Update gnulib to current upstream master
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
e2882c85 3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
28335dcc 29#include "vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
396af9a1 33#include "parser-defs.h"
8b93c638 34
b6313243
TT
35#if HAVE_PYTHON
36#include "python/python.h"
37#include "python/python-internal.h"
bde7b3e3 38#include "python/py-ref.h"
50389644
PA
39#else
40typedef int PyObject;
b6313243
TT
41#endif
42
8b93c638
JM
43/* Non-zero if we want to see trace of varobj level stuff. */
44
ccce17b0 45unsigned int varobjdebug = 0;
920d2a44
AC
46static void
47show_varobjdebug (struct ui_file *file, int from_tty,
48 struct cmd_list_element *c, const char *value)
49{
50 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51}
8b93c638 52
581e13c1 53/* String representations of gdb's format codes. */
a121b7c1 54const char *varobj_format_string[] =
1c35a88f 55 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
8b93c638 56
0cc7d26f 57/* True if we want to allow Python-based pretty-printing. */
4c37490d 58static bool pretty_printing = false;
0cc7d26f
TT
59
60void
61varobj_enable_pretty_printing (void)
62{
4c37490d 63 pretty_printing = true;
0cc7d26f
TT
64}
65
8b93c638
JM
66/* Data structures */
67
68/* Every root variable has one of these structures saved in its
4d01a485 69 varobj. */
8b93c638 70struct varobj_root
72330bd6 71{
4d01a485
PA
72 /* The expression for this parent. */
73 expression_up exp;
8b93c638 74
581e13c1 75 /* Block for which this expression is valid. */
9e5b9d2b 76 const struct block *valid_block = NULL;
8b93c638 77
44a67aa7
VP
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
9e5b9d2b 80 struct frame_id frame = null_frame_id;
8b93c638 81
5d5658a1 82 /* The global thread ID that this varobj_root belongs to. This field
581e13c1 83 is only valid if valid_block is not NULL.
c5b48eac
VP
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
9e5b9d2b 87 int thread_id = 0;
c5b48eac 88
4c37490d 89 /* If true, the -var-update always recomputes the value in the
a5defcdc 90 current thread and frame. Otherwise, variable object is
581e13c1 91 always updated in the specific scope/thread/frame. */
4c37490d 92 bool floating = false;
73a93a32 93
4c37490d 94 /* Flag that indicates validity: set to false when this varobj_root refers
8756216b 95 to symbols that do not exist anymore. */
4c37490d 96 bool is_valid = true;
8756216b 97
99ad9427
YQ
98 /* Language-related operations for this variable and its
99 children. */
9e5b9d2b 100 const struct lang_varobj_ops *lang_ops = NULL;
8b93c638 101
581e13c1 102 /* The varobj for this root node. */
9e5b9d2b 103 struct varobj *rootvar = NULL;
8b93c638 104
72330bd6 105 /* Next root variable */
9e5b9d2b 106 struct varobj_root *next = NULL;
72330bd6 107};
8b93c638 108
bb5ce47a 109/* Dynamic part of varobj. */
8b93c638 110
bb5ce47a
YQ
111struct varobj_dynamic
112{
b6313243
TT
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
116 can avoid that. */
bd046f64 117 bool children_requested = false;
b6313243 118
0cc7d26f
TT
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
9e5b9d2b 122 PyObject *constructor = NULL;
0cc7d26f 123
b6313243
TT
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
9e5b9d2b 126 PyObject *pretty_printer = NULL;
0cc7d26f
TT
127
128 /* The iterator returned by the printer's 'children' method, or NULL
129 if not available. */
9e5b9d2b 130 struct varobj_iter *child_iter = NULL;
0cc7d26f
TT
131
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
9e5b9d2b 137 varobj_item *saved_item = NULL;
72330bd6 138};
8b93c638 139
8b93c638
JM
140/* A list of varobjs */
141
142struct vlist
72330bd6
AC
143{
144 struct varobj *var;
145 struct vlist *next;
146};
8b93c638
JM
147
148/* Private function prototypes */
149
581e13c1 150/* Helper functions for the above subcommands. */
8b93c638 151
4c37490d 152static int delete_variable (struct varobj *, bool);
8b93c638 153
4c37490d 154static void delete_variable_1 (int *, struct varobj *, bool, bool);
8b93c638 155
4c37490d 156static bool install_variable (struct varobj *);
8b93c638 157
a14ed312 158static void uninstall_variable (struct varobj *);
8b93c638 159
2f408ecb 160static struct varobj *create_child (struct varobj *, int, std::string &);
8b93c638 161
b6313243 162static struct varobj *
5a2e0d6e
YQ
163create_child_with_value (struct varobj *parent, int index,
164 struct varobj_item *item);
b6313243 165
8b93c638
JM
166/* Utility routines */
167
a14ed312 168static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 169
4c37490d
SM
170static bool update_type_if_necessary (struct varobj *var,
171 struct value *new_value);
8264ba82 172
4c37490d
SM
173static bool install_new_value (struct varobj *var, struct value *value,
174 bool initial);
acd65feb 175
581e13c1 176/* Language-specific routines. */
8b93c638 177
b09e2c59 178static int number_of_children (const struct varobj *);
8b93c638 179
2f408ecb 180static std::string name_of_variable (const struct varobj *);
8b93c638 181
2f408ecb 182static std::string name_of_child (struct varobj *, int);
8b93c638 183
4c37490d 184static struct value *value_of_root (struct varobj **var_handle, bool *);
8b93c638 185
c1cc6152 186static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 187
2f408ecb
PA
188static std::string my_value_of_variable (struct varobj *var,
189 enum varobj_display_formats format);
8b93c638 190
4c37490d 191static bool is_root_p (const struct varobj *var);
8b93c638 192
9a1edae6 193static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 194 struct varobj_item *item);
b6313243 195
8b93c638
JM
196/* Private data */
197
581e13c1 198/* Mappings of varobj_display_formats enums to gdb's format codes. */
1c35a88f 199static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
8b93c638 200
581e13c1 201/* Header of the list of root variable objects. */
8b93c638 202static struct varobj_root *rootlist;
8b93c638 203
581e13c1 204/* Prime number indicating the number of buckets in the hash table. */
5fa13070 205/* A prime large enough to avoid too many collisions. */
8b93c638
JM
206#define VAROBJ_TABLE_SIZE 227
207
581e13c1 208/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
209static struct vlist **varobj_table;
210
8b93c638
JM
211\f
212
213/* API Implementation */
4c37490d 214static bool
b09e2c59 215is_root_p (const struct varobj *var)
b2c2bd75
VP
216{
217 return (var->root->rootvar == var);
218}
8b93c638 219
d452c4bc 220#ifdef HAVE_PYTHON
6cd67bea
TT
221
222/* See python-internal.h. */
223gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
224: gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
225{
226}
227
d452c4bc
UW
228#endif
229
7d8547c9
AC
230/* Return the full FRAME which corresponds to the given CORE_ADDR
231 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
232
233static struct frame_info *
234find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
235{
236 struct frame_info *frame = NULL;
237
238 if (frame_addr == (CORE_ADDR) 0)
239 return NULL;
240
9d49bdc2
PA
241 for (frame = get_current_frame ();
242 frame != NULL;
243 frame = get_prev_frame (frame))
7d8547c9 244 {
1fac167a
UW
245 /* The CORE_ADDR we get as argument was parsed from a string GDB
246 output as $fp. This output got truncated to gdbarch_addr_bit.
247 Truncate the frame base address in the same manner before
248 comparing it against our argument. */
249 CORE_ADDR frame_base = get_frame_base_address (frame);
250 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 251
1fac167a
UW
252 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
253 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
254
255 if (frame_base == frame_addr)
7d8547c9
AC
256 return frame;
257 }
9d49bdc2
PA
258
259 return NULL;
7d8547c9
AC
260}
261
5fa13070
SM
262/* Creates a varobj (not its children). */
263
8b93c638 264struct varobj *
2f408ecb
PA
265varobj_create (const char *objname,
266 const char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638 267{
581e13c1 268 /* Fill out a varobj structure for the (root) variable being constructed. */
9e5b9d2b 269 std::unique_ptr<varobj> var (new varobj (new varobj_root));
8b93c638
JM
270
271 if (expression != NULL)
272 {
e4195b40 273 struct frame_info *fi;
35633fef 274 struct frame_id old_id = null_frame_id;
3977b71f 275 const struct block *block;
bbc13ae3 276 const char *p;
e55dccf0 277 struct value *value = NULL;
1bb9788d 278 CORE_ADDR pc;
8b93c638 279
9d49bdc2
PA
280 /* Parse and evaluate the expression, filling in as much of the
281 variable's data as possible. */
282
283 if (has_stack_frames ())
284 {
581e13c1 285 /* Allow creator to specify context of variable. */
9d49bdc2
PA
286 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
287 fi = get_selected_frame (NULL);
288 else
289 /* FIXME: cagney/2002-11-23: This code should be doing a
290 lookup using the frame ID and not just the frame's
291 ``address''. This, of course, means an interface
292 change. However, with out that interface change ISAs,
293 such as the ia64 with its two stacks, won't work.
294 Similar goes for the case where there is a frameless
295 function. */
296 fi = find_frame_addr_in_frame_chain (frame);
297 }
8b93c638 298 else
9d49bdc2 299 fi = NULL;
8b93c638 300
73a93a32 301 if (type == USE_SELECTED_FRAME)
4c37490d 302 var->root->floating = true;
73a93a32 303
1bb9788d 304 pc = 0;
8b93c638
JM
305 block = NULL;
306 if (fi != NULL)
1bb9788d
TT
307 {
308 block = get_frame_block (fi, 0);
309 pc = get_frame_pc (fi);
310 }
8b93c638
JM
311
312 p = expression;
ae451627
AB
313 innermost_block.reset (INNERMOST_BLOCK_FOR_SYMBOLS
314 | INNERMOST_BLOCK_FOR_REGISTERS);
73a93a32 315 /* Wrap the call to parse expression, so we can
581e13c1 316 return a sensible error. */
492d29ea 317 TRY
8e7b59a5 318 {
1bb9788d 319 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
320 }
321
492d29ea 322 CATCH (except, RETURN_MASK_ERROR)
73a93a32
JI
323 {
324 return NULL;
325 }
492d29ea 326 END_CATCH
8b93c638 327
581e13c1 328 /* Don't allow variables to be created for types. */
608b4967
TT
329 if (var->root->exp->elts[0].opcode == OP_TYPE
330 || var->root->exp->elts[0].opcode == OP_TYPEOF
331 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638 332 {
bc8332bb
AC
333 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
334 " as an expression.\n");
8b93c638
JM
335 return NULL;
336 }
337
9e5b9d2b 338 var->format = variable_default_display (var.get ());
e707fc44
AB
339 var->root->valid_block =
340 var->root->floating ? NULL : innermost_block.block ();
2f408ecb 341 var->name = expression;
02142340 342 /* For a root var, the name and the expr are the same. */
2f408ecb 343 var->path_expr = expression;
8b93c638
JM
344
345 /* When the frame is different from the current frame,
346 we must select the appropriate frame before parsing
347 the expression, otherwise the value will not be current.
