* gdb.threads/thread-find.exp: Support remote targets.
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
0fb0cc75 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
7b6bb8da 4 2009, 2010, 2011 Free Software Foundation, Inc.
8b93c638
JM
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
18
19#include "defs.h"
a6c442d8 20#include "exceptions.h"
8b93c638
JM
21#include "value.h"
22#include "expression.h"
23#include "frame.h"
8b93c638
JM
24#include "language.h"
25#include "wrapper.h"
26#include "gdbcmd.h"
d2353924 27#include "block.h"
79a45b7d 28#include "valprint.h"
a6c442d8
MK
29
30#include "gdb_assert.h"
b66d6d2e 31#include "gdb_string.h"
0cc7d26f 32#include "gdb_regex.h"
8b93c638
JM
33
34#include "varobj.h"
28335dcc 35#include "vec.h"
6208b47d
VP
36#include "gdbthread.h"
37#include "inferior.h"
8b93c638 38
b6313243
TT
39#if HAVE_PYTHON
40#include "python/python.h"
41#include "python/python-internal.h"
50389644
PA
42#else
43typedef int PyObject;
b6313243
TT
44#endif
45
8b93c638
JM
46/* Non-zero if we want to see trace of varobj level stuff. */
47
48int varobjdebug = 0;
920d2a44
AC
49static void
50show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52{
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54}
8b93c638 55
581e13c1 56/* String representations of gdb's format codes. */
8b93c638 57char *varobj_format_string[] =
72330bd6 58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 59
581e13c1 60/* String representations of gdb's known languages. */
72330bd6 61char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638 62
0cc7d26f
TT
63/* True if we want to allow Python-based pretty-printing. */
64static int pretty_printing = 0;
65
66void
67varobj_enable_pretty_printing (void)
68{
69 pretty_printing = 1;
70}
71
8b93c638
JM
72/* Data structures */
73
74/* Every root variable has one of these structures saved in its
581e13c1 75 varobj. Members which must be free'd are noted. */
8b93c638 76struct varobj_root
72330bd6 77{
8b93c638 78
581e13c1 79 /* Alloc'd expression for this parent. */
72330bd6 80 struct expression *exp;
8b93c638 81
581e13c1 82 /* Block for which this expression is valid. */
72330bd6 83 struct block *valid_block;
8b93c638 84
44a67aa7
VP
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
e64d9b3d 87 struct frame_id frame;
8b93c638 88
c5b48eac 89 /* The thread ID that this varobj_root belong to. This field
581e13c1 90 is only valid if valid_block is not NULL.
c5b48eac
VP
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
a5defcdc
VP
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
581e13c1 98 always updated in the specific scope/thread/frame. */
a5defcdc 99 int floating;
73a93a32 100
8756216b
DP
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
581e13c1 105 /* Language info for this variable and its children. */
72330bd6 106 struct language_specific *lang;
8b93c638 107
581e13c1 108 /* The varobj for this root node. */
72330bd6 109 struct varobj *rootvar;
8b93c638 110
72330bd6
AC
111 /* Next root variable */
112 struct varobj_root *next;
113};
8b93c638
JM
114
115/* Every variable in the system has a structure of this type defined
581e13c1
MS
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
8b93c638 118struct varobj
72330bd6 119{
8b93c638 120
581e13c1 121 /* Alloc'd name of the variable for this object. If this variable is a
72330bd6 122 child, then this name will be the child's source name.
581e13c1
MS
123 (bar, not foo.bar). */
124 /* NOTE: This is the "expression". */
72330bd6 125 char *name;
8b93c638 126
02142340
VP
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
581e13c1
MS
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
72330bd6 133 char *obj_name;
8b93c638 134
581e13c1 135 /* Index of this variable in its parent or -1. */
72330bd6 136 int index;
8b93c638 137
202ddcaa
VP
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
72330bd6 141 struct type *type;
8b93c638 142
b20d8971
VP
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
b2c2bd75
VP
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
30b28db1 147 struct value *value;
8b93c638 148
581e13c1 149 /* The number of (immediate) children this variable has. */
72330bd6 150 int num_children;
8b93c638 151
581e13c1 152 /* If this object is a child, this points to its immediate parent. */
72330bd6 153 struct varobj *parent;
8b93c638 154
28335dcc
VP
155 /* Children of this object. */
156 VEC (varobj_p) *children;
8b93c638 157
b6313243
TT
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
581e13c1
MS
164 /* Description of the root variable. Points to root variable for
165 children. */
72330bd6 166 struct varobj_root *root;
8b93c638 167
581e13c1 168 /* The format of the output for this object. */
72330bd6 169 enum varobj_display_formats format;
fb9b6b35 170
581e13c1 171 /* Was this variable updated via a varobj_set_value operation. */
fb9b6b35 172 int updated;
85265413
NR
173
174 /* Last print value. */
175 char *print_value;
25d5ea92
VP
176
177 /* Is this variable frozen. Frozen variables are never implicitly
178 updated by -var-update *
179 or -var-update <direct-or-indirect-parent>. */
180 int frozen;
181
182 /* Is the value of this variable intentionally not fetched? It is
183 not fetched if either the variable is frozen, or any parents is
184 frozen. */
185 int not_fetched;
b6313243 186
0cc7d26f
TT
187 /* Sub-range of children which the MI consumer has requested. If
188 FROM < 0 or TO < 0, means that all children have been
189 requested. */
190 int from;
191 int to;
192
193 /* The pretty-printer constructor. If NULL, then the default
194 pretty-printer will be looked up. If None, then no
195 pretty-printer will be installed. */
196 PyObject *constructor;
197
b6313243
TT
198 /* The pretty-printer that has been constructed. If NULL, then a
199 new printer object is needed, and one will be constructed. */
200 PyObject *pretty_printer;
0cc7d26f
TT
201
202 /* The iterator returned by the printer's 'children' method, or NULL
203 if not available. */
204 PyObject *child_iter;
205
206 /* We request one extra item from the iterator, so that we can
207 report to the caller whether there are more items than we have
208 already reported. However, we don't want to install this value
209 when we read it, because that will mess up future updates. So,
210 we stash it here instead. */
211 PyObject *saved_item;
72330bd6 212};
8b93c638 213
8b93c638 214struct cpstack
72330bd6
AC
215{
216 char *name;
217 struct cpstack *next;
218};
8b93c638
JM
219
220/* A list of varobjs */
221
222struct vlist
72330bd6
AC
223{
224 struct varobj *var;
225 struct vlist *next;
226};
8b93c638
JM
227
228/* Private function prototypes */
229
581e13c1 230/* Helper functions for the above subcommands. */
8b93c638 231
a14ed312 232static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 233
a14ed312
KB
234static void delete_variable_1 (struct cpstack **, int *,
235 struct varobj *, int, int);
8b93c638 236
a14ed312 237static int install_variable (struct varobj *);
8b93c638 238
a14ed312 239static void uninstall_variable (struct varobj *);
8b93c638 240
a14ed312 241static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 242
b6313243
TT
243static struct varobj *
244create_child_with_value (struct varobj *parent, int index, const char *name,
245 struct value *value);
246
8b93c638
JM
247/* Utility routines */
248
a14ed312 249static struct varobj *new_variable (void);
8b93c638 250
a14ed312 251static struct varobj *new_root_variable (void);
8b93c638 252
a14ed312 253static void free_variable (struct varobj *var);
8b93c638 254
74b7792f
AC
255static struct cleanup *make_cleanup_free_variable (struct varobj *var);
256
a14ed312 257static struct type *get_type (struct varobj *var);
8b93c638 258
6e2a9270
VP
259static struct type *get_value_type (struct varobj *var);
260
a14ed312 261static struct type *get_target_type (struct type *);
8b93c638 262
a14ed312 263static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 264
a14ed312 265static void cppush (struct cpstack **pstack, char *name);
8b93c638 266
a14ed312 267static char *cppop (struct cpstack **pstack);
8b93c638 268
acd65feb
VP
269static int install_new_value (struct varobj *var, struct value *value,
270 int initial);
271
581e13c1 272/* Language-specific routines. */
8b93c638 273
a14ed312 274static enum varobj_languages variable_language (struct varobj *var);
8b93c638 275
a14ed312 276static int number_of_children (struct varobj *);
8b93c638 277
a14ed312 278static char *name_of_variable (struct varobj *);
8b93c638 279
a14ed312 280static char *name_of_child (struct varobj *, int);
8b93c638 281
30b28db1 282static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 283
30b28db1 284static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 285
de051565
MK
286static char *my_value_of_variable (struct varobj *var,
287 enum varobj_display_formats format);
8b93c638 288
85265413 289static char *value_get_print_value (struct value *value,
b6313243 290 enum varobj_display_formats format,
d452c4bc 291 struct varobj *var);
85265413 292
b2c2bd75
VP
293static int varobj_value_is_changeable_p (struct varobj *var);
294
295static int is_root_p (struct varobj *var);
8b93c638 296
d8b65138
JK
297#if HAVE_PYTHON
298
9a1edae6
PM
299static struct varobj *varobj_add_child (struct varobj *var,
300 const char *name,
301 struct value *value);
b6313243 302
d8b65138
JK
303#endif /* HAVE_PYTHON */
304
8b93c638
JM
305/* C implementation */
306
a14ed312 307static int c_number_of_children (struct varobj *var);
8b93c638 308
a14ed312 309static char *c_name_of_variable (struct varobj *parent);
8b93c638 310
a14ed312 311static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 312
02142340
VP
313static char *c_path_expr_of_child (struct varobj *child);
314
30b28db1 315static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 316
30b28db1 317static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 318
a14ed312 319static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 320
de051565
MK
321static char *c_value_of_variable (struct varobj *var,
322 enum varobj_display_formats format);
8b93c638
JM
323
324/* C++ implementation */
325
a14ed312 326static int cplus_number_of_children (struct varobj *var);
8b93c638 327
a14ed312 328static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 329
a14ed312 330static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 331
a14ed312 332static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 333
02142340
VP
334static char *cplus_path_expr_of_child (struct varobj *child);
335
30b28db1 336static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 337
30b28db1 338static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 339
a14ed312 340static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 341
de051565
MK
342static char *cplus_value_of_variable (struct varobj *var,
343 enum varobj_display_formats format);
8b93c638
JM
344
345/* Java implementation */
346
a14ed312 347static int java_number_of_children (struct varobj *var);
8b93c638 348
a14ed312 349static char *java_name_of_variable (struct varobj *parent);
8b93c638 350
a14ed312 351static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 352
02142340
VP
353static char *java_path_expr_of_child (struct varobj *child);
354
30b28db1 355static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 356
30b28db1 357static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 358
a14ed312 359static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 360
de051565
MK
361static char *java_value_of_variable (struct varobj *var,
362 enum varobj_display_formats format);
8b93c638 363
40591b7d
JCD
364/* Ada implementation */
365
366static int ada_number_of_children (struct varobj *var);
367
368static char *ada_name_of_variable (struct varobj *parent);
369
370static char *ada_name_of_child (struct varobj *parent, int index);
371
372static char *ada_path_expr_of_child (struct varobj *child);
373
374static struct value *ada_value_of_root (struct varobj **var_handle);
375
376static struct value *ada_value_of_child (struct varobj *parent, int index);
377
378static struct type *ada_type_of_child (struct varobj *parent, int index);
379
380static char *ada_value_of_variable (struct varobj *var,
381 enum varobj_display_formats format);
382
8b93c638
JM
383/* The language specific vector */
384
385struct language_specific
72330bd6 386{
8b93c638 387
581e13c1 388 /* The language of this variable. */
72330bd6 389 enum varobj_languages language;
8b93c638 390
581e13c1 391 /* The number of children of PARENT. */
72330bd6 392 int (*number_of_children) (struct varobj * parent);
8b93c638 393
581e13c1 394 /* The name (expression) of a root varobj. */
72330bd6 395 char *(*name_of_variable) (struct varobj * parent);
8b93c638 396
581e13c1 397 /* The name of the INDEX'th child of PARENT. */
72330bd6 398 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 399
02142340
VP
400 /* Returns the rooted expression of CHILD, which is a variable
401 obtain that has some parent. */
402 char *(*path_expr_of_child) (struct varobj * child);
403
581e13c1 404 /* The ``struct value *'' of the root variable ROOT. */
30b28db1 405 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 406
581e13c1 407 /* The ``struct value *'' of the INDEX'th child of PARENT. */
30b28db1 408 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 409
581e13c1 410 /* The type of the INDEX'th child of PARENT. */
72330bd6 411 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 412
581e13c1 413 /* The current value of VAR. */
de051565
MK
414 char *(*value_of_variable) (struct varobj * var,
415 enum varobj_display_formats format);
72330bd6 416};
8b93c638 417
581e13c1 418/* Array of known source language routines. */
d5d6fca5 419static struct language_specific languages[vlang_end] = {
581e13c1 420 /* Unknown (try treating as C). */
8b93c638 421 {
72330bd6
AC
422 vlang_unknown,
423 c_number_of_children,
424 c_name_of_variable,
425 c_name_of_child,
02142340 426 c_path_expr_of_child,
72330bd6
AC
427 c_value_of_root,
428 c_value_of_child,
429 c_type_of_child,
72330bd6 430 c_value_of_variable}
8b93c638
JM
431 ,
432 /* C */
433 {
72330bd6
AC
434 vlang_c,
435 c_number_of_children,
436 c_name_of_variable,
437 c_name_of_child,
02142340 438 c_path_expr_of_child,
72330bd6
AC
439 c_value_of_root,
440 c_value_of_child,
441 c_type_of_child,
72330bd6 442 c_value_of_variable}
8b93c638
JM
443 ,
444 /* C++ */
445 {
72330bd6
AC
446 vlang_cplus,
447 cplus_number_of_children,
448 cplus_name_of_variable,
449 cplus_name_of_child,
02142340 450 cplus_path_expr_of_child,
72330bd6
AC
451 cplus_value_of_root,
452 cplus_value_of_child,
453 cplus_type_of_child,
72330bd6 454 cplus_value_of_variable}
8b93c638
JM
455 ,
456 /* Java */
457 {
72330bd6
AC
458 vlang_java,
459 java_number_of_children,
460 java_name_of_variable,
461 java_name_of_child,
02142340 462 java_path_expr_of_child,
72330bd6
AC
463 java_value_of_root,
464 java_value_of_child,
465 java_type_of_child,
40591b7d
JCD
466 java_value_of_variable},
467 /* Ada */
468 {
469 vlang_ada,
470 ada_number_of_children,
471 ada_name_of_variable,
472 ada_name_of_child,
473 ada_path_expr_of_child,
474 ada_value_of_root,
475 ada_value_of_child,
476 ada_type_of_child,
477 ada_value_of_variable}
8b93c638
JM
478};
479
581e13c1 480/* A little convenience enum for dealing with C++/Java. */
8b93c638 481enum vsections
72330bd6
AC
482{
483 v_public = 0, v_private, v_protected
484};
8b93c638
JM
485
486/* Private data */
487
581e13c1 488/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 489static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 490
581e13c1 491/* Header of the list of root variable objects. */
8b93c638 492static struct varobj_root *rootlist;
8b93c638 493
581e13c1
MS
494/* Prime number indicating the number of buckets in the hash table. */
495/* A prime large enough to avoid too many colisions. */
8b93c638
JM
496#define VAROBJ_TABLE_SIZE 227
497
581e13c1 498/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
499static struct vlist **varobj_table;
500
581e13c1 501/* Is the variable X one of our "fake" children? */
8b93c638
JM
502#define CPLUS_FAKE_CHILD(x) \
503((x) != NULL && (x)->type == NULL && (x)->value == NULL)
504\f
505
506/* API Implementation */
b2c2bd75
VP
507static int
508is_root_p (struct varobj *var)
509{
510 return (var->root->rootvar == var);
511}
8b93c638 512
d452c4bc
UW
513#ifdef HAVE_PYTHON
514/* Helper function to install a Python environment suitable for
515 use during operations on VAR. */
516struct cleanup *
517varobj_ensure_python_env (struct varobj *var)
518{
519 return ensure_python_env (var->root->exp->gdbarch,
520 var->root->exp->language_defn);
521}
522#endif
523
581e13c1 524/* Creates a varobj (not its children). */
8b93c638 525
7d8547c9
AC
526/* Return the full FRAME which corresponds to the given CORE_ADDR
527 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
528
529static struct frame_info *
530find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
531{
532 struct frame_info *frame = NULL;
533
534 if (frame_addr == (CORE_ADDR) 0)
535 return NULL;
536
9d49bdc2
PA
537 for (frame = get_current_frame ();
538 frame != NULL;
539 frame = get_prev_frame (frame))
7d8547c9 540 {
1fac167a
UW
541 /* The CORE_ADDR we get as argument was parsed from a string GDB
542 output as $fp. This output got truncated to gdbarch_addr_bit.
