Use breakpoint location to parse condition over current language.
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
0fb0cc75 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 4 2009, 2010 Free Software Foundation, Inc.
8b93c638
JM
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
18
19#include "defs.h"
a6c442d8 20#include "exceptions.h"
8b93c638
JM
21#include "value.h"
22#include "expression.h"
23#include "frame.h"
8b93c638
JM
24#include "language.h"
25#include "wrapper.h"
26#include "gdbcmd.h"
d2353924 27#include "block.h"
79a45b7d 28#include "valprint.h"
a6c442d8
MK
29
30#include "gdb_assert.h"
b66d6d2e 31#include "gdb_string.h"
0cc7d26f 32#include "gdb_regex.h"
8b93c638
JM
33
34#include "varobj.h"
28335dcc 35#include "vec.h"
6208b47d
VP
36#include "gdbthread.h"
37#include "inferior.h"
8b93c638 38
b6313243
TT
39#if HAVE_PYTHON
40#include "python/python.h"
41#include "python/python-internal.h"
42#else
43typedef int PyObject;
44#endif
45
8b93c638
JM
46/* Non-zero if we want to see trace of varobj level stuff. */
47
48int varobjdebug = 0;
920d2a44
AC
49static void
50show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52{
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54}
8b93c638
JM
55
56/* String representations of gdb's format codes */
57char *varobj_format_string[] =
72330bd6 58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638
JM
59
60/* String representations of gdb's known languages */
72330bd6 61char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638 62
0cc7d26f
TT
63/* True if we want to allow Python-based pretty-printing. */
64static int pretty_printing = 0;
65
66void
67varobj_enable_pretty_printing (void)
68{
69 pretty_printing = 1;
70}
71
8b93c638
JM
72/* Data structures */
73
74/* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
76struct varobj_root
72330bd6 77{
8b93c638 78
72330bd6
AC
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
8b93c638 81
72330bd6
AC
82 /* Block for which this expression is valid */
83 struct block *valid_block;
8b93c638 84
44a67aa7
VP
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
e64d9b3d 87 struct frame_id frame;
8b93c638 88
c5b48eac
VP
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
a5defcdc
VP
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame */
99 int floating;
73a93a32 100
8756216b
DP
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
72330bd6
AC
105 /* Language info for this variable and its children */
106 struct language_specific *lang;
8b93c638 107
72330bd6
AC
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
8b93c638 110
72330bd6
AC
111 /* Next root variable */
112 struct varobj_root *next;
113};
8b93c638
JM
114
115/* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
118struct varobj
72330bd6 119{
8b93c638 120
72330bd6
AC
121 /* Alloc'd name of the variable for this object.. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar) */
124 /* NOTE: This is the "expression" */
125 char *name;
8b93c638 126
02142340
VP
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
72330bd6
AC
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
133 char *obj_name;
8b93c638 134
72330bd6
AC
135 /* Index of this variable in its parent or -1 */
136 int index;
8b93c638 137
202ddcaa
VP
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
72330bd6 141 struct type *type;
8b93c638 142
b20d8971
VP
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
b2c2bd75
VP
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
30b28db1 147 struct value *value;
8b93c638 148
72330bd6
AC
149 /* The number of (immediate) children this variable has */
150 int num_children;
8b93c638 151
72330bd6
AC
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
8b93c638 154
28335dcc
VP
155 /* Children of this object. */
156 VEC (varobj_p) *children;
8b93c638 157
b6313243
TT
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
72330bd6
AC
164 /* Description of the root variable. Points to root variable for children. */
165 struct varobj_root *root;
8b93c638 166
72330bd6
AC
167 /* The format of the output for this object */
168 enum varobj_display_formats format;
fb9b6b35
JJ
169
170 /* Was this variable updated via a varobj_set_value operation */
171 int updated;
85265413
NR
172
173 /* Last print value. */
174 char *print_value;
25d5ea92
VP
175
176 /* Is this variable frozen. Frozen variables are never implicitly
177 updated by -var-update *
178 or -var-update <direct-or-indirect-parent>. */
179 int frozen;
180
181 /* Is the value of this variable intentionally not fetched? It is
182 not fetched if either the variable is frozen, or any parents is
183 frozen. */
184 int not_fetched;
b6313243 185
0cc7d26f
TT
186 /* Sub-range of children which the MI consumer has requested. If
187 FROM < 0 or TO < 0, means that all children have been
188 requested. */
189 int from;
190 int to;
191
192 /* The pretty-printer constructor. If NULL, then the default
193 pretty-printer will be looked up. If None, then no
194 pretty-printer will be installed. */
195 PyObject *constructor;
196
b6313243
TT
197 /* The pretty-printer that has been constructed. If NULL, then a
198 new printer object is needed, and one will be constructed. */
199 PyObject *pretty_printer;
0cc7d26f
TT
200
201 /* The iterator returned by the printer's 'children' method, or NULL
202 if not available. */
203 PyObject *child_iter;
204
205 /* We request one extra item from the iterator, so that we can
206 report to the caller whether there are more items than we have
207 already reported. However, we don't want to install this value
208 when we read it, because that will mess up future updates. So,
209 we stash it here instead. */
210 PyObject *saved_item;
72330bd6 211};
8b93c638 212
8b93c638 213struct cpstack
72330bd6
AC
214{
215 char *name;
216 struct cpstack *next;
217};
8b93c638
JM
218
219/* A list of varobjs */
220
221struct vlist
72330bd6
AC
222{
223 struct varobj *var;
224 struct vlist *next;
225};
8b93c638
JM
226
227/* Private function prototypes */
228
229/* Helper functions for the above subcommands. */
230
a14ed312 231static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 232
a14ed312
KB
233static void delete_variable_1 (struct cpstack **, int *,
234 struct varobj *, int, int);
8b93c638 235
a14ed312 236static int install_variable (struct varobj *);
8b93c638 237
a14ed312 238static void uninstall_variable (struct varobj *);
8b93c638 239
a14ed312 240static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 241
b6313243
TT
242static struct varobj *
243create_child_with_value (struct varobj *parent, int index, const char *name,
244 struct value *value);
245
8b93c638
JM
246/* Utility routines */
247
a14ed312 248static struct varobj *new_variable (void);
8b93c638 249
a14ed312 250static struct varobj *new_root_variable (void);
8b93c638 251
a14ed312 252static void free_variable (struct varobj *var);
8b93c638 253
74b7792f
AC
254static struct cleanup *make_cleanup_free_variable (struct varobj *var);
255
a14ed312 256static struct type *get_type (struct varobj *var);
8b93c638 257
6e2a9270
VP
258static struct type *get_value_type (struct varobj *var);
259
a14ed312 260static struct type *get_target_type (struct type *);
8b93c638 261
a14ed312 262static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 263
a14ed312 264static void cppush (struct cpstack **pstack, char *name);
8b93c638 265
a14ed312 266static char *cppop (struct cpstack **pstack);
8b93c638 267
acd65feb
VP
268static int install_new_value (struct varobj *var, struct value *value,
269 int initial);
270
8b93c638
JM
271/* Language-specific routines. */
272
a14ed312 273static enum varobj_languages variable_language (struct varobj *var);
8b93c638 274
a14ed312 275static int number_of_children (struct varobj *);
8b93c638 276
a14ed312 277static char *name_of_variable (struct varobj *);
8b93c638 278
a14ed312 279static char *name_of_child (struct varobj *, int);
8b93c638 280
30b28db1 281static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 282
30b28db1 283static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 284
de051565
MK
285static char *my_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
8b93c638 287
85265413 288static char *value_get_print_value (struct value *value,
b6313243 289 enum varobj_display_formats format,
d452c4bc 290 struct varobj *var);
85265413 291
b2c2bd75
VP
292static int varobj_value_is_changeable_p (struct varobj *var);
293
294static int is_root_p (struct varobj *var);
8b93c638 295
d8b65138
JK
296#if HAVE_PYTHON
297
b6313243
TT
298static struct varobj *
299varobj_add_child (struct varobj *var, const char *name, struct value *value);
300
d8b65138
JK
301#endif /* HAVE_PYTHON */
302
8b93c638
JM
303/* C implementation */
304
a14ed312 305static int c_number_of_children (struct varobj *var);
8b93c638 306
a14ed312 307static char *c_name_of_variable (struct varobj *parent);
8b93c638 308
a14ed312 309static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 310
02142340
VP
311static char *c_path_expr_of_child (struct varobj *child);
312
30b28db1 313static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 314
30b28db1 315static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 316
a14ed312 317static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 318
de051565
MK
319static char *c_value_of_variable (struct varobj *var,
320 enum varobj_display_formats format);
8b93c638
JM
321
322/* C++ implementation */
323
a14ed312 324static int cplus_number_of_children (struct varobj *var);
8b93c638 325
a14ed312 326static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 327
a14ed312 328static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 329
a14ed312 330static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 331
