* python/py-progspace.c (py_free_pspace): Obtain arch another
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
0fb0cc75 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 4 2009, 2010 Free Software Foundation, Inc.
8b93c638
JM
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
18
19#include "defs.h"
a6c442d8 20#include "exceptions.h"
8b93c638
JM
21#include "value.h"
22#include "expression.h"
23#include "frame.h"
8b93c638
JM
24#include "language.h"
25#include "wrapper.h"
26#include "gdbcmd.h"
d2353924 27#include "block.h"
79a45b7d 28#include "valprint.h"
a6c442d8
MK
29
30#include "gdb_assert.h"
b66d6d2e 31#include "gdb_string.h"
0cc7d26f 32#include "gdb_regex.h"
8b93c638
JM
33
34#include "varobj.h"
28335dcc 35#include "vec.h"
6208b47d
VP
36#include "gdbthread.h"
37#include "inferior.h"
8b93c638 38
b6313243
TT
39#if HAVE_PYTHON
40#include "python/python.h"
41#include "python/python-internal.h"
50389644
PA
42#else
43typedef int PyObject;
b6313243
TT
44#endif
45
8b93c638
JM
46/* Non-zero if we want to see trace of varobj level stuff. */
47
48int varobjdebug = 0;
920d2a44
AC
49static void
50show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52{
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54}
8b93c638
JM
55
56/* String representations of gdb's format codes */
57char *varobj_format_string[] =
72330bd6 58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638
JM
59
60/* String representations of gdb's known languages */
72330bd6 61char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638 62
0cc7d26f
TT
63/* True if we want to allow Python-based pretty-printing. */
64static int pretty_printing = 0;
65
66void
67varobj_enable_pretty_printing (void)
68{
69 pretty_printing = 1;
70}
71
8b93c638
JM
72/* Data structures */
73
74/* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
76struct varobj_root
72330bd6 77{
8b93c638 78
72330bd6
AC
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
8b93c638 81
72330bd6
AC
82 /* Block for which this expression is valid */
83 struct block *valid_block;
8b93c638 84
44a67aa7
VP
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
e64d9b3d 87 struct frame_id frame;
8b93c638 88
c5b48eac
VP
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
a5defcdc
VP
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame */
99 int floating;
73a93a32 100
8756216b
DP
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
72330bd6
AC
105 /* Language info for this variable and its children */
106 struct language_specific *lang;
8b93c638 107
72330bd6
AC
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
8b93c638 110
72330bd6
AC
111 /* Next root variable */
112 struct varobj_root *next;
113};
8b93c638
JM
114
115/* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
118struct varobj
72330bd6 119{
8b93c638 120
72330bd6
AC
121 /* Alloc'd name of the variable for this object.. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar) */
124 /* NOTE: This is the "expression" */
125 char *name;
8b93c638 126
02142340
VP
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
72330bd6
AC
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
133 char *obj_name;
8b93c638 134
72330bd6
AC
135 /* Index of this variable in its parent or -1 */
136 int index;
8b93c638 137
202ddcaa
VP
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
72330bd6 141 struct type *type;
8b93c638 142
b20d8971
VP
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
b2c2bd75
VP
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
30b28db1 147 struct value *value;
8b93c638 148
72330bd6
AC
149 /* The number of (immediate) children this variable has */
150 int num_children;
8b93c638 151
72330bd6
AC
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
8b93c638 154
28335dcc
VP
155 /* Children of this object. */
156 VEC (varobj_p) *children;
8b93c638 157
b6313243
TT
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
72330bd6
AC
164 /* Description of the root variable. Points to root variable for children. */
165 struct varobj_root *root;
8b93c638 166
72330bd6
AC
167 /* The format of the output for this object */
168 enum varobj_display_formats format;
fb9b6b35
JJ
169
170 /* Was this variable updated via a varobj_set_value operation */
171 int updated;
85265413
NR
172
173 /* Last print value. */
174 char *print_value;
25d5ea92
VP
175
176 /* Is this variable frozen. Frozen variables are never implicitly
177 updated by -var-update *
178 or -var-update <direct-or-indirect-parent>. */
179 int frozen;
180
181 /* Is the value of this variable intentionally not fetched? It is
182 not fetched if either the variable is frozen, or any parents is
183 frozen. */
184 int not_fetched;
b6313243 185
0cc7d26f
TT
186 /* Sub-range of children which the MI consumer has requested. If
187 FROM < 0 or TO < 0, means that all children have been
188 requested. */
189 int from;
190 int to;
191
192 /* The pretty-printer constructor. If NULL, then the default
193 pretty-printer will be looked up. If None, then no
194 pretty-printer will be installed. */
195 PyObject *constructor;
196
b6313243
TT
197 /* The pretty-printer that has been constructed. If NULL, then a
198 new printer object is needed, and one will be constructed. */
199 PyObject *pretty_printer;
0cc7d26f
TT
200
201 /* The iterator returned by the printer's 'children' method, or NULL
202 if not available. */
203 PyObject *child_iter;
204
205 /* We request one extra item from the iterator, so that we can
206 report to the caller whether there are more items than we have
207 already reported. However, we don't want to install this value
208 when we read it, because that will mess up future updates. So,
209 we stash it here instead. */
210 PyObject *saved_item;
72330bd6 211};
8b93c638 212
8b93c638 213struct cpstack
72330bd6
AC
214{
215 char *name;
216 struct cpstack *next;
217};
8b93c638
JM
218
219/* A list of varobjs */
220
221struct vlist
72330bd6
AC
222{
223 struct varobj *var;
224 struct vlist *next;
225};
8b93c638
JM
226
227/* Private function prototypes */
228
229/* Helper functions for the above subcommands. */
230
a14ed312 231static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 232
a14ed312
KB
233static void delete_variable_1 (struct cpstack **, int *,
234 struct varobj *, int, int);
8b93c638 235
a14ed312 236static int install_variable (struct varobj *);
8b93c638 237
a14ed312 238static void uninstall_variable (struct varobj *);
8b93c638 239
a14ed312 240static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 241
b6313243
TT
242static struct varobj *
243create_child_with_value (struct varobj *parent, int index, const char *name,
244 struct value *value);
245
8b93c638
JM
246/* Utility routines */
247
a14ed312 248static struct varobj *new_variable (void);
8b93c638 249
a14ed312 250static struct varobj *new_root_variable (void);
8b93c638 251
a14ed312 252static void free_variable (struct varobj *var);
8b93c638 253
74b7792f
AC
254static struct cleanup *make_cleanup_free_variable (struct varobj *var);
255
a14ed312 256static struct type *get_type (struct varobj *var);
8b93c638 257
6e2a9270
VP
258static struct type *get_value_type (struct varobj *var);
259
a14ed312 260static struct type *get_target_type (struct type *);
8b93c638 261
a14ed312 262static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 263
a14ed312 264static void cppush (struct cpstack **pstack, char *name);
8b93c638 265
a14ed312 266static char *cppop (struct cpstack **pstack);
8b93c638 267
acd65feb
VP
268static int install_new_value (struct varobj *var, struct value *value,
269 int initial);
270
8b93c638
JM
271/* Language-specific routines. */
272
a14ed312 273static enum varobj_languages variable_language (struct varobj *var);
8b93c638 274
a14ed312 275static int number_of_children (struct varobj *);
8b93c638 276
a14ed312 277static char *name_of_variable (struct varobj *);
8b93c638 278
a14ed312 279static char *name_of_child (struct varobj *, int);
8b93c638 280
30b28db1 281static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 282
30b28db1 283static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 284
de051565
MK
285static char *my_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
8b93c638 287
85265413 288static char *value_get_print_value (struct value *value,
b6313243 289 enum varobj_display_formats format,
d452c4bc 290 struct varobj *var);
85265413 291
b2c2bd75
VP
292static int varobj_value_is_changeable_p (struct varobj *var);
293
294static int is_root_p (struct varobj *var);
8b93c638 295
d8b65138
JK
296#if HAVE_PYTHON
297
b6313243
TT
298static struct varobj *
299varobj_add_child (struct varobj *var, const char *name, struct value *value);
300
d8b65138
JK
301#endif /* HAVE_PYTHON */
302
8b93c638
JM
303/* C implementation */
304
a14ed312 305static int c_number_of_children (struct varobj *var);
8b93c638 306
a14ed312 307static char *c_name_of_variable (struct varobj *parent);
8b93c638 308
a14ed312 309static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 310
02142340
VP
311static char *c_path_expr_of_child (struct varobj *child);
312
30b28db1 313static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 314
30b28db1 315static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 316
a14ed312 317static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 318
de051565
MK
319static char *c_value_of_variable (struct varobj *var,
320 enum varobj_display_formats format);
8b93c638
JM
321
322/* C++ implementation */
323
a14ed312 324static int cplus_number_of_children (struct varobj *var);
8b93c638 325
a14ed312 326static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 327
a14ed312 328static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 329
a14ed312 330static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 331
02142340
VP
332static char *cplus_path_expr_of_child (struct varobj *child);
333
30b28db1 334static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 335
30b28db1 336static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 337
a14ed312 338static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 339
de051565
MK
340static char *cplus_value_of_variable (struct varobj *var,
341 enum varobj_display_formats format);
8b93c638
JM
342
343/* Java implementation */
344
a14ed312 345static int java_number_of_children (struct varobj *var);
8b93c638 346
a14ed312 347static char *java_name_of_variable (struct varobj *parent);
8b93c638 348
a14ed312 349static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 350
02142340
VP
351static char *java_path_expr_of_child (struct varobj *child);
352
30b28db1 353static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 354
30b28db1 355static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 356
a14ed312 357static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 358
de051565
MK
359static char *java_value_of_variable (struct varobj *var,
360 enum varobj_display_formats format);
8b93c638
JM
361
362/* The language specific vector */
363
364struct language_specific
72330bd6 365{
8b93c638 366
72330bd6
AC
367 /* The language of this variable */
368 enum varobj_languages language;
8b93c638 369
72330bd6
AC
370 /* The number of children of PARENT. */
371 int (*number_of_children) (struct varobj * parent);
8b93c638 372
72330bd6
AC
373 /* The name (expression) of a root varobj. */
374 char *(*name_of_variable) (struct varobj * parent);
8b93c638 375
72330bd6
AC
376 /* The name of the INDEX'th child of PARENT. */
377 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 378
02142340
VP
379 /* Returns the rooted expression of CHILD, which is a variable
380 obtain that has some parent. */
381 char *(*path_expr_of_child) (struct varobj * child);
382
30b28db1
AC
383 /* The ``struct value *'' of the root variable ROOT. */
384 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 385
30b28db1
AC
386 /* The ``struct value *'' of the INDEX'th child of PARENT. */
387 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 388
72330bd6
AC
389 /* The type of the INDEX'th child of PARENT. */
390 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 391
72330bd6 392 /* The current value of VAR. */
de051565
MK
393 char *(*value_of_variable) (struct varobj * var,
394 enum varobj_display_formats format);
72330bd6 395};
8b93c638
JM
396
397/* Array of known source language routines. */
d5d6fca5 398static struct language_specific languages[vlang_end] = {
8b93c638
JM
399 /* Unknown (try treating as C */
400 {
72330bd6
AC
401 vlang_unknown,
402 c_number_of_children,
403 c_name_of_variable,
404 c_name_of_child,
02142340 405 c_path_expr_of_child,
72330bd6
AC
406 c_value_of_root,
407 c_value_of_child,
408 c_type_of_child,
72330bd6 409 c_value_of_variable}
8b93c638
JM
410 ,
411 /* C */
412 {
72330bd6
AC
413 vlang_c,
414 c_number_of_children,
415 c_name_of_variable,
416 c_name_of_child,
02142340 417 c_path_expr_of_child,
72330bd6
AC
418 c_value_of_root,
419 c_value_of_child,
420 c_type_of_child,
72330bd6 421 c_value_of_variable}
8b93c638
JM
422 ,
423 /* C++ */
424 {
72330bd6
AC
425 vlang_cplus,
426 cplus_number_of_children,
427 cplus_name_of_variable,
428 cplus_name_of_child,
02142340 429 cplus_path_expr_of_child,
72330bd6
AC
430 cplus_value_of_root,
431 cplus_value_of_child,
432 cplus_type_of_child,
72330bd6 433 cplus_value_of_variable}
8b93c638
JM
434 ,
435 /* Java */
436 {
72330bd6
AC
437 vlang_java,
438 java_number_of_children,
439 java_name_of_variable,
440 java_name_of_child,
02142340 441 java_path_expr_of_child,
72330bd6
AC
442 java_value_of_root,
443 java_value_of_child,
444 java_type_of_child,
72330bd6 445 java_value_of_variable}
8b93c638
JM
446};
447
448/* A little convenience enum for dealing with C++/Java */
449enum vsections
72330bd6
AC
450{
451 v_public = 0, v_private, v_protected
452};
8b93c638
JM
453
454/* Private data */
455
456/* Mappings of varobj_display_formats enums to gdb's format codes */
72330bd6 457static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638
JM
458
459/* Header of the list of root variable objects */
460static struct varobj_root *rootlist;
8b93c638
JM
461
462/* Prime number indicating the number of buckets in the hash table */
463/* A prime large enough to avoid too many colisions */
464#define VAROBJ_TABLE_SIZE 227
465
466/* Pointer to the varobj hash table (built at run time) */
467static struct vlist **varobj_table;
468
8b93c638
JM
469/* Is the variable X one of our "fake" children? */
470#define CPLUS_FAKE_CHILD(x) \
471((x) != NULL && (x)->type == NULL && (x)->value == NULL)
472\f
473
474/* API Implementation */
b2c2bd75
VP
475static int
476is_root_p (struct varobj *var)
477{
478 return (var->root->rootvar == var);
479}
8b93c638 480
d452c4bc
UW
481#ifdef HAVE_PYTHON
482/* Helper function to install a Python environment suitable for
483 use during operations on VAR. */
484struct cleanup *
485varobj_ensure_python_env (struct varobj *var)
486{
487 return ensure_python_env (var->root->exp->gdbarch,
488 var->root->exp->language_defn);
489}
490#endif
491
8b93c638
JM
492/* Creates a varobj (not its children) */
493
7d8547c9
AC
494/* Return the full FRAME which corresponds to the given CORE_ADDR
495 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
496
497static struct frame_info *
498find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
499{
500 struct frame_info *frame = NULL;
501
502 if (frame_addr == (CORE_ADDR) 0)
503 return NULL;
504
9d49bdc2
PA
505 for (frame = get_current_frame ();
506 frame != NULL;
507 frame = get_prev_frame (frame))
7d8547c9 508 {
1fac167a
UW
509 /* The CORE_ADDR we get as argument was parsed from a string GDB
510 output as $fp. This output got truncated to gdbarch_addr_bit.