543 Truncate the frame base address in the same manner before
544 comparing it against our argument. */
545 CORE_ADDR frame_base = get_frame_base_address (frame);
546 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 547
1fac167a
UW
548 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
549 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
550
551 if (frame_base == frame_addr)
7d8547c9
AC
552 return frame;
553 }
9d49bdc2
PA
554
555 return NULL;
7d8547c9
AC
556}
557
8b93c638
JM
558struct varobj *
559varobj_create (char *objname,
72330bd6 560 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
561{
562 struct varobj *var;
8b93c638
JM
563 struct cleanup *old_chain;
564
581e13c1 565 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 566 var = new_root_variable ();
74b7792f 567 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
568
569 if (expression != NULL)
570 {
e4195b40 571 struct frame_info *fi;
35633fef 572 struct frame_id old_id = null_frame_id;
e4195b40 573 struct block *block;
8b93c638
JM
574 char *p;
575 enum varobj_languages lang;
e55dccf0 576 struct value *value = NULL;
8b93c638 577
9d49bdc2
PA
578 /* Parse and evaluate the expression, filling in as much of the
579 variable's data as possible. */
580
581 if (has_stack_frames ())
582 {
581e13c1 583 /* Allow creator to specify context of variable. */
9d49bdc2
PA
584 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
585 fi = get_selected_frame (NULL);
586 else
587 /* FIXME: cagney/2002-11-23: This code should be doing a
588 lookup using the frame ID and not just the frame's
589 ``address''. This, of course, means an interface
590 change. However, with out that interface change ISAs,
591 such as the ia64 with its two stacks, won't work.
592 Similar goes for the case where there is a frameless
593 function. */
594 fi = find_frame_addr_in_frame_chain (frame);
595 }
8b93c638 596 else
9d49bdc2 597 fi = NULL;
8b93c638 598
581e13c1 599 /* frame = -2 means always use selected frame. */
73a93a32 600 if (type == USE_SELECTED_FRAME)
a5defcdc 601 var->root->floating = 1;
73a93a32 602
8b93c638
JM
603 block = NULL;
604 if (fi != NULL)
ae767bfb 605 block = get_frame_block (fi, 0);
8b93c638
JM
606
607 p = expression;
608 innermost_block = NULL;
73a93a32 609 /* Wrap the call to parse expression, so we can
581e13c1 610 return a sensible error. */
73a93a32
JI
611 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
612 {
f748fb40 613 do_cleanups (old_chain);
73a93a32
JI
614 return NULL;
615 }
8b93c638 616
581e13c1 617 /* Don't allow variables to be created for types. */
8b93c638
JM
618 if (var->root->exp->elts[0].opcode == OP_TYPE)
619 {
620 do_cleanups (old_chain);
bc8332bb
AC
621 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
622 " as an expression.\n");
8b93c638
JM
623 return NULL;
624 }
625
626 var->format = variable_default_display (var);
627 var->root->valid_block = innermost_block;
1b36a34b 628 var->name = xstrdup (expression);
02142340 629 /* For a root var, the name and the expr are the same. */
1b36a34b 630 var->path_expr = xstrdup (expression);
8b93c638
JM
631
632 /* When the frame is different from the current frame,
633 we must select the appropriate frame before parsing
634 the expression, otherwise the value will not be current.
581e13c1 635 Since select_frame is so benign, just call it for all cases. */
4e22772d 636 if (innermost_block)
8b93c638 637 {
4e22772d
JK
638 /* User could specify explicit FRAME-ADDR which was not found but
639 EXPRESSION is frame specific and we would not be able to evaluate
640 it correctly next time. With VALID_BLOCK set we must also set
641 FRAME and THREAD_ID. */
642 if (fi == NULL)
643 error (_("Failed to find the specified frame"));
644
7a424e99 645 var->root->frame = get_frame_id (fi);
c5b48eac 646 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 647 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 648 select_frame (fi);
8b93c638
JM
649 }
650
340a7723 651 /* We definitely need to catch errors here.
8b93c638 652 If evaluate_expression succeeds we got the value we wanted.
581e13c1 653 But if it fails, we still go on with a call to evaluate_type(). */
acd65feb 654 if (!gdb_evaluate_expression (var->root->exp, &value))
e55dccf0
VP
655 {
656 /* Error getting the value. Try to at least get the
657 right type. */
658 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 659
e55dccf0
VP
660 var->type = value_type (type_only_value);
661 }
662 else
663 var->type = value_type (value);
acd65feb 664
acd65feb 665 install_new_value (var, value, 1 /* Initial assignment */);
8b93c638
JM
666
667 /* Set language info */
668 lang = variable_language (var);
d5d6fca5 669 var->root->lang = &languages[lang];
8b93c638 670
581e13c1 671 /* Set ourselves as our root. */
8b93c638
JM
672 var->root->rootvar = var;
673
581e13c1 674 /* Reset the selected frame. */
35633fef
JK
675 if (frame_id_p (old_id))
676 select_frame (frame_find_by_id (old_id));
8b93c638
JM
677 }
678
73a93a32 679 /* If the variable object name is null, that means this
581e13c1 680 is a temporary variable, so don't install it. */
73a93a32
JI
681
682 if ((var != NULL) && (objname != NULL))
8b93c638 683 {
1b36a34b 684 var->obj_name = xstrdup (objname);
8b93c638
JM
685
686 /* If a varobj name is duplicated, the install will fail so
581e13c1 687 we must cleanup. */
8b93c638
JM
688 if (!install_variable (var))
689 {
690 do_cleanups (old_chain);
691 return NULL;
692 }
693 }
694
695 discard_cleanups (old_chain);
696 return var;
697}
698
581e13c1 699/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
700
701char *
702varobj_gen_name (void)
703{
704 static int id = 0;
e64d9b3d 705 char *obj_name;
8b93c638 706
581e13c1 707 /* Generate a name for this object. */
8b93c638 708 id++;
b435e160 709 obj_name = xstrprintf ("var%d", id);
8b93c638 710
e64d9b3d 711 return obj_name;
8b93c638
JM
712}
713
61d8f275
JK
714/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
715 error if OBJNAME cannot be found. */
8b93c638
JM
716
717struct varobj *
718varobj_get_handle (char *objname)
719{
720 struct vlist *cv;
721 const char *chp;
722 unsigned int index = 0;
723 unsigned int i = 1;
724
725 for (chp = objname; *chp; chp++)
726 {
727 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
728 }
729
730 cv = *(varobj_table + index);
731 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
732 cv = cv->next;
733
734 if (cv == NULL)
8a3fe4f8 735 error (_("Variable object not found"));
8b93c638
JM
736
737 return cv->var;
738}
739
581e13c1 740/* Given the handle, return the name of the object. */
8b93c638
JM
741
742char *
743varobj_get_objname (struct varobj *var)
744{
745 return var->obj_name;
746}
747
581e13c1 748/* Given the handle, return the expression represented by the object. */
8b93c638
JM
749
750char *
751varobj_get_expression (struct varobj *var)
752{
753 return name_of_variable (var);
754}
755
756/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
757 otherwise deletes only the children; returns a malloc'ed list of
758 all the (malloc'ed) names of the variables that have been deleted
581e13c1 759 (NULL terminated). */
8b93c638
JM
760
761int
762varobj_delete (struct varobj *var, char ***dellist, int only_children)
763{
764 int delcount;
765 int mycount;
766 struct cpstack *result = NULL;
767 char **cp;
768
581e13c1 769 /* Initialize a stack for temporary results. */
8b93c638
JM
770 cppush (&result, NULL);
771
772 if (only_children)
581e13c1 773 /* Delete only the variable children. */
8b93c638
JM
774 delcount = delete_variable (&result, var, 1 /* only the children */ );
775 else
581e13c1 776 /* Delete the variable and all its children. */
8b93c638
JM
777 delcount = delete_variable (&result, var, 0 /* parent+children */ );
778
581e13c1 779 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
780 if (dellist != NULL)
781 {
782 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
783
784 cp = *dellist;
785 mycount = delcount;
786 *cp = cppop (&result);
787 while ((*cp != NULL) && (mycount > 0))
788 {
789 mycount--;
790 cp++;
791 *cp = cppop (&result);
792 }
793
794 if (mycount || (*cp != NULL))
8a3fe4f8 795 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 796 mycount);
8b93c638
JM
797 }
798
799 return delcount;
800}
801
d8b65138
JK
802#if HAVE_PYTHON
803
b6313243
TT
804/* Convenience function for varobj_set_visualizer. Instantiate a
805 pretty-printer for a given value. */
806static PyObject *
807instantiate_pretty_printer (PyObject *constructor, struct value *value)
808{
b6313243
TT
809 PyObject *val_obj = NULL;
810 PyObject *printer;
b6313243 811
b6313243 812 val_obj = value_to_value_object (value);
b6313243
TT
813 if (! val_obj)
814 return NULL;
815
816 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
817 Py_DECREF (val_obj);
818 return printer;
b6313243
TT
819}
820
d8b65138
JK
821#endif
822
581e13c1 823/* Set/Get variable object display format. */
8b93c638
JM
824
825enum varobj_display_formats
826varobj_set_display_format (struct varobj *var,
827 enum varobj_display_formats format)
828{
829 switch (format)
830 {
831 case FORMAT_NATURAL:
832 case FORMAT_BINARY:
833 case FORMAT_DECIMAL:
834 case FORMAT_HEXADECIMAL:
835 case FORMAT_OCTAL:
836 var->format = format;
837 break;
838
839 default:
840 var->format = variable_default_display (var);
841 }
842
ae7d22a6
VP
843 if (varobj_value_is_changeable_p (var)
844 && var->value && !value_lazy (var->value))
845 {
6c761d9c 846 xfree (var->print_value);
d452c4bc 847 var->print_value = value_get_print_value (var->value, var->format, var);
ae7d22a6
VP
848 }
849
8b93c638
JM
850 return var->format;
851}
852
853enum varobj_display_formats
854varobj_get_display_format (struct varobj *var)
855{
856 return var->format;
857}
858
b6313243
TT
859char *
860varobj_get_display_hint (struct varobj *var)
861{
862 char *result = NULL;
863
864#if HAVE_PYTHON
d452c4bc
UW
865 struct cleanup *back_to = varobj_ensure_python_env (var);
866
b6313243
TT
867 if (var->pretty_printer)
868 result = gdbpy_get_display_hint (var->pretty_printer);
d452c4bc
UW
869
870 do_cleanups (back_to);
b6313243
TT
871#endif
872
873 return result;
874}
875
0cc7d26f
TT
876/* Return true if the varobj has items after TO, false otherwise. */
877
878int
879varobj_has_more (struct varobj *var, int to)
880{
881 if (VEC_length (varobj_p, var->children) > to)
882 return 1;
883 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
884 && var->saved_item != NULL);
885}
886
c5b48eac
VP
887/* If the variable object is bound to a specific thread, that
888 is its evaluation can always be done in context of a frame
889 inside that thread, returns GDB id of the thread -- which
581e13c1 890 is always positive. Otherwise, returns -1. */
c5b48eac
VP
891int
892varobj_get_thread_id (struct varobj *var)
893{
894 if (var->root->valid_block && var->root->thread_id > 0)
895 return var->root->thread_id;
896 else
897 return -1;
898}
899
25d5ea92
VP
900void
901varobj_set_frozen (struct varobj *var, int frozen)
902{
903 /* When a variable is unfrozen, we don't fetch its value.
904 The 'not_fetched' flag remains set, so next -var-update
905 won't complain.
