Use forward_scope_exit for scoped_finish_thread_state
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
42a4f53d 3 Copyright (C) 1999-2019 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
28335dcc 29#include "vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
396af9a1 33#include "parser-defs.h"
8b93c638 34
b6313243
TT
35#if HAVE_PYTHON
36#include "python/python.h"
37#include "python/python-internal.h"
50389644
PA
38#else
39typedef int PyObject;
b6313243
TT
40#endif
41
8b93c638
JM
42/* Non-zero if we want to see trace of varobj level stuff. */
43
ccce17b0 44unsigned int varobjdebug = 0;
920d2a44
AC
45static void
46show_varobjdebug (struct ui_file *file, int from_tty,
47 struct cmd_list_element *c, const char *value)
48{
49 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
50}
8b93c638 51
581e13c1 52/* String representations of gdb's format codes. */
a121b7c1 53const char *varobj_format_string[] =
1c35a88f 54 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
8b93c638 55
0cc7d26f 56/* True if we want to allow Python-based pretty-printing. */
4c37490d 57static bool pretty_printing = false;
0cc7d26f
TT
58
59void
60varobj_enable_pretty_printing (void)
61{
4c37490d 62 pretty_printing = true;
0cc7d26f
TT
63}
64
8b93c638
JM
65/* Data structures */
66
67/* Every root variable has one of these structures saved in its
4d01a485 68 varobj. */
8b93c638 69struct varobj_root
72330bd6 70{
4d01a485
PA
71 /* The expression for this parent. */
72 expression_up exp;
8b93c638 73
581e13c1 74 /* Block for which this expression is valid. */
9e5b9d2b 75 const struct block *valid_block = NULL;
8b93c638 76
44a67aa7
VP
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
9e5b9d2b 79 struct frame_id frame = null_frame_id;
8b93c638 80
5d5658a1 81 /* The global thread ID that this varobj_root belongs to. This field
581e13c1 82 is only valid if valid_block is not NULL.
c5b48eac
VP
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
9e5b9d2b 86 int thread_id = 0;
c5b48eac 87
4c37490d 88 /* If true, the -var-update always recomputes the value in the
a5defcdc 89 current thread and frame. Otherwise, variable object is
581e13c1 90 always updated in the specific scope/thread/frame. */
4c37490d 91 bool floating = false;
73a93a32 92
4c37490d 93 /* Flag that indicates validity: set to false when this varobj_root refers
8756216b 94 to symbols that do not exist anymore. */
4c37490d 95 bool is_valid = true;
8756216b 96
99ad9427
YQ
97 /* Language-related operations for this variable and its
98 children. */
9e5b9d2b 99 const struct lang_varobj_ops *lang_ops = NULL;
8b93c638 100
581e13c1 101 /* The varobj for this root node. */
9e5b9d2b 102 struct varobj *rootvar = NULL;
8b93c638 103
72330bd6 104 /* Next root variable */
9e5b9d2b 105 struct varobj_root *next = NULL;
72330bd6 106};
8b93c638 107
bb5ce47a 108/* Dynamic part of varobj. */
8b93c638 109
bb5ce47a
YQ
110struct varobj_dynamic
111{
b6313243
TT
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
bd046f64 116 bool children_requested = false;
b6313243 117
0cc7d26f
TT
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
9e5b9d2b 121 PyObject *constructor = NULL;
0cc7d26f 122
b6313243
TT
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
9e5b9d2b 125 PyObject *pretty_printer = NULL;
0cc7d26f
TT
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
9e5b9d2b 129 struct varobj_iter *child_iter = NULL;
0cc7d26f
TT
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
9e5b9d2b 136 varobj_item *saved_item = NULL;
72330bd6 137};
8b93c638 138
8b93c638
JM
139/* A list of varobjs */
140
141struct vlist
72330bd6
AC
142{
143 struct varobj *var;
144 struct vlist *next;
145};
8b93c638
JM
146
147/* Private function prototypes */
148
581e13c1 149/* Helper functions for the above subcommands. */
8b93c638 150
4c37490d 151static int delete_variable (struct varobj *, bool);
8b93c638 152
4c37490d 153static void delete_variable_1 (int *, struct varobj *, bool, bool);
8b93c638 154
4c37490d 155static bool install_variable (struct varobj *);
8b93c638 156
a14ed312 157static void uninstall_variable (struct varobj *);
8b93c638 158
2f408ecb 159static struct varobj *create_child (struct varobj *, int, std::string &);
8b93c638 160
b6313243 161static struct varobj *
5a2e0d6e
YQ
162create_child_with_value (struct varobj *parent, int index,
163 struct varobj_item *item);
b6313243 164
8b93c638
JM
165/* Utility routines */
166
a14ed312 167static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 168
4c37490d
SM
169static bool update_type_if_necessary (struct varobj *var,
170 struct value *new_value);
8264ba82 171
4c37490d
SM
172static bool install_new_value (struct varobj *var, struct value *value,
173 bool initial);
acd65feb 174
581e13c1 175/* Language-specific routines. */
8b93c638 176
b09e2c59 177static int number_of_children (const struct varobj *);
8b93c638 178
2f408ecb 179static std::string name_of_variable (const struct varobj *);
8b93c638 180
2f408ecb 181static std::string name_of_child (struct varobj *, int);
8b93c638 182
4c37490d 183static struct value *value_of_root (struct varobj **var_handle, bool *);
8b93c638 184
c1cc6152 185static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 186
2f408ecb
PA
187static std::string my_value_of_variable (struct varobj *var,
188 enum varobj_display_formats format);
8b93c638 189
4c37490d 190static bool is_root_p (const struct varobj *var);
8b93c638 191
9a1edae6 192static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 193 struct varobj_item *item);
b6313243 194
8b93c638
JM
195/* Private data */
196
581e13c1 197/* Mappings of varobj_display_formats enums to gdb's format codes. */
1c35a88f 198static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
8b93c638 199
581e13c1 200/* Header of the list of root variable objects. */
8b93c638 201static struct varobj_root *rootlist;
8b93c638 202
581e13c1 203/* Prime number indicating the number of buckets in the hash table. */
5fa13070 204/* A prime large enough to avoid too many collisions. */
8b93c638
JM
205#define VAROBJ_TABLE_SIZE 227
206
581e13c1 207/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
208static struct vlist **varobj_table;
209
8b93c638
JM
210\f
211
212/* API Implementation */
4c37490d 213static bool
b09e2c59 214is_root_p (const struct varobj *var)
b2c2bd75
VP
215{
216 return (var->root->rootvar == var);
217}
8b93c638 218
d452c4bc 219#ifdef HAVE_PYTHON
6cd67bea
TT
220
221/* See python-internal.h. */
222gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
223: gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
224{
225}
226
d452c4bc
UW
227#endif
228
7d8547c9
AC
229/* Return the full FRAME which corresponds to the given CORE_ADDR
230 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
231
232static struct frame_info *
233find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
234{
235 struct frame_info *frame = NULL;
236
237 if (frame_addr == (CORE_ADDR) 0)
238 return NULL;
239
9d49bdc2
PA
240 for (frame = get_current_frame ();
241 frame != NULL;
242 frame = get_prev_frame (frame))
7d8547c9 243 {
1fac167a
UW
244 /* The CORE_ADDR we get as argument was parsed from a string GDB
245 output as $fp. This output got truncated to gdbarch_addr_bit.
246 Truncate the frame base address in the same manner before
247 comparing it against our argument. */
248 CORE_ADDR frame_base = get_frame_base_address (frame);
249 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 250
1fac167a
UW
251 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
252 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
253
254 if (frame_base == frame_addr)
7d8547c9
AC
255 return frame;
256 }
9d49bdc2
PA
257
258 return NULL;
7d8547c9
AC
259}
260
5fa13070
SM
261/* Creates a varobj (not its children). */
262
8b93c638 263struct varobj *
2f408ecb
PA
264varobj_create (const char *objname,
265 const char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638 266{
581e13c1 267 /* Fill out a varobj structure for the (root) variable being constructed. */
9e5b9d2b 268 std::unique_ptr<varobj> var (new varobj (new varobj_root));
8b93c638
JM
269
270 if (expression != NULL)
271 {
e4195b40 272 struct frame_info *fi;
35633fef 273 struct frame_id old_id = null_frame_id;
3977b71f 274 const struct block *block;
bbc13ae3 275 const char *p;
e55dccf0 276 struct value *value = NULL;
1bb9788d 277 CORE_ADDR pc;
8b93c638 278
9d49bdc2
PA
279 /* Parse and evaluate the expression, filling in as much of the
280 variable's data as possible. */
281
282 if (has_stack_frames ())
283 {
581e13c1 284 /* Allow creator to specify context of variable. */
9d49bdc2
PA
285 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
286 fi = get_selected_frame (NULL);
287 else
288 /* FIXME: cagney/2002-11-23: This code should be doing a
289 lookup using the frame ID and not just the frame's
290 ``address''. This, of course, means an interface
291 change. However, with out that interface change ISAs,
292 such as the ia64 with its two stacks, won't work.
293 Similar goes for the case where there is a frameless
294 function. */
295 fi = find_frame_addr_in_frame_chain (frame);
296 }
8b93c638 297 else
9d49bdc2 298 fi = NULL;
8b93c638 299
73a93a32 300 if (type == USE_SELECTED_FRAME)
4c37490d 301 var->root->floating = true;
73a93a32 302
1bb9788d 303 pc = 0;
8b93c638
JM
304 block = NULL;
305 if (fi != NULL)
1bb9788d
TT
306 {
307 block = get_frame_block (fi, 0);
308 pc = get_frame_pc (fi);
309 }
8b93c638
JM
310
311 p = expression;
ae451627
AB
312 innermost_block.reset (INNERMOST_BLOCK_FOR_SYMBOLS
313 | INNERMOST_BLOCK_FOR_REGISTERS);
73a93a32 314 /* Wrap the call to parse expression, so we can
581e13c1 315 return a sensible error. */
492d29ea 316 TRY
8e7b59a5 317 {
1bb9788d 318 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
319 }
320
492d29ea 321 CATCH (except, RETURN_MASK_ERROR)
73a93a32
JI
322 {
323 return NULL;
324 }
492d29ea 325 END_CATCH
8b93c638 326
581e13c1 327 /* Don't allow variables to be created for types. */
608b4967
TT
328 if (var->root->exp->elts[0].opcode == OP_TYPE
329 || var->root->exp->elts[0].opcode == OP_TYPEOF
330 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638 331 {
bc8332bb
AC
332 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
333 " as an expression.\n");
8b93c638
JM
334 return NULL;
335 }
336
9e5b9d2b 337 var->format = variable_default_display (var.get ());
e707fc44
AB
338 var->root->valid_block =
339 var->root->floating ? NULL : innermost_block.block ();
2f408ecb 340 var->name = expression;
02142340 341 /* For a root var, the name and the expr are the same. */
2f408ecb 342 var->path_expr = expression;
8b93c638
JM
343
344 /* When the frame is different from the current frame,
345 we must select the appropriate frame before parsing
346 the expression, otherwise the value will not be current.
