Fix library segment-address for 64bit values
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
11bc5fe4 3 Copyright (C) 1999-2020 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
6208b47d
VP
29#include "gdbthread.h"
30#include "inferior.h"
827f100c 31#include "varobj-iter.h"
396af9a1 32#include "parser-defs.h"
0d12e84c 33#include "gdbarch.h"
8b93c638 34
b6313243
TT
35#if HAVE_PYTHON
36#include "python/python.h"
37#include "python/python-internal.h"
50389644
PA
38#else
39typedef int PyObject;
b6313243
TT
40#endif
41
c2c440a9 42/* See varobj.h. */
8b93c638 43
ccce17b0 44unsigned int varobjdebug = 0;
920d2a44
AC
45static void
46show_varobjdebug (struct ui_file *file, int from_tty,
47 struct cmd_list_element *c, const char *value)
48{
49 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
50}
8b93c638 51
581e13c1 52/* String representations of gdb's format codes. */
a121b7c1 53const char *varobj_format_string[] =
1c35a88f 54 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
8b93c638 55
0cc7d26f 56/* True if we want to allow Python-based pretty-printing. */
4c37490d 57static bool pretty_printing = false;
0cc7d26f
TT
58
59void
60varobj_enable_pretty_printing (void)
61{
4c37490d 62 pretty_printing = true;
0cc7d26f
TT
63}
64
8b93c638
JM
65/* Data structures */
66
67/* Every root variable has one of these structures saved in its
4d01a485 68 varobj. */
8b93c638 69struct varobj_root
72330bd6 70{
4d01a485
PA
71 /* The expression for this parent. */
72 expression_up exp;
8b93c638 73
581e13c1 74 /* Block for which this expression is valid. */
9e5b9d2b 75 const struct block *valid_block = NULL;
8b93c638 76
44a67aa7
VP
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
9e5b9d2b 79 struct frame_id frame = null_frame_id;
8b93c638 80
5d5658a1 81 /* The global thread ID that this varobj_root belongs to. This field
581e13c1 82 is only valid if valid_block is not NULL.
c5b48eac
VP
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
9e5b9d2b 86 int thread_id = 0;
c5b48eac 87
4c37490d 88 /* If true, the -var-update always recomputes the value in the
a5defcdc 89 current thread and frame. Otherwise, variable object is
581e13c1 90 always updated in the specific scope/thread/frame. */
4c37490d 91 bool floating = false;
73a93a32 92
4c37490d 93 /* Flag that indicates validity: set to false when this varobj_root refers
8756216b 94 to symbols that do not exist anymore. */
4c37490d 95 bool is_valid = true;
8756216b 96
99ad9427
YQ
97 /* Language-related operations for this variable and its
98 children. */
9e5b9d2b 99 const struct lang_varobj_ops *lang_ops = NULL;
8b93c638 100
581e13c1 101 /* The varobj for this root node. */
9e5b9d2b 102 struct varobj *rootvar = NULL;
8b93c638 103
72330bd6 104 /* Next root variable */
9e5b9d2b 105 struct varobj_root *next = NULL;
72330bd6 106};
8b93c638 107
bb5ce47a 108/* Dynamic part of varobj. */
8b93c638 109
bb5ce47a
YQ
110struct varobj_dynamic
111{
b6313243
TT
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
bd046f64 116 bool children_requested = false;
b6313243 117
0cc7d26f
TT
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
9e5b9d2b 121 PyObject *constructor = NULL;
0cc7d26f 122
b6313243
TT
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
9e5b9d2b 125 PyObject *pretty_printer = NULL;
0cc7d26f
TT
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
9e5b9d2b 129 struct varobj_iter *child_iter = NULL;
0cc7d26f
TT
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
9e5b9d2b 136 varobj_item *saved_item = NULL;
72330bd6 137};
8b93c638 138
8b93c638
JM
139/* A list of varobjs */
140
141struct vlist
72330bd6
AC
142{
143 struct varobj *var;
144 struct vlist *next;
145};
8b93c638
JM
146
147/* Private function prototypes */
148
581e13c1 149/* Helper functions for the above subcommands. */
8b93c638 150
4c37490d 151static int delete_variable (struct varobj *, bool);
8b93c638 152
4c37490d 153static void delete_variable_1 (int *, struct varobj *, bool, bool);
8b93c638 154
4c37490d 155static bool install_variable (struct varobj *);
8b93c638 156
a14ed312 157static void uninstall_variable (struct varobj *);
8b93c638 158
2f408ecb 159static struct varobj *create_child (struct varobj *, int, std::string &);
8b93c638 160
b6313243 161static struct varobj *
5a2e0d6e
YQ
162create_child_with_value (struct varobj *parent, int index,
163 struct varobj_item *item);
b6313243 164
8b93c638
JM
165/* Utility routines */
166
a14ed312 167static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 168
4c37490d
SM
169static bool update_type_if_necessary (struct varobj *var,
170 struct value *new_value);
8264ba82 171
4c37490d
SM
172static bool install_new_value (struct varobj *var, struct value *value,
173 bool initial);
acd65feb 174
581e13c1 175/* Language-specific routines. */
8b93c638 176
b09e2c59 177static int number_of_children (const struct varobj *);
8b93c638 178
2f408ecb 179static std::string name_of_variable (const struct varobj *);
8b93c638 180
2f408ecb 181static std::string name_of_child (struct varobj *, int);
8b93c638 182
4c37490d 183static struct value *value_of_root (struct varobj **var_handle, bool *);
8b93c638 184
c1cc6152 185static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 186
2f408ecb
PA
187static std::string my_value_of_variable (struct varobj *var,
188 enum varobj_display_formats format);
8b93c638 189
4c37490d 190static bool is_root_p (const struct varobj *var);
8b93c638 191
9a1edae6 192static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 193 struct varobj_item *item);
b6313243 194
8b93c638
JM
195/* Private data */
196
581e13c1 197/* Mappings of varobj_display_formats enums to gdb's format codes. */
1c35a88f 198static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
8b93c638 199
581e13c1 200/* Header of the list of root variable objects. */
8b93c638 201static struct varobj_root *rootlist;
8b93c638 202
581e13c1 203/* Prime number indicating the number of buckets in the hash table. */
5fa13070 204/* A prime large enough to avoid too many collisions. */
8b93c638
JM
205#define VAROBJ_TABLE_SIZE 227
206
581e13c1 207/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
208static struct vlist **varobj_table;
209
8b93c638
JM
210\f
211
212/* API Implementation */
4c37490d 213static bool
b09e2c59 214is_root_p (const struct varobj *var)
b2c2bd75
VP
215{
216 return (var->root->rootvar == var);
217}
8b93c638 218
d452c4bc 219#ifdef HAVE_PYTHON
6cd67bea
TT
220
221/* See python-internal.h. */
222gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
223: gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
224{
225}
226
d452c4bc
UW
227#endif
228
7d8547c9
AC
229/* Return the full FRAME which corresponds to the given CORE_ADDR
230 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
231
232static struct frame_info *
233find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
234{
235 struct frame_info *frame = NULL;
236
237 if (frame_addr == (CORE_ADDR) 0)
238 return NULL;
239
9d49bdc2
PA
240 for (frame = get_current_frame ();
241 frame != NULL;
242 frame = get_prev_frame (frame))
7d8547c9 243 {
1fac167a
UW
244 /* The CORE_ADDR we get as argument was parsed from a string GDB
245 output as $fp. This output got truncated to gdbarch_addr_bit.
246 Truncate the frame base address in the same manner before
247 comparing it against our argument. */
248 CORE_ADDR frame_base = get_frame_base_address (frame);
249 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 250
1fac167a
UW
251 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
252 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
253
254 if (frame_base == frame_addr)
7d8547c9
AC
255 return frame;
256 }
9d49bdc2
PA
257
258 return NULL;
7d8547c9
AC
259}
260
5fa13070
SM
261/* Creates a varobj (not its children). */
262
8b93c638 263struct varobj *
2f408ecb
PA
264varobj_create (const char *objname,
265 const char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638 266{
581e13c1 267 /* Fill out a varobj structure for the (root) variable being constructed. */
9e5b9d2b 268 std::unique_ptr<varobj> var (new varobj (new varobj_root));
8b93c638
JM
269
270 if (expression != NULL)
271 {
e4195b40 272 struct frame_info *fi;
35633fef 273 struct frame_id old_id = null_frame_id;
3977b71f 274 const struct block *block;
bbc13ae3 275 const char *p;
e55dccf0 276 struct value *value = NULL;
1bb9788d 277 CORE_ADDR pc;
8b93c638 278
9d49bdc2
PA
279 /* Parse and evaluate the expression, filling in as much of the
280 variable's data as possible. */
281
282 if (has_stack_frames ())
283 {
581e13c1 284 /* Allow creator to specify context of variable. */
9d49bdc2
PA
285 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
286 fi = get_selected_frame (NULL);
287 else
288 /* FIXME: cagney/2002-11-23: This code should be doing a
289 lookup using the frame ID and not just the frame's
290 ``address''. This, of course, means an interface
291 change. However, with out that interface change ISAs,
292 such as the ia64 with its two stacks, won't work.
293 Similar goes for the case where there is a frameless
294 function. */
295 fi = find_frame_addr_in_frame_chain (frame);
296 }
8b93c638 297 else
9d49bdc2 298 fi = NULL;
8b93c638 299
73a93a32 300 if (type == USE_SELECTED_FRAME)
4c37490d 301 var->root->floating = true;
73a93a32 302
1bb9788d 303 pc = 0;
8b93c638
JM
304 block = NULL;
305 if (fi != NULL)
1bb9788d
TT
306 {
307 block = get_frame_block (fi, 0);
308 pc = get_frame_pc (fi);
309 }
8b93c638
JM
310
311 p = expression;
699bd4cf
TT
312
313 innermost_block_tracker tracker (INNERMOST_BLOCK_FOR_SYMBOLS
314 | INNERMOST_BLOCK_FOR_REGISTERS);
73a93a32 315 /* Wrap the call to parse expression, so we can
581e13c1 316 return a sensible error. */
a70b8144 317 try
8e7b59a5 318 {
699bd4cf 319 var->root->exp = parse_exp_1 (&p, pc, block, 0, &tracker);
8e7b59a5
KS
320 }
321
230d2906 322 catch (const gdb_exception_error &except)
73a93a32
JI
323 {
324 return NULL;
325 }
8b93c638 326
581e13c1 327 /* Don't allow variables to be created for types. */
608b4967
TT
328 if (var->root->exp->elts[0].opcode == OP_TYPE
329 || var->root->exp->elts[0].opcode == OP_TYPEOF
330 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638 331 {
bc8332bb
AC
332 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
333 " as an expression.\n");
8b93c638
JM
334 return NULL;
335 }
336
9e5b9d2b 337 var->format = variable_default_display (var.get ());
e707fc44 338 var->root->valid_block =
699bd4cf 339 var->root->floating ? NULL : tracker.block ();
2f408ecb 340 var->name = expression;
02142340 341 /* For a root var, the name and the expr are the same. */
2f408ecb 342 var->path_expr = expression;
8b93c638
JM
343
344 /* When the frame is different from the current frame,
345 we must select the appropriate frame before parsing
346 the expression, otherwise the value will not be current.