581e13c1 348 Since select_frame is so benign, just call it for all cases. */
aee1fcdf 349 if (var->root->valid_block)
8b93c638 350 {
4e22772d
JK
351 /* User could specify explicit FRAME-ADDR which was not found but
352 EXPRESSION is frame specific and we would not be able to evaluate
353 it correctly next time. With VALID_BLOCK set we must also set
354 FRAME and THREAD_ID. */
355 if (fi == NULL)
356 error (_("Failed to find the specified frame"));
357
7a424e99 358 var->root->frame = get_frame_id (fi);
00431a78 359 var->root->thread_id = inferior_thread ()->global_num;
35633fef 360 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 361 select_frame (fi);
8b93c638
JM
362 }
363
340a7723 364 /* We definitely need to catch errors here.
8b93c638 365 If evaluate_expression succeeds we got the value we wanted.
581e13c1 366 But if it fails, we still go on with a call to evaluate_type(). */
492d29ea 367 TRY
8e7b59a5 368 {
4d01a485 369 value = evaluate_expression (var->root->exp.get ());
8e7b59a5 370 }
492d29ea 371 CATCH (except, RETURN_MASK_ERROR)
e55dccf0
VP
372 {
373 /* Error getting the value. Try to at least get the
374 right type. */
4d01a485 375 struct value *type_only_value = evaluate_type (var->root->exp.get ());
a109c7c1 376
e55dccf0
VP
377 var->type = value_type (type_only_value);
378 }
492d29ea 379 END_CATCH
8264ba82 380
492d29ea
PA
381 if (value != NULL)
382 {
383 int real_type_found = 0;
384
385 var->type = value_actual_type (value, 0, &real_type_found);
386 if (real_type_found)
387 value = value_cast (var->type, value);
388 }
acd65feb 389
8b93c638 390 /* Set language info */
ca20d462 391 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 392
9e5b9d2b 393 install_new_value (var.get (), value, 1 /* Initial assignment */);
d32cafc7 394
581e13c1 395 /* Set ourselves as our root. */
9e5b9d2b 396 var->root->rootvar = var.get ();
8b93c638 397
581e13c1 398 /* Reset the selected frame. */
35633fef
JK
399 if (frame_id_p (old_id))
400 select_frame (frame_find_by_id (old_id));
8b93c638
JM
401 }
402
73a93a32 403 /* If the variable object name is null, that means this
581e13c1 404 is a temporary variable, so don't install it. */
73a93a32
JI
405
406 if ((var != NULL) && (objname != NULL))
8b93c638 407 {
2f408ecb 408 var->obj_name = objname;
8b93c638
JM
409
410 /* If a varobj name is duplicated, the install will fail so
581e13c1 411 we must cleanup. */
9e5b9d2b
SM
412 if (!install_variable (var.get ()))
413 return NULL;
8b93c638
JM
414 }
415
9e5b9d2b 416 return var.release ();
8b93c638
JM
417}
418
581e13c1 419/* Generates an unique name that can be used for a varobj. */
8b93c638 420
2d6960b4 421std::string
8b93c638
JM
422varobj_gen_name (void)
423{
424 static int id = 0;
8b93c638 425
581e13c1 426 /* Generate a name for this object. */
8b93c638 427 id++;
2d6960b4 428 return string_printf ("var%d", id);
8b93c638
JM
429}
430
61d8f275
JK
431/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
432 error if OBJNAME cannot be found. */
8b93c638
JM
433
434struct varobj *
2f408ecb 435varobj_get_handle (const char *objname)
8b93c638
JM
436{
437 struct vlist *cv;
438 const char *chp;
439 unsigned int index = 0;
440 unsigned int i = 1;
441
442 for (chp = objname; *chp; chp++)
443 {
444 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
445 }
446
447 cv = *(varobj_table + index);
2f408ecb 448 while (cv != NULL && cv->var->obj_name != objname)
8b93c638
JM
449 cv = cv->next;
450
451 if (cv == NULL)
8a3fe4f8 452 error (_("Variable object not found"));
8b93c638
JM
453
454 return cv->var;
455}
456
581e13c1 457/* Given the handle, return the name of the object. */
8b93c638 458
2f408ecb 459const char *
b09e2c59 460varobj_get_objname (const struct varobj *var)
8b93c638 461{
2f408ecb 462 return var->obj_name.c_str ();
8b93c638
JM
463}
464
2f408ecb
PA
465/* Given the handle, return the expression represented by the
466 object. */
8b93c638 467
2f408ecb 468std::string
b09e2c59 469varobj_get_expression (const struct varobj *var)
8b93c638
JM
470{
471 return name_of_variable (var);
472}
473
30914ca8 474/* See varobj.h. */
8b93c638
JM
475
476int
4c37490d 477varobj_delete (struct varobj *var, bool only_children)
8b93c638 478{
30914ca8 479 return delete_variable (var, only_children);
8b93c638
JM
480}
481
d8b65138
JK
482#if HAVE_PYTHON
483
b6313243
TT
484/* Convenience function for varobj_set_visualizer. Instantiate a
485 pretty-printer for a given value. */
486static PyObject *
487instantiate_pretty_printer (PyObject *constructor, struct value *value)
488{
b6313243
TT
489 PyObject *val_obj = NULL;
490 PyObject *printer;
b6313243 491
b6313243 492 val_obj = value_to_value_object (value);
b6313243
TT
493 if (! val_obj)
494 return NULL;
495
496 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
497 Py_DECREF (val_obj);
498 return printer;
b6313243
TT
499}
500
d8b65138
JK
501#endif
502
581e13c1 503/* Set/Get variable object display format. */
8b93c638
JM
504
505enum varobj_display_formats
506varobj_set_display_format (struct varobj *var,
507 enum varobj_display_formats format)
508{
509 switch (format)
510 {
511 case FORMAT_NATURAL:
512 case FORMAT_BINARY:
513 case FORMAT_DECIMAL:
514 case FORMAT_HEXADECIMAL:
515 case FORMAT_OCTAL:
1c35a88f 516 case FORMAT_ZHEXADECIMAL:
8b93c638
JM
517 var->format = format;
518 break;
519
520 default:
521 var->format = variable_default_display (var);
522 }
523
ae7d22a6 524 if (varobj_value_is_changeable_p (var)
b4d61099 525 && var->value != nullptr && !value_lazy (var->value.get ()))
ae7d22a6 526 {
b4d61099 527 var->print_value = varobj_value_get_print_value (var->value.get (),
99ad9427 528 var->format, var);
ae7d22a6
VP
529 }
530
8b93c638
JM
531 return var->format;
532}
533
534enum varobj_display_formats
b09e2c59 535varobj_get_display_format (const struct varobj *var)
8b93c638
JM
536{
537 return var->format;
538}
539
9b972014 540gdb::unique_xmalloc_ptr<char>
b09e2c59 541varobj_get_display_hint (const struct varobj *var)
b6313243 542{
9b972014 543 gdb::unique_xmalloc_ptr<char> result;
b6313243
TT
544
545#if HAVE_PYTHON
0646da15
TT
546 if (!gdb_python_initialized)
547 return NULL;
548
bde7b3e3 549 gdbpy_enter_varobj enter_py (var);
d452c4bc 550
bb5ce47a
YQ
551 if (var->dynamic->pretty_printer != NULL)
552 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
b6313243
TT
553#endif
554
555 return result;
556}
557
0cc7d26f
TT
558/* Return true if the varobj has items after TO, false otherwise. */
559
4c37490d 560bool
b09e2c59 561varobj_has_more (const struct varobj *var, int to)
0cc7d26f 562{
ddf0ea08 563 if (var->children.size () > to)
4c37490d 564 return true;
ddf0ea08
SM
565
566 return ((to == -1 || var->children.size () == to)
bb5ce47a 567 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
568}
569
c5b48eac
VP
570/* If the variable object is bound to a specific thread, that
571 is its evaluation can always be done in context of a frame
572 inside that thread, returns GDB id of the thread -- which
581e13c1 573 is always positive. Otherwise, returns -1. */
c5b48eac 574int
b09e2c59 575varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
576{
577 if (var->root->valid_block && var->root->thread_id > 0)
578 return var->root->thread_id;
579 else
580 return -1;
581}
582
25d5ea92 583void
4c37490d 584varobj_set_frozen (struct varobj *var, bool frozen)
25d5ea92
VP
585{
586 /* When a variable is unfrozen, we don't fetch its value.
587 The 'not_fetched' flag remains set, so next -var-update
588 won't complain.