581e13c1 347 Since select_frame is so benign, just call it for all cases. */
aee1fcdf 348 if (var->root->valid_block)
8b93c638 349 {
4e22772d
JK
350 /* User could specify explicit FRAME-ADDR which was not found but
351 EXPRESSION is frame specific and we would not be able to evaluate
352 it correctly next time. With VALID_BLOCK set we must also set
353 FRAME and THREAD_ID. */
354 if (fi == NULL)
355 error (_("Failed to find the specified frame"));
356
7a424e99 357 var->root->frame = get_frame_id (fi);
00431a78 358 var->root->thread_id = inferior_thread ()->global_num;
35633fef 359 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 360 select_frame (fi);
8b93c638
JM
361 }
362
340a7723 363 /* We definitely need to catch errors here.
8b93c638 364 If evaluate_expression succeeds we got the value we wanted.
581e13c1 365 But if it fails, we still go on with a call to evaluate_type(). */
492d29ea 366 TRY
8e7b59a5 367 {
4d01a485 368 value = evaluate_expression (var->root->exp.get ());
8e7b59a5 369 }
492d29ea 370 CATCH (except, RETURN_MASK_ERROR)
e55dccf0
VP
371 {
372 /* Error getting the value. Try to at least get the
373 right type. */
4d01a485 374 struct value *type_only_value = evaluate_type (var->root->exp.get ());
a109c7c1 375
e55dccf0
VP
376 var->type = value_type (type_only_value);
377 }
492d29ea 378 END_CATCH
8264ba82 379
492d29ea
PA
380 if (value != NULL)
381 {
382 int real_type_found = 0;
383
384 var->type = value_actual_type (value, 0, &real_type_found);
385 if (real_type_found)
386 value = value_cast (var->type, value);
387 }
acd65feb 388
8b93c638 389 /* Set language info */
ca20d462 390 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 391
9e5b9d2b 392 install_new_value (var.get (), value, 1 /* Initial assignment */);
d32cafc7 393
581e13c1 394 /* Set ourselves as our root. */
9e5b9d2b 395 var->root->rootvar = var.get ();
8b93c638 396
581e13c1 397 /* Reset the selected frame. */
35633fef
JK
398 if (frame_id_p (old_id))
399 select_frame (frame_find_by_id (old_id));
8b93c638
JM
400 }
401
73a93a32 402 /* If the variable object name is null, that means this
581e13c1 403 is a temporary variable, so don't install it. */
73a93a32
JI
404
405 if ((var != NULL) && (objname != NULL))
8b93c638 406 {
2f408ecb 407 var->obj_name = objname;
8b93c638
JM
408
409 /* If a varobj name is duplicated, the install will fail so
581e13c1 410 we must cleanup. */
9e5b9d2b
SM
411 if (!install_variable (var.get ()))
412 return NULL;
8b93c638
JM
413 }
414
9e5b9d2b 415 return var.release ();
8b93c638
JM
416}
417
581e13c1 418/* Generates an unique name that can be used for a varobj. */
8b93c638 419
2d6960b4 420std::string
8b93c638
JM
421varobj_gen_name (void)
422{
423 static int id = 0;
8b93c638 424
581e13c1 425 /* Generate a name for this object. */
8b93c638 426 id++;
2d6960b4 427 return string_printf ("var%d", id);
8b93c638
JM
428}
429
61d8f275
JK
430/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
431 error if OBJNAME cannot be found. */
8b93c638
JM
432
433struct varobj *
2f408ecb 434varobj_get_handle (const char *objname)
8b93c638
JM
435{
436 struct vlist *cv;
437 const char *chp;
438 unsigned int index = 0;
439 unsigned int i = 1;
440
441 for (chp = objname; *chp; chp++)
442 {
443 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
444 }
445
446 cv = *(varobj_table + index);
2f408ecb 447 while (cv != NULL && cv->var->obj_name != objname)
8b93c638
JM
448 cv = cv->next;
449
450 if (cv == NULL)
8a3fe4f8 451 error (_("Variable object not found"));
8b93c638
JM
452
453 return cv->var;
454}
455
581e13c1 456/* Given the handle, return the name of the object. */
8b93c638 457
2f408ecb 458const char *
b09e2c59 459varobj_get_objname (const struct varobj *var)
8b93c638 460{
2f408ecb 461 return var->obj_name.c_str ();
8b93c638
JM
462}
463
2f408ecb
PA
464/* Given the handle, return the expression represented by the
465 object. */
8b93c638 466
2f408ecb 467std::string
b09e2c59 468varobj_get_expression (const struct varobj *var)
8b93c638
JM
469{
470 return name_of_variable (var);
471}
472
30914ca8 473/* See varobj.h. */
8b93c638
JM
474
475int
4c37490d 476varobj_delete (struct varobj *var, bool only_children)
8b93c638 477{
30914ca8 478 return delete_variable (var, only_children);
8b93c638
JM
479}
480
d8b65138
JK
481#if HAVE_PYTHON
482
b6313243
TT
483/* Convenience function for varobj_set_visualizer. Instantiate a
484 pretty-printer for a given value. */
485static PyObject *
486instantiate_pretty_printer (PyObject *constructor, struct value *value)
487{
b6313243
TT
488 PyObject *val_obj = NULL;
489 PyObject *printer;
b6313243 490
b6313243 491 val_obj = value_to_value_object (value);
b6313243
TT
492 if (! val_obj)
493 return NULL;
494
495 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
496 Py_DECREF (val_obj);
497 return printer;
b6313243
TT
498}
499
d8b65138
JK
500#endif
501
581e13c1 502/* Set/Get variable object display format. */
8b93c638
JM
503
504enum varobj_display_formats
505varobj_set_display_format (struct varobj *var,
506 enum varobj_display_formats format)
507{
508 switch (format)
509 {
510 case FORMAT_NATURAL:
511 case FORMAT_BINARY:
512 case FORMAT_DECIMAL:
513 case FORMAT_HEXADECIMAL:
514 case FORMAT_OCTAL:
1c35a88f 515 case FORMAT_ZHEXADECIMAL:
8b93c638
JM
516 var->format = format;
517 break;
518
519 default:
520 var->format = variable_default_display (var);
521 }
522
ae7d22a6 523 if (varobj_value_is_changeable_p (var)
b4d61099 524 && var->value != nullptr && !value_lazy (var->value.get ()))
ae7d22a6 525 {
b4d61099 526 var->print_value = varobj_value_get_print_value (var->value.get (),
99ad9427 527 var->format, var);
ae7d22a6
VP
528 }
529
8b93c638
JM
530 return var->format;
531}
532
533enum varobj_display_formats
b09e2c59 534varobj_get_display_format (const struct varobj *var)
8b93c638
JM
535{
536 return var->format;
537}
538
9b972014 539gdb::unique_xmalloc_ptr<char>
b09e2c59 540varobj_get_display_hint (const struct varobj *var)
b6313243 541{
9b972014 542 gdb::unique_xmalloc_ptr<char> result;
b6313243
TT
543
544#if HAVE_PYTHON
0646da15
TT
545 if (!gdb_python_initialized)
546 return NULL;
547
bde7b3e3 548 gdbpy_enter_varobj enter_py (var);
d452c4bc 549
bb5ce47a
YQ
550 if (var->dynamic->pretty_printer != NULL)
551 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
b6313243
TT
552#endif
553
554 return result;
555}
556
0cc7d26f
TT
557/* Return true if the varobj has items after TO, false otherwise. */
558
4c37490d 559bool
b09e2c59 560varobj_has_more (const struct varobj *var, int to)
0cc7d26f 561{
ddf0ea08 562 if (var->children.size () > to)
4c37490d 563 return true;
ddf0ea08
SM
564
565 return ((to == -1 || var->children.size () == to)
bb5ce47a 566 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
567}
568
c5b48eac
VP
569/* If the variable object is bound to a specific thread, that
570 is its evaluation can always be done in context of a frame
571 inside that thread, returns GDB id of the thread -- which
581e13c1 572 is always positive. Otherwise, returns -1. */
c5b48eac 573int
b09e2c59 574varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
575{
576 if (var->root->valid_block && var->root->thread_id > 0)
577 return var->root->thread_id;
578 else
579 return -1;
580}
581
25d5ea92 582void
4c37490d 583varobj_set_frozen (struct varobj *var, bool frozen)
25d5ea92
VP
584{
585 /* When a variable is unfrozen, we don't fetch its value.
586 The 'not_fetched' flag remains set, so next -var-update
587 won't complain.