581e13c1 347 Since select_frame is so benign, just call it for all cases. */
aee1fcdf 348 if (var->root->valid_block)
8b93c638 349 {
4e22772d
JK
350 /* User could specify explicit FRAME-ADDR which was not found but
351 EXPRESSION is frame specific and we would not be able to evaluate
352 it correctly next time. With VALID_BLOCK set we must also set
353 FRAME and THREAD_ID. */
354 if (fi == NULL)
355 error (_("Failed to find the specified frame"));
356
7a424e99 357 var->root->frame = get_frame_id (fi);
00431a78 358 var->root->thread_id = inferior_thread ()->global_num;
35633fef 359 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 360 select_frame (fi);
8b93c638
JM
361 }
362
340a7723 363 /* We definitely need to catch errors here.
8b93c638 364 If evaluate_expression succeeds we got the value we wanted.
581e13c1 365 But if it fails, we still go on with a call to evaluate_type(). */
a70b8144 366 try
8e7b59a5 367 {
4d01a485 368 value = evaluate_expression (var->root->exp.get ());
8e7b59a5 369 }
230d2906 370 catch (const gdb_exception_error &except)
e55dccf0
VP
371 {
372 /* Error getting the value. Try to at least get the
373 right type. */
4d01a485 374 struct value *type_only_value = evaluate_type (var->root->exp.get ());
a109c7c1 375
e55dccf0
VP
376 var->type = value_type (type_only_value);
377 }
8264ba82 378
492d29ea
PA
379 if (value != NULL)
380 {
381 int real_type_found = 0;
382
383 var->type = value_actual_type (value, 0, &real_type_found);
384 if (real_type_found)
385 value = value_cast (var->type, value);
386 }
acd65feb 387
8b93c638 388 /* Set language info */
ca20d462 389 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 390
9e5b9d2b 391 install_new_value (var.get (), value, 1 /* Initial assignment */);
d32cafc7 392
581e13c1 393 /* Set ourselves as our root. */
9e5b9d2b 394 var->root->rootvar = var.get ();
8b93c638 395
581e13c1 396 /* Reset the selected frame. */
35633fef
JK
397 if (frame_id_p (old_id))
398 select_frame (frame_find_by_id (old_id));
8b93c638
JM
399 }
400
73a93a32 401 /* If the variable object name is null, that means this
581e13c1 402 is a temporary variable, so don't install it. */
73a93a32
JI
403
404 if ((var != NULL) && (objname != NULL))
8b93c638 405 {
2f408ecb 406 var->obj_name = objname;
8b93c638
JM
407
408 /* If a varobj name is duplicated, the install will fail so
581e13c1 409 we must cleanup. */
9e5b9d2b
SM
410 if (!install_variable (var.get ()))
411 return NULL;
8b93c638
JM
412 }
413
9e5b9d2b 414 return var.release ();
8b93c638
JM
415}
416
581e13c1 417/* Generates an unique name that can be used for a varobj. */
8b93c638 418
2d6960b4 419std::string
8b93c638
JM
420varobj_gen_name (void)
421{
422 static int id = 0;
8b93c638 423
581e13c1 424 /* Generate a name for this object. */
8b93c638 425 id++;
2d6960b4 426 return string_printf ("var%d", id);
8b93c638
JM
427}
428
61d8f275
JK
429/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
430 error if OBJNAME cannot be found. */
8b93c638
JM
431
432struct varobj *
2f408ecb 433varobj_get_handle (const char *objname)
8b93c638
JM
434{
435 struct vlist *cv;
436 const char *chp;
437 unsigned int index = 0;
438 unsigned int i = 1;
439
440 for (chp = objname; *chp; chp++)
441 {
442 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
443 }
444
445 cv = *(varobj_table + index);
2f408ecb 446 while (cv != NULL && cv->var->obj_name != objname)
8b93c638
JM
447 cv = cv->next;
448
449 if (cv == NULL)
8a3fe4f8 450 error (_("Variable object not found"));
8b93c638
JM
451
452 return cv->var;
453}
454
581e13c1 455/* Given the handle, return the name of the object. */
8b93c638 456
2f408ecb 457const char *
b09e2c59 458varobj_get_objname (const struct varobj *var)
8b93c638 459{
2f408ecb 460 return var->obj_name.c_str ();
8b93c638
JM
461}
462
2f408ecb
PA
463/* Given the handle, return the expression represented by the
464 object. */
8b93c638 465
2f408ecb 466std::string
b09e2c59 467varobj_get_expression (const struct varobj *var)
8b93c638
JM
468{
469 return name_of_variable (var);
470}
471
30914ca8 472/* See varobj.h. */
8b93c638
JM
473
474int
4c37490d 475varobj_delete (struct varobj *var, bool only_children)
8b93c638 476{
30914ca8 477 return delete_variable (var, only_children);
8b93c638
JM
478}
479
d8b65138
JK
480#if HAVE_PYTHON
481
b6313243
TT
482/* Convenience function for varobj_set_visualizer. Instantiate a
483 pretty-printer for a given value. */
484static PyObject *
485instantiate_pretty_printer (PyObject *constructor, struct value *value)
486{
b6313243
TT
487 PyObject *val_obj = NULL;
488 PyObject *printer;
b6313243 489
b6313243 490 val_obj = value_to_value_object (value);
b6313243
TT
491 if (! val_obj)
492 return NULL;
493
494 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
495 Py_DECREF (val_obj);
496 return printer;
b6313243
TT
497}
498
d8b65138
JK
499#endif
500
581e13c1 501/* Set/Get variable object display format. */
8b93c638
JM
502
503enum varobj_display_formats
504varobj_set_display_format (struct varobj *var,
505 enum varobj_display_formats format)
506{
507 switch (format)
508 {
509 case FORMAT_NATURAL:
510 case FORMAT_BINARY:
511 case FORMAT_DECIMAL:
512 case FORMAT_HEXADECIMAL:
513 case FORMAT_OCTAL:
1c35a88f 514 case FORMAT_ZHEXADECIMAL:
8b93c638
JM
515 var->format = format;
516 break;
517
518 default:
519 var->format = variable_default_display (var);
520 }
521
ae7d22a6 522 if (varobj_value_is_changeable_p (var)
b4d61099 523 && var->value != nullptr && !value_lazy (var->value.get ()))
ae7d22a6 524 {
b4d61099 525 var->print_value = varobj_value_get_print_value (var->value.get (),
99ad9427 526 var->format, var);
ae7d22a6
VP
527 }
528
8b93c638
JM
529 return var->format;
530}
531
532enum varobj_display_formats
b09e2c59 533varobj_get_display_format (const struct varobj *var)
8b93c638
JM
534{
535 return var->format;
536}
537
9b972014 538gdb::unique_xmalloc_ptr<char>
b09e2c59 539varobj_get_display_hint (const struct varobj *var)
b6313243 540{
9b972014 541 gdb::unique_xmalloc_ptr<char> result;
b6313243
TT
542
543#if HAVE_PYTHON
0646da15
TT
544 if (!gdb_python_initialized)
545 return NULL;
546
bde7b3e3 547 gdbpy_enter_varobj enter_py (var);
d452c4bc 548
bb5ce47a
YQ
549 if (var->dynamic->pretty_printer != NULL)
550 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
b6313243
TT
551#endif
552
553 return result;
554}
555
0cc7d26f
TT
556/* Return true if the varobj has items after TO, false otherwise. */
557
4c37490d 558bool
b09e2c59 559varobj_has_more (const struct varobj *var, int to)
0cc7d26f 560{
ddf0ea08 561 if (var->children.size () > to)
4c37490d 562 return true;
ddf0ea08
SM
563
564 return ((to == -1 || var->children.size () == to)
bb5ce47a 565 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
566}
567
c5b48eac
VP
568/* If the variable object is bound to a specific thread, that
569 is its evaluation can always be done in context of a frame
570 inside that thread, returns GDB id of the thread -- which
581e13c1 571 is always positive. Otherwise, returns -1. */
c5b48eac 572int
b09e2c59 573varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
574{
575 if (var->root->valid_block && var->root->thread_id > 0)
576 return var->root->thread_id;
577 else
578 return -1;
579}
580
25d5ea92 581void
4c37490d 582varobj_set_frozen (struct varobj *var, bool frozen)
25d5ea92
VP
583{
584 /* When a variable is unfrozen, we don't fetch its value.
585 The 'not_fetched' flag remains set, so next -var-update
586 won't complain.