589
590 We don't fetch the value, because for structures the client
591 should do -var-update anyway. It would be bad to have different
592 client-size logic for structure and other types. */
593 var->frozen = frozen;
594}
595
4c37490d 596bool
b09e2c59 597varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
598{
599 return var->frozen;
600}
601
0cc7d26f
TT
602/* A helper function that restricts a range to what is actually
603 available in a VEC. This follows the usual rules for the meaning
604 of FROM and TO -- if either is negative, the entire range is
605 used. */
606
99ad9427 607void
ddf0ea08
SM
608varobj_restrict_range (const std::vector<varobj *> &children,
609 int *from, int *to)
0cc7d26f 610{
ddf0ea08
SM
611 int len = children.size ();
612
0cc7d26f
TT
613 if (*from < 0 || *to < 0)
614 {
615 *from = 0;
ddf0ea08 616 *to = len;
0cc7d26f
TT
617 }
618 else
619 {
ddf0ea08
SM
620 if (*from > len)
621 *from = len;
622 if (*to > len)
623 *to = len;
0cc7d26f
TT
624 if (*from > *to)
625 *from = *to;
626 }
627}
628
629/* A helper for update_dynamic_varobj_children that installs a new
630 child when needed. */
631
632static void
633install_dynamic_child (struct varobj *var,
0604393c
SM
634 std::vector<varobj *> *changed,
635 std::vector<varobj *> *type_changed,
636 std::vector<varobj *> *newobj,
637 std::vector<varobj *> *unchanged,
4c37490d 638 bool *cchanged,
0cc7d26f 639 int index,
5a2e0d6e 640 struct varobj_item *item)
0cc7d26f 641{
ddf0ea08 642 if (var->children.size () < index + 1)
0cc7d26f
TT
643 {
644 /* There's no child yet. */
5a2e0d6e 645 struct varobj *child = varobj_add_child (var, item);
a109c7c1 646
0604393c 647 if (newobj != NULL)
0cc7d26f 648 {
0604393c 649 newobj->push_back (child);
4c37490d 650 *cchanged = true;
0cc7d26f
TT
651 }
652 }
bf8793bb 653 else
0cc7d26f 654 {
ddf0ea08 655 varobj *existing = var->children[index];
4c37490d 656 bool type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 657
8264ba82
AG
658 if (type_updated)
659 {
0604393c
SM
660 if (type_changed != NULL)
661 type_changed->push_back (existing);
8264ba82 662 }
5a2e0d6e 663 if (install_new_value (existing, item->value, 0))
0cc7d26f 664 {
0604393c
SM
665 if (!type_updated && changed != NULL)
666 changed->push_back (existing);
0cc7d26f 667 }
0604393c
SM
668 else if (!type_updated && unchanged != NULL)
669 unchanged->push_back (existing);
0cc7d26f
TT
670 }
671}
672
576ea091
YQ
673#if HAVE_PYTHON
674
4c37490d 675static bool
b09e2c59 676dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f 677{
bb5ce47a 678 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f 679
0646da15 680 if (!gdb_python_initialized)
4c37490d 681 return false;
0646da15 682
bde7b3e3
TT
683 gdbpy_enter_varobj enter_py (var);
684 return PyObject_HasAttr (printer, gdbpy_children_cst);
0cc7d26f 685}
576ea091 686#endif
0cc7d26f 687
e5250216
YQ
688/* A factory for creating dynamic varobj's iterators. Returns an
689 iterator object suitable for iterating over VAR's children. */
690
691static struct varobj_iter *
692varobj_get_iterator (struct varobj *var)
693{
576ea091 694#if HAVE_PYTHON
e5250216
YQ
695 if (var->dynamic->pretty_printer)
696 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 697#endif
e5250216
YQ
698
699 gdb_assert_not_reached (_("\
700requested an iterator from a non-dynamic varobj"));
701}
702
827f100c
YQ
703/* Release and clear VAR's saved item, if any. */
704
705static void
706varobj_clear_saved_item (struct varobj_dynamic *var)
707{
708 if (var->saved_item != NULL)
709 {
22bc8444 710 value_decref (var->saved_item->value);
0a8beaba 711 delete var->saved_item;
827f100c
YQ
712 var->saved_item = NULL;
713 }
714}
0cc7d26f 715
4c37490d 716static bool
b6313243 717update_dynamic_varobj_children (struct varobj *var,
0604393c
SM
718 std::vector<varobj *> *changed,
719 std::vector<varobj *> *type_changed,
720 std::vector<varobj *> *newobj,
721 std::vector<varobj *> *unchanged,
4c37490d
SM
722 bool *cchanged,
723 bool update_children,
0cc7d26f
TT
724 int from,
725 int to)
b6313243 726{
b6313243 727 int i;
b6313243 728
4c37490d 729 *cchanged = false;
b6313243 730
bb5ce47a 731 if (update_children || var->dynamic->child_iter == NULL)
b6313243 732 {
e5250216
YQ
733 varobj_iter_delete (var->dynamic->child_iter);
734 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 735
827f100c 736 varobj_clear_saved_item (var->dynamic);
b6313243 737
e5250216 738 i = 0;
b6313243 739
bb5ce47a 740 if (var->dynamic->child_iter == NULL)
4c37490d 741 return false;
b6313243 742 }
0cc7d26f 743 else
ddf0ea08 744 i = var->children.size ();
b6313243 745
0cc7d26f
TT
746 /* We ask for one extra child, so that MI can report whether there
747 are more children. */
748 for (; to < 0 || i < to + 1; ++i)
b6313243 749 {
827f100c 750 varobj_item *item;
b6313243 751
0cc7d26f 752 /* See if there was a leftover from last time. */
827f100c 753 if (var->dynamic->saved_item != NULL)
0cc7d26f 754 {
bb5ce47a
YQ
755 item = var->dynamic->saved_item;
756 var->dynamic->saved_item = NULL;
0cc7d26f
TT
757 }
758 else
a4c8e806 759 {
e5250216 760 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
761 /* Release vitem->value so its lifetime is not bound to the
762 execution of a command. */
763 if (item != NULL && item->value != NULL)
22bc8444 764 release_value (item->value).release ();
a4c8e806 765 }
b6313243 766
e5250216
YQ
767 if (item == NULL)
768 {
769 /* Iteration is done. Remove iterator from VAR. */
770 varobj_iter_delete (var->dynamic->child_iter);
771 var->dynamic->child_iter = NULL;
772 break;
773 }
0cc7d26f
TT
774 /* We don't want to push the extra child on any report list. */
775 if (to < 0 || i < to)
b6313243 776 {
4c37490d 777 bool can_mention = from < 0 || i >= from;
0cc7d26f 778
0cc7d26f 779 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 780 can_mention ? type_changed : NULL,
fe978cb0 781 can_mention ? newobj : NULL,
0cc7d26f 782 can_mention ? unchanged : NULL,
5e5ac9a5 783 can_mention ? cchanged : NULL, i,
827f100c
YQ
784 item);
785
0a8beaba 786 delete item;
b6313243 787 }
0cc7d26f 788 else
b6313243 789 {
bb5ce47a 790 var->dynamic->saved_item = item;
b6313243 791
0cc7d26f
TT
792 /* We want to truncate the child list just before this
793 element. */
794 break;
795 }
b6313243
TT
796 }
797
ddf0ea08 798 if (i < var->children.size ())
b6313243 799 {
4c37490d 800 *cchanged = true;
ddf0ea08
SM
801 for (int j = i; j < var->children.size (); ++j)
802 varobj_delete (var->children[j], 0);
803
804 var->children.resize (i);
b6313243 805 }
0cc7d26f
TT
806
807 /* If there are fewer children than requested, note that the list of
808 children changed. */
ddf0ea08 809 if (to >= 0 && var->children.size () < to)
4c37490d 810 *cchanged = true;
0cc7d26f 811
ddf0ea08 812 var->num_children = var->children.size ();
b6313243 813
4c37490d 814 return true;
b6313243 815}
25d5ea92 816
8b93c638
JM
817int
818varobj_get_num_children (struct varobj *var)
819{
820 if (var->num_children == -1)
b6313243 821 {
31f628ae 822 if (varobj_is_dynamic_p (var))
0cc7d26f 823 {
4c37490d 824 bool dummy;
0cc7d26f
TT
825
826 /* If we have a dynamic varobj, don't report -1 children.
827 So, try to fetch some children first. */
8264ba82 828 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
4c37490d 829 false, 0, 0);
0cc7d26f
TT
830 }
831 else
b6313243
TT
832 var->num_children = number_of_children (var);
833 }
8b93c638 834
0cc7d26f 835 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
836}
837
838/* Creates a list of the immediate children of a variable object;
581e13c1 839 the return code is the number of such children or -1 on error. */
8b93c638 840
ddf0ea08 841const std::vector<varobj *> &
0cc7d26f 842varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 843{
bd046f64 844 var->dynamic->children_requested = true;
b6313243 845
31f628ae 846 if (varobj_is_dynamic_p (var))
0cc7d26f 847 {
4c37490d
SM
848 bool children_changed;
849
b6313243
TT
850 /* This, in theory, can result in the number of children changing without
851 frontend noticing. But well, calling -var-list-children on the same
852 varobj twice is not something a sane frontend would do. */
8264ba82 853 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
4c37490d 854 &children_changed, false, 0, *to);
99ad9427 855 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
856 return var->children;
857 }
8b93c638 858
8b93c638
JM
859 if (var->num_children == -1)
860 var->num_children = number_of_children (var);
861
74a44383
DJ
862 /* If that failed, give up. */
863 if (var->num_children == -1)
d56d46f5 864 return var->children;
74a44383 865
28335dcc
VP
866 /* If we're called when the list of children is not yet initialized,
867 allocate enough elements in it. */
ddf0ea08
SM
868 while (var->children.size () < var->num_children)
869 var->children.push_back (NULL);
28335dcc 870
ddf0ea08 871 for (int i = 0; i < var->num_children; i++)
8b93c638 872 {
ddf0ea08 873 if (var->children[i] == NULL)
28335dcc
VP
874 {
875 /* Either it's the first call to varobj_list_children for
876 this variable object, and the child was never created,
877 or it was explicitly deleted by the client. */
2f408ecb 878 std::string name = name_of_child (var, i);
ddf0ea08 879 var->children[i] = create_child (var, i, name);
28335dcc 880 }
8b93c638
JM
881 }
882
99ad9427 883 varobj_restrict_range (var->children, from, to);
d56d46f5 884 return var->children;
8b93c638
JM
885}
886
b6313243 887static struct varobj *
5a2e0d6e 888varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 889{
ddf0ea08
SM
890 varobj *v = create_child_with_value (var, var->children.size (), item);
891
892 var->children.push_back (v);
a109c7c1 893
b6313243
TT
894 return v;
895}
896
8b93c638 897/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
898 prints on the console. The caller is responsible for freeing the string.
899 */
8b93c638 900
2f408ecb 901std::string
8b93c638
JM
902varobj_get_type (struct varobj *var)
903{
8ab91b96 904 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
905 NULL, too.)
906 Do not return a type for invalid variables as well. */
907 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
2f408ecb 908 return std::string ();
8b93c638 909
1a4300e9 910 return type_to_string (var->type);
8b93c638
JM
911}
912
1ecb4ee0
DJ
913/* Obtain the type of an object variable. */
914
915struct type *
b09e2c59 916varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
917{
918 return var->type;
919}
920
85254831
KS
921/* Is VAR a path expression parent, i.e., can it be used to construct
922 a valid path expression? */
923
4c37490d 924static bool
b09e2c59 925is_path_expr_parent (const struct varobj *var)
85254831 926{
9a9a7608
AB
927 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
928 return var->root->lang_ops->is_path_expr_parent (var);
929}
85254831 930
9a9a7608
AB
931/* Is VAR a path expression parent, i.e., can it be used to construct
932 a valid path expression? By default we assume any VAR can be a path
933 parent. */
85254831 934
4c37490d 935bool
b09e2c59 936varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608 937{
4c37490d 938 return true;
85254831
KS
939}
940
941/* Return the path expression parent for VAR. */
942
c1cc6152
SM
943const struct varobj *
944varobj_get_path_expr_parent (const struct varobj *var)
85254831 945{
c1cc6152 946 const struct varobj *parent = var;
85254831
KS
947
948 while (!is_root_p (parent) && !is_path_expr_parent (parent))
949 parent = parent->parent;
950
5abe0f0c
JV
951 /* Computation of full rooted expression for children of dynamic
952 varobjs is not supported. */
953 if (varobj_is_dynamic_p (parent))
954 error (_("Invalid variable object (child of a dynamic varobj)"));
955
85254831
KS
956 return parent;
957}
958
02142340
VP
959/* Return a pointer to the full rooted expression of varobj VAR.