588
589 We don't fetch the value, because for structures the client
590 should do -var-update anyway. It would be bad to have different
591 client-size logic for structure and other types. */
592 var->frozen = frozen;
593}
594
4c37490d 595bool
b09e2c59 596varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
597{
598 return var->frozen;
599}
600
0cc7d26f
TT
601/* A helper function that restricts a range to what is actually
602 available in a VEC. This follows the usual rules for the meaning
603 of FROM and TO -- if either is negative, the entire range is
604 used. */
605
99ad9427 606void
ddf0ea08
SM
607varobj_restrict_range (const std::vector<varobj *> &children,
608 int *from, int *to)
0cc7d26f 609{
ddf0ea08
SM
610 int len = children.size ();
611
0cc7d26f
TT
612 if (*from < 0 || *to < 0)
613 {
614 *from = 0;
ddf0ea08 615 *to = len;
0cc7d26f
TT
616 }
617 else
618 {
ddf0ea08
SM
619 if (*from > len)
620 *from = len;
621 if (*to > len)
622 *to = len;
0cc7d26f
TT
623 if (*from > *to)
624 *from = *to;
625 }
626}
627
628/* A helper for update_dynamic_varobj_children that installs a new
629 child when needed. */
630
631static void
632install_dynamic_child (struct varobj *var,
0604393c
SM
633 std::vector<varobj *> *changed,
634 std::vector<varobj *> *type_changed,
635 std::vector<varobj *> *newobj,
636 std::vector<varobj *> *unchanged,
4c37490d 637 bool *cchanged,
0cc7d26f 638 int index,
5a2e0d6e 639 struct varobj_item *item)
0cc7d26f 640{
ddf0ea08 641 if (var->children.size () < index + 1)
0cc7d26f
TT
642 {
643 /* There's no child yet. */
5a2e0d6e 644 struct varobj *child = varobj_add_child (var, item);
a109c7c1 645
0604393c 646 if (newobj != NULL)
0cc7d26f 647 {
0604393c 648 newobj->push_back (child);
4c37490d 649 *cchanged = true;
0cc7d26f
TT
650 }
651 }
bf8793bb 652 else
0cc7d26f 653 {
ddf0ea08 654 varobj *existing = var->children[index];
4c37490d 655 bool type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 656
8264ba82
AG
657 if (type_updated)
658 {
0604393c
SM
659 if (type_changed != NULL)
660 type_changed->push_back (existing);
8264ba82 661 }
5a2e0d6e 662 if (install_new_value (existing, item->value, 0))
0cc7d26f 663 {
0604393c
SM
664 if (!type_updated && changed != NULL)
665 changed->push_back (existing);
0cc7d26f 666 }
0604393c
SM
667 else if (!type_updated && unchanged != NULL)
668 unchanged->push_back (existing);
0cc7d26f
TT
669 }
670}
671
576ea091
YQ
672#if HAVE_PYTHON
673
4c37490d 674static bool
b09e2c59 675dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f 676{
bb5ce47a 677 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f 678
0646da15 679 if (!gdb_python_initialized)
4c37490d 680 return false;
0646da15 681
bde7b3e3
TT
682 gdbpy_enter_varobj enter_py (var);
683 return PyObject_HasAttr (printer, gdbpy_children_cst);
0cc7d26f 684}
576ea091 685#endif
0cc7d26f 686
e5250216
YQ
687/* A factory for creating dynamic varobj's iterators. Returns an
688 iterator object suitable for iterating over VAR's children. */
689
690static struct varobj_iter *
691varobj_get_iterator (struct varobj *var)
692{
576ea091 693#if HAVE_PYTHON
e5250216
YQ
694 if (var->dynamic->pretty_printer)
695 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 696#endif
e5250216
YQ
697
698 gdb_assert_not_reached (_("\
699requested an iterator from a non-dynamic varobj"));
700}
701
827f100c
YQ
702/* Release and clear VAR's saved item, if any. */
703
704static void
705varobj_clear_saved_item (struct varobj_dynamic *var)
706{
707 if (var->saved_item != NULL)
708 {
22bc8444 709 value_decref (var->saved_item->value);
0a8beaba 710 delete var->saved_item;
827f100c
YQ
711 var->saved_item = NULL;
712 }
713}
0cc7d26f 714
4c37490d 715static bool
b6313243 716update_dynamic_varobj_children (struct varobj *var,
0604393c
SM
717 std::vector<varobj *> *changed,
718 std::vector<varobj *> *type_changed,
719 std::vector<varobj *> *newobj,
720 std::vector<varobj *> *unchanged,
4c37490d
SM
721 bool *cchanged,
722 bool update_children,
0cc7d26f
TT
723 int from,
724 int to)
b6313243 725{
b6313243 726 int i;
b6313243 727
4c37490d 728 *cchanged = false;
b6313243 729
bb5ce47a 730 if (update_children || var->dynamic->child_iter == NULL)
b6313243 731 {
e5250216
YQ
732 varobj_iter_delete (var->dynamic->child_iter);
733 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 734
827f100c 735 varobj_clear_saved_item (var->dynamic);
b6313243 736
e5250216 737 i = 0;
b6313243 738
bb5ce47a 739 if (var->dynamic->child_iter == NULL)
4c37490d 740 return false;
b6313243 741 }
0cc7d26f 742 else
ddf0ea08 743 i = var->children.size ();
b6313243 744
0cc7d26f
TT
745 /* We ask for one extra child, so that MI can report whether there
746 are more children. */
747 for (; to < 0 || i < to + 1; ++i)
b6313243 748 {
827f100c 749 varobj_item *item;
b6313243 750
0cc7d26f 751 /* See if there was a leftover from last time. */
827f100c 752 if (var->dynamic->saved_item != NULL)
0cc7d26f 753 {
bb5ce47a
YQ
754 item = var->dynamic->saved_item;
755 var->dynamic->saved_item = NULL;
0cc7d26f
TT
756 }
757 else
a4c8e806 758 {
e5250216 759 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
760 /* Release vitem->value so its lifetime is not bound to the
761 execution of a command. */
762 if (item != NULL && item->value != NULL)
22bc8444 763 release_value (item->value).release ();
a4c8e806 764 }
b6313243 765
e5250216
YQ
766 if (item == NULL)
767 {
768 /* Iteration is done. Remove iterator from VAR. */
769 varobj_iter_delete (var->dynamic->child_iter);
770 var->dynamic->child_iter = NULL;
771 break;
772 }
0cc7d26f
TT
773 /* We don't want to push the extra child on any report list. */
774 if (to < 0 || i < to)
b6313243 775 {
4c37490d 776 bool can_mention = from < 0 || i >= from;
0cc7d26f 777
0cc7d26f 778 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 779 can_mention ? type_changed : NULL,
fe978cb0 780 can_mention ? newobj : NULL,
0cc7d26f 781 can_mention ? unchanged : NULL,
5e5ac9a5 782 can_mention ? cchanged : NULL, i,
827f100c
YQ
783 item);
784
0a8beaba 785 delete item;
b6313243 786 }
0cc7d26f 787 else
b6313243 788 {
bb5ce47a 789 var->dynamic->saved_item = item;
b6313243 790
0cc7d26f
TT
791 /* We want to truncate the child list just before this
792 element. */
793 break;
794 }
b6313243
TT
795 }
796
ddf0ea08 797 if (i < var->children.size ())
b6313243 798 {
4c37490d 799 *cchanged = true;
ddf0ea08
SM
800 for (int j = i; j < var->children.size (); ++j)
801 varobj_delete (var->children[j], 0);
802
803 var->children.resize (i);
b6313243 804 }
0cc7d26f
TT
805
806 /* If there are fewer children than requested, note that the list of
807 children changed. */
ddf0ea08 808 if (to >= 0 && var->children.size () < to)
4c37490d 809 *cchanged = true;
0cc7d26f 810
ddf0ea08 811 var->num_children = var->children.size ();
b6313243 812
4c37490d 813 return true;
b6313243 814}
25d5ea92 815
8b93c638
JM
816int
817varobj_get_num_children (struct varobj *var)
818{
819 if (var->num_children == -1)
b6313243 820 {
31f628ae 821 if (varobj_is_dynamic_p (var))
0cc7d26f 822 {
4c37490d 823 bool dummy;
0cc7d26f
TT
824
825 /* If we have a dynamic varobj, don't report -1 children.
826 So, try to fetch some children first. */
8264ba82 827 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
4c37490d 828 false, 0, 0);
0cc7d26f
TT
829 }
830 else
b6313243
TT
831 var->num_children = number_of_children (var);
832 }
8b93c638 833
0cc7d26f 834 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
835}
836
837/* Creates a list of the immediate children of a variable object;
581e13c1 838 the return code is the number of such children or -1 on error. */
8b93c638 839
ddf0ea08 840const std::vector<varobj *> &
0cc7d26f 841varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 842{
bd046f64 843 var->dynamic->children_requested = true;
b6313243 844
31f628ae 845 if (varobj_is_dynamic_p (var))
0cc7d26f 846 {
4c37490d
SM
847 bool children_changed;
848
b6313243
TT
849 /* This, in theory, can result in the number of children changing without
850 frontend noticing. But well, calling -var-list-children on the same
851 varobj twice is not something a sane frontend would do. */
8264ba82 852 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
4c37490d 853 &children_changed, false, 0, *to);
99ad9427 854 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
855 return var->children;
856 }
8b93c638 857
8b93c638
JM
858 if (var->num_children == -1)
859 var->num_children = number_of_children (var);
860
74a44383
DJ
861 /* If that failed, give up. */
862 if (var->num_children == -1)
d56d46f5 863 return var->children;
74a44383 864
28335dcc
VP
865 /* If we're called when the list of children is not yet initialized,
866 allocate enough elements in it. */
ddf0ea08
SM
867 while (var->children.size () < var->num_children)
868 var->children.push_back (NULL);
28335dcc 869
ddf0ea08 870 for (int i = 0; i < var->num_children; i++)
8b93c638 871 {
ddf0ea08 872 if (var->children[i] == NULL)
28335dcc
VP
873 {
874 /* Either it's the first call to varobj_list_children for
875 this variable object, and the child was never created,
876 or it was explicitly deleted by the client. */
2f408ecb 877 std::string name = name_of_child (var, i);
ddf0ea08 878 var->children[i] = create_child (var, i, name);
28335dcc 879 }
8b93c638
JM
880 }
881
99ad9427 882 varobj_restrict_range (var->children, from, to);
d56d46f5 883 return var->children;
8b93c638
JM
884}
885
b6313243 886static struct varobj *
5a2e0d6e 887varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 888{
ddf0ea08
SM
889 varobj *v = create_child_with_value (var, var->children.size (), item);
890
891 var->children.push_back (v);
a109c7c1 892
b6313243
TT
893 return v;
894}
895
8b93c638 896/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
897 prints on the console. The caller is responsible for freeing the string.
898 */
8b93c638 899
2f408ecb 900std::string
8b93c638
JM
901varobj_get_type (struct varobj *var)
902{
8ab91b96 903 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
904 NULL, too.)
905 Do not return a type for invalid variables as well. */
906 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
2f408ecb 907 return std::string ();
8b93c638 908
1a4300e9 909 return type_to_string (var->type);
8b93c638
JM
910}
911
1ecb4ee0
DJ
912/* Obtain the type of an object variable. */
913
914struct type *
b09e2c59 915varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
916{
917 return var->type;
918}
919
85254831
KS
920/* Is VAR a path expression parent, i.e., can it be used to construct
921 a valid path expression? */
922
4c37490d 923static bool
b09e2c59 924is_path_expr_parent (const struct varobj *var)
85254831 925{
9a9a7608
AB
926 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
927 return var->root->lang_ops->is_path_expr_parent (var);
928}
85254831 929
9a9a7608
AB
930/* Is VAR a path expression parent, i.e., can it be used to construct
931 a valid path expression? By default we assume any VAR can be a path
932 parent. */
85254831 933
4c37490d 934bool
b09e2c59 935varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608 936{
4c37490d 937 return true;
85254831
KS
938}
939
940/* Return the path expression parent for VAR. */
941
c1cc6152
SM
942const struct varobj *
943varobj_get_path_expr_parent (const struct varobj *var)
85254831 944{
c1cc6152 945 const struct varobj *parent = var;
85254831
KS
946
947 while (!is_root_p (parent) && !is_path_expr_parent (parent))
948 parent = parent->parent;
949
5abe0f0c
JV
950 /* Computation of full rooted expression for children of dynamic
951 varobjs is not supported. */
952 if (varobj_is_dynamic_p (parent))
953 error (_("Invalid variable object (child of a dynamic varobj)"));
954
85254831
KS
955 return parent;
956}
957
02142340
VP
958/* Return a pointer to the full rooted expression of varobj VAR.
959 If it has not been computed yet, compute it. */
2f408ecb
PA
960
961const char *
c1cc6152 962varobj_get_path_expr (const struct varobj *var)
02142340 963{
2f408ecb 964 if (var->path_expr.empty ())
02142340
VP
965 {
966 /* For root varobjs, we initialize path_expr
967 when creating varobj, so here it should be
968 child varobj. */
c1cc6152 969 struct varobj *mutable_var = (struct varobj *) var;
02142340 970 gdb_assert (!is_root_p (var));
2568868e 971
c1cc6152 972 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 973 }
2568868e 974
2f408ecb 975 return var->path_expr.c_str ();
02142340
VP
976}
977
fa4d0c40 978const struct language_defn *
b09e2c59 979varobj_get_language (const struct varobj *var)
8b93c638 980{
fa4d0c40 981 return var->root->exp->language_defn;
8b93c638
JM
982}
983
984int
b09e2c59 985varobj_get_attributes (const struct varobj *var)
8b93c638
JM
986{
987 int attributes = 0;
988
340a7723 989 if (varobj_editable_p (var))
581e13c1 990 /* FIXME: define masks for attributes. */
8b93c638
JM
991 attributes |= 0x00000001; /* Editable */
992
993 return attributes;
994}
995
cde5ef40
YQ
996/* Return true if VAR is a dynamic varobj. */
997
4c37490d 998bool
b09e2c59 999varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 1000{
bb5ce47a 1001 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1002}
1003
2f408ecb 1004std::string
de051565
MK
1005varobj_get_formatted_value (struct varobj *var,
1006 enum varobj_display_formats format)
1007{
1008 return my_value_of_variable (var, format);
1009}
1010
2f408ecb 1011std::string
8b93c638
JM
1012varobj_get_value (struct varobj *var)
1013{
de051565 1014 return my_value_of_variable (var, var->format);
8b93c638
JM
1015}
1016
1017/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1018 value of the given expression. */
1019/* Note: Invokes functions that can call error(). */
8b93c638 1020
4c37490d 1021bool
2f408ecb 1022varobj_set_value (struct varobj *var, const char *expression)
8b93c638 1023{
34365054 1024 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1025 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1026 We need to first construct a legal expression for this -- ugh! */
1027 /* Does this cover all the bases? */
34365054 1028 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1029 int saved_input_radix = input_radix;
bbc13ae3 1030 const char *s = expression;
8b93c638 1031
340a7723 1032 gdb_assert (varobj_editable_p (var));
8b93c638 1033
581e13c1 1034 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
4d01a485 1035 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
492d29ea 1036 TRY
8e7b59a5 1037 {
4d01a485 1038 value = evaluate_expression (exp.get ());
8e7b59a5
KS
1039 }
1040
492d29ea 1041 CATCH (except, RETURN_MASK_ERROR)
340a7723 1042 {
581e13c1 1043 /* We cannot proceed without a valid expression. */
4c37490d 1044 return false;
8b93c638 1045 }
492d29ea 1046 END_CATCH
8b93c638 1047
340a7723
NR
1048 /* All types that are editable must also be changeable. */
1049 gdb_assert (varobj_value_is_changeable_p (var));
1050
1051 /* The value of a changeable variable object must not be lazy. */
b4d61099 1052 gdb_assert (!value_lazy (var->value.get ()));
340a7723
NR
1053
1054 /* Need to coerce the input. We want to check if the
1055 value of the variable object will be different
1056 after assignment, and the first thing value_assign
1057 does is coerce the input.