511 Truncate the frame base address in the same manner before
512 comparing it against our argument. */
513 CORE_ADDR frame_base = get_frame_base_address (frame);
514 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 515
1fac167a
UW
516 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
517 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
518
519 if (frame_base == frame_addr)
7d8547c9
AC
520 return frame;
521 }
9d49bdc2
PA
522
523 return NULL;
7d8547c9
AC
524}
525
8b93c638
JM
526struct varobj *
527varobj_create (char *objname,
72330bd6 528 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
529{
530 struct varobj *var;
8b93c638
JM
531 struct cleanup *old_chain;
532
533 /* Fill out a varobj structure for the (root) variable being constructed. */
534 var = new_root_variable ();
74b7792f 535 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
536
537 if (expression != NULL)
538 {
e4195b40 539 struct frame_info *fi;
35633fef 540 struct frame_id old_id = null_frame_id;
e4195b40 541 struct block *block;
8b93c638
JM
542 char *p;
543 enum varobj_languages lang;
e55dccf0 544 struct value *value = NULL;
8b93c638 545
9d49bdc2
PA
546 /* Parse and evaluate the expression, filling in as much of the
547 variable's data as possible. */
548
549 if (has_stack_frames ())
550 {
551 /* Allow creator to specify context of variable */
552 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
553 fi = get_selected_frame (NULL);
554 else
555 /* FIXME: cagney/2002-11-23: This code should be doing a
556 lookup using the frame ID and not just the frame's
557 ``address''. This, of course, means an interface
558 change. However, with out that interface change ISAs,
559 such as the ia64 with its two stacks, won't work.
560 Similar goes for the case where there is a frameless
561 function. */
562 fi = find_frame_addr_in_frame_chain (frame);
563 }
8b93c638 564 else
9d49bdc2 565 fi = NULL;
8b93c638 566
73a93a32
JI
567 /* frame = -2 means always use selected frame */
568 if (type == USE_SELECTED_FRAME)
a5defcdc 569 var->root->floating = 1;
73a93a32 570
8b93c638
JM
571 block = NULL;
572 if (fi != NULL)
ae767bfb 573 block = get_frame_block (fi, 0);
8b93c638
JM
574
575 p = expression;
576 innermost_block = NULL;
73a93a32
JI
577 /* Wrap the call to parse expression, so we can
578 return a sensible error. */
579 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
580 {
581 return NULL;
582 }
8b93c638
JM
583
584 /* Don't allow variables to be created for types. */
585 if (var->root->exp->elts[0].opcode == OP_TYPE)
586 {
587 do_cleanups (old_chain);
bc8332bb
AC
588 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
589 " as an expression.\n");
8b93c638
JM
590 return NULL;
591 }
592
593 var->format = variable_default_display (var);
594 var->root->valid_block = innermost_block;
1b36a34b 595 var->name = xstrdup (expression);
02142340 596 /* For a root var, the name and the expr are the same. */
1b36a34b 597 var->path_expr = xstrdup (expression);
8b93c638
JM
598
599 /* When the frame is different from the current frame,
600 we must select the appropriate frame before parsing
601 the expression, otherwise the value will not be current.
602 Since select_frame is so benign, just call it for all cases. */
4e22772d 603 if (innermost_block)
8b93c638 604 {
4e22772d
JK
605 /* User could specify explicit FRAME-ADDR which was not found but
606 EXPRESSION is frame specific and we would not be able to evaluate
607 it correctly next time. With VALID_BLOCK set we must also set
608 FRAME and THREAD_ID. */
609 if (fi == NULL)
610 error (_("Failed to find the specified frame"));
611
7a424e99 612 var->root->frame = get_frame_id (fi);
c5b48eac 613 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 614 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 615 select_frame (fi);
8b93c638
JM
616 }
617
340a7723 618 /* We definitely need to catch errors here.
8b93c638
JM
619 If evaluate_expression succeeds we got the value we wanted.
620 But if it fails, we still go on with a call to evaluate_type() */
acd65feb 621 if (!gdb_evaluate_expression (var->root->exp, &value))
e55dccf0
VP
622 {
623 /* Error getting the value. Try to at least get the
624 right type. */
625 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 626
e55dccf0
VP
627 var->type = value_type (type_only_value);
628 }
629 else
630 var->type = value_type (value);
acd65feb 631
acd65feb 632 install_new_value (var, value, 1 /* Initial assignment */);
8b93c638
JM
633
634 /* Set language info */
635 lang = variable_language (var);
d5d6fca5 636 var->root->lang = &languages[lang];
8b93c638
JM
637
638 /* Set ourselves as our root */
639 var->root->rootvar = var;
640
641 /* Reset the selected frame */
35633fef
JK
642 if (frame_id_p (old_id))
643 select_frame (frame_find_by_id (old_id));
8b93c638
JM
644 }
645
73a93a32
JI
646 /* If the variable object name is null, that means this
647 is a temporary variable, so don't install it. */
648
649 if ((var != NULL) && (objname != NULL))
8b93c638 650 {
1b36a34b 651 var->obj_name = xstrdup (objname);
8b93c638
JM
652
653 /* If a varobj name is duplicated, the install will fail so
654 we must clenup */
655 if (!install_variable (var))
656 {
657 do_cleanups (old_chain);
658 return NULL;
659 }
660 }
661
662 discard_cleanups (old_chain);
663 return var;
664}
665
666/* Generates an unique name that can be used for a varobj */
667
668char *
669varobj_gen_name (void)
670{
671 static int id = 0;
e64d9b3d 672 char *obj_name;
8b93c638
JM
673
674 /* generate a name for this object */
675 id++;
b435e160 676 obj_name = xstrprintf ("var%d", id);
8b93c638 677
e64d9b3d 678 return obj_name;
8b93c638
JM
679}
680
61d8f275
JK
681/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
682 error if OBJNAME cannot be found. */
8b93c638
JM
683
684struct varobj *
685varobj_get_handle (char *objname)
686{
687 struct vlist *cv;
688 const char *chp;
689 unsigned int index = 0;
690 unsigned int i = 1;
691
692 for (chp = objname; *chp; chp++)
693 {
694 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
695 }
696
697 cv = *(varobj_table + index);
698 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
699 cv = cv->next;
700
701 if (cv == NULL)
8a3fe4f8 702 error (_("Variable object not found"));
8b93c638
JM
703
704 return cv->var;
705}
706
707/* Given the handle, return the name of the object */
708
709char *
710varobj_get_objname (struct varobj *var)
711{
712 return var->obj_name;
713}
714
715/* Given the handle, return the expression represented by the object */
716
717char *
718varobj_get_expression (struct varobj *var)
719{
720 return name_of_variable (var);
721}
722
723/* Deletes a varobj and all its children if only_children == 0,
724 otherwise deletes only the children; returns a malloc'ed list of all the
725 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
726
727int
728varobj_delete (struct varobj *var, char ***dellist, int only_children)
729{
730 int delcount;
731 int mycount;
732 struct cpstack *result = NULL;
733 char **cp;
734
735 /* Initialize a stack for temporary results */
736 cppush (&result, NULL);
737
738 if (only_children)
739 /* Delete only the variable children */
740 delcount = delete_variable (&result, var, 1 /* only the children */ );
741 else
742 /* Delete the variable and all its children */
743 delcount = delete_variable (&result, var, 0 /* parent+children */ );
744
745 /* We may have been asked to return a list of what has been deleted */
746 if (dellist != NULL)
747 {
748 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
749
750 cp = *dellist;
751 mycount = delcount;
752 *cp = cppop (&result);
753 while ((*cp != NULL) && (mycount > 0))
754 {
755 mycount--;
756 cp++;
757 *cp = cppop (&result);
758 }
759
760 if (mycount || (*cp != NULL))
8a3fe4f8 761 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 762 mycount);
8b93c638
JM
763 }
764
765 return delcount;
766}
767
d8b65138
JK
768#if HAVE_PYTHON
769
b6313243
TT
770/* Convenience function for varobj_set_visualizer. Instantiate a
771 pretty-printer for a given value. */
772static PyObject *
773instantiate_pretty_printer (PyObject *constructor, struct value *value)
774{
b6313243
TT
775 PyObject *val_obj = NULL;
776 PyObject *printer;
b6313243 777
b6313243 778 val_obj = value_to_value_object (value);
b6313243
TT
779 if (! val_obj)
780 return NULL;
781
782 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
783 Py_DECREF (val_obj);
784 return printer;
b6313243
TT
785 return NULL;
786}
787
d8b65138
JK
788#endif
789
8b93c638
JM
790/* Set/Get variable object display format */
791
792enum varobj_display_formats
793varobj_set_display_format (struct varobj *var,
794 enum varobj_display_formats format)
795{
796 switch (format)
797 {
798 case FORMAT_NATURAL:
799 case FORMAT_BINARY:
800 case FORMAT_DECIMAL:
801 case FORMAT_HEXADECIMAL:
802 case FORMAT_OCTAL:
803 var->format = format;
804 break;
805
806 default:
807 var->format = variable_default_display (var);
808 }
809
ae7d22a6
VP
810 if (varobj_value_is_changeable_p (var)
811 && var->value && !value_lazy (var->value))
812 {
6c761d9c 813 xfree (var->print_value);
d452c4bc 814 var->print_value = value_get_print_value (var->value, var->format, var);
ae7d22a6
VP
815 }
816
8b93c638
JM
817 return var->format;
818}
819
820enum varobj_display_formats
821varobj_get_display_format (struct varobj *var)
822{
823 return var->format;
824}
825
b6313243
TT
826char *
827varobj_get_display_hint (struct varobj *var)
828{
829 char *result = NULL;
830
831#if HAVE_PYTHON
d452c4bc
UW
832 struct cleanup *back_to = varobj_ensure_python_env (var);
833
b6313243
TT
834 if (var->pretty_printer)
835 result = gdbpy_get_display_hint (var->pretty_printer);
d452c4bc
UW
836
837 do_cleanups (back_to);
b6313243
TT
838#endif
839
840 return result;
841}
842
0cc7d26f
TT
843/* Return true if the varobj has items after TO, false otherwise. */
844
845int
846varobj_has_more (struct varobj *var, int to)
847{
848 if (VEC_length (varobj_p, var->children) > to)
849 return 1;
850 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
851 && var->saved_item != NULL);
852}
853
c5b48eac
VP
854/* If the variable object is bound to a specific thread, that
855 is its evaluation can always be done in context of a frame
856 inside that thread, returns GDB id of the thread -- which
857 is always positive. Otherwise, returns -1. */
858int
859varobj_get_thread_id (struct varobj *var)
860{
861 if (var->root->valid_block && var->root->thread_id > 0)
862 return var->root->thread_id;
863 else
864 return -1;
865}
866
25d5ea92
VP
867void
868varobj_set_frozen (struct varobj *var, int frozen)
869{
870 /* When a variable is unfrozen, we don't fetch its value.
871 The 'not_fetched' flag remains set, so next -var-update
872 won't complain.