587
588 We don't fetch the value, because for structures the client
589 should do -var-update anyway. It would be bad to have different
590 client-size logic for structure and other types. */
591 var->frozen = frozen;
592}
593
4c37490d 594bool
b09e2c59 595varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
596{
597 return var->frozen;
598}
599
791b7405
AB
600/* A helper function that updates the contents of FROM and TO based on the
601 size of the vector CHILDREN. If the contents of either FROM or TO are
602 negative the entire range is used. */
0cc7d26f 603
99ad9427 604void
ddf0ea08
SM
605varobj_restrict_range (const std::vector<varobj *> &children,
606 int *from, int *to)
0cc7d26f 607{
ddf0ea08
SM
608 int len = children.size ();
609
0cc7d26f
TT
610 if (*from < 0 || *to < 0)
611 {
612 *from = 0;
ddf0ea08 613 *to = len;
0cc7d26f
TT
614 }
615 else
616 {
ddf0ea08
SM
617 if (*from > len)
618 *from = len;
619 if (*to > len)
620 *to = len;
0cc7d26f
TT
621 if (*from > *to)
622 *from = *to;
623 }
624}
625
626/* A helper for update_dynamic_varobj_children that installs a new
627 child when needed. */
628
629static void
630install_dynamic_child (struct varobj *var,
0604393c
SM
631 std::vector<varobj *> *changed,
632 std::vector<varobj *> *type_changed,
633 std::vector<varobj *> *newobj,
634 std::vector<varobj *> *unchanged,
4c37490d 635 bool *cchanged,
0cc7d26f 636 int index,
5a2e0d6e 637 struct varobj_item *item)
0cc7d26f 638{
ddf0ea08 639 if (var->children.size () < index + 1)
0cc7d26f
TT
640 {
641 /* There's no child yet. */
5a2e0d6e 642 struct varobj *child = varobj_add_child (var, item);
a109c7c1 643
0604393c 644 if (newobj != NULL)
0cc7d26f 645 {
0604393c 646 newobj->push_back (child);
4c37490d 647 *cchanged = true;
0cc7d26f
TT
648 }
649 }
bf8793bb 650 else
0cc7d26f 651 {
ddf0ea08 652 varobj *existing = var->children[index];
4c37490d 653 bool type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 654
8264ba82
AG
655 if (type_updated)
656 {
0604393c
SM
657 if (type_changed != NULL)
658 type_changed->push_back (existing);
8264ba82 659 }
5a2e0d6e 660 if (install_new_value (existing, item->value, 0))
0cc7d26f 661 {
0604393c
SM
662 if (!type_updated && changed != NULL)
663 changed->push_back (existing);
0cc7d26f 664 }
0604393c
SM
665 else if (!type_updated && unchanged != NULL)
666 unchanged->push_back (existing);
0cc7d26f
TT
667 }
668}
669
576ea091
YQ
670#if HAVE_PYTHON
671
4c37490d 672static bool
b09e2c59 673dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f 674{
bb5ce47a 675 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f 676
0646da15 677 if (!gdb_python_initialized)
4c37490d 678 return false;
0646da15 679
bde7b3e3
TT
680 gdbpy_enter_varobj enter_py (var);
681 return PyObject_HasAttr (printer, gdbpy_children_cst);
0cc7d26f 682}
576ea091 683#endif
0cc7d26f 684
e5250216
YQ
685/* A factory for creating dynamic varobj's iterators. Returns an
686 iterator object suitable for iterating over VAR's children. */
687
688static struct varobj_iter *
689varobj_get_iterator (struct varobj *var)
690{
576ea091 691#if HAVE_PYTHON
e5250216
YQ
692 if (var->dynamic->pretty_printer)
693 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 694#endif
e5250216
YQ
695
696 gdb_assert_not_reached (_("\
697requested an iterator from a non-dynamic varobj"));
698}
699
827f100c
YQ
700/* Release and clear VAR's saved item, if any. */
701
702static void
703varobj_clear_saved_item (struct varobj_dynamic *var)
704{
705 if (var->saved_item != NULL)
706 {
22bc8444 707 value_decref (var->saved_item->value);
0a8beaba 708 delete var->saved_item;
827f100c
YQ
709 var->saved_item = NULL;
710 }
711}
0cc7d26f 712
4c37490d 713static bool
b6313243 714update_dynamic_varobj_children (struct varobj *var,
0604393c
SM
715 std::vector<varobj *> *changed,
716 std::vector<varobj *> *type_changed,
717 std::vector<varobj *> *newobj,
718 std::vector<varobj *> *unchanged,
4c37490d
SM
719 bool *cchanged,
720 bool update_children,
0cc7d26f
TT
721 int from,
722 int to)
b6313243 723{
b6313243 724 int i;
b6313243 725
4c37490d 726 *cchanged = false;
b6313243 727
bb5ce47a 728 if (update_children || var->dynamic->child_iter == NULL)
b6313243 729 {
e5250216
YQ
730 varobj_iter_delete (var->dynamic->child_iter);
731 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 732
827f100c 733 varobj_clear_saved_item (var->dynamic);
b6313243 734
e5250216 735 i = 0;
b6313243 736
bb5ce47a 737 if (var->dynamic->child_iter == NULL)
4c37490d 738 return false;
b6313243 739 }
0cc7d26f 740 else
ddf0ea08 741 i = var->children.size ();
b6313243 742
0cc7d26f
TT
743 /* We ask for one extra child, so that MI can report whether there
744 are more children. */
745 for (; to < 0 || i < to + 1; ++i)
b6313243 746 {
827f100c 747 varobj_item *item;
b6313243 748
0cc7d26f 749 /* See if there was a leftover from last time. */
827f100c 750 if (var->dynamic->saved_item != NULL)
0cc7d26f 751 {
bb5ce47a
YQ
752 item = var->dynamic->saved_item;
753 var->dynamic->saved_item = NULL;
0cc7d26f
TT
754 }
755 else
a4c8e806 756 {
e5250216 757 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
758 /* Release vitem->value so its lifetime is not bound to the
759 execution of a command. */
760 if (item != NULL && item->value != NULL)
895dafa6 761 item->value = release_value (item->value).release ();
a4c8e806 762 }
b6313243 763
e5250216
YQ
764 if (item == NULL)
765 {
766 /* Iteration is done. Remove iterator from VAR. */
767 varobj_iter_delete (var->dynamic->child_iter);
768 var->dynamic->child_iter = NULL;
769 break;
770 }
0cc7d26f
TT
771 /* We don't want to push the extra child on any report list. */
772 if (to < 0 || i < to)
b6313243 773 {
4c37490d 774 bool can_mention = from < 0 || i >= from;
0cc7d26f 775
0cc7d26f 776 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 777 can_mention ? type_changed : NULL,
fe978cb0 778 can_mention ? newobj : NULL,
0cc7d26f 779 can_mention ? unchanged : NULL,
5e5ac9a5 780 can_mention ? cchanged : NULL, i,
827f100c
YQ
781 item);
782
0a8beaba 783 delete item;
b6313243 784 }
0cc7d26f 785 else
b6313243 786 {
bb5ce47a 787 var->dynamic->saved_item = item;
b6313243 788
0cc7d26f
TT
789 /* We want to truncate the child list just before this
790 element. */
791 break;
792 }
b6313243
TT
793 }
794
ddf0ea08 795 if (i < var->children.size ())
b6313243 796 {
4c37490d 797 *cchanged = true;
ddf0ea08
SM
798 for (int j = i; j < var->children.size (); ++j)
799 varobj_delete (var->children[j], 0);
800
801 var->children.resize (i);
b6313243 802 }
0cc7d26f
TT
803
804 /* If there are fewer children than requested, note that the list of
805 children changed. */
ddf0ea08 806 if (to >= 0 && var->children.size () < to)
4c37490d 807 *cchanged = true;
0cc7d26f 808
ddf0ea08 809 var->num_children = var->children.size ();
b6313243 810
4c37490d 811 return true;
b6313243 812}
25d5ea92 813
8b93c638
JM
814int
815varobj_get_num_children (struct varobj *var)
816{
817 if (var->num_children == -1)
b6313243 818 {
31f628ae 819 if (varobj_is_dynamic_p (var))
0cc7d26f 820 {
4c37490d 821 bool dummy;
0cc7d26f
TT
822
823 /* If we have a dynamic varobj, don't report -1 children.
824 So, try to fetch some children first. */
8264ba82 825 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
4c37490d 826 false, 0, 0);
0cc7d26f
TT
827 }
828 else
b6313243
TT
829 var->num_children = number_of_children (var);
830 }
8b93c638 831
0cc7d26f 832 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
833}
834
835/* Creates a list of the immediate children of a variable object;
581e13c1 836 the return code is the number of such children or -1 on error. */
8b93c638 837
ddf0ea08 838const std::vector<varobj *> &
0cc7d26f 839varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 840{
bd046f64 841 var->dynamic->children_requested = true;
b6313243 842
31f628ae 843 if (varobj_is_dynamic_p (var))
0cc7d26f 844 {
4c37490d
SM
845 bool children_changed;
846
b6313243
TT
847 /* This, in theory, can result in the number of children changing without
848 frontend noticing. But well, calling -var-list-children on the same
849 varobj twice is not something a sane frontend would do. */
8264ba82 850 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
4c37490d 851 &children_changed, false, 0, *to);
99ad9427 852 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
853 return var->children;
854 }
8b93c638 855
8b93c638
JM
856 if (var->num_children == -1)
857 var->num_children = number_of_children (var);
858
74a44383
DJ
859 /* If that failed, give up. */
860 if (var->num_children == -1)
d56d46f5 861 return var->children;
74a44383 862
28335dcc
VP
863 /* If we're called when the list of children is not yet initialized,
864 allocate enough elements in it. */
ddf0ea08
SM
865 while (var->children.size () < var->num_children)
866 var->children.push_back (NULL);
28335dcc 867
ddf0ea08 868 for (int i = 0; i < var->num_children; i++)
8b93c638 869 {
ddf0ea08 870 if (var->children[i] == NULL)
28335dcc
VP
871 {
872 /* Either it's the first call to varobj_list_children for
873 this variable object, and the child was never created,
874 or it was explicitly deleted by the client. */
2f408ecb 875 std::string name = name_of_child (var, i);
ddf0ea08 876 var->children[i] = create_child (var, i, name);
28335dcc 877 }
8b93c638
JM
878 }
879
99ad9427 880 varobj_restrict_range (var->children, from, to);
d56d46f5 881 return var->children;
8b93c638
JM
882}
883
b6313243 884static struct varobj *
5a2e0d6e 885varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 886{
ddf0ea08
SM
887 varobj *v = create_child_with_value (var, var->children.size (), item);
888
889 var->children.push_back (v);
a109c7c1 890
b6313243
TT
891 return v;
892}
893
8b93c638 894/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
895 prints on the console. The caller is responsible for freeing the string.
896 */
8b93c638 897
2f408ecb 898std::string
8b93c638
JM
899varobj_get_type (struct varobj *var)
900{
8ab91b96 901 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
902 NULL, too.)
903 Do not return a type for invalid variables as well. */
904 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
2f408ecb 905 return std::string ();
8b93c638 906
1a4300e9 907 return type_to_string (var->type);
8b93c638
JM
908}
909
1ecb4ee0
DJ
910/* Obtain the type of an object variable. */
911
912struct type *
b09e2c59 913varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
914{
915 return var->type;
916}
917
85254831
KS
918/* Is VAR a path expression parent, i.e., can it be used to construct
919 a valid path expression? */
920
4c37490d 921static bool
b09e2c59 922is_path_expr_parent (const struct varobj *var)
85254831 923{
9a9a7608
AB
924 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
925 return var->root->lang_ops->is_path_expr_parent (var);
926}
85254831 927
9a9a7608
AB
928/* Is VAR a path expression parent, i.e., can it be used to construct
929 a valid path expression? By default we assume any VAR can be a path
930 parent. */
85254831 931
4c37490d 932bool
b09e2c59 933varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608 934{
4c37490d 935 return true;
85254831
KS
936}
937
938/* Return the path expression parent for VAR. */
939
c1cc6152
SM
940const struct varobj *
941varobj_get_path_expr_parent (const struct varobj *var)
85254831 942{
c1cc6152 943 const struct varobj *parent = var;
85254831
KS
944
945 while (!is_root_p (parent) && !is_path_expr_parent (parent))
946 parent = parent->parent;
947
5abe0f0c
JV
948 /* Computation of full rooted expression for children of dynamic
949 varobjs is not supported. */
950 if (varobj_is_dynamic_p (parent))
951 error (_("Invalid variable object (child of a dynamic varobj)"));
952
85254831
KS
953 return parent;
954}
955
02142340
VP
956/* Return a pointer to the full rooted expression of varobj VAR.