1058 For example, if we are assigning an array to a pointer variable we
b021a221 1059 should compare the pointer with the array's address, not with the
340a7723
NR
1060 array's content. */
1061 value = coerce_array (value);
1062
8e7b59a5
KS
1063 /* The new value may be lazy. value_assign, or
1064 rather value_contents, will take care of this. */
492d29ea 1065 TRY
8e7b59a5 1066 {
b4d61099 1067 val = value_assign (var->value.get (), value);
8e7b59a5
KS
1068 }
1069
492d29ea
PA
1070 CATCH (except, RETURN_MASK_ERROR)
1071 {
4c37490d 1072 return false;
492d29ea
PA
1073 }
1074 END_CATCH
8e7b59a5 1075
340a7723
NR
1076 /* If the value has changed, record it, so that next -var-update can
1077 report this change. If a variable had a value of '1', we've set it
1078 to '333' and then set again to '1', when -var-update will report this
1079 variable as changed -- because the first assignment has set the
1080 'updated' flag. There's no need to optimize that, because return value
1081 of -var-update should be considered an approximation. */
4c37490d 1082 var->updated = install_new_value (var, val, false /* Compare values. */);
340a7723 1083 input_radix = saved_input_radix;
4c37490d 1084 return true;
8b93c638
JM
1085}
1086
0cc7d26f
TT
1087#if HAVE_PYTHON
1088
1089/* A helper function to install a constructor function and visualizer
bb5ce47a 1090 in a varobj_dynamic. */
0cc7d26f
TT
1091
1092static void
bb5ce47a 1093install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1094 PyObject *visualizer)
1095{
1096 Py_XDECREF (var->constructor);
1097 var->constructor = constructor;
1098
1099 Py_XDECREF (var->pretty_printer);
1100 var->pretty_printer = visualizer;
1101
e5250216 1102 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1103 var->child_iter = NULL;
1104}
1105
1106/* Install the default visualizer for VAR. */
1107
1108static void
1109install_default_visualizer (struct varobj *var)
1110{
d65aec65
PM
1111 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1112 if (CPLUS_FAKE_CHILD (var))
1113 return;
1114
0cc7d26f
TT
1115 if (pretty_printing)
1116 {
a31abe80 1117 gdbpy_ref<> pretty_printer;
0cc7d26f 1118
b4d61099 1119 if (var->value != nullptr)
0cc7d26f 1120 {
b4d61099 1121 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value.get ());
a31abe80 1122 if (pretty_printer == nullptr)
0cc7d26f
TT
1123 {
1124 gdbpy_print_stack ();
1125 error (_("Cannot instantiate printer for default visualizer"));
1126 }
1127 }
a31abe80 1128
0cc7d26f 1129 if (pretty_printer == Py_None)
a31abe80 1130 pretty_printer.release ();
0cc7d26f 1131
a31abe80 1132 install_visualizer (var->dynamic, NULL, pretty_printer.release ());
0cc7d26f
TT
1133 }
1134}
1135
1136/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1137 make a new object. */
1138
1139static void
1140construct_visualizer (struct varobj *var, PyObject *constructor)
1141{
1142 PyObject *pretty_printer;
1143
d65aec65
PM
1144 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1145 if (CPLUS_FAKE_CHILD (var))
1146 return;
1147
0cc7d26f
TT
1148 Py_INCREF (constructor);
1149 if (constructor == Py_None)
1150 pretty_printer = NULL;
1151 else
1152 {
b4d61099
TT
1153 pretty_printer = instantiate_pretty_printer (constructor,
1154 var->value.get ());
0cc7d26f
TT
1155 if (! pretty_printer)
1156 {
1157 gdbpy_print_stack ();
1158 Py_DECREF (constructor);
1159 constructor = Py_None;
1160 Py_INCREF (constructor);
1161 }
1162
1163 if (pretty_printer == Py_None)
1164 {
1165 Py_DECREF (pretty_printer);
1166 pretty_printer = NULL;
1167 }
1168 }
1169
bb5ce47a 1170 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1171}
1172
1173#endif /* HAVE_PYTHON */
1174
1175/* A helper function for install_new_value. This creates and installs
1176 a visualizer for VAR, if appropriate. */
1177
1178static void
1179install_new_value_visualizer (struct varobj *var)
1180{
1181#if HAVE_PYTHON
1182 /* If the constructor is None, then we want the raw value. If VAR
1183 does not have a value, just skip this. */
0646da15
TT
1184 if (!gdb_python_initialized)
1185 return;
1186
bb5ce47a 1187 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f 1188 {
bde7b3e3 1189 gdbpy_enter_varobj enter_py (var);
0cc7d26f 1190
bb5ce47a 1191 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1192 install_default_visualizer (var);
1193 else
bb5ce47a 1194 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1195 }
1196#else
1197 /* Do nothing. */
1198#endif
1199}
1200
8264ba82
AG
1201/* When using RTTI to determine variable type it may be changed in runtime when
1202 the variable value is changed. This function checks whether type of varobj
1203 VAR will change when a new value NEW_VALUE is assigned and if it is so
1204 updates the type of VAR. */
1205
4c37490d 1206static bool
8264ba82
AG
1207update_type_if_necessary (struct varobj *var, struct value *new_value)
1208{
1209 if (new_value)
1210 {
1211 struct value_print_options opts;
1212
1213 get_user_print_options (&opts);
1214 if (opts.objectprint)
1215 {
2f408ecb
PA
1216 struct type *new_type = value_actual_type (new_value, 0, 0);
1217 std::string new_type_str = type_to_string (new_type);
1218 std::string curr_type_str = varobj_get_type (var);
8264ba82 1219
2f408ecb
PA
1220 /* Did the type name change? */
1221 if (curr_type_str != new_type_str)
8264ba82
AG
1222 {
1223 var->type = new_type;
1224
1225 /* This information may be not valid for a new type. */
30914ca8 1226 varobj_delete (var, 1);
ddf0ea08 1227 var->children.clear ();
8264ba82 1228 var->num_children = -1;
4c37490d 1229 return true;
8264ba82
AG
1230 }
1231 }
1232 }
1233
4c37490d 1234 return false;
8264ba82
AG
1235}
1236
4c37490d
SM
1237/* Assign a new value to a variable object. If INITIAL is true,
1238 this is the first assignment after the variable object was just
acd65feb 1239 created, or changed type. In that case, just assign the value
4c37490d
SM
1240 and return false.
1241 Otherwise, assign the new value, and return true if the value is
1242 different from the current one, false otherwise. The comparison is
581e13c1
MS
1243 done on textual representation of value. Therefore, some types
1244 need not be compared. E.g. for structures the reported value is
1245 always "{...}", so no comparison is necessary here. If the old
4c37490d 1246 value was NULL and new one is not, or vice versa, we always return true.
b26ed50d
VP
1247
1248 The VALUE parameter should not be released -- the function will
1249 take care of releasing it when needed. */
4c37490d
SM
1250static bool
1251install_new_value (struct varobj *var, struct value *value, bool initial)
acd65feb 1252{
4c37490d
SM
1253 bool changeable;
1254 bool need_to_fetch;
1255 bool changed = false;
1256 bool intentionally_not_fetched = false;
acd65feb 1257
acd65feb 1258 /* We need to know the varobj's type to decide if the value should
3e43a32a 1259 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1260 don't have a type. */
acd65feb 1261 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1262 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1263
1264 /* If the type has custom visualizer, we consider it to be always
581e13c1 1265 changeable. FIXME: need to make sure this behaviour will not
b6313243 1266 mess up read-sensitive values. */
bb5ce47a 1267 if (var->dynamic->pretty_printer != NULL)
4c37490d 1268 changeable = true;
b6313243 1269
acd65feb
VP
1270 need_to_fetch = changeable;
1271
b26ed50d
VP
1272 /* We are not interested in the address of references, and given
1273 that in C++ a reference is not rebindable, it cannot
1274 meaningfully change. So, get hold of the real value. */
1275 if (value)
0cc7d26f 1276 value = coerce_ref (value);
b26ed50d 1277
acd65feb
VP
1278 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1279 /* For unions, we need to fetch the value implicitly because
1280 of implementation of union member fetch. When gdb
1281 creates a value for a field and the value of the enclosing
1282 structure is not lazy, it immediately copies the necessary
1283 bytes from the enclosing values. If the enclosing value is
1284 lazy, the call to value_fetch_lazy on the field will read
1285 the data from memory. For unions, that means we'll read the
1286 same memory more than once, which is not desirable. So
1287 fetch now. */
4c37490d 1288 need_to_fetch = true;
acd65feb
VP
1289
1290 /* The new value might be lazy. If the type is changeable,
1291 that is we'll be comparing values of this type, fetch the
1292 value now. Otherwise, on the next update the old value
1293 will be lazy, which means we've lost that old value. */
1294 if (need_to_fetch && value && value_lazy (value))
1295 {
c1cc6152 1296 const struct varobj *parent = var->parent;
4c37490d 1297 bool frozen = var->frozen;
a109c7c1 1298
25d5ea92
VP
1299 for (; !frozen && parent; parent = parent->parent)
1300 frozen |= parent->frozen;
1301
1302 if (frozen && initial)
1303 {
1304 /* For variables that are frozen, or are children of frozen
1305 variables, we don't do fetch on initial assignment.