906
907 We don't fetch the value, because for structures the client
908 should do -var-update anyway. It would be bad to have different
909 client-size logic for structure and other types. */
910 var->frozen = frozen;
911}
912
913int
914varobj_get_frozen (struct varobj *var)
915{
916 return var->frozen;
917}
918
0cc7d26f
TT
919/* A helper function that restricts a range to what is actually
920 available in a VEC. This follows the usual rules for the meaning
921 of FROM and TO -- if either is negative, the entire range is
922 used. */
923
924static void
925restrict_range (VEC (varobj_p) *children, int *from, int *to)
926{
927 if (*from < 0 || *to < 0)
928 {
929 *from = 0;
930 *to = VEC_length (varobj_p, children);
931 }
932 else
933 {
934 if (*from > VEC_length (varobj_p, children))
935 *from = VEC_length (varobj_p, children);
936 if (*to > VEC_length (varobj_p, children))
937 *to = VEC_length (varobj_p, children);
938 if (*from > *to)
939 *from = *to;
940 }
941}
942
d8b65138
JK
943#if HAVE_PYTHON
944
0cc7d26f
TT
945/* A helper for update_dynamic_varobj_children that installs a new
946 child when needed. */
947
948static void
949install_dynamic_child (struct varobj *var,
950 VEC (varobj_p) **changed,
951 VEC (varobj_p) **new,
952 VEC (varobj_p) **unchanged,
953 int *cchanged,
954 int index,
955 const char *name,
956 struct value *value)
957{
958 if (VEC_length (varobj_p, var->children) < index + 1)
959 {
960 /* There's no child yet. */
961 struct varobj *child = varobj_add_child (var, name, value);
a109c7c1 962
0cc7d26f
TT
963 if (new)
964 {
965 VEC_safe_push (varobj_p, *new, child);
966 *cchanged = 1;
967 }
968 }
969 else
970 {
971 varobj_p existing = VEC_index (varobj_p, var->children, index);
a109c7c1 972
0cc7d26f
TT
973 if (install_new_value (existing, value, 0))
974 {
975 if (changed)
976 VEC_safe_push (varobj_p, *changed, existing);
977 }
978 else if (unchanged)
979 VEC_safe_push (varobj_p, *unchanged, existing);
980 }
981}
982
0cc7d26f
TT
983static int
984dynamic_varobj_has_child_method (struct varobj *var)
985{
986 struct cleanup *back_to;
987 PyObject *printer = var->pretty_printer;
988 int result;
989
990 back_to = varobj_ensure_python_env (var);
991 result = PyObject_HasAttr (printer, gdbpy_children_cst);
992 do_cleanups (back_to);
993 return result;
994}
995
996#endif
997
b6313243
TT
998static int
999update_dynamic_varobj_children (struct varobj *var,
1000 VEC (varobj_p) **changed,
0cc7d26f
TT
1001 VEC (varobj_p) **new,
1002 VEC (varobj_p) **unchanged,
1003 int *cchanged,
1004 int update_children,
1005 int from,
1006 int to)
b6313243
TT
1007{
1008#if HAVE_PYTHON
b6313243
TT
1009 struct cleanup *back_to;
1010 PyObject *children;
b6313243 1011 int i;
b6313243 1012 PyObject *printer = var->pretty_printer;
b6313243 1013
d452c4bc 1014 back_to = varobj_ensure_python_env (var);
b6313243
TT
1015
1016 *cchanged = 0;
1017 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
1018 {
1019 do_cleanups (back_to);
1020 return 0;
1021 }
1022
0cc7d26f 1023 if (update_children || !var->child_iter)
b6313243 1024 {
0cc7d26f
TT
1025 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
1026 NULL);
b6313243 1027
0cc7d26f
TT
1028 if (!children)
1029 {
1030 gdbpy_print_stack ();
1031 error (_("Null value returned for children"));
1032 }
b6313243 1033
0cc7d26f 1034 make_cleanup_py_decref (children);
b6313243 1035
0cc7d26f
TT
1036 if (!PyIter_Check (children))
1037 error (_("Returned value is not iterable"));
1038
1039 Py_XDECREF (var->child_iter);
1040 var->child_iter = PyObject_GetIter (children);
1041 if (!var->child_iter)
1042 {
1043 gdbpy_print_stack ();
1044 error (_("Could not get children iterator"));
1045 }
1046
1047 Py_XDECREF (var->saved_item);
1048 var->saved_item = NULL;
1049
1050 i = 0;
b6313243 1051 }
0cc7d26f
TT
1052 else
1053 i = VEC_length (varobj_p, var->children);
b6313243 1054
0cc7d26f
TT
1055 /* We ask for one extra child, so that MI can report whether there
1056 are more children. */
1057 for (; to < 0 || i < to + 1; ++i)
b6313243 1058 {
0cc7d26f 1059 PyObject *item;
a4c8e806 1060 int force_done = 0;
b6313243 1061
0cc7d26f
TT
1062 /* See if there was a leftover from last time. */
1063 if (var->saved_item)
1064 {
1065 item = var->saved_item;
1066 var->saved_item = NULL;
1067 }
1068 else
1069 item = PyIter_Next (var->child_iter);
b6313243 1070
0cc7d26f 1071 if (!item)
a4c8e806
TT
1072 {
1073 /* Normal end of iteration. */
1074 if (!PyErr_Occurred ())
1075 break;
1076
1077 /* If we got a memory error, just use the text as the
1078 item. */
1079 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1080 {
1081 PyObject *type, *value, *trace;
1082 char *name_str, *value_str;
1083
1084 PyErr_Fetch (&type, &value, &trace);
1085 value_str = gdbpy_exception_to_string (type, value);
1086 Py_XDECREF (type);
1087 Py_XDECREF (value);
1088 Py_XDECREF (trace);
1089 if (!value_str)
1090 {
1091 gdbpy_print_stack ();
1092 break;
1093 }
1094
1095 name_str = xstrprintf ("<error at %d>", i);
1096 item = Py_BuildValue ("(ss)", name_str, value_str);
1097 xfree (name_str);
1098 xfree (value_str);
1099 if (!item)
1100 {
1101 gdbpy_print_stack ();
1102 break;
1103 }
1104
1105 force_done = 1;
1106 }
1107 else
1108 {
1109 /* Any other kind of error. */
1110 gdbpy_print_stack ();
1111 break;
1112 }
1113 }
b6313243 1114
0cc7d26f
TT
1115 /* We don't want to push the extra child on any report list. */
1116 if (to < 0 || i < to)
b6313243 1117 {
0cc7d26f 1118 PyObject *py_v;
ddd49eee 1119 const char *name;
0cc7d26f
TT
1120 struct value *v;
1121 struct cleanup *inner;
1122 int can_mention = from < 0 || i >= from;
1123
1124 inner = make_cleanup_py_decref (item);
1125
1126 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
a4c8e806
TT
1127 {
1128 gdbpy_print_stack ();
1129 error (_("Invalid item from the child list"));
1130 }
0cc7d26f
TT
1131
1132 v = convert_value_from_python (py_v);
8dc78533
JK
1133 if (v == NULL)
1134 gdbpy_print_stack ();
0cc7d26f
TT
1135 install_dynamic_child (var, can_mention ? changed : NULL,
1136 can_mention ? new : NULL,
1137 can_mention ? unchanged : NULL,
1138 can_mention ? cchanged : NULL, i, name, v);
1139 do_cleanups (inner);
b6313243 1140 }
0cc7d26f 1141 else
b6313243 1142 {
0cc7d26f
TT
1143 Py_XDECREF (var->saved_item);
1144 var->saved_item = item;
b6313243 1145
0cc7d26f
TT
1146 /* We want to truncate the child list just before this
1147 element. */
1148 break;
1149 }
a4c8e806
TT
1150
1151 if (force_done)
1152 break;
b6313243
TT
1153 }
1154
1155 if (i < VEC_length (varobj_p, var->children))
1156 {
0cc7d26f 1157 int j;
a109c7c1 1158
0cc7d26f
TT
1159 *cchanged = 1;
1160 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1161 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1162 VEC_truncate (varobj_p, var->children, i);
b6313243 1163 }
0cc7d26f
TT
1164
1165 /* If there are fewer children than requested, note that the list of
1166 children changed. */
1167 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1168 *cchanged = 1;
1169
b6313243
TT
1170 var->num_children = VEC_length (varobj_p, var->children);
1171
1172 do_cleanups (back_to);
1173
b6313243
TT
1174 return 1;
1175#else
1176 gdb_assert (0 && "should never be called if Python is not enabled");
1177#endif
1178}
25d5ea92 1179
8b93c638
JM
1180int
1181varobj_get_num_children (struct varobj *var)
1182{
1183 if (var->num_children == -1)
b6313243 1184 {
0cc7d26f
TT
1185 if (var->pretty_printer)
1186 {
1187 int dummy;
1188
1189 /* If we have a dynamic varobj, don't report -1 children.
1190 So, try to fetch some children first. */
1191 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1192 0, 0, 0);
1193 }
1194 else
b6313243
TT
1195 var->num_children = number_of_children (var);
1196 }
8b93c638 1197
0cc7d26f 1198 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
1199}
1200
1201/* Creates a list of the immediate children of a variable object;
581e13c1 1202 the return code is the number of such children or -1 on error. */
8b93c638 1203
d56d46f5 1204VEC (varobj_p)*
0cc7d26f 1205varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 1206{
8b93c638 1207 char *name;
b6313243
TT
1208 int i, children_changed;
1209
1210 var->children_requested = 1;
1211
0cc7d26f
TT
1212 if (var->pretty_printer)
1213 {
b6313243
TT
1214 /* This, in theory, can result in the number of children changing without
1215 frontend noticing. But well, calling -var-list-children on the same
1216 varobj twice is not something a sane frontend would do. */
0cc7d26f
TT
1217 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1218 0, 0, *to);
1219 restrict_range (var->children, from, to);
1220 return var->children;
1221 }
8b93c638 1222
8b93c638
JM
1223 if (var->num_children == -1)
1224 var->num_children = number_of_children (var);
1225
74a44383
DJ
1226 /* If that failed, give up. */
1227 if (var->num_children == -1)
d56d46f5 1228 return var->children;
74a44383 1229
28335dcc
VP
1230 /* If we're called when the list of children is not yet initialized,
1231 allocate enough elements in it. */
1232 while (VEC_length (varobj_p, var->children) < var->num_children)
1233 VEC_safe_push (varobj_p, var->children, NULL);
1234
8b93c638
JM
1235 for (i = 0; i < var->num_children; i++)
1236 {
d56d46f5 1237 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1238
1239 if (existing == NULL)
1240 {
1241 /* Either it's the first call to varobj_list_children for
1242 this variable object, and the child was never created,
1243 or it was explicitly deleted by the client. */
1244 name = name_of_child (var, i);
1245 existing = create_child (var, i, name);
1246 VEC_replace (varobj_p, var->children, i, existing);
1247 }
8b93c638
JM
1248 }
1249
0cc7d26f 1250 restrict_range (var->children, from, to);
d56d46f5 1251 return var->children;
8b93c638
JM
1252}
1253
d8b65138
JK
1254#if HAVE_PYTHON
1255
b6313243
TT
1256static struct varobj *
1257varobj_add_child (struct varobj *var, const char *name, struct value *value)
1258{
1259 varobj_p v = create_child_with_value (var,
1260 VEC_length (varobj_p, var->children),
1261 name, value);
a109c7c1 1262
b6313243 1263 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1264 return v;
1265}
1266
d8b65138
JK
1267#endif /* HAVE_PYTHON */
1268
8b93c638 1269/* Obtain the type of an object Variable as a string similar to the one gdb
581e13c1 1270 prints on the console. */
8b93c638
JM
1271
1272char *
1273varobj_get_type (struct varobj *var)
1274{
581e13c1 1275 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1276 NULL, too.)
1277 Do not return a type for invalid variables as well. */
1278 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1279 return NULL;
1280
1a4300e9 1281 return type_to_string (var->type);
8b93c638
JM
1282}
1283
1ecb4ee0
DJ
1284/* Obtain the type of an object variable. */
1285
1286struct type *
1287varobj_get_gdb_type (struct varobj *var)
1288{
1289 return var->type;
1290}
1291
02142340
VP
1292/* Return a pointer to the full rooted expression of varobj VAR.
1293 If it has not been computed yet, compute it. */
1294char *
1295varobj_get_path_expr (struct varobj *var)
1296{
1297 if (var->path_expr != NULL)
1298 return var->path_expr;
1299 else
1300 {
1301 /* For root varobjs, we initialize path_expr
1302 when creating varobj, so here it should be
1303 child varobj. */
1304 gdb_assert (!is_root_p (var));
1305 return (*var->root->lang->path_expr_of_child) (var);
1306 }
1307}
1308
8b93c638
JM
1309enum varobj_languages
1310varobj_get_language (struct varobj *var)
1311{
1312 return variable_language (var);
1313}
1314
1315int
1316varobj_get_attributes (struct varobj *var)
1317{
1318 int attributes = 0;
1319
340a7723 1320 if (varobj_editable_p (var))
581e13c1 1321 /* FIXME: define masks for attributes. */
8b93c638
JM
1322 attributes |= 0x00000001; /* Editable */
1323
1324 return attributes;
1325}
1326
0cc7d26f
TT
1327int
1328varobj_pretty_printed_p (struct varobj *var)
1329{
1330 return var->pretty_printer != NULL;
1331}
1332
de051565
MK
1333char *
1334varobj_get_formatted_value (struct varobj *var,
1335 enum varobj_display_formats format)
1336{
1337 return my_value_of_variable (var, format);
1338}
1339
8b93c638
JM
1340char *
1341varobj_get_value (struct varobj *var)
1342{
de051565 1343 return my_value_of_variable (var, var->format);
8b93c638
JM
1344}
1345
1346/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1347 value of the given expression. */
1348/* Note: Invokes functions that can call error(). */
8b93c638
JM
1349
1350int
1351varobj_set_value (struct varobj *var, char *expression)
1352{
30b28db1 1353 struct value *val;
8b93c638
JM
1354
1355 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1356 We need to first construct a legal expression for this -- ugh! */
1357 /* Does this cover all the bases? */
8b93c638 1358 struct expression *exp;
30b28db1 1359 struct value *value;
8b93c638 1360 int saved_input_radix = input_radix;
340a7723 1361 char *s = expression;
8b93c638 1362
340a7723 1363 gdb_assert (varobj_editable_p (var));
8b93c638 1364
581e13c1 1365 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
340a7723
NR
1366 exp = parse_exp_1 (&s, 0, 0);
1367 if (!gdb_evaluate_expression (exp, &value))
1368 {
581e13c1 1369 /* We cannot proceed without a valid expression. */
340a7723
NR
1370 xfree (exp);
1371 return 0;
8b93c638
JM
1372 }
1373
340a7723
NR
1374 /* All types that are editable must also be changeable. */
1375 gdb_assert (varobj_value_is_changeable_p (var));
1376
1377 /* The value of a changeable variable object must not be lazy. */
1378 gdb_assert (!value_lazy (var->value));
1379
1380 /* Need to coerce the input. We want to check if the
1381 value of the variable object will be different
1382 after assignment, and the first thing value_assign
1383 does is coerce the input.
1384 For example, if we are assigning an array to a pointer variable we
b021a221 1385 should compare the pointer with the array's address, not with the
340a7723
NR
1386 array's content. */
1387 value = coerce_array (value);
1388
1389 /* The new value may be lazy. gdb_value_assign, or
1390 rather value_contents, will take care of this.