873
874 We don't fetch the value, because for structures the client
875 should do -var-update anyway. It would be bad to have different
876 client-size logic for structure and other types. */
877 var->frozen = frozen;
878}
879
880int
881varobj_get_frozen (struct varobj *var)
882{
883 return var->frozen;
884}
885
0cc7d26f
TT
886/* A helper function that restricts a range to what is actually
887 available in a VEC. This follows the usual rules for the meaning
888 of FROM and TO -- if either is negative, the entire range is
889 used. */
890
891static void
892restrict_range (VEC (varobj_p) *children, int *from, int *to)
893{
894 if (*from < 0 || *to < 0)
895 {
896 *from = 0;
897 *to = VEC_length (varobj_p, children);
898 }
899 else
900 {
901 if (*from > VEC_length (varobj_p, children))
902 *from = VEC_length (varobj_p, children);
903 if (*to > VEC_length (varobj_p, children))
904 *to = VEC_length (varobj_p, children);
905 if (*from > *to)
906 *from = *to;
907 }
908}
909
d8b65138
JK
910#if HAVE_PYTHON
911
0cc7d26f
TT
912/* A helper for update_dynamic_varobj_children that installs a new
913 child when needed. */
914
915static void
916install_dynamic_child (struct varobj *var,
917 VEC (varobj_p) **changed,
918 VEC (varobj_p) **new,
919 VEC (varobj_p) **unchanged,
920 int *cchanged,
921 int index,
922 const char *name,
923 struct value *value)
924{
925 if (VEC_length (varobj_p, var->children) < index + 1)
926 {
927 /* There's no child yet. */
928 struct varobj *child = varobj_add_child (var, name, value);
a109c7c1 929
0cc7d26f
TT
930 if (new)
931 {
932 VEC_safe_push (varobj_p, *new, child);
933 *cchanged = 1;
934 }
935 }
936 else
937 {
938 varobj_p existing = VEC_index (varobj_p, var->children, index);
a109c7c1 939
0cc7d26f
TT
940 if (install_new_value (existing, value, 0))
941 {
942 if (changed)
943 VEC_safe_push (varobj_p, *changed, existing);
944 }
945 else if (unchanged)
946 VEC_safe_push (varobj_p, *unchanged, existing);
947 }
948}
949
0cc7d26f
TT
950static int
951dynamic_varobj_has_child_method (struct varobj *var)
952{
953 struct cleanup *back_to;
954 PyObject *printer = var->pretty_printer;
955 int result;
956
957 back_to = varobj_ensure_python_env (var);
958 result = PyObject_HasAttr (printer, gdbpy_children_cst);
959 do_cleanups (back_to);
960 return result;
961}
962
963#endif
964
b6313243
TT
965static int
966update_dynamic_varobj_children (struct varobj *var,
967 VEC (varobj_p) **changed,
0cc7d26f
TT
968 VEC (varobj_p) **new,
969 VEC (varobj_p) **unchanged,
970 int *cchanged,
971 int update_children,
972 int from,
973 int to)
b6313243
TT
974{
975#if HAVE_PYTHON
b6313243
TT
976 struct cleanup *back_to;
977 PyObject *children;
b6313243 978 int i;
b6313243 979 PyObject *printer = var->pretty_printer;
b6313243 980
d452c4bc 981 back_to = varobj_ensure_python_env (var);
b6313243
TT
982
983 *cchanged = 0;
984 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
985 {
986 do_cleanups (back_to);
987 return 0;
988 }
989
0cc7d26f 990 if (update_children || !var->child_iter)
b6313243 991 {
0cc7d26f
TT
992 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
993 NULL);
b6313243 994
0cc7d26f
TT
995 if (!children)
996 {
997 gdbpy_print_stack ();
998 error (_("Null value returned for children"));
999 }
b6313243 1000
0cc7d26f 1001 make_cleanup_py_decref (children);
b6313243 1002
0cc7d26f
TT
1003 if (!PyIter_Check (children))
1004 error (_("Returned value is not iterable"));
1005
1006 Py_XDECREF (var->child_iter);
1007 var->child_iter = PyObject_GetIter (children);
1008 if (!var->child_iter)
1009 {
1010 gdbpy_print_stack ();
1011 error (_("Could not get children iterator"));
1012 }
1013
1014 Py_XDECREF (var->saved_item);
1015 var->saved_item = NULL;
1016
1017 i = 0;
b6313243 1018 }
0cc7d26f
TT
1019 else
1020 i = VEC_length (varobj_p, var->children);
b6313243 1021
0cc7d26f
TT
1022 /* We ask for one extra child, so that MI can report whether there
1023 are more children. */
1024 for (; to < 0 || i < to + 1; ++i)
b6313243 1025 {
0cc7d26f 1026 PyObject *item;
b6313243 1027
0cc7d26f
TT
1028 /* See if there was a leftover from last time. */
1029 if (var->saved_item)
1030 {
1031 item = var->saved_item;
1032 var->saved_item = NULL;
1033 }
1034 else
1035 item = PyIter_Next (var->child_iter);
b6313243 1036
0cc7d26f
TT
1037 if (!item)
1038 break;
b6313243 1039
0cc7d26f
TT
1040 /* We don't want to push the extra child on any report list. */
1041 if (to < 0 || i < to)
b6313243 1042 {
0cc7d26f
TT
1043 PyObject *py_v;
1044 char *name;
1045 struct value *v;
1046 struct cleanup *inner;
1047 int can_mention = from < 0 || i >= from;
1048
1049 inner = make_cleanup_py_decref (item);
1050
1051 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1052 error (_("Invalid item from the child list"));
1053
1054 v = convert_value_from_python (py_v);
8dc78533
JK
1055 if (v == NULL)
1056 gdbpy_print_stack ();
0cc7d26f
TT
1057 install_dynamic_child (var, can_mention ? changed : NULL,
1058 can_mention ? new : NULL,
1059 can_mention ? unchanged : NULL,
1060 can_mention ? cchanged : NULL, i, name, v);
1061 do_cleanups (inner);
b6313243 1062 }
0cc7d26f 1063 else
b6313243 1064 {
0cc7d26f
TT
1065 Py_XDECREF (var->saved_item);
1066 var->saved_item = item;
b6313243 1067
0cc7d26f
TT
1068 /* We want to truncate the child list just before this
1069 element. */
1070 break;
1071 }
b6313243
TT
1072 }
1073
1074 if (i < VEC_length (varobj_p, var->children))
1075 {
0cc7d26f 1076 int j;
a109c7c1 1077
0cc7d26f
TT
1078 *cchanged = 1;
1079 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1080 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1081 VEC_truncate (varobj_p, var->children, i);
b6313243 1082 }
0cc7d26f
TT
1083
1084 /* If there are fewer children than requested, note that the list of
1085 children changed. */
1086 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1087 *cchanged = 1;
1088
b6313243
TT
1089 var->num_children = VEC_length (varobj_p, var->children);
1090
1091 do_cleanups (back_to);
1092
b6313243
TT
1093 return 1;
1094#else
1095 gdb_assert (0 && "should never be called if Python is not enabled");
1096#endif
1097}
25d5ea92 1098
8b93c638
JM
1099int
1100varobj_get_num_children (struct varobj *var)
1101{
1102 if (var->num_children == -1)
b6313243 1103 {
0cc7d26f
TT
1104 if (var->pretty_printer)
1105 {
1106 int dummy;
1107
1108 /* If we have a dynamic varobj, don't report -1 children.
1109 So, try to fetch some children first. */
1110 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1111 0, 0, 0);
1112 }
1113 else
b6313243
TT
1114 var->num_children = number_of_children (var);
1115 }
8b93c638 1116
0cc7d26f 1117 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
1118}
1119
1120/* Creates a list of the immediate children of a variable object;
1121 the return code is the number of such children or -1 on error */
1122
d56d46f5 1123VEC (varobj_p)*
0cc7d26f 1124varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 1125{
8b93c638 1126 char *name;
b6313243
TT
1127 int i, children_changed;
1128
1129 var->children_requested = 1;
1130
0cc7d26f
TT
1131 if (var->pretty_printer)
1132 {
b6313243
TT
1133 /* This, in theory, can result in the number of children changing without
1134 frontend noticing. But well, calling -var-list-children on the same
1135 varobj twice is not something a sane frontend would do. */
0cc7d26f
TT
1136 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1137 0, 0, *to);
1138 restrict_range (var->children, from, to);
1139 return var->children;
1140 }
8b93c638 1141
8b93c638
JM
1142 if (var->num_children == -1)
1143 var->num_children = number_of_children (var);
1144
74a44383
DJ
1145 /* If that failed, give up. */
1146 if (var->num_children == -1)
d56d46f5 1147 return var->children;
74a44383 1148
28335dcc
VP
1149 /* If we're called when the list of children is not yet initialized,
1150 allocate enough elements in it. */
1151 while (VEC_length (varobj_p, var->children) < var->num_children)
1152 VEC_safe_push (varobj_p, var->children, NULL);
1153
8b93c638
JM
1154 for (i = 0; i < var->num_children; i++)
1155 {
d56d46f5 1156 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1157
1158 if (existing == NULL)
1159 {
1160 /* Either it's the first call to varobj_list_children for
1161 this variable object, and the child was never created,
1162 or it was explicitly deleted by the client. */
1163 name = name_of_child (var, i);
1164 existing = create_child (var, i, name);
1165 VEC_replace (varobj_p, var->children, i, existing);
1166 }
8b93c638
JM
1167 }
1168
0cc7d26f 1169 restrict_range (var->children, from, to);
d56d46f5 1170 return var->children;
8b93c638
JM
1171}
1172
d8b65138
JK
1173#if HAVE_PYTHON
1174
b6313243
TT
1175static struct varobj *
1176varobj_add_child (struct varobj *var, const char *name, struct value *value)
1177{
1178 varobj_p v = create_child_with_value (var,
1179 VEC_length (varobj_p, var->children),
1180 name, value);
a109c7c1 1181
b6313243 1182 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1183 return v;
1184}
1185
d8b65138
JK
1186#endif /* HAVE_PYTHON */
1187
8b93c638
JM
1188/* Obtain the type of an object Variable as a string similar to the one gdb
1189 prints on the console */
1190
1191char *
1192varobj_get_type (struct varobj *var)
1193{
8b93c638 1194 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1195 NULL, too.)
1196 Do not return a type for invalid variables as well. */
1197 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1198 return NULL;
1199
1a4300e9 1200 return type_to_string (var->type);
8b93c638
JM
1201}
1202
1ecb4ee0
DJ
1203/* Obtain the type of an object variable. */
1204
1205struct type *
1206varobj_get_gdb_type (struct varobj *var)
1207{
1208 return var->type;
1209}
1210
02142340
VP
1211/* Return a pointer to the full rooted expression of varobj VAR.
1212 If it has not been computed yet, compute it. */
1213char *
1214varobj_get_path_expr (struct varobj *var)
1215{
1216 if (var->path_expr != NULL)
1217 return var->path_expr;
1218 else
1219 {
1220 /* For root varobjs, we initialize path_expr
1221 when creating varobj, so here it should be
1222 child varobj. */
1223 gdb_assert (!is_root_p (var));
1224 return (*var->root->lang->path_expr_of_child) (var);
1225 }
1226}
1227
8b93c638
JM
1228enum varobj_languages
1229varobj_get_language (struct varobj *var)
1230{
1231 return variable_language (var);
1232}
1233
1234int
1235varobj_get_attributes (struct varobj *var)
1236{
1237 int attributes = 0;
1238
340a7723 1239 if (varobj_editable_p (var))
8b93c638
JM
1240 /* FIXME: define masks for attributes */
1241 attributes |= 0x00000001; /* Editable */
1242
1243 return attributes;
1244}
1245
0cc7d26f
TT
1246int
1247varobj_pretty_printed_p (struct varobj *var)
1248{
1249 return var->pretty_printer != NULL;
1250}
1251
de051565
MK
1252char *
1253varobj_get_formatted_value (struct varobj *var,
1254 enum varobj_display_formats format)
1255{
1256 return my_value_of_variable (var, format);
1257}
1258
8b93c638
JM
1259char *
1260varobj_get_value (struct varobj *var)
1261{
de051565 1262 return my_value_of_variable (var, var->format);
8b93c638
JM
1263}
1264
1265/* Set the value of an object variable (if it is editable) to the
1266 value of the given expression */
1267/* Note: Invokes functions that can call error() */
1268
1269int
1270varobj_set_value (struct varobj *var, char *expression)
1271{
30b28db1 1272 struct value *val;
8b93c638
JM
1273
1274 /* The argument "expression" contains the variable's new value.
1275 We need to first construct a legal expression for this -- ugh! */
1276 /* Does this cover all the bases? */
1277 struct expression *exp;
30b28db1 1278 struct value *value;
8b93c638 1279 int saved_input_radix = input_radix;
340a7723 1280 char *s = expression;
8b93c638 1281
340a7723 1282 gdb_assert (varobj_editable_p (var));
8b93c638 1283
340a7723
NR
1284 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1285 exp = parse_exp_1 (&s, 0, 0);
1286 if (!gdb_evaluate_expression (exp, &value))
1287 {
1288 /* We cannot proceed without a valid expression. */
1289 xfree (exp);
1290 return 0;
8b93c638
JM
1291 }
1292
340a7723
NR
1293 /* All types that are editable must also be changeable. */
1294 gdb_assert (varobj_value_is_changeable_p (var));
1295
1296 /* The value of a changeable variable object must not be lazy. */
1297 gdb_assert (!value_lazy (var->value));
1298
1299 /* Need to coerce the input. We want to check if the
1300 value of the variable object will be different
1301 after assignment, and the first thing value_assign
1302 does is coerce the input.
1303 For example, if we are assigning an array to a pointer variable we
1304 should compare the pointer with the the array's address, not with the
1305 array's content. */
1306 value = coerce_array (value);
1307
1308 /* The new value may be lazy. gdb_value_assign, or
1309 rather value_contents, will take care of this.
1310 If fetching of the new value will fail, gdb_value_assign
1311 with catch the exception. */
1312 if (!gdb_value_assign (var->value, value, &val))
1313 return 0;
1314
1315 /* If the value has changed, record it, so that next -var-update can
1316 report this change. If a variable had a value of '1', we've set it
1317 to '333' and then set again to '1', when -var-update will report this
1318 variable as changed -- because the first assignment has set the
1319 'updated' flag. There's no need to optimize that, because return value
1320 of -var-update should be considered an approximation. */
1321 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1322 input_radix = saved_input_radix;
1323 return 1;
8b93c638
JM
1324}
1325
0cc7d26f
TT
1326#if HAVE_PYTHON
1327
1328/* A helper function to install a constructor function and visualizer
1329 in a varobj. */
1330
1331static void
1332install_visualizer (struct varobj *var, PyObject *constructor,
1333 PyObject *visualizer)
1334{
1335 Py_XDECREF (var->constructor);
1336 var->constructor = constructor;
1337
1338 Py_XDECREF (var->pretty_printer);
1339 var->pretty_printer = visualizer;
1340
1341 Py_XDECREF (var->child_iter);
1342 var->child_iter = NULL;
1343}
1344
1345/* Install the default visualizer for VAR. */
1346
1347static void
1348install_default_visualizer (struct varobj *var)
1349{
1350 if (pretty_printing)
1351 {
1352 PyObject *pretty_printer = NULL;
1353
1354 if (var->value)
1355 {
1356 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1357 if (! pretty_printer)
1358 {
1359 gdbpy_print_stack ();
1360 error (_("Cannot instantiate printer for default visualizer"));
1361 }
1362 }
1363
1364 if (pretty_printer == Py_None)
1365 {
1366 Py_DECREF (pretty_printer);
1367 pretty_printer = NULL;
1368 }
1369
1370 install_visualizer (var, NULL, pretty_printer);
1371 }
1372}
1373
1374/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1375 make a new object. */
1376
1377static void
1378construct_visualizer (struct varobj *var, PyObject *constructor)
1379{
1380 PyObject *pretty_printer;
1381
1382 Py_INCREF (constructor);
1383 if (constructor == Py_None)
1384 pretty_printer = NULL;
1385 else
1386 {
1387 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1388 if (! pretty_printer)
1389 {
1390 gdbpy_print_stack ();
1391 Py_DECREF (constructor);
1392 constructor = Py_None;
1393 Py_INCREF (constructor);
1394 }
1395
1396 if (pretty_printer == Py_None)
1397 {
1398 Py_DECREF (pretty_printer);
1399 pretty_printer = NULL;
1400 }
1401 }
1402
1403 install_visualizer (var, constructor, pretty_printer);
1404}
1405
1406#endif /* HAVE_PYTHON */
1407
1408/* A helper function for install_new_value. This creates and installs
1409 a visualizer for VAR, if appropriate. */
1410
1411static void
1412install_new_value_visualizer (struct varobj *var)
1413{
1414#if HAVE_PYTHON
1415 /* If the constructor is None, then we want the raw value. If VAR
1416 does not have a value, just skip this. */
1417 if (var->constructor != Py_None && var->value)
1418 {
1419 struct cleanup *cleanup;
0cc7d26f
TT
1420
1421 cleanup = varobj_ensure_python_env (var);
1422
1423 if (!var->constructor)
1424 install_default_visualizer (var);
1425 else
1426 construct_visualizer (var, var->constructor);
1427
1428 do_cleanups (cleanup);
1429 }
1430#else
1431 /* Do nothing. */
1432#endif
1433}
1434
acd65feb
VP
1435/* Assign a new value to a variable object. If INITIAL is non-zero,
1436 this is the first assignement after the variable object was just
1437 created, or changed type. In that case, just assign the value
1438 and return 0.
ee342b23
VP
1439 Otherwise, assign the new value, and return 1 if the value is different
1440 from the current one, 0 otherwise. The comparison is done on textual
1441 representation of value. Therefore, some types need not be compared. E.g.