960 If it has not been computed yet, compute it. */
2f408ecb
PA
961
962const char *
c1cc6152 963varobj_get_path_expr (const struct varobj *var)
02142340 964{
2f408ecb 965 if (var->path_expr.empty ())
02142340
VP
966 {
967 /* For root varobjs, we initialize path_expr
968 when creating varobj, so here it should be
969 child varobj. */
c1cc6152 970 struct varobj *mutable_var = (struct varobj *) var;
02142340 971 gdb_assert (!is_root_p (var));
2568868e 972
c1cc6152 973 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 974 }
2568868e 975
2f408ecb 976 return var->path_expr.c_str ();
02142340
VP
977}
978
fa4d0c40 979const struct language_defn *
b09e2c59 980varobj_get_language (const struct varobj *var)
8b93c638 981{
fa4d0c40 982 return var->root->exp->language_defn;
8b93c638
JM
983}
984
985int
b09e2c59 986varobj_get_attributes (const struct varobj *var)
8b93c638
JM
987{
988 int attributes = 0;
989
340a7723 990 if (varobj_editable_p (var))
581e13c1 991 /* FIXME: define masks for attributes. */
8b93c638
JM
992 attributes |= 0x00000001; /* Editable */
993
994 return attributes;
995}
996
cde5ef40
YQ
997/* Return true if VAR is a dynamic varobj. */
998
4c37490d 999bool
b09e2c59 1000varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 1001{
bb5ce47a 1002 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1003}
1004
2f408ecb 1005std::string
de051565
MK
1006varobj_get_formatted_value (struct varobj *var,
1007 enum varobj_display_formats format)
1008{
1009 return my_value_of_variable (var, format);
1010}
1011
2f408ecb 1012std::string
8b93c638
JM
1013varobj_get_value (struct varobj *var)
1014{
de051565 1015 return my_value_of_variable (var, var->format);
8b93c638
JM
1016}
1017
1018/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1019 value of the given expression. */
1020/* Note: Invokes functions that can call error(). */
8b93c638 1021
4c37490d 1022bool
2f408ecb 1023varobj_set_value (struct varobj *var, const char *expression)
8b93c638 1024{
34365054 1025 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1026 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1027 We need to first construct a legal expression for this -- ugh! */
1028 /* Does this cover all the bases? */
34365054 1029 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1030 int saved_input_radix = input_radix;
bbc13ae3 1031 const char *s = expression;
8b93c638 1032
340a7723 1033 gdb_assert (varobj_editable_p (var));
8b93c638 1034
581e13c1 1035 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
4d01a485 1036 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
492d29ea 1037 TRY
8e7b59a5 1038 {
4d01a485 1039 value = evaluate_expression (exp.get ());
8e7b59a5
KS
1040 }
1041
492d29ea 1042 CATCH (except, RETURN_MASK_ERROR)
340a7723 1043 {
581e13c1 1044 /* We cannot proceed without a valid expression. */
4c37490d 1045 return false;
8b93c638 1046 }
492d29ea 1047 END_CATCH
8b93c638 1048
340a7723
NR
1049 /* All types that are editable must also be changeable. */
1050 gdb_assert (varobj_value_is_changeable_p (var));
1051
1052 /* The value of a changeable variable object must not be lazy. */
b4d61099 1053 gdb_assert (!value_lazy (var->value.get ()));
340a7723
NR
1054
1055 /* Need to coerce the input. We want to check if the
1056 value of the variable object will be different
1057 after assignment, and the first thing value_assign
1058 does is coerce the input.
1059 For example, if we are assigning an array to a pointer variable we
b021a221 1060 should compare the pointer with the array's address, not with the
340a7723
NR
1061 array's content. */
1062 value = coerce_array (value);
1063
8e7b59a5
KS
1064 /* The new value may be lazy. value_assign, or
1065 rather value_contents, will take care of this. */
492d29ea 1066 TRY
8e7b59a5 1067 {
b4d61099 1068 val = value_assign (var->value.get (), value);
8e7b59a5
KS
1069 }
1070
492d29ea
PA
1071 CATCH (except, RETURN_MASK_ERROR)
1072 {
4c37490d 1073 return false;
492d29ea
PA
1074 }
1075 END_CATCH
8e7b59a5 1076
340a7723
NR
1077 /* If the value has changed, record it, so that next -var-update can
1078 report this change. If a variable had a value of '1', we've set it
1079 to '333' and then set again to '1', when -var-update will report this
1080 variable as changed -- because the first assignment has set the
1081 'updated' flag. There's no need to optimize that, because return value
1082 of -var-update should be considered an approximation. */
4c37490d 1083 var->updated = install_new_value (var, val, false /* Compare values. */);
340a7723 1084 input_radix = saved_input_radix;
4c37490d 1085 return true;
8b93c638
JM
1086}
1087
0cc7d26f
TT
1088#if HAVE_PYTHON
1089
1090/* A helper function to install a constructor function and visualizer
bb5ce47a 1091 in a varobj_dynamic. */
0cc7d26f
TT
1092
1093static void
bb5ce47a 1094install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1095 PyObject *visualizer)
1096{
1097 Py_XDECREF (var->constructor);
1098 var->constructor = constructor;
1099
1100 Py_XDECREF (var->pretty_printer);
1101 var->pretty_printer = visualizer;
1102
e5250216 1103 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1104 var->child_iter = NULL;
1105}
1106
1107/* Install the default visualizer for VAR. */
1108
1109static void
1110install_default_visualizer (struct varobj *var)
1111{
d65aec65
PM
1112 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1113 if (CPLUS_FAKE_CHILD (var))
1114 return;
1115
0cc7d26f
TT
1116 if (pretty_printing)
1117 {
1118 PyObject *pretty_printer = NULL;
1119
b4d61099 1120 if (var->value != nullptr)
0cc7d26f 1121 {
b4d61099 1122 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
0cc7d26f
TT
1123 if (! pretty_printer)
1124 {
1125 gdbpy_print_stack ();
1126 error (_("Cannot instantiate printer for default visualizer"));
1127 }
1128 }
1129
1130 if (pretty_printer == Py_None)
1131 {
1132 Py_DECREF (pretty_printer);
1133 pretty_printer = NULL;
1134 }
1135
bb5ce47a 1136 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1137 }
1138}
1139
1140/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1141 make a new object. */
1142
1143static void
1144construct_visualizer (struct varobj *var, PyObject *constructor)
1145{
1146 PyObject *pretty_printer;
1147
d65aec65
PM
1148 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1149 if (CPLUS_FAKE_CHILD (var))
1150 return;
1151
0cc7d26f
TT
1152 Py_INCREF (constructor);
1153 if (constructor == Py_None)
1154 pretty_printer = NULL;
1155 else
1156 {
b4d61099
TT
1157 pretty_printer = instantiate_pretty_printer (constructor,
1158 var->value.get ());
0cc7d26f
TT
1159 if (! pretty_printer)
1160 {
1161 gdbpy_print_stack ();
1162 Py_DECREF (constructor);
1163 constructor = Py_None;
1164 Py_INCREF (constructor);
1165 }
1166
1167 if (pretty_printer == Py_None)
1168 {
1169 Py_DECREF (pretty_printer);
1170 pretty_printer = NULL;
1171 }
1172 }
1173
bb5ce47a 1174 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1175}
1176
1177#endif /* HAVE_PYTHON */
1178
1179/* A helper function for install_new_value. This creates and installs
1180 a visualizer for VAR, if appropriate. */
1181
1182static void
1183install_new_value_visualizer (struct varobj *var)
1184{
1185#if HAVE_PYTHON
1186 /* If the constructor is None, then we want the raw value. If VAR
1187 does not have a value, just skip this. */
0646da15
TT
1188 if (!gdb_python_initialized)
1189 return;
1190
bb5ce47a 1191 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f 1192 {
bde7b3e3 1193 gdbpy_enter_varobj enter_py (var);
0cc7d26f 1194
bb5ce47a 1195 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1196 install_default_visualizer (var);
1197 else
bb5ce47a 1198 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1199 }
1200#else
1201 /* Do nothing. */
1202#endif
1203}
1204
8264ba82
AG
1205/* When using RTTI to determine variable type it may be changed in runtime when
1206 the variable value is changed. This function checks whether type of varobj
1207 VAR will change when a new value NEW_VALUE is assigned and if it is so
1208 updates the type of VAR. */
1209
4c37490d 1210static bool
8264ba82
AG
1211update_type_if_necessary (struct varobj *var, struct value *new_value)
1212{
1213 if (new_value)
1214 {
1215 struct value_print_options opts;
1216
1217 get_user_print_options (&opts);
1218 if (opts.objectprint)
1219 {
2f408ecb
PA
1220 struct type *new_type = value_actual_type (new_value, 0, 0);
1221 std::string new_type_str = type_to_string (new_type);
1222 std::string curr_type_str = varobj_get_type (var);
8264ba82 1223
2f408ecb
PA
1224 /* Did the type name change? */
1225 if (curr_type_str != new_type_str)
8264ba82
AG
1226 {
1227 var->type = new_type;
1228
1229 /* This information may be not valid for a new type. */
30914ca8 1230 varobj_delete (var, 1);
ddf0ea08 1231 var->children.clear ();
8264ba82 1232 var->num_children = -1;
4c37490d 1233 return true;
8264ba82
AG
1234 }
1235 }
1236 }
1237
4c37490d 1238 return false;
8264ba82
AG
1239}
1240
4c37490d
SM
1241/* Assign a new value to a variable object. If INITIAL is true,
1242 this is the first assignment after the variable object was just
acd65feb 1243 created, or changed type. In that case, just assign the value
4c37490d
SM
1244 and return false.
1245 Otherwise, assign the new value, and return true if the value is
1246 different from the current one, false otherwise. The comparison is
581e13c1
MS
1247 done on textual representation of value. Therefore, some types
1248 need not be compared. E.g. for structures the reported value is
1249 always "{...}", so no comparison is necessary here. If the old
4c37490d 1250 value was NULL and new one is not, or vice versa, we always return true.
b26ed50d
VP
1251
1252 The VALUE parameter should not be released -- the function will
1253 take care of releasing it when needed. */
4c37490d
SM
1254static bool
1255install_new_value (struct varobj *var, struct value *value, bool initial)
acd65feb 1256{
4c37490d
SM
1257 bool changeable;
1258 bool need_to_fetch;
1259 bool changed = false;
1260 bool intentionally_not_fetched = false;
acd65feb 1261
acd65feb 1262 /* We need to know the varobj's type to decide if the value should
3e43a32a 1263 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1264 don't have a type. */
acd65feb 1265 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1266 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1267
1268 /* If the type has custom visualizer, we consider it to be always
581e13c1 1269 changeable. FIXME: need to make sure this behaviour will not
b6313243 1270 mess up read-sensitive values. */
bb5ce47a 1271 if (var->dynamic->pretty_printer != NULL)
4c37490d 1272 changeable = true;
b6313243 1273
acd65feb
VP
1274 need_to_fetch = changeable;
1275
b26ed50d
VP
1276 /* We are not interested in the address of references, and given
1277 that in C++ a reference is not rebindable, it cannot
1278 meaningfully change. So, get hold of the real value. */
1279 if (value)
0cc7d26f 1280 value = coerce_ref (value);
b26ed50d 1281
acd65feb
VP
1282 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1283 /* For unions, we need to fetch the value implicitly because
1284 of implementation of union member fetch. When gdb
1285 creates a value for a field and the value of the enclosing
1286 structure is not lazy, it immediately copies the necessary
1287 bytes from the enclosing values. If the enclosing value is
1288 lazy, the call to value_fetch_lazy on the field will read
1289 the data from memory. For unions, that means we'll read the
1290 same memory more than once, which is not desirable. So
1291 fetch now. */
4c37490d 1292 need_to_fetch = true;
acd65feb
VP
1293
1294 /* The new value might be lazy. If the type is changeable,
1295 that is we'll be comparing values of this type, fetch the
1296 value now. Otherwise, on the next update the old value
1297 will be lazy, which means we've lost that old value. */
1298 if (need_to_fetch && value && value_lazy (value))
1299 {
c1cc6152 1300 const struct varobj *parent = var->parent;
4c37490d 1301 bool frozen = var->frozen;
a109c7c1 1302
25d5ea92
VP
1303 for (; !frozen && parent; parent = parent->parent)
1304 frozen |= parent->frozen;
1305
1306 if (frozen && initial)
1307 {
1308 /* For variables that are frozen, or are children of frozen
1309 variables, we don't do fetch on initial assignment.