1391 If fetching of the new value will fail, gdb_value_assign
1392 with catch the exception. */
1393 if (!gdb_value_assign (var->value, value, &val))
1394 return 0;
1395
1396 /* If the value has changed, record it, so that next -var-update can
1397 report this change. If a variable had a value of '1', we've set it
1398 to '333' and then set again to '1', when -var-update will report this
1399 variable as changed -- because the first assignment has set the
1400 'updated' flag. There's no need to optimize that, because return value
1401 of -var-update should be considered an approximation. */
581e13c1 1402 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1403 input_radix = saved_input_radix;
1404 return 1;
8b93c638
JM
1405}
1406
0cc7d26f
TT
1407#if HAVE_PYTHON
1408
1409/* A helper function to install a constructor function and visualizer
1410 in a varobj. */
1411
1412static void
1413install_visualizer (struct varobj *var, PyObject *constructor,
1414 PyObject *visualizer)
1415{
1416 Py_XDECREF (var->constructor);
1417 var->constructor = constructor;
1418
1419 Py_XDECREF (var->pretty_printer);
1420 var->pretty_printer = visualizer;
1421
1422 Py_XDECREF (var->child_iter);
1423 var->child_iter = NULL;
1424}
1425
1426/* Install the default visualizer for VAR. */
1427
1428static void
1429install_default_visualizer (struct varobj *var)
1430{
d65aec65
PM
1431 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1432 if (CPLUS_FAKE_CHILD (var))
1433 return;
1434
0cc7d26f
TT
1435 if (pretty_printing)
1436 {
1437 PyObject *pretty_printer = NULL;
1438
1439 if (var->value)
1440 {
1441 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1442 if (! pretty_printer)
1443 {
1444 gdbpy_print_stack ();
1445 error (_("Cannot instantiate printer for default visualizer"));
1446 }
1447 }
1448
1449 if (pretty_printer == Py_None)
1450 {
1451 Py_DECREF (pretty_printer);
1452 pretty_printer = NULL;
1453 }
1454
1455 install_visualizer (var, NULL, pretty_printer);
1456 }
1457}
1458
1459/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1460 make a new object. */
1461
1462static void
1463construct_visualizer (struct varobj *var, PyObject *constructor)
1464{
1465 PyObject *pretty_printer;
1466
d65aec65
PM
1467 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1468 if (CPLUS_FAKE_CHILD (var))
1469 return;
1470
0cc7d26f
TT
1471 Py_INCREF (constructor);
1472 if (constructor == Py_None)
1473 pretty_printer = NULL;
1474 else
1475 {
1476 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1477 if (! pretty_printer)
1478 {
1479 gdbpy_print_stack ();
1480 Py_DECREF (constructor);
1481 constructor = Py_None;
1482 Py_INCREF (constructor);
1483 }
1484
1485 if (pretty_printer == Py_None)
1486 {
1487 Py_DECREF (pretty_printer);
1488 pretty_printer = NULL;
1489 }
1490 }
1491
1492 install_visualizer (var, constructor, pretty_printer);
1493}
1494
1495#endif /* HAVE_PYTHON */
1496
1497/* A helper function for install_new_value. This creates and installs
1498 a visualizer for VAR, if appropriate. */
1499
1500static void
1501install_new_value_visualizer (struct varobj *var)
1502{
1503#if HAVE_PYTHON
1504 /* If the constructor is None, then we want the raw value. If VAR
1505 does not have a value, just skip this. */
1506 if (var->constructor != Py_None && var->value)
1507 {
1508 struct cleanup *cleanup;
0cc7d26f
TT
1509
1510 cleanup = varobj_ensure_python_env (var);
1511
1512 if (!var->constructor)
1513 install_default_visualizer (var);
1514 else
1515 construct_visualizer (var, var->constructor);
1516
1517 do_cleanups (cleanup);
1518 }
1519#else
1520 /* Do nothing. */
1521#endif
1522}
1523
acd65feb
VP
1524/* Assign a new value to a variable object. If INITIAL is non-zero,
1525 this is the first assignement after the variable object was just
1526 created, or changed type. In that case, just assign the value
1527 and return 0.
581e13c1
MS
1528 Otherwise, assign the new value, and return 1 if the value is
1529 different from the current one, 0 otherwise. The comparison is
1530 done on textual representation of value. Therefore, some types
1531 need not be compared. E.g. for structures the reported value is
1532 always "{...}", so no comparison is necessary here. If the old
1533 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1534
1535 The VALUE parameter should not be released -- the function will
1536 take care of releasing it when needed. */
acd65feb
VP
1537static int
1538install_new_value (struct varobj *var, struct value *value, int initial)
1539{
1540 int changeable;
1541 int need_to_fetch;
1542 int changed = 0;
25d5ea92 1543 int intentionally_not_fetched = 0;
7a4d50bf 1544 char *print_value = NULL;
acd65feb 1545
acd65feb 1546 /* We need to know the varobj's type to decide if the value should
3e43a32a 1547 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1548 don't have a type. */
acd65feb 1549 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1550 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1551
1552 /* If the type has custom visualizer, we consider it to be always
581e13c1 1553 changeable. FIXME: need to make sure this behaviour will not
b6313243
TT
1554 mess up read-sensitive values. */
1555 if (var->pretty_printer)
1556 changeable = 1;
1557
acd65feb
VP
1558 need_to_fetch = changeable;
1559
b26ed50d
VP
1560 /* We are not interested in the address of references, and given
1561 that in C++ a reference is not rebindable, it cannot
1562 meaningfully change. So, get hold of the real value. */
1563 if (value)
0cc7d26f 1564 value = coerce_ref (value);
b26ed50d 1565
acd65feb
VP
1566 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1567 /* For unions, we need to fetch the value implicitly because
1568 of implementation of union member fetch. When gdb
1569 creates a value for a field and the value of the enclosing
1570 structure is not lazy, it immediately copies the necessary
1571 bytes from the enclosing values. If the enclosing value is
1572 lazy, the call to value_fetch_lazy on the field will read
1573 the data from memory. For unions, that means we'll read the
1574 same memory more than once, which is not desirable. So
1575 fetch now. */
1576 need_to_fetch = 1;
1577
1578 /* The new value might be lazy. If the type is changeable,
1579 that is we'll be comparing values of this type, fetch the
1580 value now. Otherwise, on the next update the old value
1581 will be lazy, which means we've lost that old value. */
1582 if (need_to_fetch && value && value_lazy (value))
1583 {
25d5ea92
VP
1584 struct varobj *parent = var->parent;
1585 int frozen = var->frozen;
a109c7c1 1586
25d5ea92
VP
1587 for (; !frozen && parent; parent = parent->parent)
1588 frozen |= parent->frozen;
1589
1590 if (frozen && initial)
1591 {
1592 /* For variables that are frozen, or are children of frozen
1593 variables, we don't do fetch on initial assignment.
1594 For non-initial assignemnt we do the fetch, since it means we're
1595 explicitly asked to compare the new value with the old one. */
1596 intentionally_not_fetched = 1;
1597 }
1598 else if (!gdb_value_fetch_lazy (value))
acd65feb 1599 {
acd65feb
VP
1600 /* Set the value to NULL, so that for the next -var-update,
1601 we don't try to compare the new value with this value,
1602 that we couldn't even read. */
1603 value = NULL;
1604 }
acd65feb
VP
1605 }
1606
b6313243 1607
7a4d50bf
VP
1608 /* Below, we'll be comparing string rendering of old and new
1609 values. Don't get string rendering if the value is
1610 lazy -- if it is, the code above has decided that the value
1611 should not be fetched. */
0cc7d26f 1612 if (value && !value_lazy (value) && !var->pretty_printer)
d452c4bc 1613 print_value = value_get_print_value (value, var->format, var);
7a4d50bf 1614
acd65feb
VP
1615 /* If the type is changeable, compare the old and the new values.
1616 If this is the initial assignment, we don't have any old value
1617 to compare with. */
7a4d50bf 1618 if (!initial && changeable)
acd65feb 1619 {
3e43a32a
MS
1620 /* If the value of the varobj was changed by -var-set-value,
1621 then the value in the varobj and in the target is the same.
1622 However, that value is different from the value that the
581e13c1 1623 varobj had after the previous -var-update. So need to the
3e43a32a 1624 varobj as changed. */
acd65feb 1625 if (var->updated)
57e66780 1626 {
57e66780
DJ
1627 changed = 1;
1628 }
0cc7d26f 1629 else if (! var->pretty_printer)
acd65feb
VP
1630 {
1631 /* Try to compare the values. That requires that both
1632 values are non-lazy. */
25d5ea92
VP
1633 if (var->not_fetched && value_lazy (var->value))
1634 {
1635 /* This is a frozen varobj and the value was never read.
1636 Presumably, UI shows some "never read" indicator.
1637 Now that we've fetched the real value, we need to report
1638 this varobj as changed so that UI can show the real
1639 value. */
1640 changed = 1;
1641 }
1642 else if (var->value == NULL && value == NULL)
581e13c1 1643 /* Equal. */
acd65feb
VP
1644 ;
1645 else if (var->value == NULL || value == NULL)
57e66780 1646 {
57e66780
DJ
1647 changed = 1;
1648 }
acd65feb
VP
1649 else
1650 {
1651 gdb_assert (!value_lazy (var->value));
1652 gdb_assert (!value_lazy (value));
85265413 1653
57e66780 1654 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1655 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1656 changed = 1;
acd65feb
VP
1657 }
1658 }
1659 }
85265413 1660
ee342b23
VP
1661 if (!initial && !changeable)
1662 {
1663 /* For values that are not changeable, we don't compare the values.
1664 However, we want to notice if a value was not NULL and now is NULL,
1665 or vise versa, so that we report when top-level varobjs come in scope
1666 and leave the scope. */
1667 changed = (var->value != NULL) != (value != NULL);
1668 }
1669
acd65feb 1670 /* We must always keep the new value, since children depend on it. */
25d5ea92 1671 if (var->value != NULL && var->value != value)
acd65feb
VP
1672 value_free (var->value);
1673 var->value = value;
0cc7d26f
TT
1674 if (value != NULL)
1675 value_incref (value);
25d5ea92
VP
1676 if (value && value_lazy (value) && intentionally_not_fetched)
1677 var->not_fetched = 1;
1678 else
1679 var->not_fetched = 0;
acd65feb 1680 var->updated = 0;
85265413 1681
0cc7d26f
TT
1682 install_new_value_visualizer (var);
1683
1684 /* If we installed a pretty-printer, re-compare the printed version
1685 to see if the variable changed. */
1686 if (var->pretty_printer)
1687 {
1688 xfree (print_value);
1689 print_value = value_get_print_value (var->value, var->format, var);
e8f781e2
TT
1690 if ((var->print_value == NULL && print_value != NULL)
1691 || (var->print_value != NULL && print_value == NULL)
1692 || (var->print_value != NULL && print_value != NULL
1693 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1694 changed = 1;
1695 }
1696 if (var->print_value)
1697 xfree (var->print_value);
1698 var->print_value = print_value;
1699
b26ed50d 1700 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1701
1702 return changed;
1703}
acd65feb 1704
0cc7d26f
TT
1705/* Return the requested range for a varobj. VAR is the varobj. FROM
1706 and TO are out parameters; *FROM and *TO will be set to the
1707 selected sub-range of VAR. If no range was selected using
1708 -var-set-update-range, then both will be -1. */
1709void
1710varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1711{
0cc7d26f
TT
1712 *from = var->from;
1713 *to = var->to;
b6313243
TT
1714}
1715
0cc7d26f
TT
1716/* Set the selected sub-range of children of VAR to start at index
1717 FROM and end at index TO. If either FROM or TO is less than zero,
1718 this is interpreted as a request for all children. */
1719void
1720varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1721{
0cc7d26f
TT
1722 var->from = from;
1723 var->to = to;
b6313243
TT
1724}
1725
1726void
1727varobj_set_visualizer (struct varobj *var, const char *visualizer)
1728{
1729#if HAVE_PYTHON
34fa1d9d
MS
1730 PyObject *mainmod, *globals, *constructor;
1731 struct cleanup *back_to;
b6313243 1732
d452c4bc 1733 back_to = varobj_ensure_python_env (var);
b6313243
TT
1734
1735 mainmod = PyImport_AddModule ("__main__");
1736 globals = PyModule_GetDict (mainmod);
1737 Py_INCREF (globals);
1738 make_cleanup_py_decref (globals);
1739
1740 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1741
0cc7d26f 1742 if (! constructor)
b6313243
TT
1743 {
1744 gdbpy_print_stack ();
da1f2771 1745 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1746 }
1747
0cc7d26f
TT
1748 construct_visualizer (var, constructor);
1749 Py_XDECREF (constructor);
b6313243 1750
0cc7d26f
TT
1751 /* If there are any children now, wipe them. */
1752 varobj_delete (var, NULL, 1 /* children only */);
1753 var->num_children = -1;
b6313243
TT
1754
1755 do_cleanups (back_to);
1756#else
da1f2771 1757 error (_("Python support required"));
b6313243
TT
1758#endif
1759}
1760
8b93c638
JM
1761/* Update the values for a variable and its children. This is a
1762 two-pronged attack. First, re-parse the value for the root's
1763 expression to see if it's changed. Then go all the way
1764 through its children, reconstructing them and noting if they've
1765 changed.
1766
25d5ea92
VP
1767 The EXPLICIT parameter specifies if this call is result
1768 of MI request to update this specific variable, or
581e13c1 1769 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1770 update frozen variables.
705da579 1771
581e13c1 1772 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1773 returns TYPE_CHANGED, then it has done this and VARP will be modified
1774 to point to the new varobj. */
8b93c638 1775
f7f9ae2c 1776VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
8b93c638
JM
1777{
1778 int changed = 0;
25d5ea92 1779 int type_changed = 0;
8b93c638 1780 int i;
30b28db1 1781 struct value *new;
b6313243 1782 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1783 VEC (varobj_update_result) *result = NULL;
8b93c638 1784
25d5ea92
VP
1785 /* Frozen means frozen -- we don't check for any change in
1786 this varobj, including its going out of scope, or
1787 changing type. One use case for frozen varobjs is
1788 retaining previously evaluated expressions, and we don't
1789 want them to be reevaluated at all. */
1790 if (!explicit && (*varp)->frozen)
f7f9ae2c 1791 return result;
8756216b
DP
1792
1793 if (!(*varp)->root->is_valid)
f7f9ae2c 1794 {
cfce2ea2 1795 varobj_update_result r = {0};
a109c7c1 1796
cfce2ea2 1797 r.varobj = *varp;
f7f9ae2c
VP
1798 r.status = VAROBJ_INVALID;
1799 VEC_safe_push (varobj_update_result, result, &r);
1800 return result;
1801 }
8b93c638 1802
25d5ea92 1803 if ((*varp)->root->rootvar == *varp)
ae093f96 1804 {
cfce2ea2 1805 varobj_update_result r = {0};
a109c7c1 1806
cfce2ea2 1807 r.varobj = *varp;
f7f9ae2c
VP
1808 r.status = VAROBJ_IN_SCOPE;
1809
581e13c1 1810 /* Update the root variable. value_of_root can return NULL
25d5ea92 1811 if the variable is no longer around, i.e. we stepped out of
581e13c1 1812 the frame in which a local existed. We are letting the
25d5ea92
VP
1813 value_of_root variable dispose of the varobj if the type
1814 has changed. */
25d5ea92 1815 new = value_of_root (varp, &type_changed);
f7f9ae2c
VP
1816 r.varobj = *varp;
1817
1818 r.type_changed = type_changed;
ea56f9c2 1819 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1820 r.changed = 1;
ea56f9c2 1821
25d5ea92 1822 if (new == NULL)
f7f9ae2c 1823 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1824 r.value_installed = 1;
f7f9ae2c
VP
1825
1826 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1827 {
0b4bc29a
JK
1828 if (r.type_changed || r.changed)
1829 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1830 return result;
1831 }
1832
1833 VEC_safe_push (varobj_update_result, stack, &r);
1834 }
1835 else
1836 {
cfce2ea2 1837 varobj_update_result r = {0};
a109c7c1 1838
cfce2ea2 1839 r.varobj = *varp;
b6313243 1840 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1841 }
8b93c638 1842
8756216b 1843 /* Walk through the children, reconstructing them all. */
b6313243 1844 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1845 {
b6313243
TT
1846 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1847 struct varobj *v = r.varobj;
1848
1849 VEC_pop (varobj_update_result, stack);
1850
1851 /* Update this variable, unless it's a root, which is already
1852 updated. */
1853 if (!r.value_installed)
1854 {
1855 new = value_of_child (v->parent, v->index);
1856 if (install_new_value (v, new, 0 /* type not changed */))
1857 {
1858 r.changed = 1;
1859 v->updated = 0;
1860 }
1861 }
1862
1863 /* We probably should not get children of a varobj that has a
1864 pretty-printer, but for which -var-list-children was never
581e13c1 1865 invoked. */
b6313243
TT
1866 if (v->pretty_printer)
1867 {
0cc7d26f 1868 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
26f9bcee 1869 int i, children_changed = 0;
b6313243
TT
1870
1871 if (v->frozen)
1872 continue;
1873
0cc7d26f
TT
1874 if (!v->children_requested)
1875 {
1876 int dummy;
1877
1878 /* If we initially did not have potential children, but
1879 now we do, consider the varobj as changed.