02142340
VP
332static char *cplus_path_expr_of_child (struct varobj *child);
333
30b28db1 334static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 335
30b28db1 336static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 337
a14ed312 338static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 339
de051565
MK
340static char *cplus_value_of_variable (struct varobj *var,
341 enum varobj_display_formats format);
8b93c638
JM
342
343/* Java implementation */
344
a14ed312 345static int java_number_of_children (struct varobj *var);
8b93c638 346
a14ed312 347static char *java_name_of_variable (struct varobj *parent);
8b93c638 348
a14ed312 349static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 350
02142340
VP
351static char *java_path_expr_of_child (struct varobj *child);
352
30b28db1 353static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 354
30b28db1 355static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 356
a14ed312 357static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 358
de051565
MK
359static char *java_value_of_variable (struct varobj *var,
360 enum varobj_display_formats format);
8b93c638
JM
361
362/* The language specific vector */
363
364struct language_specific
72330bd6 365{
8b93c638 366
72330bd6
AC
367 /* The language of this variable */
368 enum varobj_languages language;
8b93c638 369
72330bd6
AC
370 /* The number of children of PARENT. */
371 int (*number_of_children) (struct varobj * parent);
8b93c638 372
72330bd6
AC
373 /* The name (expression) of a root varobj. */
374 char *(*name_of_variable) (struct varobj * parent);
8b93c638 375
72330bd6
AC
376 /* The name of the INDEX'th child of PARENT. */
377 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 378
02142340
VP
379 /* Returns the rooted expression of CHILD, which is a variable
380 obtain that has some parent. */
381 char *(*path_expr_of_child) (struct varobj * child);
382
30b28db1
AC
383 /* The ``struct value *'' of the root variable ROOT. */
384 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 385
30b28db1
AC
386 /* The ``struct value *'' of the INDEX'th child of PARENT. */
387 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 388
72330bd6
AC
389 /* The type of the INDEX'th child of PARENT. */
390 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 391
72330bd6 392 /* The current value of VAR. */
de051565
MK
393 char *(*value_of_variable) (struct varobj * var,
394 enum varobj_display_formats format);
72330bd6 395};
8b93c638
JM
396
397/* Array of known source language routines. */
d5d6fca5 398static struct language_specific languages[vlang_end] = {
8b93c638
JM
399 /* Unknown (try treating as C */
400 {
72330bd6
AC
401 vlang_unknown,
402 c_number_of_children,
403 c_name_of_variable,
404 c_name_of_child,
02142340 405 c_path_expr_of_child,
72330bd6
AC
406 c_value_of_root,
407 c_value_of_child,
408 c_type_of_child,
72330bd6 409 c_value_of_variable}
8b93c638
JM
410 ,
411 /* C */
412 {
72330bd6
AC
413 vlang_c,
414 c_number_of_children,
415 c_name_of_variable,
416 c_name_of_child,
02142340 417 c_path_expr_of_child,
72330bd6
AC
418 c_value_of_root,
419 c_value_of_child,
420 c_type_of_child,
72330bd6 421 c_value_of_variable}
8b93c638
JM
422 ,
423 /* C++ */
424 {
72330bd6
AC
425 vlang_cplus,
426 cplus_number_of_children,
427 cplus_name_of_variable,
428 cplus_name_of_child,
02142340 429 cplus_path_expr_of_child,
72330bd6
AC
430 cplus_value_of_root,
431 cplus_value_of_child,
432 cplus_type_of_child,
72330bd6 433 cplus_value_of_variable}
8b93c638
JM
434 ,
435 /* Java */
436 {
72330bd6
AC
437 vlang_java,
438 java_number_of_children,
439 java_name_of_variable,
440 java_name_of_child,
02142340 441 java_path_expr_of_child,
72330bd6
AC
442 java_value_of_root,
443 java_value_of_child,
444 java_type_of_child,
72330bd6 445 java_value_of_variable}
8b93c638
JM
446};
447
448/* A little convenience enum for dealing with C++/Java */
449enum vsections
72330bd6
AC
450{
451 v_public = 0, v_private, v_protected
452};
8b93c638
JM
453
454/* Private data */
455
456/* Mappings of varobj_display_formats enums to gdb's format codes */
72330bd6 457static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638
JM
458
459/* Header of the list of root variable objects */
460static struct varobj_root *rootlist;
8b93c638
JM
461
462/* Prime number indicating the number of buckets in the hash table */
463/* A prime large enough to avoid too many colisions */
464#define VAROBJ_TABLE_SIZE 227
465
466/* Pointer to the varobj hash table (built at run time) */
467static struct vlist **varobj_table;
468
8b93c638
JM
469/* Is the variable X one of our "fake" children? */
470#define CPLUS_FAKE_CHILD(x) \
471((x) != NULL && (x)->type == NULL && (x)->value == NULL)
472\f
473
474/* API Implementation */
b2c2bd75
VP
475static int
476is_root_p (struct varobj *var)
477{
478 return (var->root->rootvar == var);
479}
8b93c638 480
d452c4bc
UW
481#ifdef HAVE_PYTHON
482/* Helper function to install a Python environment suitable for
483 use during operations on VAR. */
484struct cleanup *
485varobj_ensure_python_env (struct varobj *var)
486{
487 return ensure_python_env (var->root->exp->gdbarch,
488 var->root->exp->language_defn);
489}
490#endif
491
8b93c638
JM
492/* Creates a varobj (not its children) */
493
7d8547c9
AC
494/* Return the full FRAME which corresponds to the given CORE_ADDR
495 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
496
497static struct frame_info *
498find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
499{
500 struct frame_info *frame = NULL;
501
502 if (frame_addr == (CORE_ADDR) 0)
503 return NULL;
504
9d49bdc2
PA
505 for (frame = get_current_frame ();
506 frame != NULL;
507 frame = get_prev_frame (frame))
7d8547c9 508 {
1fac167a
UW
509 /* The CORE_ADDR we get as argument was parsed from a string GDB
510 output as $fp. This output got truncated to gdbarch_addr_bit.
511 Truncate the frame base address in the same manner before
512 comparing it against our argument. */
513 CORE_ADDR frame_base = get_frame_base_address (frame);
514 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
515 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
516 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
517
518 if (frame_base == frame_addr)
7d8547c9
AC
519 return frame;
520 }
9d49bdc2
PA
521
522 return NULL;
7d8547c9
AC
523}
524
8b93c638
JM
525struct varobj *
526varobj_create (char *objname,
72330bd6 527 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
528{
529 struct varobj *var;
2c67cb8b
AC
530 struct frame_info *fi;
531 struct frame_info *old_fi = NULL;
8b93c638
JM
532 struct block *block;
533 struct cleanup *old_chain;
534
535 /* Fill out a varobj structure for the (root) variable being constructed. */
536 var = new_root_variable ();
74b7792f 537 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
538
539 if (expression != NULL)
540 {
541 char *p;
542 enum varobj_languages lang;
e55dccf0 543 struct value *value = NULL;
8b93c638 544
9d49bdc2
PA
545 /* Parse and evaluate the expression, filling in as much of the
546 variable's data as possible. */
547
548 if (has_stack_frames ())
549 {
550 /* Allow creator to specify context of variable */
551 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
552 fi = get_selected_frame (NULL);
553 else
554 /* FIXME: cagney/2002-11-23: This code should be doing a
555 lookup using the frame ID and not just the frame's
556 ``address''. This, of course, means an interface
557 change. However, with out that interface change ISAs,
558 such as the ia64 with its two stacks, won't work.
559 Similar goes for the case where there is a frameless
560 function. */
561 fi = find_frame_addr_in_frame_chain (frame);
562 }
8b93c638 563 else
9d49bdc2 564 fi = NULL;
8b93c638 565
73a93a32
JI
566 /* frame = -2 means always use selected frame */
567 if (type == USE_SELECTED_FRAME)
a5defcdc 568 var->root->floating = 1;
73a93a32 569
8b93c638
JM
570 block = NULL;
571 if (fi != NULL)
ae767bfb 572 block = get_frame_block (fi, 0);
8b93c638
JM
573
574 p = expression;
575 innermost_block = NULL;
73a93a32
JI
576 /* Wrap the call to parse expression, so we can
577 return a sensible error. */
578 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
579 {
580 return NULL;
581 }
8b93c638
JM
582
583 /* Don't allow variables to be created for types. */
584 if (var->root->exp->elts[0].opcode == OP_TYPE)
585 {
586 do_cleanups (old_chain);
bc8332bb
AC
587 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
588 " as an expression.\n");
8b93c638
JM
589 return NULL;
590 }
591
592 var->format = variable_default_display (var);
593 var->root->valid_block = innermost_block;
1b36a34b 594 var->name = xstrdup (expression);
02142340 595 /* For a root var, the name and the expr are the same. */
1b36a34b 596 var->path_expr = xstrdup (expression);
8b93c638
JM
597
598 /* When the frame is different from the current frame,
599 we must select the appropriate frame before parsing
600 the expression, otherwise the value will not be current.
601 Since select_frame is so benign, just call it for all cases. */
4e22772d 602 if (innermost_block)
8b93c638 603 {
4e22772d
JK
604 /* User could specify explicit FRAME-ADDR which was not found but
605 EXPRESSION is frame specific and we would not be able to evaluate
606 it correctly next time. With VALID_BLOCK set we must also set
607 FRAME and THREAD_ID. */
608 if (fi == NULL)
609 error (_("Failed to find the specified frame"));
610
7a424e99 611 var->root->frame = get_frame_id (fi);
c5b48eac 612 var->root->thread_id = pid_to_thread_id (inferior_ptid);
206415a3 613 old_fi = get_selected_frame (NULL);
c5b48eac 614 select_frame (fi);
8b93c638
JM
615 }
616
340a7723 617 /* We definitely need to catch errors here.