1310 For non-initial assignemnt we do the fetch, since it means we're
1311 explicitly asked to compare the new value with the old one. */
4c37490d 1312 intentionally_not_fetched = true;
25d5ea92 1313 }
8e7b59a5 1314 else
acd65feb 1315 {
8e7b59a5 1316
492d29ea 1317 TRY
8e7b59a5
KS
1318 {
1319 value_fetch_lazy (value);
1320 }
1321
492d29ea 1322 CATCH (except, RETURN_MASK_ERROR)
8e7b59a5
KS
1323 {
1324 /* Set the value to NULL, so that for the next -var-update,
1325 we don't try to compare the new value with this value,
1326 that we couldn't even read. */
1327 value = NULL;
1328 }
492d29ea 1329 END_CATCH
acd65feb 1330 }
acd65feb
VP
1331 }
1332
e848a8a5
TT
1333 /* Get a reference now, before possibly passing it to any Python
1334 code that might release it. */
b4d61099 1335 value_ref_ptr value_holder;
e848a8a5 1336 if (value != NULL)
bbfa6f00 1337 value_holder = value_ref_ptr::new_reference (value);
b6313243 1338
7a4d50bf
VP
1339 /* Below, we'll be comparing string rendering of old and new
1340 values. Don't get string rendering if the value is
1341 lazy -- if it is, the code above has decided that the value
1342 should not be fetched. */
2f408ecb 1343 std::string print_value;
bb5ce47a
YQ
1344 if (value != NULL && !value_lazy (value)
1345 && var->dynamic->pretty_printer == NULL)
99ad9427 1346 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1347
acd65feb
VP
1348 /* If the type is changeable, compare the old and the new values.
1349 If this is the initial assignment, we don't have any old value
1350 to compare with. */
7a4d50bf 1351 if (!initial && changeable)
acd65feb 1352 {
3e43a32a
MS
1353 /* If the value of the varobj was changed by -var-set-value,
1354 then the value in the varobj and in the target is the same.
1355 However, that value is different from the value that the
581e13c1 1356 varobj had after the previous -var-update. So need to the
3e43a32a 1357 varobj as changed. */
acd65feb 1358 if (var->updated)
4c37490d 1359 changed = true;
bb5ce47a 1360 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1361 {
1362 /* Try to compare the values. That requires that both
1363 values are non-lazy. */
b4d61099 1364 if (var->not_fetched && value_lazy (var->value.get ()))
25d5ea92
VP
1365 {
1366 /* This is a frozen varobj and the value was never read.
1367 Presumably, UI shows some "never read" indicator.
1368 Now that we've fetched the real value, we need to report
1369 this varobj as changed so that UI can show the real
1370 value. */
4c37490d 1371 changed = true;
25d5ea92
VP
1372 }
1373 else if (var->value == NULL && value == NULL)
581e13c1 1374 /* Equal. */
acd65feb
VP
1375 ;
1376 else if (var->value == NULL || value == NULL)
57e66780 1377 {
4c37490d 1378 changed = true;
57e66780 1379 }
acd65feb
VP
1380 else
1381 {
b4d61099 1382 gdb_assert (!value_lazy (var->value.get ()));
acd65feb 1383 gdb_assert (!value_lazy (value));
85265413 1384
2f408ecb
PA
1385 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1386 if (var->print_value != print_value)
4c37490d 1387 changed = true;
acd65feb
VP
1388 }
1389 }
1390 }
85265413 1391
ee342b23
VP
1392 if (!initial && !changeable)
1393 {
1394 /* For values that are not changeable, we don't compare the values.
1395 However, we want to notice if a value was not NULL and now is NULL,
1396 or vise versa, so that we report when top-level varobjs come in scope
1397 and leave the scope. */
1398 changed = (var->value != NULL) != (value != NULL);
1399 }
1400
acd65feb 1401 /* We must always keep the new value, since children depend on it. */
b4d61099 1402 var->value = value_holder;
25d5ea92 1403 if (value && value_lazy (value) && intentionally_not_fetched)
4c37490d 1404 var->not_fetched = true;
25d5ea92 1405 else
4c37490d
SM
1406 var->not_fetched = false;
1407 var->updated = false;
85265413 1408
0cc7d26f
TT
1409 install_new_value_visualizer (var);
1410
1411 /* If we installed a pretty-printer, re-compare the printed version
1412 to see if the variable changed. */
bb5ce47a 1413 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 1414 {
b4d61099
TT
1415 print_value = varobj_value_get_print_value (var->value.get (),
1416 var->format, var);
2f408ecb
PA
1417 if ((var->print_value.empty () && !print_value.empty ())
1418 || (!var->print_value.empty () && print_value.empty ())
1419 || (!var->print_value.empty () && !print_value.empty ()
1420 && var->print_value != print_value))
4c37490d 1421 changed = true;
0cc7d26f 1422 }
0cc7d26f
TT
1423 var->print_value = print_value;
1424
b4d61099 1425 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
acd65feb
VP
1426
1427 return changed;
1428}
acd65feb 1429
0cc7d26f
TT
1430/* Return the requested range for a varobj. VAR is the varobj. FROM
1431 and TO are out parameters; *FROM and *TO will be set to the
1432 selected sub-range of VAR. If no range was selected using
1433 -var-set-update-range, then both will be -1. */
1434void
b09e2c59 1435varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1436{
0cc7d26f
TT
1437 *from = var->from;
1438 *to = var->to;
b6313243
TT
1439}
1440
0cc7d26f
TT
1441/* Set the selected sub-range of children of VAR to start at index
1442 FROM and end at index TO. If either FROM or TO is less than zero,
1443 this is interpreted as a request for all children. */
1444void
1445varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1446{
0cc7d26f
TT
1447 var->from = from;
1448 var->to = to;
b6313243
TT
1449}
1450
1451void
1452varobj_set_visualizer (struct varobj *var, const char *visualizer)
1453{
1454#if HAVE_PYTHON
bde7b3e3 1455 PyObject *mainmod;
b6313243 1456
0646da15
TT
1457 if (!gdb_python_initialized)
1458 return;
1459
bde7b3e3 1460 gdbpy_enter_varobj enter_py (var);
b6313243
TT
1461
1462 mainmod = PyImport_AddModule ("__main__");
7c66fffc
TT
1463 gdbpy_ref<> globals
1464 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
7780f186
TT
1465 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1466 globals.get (), globals.get ()));
b6313243 1467
bde7b3e3 1468 if (constructor == NULL)
b6313243
TT
1469 {
1470 gdbpy_print_stack ();
da1f2771 1471 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1472 }
1473
bde7b3e3 1474 construct_visualizer (var, constructor.get ());
b6313243 1475
0cc7d26f 1476 /* If there are any children now, wipe them. */
30914ca8 1477 varobj_delete (var, 1 /* children only */);
0cc7d26f 1478 var->num_children = -1;
b6313243 1479#else
da1f2771 1480 error (_("Python support required"));
b6313243
TT
1481#endif
1482}
1483
7a290c40 1484/* If NEW_VALUE is the new value of the given varobj (var), return
4c37490d 1485 true if var has mutated. In other words, if the type of
7a290c40
JB
1486 the new value is different from the type of the varobj's old
1487 value.
1488
1489 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1490
4c37490d 1491static bool
b09e2c59 1492varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1493 struct type *new_type)
1494{
1495 /* If we haven't previously computed the number of children in var,
1496 it does not matter from the front-end's perspective whether
1497 the type has mutated or not. For all intents and purposes,
1498 it has not mutated. */
1499 if (var->num_children < 0)
4c37490d 1500 return false;
7a290c40 1501
4c37490d 1502 if (var->root->lang_ops->value_has_mutated != NULL)
8776cfe9
JB
1503 {
1504 /* The varobj module, when installing new values, explicitly strips
1505 references, saying that we're not interested in those addresses.
1506 But detection of mutation happens before installing the new
1507 value, so our value may be a reference that we need to strip
1508 in order to remain consistent. */
1509 if (new_value != NULL)
1510 new_value = coerce_ref (new_value);
1511 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1512 }
7a290c40 1513 else
4c37490d 1514 return false;
7a290c40
JB
1515}
1516
8b93c638
JM
1517/* Update the values for a variable and its children. This is a
1518 two-pronged attack. First, re-parse the value for the root's
1519 expression to see if it's changed. Then go all the way
1520 through its children, reconstructing them and noting if they've
1521 changed.
1522
4c37490d 1523 The IS_EXPLICIT parameter specifies if this call is result
25d5ea92 1524 of MI request to update this specific variable, or
581e13c1 1525 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1526 update frozen variables.
705da579 1527
581e13c1 1528 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1529 returns TYPE_CHANGED, then it has done this and VARP will be modified
1530 to point to the new varobj. */
8b93c638 1531
0604393c 1532std::vector<varobj_update_result>
4c37490d 1533varobj_update (struct varobj **varp, bool is_explicit)
8b93c638 1534{
4c37490d 1535 bool type_changed = false;
fe978cb0 1536 struct value *newobj;
0604393c
SM
1537 std::vector<varobj_update_result> stack;
1538 std::vector<varobj_update_result> result;
8b93c638 1539
25d5ea92
VP
1540 /* Frozen means frozen -- we don't check for any change in
1541 this varobj, including its going out of scope, or
1542 changing type. One use case for frozen varobjs is
1543 retaining previously evaluated expressions, and we don't
1544 want them to be reevaluated at all. */
fe978cb0 1545 if (!is_explicit && (*varp)->frozen)
f7f9ae2c 1546 return result;
8756216b
DP
1547
1548 if (!(*varp)->root->is_valid)
f7f9ae2c 1549 {
0604393c 1550 result.emplace_back (*varp, VAROBJ_INVALID);
f7f9ae2c
VP
1551 return result;
1552 }
8b93c638 1553
25d5ea92 1554 if ((*varp)->root->rootvar == *varp)
ae093f96 1555 {
0604393c 1556 varobj_update_result r (*varp);
f7f9ae2c 1557
581e13c1 1558 /* Update the root variable. value_of_root can return NULL
25d5ea92 1559 if the variable is no longer around, i.e. we stepped out of
581e13c1 1560 the frame in which a local existed. We are letting the
25d5ea92
VP
1561 value_of_root variable dispose of the varobj if the type
1562 has changed. */
fe978cb0 1563 newobj = value_of_root (varp, &type_changed);
4c37490d
SM
1564 if (update_type_if_necessary (*varp, newobj))
1565 type_changed = true;
f7f9ae2c 1566 r.varobj = *varp;
f7f9ae2c 1567 r.type_changed = type_changed;
fe978cb0 1568 if (install_new_value ((*varp), newobj, type_changed))
4c37490d 1569 r.changed = true;
ea56f9c2 1570
fe978cb0 1571 if (newobj == NULL)
f7f9ae2c 1572 r.status = VAROBJ_NOT_IN_SCOPE;
4c37490d 1573 r.value_installed = true;
f7f9ae2c
VP
1574
1575 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1576 {
0b4bc29a 1577 if (r.type_changed || r.changed)
0604393c
SM
1578 result.push_back (std::move (r));
1579
b6313243
TT
1580 return result;
1581 }
a109c7c1 1582
0604393c 1583 stack.push_back (std::move (r));
b20d8971 1584 }
0604393c
SM
1585 else
1586 stack.emplace_back (*varp);
8b93c638 1587
8756216b 1588 /* Walk through the children, reconstructing them all. */
0604393c 1589 while (!stack.empty ())
8b93c638 1590 {
0604393c
SM
1591 varobj_update_result r = std::move (stack.back ());
1592 stack.pop_back ();
b6313243
TT
1593 struct varobj *v = r.varobj;
1594
b6313243
TT
1595 /* Update this variable, unless it's a root, which is already
1596 updated. */
1597 if (!r.value_installed)
7a290c40
JB
1598 {
1599 struct type *new_type;
1600
fe978cb0 1601 newobj = value_of_child (v->parent, v->index);
4c37490d
SM
1602 if (update_type_if_necessary (v, newobj))
1603 r.type_changed = true;
fe978cb0
PA
1604 if (newobj)
1605 new_type = value_type (newobj);
7a290c40 1606 else
ca20d462 1607 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40 1608
fe978cb0 1609 if (varobj_value_has_mutated (v, newobj, new_type))
7a290c40
JB
1610 {
1611 /* The children are no longer valid; delete them now.