1880 Otherwise, if children were never requested, consider
1881 it as unchanged -- presumably, such varobj is not yet
1882 expanded in the UI, so we need not bother getting
1883 it. */
1884 if (!varobj_has_more (v, 0))
1885 {
1886 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1887 &dummy, 0, 0, 0);
1888 if (varobj_has_more (v, 0))
1889 r.changed = 1;
1890 }
1891
1892 if (r.changed)
1893 VEC_safe_push (varobj_update_result, result, &r);
1894
1895 continue;
1896 }
1897
b6313243
TT
1898 /* If update_dynamic_varobj_children returns 0, then we have
1899 a non-conforming pretty-printer, so we skip it. */
0cc7d26f
TT
1900 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1901 &children_changed, 1,
1902 v->from, v->to))
b6313243 1903 {
0cc7d26f 1904 if (children_changed || new)
b6313243 1905 {
0cc7d26f
TT
1906 r.children_changed = 1;
1907 r.new = new;
b6313243 1908 }
0cc7d26f
TT
1909 /* Push in reverse order so that the first child is
1910 popped from the work stack first, and so will be
1911 added to result first. This does not affect
1912 correctness, just "nicer". */
1913 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1914 {
0cc7d26f 1915 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1916 varobj_update_result r = {0};
a109c7c1 1917
cfce2ea2 1918 r.varobj = tmp;
0cc7d26f 1919 r.changed = 1;
b6313243
TT
1920 r.value_installed = 1;
1921 VEC_safe_push (varobj_update_result, stack, &r);
1922 }
0cc7d26f
TT
1923 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1924 {
1925 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1926
0cc7d26f
TT
1927 if (!tmp->frozen)
1928 {
cfce2ea2 1929 varobj_update_result r = {0};
a109c7c1 1930
cfce2ea2 1931 r.varobj = tmp;
0cc7d26f
TT
1932 r.value_installed = 1;
1933 VEC_safe_push (varobj_update_result, stack, &r);
1934 }
1935 }
b6313243
TT
1936 if (r.changed || r.children_changed)
1937 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f
TT
1938
1939 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1940 has been put into the result vector. */
1941 VEC_free (varobj_p, changed);
1942 VEC_free (varobj_p, unchanged);
1943
b6313243
TT
1944 continue;
1945 }
1946 }
28335dcc
VP
1947
1948 /* Push any children. Use reverse order so that the first
1949 child is popped from the work stack first, and so
1950 will be added to result first. This does not
1951 affect correctness, just "nicer". */
1952 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1953 {
28335dcc 1954 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1955
28335dcc 1956 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1957 if (c != NULL && !c->frozen)
28335dcc 1958 {
cfce2ea2 1959 varobj_update_result r = {0};
a109c7c1 1960
cfce2ea2 1961 r.varobj = c;
b6313243 1962 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1963 }
8b93c638 1964 }
b6313243
TT
1965
1966 if (r.changed || r.type_changed)
1967 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1968 }
1969
b6313243
TT
1970 VEC_free (varobj_update_result, stack);
1971
f7f9ae2c 1972 return result;
8b93c638
JM
1973}
1974\f
1975
1976/* Helper functions */
1977
1978/*
1979 * Variable object construction/destruction
1980 */
1981
1982static int
fba45db2
KB
1983delete_variable (struct cpstack **resultp, struct varobj *var,
1984 int only_children_p)
8b93c638
JM
1985{
1986 int delcount = 0;
1987
1988 delete_variable_1 (resultp, &delcount, var,
1989 only_children_p, 1 /* remove_from_parent_p */ );
1990
1991 return delcount;
1992}
1993
581e13c1 1994/* Delete the variable object VAR and its children. */
8b93c638
JM
1995/* IMPORTANT NOTE: If we delete a variable which is a child
1996 and the parent is not removed we dump core. It must be always
581e13c1 1997 initially called with remove_from_parent_p set. */
8b93c638 1998static void
72330bd6
AC
1999delete_variable_1 (struct cpstack **resultp, int *delcountp,
2000 struct varobj *var, int only_children_p,
2001 int remove_from_parent_p)
8b93c638 2002{
28335dcc 2003 int i;
8b93c638 2004
581e13c1 2005 /* Delete any children of this variable, too. */
28335dcc
VP
2006 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
2007 {
2008 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 2009
214270ab
VP
2010 if (!child)
2011 continue;
8b93c638 2012 if (!remove_from_parent_p)
28335dcc
VP
2013 child->parent = NULL;
2014 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 2015 }
28335dcc 2016 VEC_free (varobj_p, var->children);
8b93c638 2017
581e13c1 2018 /* if we were called to delete only the children we are done here. */
8b93c638
JM
2019 if (only_children_p)
2020 return;
2021
581e13c1 2022 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 2023 /* If the name is null, this is a temporary variable, that has not
581e13c1 2024 yet been installed, don't report it, it belongs to the caller... */
73a93a32 2025 if (var->obj_name != NULL)
8b93c638 2026 {
5b616ba1 2027 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
2028 *delcountp = *delcountp + 1;
2029 }
2030
581e13c1 2031 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
2032 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2033 (as indicated by remove_from_parent_p) we don't bother doing an
2034 expensive list search to find the element to remove when we are
581e13c1 2035 discarding the list afterwards. */
72330bd6 2036 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 2037 {
28335dcc 2038 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 2039 }
72330bd6 2040
73a93a32
JI
2041 if (var->obj_name != NULL)
2042 uninstall_variable (var);
8b93c638 2043
581e13c1 2044 /* Free memory associated with this variable. */
8b93c638
JM
2045 free_variable (var);
2046}
2047
581e13c1 2048/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 2049static int
fba45db2 2050install_variable (struct varobj *var)
8b93c638
JM
2051{
2052 struct vlist *cv;
2053 struct vlist *newvl;
2054 const char *chp;
2055 unsigned int index = 0;
2056 unsigned int i = 1;
2057
2058 for (chp = var->obj_name; *chp; chp++)
2059 {
2060 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2061 }
2062
2063 cv = *(varobj_table + index);
2064 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2065 cv = cv->next;
2066
2067 if (cv != NULL)
8a3fe4f8 2068 error (_("Duplicate variable object name"));
8b93c638 2069
581e13c1 2070 /* Add varobj to hash table. */
8b93c638
JM
2071 newvl = xmalloc (sizeof (struct vlist));
2072 newvl->next = *(varobj_table + index);
2073 newvl->var = var;
2074 *(varobj_table + index) = newvl;
2075
581e13c1 2076 /* If root, add varobj to root list. */
b2c2bd75 2077 if (is_root_p (var))
8b93c638 2078 {
581e13c1 2079 /* Add to list of root variables. */
8b93c638
JM
2080 if (rootlist == NULL)
2081 var->root->next = NULL;
2082 else
2083 var->root->next = rootlist;
2084 rootlist = var->root;
8b93c638
JM
2085 }
2086
2087 return 1; /* OK */
2088}
2089
581e13c1 2090/* Unistall the object VAR. */
8b93c638 2091static void
fba45db2 2092uninstall_variable (struct varobj *var)
8b93c638
JM
2093{
2094 struct vlist *cv;
2095 struct vlist *prev;
2096 struct varobj_root *cr;
2097 struct varobj_root *prer;
2098 const char *chp;
2099 unsigned int index = 0;
2100 unsigned int i = 1;
2101
581e13c1 2102 /* Remove varobj from hash table. */
8b93c638
JM
2103 for (chp = var->obj_name; *chp; chp++)
2104 {
2105 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2106 }
2107
2108 cv = *(varobj_table + index);
2109 prev = NULL;
2110 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2111 {
2112 prev = cv;
2113 cv = cv->next;
2114 }
2115
2116 if (varobjdebug)
2117 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2118
2119 if (cv == NULL)
2120 {
72330bd6
AC
2121 warning
2122 ("Assertion failed: Could not find variable object \"%s\" to delete",
2123 var->obj_name);
8b93c638
JM
2124 return;
2125 }
2126
2127 if (prev == NULL)
2128 *(varobj_table + index) = cv->next;
2129 else
2130 prev->next = cv->next;
2131
b8c9b27d 2132 xfree (cv);
8b93c638 2133
581e13c1 2134 /* If root, remove varobj from root list. */
b2c2bd75 2135 if (is_root_p (var))
8b93c638 2136 {
581e13c1 2137 /* Remove from list of root variables. */
8b93c638
JM
2138 if (rootlist == var->root)
2139 rootlist = var->root->next;
2140 else
2141 {
2142 prer = NULL;
2143 cr = rootlist;
2144 while ((cr != NULL) && (cr->rootvar != var))
2145 {
2146 prer = cr;
2147 cr = cr->next;
2148 }
2149 if (cr == NULL)
2150 {
8f7e195f
JB
2151 warning (_("Assertion failed: Could not find "
2152 "varobj \"%s\" in root list"),
3e43a32a 2153 var->obj_name);
8b93c638
JM
2154 return;
2155 }
2156 if (prer == NULL)
2157 rootlist = NULL;
2158 else
2159 prer->next = cr->next;
2160 }
8b93c638
JM
2161 }
2162
2163}
2164
581e13c1 2165/* Create and install a child of the parent of the given name. */
8b93c638 2166static struct varobj *
fba45db2 2167create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2168{
2169 return create_child_with_value (parent, index, name,
2170 value_of_child (parent, index));
2171}
2172
2173static struct varobj *
2174create_child_with_value (struct varobj *parent, int index, const char *name,
2175 struct value *value)
8b93c638
JM
2176{
2177 struct varobj *child;
2178 char *childs_name;
2179
2180 child = new_variable ();
2181
581e13c1 2182 /* Name is allocated by name_of_child. */
b6313243
TT
2183 /* FIXME: xstrdup should not be here. */
2184 child->name = xstrdup (name);
8b93c638 2185 child->index = index;
8b93c638
JM
2186 child->parent = parent;
2187 child->root = parent->root;
b435e160 2188 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638
JM
2189 child->obj_name = childs_name;
2190 install_variable (child);
2191
acd65feb
VP
2192 /* Compute the type of the child. Must do this before
2193 calling install_new_value. */
2194 if (value != NULL)
2195 /* If the child had no evaluation errors, var->value
581e13c1 2196 will be non-NULL and contain a valid type. */
acd65feb
VP
2197 child->type = value_type (value);
2198 else
581e13c1 2199 /* Otherwise, we must compute the type. */
acd65feb
VP
2200 child->type = (*child->root->lang->type_of_child) (child->parent,
2201 child->index);
2202 install_new_value (child, value, 1);
2203
8b93c638
JM
2204 return child;
2205}
8b93c638
JM
2206\f
2207
2208/*
2209 * Miscellaneous utility functions.
2210 */
2211
581e13c1 2212/* Allocate memory and initialize a new variable. */
8b93c638
JM
2213static struct varobj *
2214new_variable (void)
2215{
2216 struct varobj *var;
2217
2218 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2219 var->name = NULL;
02142340 2220 var->path_expr = NULL;
8b93c638
JM
2221 var->obj_name = NULL;
2222 var->index = -1;
2223 var->type = NULL;
2224 var->value = NULL;
8b93c638
JM
2225 var->num_children = -1;
2226 var->parent = NULL;
2227 var->children = NULL;
2228 var->format = 0;
2229 var->root = NULL;
fb9b6b35 2230 var->updated = 0;
85265413 2231 var->print_value = NULL;
25d5ea92
VP
2232 var->frozen = 0;
2233 var->not_fetched = 0;
b6313243 2234 var->children_requested = 0;
0cc7d26f
TT
2235 var->from = -1;
2236 var->to = -1;
2237 var->constructor = 0;
b6313243 2238 var->pretty_printer = 0;
0cc7d26f
TT
2239 var->child_iter = 0;
2240 var->saved_item = 0;
8b93c638
JM
2241
2242 return var;
2243}
2244
581e13c1 2245/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2246static struct varobj *
2247new_root_variable (void)
2248{
2249 struct varobj *var = new_variable ();
a109c7c1 2250
3e43a32a 2251 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
8b93c638
JM
2252 var->root->lang = NULL;
2253 var->root->exp = NULL;
2254 var->root->valid_block = NULL;
7a424e99 2255 var->root->frame = null_frame_id;
a5defcdc 2256 var->root->floating = 0;
8b93c638 2257 var->root->rootvar = NULL;
8756216b 2258 var->root->is_valid = 1;
8b93c638
JM
2259
2260 return var;
2261}
2262
581e13c1 2263/* Free any allocated memory associated with VAR. */
8b93c638 2264static void
fba45db2 2265free_variable (struct varobj *var)
8b93c638 2266{
d452c4bc
UW
2267#if HAVE_PYTHON
2268 if (var->pretty_printer)
2269 {
2270 struct cleanup *cleanup = varobj_ensure_python_env (var);
0cc7d26f
TT
2271 Py_XDECREF (var->constructor);
2272 Py_XDECREF (var->pretty_printer);
2273 Py_XDECREF (var->child_iter);
2274 Py_XDECREF (var->saved_item);
d452c4bc
UW
2275 do_cleanups (cleanup);
2276 }
2277#endif
2278
36746093
JK
2279 value_free (var->value);
2280
581e13c1 2281 /* Free the expression if this is a root variable. */
b2c2bd75 2282 if (is_root_p (var))
8b93c638 2283 {
3038237c 2284 xfree (var->root->exp);
8038e1e2 2285 xfree (var->root);
8b93c638
JM
2286 }
2287
8038e1e2
AC
2288 xfree (var->name);
2289 xfree (var->obj_name);
85265413 2290 xfree (var->print_value);
02142340 2291 xfree (var->path_expr);
8038e1e2 2292 xfree (var);
8b93c638
JM
2293}
2294
74b7792f
AC
2295static void
2296do_free_variable_cleanup (void *var)
2297{
2298 free_variable (var);
2299}
2300
2301static struct cleanup *
2302make_cleanup_free_variable (struct varobj *var)
2303{
2304 return make_cleanup (do_free_variable_cleanup, var);
2305}
2306
581e13c1 2307/* This returns the type of the variable. It also skips past typedefs
6766a268 2308 to return the real type of the variable.
94b66fa7
KS
2309
2310 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
581e13c1 2311 except within get_target_type and get_type. */
8b93c638 2312static struct type *
fba45db2 2313get_type (struct varobj *var)
8b93c638
JM
2314{
2315 struct type *type;
8b93c638 2316
a109c7c1 2317 type = var->type;
6766a268
DJ
2318 if (type != NULL)
2319 type = check_typedef (type);
8b93c638
JM
2320
2321 return type;
2322}
2323
6e2a9270
VP
2324/* Return the type of the value that's stored in VAR,
2325 or that would have being stored there if the
581e13c1 2326 value were accessible.
6e2a9270
VP
2327
2328 This differs from VAR->type in that VAR->type is always
2329 the true type of the expession in the source language.
2330 The return value of this function is the type we're
2331 actually storing in varobj, and using for displaying
2332 the values and for comparing previous and new values.