8b93c638
JM
618 If evaluate_expression succeeds we got the value we wanted.
619 But if it fails, we still go on with a call to evaluate_type() */
acd65feb 620 if (!gdb_evaluate_expression (var->root->exp, &value))
e55dccf0
VP
621 {
622 /* Error getting the value. Try to at least get the
623 right type. */
624 struct value *type_only_value = evaluate_type (var->root->exp);
625 var->type = value_type (type_only_value);
626 }
627 else
628 var->type = value_type (value);
acd65feb 629
acd65feb 630 install_new_value (var, value, 1 /* Initial assignment */);
8b93c638
JM
631
632 /* Set language info */
633 lang = variable_language (var);
d5d6fca5 634 var->root->lang = &languages[lang];
8b93c638
JM
635
636 /* Set ourselves as our root */
637 var->root->rootvar = var;
638
639 /* Reset the selected frame */
e21458b2 640 if (old_fi != NULL)
0f7d239c 641 select_frame (old_fi);
8b93c638
JM
642 }
643
73a93a32
JI
644 /* If the variable object name is null, that means this
645 is a temporary variable, so don't install it. */
646
647 if ((var != NULL) && (objname != NULL))
8b93c638 648 {
1b36a34b 649 var->obj_name = xstrdup (objname);
8b93c638
JM
650
651 /* If a varobj name is duplicated, the install will fail so
652 we must clenup */
653 if (!install_variable (var))
654 {
655 do_cleanups (old_chain);
656 return NULL;
657 }
658 }
659
660 discard_cleanups (old_chain);
661 return var;
662}
663
664/* Generates an unique name that can be used for a varobj */
665
666char *
667varobj_gen_name (void)
668{
669 static int id = 0;
e64d9b3d 670 char *obj_name;
8b93c638
JM
671
672 /* generate a name for this object */
673 id++;
b435e160 674 obj_name = xstrprintf ("var%d", id);
8b93c638 675
e64d9b3d 676 return obj_name;
8b93c638
JM
677}
678
61d8f275
JK
679/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
680 error if OBJNAME cannot be found. */
8b93c638
JM
681
682struct varobj *
683varobj_get_handle (char *objname)
684{
685 struct vlist *cv;
686 const char *chp;
687 unsigned int index = 0;
688 unsigned int i = 1;
689
690 for (chp = objname; *chp; chp++)
691 {
692 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
693 }
694
695 cv = *(varobj_table + index);
696 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
697 cv = cv->next;
698
699 if (cv == NULL)
8a3fe4f8 700 error (_("Variable object not found"));
8b93c638
JM
701
702 return cv->var;
703}
704
705/* Given the handle, return the name of the object */
706
707char *
708varobj_get_objname (struct varobj *var)
709{
710 return var->obj_name;
711}
712
713/* Given the handle, return the expression represented by the object */
714
715char *
716varobj_get_expression (struct varobj *var)
717{
718 return name_of_variable (var);
719}
720
721/* Deletes a varobj and all its children if only_children == 0,
722 otherwise deletes only the children; returns a malloc'ed list of all the
723 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
724
725int
726varobj_delete (struct varobj *var, char ***dellist, int only_children)
727{
728 int delcount;
729 int mycount;
730 struct cpstack *result = NULL;
731 char **cp;
732
733 /* Initialize a stack for temporary results */
734 cppush (&result, NULL);
735
736 if (only_children)
737 /* Delete only the variable children */
738 delcount = delete_variable (&result, var, 1 /* only the children */ );
739 else
740 /* Delete the variable and all its children */
741 delcount = delete_variable (&result, var, 0 /* parent+children */ );
742
743 /* We may have been asked to return a list of what has been deleted */
744 if (dellist != NULL)
745 {
746 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
747
748 cp = *dellist;
749 mycount = delcount;
750 *cp = cppop (&result);
751 while ((*cp != NULL) && (mycount > 0))
752 {
753 mycount--;
754 cp++;
755 *cp = cppop (&result);
756 }
757
758 if (mycount || (*cp != NULL))
8a3fe4f8 759 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 760 mycount);
8b93c638
JM
761 }
762
763 return delcount;
764}
765
d8b65138
JK
766#if HAVE_PYTHON
767
b6313243
TT
768/* Convenience function for varobj_set_visualizer. Instantiate a
769 pretty-printer for a given value. */
770static PyObject *
771instantiate_pretty_printer (PyObject *constructor, struct value *value)
772{
b6313243
TT
773 PyObject *val_obj = NULL;
774 PyObject *printer;
b6313243 775
b6313243 776 val_obj = value_to_value_object (value);
b6313243
TT
777 if (! val_obj)
778 return NULL;
779
780 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
781 Py_DECREF (val_obj);
782 return printer;
b6313243
TT
783 return NULL;
784}
785
d8b65138
JK
786#endif
787
8b93c638
JM
788/* Set/Get variable object display format */
789
790enum varobj_display_formats
791varobj_set_display_format (struct varobj *var,
792 enum varobj_display_formats format)
793{
794 switch (format)
795 {
796 case FORMAT_NATURAL:
797 case FORMAT_BINARY:
798 case FORMAT_DECIMAL:
799 case FORMAT_HEXADECIMAL:
800 case FORMAT_OCTAL:
801 var->format = format;
802 break;
803
804 default:
805 var->format = variable_default_display (var);
806 }
807
ae7d22a6
VP
808 if (varobj_value_is_changeable_p (var)
809 && var->value && !value_lazy (var->value))
810 {
6c761d9c 811 xfree (var->print_value);
d452c4bc 812 var->print_value = value_get_print_value (var->value, var->format, var);
ae7d22a6
VP
813 }
814
8b93c638
JM
815 return var->format;
816}
817
818enum varobj_display_formats
819varobj_get_display_format (struct varobj *var)
820{
821 return var->format;
822}
823
b6313243
TT
824char *
825varobj_get_display_hint (struct varobj *var)
826{
827 char *result = NULL;
828
829#if HAVE_PYTHON
d452c4bc
UW
830 struct cleanup *back_to = varobj_ensure_python_env (var);
831
b6313243
TT
832 if (var->pretty_printer)
833 result = gdbpy_get_display_hint (var->pretty_printer);
d452c4bc
UW
834
835 do_cleanups (back_to);
b6313243
TT
836#endif
837
838 return result;
839}
840
0cc7d26f
TT
841/* Return true if the varobj has items after TO, false otherwise. */
842
843int
844varobj_has_more (struct varobj *var, int to)
845{
846 if (VEC_length (varobj_p, var->children) > to)
847 return 1;
848 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
849 && var->saved_item != NULL);
850}
851
c5b48eac
VP
852/* If the variable object is bound to a specific thread, that
853 is its evaluation can always be done in context of a frame
854 inside that thread, returns GDB id of the thread -- which
855 is always positive. Otherwise, returns -1. */
856int
857varobj_get_thread_id (struct varobj *var)
858{
859 if (var->root->valid_block && var->root->thread_id > 0)
860 return var->root->thread_id;
861 else
862 return -1;
863}
864
25d5ea92
VP
865void
866varobj_set_frozen (struct varobj *var, int frozen)
867{
868 /* When a variable is unfrozen, we don't fetch its value.
869 The 'not_fetched' flag remains set, so next -var-update
870 won't complain.