1442 for structures the reported value is always "{...}", so no comparison is
1443 necessary here. If the old value was NULL and new one is not, or vice versa,
1444 we always return 1.
b26ed50d
VP
1445
1446 The VALUE parameter should not be released -- the function will
1447 take care of releasing it when needed. */
acd65feb
VP
1448static int
1449install_new_value (struct varobj *var, struct value *value, int initial)
1450{
1451 int changeable;
1452 int need_to_fetch;
1453 int changed = 0;
25d5ea92 1454 int intentionally_not_fetched = 0;
7a4d50bf 1455 char *print_value = NULL;
acd65feb 1456
acd65feb
VP
1457 /* We need to know the varobj's type to decide if the value should
1458 be fetched or not. C++ fake children (public/protected/private) don't have
1459 a type. */
1460 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1461 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1462
1463 /* If the type has custom visualizer, we consider it to be always
1464 changeable. FIXME: need to make sure this behaviour will not
1465 mess up read-sensitive values. */
1466 if (var->pretty_printer)
1467 changeable = 1;
1468
acd65feb
VP
1469 need_to_fetch = changeable;
1470
b26ed50d
VP
1471 /* We are not interested in the address of references, and given
1472 that in C++ a reference is not rebindable, it cannot
1473 meaningfully change. So, get hold of the real value. */
1474 if (value)
0cc7d26f 1475 value = coerce_ref (value);
b26ed50d 1476
acd65feb
VP
1477 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1478 /* For unions, we need to fetch the value implicitly because
1479 of implementation of union member fetch. When gdb
1480 creates a value for a field and the value of the enclosing
1481 structure is not lazy, it immediately copies the necessary
1482 bytes from the enclosing values. If the enclosing value is
1483 lazy, the call to value_fetch_lazy on the field will read
1484 the data from memory. For unions, that means we'll read the
1485 same memory more than once, which is not desirable. So
1486 fetch now. */
1487 need_to_fetch = 1;
1488
1489 /* The new value might be lazy. If the type is changeable,
1490 that is we'll be comparing values of this type, fetch the
1491 value now. Otherwise, on the next update the old value
1492 will be lazy, which means we've lost that old value. */
1493 if (need_to_fetch && value && value_lazy (value))
1494 {
25d5ea92
VP
1495 struct varobj *parent = var->parent;
1496 int frozen = var->frozen;
a109c7c1 1497
25d5ea92
VP
1498 for (; !frozen && parent; parent = parent->parent)
1499 frozen |= parent->frozen;
1500
1501 if (frozen && initial)
1502 {
1503 /* For variables that are frozen, or are children of frozen
1504 variables, we don't do fetch on initial assignment.
1505 For non-initial assignemnt we do the fetch, since it means we're
1506 explicitly asked to compare the new value with the old one. */
1507 intentionally_not_fetched = 1;
1508 }
1509 else if (!gdb_value_fetch_lazy (value))
acd65feb 1510 {
acd65feb
VP
1511 /* Set the value to NULL, so that for the next -var-update,
1512 we don't try to compare the new value with this value,
1513 that we couldn't even read. */
1514 value = NULL;
1515 }
acd65feb
VP
1516 }
1517
b6313243 1518
7a4d50bf
VP
1519 /* Below, we'll be comparing string rendering of old and new
1520 values. Don't get string rendering if the value is
1521 lazy -- if it is, the code above has decided that the value
1522 should not be fetched. */
0cc7d26f 1523 if (value && !value_lazy (value) && !var->pretty_printer)
d452c4bc 1524 print_value = value_get_print_value (value, var->format, var);
7a4d50bf 1525
acd65feb
VP
1526 /* If the type is changeable, compare the old and the new values.
1527 If this is the initial assignment, we don't have any old value
1528 to compare with. */
7a4d50bf 1529 if (!initial && changeable)
acd65feb
VP
1530 {
1531 /* If the value of the varobj was changed by -var-set-value, then the
1532 value in the varobj and in the target is the same. However, that value
1533 is different from the value that the varobj had after the previous
57e66780 1534 -var-update. So need to the varobj as changed. */
acd65feb 1535 if (var->updated)
57e66780 1536 {
57e66780
DJ
1537 changed = 1;
1538 }
0cc7d26f 1539 else if (! var->pretty_printer)
acd65feb
VP
1540 {
1541 /* Try to compare the values. That requires that both
1542 values are non-lazy. */
25d5ea92
VP
1543 if (var->not_fetched && value_lazy (var->value))
1544 {
1545 /* This is a frozen varobj and the value was never read.
1546 Presumably, UI shows some "never read" indicator.
1547 Now that we've fetched the real value, we need to report
1548 this varobj as changed so that UI can show the real
1549 value. */
1550 changed = 1;
1551 }
1552 else if (var->value == NULL && value == NULL)
acd65feb
VP
1553 /* Equal. */
1554 ;
1555 else if (var->value == NULL || value == NULL)
57e66780 1556 {
57e66780
DJ
1557 changed = 1;
1558 }
acd65feb
VP
1559 else
1560 {
1561 gdb_assert (!value_lazy (var->value));
1562 gdb_assert (!value_lazy (value));
85265413 1563
57e66780 1564 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1565 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1566 changed = 1;
acd65feb
VP
1567 }
1568 }
1569 }
85265413 1570
ee342b23
VP
1571 if (!initial && !changeable)
1572 {
1573 /* For values that are not changeable, we don't compare the values.
1574 However, we want to notice if a value was not NULL and now is NULL,
1575 or vise versa, so that we report when top-level varobjs come in scope
1576 and leave the scope. */
1577 changed = (var->value != NULL) != (value != NULL);
1578 }
1579
acd65feb 1580 /* We must always keep the new value, since children depend on it. */
25d5ea92 1581 if (var->value != NULL && var->value != value)
acd65feb
VP
1582 value_free (var->value);
1583 var->value = value;
0cc7d26f
TT
1584 if (value != NULL)
1585 value_incref (value);
25d5ea92
VP
1586 if (value && value_lazy (value) && intentionally_not_fetched)
1587 var->not_fetched = 1;
1588 else
1589 var->not_fetched = 0;
acd65feb 1590 var->updated = 0;
85265413 1591
0cc7d26f
TT
1592 install_new_value_visualizer (var);
1593
1594 /* If we installed a pretty-printer, re-compare the printed version
1595 to see if the variable changed. */
1596 if (var->pretty_printer)
1597 {
1598 xfree (print_value);
1599 print_value = value_get_print_value (var->value, var->format, var);
e8f781e2
TT
1600 if ((var->print_value == NULL && print_value != NULL)
1601 || (var->print_value != NULL && print_value == NULL)
1602 || (var->print_value != NULL && print_value != NULL
1603 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1604 changed = 1;
1605 }
1606 if (var->print_value)
1607 xfree (var->print_value);
1608 var->print_value = print_value;
1609
b26ed50d 1610 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1611
1612 return changed;
1613}
acd65feb 1614
0cc7d26f
TT
1615/* Return the requested range for a varobj. VAR is the varobj. FROM
1616 and TO are out parameters; *FROM and *TO will be set to the
1617 selected sub-range of VAR. If no range was selected using
1618 -var-set-update-range, then both will be -1. */
1619void
1620varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1621{
0cc7d26f
TT
1622 *from = var->from;
1623 *to = var->to;
b6313243
TT
1624}
1625
0cc7d26f
TT
1626/* Set the selected sub-range of children of VAR to start at index
1627 FROM and end at index TO. If either FROM or TO is less than zero,
1628 this is interpreted as a request for all children. */
1629void
1630varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1631{
0cc7d26f
TT
1632 var->from = from;
1633 var->to = to;
b6313243
TT
1634}
1635
1636void
1637varobj_set_visualizer (struct varobj *var, const char *visualizer)
1638{
1639#if HAVE_PYTHON
34fa1d9d
MS
1640 PyObject *mainmod, *globals, *constructor;
1641 struct cleanup *back_to;
b6313243 1642
d452c4bc 1643 back_to = varobj_ensure_python_env (var);
b6313243
TT
1644
1645 mainmod = PyImport_AddModule ("__main__");
1646 globals = PyModule_GetDict (mainmod);
1647 Py_INCREF (globals);
1648 make_cleanup_py_decref (globals);
1649
1650 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1651
0cc7d26f 1652 if (! constructor)
b6313243
TT
1653 {
1654 gdbpy_print_stack ();
da1f2771 1655 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1656 }
1657
0cc7d26f
TT
1658 construct_visualizer (var, constructor);
1659 Py_XDECREF (constructor);
b6313243 1660
0cc7d26f
TT
1661 /* If there are any children now, wipe them. */
1662 varobj_delete (var, NULL, 1 /* children only */);
1663 var->num_children = -1;
b6313243
TT
1664
1665 do_cleanups (back_to);
1666#else
da1f2771 1667 error (_("Python support required"));
b6313243
TT
1668#endif
1669}
1670
8b93c638
JM
1671/* Update the values for a variable and its children. This is a
1672 two-pronged attack. First, re-parse the value for the root's
1673 expression to see if it's changed. Then go all the way
1674 through its children, reconstructing them and noting if they've
1675 changed.
1676
25d5ea92
VP
1677 The EXPLICIT parameter specifies if this call is result
1678 of MI request to update this specific variable, or
1679 result of implicit -var-update *. For implicit request, we don't
1680 update frozen variables.
705da579
KS
1681
1682 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1683 returns TYPE_CHANGED, then it has done this and VARP will be modified
1684 to point to the new varobj. */
8b93c638 1685
f7f9ae2c 1686VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
8b93c638
JM
1687{
1688 int changed = 0;
25d5ea92 1689 int type_changed = 0;
8b93c638 1690 int i;
30b28db1 1691 struct value *new;
b6313243 1692 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1693 VEC (varobj_update_result) *result = NULL;
8b93c638 1694
25d5ea92
VP
1695 /* Frozen means frozen -- we don't check for any change in
1696 this varobj, including its going out of scope, or
1697 changing type. One use case for frozen varobjs is
1698 retaining previously evaluated expressions, and we don't
1699 want them to be reevaluated at all. */
1700 if (!explicit && (*varp)->frozen)
f7f9ae2c 1701 return result;
8756216b
DP
1702
1703 if (!(*varp)->root->is_valid)
f7f9ae2c 1704 {
cfce2ea2 1705 varobj_update_result r = {0};
a109c7c1 1706
cfce2ea2 1707 r.varobj = *varp;
f7f9ae2c
VP
1708 r.status = VAROBJ_INVALID;
1709 VEC_safe_push (varobj_update_result, result, &r);
1710 return result;
1711 }
8b93c638 1712
25d5ea92 1713 if ((*varp)->root->rootvar == *varp)
ae093f96 1714 {
cfce2ea2 1715 varobj_update_result r = {0};
a109c7c1 1716
cfce2ea2 1717 r.varobj = *varp;
f7f9ae2c
VP
1718 r.status = VAROBJ_IN_SCOPE;
1719
25d5ea92
VP
1720 /* Update the root variable. value_of_root can return NULL
1721 if the variable is no longer around, i.e. we stepped out of
1722 the frame in which a local existed. We are letting the
1723 value_of_root variable dispose of the varobj if the type
1724 has changed. */
25d5ea92 1725 new = value_of_root (varp, &type_changed);
f7f9ae2c
VP
1726 r.varobj = *varp;
1727
1728 r.type_changed = type_changed;
ea56f9c2 1729 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1730 r.changed = 1;
ea56f9c2 1731
25d5ea92 1732 if (new == NULL)
f7f9ae2c 1733 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1734 r.value_installed = 1;
f7f9ae2c
VP
1735
1736 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1737 {
0b4bc29a
JK
1738 if (r.type_changed || r.changed)
1739 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1740 return result;
1741 }
1742
1743 VEC_safe_push (varobj_update_result, stack, &r);
1744 }
1745 else
1746 {
cfce2ea2 1747 varobj_update_result r = {0};
a109c7c1 1748
cfce2ea2 1749 r.varobj = *varp;
b6313243 1750 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1751 }
8b93c638 1752
8756216b 1753 /* Walk through the children, reconstructing them all. */
b6313243 1754 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1755 {
b6313243
TT
1756 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1757 struct varobj *v = r.varobj;
1758
1759 VEC_pop (varobj_update_result, stack);
1760
1761 /* Update this variable, unless it's a root, which is already
1762 updated. */
1763 if (!r.value_installed)
1764 {
1765 new = value_of_child (v->parent, v->index);
1766 if (install_new_value (v, new, 0 /* type not changed */))
1767 {
1768 r.changed = 1;
1769 v->updated = 0;
1770 }
1771 }
1772
1773 /* We probably should not get children of a varobj that has a
1774 pretty-printer, but for which -var-list-children was never
0cc7d26f 1775 invoked. */
b6313243
TT
1776 if (v->pretty_printer)
1777 {
0cc7d26f 1778 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
26f9bcee 1779 int i, children_changed = 0;
b6313243
TT
1780
1781 if (v->frozen)
1782 continue;
1783
0cc7d26f
TT
1784 if (!v->children_requested)
1785 {
1786 int dummy;
1787
1788 /* If we initially did not have potential children, but
1789 now we do, consider the varobj as changed.