1612 Report the fact that its type changed as well. */
30914ca8 1613 varobj_delete (v, 1 /* only_children */);
7a290c40
JB
1614 v->num_children = -1;
1615 v->to = -1;
1616 v->from = -1;
1617 v->type = new_type;
4c37490d 1618 r.type_changed = true;
7a290c40
JB
1619 }
1620
fe978cb0 1621 if (install_new_value (v, newobj, r.type_changed))
b6313243 1622 {
4c37490d
SM
1623 r.changed = true;
1624 v->updated = false;
b6313243
TT
1625 }
1626 }
1627
31f628ae
YQ
1628 /* We probably should not get children of a dynamic varobj, but
1629 for which -var-list-children was never invoked. */
1630 if (varobj_is_dynamic_p (v))
b6313243 1631 {
0604393c 1632 std::vector<varobj *> changed, type_changed, unchanged, newobj;
4c37490d 1633 bool children_changed = false;
b6313243
TT
1634
1635 if (v->frozen)
1636 continue;
1637
bd046f64 1638 if (!v->dynamic->children_requested)
0cc7d26f 1639 {
4c37490d 1640 bool dummy;
0cc7d26f
TT
1641
1642 /* If we initially did not have potential children, but
1643 now we do, consider the varobj as changed.
1644 Otherwise, if children were never requested, consider
1645 it as unchanged -- presumably, such varobj is not yet
1646 expanded in the UI, so we need not bother getting
1647 it. */
1648 if (!varobj_has_more (v, 0))
1649 {
8264ba82 1650 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
4c37490d 1651 &dummy, false, 0, 0);
0cc7d26f 1652 if (varobj_has_more (v, 0))
4c37490d 1653 r.changed = true;
0cc7d26f
TT
1654 }
1655
1656 if (r.changed)
0604393c 1657 result.push_back (std::move (r));
0cc7d26f
TT
1658
1659 continue;
1660 }
1661
4c37490d 1662 /* If update_dynamic_varobj_children returns false, then we have
b6313243 1663 a non-conforming pretty-printer, so we skip it. */
fe978cb0 1664 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
4c37490d 1665 &unchanged, &children_changed, true,
0cc7d26f 1666 v->from, v->to))
b6313243 1667 {
0604393c 1668 if (children_changed || !newobj.empty ())
b6313243 1669 {
4c37490d 1670 r.children_changed = true;
0604393c 1671 r.newobj = std::move (newobj);
b6313243 1672 }
0cc7d26f
TT
1673 /* Push in reverse order so that the first child is
1674 popped from the work stack first, and so will be
1675 added to result first. This does not affect
1676 correctness, just "nicer". */
0604393c 1677 for (int i = type_changed.size () - 1; i >= 0; --i)
8264ba82 1678 {
0604393c 1679 varobj_update_result r (type_changed[i]);
8264ba82
AG
1680
1681 /* Type may change only if value was changed. */
4c37490d
SM
1682 r.changed = true;
1683 r.type_changed = true;
1684 r.value_installed = true;
0604393c
SM
1685
1686 stack.push_back (std::move (r));
8264ba82 1687 }
0604393c 1688 for (int i = changed.size () - 1; i >= 0; --i)
b6313243 1689 {
0604393c 1690 varobj_update_result r (changed[i]);
a109c7c1 1691
4c37490d
SM
1692 r.changed = true;
1693 r.value_installed = true;
0604393c
SM
1694
1695 stack.push_back (std::move (r));
b6313243 1696 }
0604393c
SM
1697 for (int i = unchanged.size () - 1; i >= 0; --i)
1698 {
1699 if (!unchanged[i]->frozen)
1700 {
1701 varobj_update_result r (unchanged[i]);
1702
4c37490d 1703 r.value_installed = true;
0cc7d26f 1704
0604393c
SM
1705 stack.push_back (std::move (r));
1706 }
1707 }
1708 if (r.changed || r.children_changed)
1709 result.push_back (std::move (r));
0cc7d26f 1710
b6313243
TT
1711 continue;
1712 }
1713 }
28335dcc
VP
1714
1715 /* Push any children. Use reverse order so that the first
1716 child is popped from the work stack first, and so
1717 will be added to result first. This does not
1718 affect correctness, just "nicer". */
0604393c 1719 for (int i = v->children.size () - 1; i >= 0; --i)
8b93c638 1720 {
ddf0ea08 1721 varobj *c = v->children[i];
a109c7c1 1722
28335dcc 1723 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1724 if (c != NULL && !c->frozen)
0604393c 1725 stack.emplace_back (c);
8b93c638 1726 }
b6313243
TT
1727
1728 if (r.changed || r.type_changed)
0604393c 1729 result.push_back (std::move (r));
8b93c638
JM
1730 }
1731
f7f9ae2c 1732 return result;
8b93c638 1733}
8b93c638
JM
1734
1735/* Helper functions */
1736
1737/*
1738 * Variable object construction/destruction
1739 */
1740
1741static int
4c37490d 1742delete_variable (struct varobj *var, bool only_children_p)
8b93c638
JM
1743{
1744 int delcount = 0;
1745
30914ca8 1746 delete_variable_1 (&delcount, var, only_children_p,
4c37490d 1747 true /* remove_from_parent_p */ );
8b93c638
JM
1748
1749 return delcount;
1750}
1751
581e13c1 1752/* Delete the variable object VAR and its children. */
8b93c638
JM
1753/* IMPORTANT NOTE: If we delete a variable which is a child
1754 and the parent is not removed we dump core. It must be always
581e13c1 1755 initially called with remove_from_parent_p set. */
8b93c638 1756static void
4c37490d
SM
1757delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1758 bool remove_from_parent_p)
8b93c638 1759{
581e13c1 1760 /* Delete any children of this variable, too. */
ddf0ea08 1761 for (varobj *child : var->children)
28335dcc 1762 {
214270ab
VP
1763 if (!child)
1764 continue;
ddf0ea08 1765
8b93c638 1766 if (!remove_from_parent_p)
28335dcc 1767 child->parent = NULL;
ddf0ea08 1768
4c37490d 1769 delete_variable_1 (delcountp, child, false, only_children_p);
8b93c638 1770 }
ddf0ea08 1771 var->children.clear ();
8b93c638 1772
581e13c1 1773 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1774 if (only_children_p)
1775 return;
1776
581e13c1 1777 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2f408ecb 1778 /* If the name is empty, this is a temporary variable, that has not
581e13c1 1779 yet been installed, don't report it, it belongs to the caller... */
2f408ecb 1780 if (!var->obj_name.empty ())
8b93c638 1781 {
8b93c638
JM
1782 *delcountp = *delcountp + 1;
1783 }
1784
581e13c1 1785 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1786 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1787 (as indicated by remove_from_parent_p) we don't bother doing an
1788 expensive list search to find the element to remove when we are
581e13c1 1789 discarding the list afterwards. */
72330bd6 1790 if ((remove_from_parent_p) && (var->parent != NULL))
ddf0ea08 1791 var->parent->children[var->index] = NULL;
72330bd6 1792
2f408ecb 1793 if (!var->obj_name.empty ())
73a93a32 1794 uninstall_variable (var);
8b93c638 1795
581e13c1 1796 /* Free memory associated with this variable. */
9e5b9d2b 1797 delete var;
8b93c638
JM
1798}
1799
581e13c1 1800/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
4c37490d 1801static bool
fba45db2 1802install_variable (struct varobj *var)
8b93c638
JM
1803{
1804 struct vlist *cv;
1805 struct vlist *newvl;
1806 const char *chp;
1807 unsigned int index = 0;
1808 unsigned int i = 1;
1809
2f408ecb 1810 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1811 {
1812 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1813 }
1814
1815 cv = *(varobj_table + index);
2f408ecb 1816 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1817 cv = cv->next;
1818
1819 if (cv != NULL)
8a3fe4f8 1820 error (_("Duplicate variable object name"));
8b93c638 1821
581e13c1 1822 /* Add varobj to hash table. */
8d749320 1823 newvl = XNEW (struct vlist);
8b93c638
JM
1824 newvl->next = *(varobj_table + index);
1825 newvl->var = var;
1826 *(varobj_table + index) = newvl;
1827
581e13c1 1828 /* If root, add varobj to root list. */
b2c2bd75 1829 if (is_root_p (var))
8b93c638 1830 {
581e13c1 1831 /* Add to list of root variables. */
8b93c638
JM
1832 if (rootlist == NULL)
1833 var->root->next = NULL;
1834 else
1835 var->root->next = rootlist;
1836 rootlist = var->root;
8b93c638
JM
1837 }
1838
4c37490d 1839 return true; /* OK */
8b93c638
JM
1840}
1841
581e13c1 1842/* Unistall the object VAR. */
8b93c638 1843static void
fba45db2 1844uninstall_variable (struct varobj *var)
8b93c638
JM
1845{
1846 struct vlist *cv;
1847 struct vlist *prev;
1848 struct varobj_root *cr;
1849 struct varobj_root *prer;
1850 const char *chp;
1851 unsigned int index = 0;
1852 unsigned int i = 1;
1853
581e13c1 1854 /* Remove varobj from hash table. */
2f408ecb 1855 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1856 {
1857 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1858 }
1859
1860 cv = *(varobj_table + index);
1861 prev = NULL;
2f408ecb 1862 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1863 {
1864 prev = cv;
1865 cv = cv->next;
1866 }
1867
1868 if (varobjdebug)
2f408ecb 1869 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
8b93c638
JM
1870
1871 if (cv == NULL)
1872 {
72330bd6
AC
1873 warning
1874 ("Assertion failed: Could not find variable object \"%s\" to delete",
2f408ecb 1875 var->obj_name.c_str ());
8b93c638
JM
1876 return;
1877 }
1878
1879 if (prev == NULL)
1880 *(varobj_table + index) = cv->next;
1881 else
1882 prev->next = cv->next;
1883
b8c9b27d 1884 xfree (cv);
8b93c638 1885
581e13c1 1886 /* If root, remove varobj from root list. */
b2c2bd75 1887 if (is_root_p (var))
8b93c638 1888 {
581e13c1 1889 /* Remove from list of root variables. */
8b93c638
JM
1890 if (rootlist == var->root)
1891 rootlist = var->root->next;
1892 else
1893 {
1894 prer = NULL;
1895 cr = rootlist;
1896 while ((cr != NULL) && (cr->rootvar != var))
1897 {
1898 prer = cr;
1899 cr = cr->next;
1900 }
1901 if (cr == NULL)
1902 {
8f7e195f
JB
1903 warning (_("Assertion failed: Could not find "
1904 "varobj \"%s\" in root list"),
2f408ecb 1905 var->obj_name.c_str ());
8b93c638
JM
1906 return;
1907 }
1908 if (prer == NULL)
1909 rootlist = NULL;
1910 else
1911 prer->next = cr->next;
1912 }
8b93c638
JM
1913 }
1914
1915}
1916
837ce252
SM
1917/* Create and install a child of the parent of the given name.