1306 For non-initial assignemnt we do the fetch, since it means we're
1307 explicitly asked to compare the new value with the old one. */
4c37490d 1308 intentionally_not_fetched = true;
25d5ea92 1309 }
8e7b59a5 1310 else
acd65feb 1311 {
8e7b59a5 1312
492d29ea 1313 TRY
8e7b59a5
KS
1314 {
1315 value_fetch_lazy (value);
1316 }
1317
492d29ea 1318 CATCH (except, RETURN_MASK_ERROR)
8e7b59a5
KS
1319 {
1320 /* Set the value to NULL, so that for the next -var-update,
1321 we don't try to compare the new value with this value,
1322 that we couldn't even read. */
1323 value = NULL;
1324 }
492d29ea 1325 END_CATCH
acd65feb 1326 }
acd65feb
VP
1327 }
1328
e848a8a5
TT
1329 /* Get a reference now, before possibly passing it to any Python
1330 code that might release it. */
b4d61099 1331 value_ref_ptr value_holder;
e848a8a5 1332 if (value != NULL)
bbfa6f00 1333 value_holder = value_ref_ptr::new_reference (value);
b6313243 1334
7a4d50bf
VP
1335 /* Below, we'll be comparing string rendering of old and new
1336 values. Don't get string rendering if the value is
1337 lazy -- if it is, the code above has decided that the value
1338 should not be fetched. */
2f408ecb 1339 std::string print_value;
bb5ce47a
YQ
1340 if (value != NULL && !value_lazy (value)
1341 && var->dynamic->pretty_printer == NULL)
99ad9427 1342 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1343
acd65feb
VP
1344 /* If the type is changeable, compare the old and the new values.
1345 If this is the initial assignment, we don't have any old value
1346 to compare with. */
7a4d50bf 1347 if (!initial && changeable)
acd65feb 1348 {
3e43a32a
MS
1349 /* If the value of the varobj was changed by -var-set-value,
1350 then the value in the varobj and in the target is the same.
1351 However, that value is different from the value that the
581e13c1 1352 varobj had after the previous -var-update. So need to the
3e43a32a 1353 varobj as changed. */
acd65feb 1354 if (var->updated)
4c37490d 1355 changed = true;
bb5ce47a 1356 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1357 {
1358 /* Try to compare the values. That requires that both
1359 values are non-lazy. */
b4d61099 1360 if (var->not_fetched && value_lazy (var->value.get ()))
25d5ea92
VP
1361 {
1362 /* This is a frozen varobj and the value was never read.
1363 Presumably, UI shows some "never read" indicator.
1364 Now that we've fetched the real value, we need to report
1365 this varobj as changed so that UI can show the real
1366 value. */
4c37490d 1367 changed = true;
25d5ea92
VP
1368 }
1369 else if (var->value == NULL && value == NULL)
581e13c1 1370 /* Equal. */
acd65feb
VP
1371 ;
1372 else if (var->value == NULL || value == NULL)
57e66780 1373 {
4c37490d 1374 changed = true;
57e66780 1375 }
acd65feb
VP
1376 else
1377 {
b4d61099 1378 gdb_assert (!value_lazy (var->value.get ()));
acd65feb 1379 gdb_assert (!value_lazy (value));
85265413 1380
2f408ecb
PA
1381 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1382 if (var->print_value != print_value)
4c37490d 1383 changed = true;
acd65feb
VP
1384 }
1385 }
1386 }
85265413 1387
ee342b23
VP
1388 if (!initial && !changeable)
1389 {
1390 /* For values that are not changeable, we don't compare the values.
1391 However, we want to notice if a value was not NULL and now is NULL,
1392 or vise versa, so that we report when top-level varobjs come in scope
1393 and leave the scope. */
1394 changed = (var->value != NULL) != (value != NULL);
1395 }
1396
acd65feb 1397 /* We must always keep the new value, since children depend on it. */
b4d61099 1398 var->value = value_holder;
25d5ea92 1399 if (value && value_lazy (value) && intentionally_not_fetched)
4c37490d 1400 var->not_fetched = true;
25d5ea92 1401 else
4c37490d
SM
1402 var->not_fetched = false;
1403 var->updated = false;
85265413 1404
0cc7d26f
TT
1405 install_new_value_visualizer (var);
1406
1407 /* If we installed a pretty-printer, re-compare the printed version
1408 to see if the variable changed. */
bb5ce47a 1409 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 1410 {
b4d61099
TT
1411 print_value = varobj_value_get_print_value (var->value.get (),
1412 var->format, var);
2f408ecb
PA
1413 if ((var->print_value.empty () && !print_value.empty ())
1414 || (!var->print_value.empty () && print_value.empty ())
1415 || (!var->print_value.empty () && !print_value.empty ()
1416 && var->print_value != print_value))
4c37490d 1417 changed = true;
0cc7d26f 1418 }
0cc7d26f
TT
1419 var->print_value = print_value;
1420
b4d61099 1421 gdb_assert (var->value == nullptr || value_type (var->value.get ()));
acd65feb
VP
1422
1423 return changed;
1424}
acd65feb 1425
0cc7d26f
TT
1426/* Return the requested range for a varobj. VAR is the varobj. FROM
1427 and TO are out parameters; *FROM and *TO will be set to the
1428 selected sub-range of VAR. If no range was selected using
1429 -var-set-update-range, then both will be -1. */
1430void
b09e2c59 1431varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1432{
0cc7d26f
TT
1433 *from = var->from;
1434 *to = var->to;
b6313243
TT
1435}
1436
0cc7d26f
TT
1437/* Set the selected sub-range of children of VAR to start at index
1438 FROM and end at index TO. If either FROM or TO is less than zero,
1439 this is interpreted as a request for all children. */
1440void
1441varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1442{
0cc7d26f
TT
1443 var->from = from;
1444 var->to = to;
b6313243
TT
1445}
1446
1447void
1448varobj_set_visualizer (struct varobj *var, const char *visualizer)
1449{
1450#if HAVE_PYTHON
bde7b3e3 1451 PyObject *mainmod;
b6313243 1452
0646da15
TT
1453 if (!gdb_python_initialized)
1454 return;
1455
bde7b3e3 1456 gdbpy_enter_varobj enter_py (var);
b6313243
TT
1457
1458 mainmod = PyImport_AddModule ("__main__");
7c66fffc
TT
1459 gdbpy_ref<> globals
1460 = gdbpy_ref<>::new_reference (PyModule_GetDict (mainmod));
7780f186
TT
1461 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1462 globals.get (), globals.get ()));
b6313243 1463
bde7b3e3 1464 if (constructor == NULL)
b6313243
TT
1465 {
1466 gdbpy_print_stack ();
da1f2771 1467 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1468 }
1469
bde7b3e3 1470 construct_visualizer (var, constructor.get ());
b6313243 1471
0cc7d26f 1472 /* If there are any children now, wipe them. */
30914ca8 1473 varobj_delete (var, 1 /* children only */);
0cc7d26f 1474 var->num_children = -1;
b6313243 1475#else
da1f2771 1476 error (_("Python support required"));
b6313243
TT
1477#endif
1478}
1479
7a290c40 1480/* If NEW_VALUE is the new value of the given varobj (var), return
4c37490d 1481 true if var has mutated. In other words, if the type of
7a290c40
JB
1482 the new value is different from the type of the varobj's old
1483 value.
1484
1485 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1486
4c37490d 1487static bool
b09e2c59 1488varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1489 struct type *new_type)
1490{
1491 /* If we haven't previously computed the number of children in var,
1492 it does not matter from the front-end's perspective whether
1493 the type has mutated or not. For all intents and purposes,
1494 it has not mutated. */
1495 if (var->num_children < 0)
4c37490d 1496 return false;
7a290c40 1497
4c37490d 1498 if (var->root->lang_ops->value_has_mutated != NULL)
8776cfe9
JB
1499 {
1500 /* The varobj module, when installing new values, explicitly strips
1501 references, saying that we're not interested in those addresses.
1502 But detection of mutation happens before installing the new
1503 value, so our value may be a reference that we need to strip
1504 in order to remain consistent. */
1505 if (new_value != NULL)
1506 new_value = coerce_ref (new_value);
1507 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1508 }
7a290c40 1509 else
4c37490d 1510 return false;
7a290c40
JB
1511}
1512
8b93c638
JM
1513/* Update the values for a variable and its children. This is a
1514 two-pronged attack. First, re-parse the value for the root's
1515 expression to see if it's changed. Then go all the way
1516 through its children, reconstructing them and noting if they've
1517 changed.
1518
4c37490d 1519 The IS_EXPLICIT parameter specifies if this call is result
25d5ea92 1520 of MI request to update this specific variable, or
581e13c1 1521 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1522 update frozen variables.
705da579 1523
581e13c1 1524 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1525 returns TYPE_CHANGED, then it has done this and VARP will be modified
1526 to point to the new varobj. */
8b93c638 1527
0604393c 1528std::vector<varobj_update_result>
4c37490d 1529varobj_update (struct varobj **varp, bool is_explicit)
8b93c638 1530{
4c37490d 1531 bool type_changed = false;
fe978cb0 1532 struct value *newobj;
0604393c
SM
1533 std::vector<varobj_update_result> stack;
1534 std::vector<varobj_update_result> result;
8b93c638 1535
25d5ea92
VP
1536 /* Frozen means frozen -- we don't check for any change in
1537 this varobj, including its going out of scope, or
1538 changing type. One use case for frozen varobjs is
1539 retaining previously evaluated expressions, and we don't
1540 want them to be reevaluated at all. */
fe978cb0 1541 if (!is_explicit && (*varp)->frozen)
f7f9ae2c 1542 return result;
8756216b
DP
1543
1544 if (!(*varp)->root->is_valid)
f7f9ae2c 1545 {
0604393c 1546 result.emplace_back (*varp, VAROBJ_INVALID);
f7f9ae2c
VP
1547 return result;
1548 }
8b93c638 1549
25d5ea92 1550 if ((*varp)->root->rootvar == *varp)
ae093f96 1551 {
0604393c 1552 varobj_update_result r (*varp);
f7f9ae2c 1553
581e13c1 1554 /* Update the root variable. value_of_root can return NULL
25d5ea92 1555 if the variable is no longer around, i.e. we stepped out of
581e13c1 1556 the frame in which a local existed. We are letting the
25d5ea92
VP
1557 value_of_root variable dispose of the varobj if the type
1558 has changed. */
fe978cb0 1559 newobj = value_of_root (varp, &type_changed);
4c37490d
SM
1560 if (update_type_if_necessary (*varp, newobj))
1561 type_changed = true;
f7f9ae2c 1562 r.varobj = *varp;
f7f9ae2c 1563 r.type_changed = type_changed;
fe978cb0 1564 if (install_new_value ((*varp), newobj, type_changed))
4c37490d 1565 r.changed = true;
ea56f9c2 1566
fe978cb0 1567 if (newobj == NULL)
f7f9ae2c 1568 r.status = VAROBJ_NOT_IN_SCOPE;
4c37490d 1569 r.value_installed = true;
f7f9ae2c
VP
1570
1571 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1572 {
0b4bc29a 1573 if (r.type_changed || r.changed)
0604393c
SM
1574 result.push_back (std::move (r));
1575
b6313243
TT
1576 return result;
1577 }
a109c7c1 1578
0604393c 1579 stack.push_back (std::move (r));
b20d8971 1580 }
0604393c
SM
1581 else
1582 stack.emplace_back (*varp);
8b93c638 1583
8756216b 1584 /* Walk through the children, reconstructing them all. */
0604393c 1585 while (!stack.empty ())
8b93c638 1586 {
0604393c
SM
1587 varobj_update_result r = std::move (stack.back ());
1588 stack.pop_back ();
b6313243
TT
1589 struct varobj *v = r.varobj;
1590
b6313243
TT
1591 /* Update this variable, unless it's a root, which is already
1592 updated. */
1593 if (!r.value_installed)
7a290c40
JB
1594 {
1595 struct type *new_type;
1596
fe978cb0 1597 newobj = value_of_child (v->parent, v->index);
4c37490d
SM
1598 if (update_type_if_necessary (v, newobj))
1599 r.type_changed = true;
fe978cb0
PA
1600 if (newobj)
1601 new_type = value_type (newobj);
7a290c40 1602 else
ca20d462 1603 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40 1604
fe978cb0 1605 if (varobj_value_has_mutated (v, newobj, new_type))
7a290c40
JB
1606 {
1607 /* The children are no longer valid; delete them now.