957 If it has not been computed yet, compute it. */
2f408ecb
PA
958
959const char *
c1cc6152 960varobj_get_path_expr (const struct varobj *var)
02142340 961{
2f408ecb 962 if (var->path_expr.empty ())
02142340
VP
963 {
964 /* For root varobjs, we initialize path_expr
965 when creating varobj, so here it should be
966 child varobj. */
c1cc6152 967 struct varobj *mutable_var = (struct varobj *) var;
02142340 968 gdb_assert (!is_root_p (var));
2568868e 969
c1cc6152 970 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 971 }
2568868e 972
2f408ecb 973 return var->path_expr.c_str ();
02142340
VP
974}
975
fa4d0c40 976const struct language_defn *
b09e2c59 977varobj_get_language (const struct varobj *var)
8b93c638 978{
fa4d0c40 979 return var->root->exp->language_defn;
8b93c638
JM
980}
981
982int
b09e2c59 983varobj_get_attributes (const struct varobj *var)
8b93c638
JM
984{
985 int attributes = 0;
986
340a7723 987 if (varobj_editable_p (var))
581e13c1 988 /* FIXME: define masks for attributes. */
8b93c638
JM
989 attributes |= 0x00000001; /* Editable */
990
991 return attributes;
992}
993
cde5ef40
YQ
994/* Return true if VAR is a dynamic varobj. */
995
4c37490d 996bool
b09e2c59 997varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 998{
bb5ce47a 999 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1000}
1001
2f408ecb 1002std::string
de051565
MK
1003varobj_get_formatted_value (struct varobj *var,
1004 enum varobj_display_formats format)
1005{
1006 return my_value_of_variable (var, format);
1007}
1008
2f408ecb 1009std::string
8b93c638
JM
1010varobj_get_value (struct varobj *var)
1011{
de051565 1012 return my_value_of_variable (var, var->format);
8b93c638
JM
1013}
1014
1015/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1016 value of the given expression. */
1017/* Note: Invokes functions that can call error(). */
8b93c638 1018
4c37490d 1019bool
2f408ecb 1020varobj_set_value (struct varobj *var, const char *expression)
8b93c638 1021{
34365054 1022 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1023 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1024 We need to first construct a legal expression for this -- ugh! */
1025 /* Does this cover all the bases? */
34365054 1026 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1027 int saved_input_radix = input_radix;
bbc13ae3 1028 const char *s = expression;
8b93c638 1029
340a7723 1030 gdb_assert (varobj_editable_p (var));
8b93c638 1031
581e13c1 1032 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
4d01a485 1033 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
a70b8144 1034 try
8e7b59a5 1035 {
4d01a485 1036 value = evaluate_expression (exp.get ());
8e7b59a5
KS
1037 }
1038
230d2906 1039 catch (const gdb_exception_error &except)
340a7723 1040 {
581e13c1 1041 /* We cannot proceed without a valid expression. */
4c37490d 1042 return false;
8b93c638
JM
1043 }
1044
340a7723
NR
1045 /* All types that are editable must also be changeable. */
1046 gdb_assert (varobj_value_is_changeable_p (var));
1047
1048 /* The value of a changeable variable object must not be lazy. */
b4d61099 1049 gdb_assert (!value_lazy (var->value.get ()));
340a7723
NR
1050
1051 /* Need to coerce the input. We want to check if the
1052 value of the variable object will be different
1053 after assignment, and the first thing value_assign
1054 does is coerce the input.
1055 For example, if we are assigning an array to a pointer variable we
b021a221 1056 should compare the pointer with the array's address, not with the
340a7723
NR
1057 array's content. */
1058 value = coerce_array (value);
1059
8e7b59a5
KS
1060 /* The new value may be lazy. value_assign, or
1061 rather value_contents, will take care of this. */
a70b8144 1062 try
8e7b59a5 1063 {
b4d61099 1064 val = value_assign (var->value.get (), value);
8e7b59a5
KS
1065 }
1066
230d2906 1067 catch (const gdb_exception_error &except)
492d29ea 1068 {
4c37490d 1069 return false;
492d29ea 1070 }
8e7b59a5 1071
340a7723
NR
1072 /* If the value has changed, record it, so that next -var-update can
1073 report this change. If a variable had a value of '1', we've set it
1074 to '333' and then set again to '1', when -var-update will report this
1075 variable as changed -- because the first assignment has set the
1076 'updated' flag. There's no need to optimize that, because return value
1077 of -var-update should be considered an approximation. */
4c37490d 1078 var->updated = install_new_value (var, val, false /* Compare values. */);
340a7723 1079 input_radix = saved_input_radix;
4c37490d 1080 return true;
8b93c638
JM
1081}
1082
0cc7d26f
TT
1083#if HAVE_PYTHON
1084
1085/* A helper function to install a constructor function and visualizer
bb5ce47a 1086 in a varobj_dynamic. */
0cc7d26f
TT
1087
1088static void
bb5ce47a 1089install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1090 PyObject *visualizer)
1091{
1092 Py_XDECREF (var->constructor);
1093 var->constructor = constructor;
1094
1095 Py_XDECREF (var->pretty_printer);
1096 var->pretty_printer = visualizer;
1097
e5250216 1098 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1099 var->child_iter = NULL;
1100}
1101
1102/* Install the default visualizer for VAR. */
1103
1104static void
1105install_default_visualizer (struct varobj *var)
1106{
d65aec65
PM
1107 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1108 if (CPLUS_FAKE_CHILD (var))
1109 return;
1110
0cc7d26f
TT
1111 if (pretty_printing)
1112 {
a31abe80 1113 gdbpy_ref<> pretty_printer;
0cc7d26f 1114
b4d61099 1115 if (var->value != nullptr)
0cc7d26f 1116 {
b4d61099 1117 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
a31abe80 1118 if (pretty_printer == nullptr)
0cc7d26f
TT
1119 {
1120 gdbpy_print_stack ();
1121 error (_("Cannot instantiate printer for default visualizer"));
1122 }
1123 }
a31abe80 1124
0cc7d26f 1125 if (pretty_printer == Py_None)
895dafa6 1126 pretty_printer.reset (nullptr);
0cc7d26f 1127
a31abe80 1128 install_visualizer (var->dynamic, NULL, pretty_printer.release ());
0cc7d26f
TT
1129 }
1130}
1131
1132/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1133 make a new object. */
1134
1135static void
1136construct_visualizer (struct varobj *var, PyObject *constructor)
1137{
1138 PyObject *pretty_printer;
1139
d65aec65
PM
1140 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1141 if (CPLUS_FAKE_CHILD (var))
1142 return;
1143
0cc7d26f
TT
1144 Py_INCREF (constructor);
1145 if (constructor == Py_None)
1146 pretty_printer = NULL;
1147 else
1148 {
b4d61099
TT
1149 pretty_printer = instantiate_pretty_printer (constructor,
1150 var->value.get ());
0cc7d26f
TT
1151 if (! pretty_printer)
1152 {
1153 gdbpy_print_stack ();
1154 Py_DECREF (constructor);
1155 constructor = Py_None;
1156 Py_INCREF (constructor);
1157 }
1158
1159 if (pretty_printer == Py_None)
1160 {
1161 Py_DECREF (pretty_printer);
1162 pretty_printer = NULL;
1163 }
1164 }
1165
bb5ce47a 1166 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1167}
1168
1169#endif /* HAVE_PYTHON */
1170
1171/* A helper function for install_new_value. This creates and installs
1172 a visualizer for VAR, if appropriate. */
1173
1174static void
1175install_new_value_visualizer (struct varobj *var)
1176{
1177#if HAVE_PYTHON
1178 /* If the constructor is None, then we want the raw value. If VAR
1179 does not have a value, just skip this. */
0646da15
TT
1180 if (!gdb_python_initialized)
1181 return;
1182
bb5ce47a 1183 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f 1184 {
bde7b3e3 1185 gdbpy_enter_varobj enter_py (var);
0cc7d26f 1186
bb5ce47a 1187 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1188 install_default_visualizer (var);
1189 else
bb5ce47a 1190 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1191 }
1192#else
1193 /* Do nothing. */
1194#endif
1195}
1196
8264ba82
AG
1197/* When using RTTI to determine variable type it may be changed in runtime when
1198 the variable value is changed. This function checks whether type of varobj
1199 VAR will change when a new value NEW_VALUE is assigned and if it is so
1200 updates the type of VAR. */
1201
4c37490d 1202static bool
8264ba82
AG
1203update_type_if_necessary (struct varobj *var, struct value *new_value)
1204{
1205 if (new_value)
1206 {
1207 struct value_print_options opts;
1208
1209 get_user_print_options (&opts);
1210 if (opts.objectprint)
1211 {
2f408ecb
PA
1212 struct type *new_type = value_actual_type (new_value, 0, 0);
1213 std::string new_type_str = type_to_string (new_type);
1214 std::string curr_type_str = varobj_get_type (var);
8264ba82 1215
2f408ecb
PA
1216 /* Did the type name change? */
1217 if (curr_type_str != new_type_str)
8264ba82
AG
1218 {
1219 var->type = new_type;
1220
1221 /* This information may be not valid for a new type. */
30914ca8 1222 varobj_delete (var, 1);
ddf0ea08 1223 var->children.clear ();
8264ba82 1224 var->num_children = -1;
4c37490d 1225 return true;
8264ba82
AG
1226 }
1227 }
1228 }
1229
4c37490d 1230 return false;
8264ba82
AG
1231}
1232
4c37490d
SM
1233/* Assign a new value to a variable object. If INITIAL is true,
1234 this is the first assignment after the variable object was just
acd65feb 1235 created, or changed type. In that case, just assign the value
4c37490d
SM
1236 and return false.
1237 Otherwise, assign the new value, and return true if the value is
1238 different from the current one, false otherwise. The comparison is
581e13c1
MS
1239 done on textual representation of value. Therefore, some types
1240 need not be compared. E.g. for structures the reported value is
1241 always "{...}", so no comparison is necessary here. If the old
4c37490d 1242 value was NULL and new one is not, or vice versa, we always return true.
b26ed50d
VP
1243
1244 The VALUE parameter should not be released -- the function will
1245 take care of releasing it when needed. */
4c37490d
SM
1246static bool
1247install_new_value (struct varobj *var, struct value *value, bool initial)
acd65feb 1248{
4c37490d
SM
1249 bool changeable;
1250 bool need_to_fetch;
1251 bool changed = false;
1252 bool intentionally_not_fetched = false;
acd65feb 1253
acd65feb 1254 /* We need to know the varobj's type to decide if the value should
3e43a32a 1255 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1256 don't have a type. */
acd65feb 1257 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1258 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1259
1260 /* If the type has custom visualizer, we consider it to be always
581e13c1 1261 changeable. FIXME: need to make sure this behaviour will not
b6313243 1262 mess up read-sensitive values. */
bb5ce47a 1263 if (var->dynamic->pretty_printer != NULL)
4c37490d 1264 changeable = true;
b6313243 1265
acd65feb
VP
1266 need_to_fetch = changeable;
1267
b26ed50d
VP
1268 /* We are not interested in the address of references, and given
1269 that in C++ a reference is not rebindable, it cannot
1270 meaningfully change. So, get hold of the real value. */
1271 if (value)
0cc7d26f 1272 value = coerce_ref (value);
b26ed50d 1273
acd65feb
VP
1274 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1275 /* For unions, we need to fetch the value implicitly because
1276 of implementation of union member fetch. When gdb
1277 creates a value for a field and the value of the enclosing
1278 structure is not lazy, it immediately copies the necessary
1279 bytes from the enclosing values. If the enclosing value is
1280 lazy, the call to value_fetch_lazy on the field will read
1281 the data from memory. For unions, that means we'll read the
1282 same memory more than once, which is not desirable. So
1283 fetch now. */
4c37490d 1284 need_to_fetch = true;
acd65feb
VP
1285
1286 /* The new value might be lazy. If the type is changeable,
1287 that is we'll be comparing values of this type, fetch the
1288 value now. Otherwise, on the next update the old value
1289 will be lazy, which means we've lost that old value. */
1290 if (need_to_fetch && value && value_lazy (value))
1291 {
c1cc6152 1292 const struct varobj *parent = var->parent;
4c37490d 1293 bool frozen = var->frozen;
a109c7c1 1294
25d5ea92
VP
1295 for (; !frozen && parent; parent = parent->parent)
1296 frozen |= parent->frozen;
1297
1298 if (frozen && initial)
1299 {
1300 /* For variables that are frozen, or are children of frozen
1301 variables, we don't do fetch on initial assignment.