1790 Otherwise, if children were never requested, consider
1791 it as unchanged -- presumably, such varobj is not yet
1792 expanded in the UI, so we need not bother getting
1793 it. */
1794 if (!varobj_has_more (v, 0))
1795 {
1796 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1797 &dummy, 0, 0, 0);
1798 if (varobj_has_more (v, 0))
1799 r.changed = 1;
1800 }
1801
1802 if (r.changed)
1803 VEC_safe_push (varobj_update_result, result, &r);
1804
1805 continue;
1806 }
1807
b6313243
TT
1808 /* If update_dynamic_varobj_children returns 0, then we have
1809 a non-conforming pretty-printer, so we skip it. */
0cc7d26f
TT
1810 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1811 &children_changed, 1,
1812 v->from, v->to))
b6313243 1813 {
0cc7d26f 1814 if (children_changed || new)
b6313243 1815 {
0cc7d26f
TT
1816 r.children_changed = 1;
1817 r.new = new;
b6313243 1818 }
0cc7d26f
TT
1819 /* Push in reverse order so that the first child is
1820 popped from the work stack first, and so will be
1821 added to result first. This does not affect
1822 correctness, just "nicer". */
1823 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1824 {
0cc7d26f 1825 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1826 varobj_update_result r = {0};
a109c7c1 1827
cfce2ea2 1828 r.varobj = tmp;
0cc7d26f 1829 r.changed = 1;
b6313243
TT
1830 r.value_installed = 1;
1831 VEC_safe_push (varobj_update_result, stack, &r);
1832 }
0cc7d26f
TT
1833 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1834 {
1835 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1836
0cc7d26f
TT
1837 if (!tmp->frozen)
1838 {
cfce2ea2 1839 varobj_update_result r = {0};
a109c7c1 1840
cfce2ea2 1841 r.varobj = tmp;
0cc7d26f
TT
1842 r.value_installed = 1;
1843 VEC_safe_push (varobj_update_result, stack, &r);
1844 }
1845 }
b6313243
TT
1846 if (r.changed || r.children_changed)
1847 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f
TT
1848
1849 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1850 has been put into the result vector. */
1851 VEC_free (varobj_p, changed);
1852 VEC_free (varobj_p, unchanged);
1853
b6313243
TT
1854 continue;
1855 }
1856 }
28335dcc
VP
1857
1858 /* Push any children. Use reverse order so that the first
1859 child is popped from the work stack first, and so
1860 will be added to result first. This does not
1861 affect correctness, just "nicer". */
1862 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1863 {
28335dcc 1864 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1865
28335dcc 1866 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1867 if (c != NULL && !c->frozen)
28335dcc 1868 {
cfce2ea2 1869 varobj_update_result r = {0};
a109c7c1 1870
cfce2ea2 1871 r.varobj = c;
b6313243 1872 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1873 }
8b93c638 1874 }
b6313243
TT
1875
1876 if (r.changed || r.type_changed)
1877 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1878 }
1879
b6313243
TT
1880 VEC_free (varobj_update_result, stack);
1881
f7f9ae2c 1882 return result;
8b93c638
JM
1883}
1884\f
1885
1886/* Helper functions */
1887
1888/*
1889 * Variable object construction/destruction
1890 */
1891
1892static int
fba45db2
KB
1893delete_variable (struct cpstack **resultp, struct varobj *var,
1894 int only_children_p)
8b93c638
JM
1895{
1896 int delcount = 0;
1897
1898 delete_variable_1 (resultp, &delcount, var,
1899 only_children_p, 1 /* remove_from_parent_p */ );
1900
1901 return delcount;
1902}
1903
1904/* Delete the variable object VAR and its children */
1905/* IMPORTANT NOTE: If we delete a variable which is a child
1906 and the parent is not removed we dump core. It must be always
1907 initially called with remove_from_parent_p set */
1908static void
72330bd6
AC
1909delete_variable_1 (struct cpstack **resultp, int *delcountp,
1910 struct varobj *var, int only_children_p,
1911 int remove_from_parent_p)
8b93c638 1912{
28335dcc 1913 int i;
8b93c638
JM
1914
1915 /* Delete any children of this variable, too. */
28335dcc
VP
1916 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1917 {
1918 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1919
214270ab
VP
1920 if (!child)
1921 continue;
8b93c638 1922 if (!remove_from_parent_p)
28335dcc
VP
1923 child->parent = NULL;
1924 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1925 }
28335dcc 1926 VEC_free (varobj_p, var->children);
8b93c638
JM
1927
1928 /* if we were called to delete only the children we are done here */
1929 if (only_children_p)
1930 return;
1931
1932 /* Otherwise, add it to the list of deleted ones and proceed to do so */
73a93a32
JI
1933 /* If the name is null, this is a temporary variable, that has not
1934 yet been installed, don't report it, it belongs to the caller... */
1935 if (var->obj_name != NULL)
8b93c638 1936 {
5b616ba1 1937 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1938 *delcountp = *delcountp + 1;
1939 }
1940
1941 /* If this variable has a parent, remove it from its parent's list */
1942 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1943 (as indicated by remove_from_parent_p) we don't bother doing an
1944 expensive list search to find the element to remove when we are
1945 discarding the list afterwards */
72330bd6 1946 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1947 {
28335dcc 1948 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1949 }
72330bd6 1950
73a93a32
JI
1951 if (var->obj_name != NULL)
1952 uninstall_variable (var);
8b93c638
JM
1953
1954 /* Free memory associated with this variable */
1955 free_variable (var);
1956}
1957
1958/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1959static int
fba45db2 1960install_variable (struct varobj *var)
8b93c638
JM
1961{
1962 struct vlist *cv;
1963 struct vlist *newvl;
1964 const char *chp;
1965 unsigned int index = 0;
1966 unsigned int i = 1;
1967
1968 for (chp = var->obj_name; *chp; chp++)
1969 {
1970 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1971 }
1972
1973 cv = *(varobj_table + index);
1974 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1975 cv = cv->next;
1976
1977 if (cv != NULL)
8a3fe4f8 1978 error (_("Duplicate variable object name"));
8b93c638
JM
1979
1980 /* Add varobj to hash table */
1981 newvl = xmalloc (sizeof (struct vlist));
1982 newvl->next = *(varobj_table + index);
1983 newvl->var = var;
1984 *(varobj_table + index) = newvl;
1985
1986 /* If root, add varobj to root list */
b2c2bd75 1987 if (is_root_p (var))
8b93c638
JM
1988 {
1989 /* Add to list of root variables */
1990 if (rootlist == NULL)
1991 var->root->next = NULL;
1992 else
1993 var->root->next = rootlist;
1994 rootlist = var->root;
8b93c638
JM
1995 }
1996
1997 return 1; /* OK */
1998}
1999
2000/* Unistall the object VAR. */
2001static void
fba45db2 2002uninstall_variable (struct varobj *var)
8b93c638
JM
2003{
2004 struct vlist *cv;
2005 struct vlist *prev;
2006 struct varobj_root *cr;
2007 struct varobj_root *prer;
2008 const char *chp;
2009 unsigned int index = 0;
2010 unsigned int i = 1;
2011
2012 /* Remove varobj from hash table */
2013 for (chp = var->obj_name; *chp; chp++)
2014 {
2015 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2016 }
2017
2018 cv = *(varobj_table + index);
2019 prev = NULL;
2020 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2021 {
2022 prev = cv;
2023 cv = cv->next;
2024 }
2025
2026 if (varobjdebug)
2027 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2028
2029 if (cv == NULL)
2030 {
72330bd6
AC
2031 warning
2032 ("Assertion failed: Could not find variable object \"%s\" to delete",
2033 var->obj_name);
8b93c638
JM
2034 return;
2035 }
2036
2037 if (prev == NULL)
2038 *(varobj_table + index) = cv->next;
2039 else
2040 prev->next = cv->next;
2041
b8c9b27d 2042 xfree (cv);
8b93c638
JM
2043
2044 /* If root, remove varobj from root list */
b2c2bd75 2045 if (is_root_p (var))
8b93c638
JM
2046 {
2047 /* Remove from list of root variables */
2048 if (rootlist == var->root)
2049 rootlist = var->root->next;
2050 else
2051 {
2052 prer = NULL;
2053 cr = rootlist;
2054 while ((cr != NULL) && (cr->rootvar != var))
2055 {
2056 prer = cr;
2057 cr = cr->next;
2058 }
2059 if (cr == NULL)
2060 {
72330bd6
AC
2061 warning
2062 ("Assertion failed: Could not find varobj \"%s\" in root list",
2063 var->obj_name);
8b93c638
JM
2064 return;
2065 }
2066 if (prer == NULL)
2067 rootlist = NULL;
2068 else
2069 prer->next = cr->next;
2070 }
8b93c638
JM
2071 }
2072
2073}
2074
8b93c638
JM
2075/* Create and install a child of the parent of the given name */
2076static struct varobj *
fba45db2 2077create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2078{
2079 return create_child_with_value (parent, index, name,
2080 value_of_child (parent, index));
2081}
2082
2083static struct varobj *
2084create_child_with_value (struct varobj *parent, int index, const char *name,
2085 struct value *value)
8b93c638
JM
2086{
2087 struct varobj *child;
2088 char *childs_name;
2089
2090 child = new_variable ();
2091
2092 /* name is allocated by name_of_child */
b6313243
TT
2093 /* FIXME: xstrdup should not be here. */
2094 child->name = xstrdup (name);
8b93c638 2095 child->index = index;
8b93c638
JM
2096 child->parent = parent;
2097 child->root = parent->root;
b435e160 2098 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638
JM
2099 child->obj_name = childs_name;
2100 install_variable (child);
2101
acd65feb
VP
2102 /* Compute the type of the child. Must do this before
2103 calling install_new_value. */
2104 if (value != NULL)
2105 /* If the child had no evaluation errors, var->value
2106 will be non-NULL and contain a valid type. */
2107 child->type = value_type (value);
2108 else
2109 /* Otherwise, we must compute the type. */
2110 child->type = (*child->root->lang->type_of_child) (child->parent,
2111 child->index);
2112 install_new_value (child, value, 1);
2113
8b93c638
JM
2114 return child;
2115}
8b93c638
JM
2116\f
2117
2118/*
2119 * Miscellaneous utility functions.
2120 */
2121
2122/* Allocate memory and initialize a new variable */
2123static struct varobj *
2124new_variable (void)
2125{
2126 struct varobj *var;
2127
2128 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2129 var->name = NULL;
02142340 2130 var->path_expr = NULL;
8b93c638
JM
2131 var->obj_name = NULL;
2132 var->index = -1;
2133 var->type = NULL;
2134 var->value = NULL;
8b93c638
JM
2135 var->num_children = -1;
2136 var->parent = NULL;
2137 var->children = NULL;
2138 var->format = 0;
2139 var->root = NULL;
fb9b6b35 2140 var->updated = 0;
85265413 2141 var->print_value = NULL;
25d5ea92
VP
2142 var->frozen = 0;
2143 var->not_fetched = 0;
b6313243 2144 var->children_requested = 0;
0cc7d26f
TT
2145 var->from = -1;
2146 var->to = -1;
2147 var->constructor = 0;
b6313243 2148 var->pretty_printer = 0;
0cc7d26f
TT
2149 var->child_iter = 0;
2150 var->saved_item = 0;
8b93c638
JM
2151
2152 return var;
2153}
2154
2155/* Allocate memory and initialize a new root variable */
2156static struct varobj *
2157new_root_variable (void)
2158{
2159 struct varobj *var = new_variable ();
a109c7c1 2160
8b93c638
JM
2161 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2162 var->root->lang = NULL;
2163 var->root->exp = NULL;
2164 var->root->valid_block = NULL;
7a424e99 2165 var->root->frame = null_frame_id;
a5defcdc 2166 var->root->floating = 0;
8b93c638 2167 var->root->rootvar = NULL;
8756216b 2168 var->root->is_valid = 1;
8b93c638
JM
2169
2170 return var;
2171}
2172
2173/* Free any allocated memory associated with VAR. */
2174static void
fba45db2 2175free_variable (struct varobj *var)
8b93c638 2176{
d452c4bc
UW
2177#if HAVE_PYTHON
2178 if (var->pretty_printer)
2179 {
2180 struct cleanup *cleanup = varobj_ensure_python_env (var);
0cc7d26f
TT
2181 Py_XDECREF (var->constructor);
2182 Py_XDECREF (var->pretty_printer);
2183 Py_XDECREF (var->child_iter);
2184 Py_XDECREF (var->saved_item);
d452c4bc
UW
2185 do_cleanups (cleanup);
2186 }
2187#endif
2188
36746093
JK
2189 value_free (var->value);
2190
8b93c638 2191 /* Free the expression if this is a root variable. */
b2c2bd75 2192 if (is_root_p (var))
8b93c638 2193 {
3038237c 2194 xfree (var->root->exp);
8038e1e2 2195 xfree (var->root);
8b93c638
JM
2196 }
2197
8038e1e2
AC
2198 xfree (var->name);
2199 xfree (var->obj_name);
85265413 2200 xfree (var->print_value);
02142340 2201 xfree (var->path_expr);
8038e1e2 2202 xfree (var);
8b93c638
JM
2203}
2204
74b7792f
AC
2205static void
2206do_free_variable_cleanup (void *var)
2207{
2208 free_variable (var);
2209}
2210
2211static struct cleanup *
2212make_cleanup_free_variable (struct varobj *var)
2213{
2214 return make_cleanup (do_free_variable_cleanup, var);
2215}
2216
6766a268
DJ
2217/* This returns the type of the variable. It also skips past typedefs
2218 to return the real type of the variable.
94b66fa7
KS
2219
2220 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2221 except within get_target_type and get_type. */
8b93c638 2222static struct type *
fba45db2 2223get_type (struct varobj *var)
8b93c638
JM
2224{
2225 struct type *type;
8b93c638 2226
a109c7c1 2227 type = var->type;
6766a268
DJ
2228 if (type != NULL)
2229 type = check_typedef (type);
8b93c638
JM
2230
2231 return type;
2232}
2233
6e2a9270
VP
2234/* Return the type of the value that's stored in VAR,
2235 or that would have being stored there if the
2236 value were accessible.
2237
2238 This differs from VAR->type in that VAR->type is always
2239 the true type of the expession in the source language.
2240 The return value of this function is the type we're
2241 actually storing in varobj, and using for displaying
2242 the values and for comparing previous and new values.