1608 Report the fact that its type changed as well. */
30914ca8 1609 varobj_delete (v, 1 /* only_children */);
7a290c40
JB
1610 v->num_children = -1;
1611 v->to = -1;
1612 v->from = -1;
1613 v->type = new_type;
4c37490d 1614 r.type_changed = true;
7a290c40
JB
1615 }
1616
fe978cb0 1617 if (install_new_value (v, newobj, r.type_changed))
b6313243 1618 {
4c37490d
SM
1619 r.changed = true;
1620 v->updated = false;
b6313243
TT
1621 }
1622 }
1623
31f628ae
YQ
1624 /* We probably should not get children of a dynamic varobj, but
1625 for which -var-list-children was never invoked. */
1626 if (varobj_is_dynamic_p (v))
b6313243 1627 {
b926417a 1628 std::vector<varobj *> changed, type_changed_vec, unchanged, newobj_vec;
4c37490d 1629 bool children_changed = false;
b6313243
TT
1630
1631 if (v->frozen)
1632 continue;
1633
bd046f64 1634 if (!v->dynamic->children_requested)
0cc7d26f 1635 {
4c37490d 1636 bool dummy;
0cc7d26f
TT
1637
1638 /* If we initially did not have potential children, but
1639 now we do, consider the varobj as changed.
1640 Otherwise, if children were never requested, consider
1641 it as unchanged -- presumably, such varobj is not yet
1642 expanded in the UI, so we need not bother getting
1643 it. */
1644 if (!varobj_has_more (v, 0))
1645 {
8264ba82 1646 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
4c37490d 1647 &dummy, false, 0, 0);
0cc7d26f 1648 if (varobj_has_more (v, 0))
4c37490d 1649 r.changed = true;
0cc7d26f
TT
1650 }
1651
1652 if (r.changed)
0604393c 1653 result.push_back (std::move (r));
0cc7d26f
TT
1654
1655 continue;
1656 }
1657
4c37490d 1658 /* If update_dynamic_varobj_children returns false, then we have
b6313243 1659 a non-conforming pretty-printer, so we skip it. */
b926417a
TT
1660 if (update_dynamic_varobj_children (v, &changed, &type_changed_vec,
1661 &newobj_vec,
1662 &unchanged, &children_changed,
1663 true, v->from, v->to))
b6313243 1664 {
b926417a 1665 if (children_changed || !newobj_vec.empty ())
b6313243 1666 {
4c37490d 1667 r.children_changed = true;
b926417a 1668 r.newobj = std::move (newobj_vec);
b6313243 1669 }
0cc7d26f
TT
1670 /* Push in reverse order so that the first child is
1671 popped from the work stack first, and so will be
1672 added to result first. This does not affect
1673 correctness, just "nicer". */
b926417a 1674 for (int i = type_changed_vec.size () - 1; i >= 0; --i)
8264ba82 1675 {
b926417a 1676 varobj_update_result item (type_changed_vec[i]);
8264ba82
AG
1677
1678 /* Type may change only if value was changed. */
b926417a
TT
1679 item.changed = true;
1680 item.type_changed = true;
1681 item.value_installed = true;
0604393c 1682
b926417a 1683 stack.push_back (std::move (item));
8264ba82 1684 }
0604393c 1685 for (int i = changed.size () - 1; i >= 0; --i)
b6313243 1686 {
b926417a 1687 varobj_update_result item (changed[i]);
a109c7c1 1688
b926417a
TT
1689 item.changed = true;
1690 item.value_installed = true;
0604393c 1691
b926417a 1692 stack.push_back (std::move (item));
b6313243 1693 }
0604393c
SM
1694 for (int i = unchanged.size () - 1; i >= 0; --i)
1695 {
1696 if (!unchanged[i]->frozen)
1697 {
b926417a 1698 varobj_update_result item (unchanged[i]);
0604393c 1699
b926417a 1700 item.value_installed = true;
0cc7d26f 1701
b926417a 1702 stack.push_back (std::move (item));
0604393c
SM
1703 }
1704 }
1705 if (r.changed || r.children_changed)
1706 result.push_back (std::move (r));
0cc7d26f 1707
b6313243
TT
1708 continue;
1709 }
1710 }
28335dcc
VP
1711
1712 /* Push any children. Use reverse order so that the first
1713 child is popped from the work stack first, and so
1714 will be added to result first. This does not
1715 affect correctness, just "nicer". */
0604393c 1716 for (int i = v->children.size () - 1; i >= 0; --i)
8b93c638 1717 {
ddf0ea08 1718 varobj *c = v->children[i];
a109c7c1 1719
28335dcc 1720 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1721 if (c != NULL && !c->frozen)
0604393c 1722 stack.emplace_back (c);
8b93c638 1723 }
b6313243
TT
1724
1725 if (r.changed || r.type_changed)
0604393c 1726 result.push_back (std::move (r));
8b93c638
JM
1727 }
1728
f7f9ae2c 1729 return result;
8b93c638 1730}
8b93c638
JM
1731
1732/* Helper functions */
1733
1734/*
1735 * Variable object construction/destruction
1736 */
1737
1738static int
4c37490d 1739delete_variable (struct varobj *var, bool only_children_p)
8b93c638
JM
1740{
1741 int delcount = 0;
1742
30914ca8 1743 delete_variable_1 (&delcount, var, only_children_p,
4c37490d 1744 true /* remove_from_parent_p */ );
8b93c638
JM
1745
1746 return delcount;
1747}
1748
581e13c1 1749/* Delete the variable object VAR and its children. */
8b93c638
JM
1750/* IMPORTANT NOTE: If we delete a variable which is a child
1751 and the parent is not removed we dump core. It must be always
581e13c1 1752 initially called with remove_from_parent_p set. */
8b93c638 1753static void
4c37490d
SM
1754delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1755 bool remove_from_parent_p)
8b93c638 1756{
581e13c1 1757 /* Delete any children of this variable, too. */
ddf0ea08 1758 for (varobj *child : var->children)
28335dcc 1759 {
214270ab
VP
1760 if (!child)
1761 continue;
ddf0ea08 1762
8b93c638 1763 if (!remove_from_parent_p)
28335dcc 1764 child->parent = NULL;
ddf0ea08 1765
4c37490d 1766 delete_variable_1 (delcountp, child, false, only_children_p);
8b93c638 1767 }
ddf0ea08 1768 var->children.clear ();
8b93c638 1769
581e13c1 1770 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1771 if (only_children_p)
1772 return;
1773
581e13c1 1774 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2f408ecb 1775 /* If the name is empty, this is a temporary variable, that has not
581e13c1 1776 yet been installed, don't report it, it belongs to the caller... */
2f408ecb 1777 if (!var->obj_name.empty ())
8b93c638 1778 {
8b93c638
JM
1779 *delcountp = *delcountp + 1;
1780 }
1781
581e13c1 1782 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1783 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1784 (as indicated by remove_from_parent_p) we don't bother doing an
1785 expensive list search to find the element to remove when we are
581e13c1 1786 discarding the list afterwards. */
72330bd6 1787 if ((remove_from_parent_p) && (var->parent != NULL))
ddf0ea08 1788 var->parent->children[var->index] = NULL;
72330bd6 1789
2f408ecb 1790 if (!var->obj_name.empty ())
73a93a32 1791 uninstall_variable (var);
8b93c638 1792
581e13c1 1793 /* Free memory associated with this variable. */
9e5b9d2b 1794 delete var;
8b93c638
JM
1795}
1796
581e13c1 1797/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
4c37490d 1798static bool
fba45db2 1799install_variable (struct varobj *var)
8b93c638
JM
1800{
1801 struct vlist *cv;
1802 struct vlist *newvl;
1803 const char *chp;
1804 unsigned int index = 0;
1805 unsigned int i = 1;
1806
2f408ecb 1807 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1808 {
1809 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1810 }
1811
1812 cv = *(varobj_table + index);
2f408ecb 1813 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1814 cv = cv->next;
1815
1816 if (cv != NULL)
8a3fe4f8 1817 error (_("Duplicate variable object name"));
8b93c638 1818
581e13c1 1819 /* Add varobj to hash table. */
8d749320 1820 newvl = XNEW (struct vlist);
8b93c638
JM
1821 newvl->next = *(varobj_table + index);
1822 newvl->var = var;
1823 *(varobj_table + index) = newvl;
1824
581e13c1 1825 /* If root, add varobj to root list. */
b2c2bd75 1826 if (is_root_p (var))
8b93c638 1827 {
581e13c1 1828 /* Add to list of root variables. */
8b93c638
JM
1829 if (rootlist == NULL)
1830 var->root->next = NULL;
1831 else
1832 var->root->next = rootlist;
1833 rootlist = var->root;
8b93c638
JM
1834 }
1835
4c37490d 1836 return true; /* OK */
8b93c638
JM
1837}
1838
581e13c1 1839/* Unistall the object VAR. */
8b93c638 1840static void
fba45db2 1841uninstall_variable (struct varobj *var)
8b93c638
JM
1842{
1843 struct vlist *cv;
1844 struct vlist *prev;
1845 struct varobj_root *cr;
1846 struct varobj_root *prer;
1847 const char *chp;
1848 unsigned int index = 0;
1849 unsigned int i = 1;
1850
581e13c1 1851 /* Remove varobj from hash table. */
2f408ecb 1852 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1853 {
1854 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1855 }
1856
1857 cv = *(varobj_table + index);
1858 prev = NULL;
2f408ecb 1859 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1860 {
1861 prev = cv;
1862 cv = cv->next;
1863 }
1864
1865 if (varobjdebug)
2f408ecb 1866 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
8b93c638
JM
1867
1868 if (cv == NULL)
1869 {
72330bd6
AC
1870 warning
1871 ("Assertion failed: Could not find variable object \"%s\" to delete",
2f408ecb 1872 var->obj_name.c_str ());
8b93c638
JM
1873 return;
1874 }
1875
1876 if (prev == NULL)
1877 *(varobj_table + index) = cv->next;
1878 else
1879 prev->next = cv->next;
1880
b8c9b27d 1881 xfree (cv);
8b93c638 1882
581e13c1 1883 /* If root, remove varobj from root list. */
b2c2bd75 1884 if (is_root_p (var))
8b93c638 1885 {
581e13c1 1886 /* Remove from list of root variables. */
8b93c638
JM
1887 if (rootlist == var->root)
1888 rootlist = var->root->next;
1889 else
1890 {
1891 prer = NULL;
1892 cr = rootlist;
1893 while ((cr != NULL) && (cr->rootvar != var))
1894 {
1895 prer = cr;
1896 cr = cr->next;
1897 }
1898 if (cr == NULL)
1899 {
8f7e195f
JB
1900 warning (_("Assertion failed: Could not find "
1901 "varobj \"%s\" in root list"),
2f408ecb 1902 var->obj_name.c_str ());
8b93c638
JM
1903 return;
1904 }
1905 if (prer == NULL)
1906 rootlist = NULL;
1907 else
1908 prer->next = cr->next;
1909 }
8b93c638
JM
1910 }
1911
1912}
1913
837ce252
SM
1914/* Create and install a child of the parent of the given name.