30baf67b 1302 For non-initial assignment we do the fetch, since it means we're
25d5ea92 1303 explicitly asked to compare the new value with the old one. */
4c37490d 1304 intentionally_not_fetched = true;
25d5ea92 1305 }
8e7b59a5 1306 else
acd65feb 1307 {
8e7b59a5 1308
a70b8144 1309 try
8e7b59a5
KS
1310 {
1311 value_fetch_lazy (value);
1312 }
1313
230d2906 1314 catch (const gdb_exception_error &except)
8e7b59a5
KS
1315 {
1316 /* Set the value to NULL, so that for the next -var-update,
1317 we don't try to compare the new value with this value,
1318 that we couldn't even read. */
1319 value = NULL;
1320 }
acd65feb 1321 }
acd65feb
VP
1322 }
1323
e848a8a5
TT
1324 /* Get a reference now, before possibly passing it to any Python
1325 code that might release it. */
b4d61099 1326 value_ref_ptr value_holder;
e848a8a5 1327 if (value != NULL)
bbfa6f00 1328 value_holder = value_ref_ptr::new_reference (value);
b6313243 1329
7a4d50bf
VP
1330 /* Below, we'll be comparing string rendering of old and new
1331 values. Don't get string rendering if the value is
1332 lazy -- if it is, the code above has decided that the value
1333 should not be fetched. */
2f408ecb 1334 std::string print_value;
bb5ce47a
YQ
1335 if (value != NULL && !value_lazy (value)
1336 && var->dynamic->pretty_printer == NULL)
99ad9427 1337 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1338
acd65feb
VP
1339 /* If the type is changeable, compare the old and the new values.
1340 If this is the initial assignment, we don't have any old value
1341 to compare with. */
7a4d50bf 1342 if (!initial && changeable)
acd65feb 1343 {
3e43a32a
MS
1344 /* If the value of the varobj was changed by -var-set-value,
1345 then the value in the varobj and in the target is the same.
1346 However, that value is different from the value that the
581e13c1 1347 varobj had after the previous -var-update. So need to the
3e43a32a 1348 varobj as changed. */
acd65feb 1349 if (var->updated)
4c37490d 1350 changed = true;
bb5ce47a 1351 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1352 {
1353 /* Try to compare the values. That requires that both
1354 values are non-lazy. */
b4d61099 1355 if (var->not_fetched && value_lazy (var->value.get ()))
25d5ea92
VP
1356 {
1357 /* This is a frozen varobj and the value was never read.
1358 Presumably, UI shows some "never read" indicator.
1359 Now that we've fetched the real value, we need to report
1360 this varobj as changed so that UI can show the real
1361 value. */
4c37490d 1362 changed = true;
25d5ea92
VP
1363 }
1364 else if (var->value == NULL && value == NULL)
581e13c1 1365 /* Equal. */
acd65feb
VP
1366 ;
1367 else if (var->value == NULL || value == NULL)
57e66780 1368 {
4c37490d 1369 changed = true;
57e66780 1370 }
acd65feb
VP
1371 else
1372 {
b4d61099 1373 gdb_assert (!value_lazy (var->value.get ()));
acd65feb 1374 gdb_assert (!value_lazy (value));
85265413 1375
2f408ecb
PA
1376 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1377 if (var->print_value != print_value)
4c37490d 1378 changed = true;
acd65feb
VP
1379 }
1380 }
1381 }
85265413 1382
ee342b23
VP
1383 if (!initial && !changeable)
1384 {
1385 /* For values that are not changeable, we don't compare the values.
1386 However, we want to notice if a value was not NULL and now is NULL,
1387 or vise versa, so that we report when top-level varobjs come in scope
1388 and leave the scope. */
1389 changed = (var->value != NULL) != (value != NULL);
1390 }
1391
acd65feb 1392 /* We must always keep the new value, since children depend on it. */
b4d61099 1393 var->value = value_holder;
25d5ea92 1394 if (value && value_lazy (value) && intentionally_not_fetched)
4c37490d 1395 var->not_fetched = true;
25d5ea92 1396 else
4c37490d
SM
1397 var->not_fetched = false;
1398 var->updated = false;
85265413 1399
0cc7d26f
TT
1400 install_new_value_visualizer (var);
1401
1402 /* If we installed a pretty-printer, re-compare the printed version
1403 to see if the variable changed. */
bb5ce47a 1404 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 1405 {
b4d61099
TT
1406 print_value = varobj_value_get_print_value (var->value.get (),
1407 var->format, var);
2f408ecb
PA
1408 if ((var->print_value.empty () && !print_value.empty ())
1409 || (!var->print_value.empty () && print_value.empty ())
1410 || (!var->print_value.empty () && !print_value.empty ()
1411 && var->print_value != print_value))
4c37490d 1412 changed = true;
0cc7d26f 1413 }
0cc7d26f
TT
1414 var->print_value = print_value;
1415
b4d61099 1416 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
acd65feb
VP
1417
1418 return changed;
1419}
acd65feb 1420
0cc7d26f
TT
1421/* Return the requested range for a varobj. VAR is the varobj. FROM
1422 and TO are out parameters; *FROM and *TO will be set to the
1423 selected sub-range of VAR. If no range was selected using
1424 -var-set-update-range, then both will be -1. */
1425void
b09e2c59 1426varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1427{
0cc7d26f
TT
1428 *from = var->from;
1429 *to = var->to;
b6313243
TT
1430}
1431
0cc7d26f
TT
1432/* Set the selected sub-range of children of VAR to start at index
1433 FROM and end at index TO. If either FROM or TO is less than zero,
1434 this is interpreted as a request for all children. */
1435void
1436varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1437{
0cc7d26f
TT
1438 var->from = from;
1439 var->to = to;
b6313243
TT
1440}
1441
1442void
1443varobj_set_visualizer (struct varobj *var, const char *visualizer)
1444{
1445#if HAVE_PYTHON
bde7b3e3 1446 PyObject *mainmod;
b6313243 1447
0646da15
TT
1448 if (!gdb_python_initialized)
1449 return;
1450
bde7b3e3 1451 gdbpy_enter_varobj enter_py (var);
b6313243
TT
1452
1453 mainmod = PyImport_AddModule ("__main__");
7c66fffc
TT
1454 gdbpy_ref<> globals
1455 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
7780f186
TT
1456 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1457 globals.get (), globals.get ()));
b6313243 1458
bde7b3e3 1459 if (constructor == NULL)
b6313243
TT
1460 {
1461 gdbpy_print_stack ();
da1f2771 1462 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1463 }
1464
bde7b3e3 1465 construct_visualizer (var, constructor.get ());
b6313243 1466
0cc7d26f 1467 /* If there are any children now, wipe them. */
30914ca8 1468 varobj_delete (var, 1 /* children only */);
0cc7d26f 1469 var->num_children = -1;
b6313243 1470#else
da1f2771 1471 error (_("Python support required"));
b6313243
TT
1472#endif
1473}
1474
7a290c40 1475/* If NEW_VALUE is the new value of the given varobj (var), return
4c37490d 1476 true if var has mutated. In other words, if the type of
7a290c40
JB
1477 the new value is different from the type of the varobj's old
1478 value.
1479
1480 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1481
4c37490d 1482static bool
b09e2c59 1483varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1484 struct type *new_type)
1485{
1486 /* If we haven't previously computed the number of children in var,
1487 it does not matter from the front-end's perspective whether
1488 the type has mutated or not. For all intents and purposes,
1489 it has not mutated. */
1490 if (var->num_children < 0)
4c37490d 1491 return false;
7a290c40 1492
4c37490d 1493 if (var->root->lang_ops->value_has_mutated != NULL)
8776cfe9
JB
1494 {
1495 /* The varobj module, when installing new values, explicitly strips
1496 references, saying that we're not interested in those addresses.
1497 But detection of mutation happens before installing the new
1498 value, so our value may be a reference that we need to strip
1499 in order to remain consistent. */
1500 if (new_value != NULL)
1501 new_value = coerce_ref (new_value);
1502 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1503 }
7a290c40 1504 else
4c37490d 1505 return false;
7a290c40
JB
1506}
1507
8b93c638
JM
1508/* Update the values for a variable and its children. This is a
1509 two-pronged attack. First, re-parse the value for the root's
1510 expression to see if it's changed. Then go all the way
1511 through its children, reconstructing them and noting if they've
1512 changed.
1513
4c37490d 1514 The IS_EXPLICIT parameter specifies if this call is result
25d5ea92 1515 of MI request to update this specific variable, or
581e13c1 1516 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1517 update frozen variables.
705da579 1518
581e13c1 1519 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1520 returns TYPE_CHANGED, then it has done this and VARP will be modified
1521 to point to the new varobj. */
8b93c638 1522
0604393c 1523std::vector<varobj_update_result>
4c37490d 1524varobj_update (struct varobj **varp, bool is_explicit)
8b93c638 1525{
4c37490d 1526 bool type_changed = false;
fe978cb0 1527 struct value *newobj;
0604393c
SM
1528 std::vector<varobj_update_result> stack;
1529 std::vector<varobj_update_result> result;
8b93c638 1530
25d5ea92
VP
1531 /* Frozen means frozen -- we don't check for any change in
1532 this varobj, including its going out of scope, or
1533 changing type. One use case for frozen varobjs is
1534 retaining previously evaluated expressions, and we don't
1535 want them to be reevaluated at all. */
fe978cb0 1536 if (!is_explicit && (*varp)->frozen)
f7f9ae2c 1537 return result;
8756216b
DP
1538
1539 if (!(*varp)->root->is_valid)
f7f9ae2c 1540 {
0604393c 1541 result.emplace_back (*varp, VAROBJ_INVALID);
f7f9ae2c
VP
1542 return result;
1543 }
8b93c638 1544
25d5ea92 1545 if ((*varp)->root->rootvar == *varp)
ae093f96 1546 {
0604393c 1547 varobj_update_result r (*varp);
f7f9ae2c 1548
581e13c1 1549 /* Update the root variable. value_of_root can return NULL
25d5ea92 1550 if the variable is no longer around, i.e. we stepped out of
581e13c1 1551 the frame in which a local existed. We are letting the
25d5ea92
VP
1552 value_of_root variable dispose of the varobj if the type
1553 has changed. */
fe978cb0 1554 newobj = value_of_root (varp, &type_changed);
4c37490d
SM
1555 if (update_type_if_necessary (*varp, newobj))
1556 type_changed = true;
f7f9ae2c 1557 r.varobj = *varp;
f7f9ae2c 1558 r.type_changed = type_changed;
fe978cb0 1559 if (install_new_value ((*varp), newobj, type_changed))
4c37490d 1560 r.changed = true;
ea56f9c2 1561
fe978cb0 1562 if (newobj == NULL)
f7f9ae2c 1563 r.status = VAROBJ_NOT_IN_SCOPE;
4c37490d 1564 r.value_installed = true;
f7f9ae2c
VP
1565
1566 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1567 {
0b4bc29a 1568 if (r.type_changed || r.changed)
0604393c
SM
1569 result.push_back (std::move (r));
1570
b6313243
TT
1571 return result;
1572 }
a109c7c1 1573
0604393c 1574 stack.push_back (std::move (r));
b20d8971 1575 }
0604393c
SM
1576 else
1577 stack.emplace_back (*varp);
8b93c638 1578
8756216b 1579 /* Walk through the children, reconstructing them all. */
0604393c 1580 while (!stack.empty ())
8b93c638 1581 {
0604393c
SM
1582 varobj_update_result r = std::move (stack.back ());
1583 stack.pop_back ();
b6313243
TT
1584 struct varobj *v = r.varobj;
1585
b6313243
TT
1586 /* Update this variable, unless it's a root, which is already
1587 updated. */
1588 if (!r.value_installed)
7a290c40
JB
1589 {
1590 struct type *new_type;
1591
fe978cb0 1592 newobj = value_of_child (v->parent, v->index);
4c37490d
SM
1593 if (update_type_if_necessary (v, newobj))
1594 r.type_changed = true;
fe978cb0
PA
1595 if (newobj)
1596 new_type = value_type (newobj);
7a290c40 1597 else
ca20d462 1598 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40 1599
fe978cb0 1600 if (varobj_value_has_mutated (v, newobj, new_type))
7a290c40
JB
1601 {
1602 /* The children are no longer valid; delete them now.