2243
2244 For example, top-level references are always stripped. */
2245static struct type *
2246get_value_type (struct varobj *var)
2247{
2248 struct type *type;
2249
2250 if (var->value)
2251 type = value_type (var->value);
2252 else
2253 type = var->type;
2254
2255 type = check_typedef (type);
2256
2257 if (TYPE_CODE (type) == TYPE_CODE_REF)
2258 type = get_target_type (type);
2259
2260 type = check_typedef (type);
2261
2262 return type;
2263}
2264
8b93c638 2265/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
2266 past typedefs, just like get_type ().
2267
2268 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2269 except within get_target_type and get_type. */
8b93c638 2270static struct type *
fba45db2 2271get_target_type (struct type *type)
8b93c638
JM
2272{
2273 if (type != NULL)
2274 {
2275 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
2276 if (type != NULL)
2277 type = check_typedef (type);
8b93c638
JM
2278 }
2279
2280 return type;
2281}
2282
2283/* What is the default display for this variable? We assume that
2284 everything is "natural". Any exceptions? */
2285static enum varobj_display_formats
fba45db2 2286variable_default_display (struct varobj *var)
8b93c638
JM
2287{
2288 return FORMAT_NATURAL;
2289}
2290
8b93c638
JM
2291/* FIXME: The following should be generic for any pointer */
2292static void
fba45db2 2293cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2294{
2295 struct cpstack *s;
2296
2297 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2298 s->name = name;
2299 s->next = *pstack;
2300 *pstack = s;
2301}
2302
2303/* FIXME: The following should be generic for any pointer */
2304static char *
fba45db2 2305cppop (struct cpstack **pstack)
8b93c638
JM
2306{
2307 struct cpstack *s;
2308 char *v;
2309
2310 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2311 return NULL;
2312
2313 s = *pstack;
2314 v = s->name;
2315 *pstack = (*pstack)->next;
b8c9b27d 2316 xfree (s);
8b93c638
JM
2317
2318 return v;
2319}
2320\f
2321/*
2322 * Language-dependencies
2323 */
2324
2325/* Common entry points */
2326
2327/* Get the language of variable VAR. */
2328static enum varobj_languages
fba45db2 2329variable_language (struct varobj *var)
8b93c638
JM
2330{
2331 enum varobj_languages lang;
2332
2333 switch (var->root->exp->language_defn->la_language)
2334 {
2335 default:
2336 case language_c:
2337 lang = vlang_c;
2338 break;
2339 case language_cplus:
2340 lang = vlang_cplus;
2341 break;
2342 case language_java:
2343 lang = vlang_java;
2344 break;
2345 }
2346
2347 return lang;
2348}
2349
2350/* Return the number of children for a given variable.
2351 The result of this function is defined by the language
2352 implementation. The number of children returned by this function
2353 is the number of children that the user will see in the variable
2354 display. */
2355static int
fba45db2 2356number_of_children (struct varobj *var)
8b93c638
JM
2357{
2358 return (*var->root->lang->number_of_children) (var);;
2359}
2360
2361/* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2362static char *
fba45db2 2363name_of_variable (struct varobj *var)
8b93c638
JM
2364{
2365 return (*var->root->lang->name_of_variable) (var);
2366}
2367
2368/* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2369static char *
fba45db2 2370name_of_child (struct varobj *var, int index)
8b93c638
JM
2371{
2372 return (*var->root->lang->name_of_child) (var, index);
2373}
2374
a5defcdc
VP
2375/* What is the ``struct value *'' of the root variable VAR?
2376 For floating variable object, evaluation can get us a value
2377 of different type from what is stored in varobj already. In
2378 that case:
2379 - *type_changed will be set to 1
2380 - old varobj will be freed, and new one will be
2381 created, with the same name.
2382 - *var_handle will be set to the new varobj
2383 Otherwise, *type_changed will be set to 0. */
30b28db1 2384static struct value *
fba45db2 2385value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2386{
73a93a32
JI
2387 struct varobj *var;
2388
2389 if (var_handle == NULL)
2390 return NULL;
2391
2392 var = *var_handle;
2393
2394 /* This should really be an exception, since this should
2395 only get called with a root variable. */
2396
b2c2bd75 2397 if (!is_root_p (var))
73a93a32
JI
2398 return NULL;
2399
a5defcdc 2400 if (var->root->floating)
73a93a32
JI
2401 {
2402 struct varobj *tmp_var;
2403 char *old_type, *new_type;
6225abfa 2404
73a93a32
JI
2405 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2406 USE_SELECTED_FRAME);
2407 if (tmp_var == NULL)
2408 {
2409 return NULL;
2410 }
6225abfa 2411 old_type = varobj_get_type (var);
73a93a32 2412 new_type = varobj_get_type (tmp_var);
72330bd6 2413 if (strcmp (old_type, new_type) == 0)
73a93a32 2414 {
fcacd99f
VP
2415 /* The expression presently stored inside var->root->exp
2416 remembers the locations of local variables relatively to
2417 the frame where the expression was created (in DWARF location
2418 button, for example). Naturally, those locations are not
2419 correct in other frames, so update the expression. */
2420
2421 struct expression *tmp_exp = var->root->exp;
a109c7c1 2422
fcacd99f
VP
2423 var->root->exp = tmp_var->root->exp;
2424 tmp_var->root->exp = tmp_exp;
2425
73a93a32
JI
2426 varobj_delete (tmp_var, NULL, 0);
2427 *type_changed = 0;
2428 }
2429 else
2430 {
1b36a34b 2431 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2432 tmp_var->from = var->from;
2433 tmp_var->to = var->to;
a5defcdc
VP
2434 varobj_delete (var, NULL, 0);
2435
73a93a32
JI
2436 install_variable (tmp_var);
2437 *var_handle = tmp_var;
705da579 2438 var = *var_handle;
73a93a32
JI
2439 *type_changed = 1;
2440 }
74dddad3
MS
2441 xfree (old_type);
2442 xfree (new_type);
73a93a32
JI
2443 }
2444 else
2445 {
2446 *type_changed = 0;
2447 }
2448
2449 return (*var->root->lang->value_of_root) (var_handle);
8b93c638
JM
2450}
2451
30b28db1
AC
2452/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2453static struct value *
fba45db2 2454value_of_child (struct varobj *parent, int index)
8b93c638 2455{
30b28db1 2456 struct value *value;
8b93c638
JM
2457
2458 value = (*parent->root->lang->value_of_child) (parent, index);
2459
8b93c638
JM
2460 return value;
2461}
2462
8b93c638
JM
2463/* GDB already has a command called "value_of_variable". Sigh. */
2464static char *
de051565 2465my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2466{
8756216b 2467 if (var->root->is_valid)
0cc7d26f
TT
2468 {
2469 if (var->pretty_printer)
2470 return value_get_print_value (var->value, var->format, var);
2471 return (*var->root->lang->value_of_variable) (var, format);
2472 }
8756216b
DP
2473 else
2474 return NULL;
8b93c638
JM
2475}
2476
85265413 2477static char *
b6313243 2478value_get_print_value (struct value *value, enum varobj_display_formats format,
d452c4bc 2479 struct varobj *var)
85265413 2480{
57e66780 2481 struct ui_file *stb;
621c8364 2482 struct cleanup *old_chain;
fbb8f299 2483 gdb_byte *thevalue = NULL;
79a45b7d 2484 struct value_print_options opts;
be759fcf
PM
2485 struct type *type = NULL;
2486 long len = 0;
2487 char *encoding = NULL;
2488 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2489 /* Initialize it just to avoid a GCC false warning. */
2490 CORE_ADDR str_addr = 0;
09ca9e2e 2491 int string_print = 0;
57e66780
DJ
2492
2493 if (value == NULL)
2494 return NULL;
2495
621c8364
TT
2496 stb = mem_fileopen ();
2497 old_chain = make_cleanup_ui_file_delete (stb);
2498
be759fcf 2499 gdbarch = get_type_arch (value_type (value));
b6313243
TT
2500#if HAVE_PYTHON
2501 {
d452c4bc
UW
2502 PyObject *value_formatter = var->pretty_printer;
2503
09ca9e2e
TT
2504 varobj_ensure_python_env (var);
2505
0cc7d26f 2506 if (value_formatter)
b6313243 2507 {
0cc7d26f
TT
2508 /* First check to see if we have any children at all. If so,
2509 we simply return {...}. */
2510 if (dynamic_varobj_has_child_method (var))
621c8364
TT
2511 {
2512 do_cleanups (old_chain);
2513 return xstrdup ("{...}");
2514 }
b6313243 2515
0cc7d26f 2516 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
b6313243 2517 {
0cc7d26f
TT
2518 char *hint;
2519 struct value *replacement;
0cc7d26f
TT
2520 PyObject *output = NULL;
2521
2522 hint = gdbpy_get_display_hint (value_formatter);
2523 if (hint)
2524 {
2525 if (!strcmp (hint, "string"))
2526 string_print = 1;
2527 xfree (hint);
2528 }
b6313243 2529
0cc7d26f 2530 output = apply_varobj_pretty_printer (value_formatter,
621c8364
TT
2531 &replacement,
2532 stb);
0cc7d26f
TT
2533 if (output)
2534 {
09ca9e2e
TT
2535 make_cleanup_py_decref (output);
2536
be759fcf 2537 if (gdbpy_is_lazy_string (output))
0cc7d26f 2538 {
09ca9e2e
TT
2539 gdbpy_extract_lazy_string (output, &str_addr, &type,
2540 &len, &encoding);
2541 make_cleanup (free_current_contents, &encoding);
be759fcf
PM
2542 string_print = 1;
2543 }
2544 else
2545 {
2546 PyObject *py_str
2547 = python_string_to_target_python_string (output);
a109c7c1 2548
be759fcf
PM
2549 if (py_str)
2550 {
2551 char *s = PyString_AsString (py_str);
a109c7c1 2552
be759fcf
PM
2553 len = PyString_Size (py_str);
2554 thevalue = xmemdup (s, len + 1, len + 1);
2555 type = builtin_type (gdbarch)->builtin_char;
2556 Py_DECREF (py_str);
09ca9e2e
TT
2557
2558 if (!string_print)
2559 {
2560 do_cleanups (old_chain);
2561 return thevalue;
2562 }
2563
2564 make_cleanup (xfree, thevalue);
be759fcf 2565 }
8dc78533
JK
2566 else
2567 gdbpy_print_stack ();
0cc7d26f 2568 }
0cc7d26f
TT
2569 }
2570 if (replacement)
2571 value = replacement;
b6313243 2572 }
b6313243 2573 }
b6313243
TT
2574 }
2575#endif
2576
79a45b7d
TT
2577 get_formatted_print_options (&opts, format_code[(int) format]);
2578 opts.deref_ref = 0;
b6313243
TT
2579 opts.raw = 1;
2580 if (thevalue)
09ca9e2e
TT
2581 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2582 else if (string_print)
2583 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243
TT
2584 else
2585 common_val_print (value, stb, 0, &opts, current_language);
759ef836 2586 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2587
85265413
NR
2588 do_cleanups (old_chain);
2589 return thevalue;
2590}
2591
340a7723
NR
2592int
2593varobj_editable_p (struct varobj *var)
2594{
2595 struct type *type;
340a7723
NR
2596
2597 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2598 return 0;
2599
2600 type = get_value_type (var);
2601
2602 switch (TYPE_CODE (type))
2603 {
2604 case TYPE_CODE_STRUCT:
2605 case TYPE_CODE_UNION:
2606 case TYPE_CODE_ARRAY:
2607 case TYPE_CODE_FUNC:
2608 case TYPE_CODE_METHOD:
2609 return 0;
2610 break;
2611
2612 default:
2613 return 1;
2614 break;
2615 }
2616}
2617
acd65feb
VP
2618/* Return non-zero if changes in value of VAR
2619 must be detected and reported by -var-update.
2620 Return zero is -var-update should never report
2621 changes of such values. This makes sense for structures
2622 (since the changes in children values will be reported separately),
2623 or for artifical objects (like 'public' pseudo-field in C++).
2624
2625 Return value of 0 means that gdb need not call value_fetch_lazy
2626 for the value of this variable object. */
8b93c638 2627static int
b2c2bd75 2628varobj_value_is_changeable_p (struct varobj *var)
8b93c638
JM
2629{
2630 int r;
2631 struct type *type;
2632
2633 if (CPLUS_FAKE_CHILD (var))
2634 return 0;
2635
6e2a9270 2636 type = get_value_type (var);
8b93c638
JM
2637
2638 switch (TYPE_CODE (type))
2639 {
72330bd6
AC
2640 case TYPE_CODE_STRUCT:
2641 case TYPE_CODE_UNION:
2642 case TYPE_CODE_ARRAY:
2643 r = 0;
2644 break;
8b93c638 2645
72330bd6
AC
2646 default:
2647 r = 1;
8b93c638
JM
2648 }
2649
2650 return r;
2651}
2652
5a413362
VP
2653/* Return 1 if that varobj is floating, that is is always evaluated in the
2654 selected frame, and not bound to thread/frame. Such variable objects
2655 are created using '@' as frame specifier to -var-create. */
2656int
2657varobj_floating_p (struct varobj *var)
2658{
2659 return var->root->floating;
2660}
2661
2024f65a
VP
2662/* Given the value and the type of a variable object,
2663 adjust the value and type to those necessary
2664 for getting children of the variable object.
2665 This includes dereferencing top-level references
2666 to all types and dereferencing pointers to
2667 structures.
2668
2669 Both TYPE and *TYPE should be non-null. VALUE
2670 can be null if we want to only translate type.
2671 *VALUE can be null as well -- if the parent
02142340
VP
2672 value is not known.