871
872 We don't fetch the value, because for structures the client
873 should do -var-update anyway. It would be bad to have different
874 client-size logic for structure and other types. */
875 var->frozen = frozen;
876}
877
878int
879varobj_get_frozen (struct varobj *var)
880{
881 return var->frozen;
882}
883
0cc7d26f
TT
884/* A helper function that restricts a range to what is actually
885 available in a VEC. This follows the usual rules for the meaning
886 of FROM and TO -- if either is negative, the entire range is
887 used. */
888
889static void
890restrict_range (VEC (varobj_p) *children, int *from, int *to)
891{
892 if (*from < 0 || *to < 0)
893 {
894 *from = 0;
895 *to = VEC_length (varobj_p, children);
896 }
897 else
898 {
899 if (*from > VEC_length (varobj_p, children))
900 *from = VEC_length (varobj_p, children);
901 if (*to > VEC_length (varobj_p, children))
902 *to = VEC_length (varobj_p, children);
903 if (*from > *to)
904 *from = *to;
905 }
906}
907
d8b65138
JK
908#if HAVE_PYTHON
909
0cc7d26f
TT
910/* A helper for update_dynamic_varobj_children that installs a new
911 child when needed. */
912
913static void
914install_dynamic_child (struct varobj *var,
915 VEC (varobj_p) **changed,
916 VEC (varobj_p) **new,
917 VEC (varobj_p) **unchanged,
918 int *cchanged,
919 int index,
920 const char *name,
921 struct value *value)
922{
923 if (VEC_length (varobj_p, var->children) < index + 1)
924 {
925 /* There's no child yet. */
926 struct varobj *child = varobj_add_child (var, name, value);
927 if (new)
928 {
929 VEC_safe_push (varobj_p, *new, child);
930 *cchanged = 1;
931 }
932 }
933 else
934 {
935 varobj_p existing = VEC_index (varobj_p, var->children, index);
936 if (install_new_value (existing, value, 0))
937 {
938 if (changed)
939 VEC_safe_push (varobj_p, *changed, existing);
940 }
941 else if (unchanged)
942 VEC_safe_push (varobj_p, *unchanged, existing);
943 }
944}
945
0cc7d26f
TT
946static int
947dynamic_varobj_has_child_method (struct varobj *var)
948{
949 struct cleanup *back_to;
950 PyObject *printer = var->pretty_printer;
951 int result;
952
953 back_to = varobj_ensure_python_env (var);
954 result = PyObject_HasAttr (printer, gdbpy_children_cst);
955 do_cleanups (back_to);
956 return result;
957}
958
959#endif
960
b6313243
TT
961static int
962update_dynamic_varobj_children (struct varobj *var,
963 VEC (varobj_p) **changed,
0cc7d26f
TT
964 VEC (varobj_p) **new,
965 VEC (varobj_p) **unchanged,
966 int *cchanged,
967 int update_children,
968 int from,
969 int to)
b6313243
TT
970{
971#if HAVE_PYTHON
b6313243
TT
972 struct cleanup *back_to;
973 PyObject *children;
b6313243 974 int i;
b6313243 975 PyObject *printer = var->pretty_printer;
b6313243 976
d452c4bc 977 back_to = varobj_ensure_python_env (var);
b6313243
TT
978
979 *cchanged = 0;
980 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
981 {
982 do_cleanups (back_to);
983 return 0;
984 }
985
0cc7d26f 986 if (update_children || !var->child_iter)
b6313243 987 {
0cc7d26f
TT
988 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
989 NULL);
b6313243 990
0cc7d26f
TT
991 if (!children)
992 {
993 gdbpy_print_stack ();
994 error (_("Null value returned for children"));
995 }
b6313243 996
0cc7d26f 997 make_cleanup_py_decref (children);
b6313243 998
0cc7d26f
TT
999 if (!PyIter_Check (children))
1000 error (_("Returned value is not iterable"));
1001
1002 Py_XDECREF (var->child_iter);
1003 var->child_iter = PyObject_GetIter (children);
1004 if (!var->child_iter)
1005 {
1006 gdbpy_print_stack ();
1007 error (_("Could not get children iterator"));
1008 }
1009
1010 Py_XDECREF (var->saved_item);
1011 var->saved_item = NULL;
1012
1013 i = 0;
b6313243 1014 }
0cc7d26f
TT
1015 else
1016 i = VEC_length (varobj_p, var->children);
b6313243 1017
0cc7d26f
TT
1018 /* We ask for one extra child, so that MI can report whether there
1019 are more children. */
1020 for (; to < 0 || i < to + 1; ++i)
b6313243 1021 {
0cc7d26f 1022 PyObject *item;
b6313243 1023
0cc7d26f
TT
1024 /* See if there was a leftover from last time. */
1025 if (var->saved_item)
1026 {
1027 item = var->saved_item;
1028 var->saved_item = NULL;
1029 }
1030 else
1031 item = PyIter_Next (var->child_iter);
b6313243 1032
0cc7d26f
TT
1033 if (!item)
1034 break;
b6313243 1035
0cc7d26f
TT
1036 /* We don't want to push the extra child on any report list. */
1037 if (to < 0 || i < to)
b6313243 1038 {
0cc7d26f
TT
1039 PyObject *py_v;
1040 char *name;
1041 struct value *v;
1042 struct cleanup *inner;
1043 int can_mention = from < 0 || i >= from;
1044
1045 inner = make_cleanup_py_decref (item);
1046
1047 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1048 error (_("Invalid item from the child list"));
1049
1050 v = convert_value_from_python (py_v);
1051 install_dynamic_child (var, can_mention ? changed : NULL,
1052 can_mention ? new : NULL,
1053 can_mention ? unchanged : NULL,
1054 can_mention ? cchanged : NULL, i, name, v);
1055 do_cleanups (inner);
b6313243 1056 }
0cc7d26f 1057 else
b6313243 1058 {
0cc7d26f
TT
1059 Py_XDECREF (var->saved_item);
1060 var->saved_item = item;
b6313243 1061
0cc7d26f
TT
1062 /* We want to truncate the child list just before this
1063 element. */
1064 break;
1065 }
b6313243
TT
1066 }
1067
1068 if (i < VEC_length (varobj_p, var->children))
1069 {
0cc7d26f
TT
1070 int j;
1071 *cchanged = 1;
1072 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1073 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1074 VEC_truncate (varobj_p, var->children, i);
b6313243 1075 }
0cc7d26f
TT
1076
1077 /* If there are fewer children than requested, note that the list of
1078 children changed. */
1079 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1080 *cchanged = 1;
1081
b6313243
TT
1082 var->num_children = VEC_length (varobj_p, var->children);
1083
1084 do_cleanups (back_to);
1085
b6313243
TT
1086 return 1;
1087#else
1088 gdb_assert (0 && "should never be called if Python is not enabled");
1089#endif
1090}
25d5ea92 1091
8b93c638
JM
1092int
1093varobj_get_num_children (struct varobj *var)
1094{
1095 if (var->num_children == -1)
b6313243 1096 {
0cc7d26f
TT
1097 if (var->pretty_printer)
1098 {
1099 int dummy;
1100
1101 /* If we have a dynamic varobj, don't report -1 children.
1102 So, try to fetch some children first. */
1103 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1104 0, 0, 0);
1105 }
1106 else
b6313243
TT
1107 var->num_children = number_of_children (var);
1108 }
8b93c638 1109
0cc7d26f 1110 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
1111}
1112
1113/* Creates a list of the immediate children of a variable object;
1114 the return code is the number of such children or -1 on error */
1115
d56d46f5 1116VEC (varobj_p)*
0cc7d26f 1117varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 1118{
8b93c638 1119 char *name;
b6313243
TT
1120 int i, children_changed;
1121
1122 var->children_requested = 1;
1123
0cc7d26f
TT
1124 if (var->pretty_printer)
1125 {
b6313243
TT
1126 /* This, in theory, can result in the number of children changing without
1127 frontend noticing. But well, calling -var-list-children on the same
1128 varobj twice is not something a sane frontend would do. */
0cc7d26f
TT
1129 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1130 0, 0, *to);
1131 restrict_range (var->children, from, to);
1132 return var->children;
1133 }
8b93c638 1134
8b93c638
JM
1135 if (var->num_children == -1)
1136 var->num_children = number_of_children (var);
1137
74a44383
DJ
1138 /* If that failed, give up. */
1139 if (var->num_children == -1)
d56d46f5 1140 return var->children;
74a44383 1141
28335dcc
VP
1142 /* If we're called when the list of children is not yet initialized,
1143 allocate enough elements in it. */
1144 while (VEC_length (varobj_p, var->children) < var->num_children)
1145 VEC_safe_push (varobj_p, var->children, NULL);
1146
8b93c638
JM
1147 for (i = 0; i < var->num_children; i++)
1148 {
d56d46f5 1149 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1150
1151 if (existing == NULL)
1152 {
1153 /* Either it's the first call to varobj_list_children for
1154 this variable object, and the child was never created,
1155 or it was explicitly deleted by the client. */
1156 name = name_of_child (var, i);
1157 existing = create_child (var, i, name);
1158 VEC_replace (varobj_p, var->children, i, existing);
1159 }
8b93c638
JM
1160 }
1161
0cc7d26f 1162 restrict_range (var->children, from, to);
d56d46f5 1163 return var->children;
8b93c638
JM
1164}
1165
d8b65138
JK
1166#if HAVE_PYTHON
1167
b6313243
TT
1168static struct varobj *
1169varobj_add_child (struct varobj *var, const char *name, struct value *value)
1170{
1171 varobj_p v = create_child_with_value (var,
1172 VEC_length (varobj_p, var->children),
1173 name, value);
1174 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1175 return v;
1176}
1177
d8b65138
JK
1178#endif /* HAVE_PYTHON */
1179
8b93c638
JM
1180/* Obtain the type of an object Variable as a string similar to the one gdb
1181 prints on the console */
1182
1183char *
1184varobj_get_type (struct varobj *var)
1185{
8b93c638 1186 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1187 NULL, too.)
1188 Do not return a type for invalid variables as well. */
1189 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1190 return NULL;
1191
1a4300e9 1192 return type_to_string (var->type);
8b93c638
JM
1193}
1194
1ecb4ee0
DJ
1195/* Obtain the type of an object variable. */
1196
1197struct type *
1198varobj_get_gdb_type (struct varobj *var)
1199{
1200 return var->type;
1201}
1202
02142340
VP
1203/* Return a pointer to the full rooted expression of varobj VAR.
