root->exp;
2436 tmp_var->root->exp = tmp_exp;
2437
73a93a32
JI
2438 varobj_delete (tmp_var, NULL, 0);
2439 *type_changed = 0;
2440 }
2441 else
2442 {
1b36a34b 2443 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2444 tmp_var->from = var->from;
2445 tmp_var->to = var->to;
a5defcdc
VP
2446 varobj_delete (var, NULL, 0);
2447
73a93a32
JI
2448 install_variable (tmp_var);
2449 *var_handle = tmp_var;
705da579 2450 var = *var_handle;
73a93a32
JI
2451 *type_changed = 1;
2452 }
74dddad3
MS
2453 xfree (old_type);
2454 xfree (new_type);
73a93a32
JI
2455 }
2456 else
2457 {
2458 *type_changed = 0;
2459 }
2460
7a290c40
JB
2461 {
2462 struct value *value;
2463
2213e2be 2464 value = value_of_root_1 (var_handle);
7a290c40
JB
2465 if (var->value == NULL || value == NULL)
2466 {
2467 /* For root varobj-s, a NULL value indicates a scoping issue.
2468 So, nothing to do in terms of checking for mutations. */
2469 }
2470 else if (varobj_value_has_mutated (var, value, value_type (value)))
2471 {
2472 /* The type has mutated, so the children are no longer valid.
2473 Just delete them, and tell our caller that the type has
2474 changed. */
2475 varobj_delete (var, NULL, 1 /* only_children */);
2476 var->num_children = -1;
2477 var->to = -1;
2478 var->from = -1;
2479 *type_changed = 1;
2480 }
2481 return value;
2482 }
8b93c638
JM
2483}
2484
581e13c1 2485/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2486static struct value *
c1cc6152 2487value_of_child (const struct varobj *parent, int index)
8b93c638 2488{
30b28db1 2489 struct value *value;
8b93c638 2490
ca20d462 2491 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2492
8b93c638
JM
2493 return value;
2494}
2495
581e13c1 2496/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2497static char *
de051565 2498my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2499{
8756216b 2500 if (var->root->is_valid)
0cc7d26f 2501 {
bb5ce47a 2502 if (var->dynamic->pretty_printer != NULL)
99ad9427 2503 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2504 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2505 }
8756216b
DP
2506 else
2507 return NULL;
8b93c638
JM
2508}
2509
99ad9427
YQ
2510void
2511varobj_formatted_print_options (struct value_print_options *opts,
2512 enum varobj_display_formats format)
2513{
2514 get_formatted_print_options (opts, format_code[(int) format]);
2515 opts->deref_ref = 0;
2516 opts->raw = 1;
2517}
2518
2519char *
2520varobj_value_get_print_value (struct value *value,
2521 enum varobj_display_formats format,
b09e2c59 2522 const struct varobj *var)
85265413 2523{
57e66780 2524 struct ui_file *stb;
621c8364 2525 struct cleanup *old_chain;
ac91cd70 2526 char *thevalue = NULL;
79a45b7d 2527 struct value_print_options opts;
be759fcf
PM
2528 struct type *type = NULL;
2529 long len = 0;
2530 char *encoding = NULL;
2531 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2532 /* Initialize it just to avoid a GCC false warning. */
2533 CORE_ADDR str_addr = 0;
09ca9e2e 2534 int string_print = 0;
57e66780
DJ
2535
2536 if (value == NULL)
2537 return NULL;
2538
621c8364
TT
2539 stb = mem_fileopen ();
2540 old_chain = make_cleanup_ui_file_delete (stb);
2541
be759fcf 2542 gdbarch = get_type_arch (value_type (value));
b6313243 2543#if HAVE_PYTHON
0646da15
TT
2544 if (gdb_python_initialized)
2545 {
bb5ce47a 2546 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2547
0646da15 2548 varobj_ensure_python_env (var);
09ca9e2e 2549
0646da15
TT
2550 if (value_formatter)
2551 {
2552 /* First check to see if we have any children at all. If so,
2553 we simply return {...}. */
2554 if (dynamic_varobj_has_child_method (var))
2555 {
2556 do_cleanups (old_chain);
2557 return xstrdup ("{...}");
2558 }
b6313243 2559
0646da15
TT
2560 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2561 {
2562 struct value *replacement;
2563 PyObject *output = NULL;
2564
2565 output = apply_varobj_pretty_printer (value_formatter,
2566 &replacement,
2567 stb);
2568
2569 /* If we have string like output ... */
2570 if (output)
2571 {
2572 make_cleanup_py_decref (output);
2573
2574 /* If this is a lazy string, extract it. For lazy
2575 strings we always print as a string, so set
2576 string_print. */
2577 if (gdbpy_is_lazy_string (output))
2578 {
2579 gdbpy_extract_lazy_string (output, &str_addr, &type,
2580 &len, &encoding);
2581 make_cleanup (free_current_contents, &encoding);
2582 string_print = 1;
2583 }
2584 else
2585 {
2586 /* If it is a regular (non-lazy) string, extract
2587 it and copy the contents into THEVALUE. If the
2588 hint says to print it as a string, set
2589 string_print. Otherwise just return the extracted
2590 string as a value. */
2591
2592 char *s = python_string_to_target_string (output);
2593
2594 if (s)
2595 {
2596 char *hint;
2597
2598 hint = gdbpy_get_display_hint (value_formatter);
2599 if (hint)
2600 {
2601 if (!strcmp (hint, "string"))
2602 string_print = 1;
2603 xfree (hint);
2604 }
2605
2606 len = strlen (s);
2607 thevalue = xmemdup (s, len + 1, len + 1);
2608 type = builtin_type (gdbarch)->builtin_char;
2609 xfree (s);
2610
2611 if (!string_print)
2612 {
2613 do_cleanups (old_chain);
2614 return thevalue;
2615 }
2616
2617 make_cleanup (xfree, thevalue);
2618 }
2619 else
2620 gdbpy_print_stack ();
2621 }
2622 }