2673
2674 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
b6313243 2675 depending on whether pointer was dereferenced
02142340 2676 in this function. */
2024f65a
VP
2677static void
2678adjust_value_for_child_access (struct value **value,
02142340
VP
2679 struct type **type,
2680 int *was_ptr)
2024f65a
VP
2681{
2682 gdb_assert (type && *type);
2683
02142340
VP
2684 if (was_ptr)
2685 *was_ptr = 0;
2686
2024f65a
VP
2687 *type = check_typedef (*type);
2688
2689 /* The type of value stored in varobj, that is passed
2690 to us, is already supposed to be
2691 reference-stripped. */
2692
2693 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2694
2695 /* Pointers to structures are treated just like
2696 structures when accessing children. Don't
2697 dererences pointers to other types. */
2698 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2699 {
2700 struct type *target_type = get_target_type (*type);
2701 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2702 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2703 {
2704 if (value && *value)
3f4178d6 2705 {
a109c7c1
MS
2706 int success = gdb_value_ind (*value, value);
2707
3f4178d6
DJ
2708 if (!success)
2709 *value = NULL;
2710 }
2024f65a 2711 *type = target_type;
02142340
VP
2712 if (was_ptr)
2713 *was_ptr = 1;
2024f65a
VP
2714 }
2715 }
2716
2717 /* The 'get_target_type' function calls check_typedef on
2718 result, so we can immediately check type code. No
2719 need to call check_typedef here. */
2720}
2721
8b93c638
JM
2722/* C */
2723static int
fba45db2 2724c_number_of_children (struct varobj *var)
8b93c638 2725{
2024f65a
VP
2726 struct type *type = get_value_type (var);
2727 int children = 0;
8b93c638 2728 struct type *target;
8b93c638 2729
02142340 2730 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638 2731 target = get_target_type (type);
8b93c638
JM
2732
2733 switch (TYPE_CODE (type))
2734 {
2735 case TYPE_CODE_ARRAY:
2736 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 2737 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
2738 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2739 else
74a44383
DJ
2740 /* If we don't know how many elements there are, don't display
2741 any. */
2742 children = 0;
8b93c638
JM
2743 break;
2744
2745 case TYPE_CODE_STRUCT:
2746 case TYPE_CODE_UNION:
2747 children = TYPE_NFIELDS (type);
2748 break;
2749
2750 case TYPE_CODE_PTR:
2024f65a
VP
2751 /* The type here is a pointer to non-struct. Typically, pointers
2752 have one child, except for function ptrs, which have no children,
2753 and except for void*, as we don't know what to show.
2754
0755e6c1
FN
2755 We can show char* so we allow it to be dereferenced. If you decide
2756 to test for it, please mind that a little magic is necessary to
2757 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2758 TYPE_NAME == "char" */
2024f65a
VP
2759 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2760 || TYPE_CODE (target) == TYPE_CODE_VOID)
2761 children = 0;
2762 else
2763 children = 1;
8b93c638
JM
2764 break;
2765
2766 default:
2767 /* Other types have no children */
2768 break;
2769 }
2770
2771 return children;
2772}
2773
2774static char *
fba45db2 2775c_name_of_variable (struct varobj *parent)
8b93c638 2776{
1b36a34b 2777 return xstrdup (parent->name);
8b93c638
JM
2778}
2779
bbec2603
VP
2780/* Return the value of element TYPE_INDEX of a structure
2781 value VALUE. VALUE's type should be a structure,
2782 or union, or a typedef to struct/union.
2783
2784 Returns NULL if getting the value fails. Never throws. */
2785static struct value *
2786value_struct_element_index (struct value *value, int type_index)
8b93c638 2787{
bbec2603
VP
2788 struct value *result = NULL;
2789 volatile struct gdb_exception e;
bbec2603 2790 struct type *type = value_type (value);
a109c7c1 2791
bbec2603
VP
2792 type = check_typedef (type);
2793
2794 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2795 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 2796
bbec2603
VP
2797 TRY_CATCH (e, RETURN_MASK_ERROR)
2798 {
d6a843b5 2799 if (field_is_static (&TYPE_FIELD (type, type_index)))
bbec2603
VP
2800 result = value_static_field (type, type_index);
2801 else
2802 result = value_primitive_field (value, 0, type_index, type);
2803 }
2804 if (e.reason < 0)
2805 {
2806 return NULL;
2807 }
2808 else
2809 {
2810 return result;
2811 }
2812}
2813
2814/* Obtain the information about child INDEX of the variable
2815 object PARENT.
2816 If CNAME is not null, sets *CNAME to the name of the child relative
2817 to the parent.
2818 If CVALUE is not null, sets *CVALUE to the value of the child.
2819 If CTYPE is not null, sets *CTYPE to the type of the child.
2820
2821 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2822 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2823 to NULL. */
2824static void
2825c_describe_child (struct varobj *parent, int index,
02142340
VP
2826 char **cname, struct value **cvalue, struct type **ctype,
2827 char **cfull_expression)
bbec2603
VP
2828{
2829 struct value *value = parent->value;
2024f65a 2830 struct type *type = get_value_type (parent);
02142340
VP
2831 char *parent_expression = NULL;
2832 int was_ptr;
bbec2603
VP
2833
2834 if (cname)
2835 *cname = NULL;
2836 if (cvalue)
2837 *cvalue = NULL;
2838 if (ctype)
2839 *ctype = NULL;
02142340
VP
2840 if (cfull_expression)
2841 {
2842 *cfull_expression = NULL;
2843 parent_expression = varobj_get_path_expr (parent);
2844 }
2845 adjust_value_for_child_access (&value, &type, &was_ptr);
bbec2603 2846
8b93c638
JM
2847 switch (TYPE_CODE (type))
2848 {
2849 case TYPE_CODE_ARRAY:
bbec2603 2850 if (cname)
43bbcdc2
PH
2851 *cname = xstrdup (int_string (index
2852 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2853 10, 1, 0, 0));
bbec2603
VP
2854
2855 if (cvalue && value)
2856 {
2857 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
a109c7c1 2858
2497b498 2859 gdb_value_subscript (value, real_index, cvalue);
bbec2603
VP
2860 }
2861
2862 if (ctype)
2863 *ctype = get_target_type (type);
2864
02142340 2865 if (cfull_expression)
43bbcdc2
PH
2866 *cfull_expression =
2867 xstrprintf ("(%s)[%s]", parent_expression,
2868 int_string (index
2869 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2870 10, 1, 0, 0));
02142340
VP
2871
2872
8b93c638
JM
2873 break;
2874
2875 case TYPE_CODE_STRUCT:
2876 case TYPE_CODE_UNION:
bbec2603 2877 if (cname)
1b36a34b 2878 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
bbec2603
VP
2879
2880 if (cvalue && value)
2881 {
2882 /* For C, varobj index is the same as type index. */
2883 *cvalue = value_struct_element_index (value, index);
2884 }
2885
2886 if (ctype)
2887 *ctype = TYPE_FIELD_TYPE (type, index);
2888
02142340
VP
2889 if (cfull_expression)
2890 {
2891 char *join = was_ptr ? "->" : ".";
a109c7c1 2892
02142340
VP
2893 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2894 TYPE_FIELD_NAME (type, index));
2895 }
2896
8b93c638
JM
2897 break;
2898
2899 case TYPE_CODE_PTR:
bbec2603
VP
2900 if (cname)
2901 *cname = xstrprintf ("*%s", parent->name);
8b93c638 2902
bbec2603 2903 if (cvalue && value)
3f4178d6
DJ
2904 {
2905 int success = gdb_value_ind (value, cvalue);
a109c7c1 2906
3f4178d6
DJ
2907 if (!success)
2908 *cvalue = NULL;
2909 }
bbec2603 2910
2024f65a
VP
2911 /* Don't use get_target_type because it calls
2912 check_typedef and here, we want to show the true
2913 declared type of the variable. */
bbec2603 2914 if (ctype)
2024f65a 2915 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
2916
2917 if (cfull_expression)
2918 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 2919
8b93c638
JM
2920 break;
2921
2922 default:
2923 /* This should not happen */
bbec2603
VP
2924 if (cname)
2925 *cname = xstrdup ("???");
02142340
VP
2926 if (cfull_expression)
2927 *cfull_expression = xstrdup ("???");
bbec2603 2928 /* Don't set value and type, we don't know then. */
8b93c638 2929 }
bbec2603 2930}
8b93c638 2931
bbec2603
VP
2932static char *
2933c_name_of_child (struct varobj *parent, int index)
2934{
2935 char *name;
a109c7c1 2936
02142340 2937 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
2938 return name;
2939}
2940
02142340
VP
2941static char *
2942c_path_expr_of_child (struct varobj *child)
2943{
2944 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2945 &child->path_expr);
2946 return child->path_expr;
2947}
2948
c5b48eac
VP
2949/* If frame associated with VAR can be found, switch
2950 to it and return 1. Otherwise, return 0. */
2951static int
2952check_scope (struct varobj *var)
2953{
2954 struct frame_info *fi;
2955 int scope;
2956
2957 fi = frame_find_by_id (var->root->frame);
2958 scope = fi != NULL;
2959
2960 if (fi)
2961 {
2962 CORE_ADDR pc = get_frame_pc (fi);
a109c7c1 2963
c5b48eac
VP
2964 if (pc < BLOCK_START (var->root->valid_block) ||
2965 pc >= BLOCK_END (var->root->valid_block))
2966 scope = 0;
2967 else
2968 select_frame (fi);
2969 }
2970 return scope;
2971}
2972
30b28db1 2973static struct value *
fba45db2 2974c_value_of_root (struct varobj **var_handle)
8b93c638 2975{
5e572bb4 2976 struct value *new_val = NULL;
73a93a32 2977 struct varobj *var = *var_handle;
c5b48eac 2978 int within_scope = 0;
6208b47d
VP
2979 struct cleanup *back_to;
2980
73a93a32 2981 /* Only root variables can be updated... */
b2c2bd75 2982 if (!is_root_p (var))
73a93a32
JI
2983 /* Not a root var */
2984 return NULL;
2985
4f8d22e3 2986 back_to = make_cleanup_restore_current_thread ();
72330bd6 2987
8b93c638 2988 /* Determine whether the variable is still around. */
a5defcdc 2989 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 2990 within_scope = 1;
c5b48eac
VP
2991 else if (var->root->thread_id == 0)
2992 {
2993 /* The program was single-threaded when the variable object was
2994 created. Technically, it's possible that the program became
2995 multi-threaded since then, but we don't support such
2996 scenario yet. */
2997 within_scope = check_scope (var);
2998 }
8b93c638
JM
2999 else
3000 {
c5b48eac
VP
3001 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3002 if (in_thread_list (ptid))
d2353924 3003 {
c5b48eac
VP
3004 switch_to_thread (ptid);
3005 within_scope = check_scope (var);
3006 }
8b93c638 3007 }
72330bd6 3008
8b93c638
JM
3009 if (within_scope)
3010 {
73a93a32 3011 /* We need to catch errors here, because if evaluate
85d93f1d
VP
3012 expression fails we want to just return NULL. */
3013 gdb_evaluate_expression (var->root->exp, &new_val);
8b93c638
JM
3014 return new_val;
3015 }
3016
6208b47d
VP
3017 do_cleanups (back_to);
3018
8b93c638
JM
3019 return NULL;
3020}
3021
30b28db1 3022static struct value *
fba45db2 3023c_value_of_child (struct varobj *parent, int index)
8b93c638 3024{
bbec2603 3025 struct value *value = NULL;
8b93c638 3026
a109c7c1 3027 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3028 return value;
3029}
3030
3031static struct type *
fba45db2 3032c_type_of_child (struct varobj *parent, int index)
8b93c638 3033{
bbec2603 3034 struct type *type = NULL;
a109c7c1 3035
02142340 3036 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3037 return type;
3038}
3039
8b93c638 3040static char *
de051565 3041c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3042{
14b3d9c9
JB
3043 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3044 it will print out its children instead of "{...}". So we need to
3045 catch that case explicitly. */
3046 struct type *type = get_type (var);
e64d9b3d 3047
b6313243
TT
3048 /* If we have a custom formatter, return whatever string it has
3049 produced. */
3050 if (var->pretty_printer && var->print_value)
3051 return xstrdup (var->print_value);
3052
14b3d9c9
JB
3053 /* Strip top-level references. */
3054 while (TYPE_CODE (type) == TYPE_CODE_REF)
3055 type = check_typedef (TYPE_TARGET_TYPE (type));
3056
3057 switch (TYPE_CODE (type))
8b93c638
JM
3058 {
3059 case TYPE_CODE_STRUCT:
3060 case TYPE_CODE_UNION:
3061 return xstrdup ("{...}");
3062 /* break; */
3063
3064 case TYPE_CODE_ARRAY:
3065 {
e64d9b3d 3066 char *number;
a109c7c1 3067
b435e160 3068 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 3069 return (number);
8b93c638
JM
3070 }
3071 /* break; */
3072
3073 default:
3074 {
575bbeb6
KS
3075 if (var->value == NULL)
3076 {
3077 /* This can happen if we attempt to get the value of a struct
3078 member when the parent is an invalid pointer. This is an
3079 error condition, so we should tell the caller. */
3080 return NULL;
3081 }
3082 else
3083 {
25d5ea92
VP
3084 if (var->not_fetched && value_lazy (var->value))
3085 /* Frozen variable and no value yet. We don't
3086 implicitly fetch the value. MI response will
3087 use empty string for the value, which is OK. */
3088 return NULL;
3089
b2c2bd75 3090 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 3091 gdb_assert (!value_lazy (var->value));
de051565
MK
3092
3093 /* If the specified format is the current one,
3094 we can reuse print_value */
3095 if (format == var->format)
3096 return xstrdup (var->print_value);
3097 else
d452c4bc 3098 return value_get_print_value (var->value, format, var);
85265413 3099 }
e64d9b3d 3100 }
8b93c638
JM
3101 }
3102}
3103\f
3104
3105/* C++ */
3106
3107static int
fba45db2 3108cplus_number_of_children (struct varobj *var)
8b93c638
JM
3109{
3110 struct type *type;
3111 int children, dont_know;
3112
3113 dont_know = 1;
3114 children = 0;
3115
3116 if (!CPLUS_FAKE_CHILD (var))
3117 {
2024f65a 3118 type = get_value_type (var);
02142340 3119 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3120
3121 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 3122 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
3123 {
3124 int kids[3];
3125
3126 cplus_class_num_children (type, kids);
3127 if (kids[v_public] != 0)
3128 children++;
3129 if (kids[v_private] != 0)
3130 children++;
3131 if (kids[v_protected] != 0)
3132 children++;
3133
3134 /* Add any baseclasses */
3135 children += TYPE_N_BASECLASSES (type);
3136 dont_know = 0;
3137
3138 /* FIXME: save children in var */
3139 }
3140 }
3141 else
3142 {
3143 int kids[3];
3144
2024f65a 3145 type = get_value_type (var->parent);
02142340 3146 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3147
3148 cplus_class_num_children (type, kids);
6e382aa3 3149 if (strcmp (var->name, "public") == 0)
8b93c638 3150 children = kids[v_public];
6e382aa3 3151 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
3152 children = kids[v_private];
3153 else
3154 children = kids[v_protected];
3155 dont_know = 0;
3156 }
3157
3158 if (dont_know)
3159 children = c_number_of_children (var);
3160
3161 return children;
3162}
3163
3164/* Compute # of public, private, and protected variables in this class.