1204 If it has not been computed yet, compute it. */
1205char *
1206varobj_get_path_expr (struct varobj *var)
1207{
1208 if (var->path_expr != NULL)
1209 return var->path_expr;
1210 else
1211 {
1212 /* For root varobjs, we initialize path_expr
1213 when creating varobj, so here it should be
1214 child varobj. */
1215 gdb_assert (!is_root_p (var));
1216 return (*var->root->lang->path_expr_of_child) (var);
1217 }
1218}
1219
8b93c638
JM
1220enum varobj_languages
1221varobj_get_language (struct varobj *var)
1222{
1223 return variable_language (var);
1224}
1225
1226int
1227varobj_get_attributes (struct varobj *var)
1228{
1229 int attributes = 0;
1230
340a7723 1231 if (varobj_editable_p (var))
8b93c638
JM
1232 /* FIXME: define masks for attributes */
1233 attributes |= 0x00000001; /* Editable */
1234
1235 return attributes;
1236}
1237
0cc7d26f
TT
1238int
1239varobj_pretty_printed_p (struct varobj *var)
1240{
1241 return var->pretty_printer != NULL;
1242}
1243
de051565
MK
1244char *
1245varobj_get_formatted_value (struct varobj *var,
1246 enum varobj_display_formats format)
1247{
1248 return my_value_of_variable (var, format);
1249}
1250
8b93c638
JM
1251char *
1252varobj_get_value (struct varobj *var)
1253{
de051565 1254 return my_value_of_variable (var, var->format);
8b93c638
JM
1255}
1256
1257/* Set the value of an object variable (if it is editable) to the
1258 value of the given expression */
1259/* Note: Invokes functions that can call error() */
1260
1261int
1262varobj_set_value (struct varobj *var, char *expression)
1263{
30b28db1 1264 struct value *val;
8b93c638
JM
1265
1266 /* The argument "expression" contains the variable's new value.
1267 We need to first construct a legal expression for this -- ugh! */
1268 /* Does this cover all the bases? */
1269 struct expression *exp;
30b28db1 1270 struct value *value;
8b93c638 1271 int saved_input_radix = input_radix;
340a7723 1272 char *s = expression;
8b93c638 1273
340a7723 1274 gdb_assert (varobj_editable_p (var));
8b93c638 1275
340a7723
NR
1276 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1277 exp = parse_exp_1 (&s, 0, 0);
1278 if (!gdb_evaluate_expression (exp, &value))
1279 {
1280 /* We cannot proceed without a valid expression. */
1281 xfree (exp);
1282 return 0;
8b93c638
JM
1283 }
1284
340a7723
NR
1285 /* All types that are editable must also be changeable. */
1286 gdb_assert (varobj_value_is_changeable_p (var));
1287
1288 /* The value of a changeable variable object must not be lazy. */
1289 gdb_assert (!value_lazy (var->value));
1290
1291 /* Need to coerce the input. We want to check if the
1292 value of the variable object will be different
1293 after assignment, and the first thing value_assign
1294 does is coerce the input.
1295 For example, if we are assigning an array to a pointer variable we
1296 should compare the pointer with the the array's address, not with the
1297 array's content. */
1298 value = coerce_array (value);
1299
1300 /* The new value may be lazy. gdb_value_assign, or
1301 rather value_contents, will take care of this.
1302 If fetching of the new value will fail, gdb_value_assign
1303 with catch the exception. */
1304 if (!gdb_value_assign (var->value, value, &val))
1305 return 0;
1306
1307 /* If the value has changed, record it, so that next -var-update can
1308 report this change. If a variable had a value of '1', we've set it
1309 to '333' and then set again to '1', when -var-update will report this
1310 variable as changed -- because the first assignment has set the
1311 'updated' flag. There's no need to optimize that, because return value
1312 of -var-update should be considered an approximation. */
1313 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1314 input_radix = saved_input_radix;
1315 return 1;
8b93c638
JM
1316}
1317
0cc7d26f
TT
1318#if HAVE_PYTHON
1319
1320/* A helper function to install a constructor function and visualizer
1321 in a varobj. */
1322
1323static void
1324install_visualizer (struct varobj *var, PyObject *constructor,
1325 PyObject *visualizer)
1326{
1327 Py_XDECREF (var->constructor);
1328 var->constructor = constructor;
1329
1330 Py_XDECREF (var->pretty_printer);
1331 var->pretty_printer = visualizer;
1332
1333 Py_XDECREF (var->child_iter);
1334 var->child_iter = NULL;
1335}
1336
1337/* Install the default visualizer for VAR. */
1338
1339static void
1340install_default_visualizer (struct varobj *var)
1341{
1342 if (pretty_printing)
1343 {
1344 PyObject *pretty_printer = NULL;
1345
1346 if (var->value)
1347 {
1348 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1349 if (! pretty_printer)
1350 {
1351 gdbpy_print_stack ();
1352 error (_("Cannot instantiate printer for default visualizer"));
1353 }
1354 }
1355
1356 if (pretty_printer == Py_None)
1357 {
1358 Py_DECREF (pretty_printer);
1359 pretty_printer = NULL;
1360 }
1361
1362 install_visualizer (var, NULL, pretty_printer);
1363 }
1364}
1365
1366/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1367 make a new object. */
1368
1369static void
1370construct_visualizer (struct varobj *var, PyObject *constructor)
1371{
1372 PyObject *pretty_printer;
1373
1374 Py_INCREF (constructor);
1375 if (constructor == Py_None)
1376 pretty_printer = NULL;
1377 else
1378 {
1379 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1380 if (! pretty_printer)
1381 {
1382 gdbpy_print_stack ();
1383 Py_DECREF (constructor);
1384 constructor = Py_None;
1385 Py_INCREF (constructor);
1386 }
1387
1388 if (pretty_printer == Py_None)
1389 {
1390 Py_DECREF (pretty_printer);
1391 pretty_printer = NULL;
1392 }
1393 }
1394
1395 install_visualizer (var, constructor, pretty_printer);
1396}
1397
1398#endif /* HAVE_PYTHON */
1399
1400/* A helper function for install_new_value. This creates and installs
1401 a visualizer for VAR, if appropriate. */
1402
1403static void
1404install_new_value_visualizer (struct varobj *var)
1405{
1406#if HAVE_PYTHON
1407 /* If the constructor is None, then we want the raw value. If VAR
1408 does not have a value, just skip this. */
1409 if (var->constructor != Py_None && var->value)
1410 {
1411 struct cleanup *cleanup;
0cc7d26f
TT
1412
1413 cleanup = varobj_ensure_python_env (var);
1414
1415 if (!var->constructor)
1416 install_default_visualizer (var);
1417 else
1418 construct_visualizer (var, var->constructor);
1419
1420 do_cleanups (cleanup);
1421 }
1422#else
1423 /* Do nothing. */
1424#endif
1425}
1426
acd65feb
VP
1427/* Assign a new value to a variable object. If INITIAL is non-zero,
1428 this is the first assignement after the variable object was just
1429 created, or changed type. In that case, just assign the value
1430 and return 0.
ee342b23
VP
1431 Otherwise, assign the new value, and return 1 if the value is different
1432 from the current one, 0 otherwise. The comparison is done on textual
1433 representation of value. Therefore, some types need not be compared. E.g.
1434 for structures the reported value is always "{...}", so no comparison is
1435 necessary here. If the old value was NULL and new one is not, or vice versa,
1436 we always return 1.
b26ed50d
VP
1437
1438 The VALUE parameter should not be released -- the function will
1439 take care of releasing it when needed. */
acd65feb
VP
1440static int
1441install_new_value (struct varobj *var, struct value *value, int initial)
1442{
1443 int changeable;
1444 int need_to_fetch;
1445 int changed = 0;
25d5ea92 1446 int intentionally_not_fetched = 0;
7a4d50bf 1447 char *print_value = NULL;
acd65feb 1448
acd65feb
VP
1449 /* We need to know the varobj's type to decide if the value should
1450 be fetched or not. C++ fake children (public/protected/private) don't have
1451 a type. */
1452 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1453 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1454
1455 /* If the type has custom visualizer, we consider it to be always
1456 changeable. FIXME: need to make sure this behaviour will not
1457 mess up read-sensitive values. */
1458 if (var->pretty_printer)
1459 changeable = 1;
1460
acd65feb
VP
1461 need_to_fetch = changeable;
1462
b26ed50d
VP
1463 /* We are not interested in the address of references, and given
1464 that in C++ a reference is not rebindable, it cannot
1465 meaningfully change. So, get hold of the real value. */
1466 if (value)
0cc7d26f 1467 value = coerce_ref (value);
b26ed50d 1468
acd65feb
VP
1469 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1470 /* For unions, we need to fetch the value implicitly because
1471 of implementation of union member fetch. When gdb
1472 creates a value for a field and the value of the enclosing
1473 structure is not lazy, it immediately copies the necessary
1474 bytes from the enclosing values. If the enclosing value is
1475 lazy, the call to value_fetch_lazy on the field will read
1476 the data from memory. For unions, that means we'll read the
1477 same memory more than once, which is not desirable. So
1478 fetch now. */
1479 need_to_fetch = 1;
1480
1481 /* The new value might be lazy. If the type is changeable,
1482 that is we'll be comparing values of this type, fetch the
1483 value now. Otherwise, on the next update the old value
1484 will be lazy, which means we've lost that old value. */
1485 if (need_to_fetch && value && value_lazy (value))
1486 {
25d5ea92
VP
1487 struct varobj *parent = var->parent;
1488 int frozen = var->frozen;
1489 for (; !frozen && parent; parent = parent->parent)
1490 frozen |= parent->frozen;
1491
1492 if (frozen && initial)
1493 {
1494 /* For variables that are frozen, or are children of frozen
1495 variables, we don't do fetch on initial assignment.