1915
1916 The created VAROBJ takes ownership of the allocated NAME. */
1917
8b93c638 1918static struct varobj *
2f408ecb 1919create_child (struct varobj *parent, int index, std::string &name)
b6313243 1920{
5a2e0d6e
YQ
1921 struct varobj_item item;
1922
2f408ecb 1923 std::swap (item.name, name);
5a2e0d6e
YQ
1924 item.value = value_of_child (parent, index);
1925
1926 return create_child_with_value (parent, index, &item);
b6313243
TT
1927}
1928
1929static struct varobj *
5a2e0d6e
YQ
1930create_child_with_value (struct varobj *parent, int index,
1931 struct varobj_item *item)
8b93c638 1932{
9e5b9d2b 1933 varobj *child = new varobj (parent->root);
8b93c638 1934
5e5ac9a5 1935 /* NAME is allocated by caller. */
2f408ecb 1936 std::swap (child->name, item->name);
8b93c638 1937 child->index = index;
8b93c638 1938 child->parent = parent;
85254831 1939
99ad9427 1940 if (varobj_is_anonymous_child (child))
2f408ecb
PA
1941 child->obj_name = string_printf ("%s.%d_anonymous",
1942 parent->obj_name.c_str (), index);
85254831 1943 else
2f408ecb
PA
1944 child->obj_name = string_printf ("%s.%s",
1945 parent->obj_name.c_str (),
1946 child->name.c_str ());
85254831 1947
8b93c638
JM
1948 install_variable (child);
1949
acd65feb
VP
1950 /* Compute the type of the child. Must do this before
1951 calling install_new_value. */
5a2e0d6e 1952 if (item->value != NULL)
acd65feb 1953 /* If the child had no evaluation errors, var->value
581e13c1 1954 will be non-NULL and contain a valid type. */
5a2e0d6e 1955 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 1956 else
581e13c1 1957 /* Otherwise, we must compute the type. */
ca20d462
YQ
1958 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1959 child->index);
5a2e0d6e 1960 install_new_value (child, item->value, 1);
acd65feb 1961
8b93c638
JM
1962 return child;
1963}
8b93c638
JM
1964\f
1965
1966/*
1967 * Miscellaneous utility functions.
1968 */
1969
581e13c1 1970/* Allocate memory and initialize a new variable. */
9e5b9d2b
SM
1971varobj::varobj (varobj_root *root_)
1972: root (root_), dynamic (new varobj_dynamic)
8b93c638 1973{
8b93c638
JM
1974}
1975
581e13c1 1976/* Free any allocated memory associated with VAR. */
9e5b9d2b
SM
1977
1978varobj::~varobj ()
8b93c638 1979{
9e5b9d2b
SM
1980 varobj *var = this;
1981
d452c4bc 1982#if HAVE_PYTHON
bb5ce47a 1983 if (var->dynamic->pretty_printer != NULL)
d452c4bc 1984 {
bde7b3e3 1985 gdbpy_enter_varobj enter_py (var);
bb5ce47a
YQ
1986
1987 Py_XDECREF (var->dynamic->constructor);
1988 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
1989 }
1990#endif
1991
827f100c
YQ
1992 varobj_iter_delete (var->dynamic->child_iter);
1993 varobj_clear_saved_item (var->dynamic);
36746093 1994
b2c2bd75 1995 if (is_root_p (var))
4d01a485 1996 delete var->root;
8b93c638 1997
9e5b9d2b 1998 delete var->dynamic;
74b7792f
AC
1999}
2000
6e2a9270
VP
2001/* Return the type of the value that's stored in VAR,
2002 or that would have being stored there if the
581e13c1 2003 value were accessible.
6e2a9270
VP
2004
2005 This differs from VAR->type in that VAR->type is always
2006 the true type of the expession in the source language.
2007 The return value of this function is the type we're
2008 actually storing in varobj, and using for displaying
2009 the values and for comparing previous and new values.
2010
2011 For example, top-level references are always stripped. */
99ad9427 2012struct type *
b09e2c59 2013varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2014{
2015 struct type *type;
2016
b4d61099
TT
2017 if (var->value != nullptr)
2018 type = value_type (var->value.get ());
6e2a9270
VP
2019 else
2020 type = var->type;
2021
2022 type = check_typedef (type);
2023
aa006118 2024 if (TYPE_IS_REFERENCE (type))
6e2a9270
VP
2025 type = get_target_type (type);
2026
2027 type = check_typedef (type);
2028
2029 return type;
2030}
2031
8b93c638 2032/* What is the default display for this variable? We assume that
581e13c1 2033 everything is "natural". Any exceptions? */
8b93c638 2034static enum varobj_display_formats
fba45db2 2035variable_default_display (struct varobj *var)
8b93c638
JM
2036{
2037 return FORMAT_NATURAL;
2038}
2039
8b93c638
JM
2040/*
2041 * Language-dependencies
2042 */
2043
2044/* Common entry points */
2045
8b93c638
JM
2046/* Return the number of children for a given variable.
2047 The result of this function is defined by the language
581e13c1 2048 implementation. The number of children returned by this function
8b93c638 2049 is the number of children that the user will see in the variable
581e13c1 2050 display. */
8b93c638 2051static int
b09e2c59 2052number_of_children (const struct varobj *var)
8b93c638 2053{
ca20d462 2054 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2055}
2056
2f408ecb
PA
2057/* What is the expression for the root varobj VAR? */
2058
2059static std::string
b09e2c59 2060name_of_variable (const struct varobj *var)
8b93c638 2061{
ca20d462 2062 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2063}
2064
2f408ecb
PA
2065/* What is the name of the INDEX'th child of VAR? */
2066
2067static std::string
fba45db2 2068name_of_child (struct varobj *var, int index)
8b93c638 2069{
ca20d462 2070 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2071}
2072
2213e2be 2073/* If frame associated with VAR can be found, switch
4c37490d 2074 to it and return true. Otherwise, return false. */
2213e2be 2075
4c37490d 2076static bool
b09e2c59 2077check_scope (const struct varobj *var)
2213e2be
YQ
2078{
2079 struct frame_info *fi;
4c37490d 2080 bool scope;
2213e2be
YQ
2081
2082 fi = frame_find_by_id (var->root->frame);
2083 scope = fi != NULL;
2084
2085 if (fi)
2086 {
2087 CORE_ADDR pc = get_frame_pc (fi);
2088
2089 if (pc < BLOCK_START (var->root->valid_block) ||
2090 pc >= BLOCK_END (var->root->valid_block))
4c37490d 2091 scope = false;
2213e2be
YQ
2092 else
2093 select_frame (fi);
2094 }
2095 return scope;
2096}
2097
2098/* Helper function to value_of_root. */
2099
2100static struct value *
2101value_of_root_1 (struct varobj **var_handle)
2102{
2103 struct value *new_val = NULL;
2104 struct varobj *var = *var_handle;
4c37490d 2105 bool within_scope = false;
2213e2be
YQ
2106
2107 /* Only root variables can be updated... */
2108 if (!is_root_p (var))
2109 /* Not a root var. */
2110 return NULL;
2111
5ed8105e 2112 scoped_restore_current_thread restore_thread;
2213e2be
YQ
2113
2114 /* Determine whether the variable is still around. */
2115 if (var->root->valid_block == NULL || var->root->floating)
4c37490d 2116 within_scope = true;
2213e2be
YQ
2117 else if (var->root->thread_id == 0)
2118 {
2119 /* The program was single-threaded when the variable object was
2120 created. Technically, it's possible that the program became
2121 multi-threaded since then, but we don't support such
2122 scenario yet. */
2123 within_scope = check_scope (var);
2124 }
2125 else
2126 {
00431a78 2127 thread_info *thread = find_thread_global_id (var->root->thread_id);
5d5658a1 2128
00431a78 2129 if (thread != NULL)
2213e2be 2130 {
00431a78 2131 switch_to_thread (thread);
2213e2be
YQ
2132 within_scope = check_scope (var);
2133 }
2134 }
2135
2136 if (within_scope)
2137 {
2213e2be
YQ
2138
2139 /* We need to catch errors here, because if evaluate
2140 expression fails we want to just return NULL. */
492d29ea 2141 TRY
2213e2be 2142 {
4d01a485 2143 new_val = evaluate_expression (var->root->exp.get ());
2213e2be 2144 }
492d29ea
PA
2145 CATCH (except, RETURN_MASK_ERROR)
2146 {
2147 }
2148 END_CATCH
2213e2be
YQ
2149 }
2150
2213e2be
YQ
2151 return new_val;
2152}
2153
a5defcdc
VP
2154/* What is the ``struct value *'' of the root variable VAR?
2155 For floating variable object, evaluation can get us a value
2156 of different type from what is stored in varobj already. In
2157 that case:
2158 - *type_changed will be set to 1
2159 - old varobj will be freed, and new one will be
2160 created, with the same name.
2161 - *var_handle will be set to the new varobj
2162 Otherwise, *type_changed will be set to 0. */
30b28db1 2163static struct value *
4c37490d 2164value_of_root (struct varobj **var_handle, bool *type_changed)
8b93c638 2165{
73a93a32
JI
2166 struct varobj *var;
2167
2168 if (var_handle == NULL)
2169 return NULL;
2170
2171 var = *var_handle;
2172
2173 /* This should really be an exception, since this should
581e13c1 2174 only get called with a root variable. */
73a93a32 2175
b2c2bd75 2176 if (!is_root_p (var))
73a93a32
JI
2177 return NULL;
2178
a5defcdc 2179 if (var->root->floating)
73a93a32
JI
2180 {
2181 struct varobj *tmp_var;
6225abfa 2182
2f408ecb 2183 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
73a93a32
JI
2184 USE_SELECTED_FRAME);
2185 if (tmp_var == NULL)
2186 {
2187 return NULL;
2188 }
2f408ecb
PA
2189 std::string old_type = varobj_get_type (var);
2190 std::string new_type = varobj_get_type (tmp_var);
2191 if (old_type == new_type)
73a93a32 2192 {
fcacd99f
VP
2193 /* The expression presently stored inside var->root->exp
2194 remembers the locations of local variables relatively to
2195 the frame where the expression was created (in DWARF location
2196 button, for example). Naturally, those locations are not
2197 correct in other frames, so update the expression. */
2198
4d01a485 2199 std::swap (var->root->exp, tmp_var->root->exp);
fcacd99f 2200
30914ca8 2201 varobj_delete (tmp_var, 0);
73a93a32
JI
2202 *type_changed = 0;
2203 }
2204 else
2205 {
2f408ecb 2206 tmp_var->obj_name = var->obj_name;
0cc7d26f
TT
2207 tmp_var->from = var->from;
2208 tmp_var->to = var->to;
30914ca8 2209 varobj_delete (var, 0);
a5defcdc 2210
73a93a32
JI
2211 install_variable (tmp_var);
2212 *var_handle = tmp_var;
705da579 2213 var = *var_handle;
4c37490d 2214 *type_changed = true;
73a93a32
JI
2215 }
2216 }
2217 else
2218 {
2219 *type_changed = 0;
2220 }
2221
7a290c40
JB
2222 {
2223 struct value *value;
2224
2213e2be 2225 value = value_of_root_1 (var_handle);
7a290c40
JB
2226 if (var->value == NULL || value == NULL)
2227 {
2228 /* For root varobj-s, a NULL value indicates a scoping issue.