2333
2334 For example, top-level references are always stripped. */
2335static struct type *
2336get_value_type (struct varobj *var)
2337{
2338 struct type *type;
2339
2340 if (var->value)
2341 type = value_type (var->value);
2342 else
2343 type = var->type;
2344
2345 type = check_typedef (type);
2346
2347 if (TYPE_CODE (type) == TYPE_CODE_REF)
2348 type = get_target_type (type);
2349
2350 type = check_typedef (type);
2351
2352 return type;
2353}
2354
8b93c638 2355/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
2356 past typedefs, just like get_type ().
2357
2358 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
581e13c1 2359 except within get_target_type and get_type. */
8b93c638 2360static struct type *
fba45db2 2361get_target_type (struct type *type)
8b93c638
JM
2362{
2363 if (type != NULL)
2364 {
2365 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
2366 if (type != NULL)
2367 type = check_typedef (type);
8b93c638
JM
2368 }
2369
2370 return type;
2371}
2372
2373/* What is the default display for this variable? We assume that
581e13c1 2374 everything is "natural". Any exceptions? */
8b93c638 2375static enum varobj_display_formats
fba45db2 2376variable_default_display (struct varobj *var)
8b93c638
JM
2377{
2378 return FORMAT_NATURAL;
2379}
2380
581e13c1 2381/* FIXME: The following should be generic for any pointer. */
8b93c638 2382static void
fba45db2 2383cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2384{
2385 struct cpstack *s;
2386
2387 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2388 s->name = name;
2389 s->next = *pstack;
2390 *pstack = s;
2391}
2392
581e13c1 2393/* FIXME: The following should be generic for any pointer. */
8b93c638 2394static char *
fba45db2 2395cppop (struct cpstack **pstack)
8b93c638
JM
2396{
2397 struct cpstack *s;
2398 char *v;
2399
2400 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2401 return NULL;
2402
2403 s = *pstack;
2404 v = s->name;
2405 *pstack = (*pstack)->next;
b8c9b27d 2406 xfree (s);
8b93c638
JM
2407
2408 return v;
2409}
2410\f
2411/*
2412 * Language-dependencies
2413 */
2414
2415/* Common entry points */
2416
581e13c1 2417/* Get the language of variable VAR. */
8b93c638 2418static enum varobj_languages
fba45db2 2419variable_language (struct varobj *var)
8b93c638
JM
2420{
2421 enum varobj_languages lang;
2422
2423 switch (var->root->exp->language_defn->la_language)
2424 {
2425 default:
2426 case language_c:
2427 lang = vlang_c;
2428 break;
2429 case language_cplus:
2430 lang = vlang_cplus;
2431 break;
2432 case language_java:
2433 lang = vlang_java;
2434 break;
40591b7d
JCD
2435 case language_ada:
2436 lang = vlang_ada;
2437 break;
8b93c638
JM
2438 }
2439
2440 return lang;
2441}
2442
2443/* Return the number of children for a given variable.
2444 The result of this function is defined by the language
581e13c1 2445 implementation. The number of children returned by this function
8b93c638 2446 is the number of children that the user will see in the variable
581e13c1 2447 display. */
8b93c638 2448static int
fba45db2 2449number_of_children (struct varobj *var)
8b93c638 2450{
82ae4854 2451 return (*var->root->lang->number_of_children) (var);
8b93c638
JM
2452}
2453
3e43a32a 2454/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2455 string. */
8b93c638 2456static char *
fba45db2 2457name_of_variable (struct varobj *var)
8b93c638
JM
2458{
2459 return (*var->root->lang->name_of_variable) (var);
2460}
2461
3e43a32a 2462/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2463 string. */
8b93c638 2464static char *
fba45db2 2465name_of_child (struct varobj *var, int index)
8b93c638
JM
2466{
2467 return (*var->root->lang->name_of_child) (var, index);
2468}
2469
a5defcdc
VP
2470/* What is the ``struct value *'' of the root variable VAR?
2471 For floating variable object, evaluation can get us a value
2472 of different type from what is stored in varobj already. In
2473 that case:
2474 - *type_changed will be set to 1
2475 - old varobj will be freed, and new one will be
2476 created, with the same name.
2477 - *var_handle will be set to the new varobj
2478 Otherwise, *type_changed will be set to 0. */
30b28db1 2479static struct value *
fba45db2 2480value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2481{
73a93a32
JI
2482 struct varobj *var;
2483
2484 if (var_handle == NULL)
2485 return NULL;
2486
2487 var = *var_handle;
2488
2489 /* This should really be an exception, since this should
581e13c1 2490 only get called with a root variable. */
73a93a32 2491
b2c2bd75 2492 if (!is_root_p (var))
73a93a32
JI
2493 return NULL;
2494
a5defcdc 2495 if (var->root->floating)
73a93a32
JI
2496 {
2497 struct varobj *tmp_var;
2498 char *old_type, *new_type;
6225abfa 2499
73a93a32
JI
2500 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2501 USE_SELECTED_FRAME);
2502 if (tmp_var == NULL)
2503 {
2504 return NULL;
2505 }
6225abfa 2506 old_type = varobj_get_type (var);
73a93a32 2507 new_type = varobj_get_type (tmp_var);
72330bd6 2508 if (strcmp (old_type, new_type) == 0)
73a93a32 2509 {
fcacd99f
VP
2510 /* The expression presently stored inside var->root->exp
2511 remembers the locations of local variables relatively to
2512 the frame where the expression was created (in DWARF location
2513 button, for example). Naturally, those locations are not
2514 correct in other frames, so update the expression. */
2515
2516 struct expression *tmp_exp = var->root->exp;
a109c7c1 2517
fcacd99f
VP
2518 var->root->exp = tmp_var->root->exp;
2519 tmp_var->root->exp = tmp_exp;
2520
73a93a32
JI
2521 varobj_delete (tmp_var, NULL, 0);
2522 *type_changed = 0;
2523 }
2524 else
2525 {
1b36a34b 2526 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2527 tmp_var->from = var->from;
2528 tmp_var->to = var->to;
a5defcdc
VP
2529 varobj_delete (var, NULL, 0);
2530
73a93a32
JI
2531 install_variable (tmp_var);
2532 *var_handle = tmp_var;
705da579 2533 var = *var_handle;
73a93a32
JI
2534 *type_changed = 1;
2535 }
74dddad3
MS
2536 xfree (old_type);
2537 xfree (new_type);
73a93a32
JI
2538 }
2539 else
2540 {
2541 *type_changed = 0;
2542 }
2543
2544 return (*var->root->lang->value_of_root) (var_handle);
8b93c638
JM
2545}
2546
581e13c1 2547/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2548static struct value *
fba45db2 2549value_of_child (struct varobj *parent, int index)
8b93c638 2550{
30b28db1 2551 struct value *value;
8b93c638
JM
2552
2553 value = (*parent->root->lang->value_of_child) (parent, index);
2554
8b93c638
JM
2555 return value;
2556}
2557
581e13c1 2558/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2559static char *
de051565 2560my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2561{
8756216b 2562 if (var->root->is_valid)
0cc7d26f
TT
2563 {
2564 if (var->pretty_printer)
2565 return value_get_print_value (var->value, var->format, var);
2566 return (*var->root->lang->value_of_variable) (var, format);
2567 }
8756216b
DP
2568 else
2569 return NULL;
8b93c638
JM
2570}
2571
85265413 2572static char *
b6313243 2573value_get_print_value (struct value *value, enum varobj_display_formats format,
d452c4bc 2574 struct varobj *var)
85265413 2575{
57e66780 2576 struct ui_file *stb;
621c8364 2577 struct cleanup *old_chain;
fbb8f299 2578 gdb_byte *thevalue = NULL;
79a45b7d 2579 struct value_print_options opts;
be759fcf
PM
2580 struct type *type = NULL;
2581 long len = 0;
2582 char *encoding = NULL;
2583 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2584 /* Initialize it just to avoid a GCC false warning. */
2585 CORE_ADDR str_addr = 0;
09ca9e2e 2586 int string_print = 0;
57e66780
DJ
2587
2588 if (value == NULL)
2589 return NULL;
2590
621c8364
TT
2591 stb = mem_fileopen ();
2592 old_chain = make_cleanup_ui_file_delete (stb);
2593
be759fcf 2594 gdbarch = get_type_arch (value_type (value));
b6313243
TT
2595#if HAVE_PYTHON
2596 {
d452c4bc
UW
2597 PyObject *value_formatter = var->pretty_printer;
2598
09ca9e2e
TT
2599 varobj_ensure_python_env (var);
2600
0cc7d26f 2601 if (value_formatter)
b6313243 2602 {
0cc7d26f
TT
2603 /* First check to see if we have any children at all. If so,
2604 we simply return {...}. */
2605 if (dynamic_varobj_has_child_method (var))
621c8364
TT
2606 {
2607 do_cleanups (old_chain);
2608 return xstrdup ("{...}");
2609 }
b6313243 2610
0cc7d26f 2611 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
b6313243 2612 {
0cc7d26f 2613 struct value *replacement;
0cc7d26f
TT
2614 PyObject *output = NULL;
2615
0cc7d26f 2616 output = apply_varobj_pretty_printer (value_formatter,
621c8364
TT
2617 &replacement,
2618 stb);
00bd41d6
PM
2619
2620 /* If we have string like output ... */
0cc7d26f
TT
2621 if (output)
2622 {
09ca9e2e
TT
2623 make_cleanup_py_decref (output);
2624
00bd41d6
PM
2625 /* If this is a lazy string, extract it. For lazy
2626 strings we always print as a string, so set
2627 string_print. */
be759fcf 2628 if (gdbpy_is_lazy_string (output))
0cc7d26f 2629 {
09ca9e2e
TT
2630 gdbpy_extract_lazy_string (output, &str_addr, &type,
2631 &len, &encoding);
2632 make_cleanup (free_current_contents, &encoding);
be759fcf
PM
2633 string_print = 1;
2634 }
2635 else
2636 {
00bd41d6
PM
2637 /* If it is a regular (non-lazy) string, extract
2638 it and copy the contents into THEVALUE. If the
2639 hint says to print it as a string, set
2640 string_print. Otherwise just return the extracted
2641 string as a value. */
2642
be759fcf
PM
2643 PyObject *py_str
2644 = python_string_to_target_python_string (output);
a109c7c1 2645
be759fcf
PM
2646 if (py_str)
2647 {
2648 char *s = PyString_AsString (py_str);
00bd41d6
PM
2649 char *hint;
2650
2651 hint = gdbpy_get_display_hint (value_formatter);
2652 if (hint)
2653 {
2654 if (!strcmp (hint, "string"))
2655 string_print = 1;
2656 xfree (hint);
2657 }
a109c7c1 2658
be759fcf
PM
2659 len = PyString_Size (py_str);
2660 thevalue = xmemdup (s, len + 1, len + 1);
2661 type = builtin_type (gdbarch)->builtin_char;
2662 Py_DECREF (py_str);
09ca9e2e
TT
2663
2664 if (!string_print)
2665 {
2666 do_cleanups (old_chain);
2667 return thevalue;
2668 }
2669
2670 make_cleanup (xfree, thevalue);
be759fcf 2671 }
8dc78533
JK
2672 else
2673 gdbpy_print_stack ();
0cc7d26f 2674 }
0cc7d26f 2675 }
00bd41d6
PM
2676 /* If the printer returned a replacement value, set VALUE
2677 to REPLACEMENT. If there is not a replacement value,
2678 just use the value passed to this function. */
0cc7d26f
TT
2679 if (replacement)
2680 value = replacement;
b6313243 2681 }
b6313243 2682 }
b6313243
TT
2683 }
2684#endif
2685
79a45b7d
TT
2686 get_formatted_print_options (&opts, format_code[(int) format]);
2687 opts.deref_ref = 0;
b6313243 2688 opts.raw = 1;
00bd41d6
PM
2689
2690 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2691 if (thevalue)
09ca9e2e
TT
2692 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2693 else if (string_print)
00bd41d6
PM
2694 /* Otherwise, if string_print is set, and it is not a regular
2695 string, it is a lazy string. */
09ca9e2e 2696 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2697 else
00bd41d6 2698 /* All other cases. */
b6313243 2699 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2700
759ef836 2701 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2702
85265413
NR
2703 do_cleanups (old_chain);
2704 return thevalue;
2705}
2706
340a7723
NR
2707int
2708varobj_editable_p (struct varobj *var)
2709{
2710 struct type *type;
340a7723
NR
2711
2712 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2713 return 0;
2714
2715 type = get_value_type (var);
2716
2717 switch (TYPE_CODE (type))
2718 {
2719 case TYPE_CODE_STRUCT:
2720 case TYPE_CODE_UNION:
2721 case TYPE_CODE_ARRAY:
2722 case TYPE_CODE_FUNC:
2723 case TYPE_CODE_METHOD:
2724 return 0;
2725 break;
2726
2727 default:
2728 return 1;
2729 break;
2730 }
2731}
2732
acd65feb
VP
2733/* Return non-zero if changes in value of VAR
2734 must be detected and reported by -var-update.
2735 Return zero is -var-update should never report
2736 changes of such values. This makes sense for structures
2737 (since the changes in children values will be reported separately),
2738 or for artifical objects (like 'public' pseudo-field in C++).
2739
2740 Return value of 0 means that gdb need not call value_fetch_lazy
2741 for the value of this variable object. */
8b93c638 2742static int
b2c2bd75 2743varobj_value_is_changeable_p (struct varobj *var)
8b93c638
JM
2744{
2745 int r;
2746 struct type *type;
2747
2748 if (CPLUS_FAKE_CHILD (var))
2749 return 0;
2750
6e2a9270 2751 type = get_value_type (var);
8b93c638
JM
2752
2753 switch (TYPE_CODE (type))
2754 {
72330bd6
AC
2755 case TYPE_CODE_STRUCT:
2756 case TYPE_CODE_UNION:
2757 case TYPE_CODE_ARRAY:
2758 r = 0;
2759 break;
8b93c638 2760
72330bd6
AC
2761 default:
2762 r = 1;
8b93c638
JM
2763 }
2764
2765 return r;
2766}
2767
5a413362
VP
2768/* Return 1 if that varobj is floating, that is is always evaluated in the
2769 selected frame, and not bound to thread/frame. Such variable objects
2770 are created using '@' as frame specifier to -var-create. */
2771int
2772varobj_floating_p (struct varobj *var)
2773{
2774 return var->root->floating;
2775}
2776
2024f65a
VP
2777/* Given the value and the type of a variable object,
2778 adjust the value and type to those necessary
2779 for getting children of the variable object.
2780 This includes dereferencing top-level references
2781 to all types and dereferencing pointers to
581e13c1 2782 structures.
2024f65a 2783
581e13c1 2784 Both TYPE and *TYPE should be non-null. VALUE
2024f65a
VP
2785 can be null if we want to only translate type.
2786 *VALUE can be null as well -- if the parent
581e13c1 2787 value is not known.