1496 For non-initial assignemnt we do the fetch, since it means we're
1497 explicitly asked to compare the new value with the old one. */
1498 intentionally_not_fetched = 1;
1499 }
1500 else if (!gdb_value_fetch_lazy (value))
acd65feb 1501 {
acd65feb
VP
1502 /* Set the value to NULL, so that for the next -var-update,
1503 we don't try to compare the new value with this value,
1504 that we couldn't even read. */
1505 value = NULL;
1506 }
acd65feb
VP
1507 }
1508
b6313243 1509
7a4d50bf
VP
1510 /* Below, we'll be comparing string rendering of old and new
1511 values. Don't get string rendering if the value is
1512 lazy -- if it is, the code above has decided that the value
1513 should not be fetched. */
0cc7d26f 1514 if (value && !value_lazy (value) && !var->pretty_printer)
d452c4bc 1515 print_value = value_get_print_value (value, var->format, var);
7a4d50bf 1516
acd65feb
VP
1517 /* If the type is changeable, compare the old and the new values.
1518 If this is the initial assignment, we don't have any old value
1519 to compare with. */
7a4d50bf 1520 if (!initial && changeable)
acd65feb
VP
1521 {
1522 /* If the value of the varobj was changed by -var-set-value, then the
1523 value in the varobj and in the target is the same. However, that value
1524 is different from the value that the varobj had after the previous
57e66780 1525 -var-update. So need to the varobj as changed. */
acd65feb 1526 if (var->updated)
57e66780 1527 {
57e66780
DJ
1528 changed = 1;
1529 }
0cc7d26f 1530 else if (! var->pretty_printer)
acd65feb
VP
1531 {
1532 /* Try to compare the values. That requires that both
1533 values are non-lazy. */
25d5ea92
VP
1534 if (var->not_fetched && value_lazy (var->value))
1535 {
1536 /* This is a frozen varobj and the value was never read.
1537 Presumably, UI shows some "never read" indicator.
1538 Now that we've fetched the real value, we need to report
1539 this varobj as changed so that UI can show the real
1540 value. */
1541 changed = 1;
1542 }
1543 else if (var->value == NULL && value == NULL)
acd65feb
VP
1544 /* Equal. */
1545 ;
1546 else if (var->value == NULL || value == NULL)
57e66780 1547 {
57e66780
DJ
1548 changed = 1;
1549 }
acd65feb
VP
1550 else
1551 {
1552 gdb_assert (!value_lazy (var->value));
1553 gdb_assert (!value_lazy (value));
85265413 1554
57e66780 1555 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1556 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1557 changed = 1;
acd65feb
VP
1558 }
1559 }
1560 }
85265413 1561
ee342b23
VP
1562 if (!initial && !changeable)
1563 {
1564 /* For values that are not changeable, we don't compare the values.
1565 However, we want to notice if a value was not NULL and now is NULL,
1566 or vise versa, so that we report when top-level varobjs come in scope
1567 and leave the scope. */
1568 changed = (var->value != NULL) != (value != NULL);
1569 }
1570
acd65feb 1571 /* We must always keep the new value, since children depend on it. */
25d5ea92 1572 if (var->value != NULL && var->value != value)
acd65feb
VP
1573 value_free (var->value);
1574 var->value = value;
0cc7d26f
TT
1575 if (value != NULL)
1576 value_incref (value);
25d5ea92
VP
1577 if (value && value_lazy (value) && intentionally_not_fetched)
1578 var->not_fetched = 1;
1579 else
1580 var->not_fetched = 0;
acd65feb 1581 var->updated = 0;
85265413 1582
0cc7d26f
TT
1583 install_new_value_visualizer (var);
1584
1585 /* If we installed a pretty-printer, re-compare the printed version
1586 to see if the variable changed. */
1587 if (var->pretty_printer)
1588 {
1589 xfree (print_value);
1590 print_value = value_get_print_value (var->value, var->format, var);
e8f781e2
TT
1591 if ((var->print_value == NULL && print_value != NULL)
1592 || (var->print_value != NULL && print_value == NULL)
1593 || (var->print_value != NULL && print_value != NULL
1594 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1595 changed = 1;
1596 }
1597 if (var->print_value)
1598 xfree (var->print_value);
1599 var->print_value = print_value;
1600
b26ed50d 1601 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1602
1603 return changed;
1604}
acd65feb 1605
0cc7d26f
TT
1606/* Return the requested range for a varobj. VAR is the varobj. FROM
1607 and TO are out parameters; *FROM and *TO will be set to the
1608 selected sub-range of VAR. If no range was selected using
1609 -var-set-update-range, then both will be -1. */
1610void
1611varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1612{
0cc7d26f
TT
1613 *from = var->from;
1614 *to = var->to;
b6313243
TT
1615}
1616
0cc7d26f
TT
1617/* Set the selected sub-range of children of VAR to start at index
1618 FROM and end at index TO. If either FROM or TO is less than zero,
1619 this is interpreted as a request for all children. */
1620void
1621varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1622{
0cc7d26f
TT
1623 var->from = from;
1624 var->to = to;
b6313243
TT
1625}
1626
1627void
1628varobj_set_visualizer (struct varobj *var, const char *visualizer)
1629{
1630#if HAVE_PYTHON
34fa1d9d
MS
1631 PyObject *mainmod, *globals, *constructor;
1632 struct cleanup *back_to;
b6313243 1633
d452c4bc 1634 back_to = varobj_ensure_python_env (var);
b6313243
TT
1635
1636 mainmod = PyImport_AddModule ("__main__");
1637 globals = PyModule_GetDict (mainmod);
1638 Py_INCREF (globals);
1639 make_cleanup_py_decref (globals);
1640
1641 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1642
0cc7d26f 1643 if (! constructor)
b6313243
TT
1644 {
1645 gdbpy_print_stack ();
da1f2771 1646 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1647 }
1648
0cc7d26f
TT
1649 construct_visualizer (var, constructor);
1650 Py_XDECREF (constructor);
b6313243 1651
0cc7d26f
TT
1652 /* If there are any children now, wipe them. */
1653 varobj_delete (var, NULL, 1 /* children only */);
1654 var->num_children = -1;
b6313243
TT
1655
1656 do_cleanups (back_to);
1657#else
da1f2771 1658 error (_("Python support required"));
b6313243
TT
1659#endif
1660}
1661
8b93c638
JM
1662/* Update the values for a variable and its children. This is a
1663 two-pronged attack. First, re-parse the value for the root's
1664 expression to see if it's changed. Then go all the way
1665 through its children, reconstructing them and noting if they've
1666 changed.
1667
25d5ea92
VP
1668 The EXPLICIT parameter specifies if this call is result
1669 of MI request to update this specific variable, or
1670 result of implicit -var-update *. For implicit request, we don't
1671 update frozen variables.
705da579
KS
1672
1673 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1674 returns TYPE_CHANGED, then it has done this and VARP will be modified
1675 to point to the new varobj. */
8b93c638 1676
f7f9ae2c 1677VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
8b93c638
JM
1678{
1679 int changed = 0;
25d5ea92 1680 int type_changed = 0;
8b93c638 1681 int i;
30b28db1 1682 struct value *new;
b6313243 1683 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1684 VEC (varobj_update_result) *result = NULL;
8b93c638 1685
25d5ea92
VP
1686 /* Frozen means frozen -- we don't check for any change in
1687 this varobj, including its going out of scope, or
1688 changing type. One use case for frozen varobjs is
1689 retaining previously evaluated expressions, and we don't
1690 want them to be reevaluated at all. */
1691 if (!explicit && (*varp)->frozen)
f7f9ae2c 1692 return result;
8756216b
DP
1693
1694 if (!(*varp)->root->is_valid)
f7f9ae2c 1695 {
cfce2ea2
PA
1696 varobj_update_result r = {0};
1697 r.varobj = *varp;
f7f9ae2c
VP
1698 r.status = VAROBJ_INVALID;
1699 VEC_safe_push (varobj_update_result, result, &r);
1700 return result;
1701 }
8b93c638 1702
25d5ea92 1703 if ((*varp)->root->rootvar == *varp)
ae093f96 1704 {
cfce2ea2
PA
1705 varobj_update_result r = {0};
1706 r.varobj = *varp;
f7f9ae2c
VP
1707 r.status = VAROBJ_IN_SCOPE;
1708
25d5ea92
VP
1709 /* Update the root variable. value_of_root can return NULL
1710 if the variable is no longer around, i.e. we stepped out of
1711 the frame in which a local existed. We are letting the
1712 value_of_root variable dispose of the varobj if the type
1713 has changed. */
25d5ea92 1714 new = value_of_root (varp, &type_changed);
f7f9ae2c
VP
1715 r.varobj = *varp;
1716
1717 r.type_changed = type_changed;
ea56f9c2 1718 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1719 r.changed = 1;
ea56f9c2 1720
25d5ea92 1721 if (new == NULL)
f7f9ae2c 1722 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1723 r.value_installed = 1;
f7f9ae2c
VP
1724
1725 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1726 {
0b4bc29a
JK
1727 if (r.type_changed || r.changed)
1728 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1729 return result;
1730 }
1731
1732 VEC_safe_push (varobj_update_result, stack, &r);
1733 }
1734 else
1735 {
cfce2ea2
PA
1736 varobj_update_result r = {0};
1737 r.varobj = *varp;
b6313243 1738 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1739 }
8b93c638 1740
8756216b 1741 /* Walk through the children, reconstructing them all. */
b6313243 1742 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1743 {
b6313243
TT
1744 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1745 struct varobj *v = r.varobj;
1746
1747 VEC_pop (varobj_update_result, stack);
1748
1749 /* Update this variable, unless it's a root, which is already
1750 updated. */
1751 if (!r.value_installed)
1752 {
1753 new = value_of_child (v->parent, v->index);
1754 if (install_new_value (v, new, 0 /* type not changed */))
1755 {
1756 r.changed = 1;
1757 v->updated = 0;
1758 }
1759 }
1760
1761 /* We probably should not get children of a varobj that has a
1762 pretty-printer, but for which -var-list-children was never
0cc7d26f 1763 invoked. */
b6313243
TT
1764 if (v->pretty_printer)
1765 {
0cc7d26f 1766 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
26f9bcee 1767 int i, children_changed = 0;
b6313243
TT
1768
1769 if (v->frozen)
1770 continue;
1771
0cc7d26f
TT
1772 if (!v->children_requested)
1773 {
1774 int dummy;
1775
1776 /* If we initially did not have potential children, but
1777 now we do, consider the varobj as changed.