2229 So, nothing to do in terms of checking for mutations. */
2230 }
2231 else if (varobj_value_has_mutated (var, value, value_type (value)))
2232 {
2233 /* The type has mutated, so the children are no longer valid.
2234 Just delete them, and tell our caller that the type has
2235 changed. */
30914ca8 2236 varobj_delete (var, 1 /* only_children */);
7a290c40
JB
2237 var->num_children = -1;
2238 var->to = -1;
2239 var->from = -1;
4c37490d 2240 *type_changed = true;
7a290c40
JB
2241 }
2242 return value;
2243 }
8b93c638
JM
2244}
2245
581e13c1 2246/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2247static struct value *
c1cc6152 2248value_of_child (const struct varobj *parent, int index)
8b93c638 2249{
30b28db1 2250 struct value *value;
8b93c638 2251
ca20d462 2252 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2253
8b93c638
JM
2254 return value;
2255}
2256
581e13c1 2257/* GDB already has a command called "value_of_variable". Sigh. */
2f408ecb 2258static std::string
de051565 2259my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2260{
8756216b 2261 if (var->root->is_valid)
0cc7d26f 2262 {
bb5ce47a 2263 if (var->dynamic->pretty_printer != NULL)
b4d61099
TT
2264 return varobj_value_get_print_value (var->value.get (), var->format,
2265 var);
ca20d462 2266 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2267 }
8756216b 2268 else
2f408ecb 2269 return std::string ();
8b93c638
JM
2270}
2271
99ad9427
YQ
2272void
2273varobj_formatted_print_options (struct value_print_options *opts,
2274 enum varobj_display_formats format)
2275{
2276 get_formatted_print_options (opts, format_code[(int) format]);
2277 opts->deref_ref = 0;
0625771b 2278 opts->raw = !pretty_printing;
99ad9427
YQ
2279}
2280
2f408ecb 2281std::string
99ad9427
YQ
2282varobj_value_get_print_value (struct value *value,
2283 enum varobj_display_formats format,
b09e2c59 2284 const struct varobj *var)
85265413 2285{
79a45b7d 2286 struct value_print_options opts;
be759fcf
PM
2287 struct type *type = NULL;
2288 long len = 0;
1eba6383 2289 gdb::unique_xmalloc_ptr<char> encoding;
3a182a69
JK
2290 /* Initialize it just to avoid a GCC false warning. */
2291 CORE_ADDR str_addr = 0;
4c37490d 2292 bool string_print = false;
57e66780
DJ
2293
2294 if (value == NULL)
2f408ecb 2295 return std::string ();
57e66780 2296
d7e74731 2297 string_file stb;
2f408ecb
PA
2298 std::string thevalue;
2299
b6313243 2300#if HAVE_PYTHON
0646da15
TT
2301 if (gdb_python_initialized)
2302 {
bb5ce47a 2303 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2304
68cdc557 2305 gdbpy_enter_varobj enter_py (var);
09ca9e2e 2306
0646da15
TT
2307 if (value_formatter)
2308 {
2309 /* First check to see if we have any children at all. If so,
2310 we simply return {...}. */
2311 if (dynamic_varobj_has_child_method (var))
d7e74731 2312 return "{...}";
b6313243 2313
0646da15
TT
2314 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2315 {
2316 struct value *replacement;
0646da15 2317
a5c5eda7
SM
2318 gdbpy_ref<> output = apply_varobj_pretty_printer (value_formatter,
2319 &replacement,
2320 &stb);
0646da15
TT
2321
2322 /* If we have string like output ... */
68cdc557 2323 if (output != NULL)
0646da15 2324 {
0646da15
TT
2325 /* If this is a lazy string, extract it. For lazy
2326 strings we always print as a string, so set
2327 string_print. */
68cdc557 2328 if (gdbpy_is_lazy_string (output.get ()))
0646da15 2329 {
68cdc557
TT
2330 gdbpy_extract_lazy_string (output.get (), &str_addr,
2331 &type, &len, &encoding);
4c37490d 2332 string_print = true;
0646da15
TT
2333 }
2334 else
2335 {
2336 /* If it is a regular (non-lazy) string, extract
2337 it and copy the contents into THEVALUE. If the
2338 hint says to print it as a string, set
2339 string_print. Otherwise just return the extracted
2340 string as a value. */
2341
9b972014 2342 gdb::unique_xmalloc_ptr<char> s
68cdc557 2343 = python_string_to_target_string (output.get ());
0646da15
TT
2344
2345 if (s)
2346 {
e3821cca 2347 struct gdbarch *gdbarch;
0646da15 2348
9b972014
TT
2349 gdb::unique_xmalloc_ptr<char> hint
2350 = gdbpy_get_display_hint (value_formatter);
0646da15
TT
2351 if (hint)
2352 {
9b972014 2353 if (!strcmp (hint.get (), "string"))
4c37490d 2354 string_print = true;
0646da15
TT
2355 }
2356
9b972014 2357 thevalue = std::string (s.get ());
2f408ecb 2358 len = thevalue.size ();
e3821cca 2359 gdbarch = get_type_arch (value_type (value));
0646da15 2360 type = builtin_type (gdbarch)->builtin_char;
0646da15
TT
2361
2362 if (!string_print)
d7e74731 2363 return thevalue;
0646da15
TT
2364 }
2365 else
2366 gdbpy_print_stack ();
2367 }
2368 }
2369 /* If the printer returned a replacement value, set VALUE
2370 to REPLACEMENT. If there is not a replacement value,
2371 just use the value passed to this function. */
2372 if (replacement)
2373 value = replacement;
2374 }
2375 }
2376 }
b6313243
TT
2377#endif
2378
99ad9427 2379 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2380
2381 /* If the THEVALUE has contents, it is a regular string. */
2f408ecb 2382 if (!thevalue.empty ())
d7e74731 2383 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
1eba6383 2384 len, encoding.get (), 0, &opts);
09ca9e2e 2385 else if (string_print)
00bd41d6
PM
2386 /* Otherwise, if string_print is set, and it is not a regular
2387 string, it is a lazy string. */
d7e74731 2388 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
b6313243 2389 else
00bd41d6 2390 /* All other cases. */
d7e74731 2391 common_val_print (value, &stb, 0, &opts, current_language);
57e66780 2392
d7e74731 2393 return std::move (stb.string ());
85265413
NR
2394}
2395
4c37490d 2396bool
b09e2c59 2397varobj_editable_p (const struct varobj *var)
340a7723
NR
2398{
2399 struct type *type;
340a7723 2400
b4d61099
TT
2401 if (!(var->root->is_valid && var->value != nullptr
2402 && VALUE_LVAL (var->value.get ())))
4c37490d 2403 return false;
340a7723 2404
99ad9427 2405 type = varobj_get_value_type (var);
340a7723
NR
2406
2407 switch (TYPE_CODE (type))
2408 {
2409 case TYPE_CODE_STRUCT:
2410 case TYPE_CODE_UNION:
2411 case TYPE_CODE_ARRAY:
2412 case TYPE_CODE_FUNC:
2413 case TYPE_CODE_METHOD:
4c37490d 2414 return false;
340a7723
NR
2415 break;
2416
2417 default:
4c37490d 2418 return true;
340a7723
NR
2419 break;
2420 }
2421}
2422
d32cafc7 2423/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2424
4c37490d 2425bool
b09e2c59 2426varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2427{
ca20d462 2428 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2429}
2430
4c37490d 2431/* Return true if that varobj is floating, that is is always evaluated in the
5a413362
VP
2432 selected frame, and not bound to thread/frame. Such variable objects
2433 are created using '@' as frame specifier to -var-create. */
4c37490d 2434bool
b09e2c59 2435varobj_floating_p (const struct varobj *var)
5a413362
VP
2436{
2437 return var->root->floating;
2438}
2439
d32cafc7
JB
2440/* Implement the "value_is_changeable_p" varobj callback for most
2441 languages. */
2442
4c37490d 2443bool
b09e2c59 2444varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7 2445{
4c37490d 2446 bool r;
d32cafc7
JB
2447 struct type *type;
2448
2449 if (CPLUS_FAKE_CHILD (var))
4c37490d 2450 return false;
d32cafc7 2451
99ad9427 2452 type = varobj_get_value_type (var);
d32cafc7
JB
2453
2454 switch (TYPE_CODE (type))
2455 {
2456 case TYPE_CODE_STRUCT:
2457 case TYPE_CODE_UNION:
2458 case TYPE_CODE_ARRAY:
4c37490d 2459 r = false;
d32cafc7
JB
2460 break;
2461
2462 default:
4c37490d 2463 r = true;
d32cafc7
JB
2464 }
2465
2466 return r;
2467}
2468
54333c3b
JK
2469/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2470 with an arbitrary caller supplied DATA pointer. */
2471
2472void
2473all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2474{
2475 struct varobj_root *var_root, *var_root_next;
2476
2477 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2478
2479 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2480 {
2481 var_root_next = var_root->next;
2482
2483 (*func) (var_root->rootvar, data);
2484 }
2485}
8756216b 2486
54333c3b 2487/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2488 defined on globals. It is a helper for varobj_invalidate.
2489
2490 This function is called after changing the symbol file, in this case the
2491 pointers to "struct type" stored by the varobj are no longer valid. All
2492 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2493
54333c3b
JK
2494static void
2495varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2496{
4e969b4f
AB
2497 /* global and floating var must be re-evaluated. */
2498 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2499 {
54333c3b 2500 struct varobj *tmp_var;
2dbd25e5 2501
54333c3b
JK
2502 /* Try to create a varobj with same expression. If we succeed
2503 replace the old varobj, otherwise invalidate it. */
2f408ecb 2504 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
54333c3b
JK
2505 USE_CURRENT_FRAME);
2506 if (tmp_var != NULL)
2507 {
2f408ecb 2508 tmp_var->obj_name = var->obj_name;
30914ca8 2509 varobj_delete (var, 0);
54333c3b 2510 install_variable (tmp_var);
2dbd25e5 2511 }
54333c3b 2512 else
4c37490d 2513 var->root->is_valid = false;
2dbd25e5 2514 }
54333c3b 2515 else /* locals must be invalidated. */
4c37490d 2516 var->root->is_valid = false;
54333c3b
JK
2517}
2518
2519/* Invalidate the varobjs that are tied to locals and re-create the ones that
2520 are defined on globals.
2521 Invalidated varobjs will be always printed in_scope="invalid". */
2522
2523void
2524varobj_invalidate (void)
2525{
2526 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2527}
481695ed 2528
1c3569d4
MR
2529void
2530_initialize_varobj (void)
2531{
8d749320 2532 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
1c3569d4
MR
2533
2534 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2535 &varobjdebug,
2536 _("Set varobj debugging."),
2537 _("Show varobj debugging."),
2538 _("When non-zero, varobj debugging is enabled."),
2539 NULL, show_varobjdebug,
2540 &setdebuglist, &showdebuglist);
2541}
This page took 2.663673 seconds and 4 git commands to generate.