1918
1919 The created VAROBJ takes ownership of the allocated NAME. */
1920
8b93c638 1921static struct varobj *
2f408ecb 1922create_child (struct varobj *parent, int index, std::string &name)
b6313243 1923{
5a2e0d6e
YQ
1924 struct varobj_item item;
1925
2f408ecb 1926 std::swap (item.name, name);
5a2e0d6e
YQ
1927 item.value = value_of_child (parent, index);
1928
1929 return create_child_with_value (parent, index, &item);
b6313243
TT
1930}
1931
1932static struct varobj *
5a2e0d6e
YQ
1933create_child_with_value (struct varobj *parent, int index,
1934 struct varobj_item *item)
8b93c638 1935{
9e5b9d2b 1936 varobj *child = new varobj (parent->root);
8b93c638 1937
5e5ac9a5 1938 /* NAME is allocated by caller. */
2f408ecb 1939 std::swap (child->name, item->name);
8b93c638 1940 child->index = index;
8b93c638 1941 child->parent = parent;
85254831 1942
99ad9427 1943 if (varobj_is_anonymous_child (child))
2f408ecb
PA
1944 child->obj_name = string_printf ("%s.%d_anonymous",
1945 parent->obj_name.c_str (), index);
85254831 1946 else
2f408ecb
PA
1947 child->obj_name = string_printf ("%s.%s",
1948 parent->obj_name.c_str (),
1949 child->name.c_str ());
85254831 1950
8b93c638
JM
1951 install_variable (child);
1952
acd65feb
VP
1953 /* Compute the type of the child. Must do this before
1954 calling install_new_value. */
5a2e0d6e 1955 if (item->value != NULL)
acd65feb 1956 /* If the child had no evaluation errors, var->value
581e13c1 1957 will be non-NULL and contain a valid type. */
5a2e0d6e 1958 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 1959 else
581e13c1 1960 /* Otherwise, we must compute the type. */
ca20d462
YQ
1961 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1962 child->index);
5a2e0d6e 1963 install_new_value (child, item->value, 1);
acd65feb 1964
8b93c638
JM
1965 return child;
1966}
8b93c638
JM
1967\f
1968
1969/*
1970 * Miscellaneous utility functions.
1971 */
1972
581e13c1 1973/* Allocate memory and initialize a new variable. */
9e5b9d2b
SM
1974varobj::varobj (varobj_root *root_)
1975: root (root_), dynamic (new varobj_dynamic)
8b93c638 1976{
8b93c638
JM
1977}
1978
581e13c1 1979/* Free any allocated memory associated with VAR. */
9e5b9d2b
SM
1980
1981varobj::~varobj ()
8b93c638 1982{
9e5b9d2b
SM
1983 varobj *var = this;
1984
d452c4bc 1985#if HAVE_PYTHON
bb5ce47a 1986 if (var->dynamic->pretty_printer != NULL)
d452c4bc 1987 {
bde7b3e3 1988 gdbpy_enter_varobj enter_py (var);
bb5ce47a
YQ
1989
1990 Py_XDECREF (var->dynamic->constructor);
1991 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
1992 }
1993#endif
1994
827f100c
YQ
1995 varobj_iter_delete (var->dynamic->child_iter);
1996 varobj_clear_saved_item (var->dynamic);
36746093 1997
b2c2bd75 1998 if (is_root_p (var))
4d01a485 1999 delete var->root;
8b93c638 2000
9e5b9d2b 2001 delete var->dynamic;
74b7792f
AC
2002}
2003
6e2a9270
VP
2004/* Return the type of the value that's stored in VAR,
2005 or that would have being stored there if the
581e13c1 2006 value were accessible.
6e2a9270
VP
2007
2008 This differs from VAR->type in that VAR->type is always
2009 the true type of the expession in the source language.
2010 The return value of this function is the type we're
2011 actually storing in varobj, and using for displaying
2012 the values and for comparing previous and new values.
2013
2014 For example, top-level references are always stripped. */
99ad9427 2015struct type *
b09e2c59 2016varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2017{
2018 struct type *type;
2019
b4d61099
TT
2020 if (var->value != nullptr)
2021 type = value_type (var->value.get ());
6e2a9270
VP
2022 else
2023 type = var->type;
2024
2025 type = check_typedef (type);
2026
aa006118 2027 if (TYPE_IS_REFERENCE (type))
6e2a9270
VP
2028 type = get_target_type (type);
2029
2030 type = check_typedef (type);
2031
2032 return type;
2033}
2034
8b93c638 2035/* What is the default display for this variable? We assume that
581e13c1 2036 everything is "natural". Any exceptions? */
8b93c638 2037static enum varobj_display_formats
fba45db2 2038variable_default_display (struct varobj *var)
8b93c638
JM
2039{
2040 return FORMAT_NATURAL;
2041}
2042
8b93c638
JM
2043/*
2044 * Language-dependencies
2045 */
2046
2047/* Common entry points */
2048
8b93c638
JM
2049/* Return the number of children for a given variable.
2050 The result of this function is defined by the language
581e13c1 2051 implementation. The number of children returned by this function
8b93c638 2052 is the number of children that the user will see in the variable
581e13c1 2053 display. */
8b93c638 2054static int
b09e2c59 2055number_of_children (const struct varobj *var)
8b93c638 2056{
ca20d462 2057 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2058}
2059
2f408ecb
PA
2060/* What is the expression for the root varobj VAR? */
2061
2062static std::string
b09e2c59 2063name_of_variable (const struct varobj *var)
8b93c638 2064{
ca20d462 2065 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2066}
2067
2f408ecb
PA
2068/* What is the name of the INDEX'th child of VAR? */
2069
2070static std::string
fba45db2 2071name_of_child (struct varobj *var, int index)
8b93c638 2072{
ca20d462 2073 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2074}
2075
2213e2be 2076/* If frame associated with VAR can be found, switch
4c37490d 2077 to it and return true. Otherwise, return false. */
2213e2be 2078
4c37490d 2079static bool
b09e2c59 2080check_scope (const struct varobj *var)
2213e2be
YQ
2081{
2082 struct frame_info *fi;
4c37490d 2083 bool scope;
2213e2be
YQ
2084
2085 fi = frame_find_by_id (var->root->frame);
2086 scope = fi != NULL;
2087
2088 if (fi)
2089 {
2090 CORE_ADDR pc = get_frame_pc (fi);
2091
2092 if (pc < BLOCK_START (var->root->valid_block) ||
2093 pc >= BLOCK_END (var->root->valid_block))
4c37490d 2094 scope = false;
2213e2be
YQ
2095 else
2096 select_frame (fi);
2097 }
2098 return scope;
2099}
2100
2101/* Helper function to value_of_root. */
2102
2103static struct value *
2104value_of_root_1 (struct varobj **var_handle)
2105{
2106 struct value *new_val = NULL;
2107 struct varobj *var = *var_handle;
4c37490d 2108 bool within_scope = false;
2213e2be
YQ
2109
2110 /* Only root variables can be updated... */
2111 if (!is_root_p (var))
2112 /* Not a root var. */
2113 return NULL;
2114
5ed8105e 2115 scoped_restore_current_thread restore_thread;
2213e2be
YQ
2116
2117 /* Determine whether the variable is still around. */
2118 if (var->root->valid_block == NULL || var->root->floating)
4c37490d 2119 within_scope = true;
2213e2be
YQ
2120 else if (var->root->thread_id == 0)
2121 {
2122 /* The program was single-threaded when the variable object was
2123 created. Technically, it's possible that the program became
2124 multi-threaded since then, but we don't support such
2125 scenario yet. */
2126 within_scope = check_scope (var);
2127 }
2128 else
2129 {
00431a78 2130 thread_info *thread = find_thread_global_id (var->root->thread_id);
5d5658a1 2131
00431a78 2132 if (thread != NULL)
2213e2be 2133 {
00431a78 2134 switch_to_thread (thread);
2213e2be
YQ
2135 within_scope = check_scope (var);
2136 }
2137 }
2138
2139 if (within_scope)
2140 {
2213e2be
YQ
2141
2142 /* We need to catch errors here, because if evaluate
2143 expression fails we want to just return NULL. */
492d29ea 2144 TRY
2213e2be 2145 {
4d01a485 2146 new_val = evaluate_expression (var->root->exp.get ());
2213e2be 2147 }
492d29ea
PA
2148 CATCH (except, RETURN_MASK_ERROR)
2149 {
2150 }
2151 END_CATCH
2213e2be
YQ
2152 }
2153
2213e2be
YQ
2154 return new_val;
2155}
2156
a5defcdc
VP
2157/* What is the ``struct value *'' of the root variable VAR?
2158 For floating variable object, evaluation can get us a value
2159 of different type from what is stored in varobj already. In
2160 that case:
2161 - *type_changed will be set to 1
2162 - old varobj will be freed, and new one will be
2163 created, with the same name.
2164 - *var_handle will be set to the new varobj
2165 Otherwise, *type_changed will be set to 0. */
30b28db1 2166static struct value *
4c37490d 2167value_of_root (struct varobj **var_handle, bool *type_changed)
8b93c638 2168{
73a93a32
JI
2169 struct varobj *var;
2170
2171 if (var_handle == NULL)
2172 return NULL;
2173
2174 var = *var_handle;
2175
2176 /* This should really be an exception, since this should
581e13c1 2177 only get called with a root variable. */
73a93a32 2178
b2c2bd75 2179 if (!is_root_p (var))
73a93a32
JI
2180 return NULL;
2181
a5defcdc 2182 if (var->root->floating)
73a93a32
JI
2183 {
2184 struct varobj *tmp_var;
6225abfa 2185
2f408ecb 2186 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
73a93a32
JI
2187 USE_SELECTED_FRAME);
2188 if (tmp_var == NULL)
2189 {
2190 return NULL;
2191 }
2f408ecb
PA
2192 std::string old_type = varobj_get_type (var);
2193 std::string new_type = varobj_get_type (tmp_var);
2194 if (old_type == new_type)
73a93a32 2195 {
fcacd99f
VP
2196 /* The expression presently stored inside var->root->exp
2197 remembers the locations of local variables relatively to
2198 the frame where the expression was created (in DWARF location
2199 button, for example). Naturally, those locations are not
2200 correct in other frames, so update the expression. */
2201
4d01a485 2202 std::swap (var->root->exp, tmp_var->root->exp);
fcacd99f 2203
30914ca8 2204 varobj_delete (tmp_var, 0);
73a93a32
JI
2205 *type_changed = 0;
2206 }
2207 else
2208 {
2f408ecb 2209 tmp_var->obj_name = var->obj_name;
0cc7d26f
TT
2210 tmp_var->from = var->from;
2211 tmp_var->to = var->to;
30914ca8 2212 varobj_delete (var, 0);
a5defcdc 2213
73a93a32
JI
2214 install_variable (tmp_var);
2215 *var_handle = tmp_var;
705da579 2216 var = *var_handle;
4c37490d 2217 *type_changed = true;
73a93a32
JI
2218 }
2219 }
2220 else
2221 {
2222 *type_changed = 0;
2223 }
2224
7a290c40
JB
2225 {
2226 struct value *value;
2227
2213e2be 2228 value = value_of_root_1 (var_handle);
7a290c40
JB
2229 if (var->value == NULL || value == NULL)
2230 {
2231 /* For root varobj-s, a NULL value indicates a scoping issue.