1778 Otherwise, if children were never requested, consider
1779 it as unchanged -- presumably, such varobj is not yet
1780 expanded in the UI, so we need not bother getting
1781 it. */
1782 if (!varobj_has_more (v, 0))
1783 {
1784 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1785 &dummy, 0, 0, 0);
1786 if (varobj_has_more (v, 0))
1787 r.changed = 1;
1788 }
1789
1790 if (r.changed)
1791 VEC_safe_push (varobj_update_result, result, &r);
1792
1793 continue;
1794 }
1795
b6313243
TT
1796 /* If update_dynamic_varobj_children returns 0, then we have
1797 a non-conforming pretty-printer, so we skip it. */
0cc7d26f
TT
1798 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1799 &children_changed, 1,
1800 v->from, v->to))
b6313243 1801 {
0cc7d26f 1802 if (children_changed || new)
b6313243 1803 {
0cc7d26f
TT
1804 r.children_changed = 1;
1805 r.new = new;
b6313243 1806 }
0cc7d26f
TT
1807 /* Push in reverse order so that the first child is
1808 popped from the work stack first, and so will be
1809 added to result first. This does not affect
1810 correctness, just "nicer". */
1811 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1812 {
0cc7d26f 1813 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2
PA
1814 varobj_update_result r = {0};
1815 r.varobj = tmp;
0cc7d26f 1816 r.changed = 1;
b6313243
TT
1817 r.value_installed = 1;
1818 VEC_safe_push (varobj_update_result, stack, &r);
1819 }
0cc7d26f
TT
1820 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1821 {
1822 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1823 if (!tmp->frozen)
1824 {
cfce2ea2
PA
1825 varobj_update_result r = {0};
1826 r.varobj = tmp;
0cc7d26f
TT
1827 r.value_installed = 1;
1828 VEC_safe_push (varobj_update_result, stack, &r);
1829 }
1830 }
b6313243
TT
1831 if (r.changed || r.children_changed)
1832 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f
TT
1833
1834 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1835 has been put into the result vector. */
1836 VEC_free (varobj_p, changed);
1837 VEC_free (varobj_p, unchanged);
1838
b6313243
TT
1839 continue;
1840 }
1841 }
28335dcc
VP
1842
1843 /* Push any children. Use reverse order so that the first
1844 child is popped from the work stack first, and so
1845 will be added to result first. This does not
1846 affect correctness, just "nicer". */
1847 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1848 {
28335dcc
VP
1849 varobj_p c = VEC_index (varobj_p, v->children, i);
1850 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1851 if (c != NULL && !c->frozen)
28335dcc 1852 {
cfce2ea2
PA
1853 varobj_update_result r = {0};
1854 r.varobj = c;
b6313243 1855 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1856 }
8b93c638 1857 }
b6313243
TT
1858
1859 if (r.changed || r.type_changed)
1860 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1861 }
1862
b6313243
TT
1863 VEC_free (varobj_update_result, stack);
1864
f7f9ae2c 1865 return result;
8b93c638
JM
1866}
1867\f
1868
1869/* Helper functions */
1870
1871/*
1872 * Variable object construction/destruction
1873 */
1874
1875static int
fba45db2
KB
1876delete_variable (struct cpstack **resultp, struct varobj *var,
1877 int only_children_p)
8b93c638
JM
1878{
1879 int delcount = 0;
1880
1881 delete_variable_1 (resultp, &delcount, var,
1882 only_children_p, 1 /* remove_from_parent_p */ );
1883
1884 return delcount;
1885}
1886
1887/* Delete the variable object VAR and its children */
1888/* IMPORTANT NOTE: If we delete a variable which is a child
1889 and the parent is not removed we dump core. It must be always
1890 initially called with remove_from_parent_p set */
1891static void
72330bd6
AC
1892delete_variable_1 (struct cpstack **resultp, int *delcountp,
1893 struct varobj *var, int only_children_p,
1894 int remove_from_parent_p)
8b93c638 1895{
28335dcc 1896 int i;
8b93c638
JM
1897
1898 /* Delete any children of this variable, too. */
28335dcc
VP
1899 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1900 {
1901 varobj_p child = VEC_index (varobj_p, var->children, i);
214270ab
VP
1902 if (!child)
1903 continue;
8b93c638 1904 if (!remove_from_parent_p)
28335dcc
VP
1905 child->parent = NULL;
1906 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1907 }
28335dcc 1908 VEC_free (varobj_p, var->children);
8b93c638
JM
1909
1910 /* if we were called to delete only the children we are done here */
1911 if (only_children_p)
1912 return;
1913
1914 /* Otherwise, add it to the list of deleted ones and proceed to do so */
73a93a32
JI
1915 /* If the name is null, this is a temporary variable, that has not
1916 yet been installed, don't report it, it belongs to the caller... */
1917 if (var->obj_name != NULL)
8b93c638 1918 {
5b616ba1 1919 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1920 *delcountp = *delcountp + 1;
1921 }
1922
1923 /* If this variable has a parent, remove it from its parent's list */
1924 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1925 (as indicated by remove_from_parent_p) we don't bother doing an
1926 expensive list search to find the element to remove when we are
1927 discarding the list afterwards */
72330bd6 1928 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1929 {
28335dcc 1930 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1931 }
72330bd6 1932
73a93a32
JI
1933 if (var->obj_name != NULL)
1934 uninstall_variable (var);
8b93c638
JM
1935
1936 /* Free memory associated with this variable */
1937 free_variable (var);
1938}
1939
1940/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1941static int
fba45db2 1942install_variable (struct varobj *var)
8b93c638
JM
1943{
1944 struct vlist *cv;
1945 struct vlist *newvl;
1946 const char *chp;
1947 unsigned int index = 0;
1948 unsigned int i = 1;
1949
1950 for (chp = var->obj_name; *chp; chp++)
1951 {
1952 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1953 }
1954
1955 cv = *(varobj_table + index);
1956 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1957 cv = cv->next;
1958
1959 if (cv != NULL)
8a3fe4f8 1960 error (_("Duplicate variable object name"));
8b93c638
JM
1961
1962 /* Add varobj to hash table */
1963 newvl = xmalloc (sizeof (struct vlist));
1964 newvl->next = *(varobj_table + index);
1965 newvl->var = var;
1966 *(varobj_table + index) = newvl;
1967
1968 /* If root, add varobj to root list */
b2c2bd75 1969 if (is_root_p (var))
8b93c638
JM
1970 {
1971 /* Add to list of root variables */
1972 if (rootlist == NULL)
1973 var->root->next = NULL;
1974 else
1975 var->root->next = rootlist;
1976 rootlist = var->root;
8b93c638
JM
1977 }
1978
1979 return 1; /* OK */
1980}
1981
1982/* Unistall the object VAR. */
1983static void
fba45db2 1984uninstall_variable (struct varobj *var)
8b93c638
JM
1985{
1986 struct vlist *cv;
1987 struct vlist *prev;
1988 struct varobj_root *cr;
1989 struct varobj_root *prer;
1990 const char *chp;
1991 unsigned int index = 0;
1992 unsigned int i = 1;
1993
1994 /* Remove varobj from hash table */
1995 for (chp = var->obj_name; *chp; chp++)
1996 {
1997 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1998 }
1999
2000 cv = *(varobj_table + index);
2001 prev = NULL;
2002 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2003 {
2004 prev = cv;
2005 cv = cv->next;
2006 }
2007
2008 if (varobjdebug)
2009 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2010
2011 if (cv == NULL)
2012 {
72330bd6
AC
2013 warning
2014 ("Assertion failed: Could not find variable object \"%s\" to delete",
2015 var->obj_name);
8b93c638
JM
2016 return;
2017 }
2018
2019 if (prev == NULL)
2020 *(varobj_table + index) = cv->next;
2021 else
2022 prev->next = cv->next;
2023
b8c9b27d 2024 xfree (cv);
8b93c638
JM
2025
2026 /* If root, remove varobj from root list */
b2c2bd75 2027 if (is_root_p (var))
8b93c638
JM
2028 {
2029 /* Remove from list of root variables */
2030 if (rootlist == var->root)