02142340
VP
2788
2789 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
b6313243 2790 depending on whether pointer was dereferenced
02142340 2791 in this function. */
2024f65a
VP
2792static void
2793adjust_value_for_child_access (struct value **value,
02142340
VP
2794 struct type **type,
2795 int *was_ptr)
2024f65a
VP
2796{
2797 gdb_assert (type && *type);
2798
02142340
VP
2799 if (was_ptr)
2800 *was_ptr = 0;
2801
2024f65a
VP
2802 *type = check_typedef (*type);
2803
2804 /* The type of value stored in varobj, that is passed
2805 to us, is already supposed to be
2806 reference-stripped. */
2807
2808 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2809
2810 /* Pointers to structures are treated just like
2811 structures when accessing children. Don't
2812 dererences pointers to other types. */
2813 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2814 {
2815 struct type *target_type = get_target_type (*type);
2816 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2817 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2818 {
2819 if (value && *value)
3f4178d6 2820 {
a109c7c1
MS
2821 int success = gdb_value_ind (*value, value);
2822
3f4178d6
DJ
2823 if (!success)
2824 *value = NULL;
2825 }
2024f65a 2826 *type = target_type;
02142340
VP
2827 if (was_ptr)
2828 *was_ptr = 1;
2024f65a
VP
2829 }
2830 }
2831
2832 /* The 'get_target_type' function calls check_typedef on
2833 result, so we can immediately check type code. No
2834 need to call check_typedef here. */
2835}
2836
8b93c638
JM
2837/* C */
2838static int
fba45db2 2839c_number_of_children (struct varobj *var)
8b93c638 2840{
2024f65a
VP
2841 struct type *type = get_value_type (var);
2842 int children = 0;
8b93c638 2843 struct type *target;
8b93c638 2844
02142340 2845 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638 2846 target = get_target_type (type);
8b93c638
JM
2847
2848 switch (TYPE_CODE (type))
2849 {
2850 case TYPE_CODE_ARRAY:
2851 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 2852 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
2853 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2854 else
74a44383
DJ
2855 /* If we don't know how many elements there are, don't display
2856 any. */
2857 children = 0;
8b93c638
JM
2858 break;
2859
2860 case TYPE_CODE_STRUCT:
2861 case TYPE_CODE_UNION:
2862 children = TYPE_NFIELDS (type);
2863 break;
2864
2865 case TYPE_CODE_PTR:
581e13c1 2866 /* The type here is a pointer to non-struct. Typically, pointers
2024f65a
VP
2867 have one child, except for function ptrs, which have no children,
2868 and except for void*, as we don't know what to show.
2869
0755e6c1
FN
2870 We can show char* so we allow it to be dereferenced. If you decide
2871 to test for it, please mind that a little magic is necessary to
2872 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
581e13c1 2873 TYPE_NAME == "char". */
2024f65a
VP
2874 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2875 || TYPE_CODE (target) == TYPE_CODE_VOID)
2876 children = 0;
2877 else
2878 children = 1;
8b93c638
JM
2879 break;
2880
2881 default:
581e13c1 2882 /* Other types have no children. */
8b93c638
JM
2883 break;
2884 }
2885
2886 return children;
2887}
2888
2889static char *
fba45db2 2890c_name_of_variable (struct varobj *parent)
8b93c638 2891{
1b36a34b 2892 return xstrdup (parent->name);
8b93c638
JM
2893}
2894
bbec2603
VP
2895/* Return the value of element TYPE_INDEX of a structure
2896 value VALUE. VALUE's type should be a structure,
581e13c1 2897 or union, or a typedef to struct/union.
bbec2603
VP
2898
2899 Returns NULL if getting the value fails. Never throws. */
2900static struct value *
2901value_struct_element_index (struct value *value, int type_index)
8b93c638 2902{
bbec2603
VP
2903 struct value *result = NULL;
2904 volatile struct gdb_exception e;
bbec2603 2905 struct type *type = value_type (value);
a109c7c1 2906
bbec2603
VP
2907 type = check_typedef (type);
2908
2909 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2910 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 2911
bbec2603
VP
2912 TRY_CATCH (e, RETURN_MASK_ERROR)
2913 {
d6a843b5 2914 if (field_is_static (&TYPE_FIELD (type, type_index)))
bbec2603
VP
2915 result = value_static_field (type, type_index);
2916 else
2917 result = value_primitive_field (value, 0, type_index, type);
2918 }
2919 if (e.reason < 0)
2920 {
2921 return NULL;
2922 }
2923 else
2924 {
2925 return result;
2926 }
2927}
2928
2929/* Obtain the information about child INDEX of the variable
581e13c1 2930 object PARENT.
bbec2603
VP
2931 If CNAME is not null, sets *CNAME to the name of the child relative
2932 to the parent.
2933 If CVALUE is not null, sets *CVALUE to the value of the child.
2934 If CTYPE is not null, sets *CTYPE to the type of the child.
2935
2936 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2937 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2938 to NULL. */
2939static void
2940c_describe_child (struct varobj *parent, int index,
02142340
VP
2941 char **cname, struct value **cvalue, struct type **ctype,
2942 char **cfull_expression)
bbec2603
VP
2943{
2944 struct value *value = parent->value;
2024f65a 2945 struct type *type = get_value_type (parent);
02142340
VP
2946 char *parent_expression = NULL;
2947 int was_ptr;
bbec2603
VP
2948
2949 if (cname)
2950 *cname = NULL;
2951 if (cvalue)
2952 *cvalue = NULL;
2953 if (ctype)
2954 *ctype = NULL;
02142340
VP
2955 if (cfull_expression)
2956 {
2957 *cfull_expression = NULL;
2958 parent_expression = varobj_get_path_expr (parent);
2959 }
2960 adjust_value_for_child_access (&value, &type, &was_ptr);
bbec2603 2961
8b93c638
JM
2962 switch (TYPE_CODE (type))
2963 {
2964 case TYPE_CODE_ARRAY:
bbec2603 2965 if (cname)
3e43a32a
MS
2966 *cname
2967 = xstrdup (int_string (index
2968 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2969 10, 1, 0, 0));
bbec2603
VP
2970
2971 if (cvalue && value)
2972 {
2973 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
a109c7c1 2974
2497b498 2975 gdb_value_subscript (value, real_index, cvalue);
bbec2603
VP
2976 }
2977
2978 if (ctype)
2979 *ctype = get_target_type (type);
2980
02142340 2981 if (cfull_expression)
43bbcdc2
PH
2982 *cfull_expression =
2983 xstrprintf ("(%s)[%s]", parent_expression,
2984 int_string (index
2985 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2986 10, 1, 0, 0));
02142340
VP
2987
2988
8b93c638
JM
2989 break;
2990
2991 case TYPE_CODE_STRUCT:
2992 case TYPE_CODE_UNION:
bbec2603 2993 if (cname)
1b36a34b 2994 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
bbec2603
VP
2995
2996 if (cvalue && value)
2997 {
2998 /* For C, varobj index is the same as type index. */
2999 *cvalue = value_struct_element_index (value, index);
3000 }
3001
3002 if (ctype)
3003 *ctype = TYPE_FIELD_TYPE (type, index);
3004
02142340
VP
3005 if (cfull_expression)
3006 {
3007 char *join = was_ptr ? "->" : ".";
a109c7c1 3008
02142340
VP
3009 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
3010 TYPE_FIELD_NAME (type, index));
3011 }
3012
8b93c638
JM
3013 break;
3014
3015 case TYPE_CODE_PTR:
bbec2603
VP
3016 if (cname)
3017 *cname = xstrprintf ("*%s", parent->name);
8b93c638 3018
bbec2603 3019 if (cvalue && value)
3f4178d6
DJ
3020 {
3021 int success = gdb_value_ind (value, cvalue);
a109c7c1 3022
3f4178d6
DJ
3023 if (!success)
3024 *cvalue = NULL;
3025 }
bbec2603 3026
2024f65a
VP
3027 /* Don't use get_target_type because it calls
3028 check_typedef and here, we want to show the true
3029 declared type of the variable. */
bbec2603 3030 if (ctype)
2024f65a 3031 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
3032
3033 if (cfull_expression)
3034 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 3035
8b93c638
JM
3036 break;
3037
3038 default:
581e13c1 3039 /* This should not happen. */
bbec2603
VP
3040 if (cname)
3041 *cname = xstrdup ("???");
02142340
VP
3042 if (cfull_expression)
3043 *cfull_expression = xstrdup ("???");
581e13c1 3044 /* Don't set value and type, we don't know then. */
8b93c638 3045 }
bbec2603 3046}
8b93c638 3047
bbec2603
VP
3048static char *
3049c_name_of_child (struct varobj *parent, int index)
3050{
3051 char *name;
a109c7c1 3052
02142340 3053 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3054 return name;
3055}
3056
02142340
VP
3057static char *
3058c_path_expr_of_child (struct varobj *child)
3059{
3060 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3061 &child->path_expr);
3062 return child->path_expr;
3063}
3064
c5b48eac
VP
3065/* If frame associated with VAR can be found, switch
3066 to it and return 1. Otherwise, return 0. */
3067static int
3068check_scope (struct varobj *var)
3069{
3070 struct frame_info *fi;
3071 int scope;
3072
3073 fi = frame_find_by_id (var->root->frame);
3074 scope = fi != NULL;
3075
3076 if (fi)
3077 {
3078 CORE_ADDR pc = get_frame_pc (fi);
a109c7c1 3079
c5b48eac
VP
3080 if (pc < BLOCK_START (var->root->valid_block) ||
3081 pc >= BLOCK_END (var->root->valid_block))
3082 scope = 0;
3083 else
3084 select_frame (fi);
3085 }
3086 return scope;
3087}
3088
30b28db1 3089static struct value *
fba45db2 3090c_value_of_root (struct varobj **var_handle)
8b93c638 3091{
5e572bb4 3092 struct value *new_val = NULL;
73a93a32 3093 struct varobj *var = *var_handle;
c5b48eac 3094 int within_scope = 0;
6208b47d
VP
3095 struct cleanup *back_to;
3096
581e13c1 3097 /* Only root variables can be updated... */
b2c2bd75 3098 if (!is_root_p (var))
581e13c1 3099 /* Not a root var. */
73a93a32
JI
3100 return NULL;
3101
4f8d22e3 3102 back_to = make_cleanup_restore_current_thread ();
72330bd6 3103
581e13c1 3104 /* Determine whether the variable is still around. */
a5defcdc 3105 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 3106 within_scope = 1;
c5b48eac
VP
3107 else if (var->root->thread_id == 0)
3108 {
3109 /* The program was single-threaded when the variable object was
3110 created. Technically, it's possible that the program became
3111 multi-threaded since then, but we don't support such
3112 scenario yet. */
3113 within_scope = check_scope (var);
3114 }
8b93c638
JM
3115 else
3116 {
c5b48eac
VP
3117 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3118 if (in_thread_list (ptid))
d2353924 3119 {
c5b48eac
VP
3120 switch_to_thread (ptid);
3121 within_scope = check_scope (var);
3122 }
8b93c638 3123 }
72330bd6 3124
8b93c638
JM
3125 if (within_scope)
3126 {
73a93a32 3127 /* We need to catch errors here, because if evaluate
85d93f1d
VP
3128 expression fails we want to just return NULL. */
3129 gdb_evaluate_expression (var->root->exp, &new_val);
8b93c638
JM
3130 return new_val;
3131 }
3132
6208b47d
VP
3133 do_cleanups (back_to);
3134
8b93c638
JM
3135 return NULL;
3136}
3137
30b28db1 3138static struct value *
fba45db2 3139c_value_of_child (struct varobj *parent, int index)
8b93c638 3140{
bbec2603 3141 struct value *value = NULL;
8b93c638 3142
a109c7c1 3143 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3144 return value;
3145}
3146
3147static struct type *
fba45db2 3148c_type_of_child (struct varobj *parent, int index)
8b93c638 3149{
bbec2603 3150 struct type *type = NULL;
a109c7c1 3151
02142340 3152 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3153 return type;
3154}
3155
8b93c638 3156static char *
de051565 3157c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3158{
14b3d9c9
JB
3159 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3160 it will print out its children instead of "{...}". So we need to
3161 catch that case explicitly. */
3162 struct type *type = get_type (var);
e64d9b3d 3163
b6313243
TT
3164 /* If we have a custom formatter, return whatever string it has
3165 produced. */
3166 if (var->pretty_printer && var->print_value)
3167 return xstrdup (var->print_value);
3168
581e13c1 3169 /* Strip top-level references. */
14b3d9c9
JB
3170 while (TYPE_CODE (type) == TYPE_CODE_REF)
3171 type = check_typedef (TYPE_TARGET_TYPE (type));
3172
3173 switch (TYPE_CODE (type))
8b93c638
JM
3174 {
3175 case TYPE_CODE_STRUCT:
3176 case TYPE_CODE_UNION:
3177 return xstrdup ("{...}");
3178 /* break; */
3179
3180 case TYPE_CODE_ARRAY:
3181 {
e64d9b3d 3182 char *number;
a109c7c1 3183
b435e160 3184 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 3185 return (number);
8b93c638
JM
3186 }
3187 /* break; */
3188
3189 default:
3190 {
575bbeb6
KS
3191 if (var->value == NULL)
3192 {
3193 /* This can happen if we attempt to get the value of a struct
581e13c1
MS
3194 member when the parent is an invalid pointer. This is an
3195 error condition, so we should tell the caller. */
575bbeb6
KS
3196 return NULL;
3197 }
3198 else
3199 {
25d5ea92
VP
3200 if (var->not_fetched && value_lazy (var->value))
3201 /* Frozen variable and no value yet. We don't
3202 implicitly fetch the value. MI response will
3203 use empty string for the value, which is OK. */
3204 return NULL;
3205
b2c2bd75 3206 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 3207 gdb_assert (!value_lazy (var->value));
de051565
MK
3208
3209 /* If the specified format is the current one,
581e13c1 3210 we can reuse print_value. */
de051565
MK
3211 if (format == var->format)
3212 return xstrdup (var->print_value);
3213 else
d452c4bc 3214 return value_get_print_value (var->value, format, var);
85265413 3215 }
e64d9b3d 3216 }
8b93c638
JM
3217 }
3218}
3219\f
3220
3221/* C++ */
3222
3223static int
fba45db2 3224cplus_number_of_children (struct varobj *var)
8b93c638
JM
3225{
3226 struct type *type;
3227 int children, dont_know;
3228
3229 dont_know = 1;
3230 children = 0;
3231
3232 if (!CPLUS_FAKE_CHILD (var))
3233 {
2024f65a 3234 type = get_value_type (var);
02142340 3235 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3236
3237 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 3238 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
3239 {
3240 int kids[3];
3241
3242 cplus_class_num_children (type, kids);
3243 if (kids[v_public] != 0)
3244 children++;
3245 if (kids[v_private] != 0)
3246 children++;
3247 if (kids[v_protected] != 0)
3248 children++;
3249
581e13c1 3250 /* Add any baseclasses. */
8b93c638
JM
3251 children += TYPE_N_BASECLASSES (type);
3252 dont_know = 0;
3253
581e13c1 3254 /* FIXME: save children in var. */
8b93c638
JM
3255 }
3256 }
3257 else
3258 {
3259 int kids[3];
3260
2024f65a 3261 type = get_value_type (var->parent);
02142340 3262 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3263
3264 cplus_class_num_children (type, kids);
6e382aa3 3265 if (strcmp (var->name, "public") == 0)
8b93c638 3266 children = kids[v_public];
6e382aa3 3267 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
3268 children = kids[v_private];
3269 else
3270 children = kids[v_protected];
3271 dont_know = 0;
3272 }
3273
3274 if (dont_know)
3275 children = c_number_of_children (var);
3276
3277 return children;
3278}
3279
3280/* Compute # of public, private, and protected variables in this class.