1603 Report the fact that its type changed as well. */
30914ca8 1604 varobj_delete (v, 1 /* only_children */);
7a290c40
JB
1605 v->num_children = -1;
1606 v->to = -1;
1607 v->from = -1;
1608 v->type = new_type;
4c37490d 1609 r.type_changed = true;
7a290c40
JB
1610 }
1611
fe978cb0 1612 if (install_new_value (v, newobj, r.type_changed))
b6313243 1613 {
4c37490d
SM
1614 r.changed = true;
1615 v->updated = false;
b6313243
TT
1616 }
1617 }
1618
31f628ae
YQ
1619 /* We probably should not get children of a dynamic varobj, but
1620 for which -var-list-children was never invoked. */
1621 if (varobj_is_dynamic_p (v))
b6313243 1622 {
b926417a 1623 std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
4c37490d 1624 bool children_changed = false;
b6313243
TT
1625
1626 if (v->frozen)
1627 continue;
1628
bd046f64 1629 if (!v->dynamic->children_requested)
0cc7d26f 1630 {
4c37490d 1631 bool dummy;
0cc7d26f
TT
1632
1633 /* If we initially did not have potential children, but
1634 now we do, consider the varobj as changed.
1635 Otherwise, if children were never requested, consider
1636 it as unchanged -- presumably, such varobj is not yet
1637 expanded in the UI, so we need not bother getting
1638 it. */
1639 if (!varobj_has_more (v, 0))
1640 {
8264ba82 1641 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
4c37490d 1642 &dummy, false, 0, 0);
0cc7d26f 1643 if (varobj_has_more (v, 0))
4c37490d 1644 r.changed = true;
0cc7d26f
TT
1645 }
1646
1647 if (r.changed)
0604393c 1648 result.push_back (std::move (r));
0cc7d26f
TT
1649
1650 continue;
1651 }
1652
4c37490d 1653 /* If update_dynamic_varobj_children returns false, then we have
b6313243 1654 a non-conforming pretty-printer, so we skip it. */
b926417a
TT
1655 if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
1656 &newobj_vec,
1657 &unchanged, &children_changed,
1658 true, v->from, v->to))
b6313243 1659 {
b926417a 1660 if (children_changed || !newobj_vec.empty ())
b6313243 1661 {
4c37490d 1662 r.children_changed = true;
b926417a 1663 r.newobj = std::move (newobj_vec);
b6313243 1664 }
0cc7d26f
TT
1665 /* Push in reverse order so that the first child is
1666 popped from the work stack first, and so will be
1667 added to result first. This does not affect
1668 correctness, just "nicer". */
b926417a 1669 for (int i = type_changed_vec.size () - 1; i >= 0; --i)
8264ba82 1670 {
b926417a 1671 varobj_update_result item (type_changed_vec[i]);
8264ba82
AG
1672
1673 /* Type may change only if value was changed. */
b926417a
TT
1674 item.changed = true;
1675 item.type_changed = true;
1676 item.value_installed = true;
0604393c 1677
b926417a 1678 stack.push_back (std::move (item));
8264ba82 1679 }
0604393c 1680 for (int i = changed.size () - 1; i >= 0; --i)
b6313243 1681 {
b926417a 1682 varobj_update_result item (changed[i]);
a109c7c1 1683
b926417a
TT
1684 item.changed = true;
1685 item.value_installed = true;
0604393c 1686
b926417a 1687 stack.push_back (std::move (item));
b6313243 1688 }
0604393c
SM
1689 for (int i = unchanged.size () - 1; i >= 0; --i)
1690 {
1691 if (!unchanged[i]->frozen)
1692 {
b926417a 1693 varobj_update_result item (unchanged[i]);
0604393c 1694
b926417a 1695 item.value_installed = true;
0cc7d26f 1696
b926417a 1697 stack.push_back (std::move (item));
0604393c
SM
1698 }
1699 }
1700 if (r.changed || r.children_changed)
1701 result.push_back (std::move (r));
0cc7d26f 1702
b6313243
TT
1703 continue;
1704 }
1705 }
28335dcc
VP
1706
1707 /* Push any children. Use reverse order so that the first
1708 child is popped from the work stack first, and so
1709 will be added to result first. This does not
1710 affect correctness, just "nicer". */
0604393c 1711 for (int i = v->children.size () - 1; i >= 0; --i)
8b93c638 1712 {
ddf0ea08 1713 varobj *c = v->children[i];
a109c7c1 1714
28335dcc 1715 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1716 if (c != NULL && !c->frozen)
0604393c 1717 stack.emplace_back (c);
8b93c638 1718 }
b6313243
TT
1719
1720 if (r.changed || r.type_changed)
0604393c 1721 result.push_back (std::move (r));
8b93c638
JM
1722 }
1723
f7f9ae2c 1724 return result;
8b93c638 1725}
8b93c638
JM
1726
1727/* Helper functions */
1728
1729/*
1730 * Variable object construction/destruction
1731 */
1732
1733static int
4c37490d 1734delete_variable (struct varobj *var, bool only_children_p)
8b93c638
JM
1735{
1736 int delcount = 0;
1737
30914ca8 1738 delete_variable_1 (&delcount, var, only_children_p,
4c37490d 1739 true /* remove_from_parent_p */ );
8b93c638
JM
1740
1741 return delcount;
1742}
1743
581e13c1 1744/* Delete the variable object VAR and its children. */
8b93c638
JM
1745/* IMPORTANT NOTE: If we delete a variable which is a child
1746 and the parent is not removed we dump core. It must be always
581e13c1 1747 initially called with remove_from_parent_p set. */
8b93c638 1748static void
4c37490d
SM
1749delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1750 bool remove_from_parent_p)
8b93c638 1751{
581e13c1 1752 /* Delete any children of this variable, too. */
ddf0ea08 1753 for (varobj *child : var->children)
28335dcc 1754 {
214270ab
VP
1755 if (!child)
1756 continue;
ddf0ea08 1757
8b93c638 1758 if (!remove_from_parent_p)
28335dcc 1759 child->parent = NULL;
ddf0ea08 1760
4c37490d 1761 delete_variable_1 (delcountp, child, false, only_children_p);
8b93c638 1762 }
ddf0ea08 1763 var->children.clear ();
8b93c638 1764
581e13c1 1765 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1766 if (only_children_p)
1767 return;
1768
581e13c1 1769 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2f408ecb 1770 /* If the name is empty, this is a temporary variable, that has not
581e13c1 1771 yet been installed, don't report it, it belongs to the caller... */
2f408ecb 1772 if (!var->obj_name.empty ())
8b93c638 1773 {
8b93c638
JM
1774 *delcountp = *delcountp + 1;
1775 }
1776
581e13c1 1777 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1778 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1779 (as indicated by remove_from_parent_p) we don't bother doing an
1780 expensive list search to find the element to remove when we are
581e13c1 1781 discarding the list afterwards. */
72330bd6 1782 if ((remove_from_parent_p) && (var->parent != NULL))
ddf0ea08 1783 var->parent->children[var->index] = NULL;
72330bd6 1784
2f408ecb 1785 if (!var->obj_name.empty ())
73a93a32 1786 uninstall_variable (var);
8b93c638 1787
581e13c1 1788 /* Free memory associated with this variable. */
9e5b9d2b 1789 delete var;
8b93c638
JM
1790}
1791
581e13c1 1792/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
4c37490d 1793static bool
fba45db2 1794install_variable (struct varobj *var)
8b93c638
JM
1795{
1796 struct vlist *cv;
1797 struct vlist *newvl;
1798 const char *chp;
1799 unsigned int index = 0;
1800 unsigned int i = 1;
1801
2f408ecb 1802 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1803 {
1804 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1805 }
1806
1807 cv = *(varobj_table + index);
2f408ecb 1808 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1809 cv = cv->next;
1810
1811 if (cv != NULL)
8a3fe4f8 1812 error (_("Duplicate variable object name"));
8b93c638 1813
581e13c1 1814 /* Add varobj to hash table. */
8d749320 1815 newvl = XNEW (struct vlist);
8b93c638
JM
1816 newvl->next = *(varobj_table + index);
1817 newvl->var = var;
1818 *(varobj_table + index) = newvl;
1819
581e13c1 1820 /* If root, add varobj to root list. */
b2c2bd75 1821 if (is_root_p (var))
8b93c638 1822 {
581e13c1 1823 /* Add to list of root variables. */
8b93c638
JM
1824 if (rootlist == NULL)
1825 var->root->next = NULL;
1826 else
1827 var->root->next = rootlist;
1828 rootlist = var->root;
8b93c638
JM
1829 }
1830
4c37490d 1831 return true; /* OK */
8b93c638
JM
1832}
1833
405feb71 1834/* Uninstall the object VAR. */
8b93c638 1835static void
fba45db2 1836uninstall_variable (struct varobj *var)
8b93c638
JM
1837{
1838 struct vlist *cv;
1839 struct vlist *prev;
1840 struct varobj_root *cr;
1841 struct varobj_root *prer;
1842 const char *chp;
1843 unsigned int index = 0;
1844 unsigned int i = 1;
1845
581e13c1 1846 /* Remove varobj from hash table. */
2f408ecb 1847 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1848 {
1849 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1850 }
1851
1852 cv = *(varobj_table + index);
1853 prev = NULL;
2f408ecb 1854 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1855 {
1856 prev = cv;
1857 cv = cv->next;
1858 }
1859
1860 if (varobjdebug)
2f408ecb 1861 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
8b93c638
JM
1862
1863 if (cv == NULL)
1864 {
72330bd6
AC
1865 warning
1866 ("Assertion failed: Could not find variable object \"%s\" to delete",
2f408ecb 1867 var->obj_name.c_str ());
8b93c638
JM
1868 return;
1869 }
1870
1871 if (prev == NULL)
1872 *(varobj_table + index) = cv->next;
1873 else
1874 prev->next = cv->next;
1875
b8c9b27d 1876 xfree (cv);
8b93c638 1877
581e13c1 1878 /* If root, remove varobj from root list. */
b2c2bd75 1879 if (is_root_p (var))
8b93c638 1880 {
581e13c1 1881 /* Remove from list of root variables. */
8b93c638
JM
1882 if (rootlist == var->root)
1883 rootlist = var->root->next;
1884 else
1885 {
1886 prer = NULL;
1887 cr = rootlist;
1888 while ((cr != NULL) && (cr->rootvar != var))
1889 {
1890 prer = cr;
1891 cr = cr->next;
1892 }
1893 if (cr == NULL)
1894 {
8f7e195f
JB
1895 warning (_("Assertion failed: Could not find "
1896 "varobj \"%s\" in root list"),
2f408ecb 1897 var->obj_name.c_str ());
8b93c638
JM
1898 return;
1899 }
1900 if (prer == NULL)
1901 rootlist = NULL;
1902 else
1903 prer->next = cr->next;
1904 }
8b93c638
JM
1905 }
1906
1907}
1908
837ce252
SM
1909/* Create and install a child of the parent of the given name.