2623 /* If the printer returned a replacement value, set VALUE
2624 to REPLACEMENT. If there is not a replacement value,
2625 just use the value passed to this function. */
2626 if (replacement)
2627 value = replacement;
2628 }
2629 }
2630 }
b6313243
TT
2631#endif
2632
99ad9427 2633 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2634
2635 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2636 if (thevalue)
ac91cd70 2637 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
09ca9e2e 2638 else if (string_print)
00bd41d6
PM
2639 /* Otherwise, if string_print is set, and it is not a regular
2640 string, it is a lazy string. */
09ca9e2e 2641 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2642 else
00bd41d6 2643 /* All other cases. */
b6313243 2644 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2645
759ef836 2646 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2647
85265413
NR
2648 do_cleanups (old_chain);
2649 return thevalue;
2650}
2651
340a7723 2652int
b09e2c59 2653varobj_editable_p (const struct varobj *var)
340a7723
NR
2654{
2655 struct type *type;
340a7723
NR
2656
2657 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2658 return 0;
2659
99ad9427 2660 type = varobj_get_value_type (var);
340a7723
NR
2661
2662 switch (TYPE_CODE (type))
2663 {
2664 case TYPE_CODE_STRUCT:
2665 case TYPE_CODE_UNION:
2666 case TYPE_CODE_ARRAY:
2667 case TYPE_CODE_FUNC:
2668 case TYPE_CODE_METHOD:
2669 return 0;
2670 break;
2671
2672 default:
2673 return 1;
2674 break;
2675 }
2676}
2677
d32cafc7 2678/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2679
99ad9427 2680int
b09e2c59 2681varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2682{
ca20d462 2683 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2684}
2685
5a413362
VP
2686/* Return 1 if that varobj is floating, that is is always evaluated in the
2687 selected frame, and not bound to thread/frame. Such variable objects
2688 are created using '@' as frame specifier to -var-create. */
2689int
b09e2c59 2690varobj_floating_p (const struct varobj *var)
5a413362
VP
2691{
2692 return var->root->floating;
2693}
2694
d32cafc7
JB
2695/* Implement the "value_is_changeable_p" varobj callback for most
2696 languages. */
2697
99ad9427 2698int
b09e2c59 2699varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7
JB
2700{
2701 int r;
2702 struct type *type;
2703
2704 if (CPLUS_FAKE_CHILD (var))
2705 return 0;
2706
99ad9427 2707 type = varobj_get_value_type (var);
d32cafc7
JB
2708
2709 switch (TYPE_CODE (type))
2710 {
2711 case TYPE_CODE_STRUCT:
2712 case TYPE_CODE_UNION:
2713 case TYPE_CODE_ARRAY:
2714 r = 0;
2715 break;
2716
2717 default:
2718 r = 1;
2719 }
2720
2721 return r;
2722}
2723
54333c3b
JK
2724/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2725 with an arbitrary caller supplied DATA pointer. */
2726
2727void
2728all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2729{
2730 struct varobj_root *var_root, *var_root_next;
2731
2732 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2733
2734 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2735 {
2736 var_root_next = var_root->next;
2737
2738 (*func) (var_root->rootvar, data);
2739 }
2740}
8756216b 2741
54333c3b 2742/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2743 defined on globals. It is a helper for varobj_invalidate.
2744
2745 This function is called after changing the symbol file, in this case the
2746 pointers to "struct type" stored by the varobj are no longer valid. All
2747 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2748
54333c3b
JK
2749static void
2750varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2751{
4e969b4f
AB
2752 /* global and floating var must be re-evaluated. */
2753 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2754 {
54333c3b 2755 struct varobj *tmp_var;
2dbd25e5 2756
54333c3b
JK
2757 /* Try to create a varobj with same expression. If we succeed
2758 replace the old varobj, otherwise invalidate it. */
2759 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2760 USE_CURRENT_FRAME);
2761 if (tmp_var != NULL)
2762 {
2763 tmp_var->obj_name = xstrdup (var->obj_name);
2764 varobj_delete (var, NULL, 0);
2765 install_variable (tmp_var);
2dbd25e5 2766 }
54333c3b
JK
2767 else
2768 var->root->is_valid = 0;
2dbd25e5 2769 }
54333c3b
JK
2770 else /* locals must be invalidated. */
2771 var->root->is_valid = 0;
2772}
2773
2774/* Invalidate the varobjs that are tied to locals and re-create the ones that
2775 are defined on globals.
2776 Invalidated varobjs will be always printed in_scope="invalid". */
2777
2778void
2779varobj_invalidate (void)
2780{
2781 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2782}
1c3569d4
MR
2783\f
2784extern void _initialize_varobj (void);
2785void
2786_initialize_varobj (void)
2787{
2788 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2789
2790 varobj_table = xmalloc (sizeof_table);
2791 memset (varobj_table, 0, sizeof_table);
2792
2793 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2794 &varobjdebug,
2795 _("Set varobj debugging."),
2796 _("Show varobj debugging."),
2797 _("When non-zero, varobj debugging is enabled."),
2798 NULL, show_varobjdebug,
2799 &setdebuglist, &showdebuglist);
2800}
This page took 2.061141 seconds and 4 git commands to generate.