3281 That means we need to descend into all baseclasses and find out
581e13c1 3282 how many are there, too. */
8b93c638 3283static void
1669605f 3284cplus_class_num_children (struct type *type, int children[3])
8b93c638 3285{
d48cc9dd
DJ
3286 int i, vptr_fieldno;
3287 struct type *basetype = NULL;
8b93c638
JM
3288
3289 children[v_public] = 0;
3290 children[v_private] = 0;
3291 children[v_protected] = 0;
3292
d48cc9dd 3293 vptr_fieldno = get_vptr_fieldno (type, &basetype);
8b93c638
JM
3294 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3295 {
d48cc9dd
DJ
3296 /* If we have a virtual table pointer, omit it. Even if virtual
3297 table pointers are not specifically marked in the debug info,
3298 they should be artificial. */
3299 if ((type == basetype && i == vptr_fieldno)
3300 || TYPE_FIELD_ARTIFICIAL (type, i))
8b93c638
JM
3301 continue;
3302
3303 if (TYPE_FIELD_PROTECTED (type, i))
3304 children[v_protected]++;
3305 else if (TYPE_FIELD_PRIVATE (type, i))
3306 children[v_private]++;
3307 else
3308 children[v_public]++;
3309 }
3310}
3311
3312static char *
fba45db2 3313cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
3314{
3315 return c_name_of_variable (parent);
3316}
3317
2024f65a
VP
3318enum accessibility { private_field, protected_field, public_field };
3319
3320/* Check if field INDEX of TYPE has the specified accessibility.
3321 Return 0 if so and 1 otherwise. */
3322static int
3323match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 3324{
2024f65a
VP
3325 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3326 return 1;
3327 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3328 return 1;
3329 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3330 && !TYPE_FIELD_PROTECTED (type, index))
3331 return 1;
3332 else
3333 return 0;
3334}
3335
3336static void
3337cplus_describe_child (struct varobj *parent, int index,
02142340
VP
3338 char **cname, struct value **cvalue, struct type **ctype,
3339 char **cfull_expression)
2024f65a 3340{
2024f65a 3341 struct value *value;
8b93c638 3342 struct type *type;
02142340
VP
3343 int was_ptr;
3344 char *parent_expression = NULL;
8b93c638 3345
2024f65a
VP
3346 if (cname)
3347 *cname = NULL;
3348 if (cvalue)
3349 *cvalue = NULL;
3350 if (ctype)
3351 *ctype = NULL;
02142340
VP
3352 if (cfull_expression)
3353 *cfull_expression = NULL;
2024f65a 3354
8b93c638
JM
3355 if (CPLUS_FAKE_CHILD (parent))
3356 {
2024f65a
VP
3357 value = parent->parent->value;
3358 type = get_value_type (parent->parent);
02142340
VP
3359 if (cfull_expression)
3360 parent_expression = varobj_get_path_expr (parent->parent);
8b93c638
JM
3361 }
3362 else
2024f65a
VP
3363 {
3364 value = parent->value;
3365 type = get_value_type (parent);
02142340
VP
3366 if (cfull_expression)
3367 parent_expression = varobj_get_path_expr (parent);
2024f65a 3368 }
8b93c638 3369
02142340 3370 adjust_value_for_child_access (&value, &type, &was_ptr);
2024f65a
VP
3371
3372 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 3373 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 3374 {
02142340 3375 char *join = was_ptr ? "->" : ".";
a109c7c1 3376
8b93c638
JM
3377 if (CPLUS_FAKE_CHILD (parent))
3378 {
6e382aa3
JJ
3379 /* The fields of the class type are ordered as they
3380 appear in the class. We are given an index for a
3381 particular access control type ("public","protected",
3382 or "private"). We must skip over fields that don't
3383 have the access control we are looking for to properly
581e13c1 3384 find the indexed field. */
6e382aa3 3385 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 3386 enum accessibility acc = public_field;
d48cc9dd
DJ
3387 int vptr_fieldno;
3388 struct type *basetype = NULL;
3389
3390 vptr_fieldno = get_vptr_fieldno (type, &basetype);
6e382aa3 3391 if (strcmp (parent->name, "private") == 0)
2024f65a 3392 acc = private_field;
6e382aa3 3393 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
3394 acc = protected_field;
3395
3396 while (index >= 0)
6e382aa3 3397 {
d48cc9dd
DJ
3398 if ((type == basetype && type_index == vptr_fieldno)
3399 || TYPE_FIELD_ARTIFICIAL (type, type_index))
2024f65a
VP
3400 ; /* ignore vptr */
3401 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
3402 --index;
3403 ++type_index;
6e382aa3 3404 }
2024f65a
VP
3405 --type_index;
3406
3407 if (cname)
3408 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3409
3410 if (cvalue && value)
3411 *cvalue = value_struct_element_index (value, type_index);
3412
3413 if (ctype)
3414 *ctype = TYPE_FIELD_TYPE (type, type_index);
02142340
VP
3415
3416 if (cfull_expression)
3e43a32a
MS
3417 *cfull_expression
3418 = xstrprintf ("((%s)%s%s)", parent_expression,
3419 join,
3420 TYPE_FIELD_NAME (type, type_index));
2024f65a
VP
3421 }
3422 else if (index < TYPE_N_BASECLASSES (type))
3423 {
3424 /* This is a baseclass. */
3425 if (cname)
3426 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3427
3428 if (cvalue && value)
0cc7d26f 3429 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
6e382aa3 3430
2024f65a
VP
3431 if (ctype)
3432 {
3433 *ctype = TYPE_FIELD_TYPE (type, index);
3434 }
02142340
VP
3435
3436 if (cfull_expression)
3437 {
3438 char *ptr = was_ptr ? "*" : "";
a109c7c1 3439
581e13c1 3440 /* Cast the parent to the base' type. Note that in gdb,
02142340
VP
3441 expression like
3442 (Base1)d
3443 will create an lvalue, for all appearences, so we don't
3444 need to use more fancy:
3445 *(Base1*)(&d)
3446 construct. */
3447 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3448 ptr,
3449 TYPE_FIELD_NAME (type, index),
3450 ptr,
3451 parent_expression);
3452 }
8b93c638 3453 }
8b93c638
JM
3454 else
3455 {
348144ba 3456 char *access = NULL;
6e382aa3 3457 int children[3];
a109c7c1 3458
2024f65a 3459 cplus_class_num_children (type, children);
6e382aa3 3460
8b93c638 3461 /* Everything beyond the baseclasses can
6e382aa3
JJ
3462 only be "public", "private", or "protected"
3463
3464 The special "fake" children are always output by varobj in
581e13c1 3465 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
3466 index -= TYPE_N_BASECLASSES (type);
3467 switch (index)
3468 {
3469 case 0:
6e382aa3 3470 if (children[v_public] > 0)
2024f65a 3471 access = "public";
6e382aa3 3472 else if (children[v_private] > 0)
2024f65a 3473 access = "private";
6e382aa3 3474 else
2024f65a 3475 access = "protected";
6e382aa3 3476 break;
8b93c638 3477 case 1:
6e382aa3 3478 if (children[v_public] > 0)
8b93c638 3479 {
6e382aa3 3480 if (children[v_private] > 0)
2024f65a 3481 access = "private";
6e382aa3 3482 else
2024f65a 3483 access = "protected";
8b93c638 3484 }
6e382aa3 3485 else if (children[v_private] > 0)
2024f65a 3486 access = "protected";
6e382aa3 3487 break;
8b93c638 3488 case 2:
581e13c1 3489 /* Must be protected. */
2024f65a 3490 access = "protected";
6e382aa3 3491 break;
8b93c638 3492 default:
581e13c1 3493 /* error! */
8b93c638
JM
3494 break;
3495 }
348144ba
MS
3496
3497 gdb_assert (access);
2024f65a
VP
3498 if (cname)
3499 *cname = xstrdup (access);
8b93c638 3500
02142340 3501 /* Value and type and full expression are null here. */
2024f65a 3502 }
8b93c638 3503 }
8b93c638
JM
3504 else
3505 {
02142340 3506 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
3507 }
3508}
8b93c638 3509
2024f65a
VP
3510static char *
3511cplus_name_of_child (struct varobj *parent, int index)
3512{
3513 char *name = NULL;
a109c7c1 3514
02142340 3515 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3516 return name;
3517}
3518
02142340
VP
3519static char *
3520cplus_path_expr_of_child (struct varobj *child)
3521{
3522 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3523 &child->path_expr);
3524 return child->path_expr;
3525}
3526
30b28db1 3527static struct value *
fba45db2 3528cplus_value_of_root (struct varobj **var_handle)
8b93c638 3529{
73a93a32 3530 return c_value_of_root (var_handle);
8b93c638
JM
3531}
3532
30b28db1 3533static struct value *
fba45db2 3534cplus_value_of_child (struct varobj *parent, int index)
8b93c638 3535{
2024f65a 3536 struct value *value = NULL;
a109c7c1 3537
02142340 3538 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3539 return value;
3540}
3541
3542static struct type *
fba45db2 3543cplus_type_of_child (struct varobj *parent, int index)
8b93c638 3544{
2024f65a 3545 struct type *type = NULL;
a109c7c1 3546
02142340 3547 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3548 return type;
3549}
3550
8b93c638 3551static char *
a109c7c1
MS
3552cplus_value_of_variable (struct varobj *var,
3553 enum varobj_display_formats format)
8b93c638
JM
3554{
3555
3556 /* If we have one of our special types, don't print out
581e13c1 3557 any value. */
8b93c638
JM
3558 if (CPLUS_FAKE_CHILD (var))
3559 return xstrdup ("");
3560
de051565 3561 return c_value_of_variable (var, format);
8b93c638
JM
3562}
3563\f
3564/* Java */
3565
3566static int
fba45db2 3567java_number_of_children (struct varobj *var)
8b93c638
JM
3568{
3569 return cplus_number_of_children (var);
3570}
3571
3572static char *
fba45db2 3573java_name_of_variable (struct varobj *parent)
8b93c638
JM
3574{
3575 char *p, *name;
3576
3577 name = cplus_name_of_variable (parent);
3578 /* If the name has "-" in it, it is because we
581e13c1 3579 needed to escape periods in the name... */
8b93c638
JM
3580 p = name;
3581
3582 while (*p != '\000')
3583 {
3584 if (*p == '-')
3585 *p = '.';
3586 p++;
3587 }
3588
3589 return name;
3590}
3591
3592static char *
fba45db2 3593java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
3594{
3595 char *name, *p;
3596
3597 name = cplus_name_of_child (parent, index);
581e13c1 3598 /* Escape any periods in the name... */
8b93c638
JM
3599 p = name;
3600
3601 while (*p != '\000')
3602 {
3603 if (*p == '.')
3604 *p = '-';
3605 p++;
3606 }
3607
3608 return name;
3609}
3610
02142340
VP
3611static char *
3612java_path_expr_of_child (struct varobj *child)
3613{
3614 return NULL;
3615}
3616
30b28db1 3617static struct value *
fba45db2 3618java_value_of_root (struct varobj **var_handle)
8b93c638 3619{
73a93a32 3620 return cplus_value_of_root (var_handle);
8b93c638
JM
3621}
3622
30b28db1 3623static struct value *
fba45db2 3624java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
3625{
3626 return cplus_value_of_child (parent, index);
3627}
3628
3629static struct type *
fba45db2 3630java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
3631{
3632 return cplus_type_of_child (parent, index);
3633}
3634
8b93c638 3635static char *
de051565 3636java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3637{
de051565 3638 return cplus_value_of_variable (var, format);
8b93c638 3639}
54333c3b 3640
40591b7d
JCD
3641/* Ada specific callbacks for VAROBJs. */
3642
3643static int
3644ada_number_of_children (struct varobj *var)
3645{
3646 return c_number_of_children (var);
3647}
3648
3649static char *
3650ada_name_of_variable (struct varobj *parent)
3651{
3652 return c_name_of_variable (parent);
3653}
3654
3655static char *
3656ada_name_of_child (struct varobj *parent, int index)
3657{
3658 return c_name_of_child (parent, index);
3659}
3660
3661static char*
3662ada_path_expr_of_child (struct varobj *child)
3663{
3664 return c_path_expr_of_child (child);
3665}
3666
3667static struct value *
3668ada_value_of_root (struct varobj **var_handle)
3669{
3670 return c_value_of_root (var_handle);
3671}
3672
3673static struct value *
3674ada_value_of_child (struct varobj *parent, int index)
3675{
3676 return c_value_of_child (parent, index);
3677}
3678
3679static struct type *
3680ada_type_of_child (struct varobj *parent, int index)
3681{
3682 return c_type_of_child (parent, index);
3683}
3684
3685static char *
3686ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
3687{
3688 return c_value_of_variable (var, format);
3689}
3690
54333c3b
JK
3691/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3692 with an arbitrary caller supplied DATA pointer. */
3693
3694void
3695all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3696{
3697 struct varobj_root *var_root, *var_root_next;
3698
3699 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3700
3701 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3702 {
3703 var_root_next = var_root->next;
3704
3705 (*func) (var_root->rootvar, data);
3706 }
3707}
8b93c638
JM
3708\f
3709extern void _initialize_varobj (void);
3710void
3711_initialize_varobj (void)
3712{
3713 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3714
3715 varobj_table = xmalloc (sizeof_table);
3716 memset (varobj_table, 0, sizeof_table);
3717
85c07804 3718 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3e43a32a
MS
3719 &varobjdebug,
3720 _("Set varobj debugging."),
3721 _("Show varobj debugging."),
3722 _("When non-zero, varobj debugging is enabled."),
3723 NULL, show_varobjdebug,
85c07804 3724 &setlist, &showlist);
8b93c638 3725}
8756216b 3726
54333c3b
JK
3727/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3728 defined on globals. It is a helper for varobj_invalidate. */
2dbd25e5 3729
54333c3b
JK
3730static void
3731varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 3732{
54333c3b
JK
3733 /* Floating varobjs are reparsed on each stop, so we don't care if the
3734 presently parsed expression refers to something that's gone. */
3735 if (var->root->floating)
3736 return;
8756216b 3737
54333c3b
JK
3738 /* global var must be re-evaluated. */
3739 if (var->root->valid_block == NULL)
2dbd25e5 3740 {
54333c3b 3741 struct varobj *tmp_var;
2dbd25e5 3742
54333c3b
JK
3743 /* Try to create a varobj with same expression. If we succeed
3744 replace the old varobj, otherwise invalidate it. */
3745 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3746 USE_CURRENT_FRAME);
3747 if (tmp_var != NULL)
3748 {
3749 tmp_var->obj_name = xstrdup (var->obj_name);
3750 varobj_delete (var, NULL, 0);
3751 install_variable (tmp_var);
2dbd25e5 3752 }
54333c3b
JK
3753 else
3754 var->root->is_valid = 0;
2dbd25e5 3755 }
54333c3b
JK
3756 else /* locals must be invalidated. */
3757 var->root->is_valid = 0;
3758}
3759
3760/* Invalidate the varobjs that are tied to locals and re-create the ones that
3761 are defined on globals.
3762 Invalidated varobjs will be always printed in_scope="invalid". */
3763
3764void
3765varobj_invalidate (void)
3766{
3767 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 3768}
This page took 1.727485 seconds and 4 git commands to generate.