2232 So, nothing to do in terms of checking for mutations. */
2233 }
2234 else if (varobj_value_has_mutated (var, value, value_type (value)))
2235 {
2236 /* The type has mutated, so the children are no longer valid.
2237 Just delete them, and tell our caller that the type has
2238 changed. */
30914ca8 2239 varobj_delete (var, 1 /* only_children */);
7a290c40
JB
2240 var->num_children = -1;
2241 var->to = -1;
2242 var->from = -1;
4c37490d 2243 *type_changed = true;
7a290c40
JB
2244 }
2245 return value;
2246 }
8b93c638
JM
2247}
2248
581e13c1 2249/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2250static struct value *
c1cc6152 2251value_of_child (const struct varobj *parent, int index)
8b93c638 2252{
30b28db1 2253 struct value *value;
8b93c638 2254
ca20d462 2255 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2256
8b93c638
JM
2257 return value;
2258}
2259
581e13c1 2260/* GDB already has a command called "value_of_variable". Sigh. */
2f408ecb 2261static std::string
de051565 2262my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2263{
8756216b 2264 if (var->root->is_valid)
0cc7d26f 2265 {
bb5ce47a 2266 if (var->dynamic->pretty_printer != NULL)
b4d61099
TT
2267 return varobj_value_get_print_value (var->value.get (), var->format,
2268 var);
ca20d462 2269 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2270 }
8756216b 2271 else
2f408ecb 2272 return std::string ();
8b93c638
JM
2273}
2274
99ad9427
YQ
2275void
2276varobj_formatted_print_options (struct value_print_options *opts,
2277 enum varobj_display_formats format)
2278{
2279 get_formatted_print_options (opts, format_code[(int) format]);
2280 opts->deref_ref = 0;
0625771b 2281 opts->raw = !pretty_printing;
99ad9427
YQ
2282}
2283
2f408ecb 2284std::string
99ad9427
YQ
2285varobj_value_get_print_value (struct value *value,
2286 enum varobj_display_formats format,
b09e2c59 2287 const struct varobj *var)
85265413 2288{
79a45b7d 2289 struct value_print_options opts;
be759fcf
PM
2290 struct type *type = NULL;
2291 long len = 0;
1eba6383 2292 gdb::unique_xmalloc_ptr<char> encoding;
3a182a69
JK
2293 /* Initialize it just to avoid a GCC false warning. */
2294 CORE_ADDR str_addr = 0;
4c37490d 2295 bool string_print = false;
57e66780
DJ
2296
2297 if (value == NULL)
2f408ecb 2298 return std::string ();
57e66780 2299
d7e74731 2300 string_file stb;
2f408ecb
PA
2301 std::string thevalue;
2302
b6313243 2303#if HAVE_PYTHON
0646da15
TT
2304 if (gdb_python_initialized)
2305 {
bb5ce47a 2306 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2307
68cdc557 2308 gdbpy_enter_varobj enter_py (var);
09ca9e2e 2309
0646da15
TT
2310 if (value_formatter)
2311 {
2312 /* First check to see if we have any children at all. If so,
2313 we simply return {...}. */
2314 if (dynamic_varobj_has_child_method (var))
d7e74731 2315 return "{...}";
b6313243 2316
0646da15
TT
2317 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2318 {
2319 struct value *replacement;
0646da15 2320
7780f186
TT
2321 gdbpy_ref<> output (apply_varobj_pretty_printer (value_formatter,
2322 &replacement,
2323 &stb));
0646da15
TT
2324
2325 /* If we have string like output ... */
68cdc557 2326 if (output != NULL)
0646da15 2327 {
0646da15
TT
2328 /* If this is a lazy string, extract it. For lazy
2329 strings we always print as a string, so set
2330 string_print. */
68cdc557 2331 if (gdbpy_is_lazy_string (output.get ()))
0646da15 2332 {
68cdc557
TT
2333 gdbpy_extract_lazy_string (output.get (), &str_addr,
2334 &type, &len, &encoding);
4c37490d 2335 string_print = true;
0646da15
TT
2336 }
2337 else
2338 {
2339 /* If it is a regular (non-lazy) string, extract
2340 it and copy the contents into THEVALUE. If the
2341 hint says to print it as a string, set
2342 string_print. Otherwise just return the extracted
2343 string as a value. */
2344
9b972014 2345 gdb::unique_xmalloc_ptr<char> s
68cdc557 2346 = python_string_to_target_string (output.get ());
0646da15
TT
2347
2348 if (s)
2349 {
e3821cca 2350 struct gdbarch *gdbarch;
0646da15 2351
9b972014
TT
2352 gdb::unique_xmalloc_ptr<char> hint
2353 = gdbpy_get_display_hint (value_formatter);
0646da15
TT
2354 if (hint)
2355 {
9b972014 2356 if (!strcmp (hint.get (), "string"))
4c37490d 2357 string_print = true;
0646da15
TT
2358 }
2359
9b972014 2360 thevalue = std::string (s.get ());
2f408ecb 2361 len = thevalue.size ();
e3821cca 2362 gdbarch = get_type_arch (value_type (value));
0646da15 2363 type = builtin_type (gdbarch)->builtin_char;
0646da15
TT
2364
2365 if (!string_print)
d7e74731 2366 return thevalue;
0646da15
TT
2367 }
2368 else
2369 gdbpy_print_stack ();
2370 }
2371 }
2372 /* If the printer returned a replacement value, set VALUE
2373 to REPLACEMENT. If there is not a replacement value,
2374 just use the value passed to this function. */
2375 if (replacement)
2376 value = replacement;
2377 }
2378 }
2379 }
b6313243
TT
2380#endif
2381
99ad9427 2382 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2383
2384 /* If the THEVALUE has contents, it is a regular string. */
2f408ecb 2385 if (!thevalue.empty ())
d7e74731 2386 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
1eba6383 2387 len, encoding.get (), 0, &opts);
09ca9e2e 2388 else if (string_print)
00bd41d6
PM
2389 /* Otherwise, if string_print is set, and it is not a regular
2390 string, it is a lazy string. */
d7e74731 2391 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
b6313243 2392 else
00bd41d6 2393 /* All other cases. */
d7e74731 2394 common_val_print (value, &stb, 0, &opts, current_language);
57e66780 2395
d7e74731 2396 return std::move (stb.string ());
85265413
NR
2397}
2398
4c37490d 2399bool
b09e2c59 2400varobj_editable_p (const struct varobj *var)
340a7723
NR
2401{
2402 struct type *type;
340a7723 2403
b4d61099
TT
2404 if (!(var->root->is_valid && var->value != nullptr
2405 && VALUE_LVAL (var->value.get ())))
4c37490d 2406 return false;
340a7723 2407
99ad9427 2408 type = varobj_get_value_type (var);
340a7723
NR
2409
2410 switch (TYPE_CODE (type))
2411 {
2412 case TYPE_CODE_STRUCT:
2413 case TYPE_CODE_UNION:
2414 case TYPE_CODE_ARRAY:
2415 case TYPE_CODE_FUNC:
2416 case TYPE_CODE_METHOD:
4c37490d 2417 return false;
340a7723
NR
2418 break;
2419
2420 default:
4c37490d 2421 return true;
340a7723
NR
2422 break;
2423 }
2424}
2425
d32cafc7 2426/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2427
4c37490d 2428bool
b09e2c59 2429varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2430{
ca20d462 2431 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2432}
2433
4c37490d 2434/* Return true if that varobj is floating, that is is always evaluated in the
5a413362
VP
2435 selected frame, and not bound to thread/frame. Such variable objects
2436 are created using '@' as frame specifier to -var-create. */
4c37490d 2437bool
b09e2c59 2438varobj_floating_p (const struct varobj *var)
5a413362
VP
2439{
2440 return var->root->floating;
2441}
2442
d32cafc7
JB
2443/* Implement the "value_is_changeable_p" varobj callback for most
2444 languages. */
2445
4c37490d 2446bool
b09e2c59 2447varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7 2448{
4c37490d 2449 bool r;
d32cafc7
JB
2450 struct type *type;
2451
2452 if (CPLUS_FAKE_CHILD (var))
4c37490d 2453 return false;
d32cafc7 2454
99ad9427 2455 type = varobj_get_value_type (var);
d32cafc7
JB
2456
2457 switch (TYPE_CODE (type))
2458 {
2459 case TYPE_CODE_STRUCT:
2460 case TYPE_CODE_UNION:
2461 case TYPE_CODE_ARRAY:
4c37490d 2462 r = false;
d32cafc7
JB
2463 break;
2464
2465 default:
4c37490d 2466 r = true;
d32cafc7
JB
2467 }
2468
2469 return r;
2470}
2471
54333c3b
JK
2472/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2473 with an arbitrary caller supplied DATA pointer. */
2474
2475void
2476all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2477{
2478 struct varobj_root *var_root, *var_root_next;
2479
2480 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2481
2482 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2483 {
2484 var_root_next = var_root->next;
2485
2486 (*func) (var_root->rootvar, data);
2487 }
2488}
8756216b 2489
54333c3b 2490/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2491 defined on globals. It is a helper for varobj_invalidate.
2492
2493 This function is called after changing the symbol file, in this case the
2494 pointers to "struct type" stored by the varobj are no longer valid. All
2495 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2496
54333c3b
JK
2497static void
2498varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2499{
4e969b4f
AB
2500 /* global and floating var must be re-evaluated. */
2501 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2502 {
54333c3b 2503 struct varobj *tmp_var;
2dbd25e5 2504
54333c3b
JK
2505 /* Try to create a varobj with same expression. If we succeed
2506 replace the old varobj, otherwise invalidate it. */
2f408ecb 2507 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
54333c3b
JK
2508 USE_CURRENT_FRAME);
2509 if (tmp_var != NULL)
2510 {
2f408ecb 2511 tmp_var->obj_name = var->obj_name;
30914ca8 2512 varobj_delete (var, 0);
54333c3b 2513 install_variable (tmp_var);
2dbd25e5 2514 }
54333c3b 2515 else
4c37490d 2516 var->root->is_valid = false;
2dbd25e5 2517 }
54333c3b 2518 else /* locals must be invalidated. */
4c37490d 2519 var->root->is_valid = false;
54333c3b
JK
2520}
2521
2522/* Invalidate the varobjs that are tied to locals and re-create the ones that
2523 are defined on globals.
2524 Invalidated varobjs will be always printed in_scope="invalid". */
2525
2526void
2527varobj_invalidate (void)
2528{
2529 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2530}
481695ed 2531
1c3569d4
MR
2532void
2533_initialize_varobj (void)
2534{
8d749320 2535 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
1c3569d4
MR
2536
2537 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2538 &varobjdebug,
2539 _("Set varobj debugging."),
2540 _("Show varobj debugging."),
2541 _("When non-zero, varobj debugging is enabled."),
2542 NULL, show_varobjdebug,
2543 &setdebuglist, &showdebuglist);
2544}
This page took 2.269277 seconds and 4 git commands to generate.