3165 That means we need to descend into all baseclasses and find out
3166 how many are there, too. */
3167static void
1669605f 3168cplus_class_num_children (struct type *type, int children[3])
8b93c638 3169{
d48cc9dd
DJ
3170 int i, vptr_fieldno;
3171 struct type *basetype = NULL;
8b93c638
JM
3172
3173 children[v_public] = 0;
3174 children[v_private] = 0;
3175 children[v_protected] = 0;
3176
d48cc9dd 3177 vptr_fieldno = get_vptr_fieldno (type, &basetype);
8b93c638
JM
3178 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3179 {
d48cc9dd
DJ
3180 /* If we have a virtual table pointer, omit it. Even if virtual
3181 table pointers are not specifically marked in the debug info,
3182 they should be artificial. */
3183 if ((type == basetype && i == vptr_fieldno)
3184 || TYPE_FIELD_ARTIFICIAL (type, i))
8b93c638
JM
3185 continue;
3186
3187 if (TYPE_FIELD_PROTECTED (type, i))
3188 children[v_protected]++;
3189 else if (TYPE_FIELD_PRIVATE (type, i))
3190 children[v_private]++;
3191 else
3192 children[v_public]++;
3193 }
3194}
3195
3196static char *
fba45db2 3197cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
3198{
3199 return c_name_of_variable (parent);
3200}
3201
2024f65a
VP
3202enum accessibility { private_field, protected_field, public_field };
3203
3204/* Check if field INDEX of TYPE has the specified accessibility.
3205 Return 0 if so and 1 otherwise. */
3206static int
3207match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 3208{
2024f65a
VP
3209 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3210 return 1;
3211 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3212 return 1;
3213 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3214 && !TYPE_FIELD_PROTECTED (type, index))
3215 return 1;
3216 else
3217 return 0;
3218}
3219
3220static void
3221cplus_describe_child (struct varobj *parent, int index,
02142340
VP
3222 char **cname, struct value **cvalue, struct type **ctype,
3223 char **cfull_expression)
2024f65a 3224{
2024f65a 3225 struct value *value;
8b93c638 3226 struct type *type;
02142340
VP
3227 int was_ptr;
3228 char *parent_expression = NULL;
8b93c638 3229
2024f65a
VP
3230 if (cname)
3231 *cname = NULL;
3232 if (cvalue)
3233 *cvalue = NULL;
3234 if (ctype)
3235 *ctype = NULL;
02142340
VP
3236 if (cfull_expression)
3237 *cfull_expression = NULL;
2024f65a 3238
8b93c638
JM
3239 if (CPLUS_FAKE_CHILD (parent))
3240 {
2024f65a
VP
3241 value = parent->parent->value;
3242 type = get_value_type (parent->parent);
02142340
VP
3243 if (cfull_expression)
3244 parent_expression = varobj_get_path_expr (parent->parent);
8b93c638
JM
3245 }
3246 else
2024f65a
VP
3247 {
3248 value = parent->value;
3249 type = get_value_type (parent);
02142340
VP
3250 if (cfull_expression)
3251 parent_expression = varobj_get_path_expr (parent);
2024f65a 3252 }
8b93c638 3253
02142340 3254 adjust_value_for_child_access (&value, &type, &was_ptr);
2024f65a
VP
3255
3256 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 3257 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 3258 {
02142340 3259 char *join = was_ptr ? "->" : ".";
a109c7c1 3260
8b93c638
JM
3261 if (CPLUS_FAKE_CHILD (parent))
3262 {
6e382aa3
JJ
3263 /* The fields of the class type are ordered as they
3264 appear in the class. We are given an index for a
3265 particular access control type ("public","protected",
3266 or "private"). We must skip over fields that don't
3267 have the access control we are looking for to properly
3268 find the indexed field. */
3269 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 3270 enum accessibility acc = public_field;
d48cc9dd
DJ
3271 int vptr_fieldno;
3272 struct type *basetype = NULL;
3273
3274 vptr_fieldno = get_vptr_fieldno (type, &basetype);
6e382aa3 3275 if (strcmp (parent->name, "private") == 0)
2024f65a 3276 acc = private_field;
6e382aa3 3277 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
3278 acc = protected_field;
3279
3280 while (index >= 0)
6e382aa3 3281 {
d48cc9dd
DJ
3282 if ((type == basetype && type_index == vptr_fieldno)
3283 || TYPE_FIELD_ARTIFICIAL (type, type_index))
2024f65a
VP
3284 ; /* ignore vptr */
3285 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
3286 --index;
3287 ++type_index;
6e382aa3 3288 }
2024f65a
VP
3289 --type_index;
3290
3291 if (cname)
3292 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3293
3294 if (cvalue && value)
3295 *cvalue = value_struct_element_index (value, type_index);
3296
3297 if (ctype)
3298 *ctype = TYPE_FIELD_TYPE (type, type_index);
02142340
VP
3299
3300 if (cfull_expression)
3301 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3302 join,
3303 TYPE_FIELD_NAME (type, type_index));
2024f65a
VP
3304 }
3305 else if (index < TYPE_N_BASECLASSES (type))
3306 {
3307 /* This is a baseclass. */
3308 if (cname)
3309 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3310
3311 if (cvalue && value)
0cc7d26f 3312 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
6e382aa3 3313
2024f65a
VP
3314 if (ctype)
3315 {
3316 *ctype = TYPE_FIELD_TYPE (type, index);
3317 }
02142340
VP
3318
3319 if (cfull_expression)
3320 {
3321 char *ptr = was_ptr ? "*" : "";
a109c7c1 3322
02142340
VP
3323 /* Cast the parent to the base' type. Note that in gdb,
3324 expression like
3325 (Base1)d
3326 will create an lvalue, for all appearences, so we don't
3327 need to use more fancy:
3328 *(Base1*)(&d)
3329 construct. */
3330 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3331 ptr,
3332 TYPE_FIELD_NAME (type, index),
3333 ptr,
3334 parent_expression);
3335 }
8b93c638 3336 }
8b93c638
JM
3337 else
3338 {
348144ba 3339 char *access = NULL;
6e382aa3 3340 int children[3];
a109c7c1 3341
2024f65a 3342 cplus_class_num_children (type, children);
6e382aa3 3343
8b93c638 3344 /* Everything beyond the baseclasses can
6e382aa3
JJ
3345 only be "public", "private", or "protected"
3346
3347 The special "fake" children are always output by varobj in
3348 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
3349 index -= TYPE_N_BASECLASSES (type);
3350 switch (index)
3351 {
3352 case 0:
6e382aa3 3353 if (children[v_public] > 0)
2024f65a 3354 access = "public";
6e382aa3 3355 else if (children[v_private] > 0)
2024f65a 3356 access = "private";
6e382aa3 3357 else
2024f65a 3358 access = "protected";
6e382aa3 3359 break;
8b93c638 3360 case 1:
6e382aa3 3361 if (children[v_public] > 0)
8b93c638 3362 {
6e382aa3 3363 if (children[v_private] > 0)
2024f65a 3364 access = "private";
6e382aa3 3365 else
2024f65a 3366 access = "protected";
8b93c638 3367 }
6e382aa3 3368 else if (children[v_private] > 0)
2024f65a 3369 access = "protected";
6e382aa3 3370 break;
8b93c638 3371 case 2:
6e382aa3 3372 /* Must be protected */
2024f65a 3373 access = "protected";
6e382aa3 3374 break;
8b93c638
JM
3375 default:
3376 /* error! */
3377 break;
3378 }
348144ba
MS
3379
3380 gdb_assert (access);
2024f65a
VP
3381 if (cname)
3382 *cname = xstrdup (access);
8b93c638 3383
02142340 3384 /* Value and type and full expression are null here. */
2024f65a 3385 }
8b93c638 3386 }
8b93c638
JM
3387 else
3388 {
02142340 3389 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
3390 }
3391}
8b93c638 3392
2024f65a
VP
3393static char *
3394cplus_name_of_child (struct varobj *parent, int index)
3395{
3396 char *name = NULL;
a109c7c1 3397
02142340 3398 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3399 return name;
3400}
3401
02142340
VP
3402static char *
3403cplus_path_expr_of_child (struct varobj *child)
3404{
3405 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3406 &child->path_expr);
3407 return child->path_expr;
3408}
3409
30b28db1 3410static struct value *
fba45db2 3411cplus_value_of_root (struct varobj **var_handle)
8b93c638 3412{
73a93a32 3413 return c_value_of_root (var_handle);
8b93c638
JM
3414}
3415
30b28db1 3416static struct value *
fba45db2 3417cplus_value_of_child (struct varobj *parent, int index)
8b93c638 3418{
2024f65a 3419 struct value *value = NULL;
a109c7c1 3420
02142340 3421 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3422 return value;
3423}
3424
3425static struct type *
fba45db2 3426cplus_type_of_child (struct varobj *parent, int index)
8b93c638 3427{
2024f65a 3428 struct type *type = NULL;
a109c7c1 3429
02142340 3430 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3431 return type;
3432}
3433
8b93c638 3434static char *
a109c7c1
MS
3435cplus_value_of_variable (struct varobj *var,
3436 enum varobj_display_formats format)
8b93c638
JM
3437{
3438
3439 /* If we have one of our special types, don't print out
3440 any value. */
3441 if (CPLUS_FAKE_CHILD (var))
3442 return xstrdup ("");
3443
de051565 3444 return c_value_of_variable (var, format);
8b93c638
JM
3445}
3446\f
3447/* Java */
3448
3449static int
fba45db2 3450java_number_of_children (struct varobj *var)
8b93c638
JM
3451{
3452 return cplus_number_of_children (var);
3453}
3454
3455static char *
fba45db2 3456java_name_of_variable (struct varobj *parent)
8b93c638
JM
3457{
3458 char *p, *name;
3459
3460 name = cplus_name_of_variable (parent);
3461 /* If the name has "-" in it, it is because we
3462 needed to escape periods in the name... */
3463 p = name;
3464
3465 while (*p != '\000')
3466 {
3467 if (*p == '-')
3468 *p = '.';
3469 p++;
3470 }
3471
3472 return name;
3473}
3474
3475static char *
fba45db2 3476java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
3477{
3478 char *name, *p;
3479
3480 name = cplus_name_of_child (parent, index);
3481 /* Escape any periods in the name... */
3482 p = name;
3483
3484 while (*p != '\000')
3485 {
3486 if (*p == '.')
3487 *p = '-';
3488 p++;
3489 }
3490
3491 return name;
3492}
3493
02142340
VP
3494static char *
3495java_path_expr_of_child (struct varobj *child)
3496{
3497 return NULL;
3498}
3499
30b28db1 3500static struct value *
fba45db2 3501java_value_of_root (struct varobj **var_handle)
8b93c638 3502{
73a93a32 3503 return cplus_value_of_root (var_handle);
8b93c638
JM
3504}
3505
30b28db1 3506static struct value *
fba45db2 3507java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
3508{
3509 return cplus_value_of_child (parent, index);
3510}
3511
3512static struct type *
fba45db2 3513java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
3514{
3515 return cplus_type_of_child (parent, index);
3516}
3517
8b93c638 3518static char *
de051565 3519java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3520{
de051565 3521 return cplus_value_of_variable (var, format);
8b93c638 3522}
54333c3b
JK
3523
3524/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3525 with an arbitrary caller supplied DATA pointer. */
3526
3527void
3528all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3529{
3530 struct varobj_root *var_root, *var_root_next;
3531
3532 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3533
3534 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3535 {
3536 var_root_next = var_root->next;
3537
3538 (*func) (var_root->rootvar, data);
3539 }
3540}
8b93c638
JM
3541\f
3542extern void _initialize_varobj (void);
3543void
3544_initialize_varobj (void)
3545{
3546 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3547
3548 varobj_table = xmalloc (sizeof_table);
3549 memset (varobj_table, 0, sizeof_table);
3550
85c07804
AC
3551 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3552 &varobjdebug, _("\
3553Set varobj debugging."), _("\
3554Show varobj debugging."), _("\
3555When non-zero, varobj debugging is enabled."),
3556 NULL,
920d2a44 3557 show_varobjdebug,
85c07804 3558 &setlist, &showlist);
8b93c638 3559}
8756216b 3560
54333c3b
JK
3561/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3562 defined on globals. It is a helper for varobj_invalidate. */
2dbd25e5 3563
54333c3b
JK
3564static void
3565varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 3566{
54333c3b
JK
3567 /* Floating varobjs are reparsed on each stop, so we don't care if the
3568 presently parsed expression refers to something that's gone. */
3569 if (var->root->floating)
3570 return;
8756216b 3571
54333c3b
JK
3572 /* global var must be re-evaluated. */
3573 if (var->root->valid_block == NULL)
2dbd25e5 3574 {
54333c3b 3575 struct varobj *tmp_var;
2dbd25e5 3576
54333c3b
JK
3577 /* Try to create a varobj with same expression. If we succeed
3578 replace the old varobj, otherwise invalidate it. */
3579 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3580 USE_CURRENT_FRAME);
3581 if (tmp_var != NULL)
3582 {
3583 tmp_var->obj_name = xstrdup (var->obj_name);
3584 varobj_delete (var, NULL, 0);
3585 install_variable (tmp_var);
2dbd25e5 3586 }
54333c3b
JK
3587 else
3588 var->root->is_valid = 0;
2dbd25e5 3589 }
54333c3b
JK
3590 else /* locals must be invalidated. */
3591 var->root->is_valid = 0;
3592}
3593
3594/* Invalidate the varobjs that are tied to locals and re-create the ones that
3595 are defined on globals.
3596 Invalidated varobjs will be always printed in_scope="invalid". */
3597
3598void
3599varobj_invalidate (void)
3600{
3601 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 3602}
This page took 1.386597 seconds and 4 git commands to generate.