1910
1911 The created VAROBJ takes ownership of the allocated NAME. */
1912
8b93c638 1913static struct varobj *
2f408ecb 1914create_child (struct varobj *parent, int index, std::string &name)
b6313243 1915{
5a2e0d6e
YQ
1916 struct varobj_item item;
1917
2f408ecb 1918 std::swap (item.name, name);
5a2e0d6e
YQ
1919 item.value = value_of_child (parent, index);
1920
1921 return create_child_with_value (parent, index, &item);
b6313243
TT
1922}
1923
1924static struct varobj *
5a2e0d6e
YQ
1925create_child_with_value (struct varobj *parent, int index,
1926 struct varobj_item *item)
8b93c638 1927{
9e5b9d2b 1928 varobj *child = new varobj (parent->root);
8b93c638 1929
5e5ac9a5 1930 /* NAME is allocated by caller. */
2f408ecb 1931 std::swap (child->name, item->name);
8b93c638 1932 child->index = index;
8b93c638 1933 child->parent = parent;
85254831 1934
99ad9427 1935 if (varobj_is_anonymous_child (child))
2f408ecb
PA
1936 child->obj_name = string_printf ("%s.%d_anonymous",
1937 parent->obj_name.c_str (), index);
85254831 1938 else
2f408ecb
PA
1939 child->obj_name = string_printf ("%s.%s",
1940 parent->obj_name.c_str (),
1941 child->name.c_str ());
85254831 1942
8b93c638
JM
1943 install_variable (child);
1944
acd65feb
VP
1945 /* Compute the type of the child. Must do this before
1946 calling install_new_value. */
5a2e0d6e 1947 if (item->value != NULL)
acd65feb 1948 /* If the child had no evaluation errors, var->value
581e13c1 1949 will be non-NULL and contain a valid type. */
5a2e0d6e 1950 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 1951 else
581e13c1 1952 /* Otherwise, we must compute the type. */
ca20d462
YQ
1953 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1954 child->index);
5a2e0d6e 1955 install_new_value (child, item->value, 1);
acd65feb 1956
8b93c638
JM
1957 return child;
1958}
8b93c638
JM
1959\f
1960
1961/*
1962 * Miscellaneous utility functions.
1963 */
1964
581e13c1 1965/* Allocate memory and initialize a new variable. */
9e5b9d2b
SM
1966varobj::varobj (varobj_root *root_)
1967: root (root_), dynamic (new varobj_dynamic)
8b93c638 1968{
8b93c638
JM
1969}
1970
581e13c1 1971/* Free any allocated memory associated with VAR. */
9e5b9d2b
SM
1972
1973varobj::~varobj ()
8b93c638 1974{
9e5b9d2b
SM
1975 varobj *var = this;
1976
d452c4bc 1977#if HAVE_PYTHON
bb5ce47a 1978 if (var->dynamic->pretty_printer != NULL)
d452c4bc 1979 {
bde7b3e3 1980 gdbpy_enter_varobj enter_py (var);
bb5ce47a
YQ
1981
1982 Py_XDECREF (var->dynamic->constructor);
1983 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
1984 }
1985#endif
1986
827f100c
YQ
1987 varobj_iter_delete (var->dynamic->child_iter);
1988 varobj_clear_saved_item (var->dynamic);
36746093 1989
b2c2bd75 1990 if (is_root_p (var))
4d01a485 1991 delete var->root;
8b93c638 1992
9e5b9d2b 1993 delete var->dynamic;
74b7792f
AC
1994}
1995
6e2a9270
VP
1996/* Return the type of the value that's stored in VAR,
1997 or that would have being stored there if the
581e13c1 1998 value were accessible.
6e2a9270
VP
1999
2000 This differs from VAR->type in that VAR->type is always
85102364 2001 the true type of the expression in the source language.
6e2a9270
VP
2002 The return value of this function is the type we're
2003 actually storing in varobj, and using for displaying
2004 the values and for comparing previous and new values.
2005
2006 For example, top-level references are always stripped. */
99ad9427 2007struct type *
b09e2c59 2008varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2009{
2010 struct type *type;
2011
b4d61099
TT
2012 if (var->value != nullptr)
2013 type = value_type (var->value.get ());
6e2a9270
VP
2014 else
2015 type = var->type;
2016
2017 type = check_typedef (type);
2018
aa006118 2019 if (TYPE_IS_REFERENCE (type))
6e2a9270
VP
2020 type = get_target_type (type);
2021
2022 type = check_typedef (type);
2023
2024 return type;
2025}
2026
8b93c638 2027/* What is the default display for this variable? We assume that
581e13c1 2028 everything is "natural". Any exceptions? */
8b93c638 2029static enum varobj_display_formats
fba45db2 2030variable_default_display (struct varobj *var)
8b93c638
JM
2031{
2032 return FORMAT_NATURAL;
2033}
2034
8b93c638
JM
2035/*
2036 * Language-dependencies
2037 */
2038
2039/* Common entry points */
2040
8b93c638
JM
2041/* Return the number of children for a given variable.
2042 The result of this function is defined by the language
581e13c1 2043 implementation. The number of children returned by this function
8b93c638 2044 is the number of children that the user will see in the variable
581e13c1 2045 display. */
8b93c638 2046static int
b09e2c59 2047number_of_children (const struct varobj *var)
8b93c638 2048{
ca20d462 2049 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2050}
2051
2f408ecb
PA
2052/* What is the expression for the root varobj VAR? */
2053
2054static std::string
b09e2c59 2055name_of_variable (const struct varobj *var)
8b93c638 2056{
ca20d462 2057 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2058}
2059
2f408ecb
PA
2060/* What is the name of the INDEX'th child of VAR? */
2061
2062static std::string
fba45db2 2063name_of_child (struct varobj *var, int index)
8b93c638 2064{
ca20d462 2065 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2066}
2067
2213e2be 2068/* If frame associated with VAR can be found, switch
4c37490d 2069 to it and return true. Otherwise, return false. */
2213e2be 2070
4c37490d 2071static bool
b09e2c59 2072check_scope (const struct varobj *var)
2213e2be
YQ
2073{
2074 struct frame_info *fi;
4c37490d 2075 bool scope;
2213e2be
YQ
2076
2077 fi = frame_find_by_id (var->root->frame);
2078 scope = fi != NULL;
2079
2080 if (fi)
2081 {
2082 CORE_ADDR pc = get_frame_pc (fi);
2083
2084 if (pc < BLOCK_START (var->root->valid_block) ||
2085 pc >= BLOCK_END (var->root->valid_block))
4c37490d 2086 scope = false;
2213e2be
YQ
2087 else
2088 select_frame (fi);
2089 }
2090 return scope;
2091}
2092
2093/* Helper function to value_of_root. */
2094
2095static struct value *
2096value_of_root_1 (struct varobj **var_handle)
2097{
2098 struct value *new_val = NULL;
2099 struct varobj *var = *var_handle;
4c37490d 2100 bool within_scope = false;
2213e2be
YQ
2101
2102 /* Only root variables can be updated... */
2103 if (!is_root_p (var))
2104 /* Not a root var. */
2105 return NULL;
2106
5ed8105e 2107 scoped_restore_current_thread restore_thread;
2213e2be
YQ
2108
2109 /* Determine whether the variable is still around. */
2110 if (var->root->valid_block == NULL || var->root->floating)
4c37490d 2111 within_scope = true;
2213e2be
YQ
2112 else if (var->root->thread_id == 0)
2113 {
2114 /* The program was single-threaded when the variable object was
2115 created. Technically, it's possible that the program became
2116 multi-threaded since then, but we don't support such
2117 scenario yet. */
2118 within_scope = check_scope (var);
2119 }
2120 else
2121 {
00431a78 2122 thread_info *thread = find_thread_global_id (var->root->thread_id);
5d5658a1 2123
00431a78 2124 if (thread != NULL)
2213e2be 2125 {
00431a78 2126 switch_to_thread (thread);
2213e2be
YQ
2127 within_scope = check_scope (var);
2128 }
2129 }
2130
2131 if (within_scope)
2132 {
2213e2be
YQ
2133
2134 /* We need to catch errors here, because if evaluate
2135 expression fails we want to just return NULL. */
a70b8144 2136 try
2213e2be 2137 {
4d01a485 2138 new_val = evaluate_expression (var->root->exp.get ());
2213e2be 2139 }
230d2906 2140 catch (const gdb_exception_error &except)
492d29ea
PA
2141 {
2142 }
2213e2be
YQ
2143 }
2144
2213e2be
YQ
2145 return new_val;
2146}
2147
a5defcdc
VP
2148/* What is the ``struct value *'' of the root variable VAR?
2149 For floating variable object, evaluation can get us a value
2150 of different type from what is stored in varobj already. In
2151 that case:
2152 - *type_changed will be set to 1
2153 - old varobj will be freed, and new one will be
2154 created, with the same name.
2155 - *var_handle will be set to the new varobj
2156 Otherwise, *type_changed will be set to 0. */
30b28db1 2157static struct value *
4c37490d 2158value_of_root (struct varobj **var_handle, bool *type_changed)
8b93c638 2159{
73a93a32
JI
2160 struct varobj *var;
2161
2162 if (var_handle == NULL)
2163 return NULL;
2164
2165 var = *var_handle;
2166
2167 /* This should really be an exception, since this should
581e13c1 2168 only get called with a root variable. */
73a93a32 2169
b2c2bd75 2170 if (!is_root_p (var))
73a93a32
JI
2171 return NULL;
2172
a5defcdc 2173 if (var->root->floating)
73a93a32
JI
2174 {
2175 struct varobj *tmp_var;
6225abfa 2176
2f408ecb 2177 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
73a93a32
JI
2178 USE_SELECTED_FRAME);
2179 if (tmp_var == NULL)
2180 {
2181 return NULL;
2182 }
2f408ecb
PA
2183 std::string old_type = varobj_get_type (var);
2184 std::string new_type = varobj_get_type (tmp_var);
2185 if (old_type == new_type)
73a93a32 2186 {
fcacd99f
VP
2187 /* The expression presently stored inside var->root->exp
2188 remembers the locations of local variables relatively to
2189 the frame where the expression was created (in DWARF location
2190 button, for example). Naturally, those locations are not
2191 correct in other frames, so update the expression. */
2192
4d01a485 2193 std::swap (var->root->exp, tmp_var->root->exp);
fcacd99f 2194
30914ca8 2195 varobj_delete (tmp_var, 0);
73a93a32
JI
2196 *type_changed = 0;
2197 }
2198 else
2199 {
2f408ecb 2200 tmp_var->obj_name = var->obj_name;
0cc7d26f
TT
2201 tmp_var->from = var->from;
2202 tmp_var->to = var->to;
30914ca8 2203 varobj_delete (var, 0);
a5defcdc 2204
73a93a32
JI
2205 install_variable (tmp_var);
2206 *var_handle = tmp_var;
705da579 2207 var = *var_handle;
4c37490d 2208 *type_changed = true;
73a93a32
JI
2209 }
2210 }
2211 else
2212 {
2213 *type_changed = 0;
2214 }
2215
7a290c40
JB
2216 {
2217 struct value *value;
2218
2213e2be 2219 value = value_of_root_1 (var_handle);
7a290c40
JB
2220 if (var->value == NULL || value == NULL)
2221 {
2222 /* For root varobj-s, a NULL value indicates a scoping issue.
2223 So, nothing to do in terms of checking for mutations. */
2224 }
2225 else if (varobj_value_has_mutated (var, value, value_type (value)))
2226 {
2227 /* The type has mutated, so the children are no longer valid.
2228 Just delete them, and tell our caller that the type has
2229 changed. */
30914ca8 2230 varobj_delete (var, 1 /* only_children */);
7a290c40
JB
2231 var->num_children = -1;
2232 var->to = -1;
2233 var->from = -1;
4c37490d 2234 *type_changed = true;
7a290c40
JB
2235 }
2236 return value;
2237 }
8b93c638
JM
2238}
2239
581e13c1 2240/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2241static struct value *
c1cc6152 2242value_of_child (const struct varobj *parent, int index)
8b93c638 2243{
30b28db1 2244 struct value *value;
8b93c638 2245
ca20d462 2246 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2247
8b93c638
JM
2248 return value;
2249}
2250
581e13c1 2251/* GDB already has a command called "value_of_variable". Sigh. */
2f408ecb 2252static std::string
de051565 2253my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2254{
8756216b 2255 if (var->root->is_valid)
0cc7d26f 2256 {
bb5ce47a 2257 if (var->dynamic->pretty_printer != NULL)
b4d61099
TT
2258 return varobj_value_get_print_value (var->value.get (), var->format,
2259 var);
ca20d462 2260 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2261 }
8756216b 2262 else
2f408ecb 2263 return std::string ();
8b93c638
JM
2264}
2265
99ad9427
YQ
2266void
2267varobj_formatted_print_options (struct value_print_options *opts,
2268 enum varobj_display_formats format)
2269{
2270 get_formatted_print_options (opts, format_code[(int) format]);
2271 opts->deref_ref = 0;
0625771b 2272 opts->raw = !pretty_printing;
99ad9427
YQ
2273}
2274
2f408ecb 2275std::string
99ad9427
YQ
2276varobj_value_get_print_value (struct value *value,
2277 enum varobj_display_formats format,
b09e2c59 2278 const struct varobj *var)
85265413 2279{
79a45b7d 2280 struct value_print_options opts;
be759fcf
PM
2281 struct type *type = NULL;
2282 long len = 0;
1eba6383 2283 gdb::unique_xmalloc_ptr<char> encoding;
3a182a69
JK
2284 /* Initialize it just to avoid a GCC false warning. */
2285 CORE_ADDR str_addr = 0;
4c37490d 2286 bool string_print = false;
57e66780
DJ
2287
2288 if (value == NULL)
2f408ecb 2289 return std::string ();
57e66780 2290
d7e74731 2291 string_file stb;
2f408ecb
PA
2292 std::string thevalue;
2293
b6313243 2294#if HAVE_PYTHON
0646da15
TT
2295 if (gdb_python_initialized)
2296 {
bb5ce47a 2297 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2298
68cdc557 2299 gdbpy_enter_varobj enter_py (var);
09ca9e2e 2300
0646da15
TT
2301 if (value_formatter)
2302 {
2303 /* First check to see if we have any children at all. If so,
2304 we simply return {...}. */
2305 if (dynamic_varobj_has_child_method (var))
d7e74731 2306 return "{...}";
b6313243 2307
0646da15
TT
2308 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2309 {
2310 struct value *replacement;
0646da15 2311
a5c5eda7
SM
2312 gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
2313 &replacement,
2314 &stb);
0646da15
TT
2315
2316 /* If we have string like output ... */
68cdc557 2317 if (output != NULL)
0646da15 2318 {
0646da15
TT
2319 /* If this is a lazy string, extract it. For lazy
2320 strings we always print as a string, so set
2321 string_print. */
68cdc557 2322 if (gdbpy_is_lazy_string (output.get ()))
0646da15 2323 {
68cdc557
TT
2324 gdbpy_extract_lazy_string (output.get (), &str_addr,
2325 &type, &len, &encoding);
4c37490d 2326 string_print = true;
0646da15
TT
2327 }
2328 else
2329 {
2330 /* If it is a regular (non-lazy) string, extract
2331 it and copy the contents into THEVALUE. If the
2332 hint says to print it as a string, set
2333 string_print. Otherwise just return the extracted
2334 string as a value. */
2335
9b972014 2336 gdb::unique_xmalloc_ptr<char> s
68cdc557 2337 = python_string_to_target_string (output.get ());
0646da15
TT
2338
2339 if (s)
2340 {
e3821cca 2341 struct gdbarch *gdbarch;
0646da15 2342
9b972014
TT
2343 gdb::unique_xmalloc_ptr<char> hint
2344 = gdbpy_get_display_hint (value_formatter);
0646da15
TT
2345 if (hint)
2346 {
9b972014 2347 if (!strcmp (hint.get (), "string"))
4c37490d 2348 string_print = true;
0646da15
TT
2349 }
2350
9b972014 2351 thevalue = std::string (s.get ());
2f408ecb 2352 len = thevalue.size ();
e3821cca 2353 gdbarch = get_type_arch (value_type (value));
0646da15 2354 type = builtin_type (gdbarch)->builtin_char;
0646da15
TT
2355
2356 if (!string_print)
d7e74731 2357 return thevalue;
0646da15
TT
2358 }
2359 else
2360 gdbpy_print_stack ();
2361 }
2362 }
2363 /* If the printer returned a replacement value, set VALUE
2364 to REPLACEMENT. If there is not a replacement value,
2365 just use the value passed to this function. */
2366 if (replacement)
2367 value = replacement;
2368 }
2369 }
2370 }
b6313243
TT
2371#endif
2372
99ad9427 2373 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2374
2375 /* If the THEVALUE has contents, it is a regular string. */
2f408ecb 2376 if (!thevalue.empty ())
d7e74731 2377 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
1eba6383 2378 len, encoding.get (), 0, &opts);
09ca9e2e 2379 else if (string_print)
00bd41d6
PM
2380 /* Otherwise, if string_print is set, and it is not a regular
2381 string, it is a lazy string. */
d7e74731 2382 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
b6313243 2383 else
00bd41d6 2384 /* All other cases. */
d7e74731 2385 common_val_print (value, &stb, 0, &opts, current_language);
57e66780 2386
d7e74731 2387 return std::move (stb.string ());
85265413
NR
2388}
2389
4c37490d 2390bool
b09e2c59 2391varobj_editable_p (const struct varobj *var)
340a7723
NR
2392{
2393 struct type *type;
340a7723 2394
b4d61099
TT
2395 if (!(var->root->is_valid && var->value != nullptr
2396 && VALUE_LVAL (var->value.get ())))
4c37490d 2397 return false;
340a7723 2398
99ad9427 2399 type = varobj_get_value_type (var);
340a7723
NR
2400
2401 switch (TYPE_CODE (type))
2402 {
2403 case TYPE_CODE_STRUCT:
2404 case TYPE_CODE_UNION:
2405 case TYPE_CODE_ARRAY:
2406 case TYPE_CODE_FUNC:
2407 case TYPE_CODE_METHOD:
4c37490d 2408 return false;
340a7723
NR
2409 break;
2410
2411 default:
4c37490d 2412 return true;
340a7723
NR
2413 break;
2414 }
2415}
2416
d32cafc7 2417/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2418
4c37490d 2419bool
b09e2c59 2420varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2421{
ca20d462 2422 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2423}
2424
4c37490d 2425/* Return true if that varobj is floating, that is is always evaluated in the
5a413362
VP
2426 selected frame, and not bound to thread/frame. Such variable objects
2427 are created using '@' as frame specifier to -var-create. */
4c37490d 2428bool
b09e2c59 2429varobj_floating_p (const struct varobj *var)
5a413362
VP
2430{
2431 return var->root->floating;
2432}
2433
d32cafc7
JB
2434/* Implement the "value_is_changeable_p" varobj callback for most
2435 languages. */
2436
4c37490d 2437bool
b09e2c59 2438varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7 2439{
4c37490d 2440 bool r;
d32cafc7
JB
2441 struct type *type;
2442
2443 if (CPLUS_FAKE_CHILD (var))
4c37490d 2444 return false;
d32cafc7 2445
99ad9427 2446 type = varobj_get_value_type (var);
d32cafc7
JB
2447
2448 switch (TYPE_CODE (type))
2449 {
2450 case TYPE_CODE_STRUCT:
2451 case TYPE_CODE_UNION:
2452 case TYPE_CODE_ARRAY:
4c37490d 2453 r = false;
d32cafc7
JB
2454 break;
2455
2456 default:
4c37490d 2457 r = true;
d32cafc7
JB
2458 }
2459
2460 return r;
2461}
2462
54333c3b
JK
2463/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2464 with an arbitrary caller supplied DATA pointer. */
2465
2466void
2467all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2468{
2469 struct varobj_root *var_root, *var_root_next;
2470
2471 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2472
2473 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2474 {
2475 var_root_next = var_root->next;
2476
2477 (*func) (var_root->rootvar, data);
2478 }
2479}
8756216b 2480
54333c3b 2481/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2482 defined on globals. It is a helper for varobj_invalidate.
2483
2484 This function is called after changing the symbol file, in this case the
2485 pointers to "struct type" stored by the varobj are no longer valid. All
2486 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2487
54333c3b
JK
2488static void
2489varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2490{
4e969b4f
AB
2491 /* global and floating var must be re-evaluated. */
2492 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2493 {
54333c3b 2494 struct varobj *tmp_var;
2dbd25e5 2495
54333c3b
JK
2496 /* Try to create a varobj with same expression. If we succeed
2497 replace the old varobj, otherwise invalidate it. */
2f408ecb 2498 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
54333c3b
JK
2499 USE_CURRENT_FRAME);
2500 if (tmp_var != NULL)
2501 {
2f408ecb 2502 tmp_var->obj_name = var->obj_name;
30914ca8 2503 varobj_delete (var, 0);
54333c3b 2504 install_variable (tmp_var);
2dbd25e5 2505 }
54333c3b 2506 else
4c37490d 2507 var->root->is_valid = false;
2dbd25e5 2508 }
54333c3b 2509 else /* locals must be invalidated. */
4c37490d 2510 var->root->is_valid = false;
54333c3b
JK
2511}
2512
2513/* Invalidate the varobjs that are tied to locals and re-create the ones that
2514 are defined on globals.
2515 Invalidated varobjs will be always printed in_scope="invalid". */
2516
2517void
2518varobj_invalidate (void)
2519{
2520 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2521}
481695ed 2522
1c3569d4
MR
2523void
2524_initialize_varobj (void)
2525{
8d749320 2526 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
1c3569d4
MR
2527
2528 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2529 &varobjdebug,
2530 _("Set varobj debugging."),
2531 _("Show varobj debugging."),
2532 _("When non-zero, varobj debugging is enabled."),
2533 NULL, show_varobjdebug,
2534 &setdebuglist, &showdebuglist);
2535}
This page took 2.479403 seconds and 4 git commands to generate.