2031 rootlist = var->root->next;
2032 else
2033 {
2034 prer = NULL;
2035 cr = rootlist;
2036 while ((cr != NULL) && (cr->rootvar != var))
2037 {
2038 prer = cr;
2039 cr = cr->next;
2040 }
2041 if (cr == NULL)
2042 {
72330bd6
AC
2043 warning
2044 ("Assertion failed: Could not find varobj \"%s\" in root list",
2045 var->obj_name);
8b93c638
JM
2046 return;
2047 }
2048 if (prer == NULL)
2049 rootlist = NULL;
2050 else
2051 prer->next = cr->next;
2052 }
8b93c638
JM
2053 }
2054
2055}
2056
8b93c638
JM
2057/* Create and install a child of the parent of the given name */
2058static struct varobj *
fba45db2 2059create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2060{
2061 return create_child_with_value (parent, index, name,
2062 value_of_child (parent, index));
2063}
2064
2065static struct varobj *
2066create_child_with_value (struct varobj *parent, int index, const char *name,
2067 struct value *value)
8b93c638
JM
2068{
2069 struct varobj *child;
2070 char *childs_name;
2071
2072 child = new_variable ();
2073
2074 /* name is allocated by name_of_child */
b6313243
TT
2075 /* FIXME: xstrdup should not be here. */
2076 child->name = xstrdup (name);
8b93c638 2077 child->index = index;
8b93c638
JM
2078 child->parent = parent;
2079 child->root = parent->root;
b435e160 2080 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638
JM
2081 child->obj_name = childs_name;
2082 install_variable (child);
2083
acd65feb
VP
2084 /* Compute the type of the child. Must do this before
2085 calling install_new_value. */
2086 if (value != NULL)
2087 /* If the child had no evaluation errors, var->value
2088 will be non-NULL and contain a valid type. */
2089 child->type = value_type (value);
2090 else
2091 /* Otherwise, we must compute the type. */
2092 child->type = (*child->root->lang->type_of_child) (child->parent,
2093 child->index);
2094 install_new_value (child, value, 1);
2095
8b93c638
JM
2096 return child;
2097}
8b93c638
JM
2098\f
2099
2100/*
2101 * Miscellaneous utility functions.
2102 */
2103
2104/* Allocate memory and initialize a new variable */
2105static struct varobj *
2106new_variable (void)
2107{
2108 struct varobj *var;
2109
2110 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2111 var->name = NULL;
02142340 2112 var->path_expr = NULL;
8b93c638
JM
2113 var->obj_name = NULL;
2114 var->index = -1;
2115 var->type = NULL;
2116 var->value = NULL;
8b93c638
JM
2117 var->num_children = -1;
2118 var->parent = NULL;
2119 var->children = NULL;
2120 var->format = 0;
2121 var->root = NULL;
fb9b6b35 2122 var->updated = 0;
85265413 2123 var->print_value = NULL;
25d5ea92
VP
2124 var->frozen = 0;
2125 var->not_fetched = 0;
b6313243 2126 var->children_requested = 0;
0cc7d26f
TT
2127 var->from = -1;
2128 var->to = -1;
2129 var->constructor = 0;
b6313243 2130 var->pretty_printer = 0;
0cc7d26f
TT
2131 var->child_iter = 0;
2132 var->saved_item = 0;
8b93c638
JM
2133
2134 return var;
2135}
2136
2137/* Allocate memory and initialize a new root variable */
2138static struct varobj *
2139new_root_variable (void)
2140{
2141 struct varobj *var = new_variable ();
2142 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2143 var->root->lang = NULL;
2144 var->root->exp = NULL;
2145 var->root->valid_block = NULL;
7a424e99 2146 var->root->frame = null_frame_id;
a5defcdc 2147 var->root->floating = 0;
8b93c638 2148 var->root->rootvar = NULL;
8756216b 2149 var->root->is_valid = 1;
8b93c638
JM
2150
2151 return var;
2152}
2153
2154/* Free any allocated memory associated with VAR. */
2155static void
fba45db2 2156free_variable (struct varobj *var)
8b93c638 2157{
d452c4bc
UW
2158#if HAVE_PYTHON
2159 if (var->pretty_printer)
2160 {
2161 struct cleanup *cleanup = varobj_ensure_python_env (var);
0cc7d26f
TT
2162 Py_XDECREF (var->constructor);
2163 Py_XDECREF (var->pretty_printer);
2164 Py_XDECREF (var->child_iter);
2165 Py_XDECREF (var->saved_item);
d452c4bc
UW
2166 do_cleanups (cleanup);
2167 }
2168#endif
2169
36746093
JK
2170 value_free (var->value);
2171
8b93c638 2172 /* Free the expression if this is a root variable. */
b2c2bd75 2173 if (is_root_p (var))
8b93c638 2174 {
3038237c 2175 xfree (var->root->exp);
8038e1e2 2176 xfree (var->root);
8b93c638
JM
2177 }
2178
8038e1e2
AC
2179 xfree (var->name);
2180 xfree (var->obj_name);
85265413 2181 xfree (var->print_value);
02142340 2182 xfree (var->path_expr);
8038e1e2 2183 xfree (var);
8b93c638
JM
2184}
2185
74b7792f
AC
2186static void
2187do_free_variable_cleanup (void *var)
2188{
2189 free_variable (var);
2190}
2191
2192static struct cleanup *
2193make_cleanup_free_variable (struct varobj *var)
2194{
2195 return make_cleanup (do_free_variable_cleanup, var);
2196}
2197
6766a268
DJ
2198/* This returns the type of the variable. It also skips past typedefs
2199 to return the real type of the variable.
94b66fa7
KS
2200
2201 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2202 except within get_target_type and get_type. */
8b93c638 2203static struct type *
fba45db2 2204get_type (struct varobj *var)
8b93c638
JM
2205{
2206 struct type *type;
2207 type = var->type;
2208
6766a268
DJ
2209 if (type != NULL)
2210 type = check_typedef (type);
8b93c638
JM
2211
2212 return type;
2213}
2214
6e2a9270
VP
2215/* Return the type of the value that's stored in VAR,
2216 or that would have being stored there if the
2217 value were accessible.
2218
2219 This differs from VAR->type in that VAR->type is always
2220 the true type of the expession in the source language.
2221 The return value of this function is the type we're
2222 actually storing in varobj, and using for displaying
2223 the values and for comparing previous and new values.
2224
2225 For example, top-level references are always stripped. */
2226static struct type *
2227get_value_type (struct varobj *var)
2228{
2229 struct type *type;
2230
2231 if (var->value)
2232 type = value_type (var->value);
2233 else
2234 type = var->type;
2235
2236 type = check_typedef (type);
2237
2238 if (TYPE_CODE (type) == TYPE_CODE_REF)
2239 type = get_target_type (type);
2240
2241 type = check_typedef (type);
2242
2243 return type;
2244}
2245
8b93c638 2246/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
2247 past typedefs, just like get_type ().
2248
2249 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2250 except within get_target_type and get_type. */
8b93c638 2251static struct type *
fba45db2 2252get_target_type (struct type *type)
8b93c638
JM
2253{
2254 if (type != NULL)
2255 {
2256 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
2257 if (type != NULL)
2258 type = check_typedef (type);
8b93c638
JM
2259 }
2260
2261 return type;
2262}
2263
2264/* What is the default display for this variable? We assume that
2265 everything is "natural". Any exceptions? */
2266static enum varobj_display_formats
fba45db2 2267variable_default_display (struct varobj *var)
8b93c638
JM
2268{
2269 return FORMAT_NATURAL;
2270}
2271
8b93c638
JM
2272/* FIXME: The following should be generic for any pointer */
2273static void
fba45db2 2274cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2275{
2276 struct cpstack *s;
2277
2278 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2279 s->name = name;
2280 s->next = *pstack;
2281 *pstack = s;
2282}
2283
2284/* FIXME: The following should be generic for any pointer */
2285static char *
fba45db2 2286cppop (struct cpstack **pstack)
8b93c638
JM
2287{
2288 struct cpstack *s;
2289 char *v;
2290
2291 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2292 return NULL;
2293
2294 s = *pstack;
2295 v = s->name;
2296 *pstack = (*pstack)->next;
b8c9b27d 2297 xfree (s);
8b93c638
JM
2298
2299 return v;
2300}
2301\f
2302/*
2303 * Language-dependencies
2304 */
2305
2306/* Common entry points */
2307
2308/* Get the language of variable VAR. */
2309static enum varobj_languages
fba45db2 2310variable_language (struct varobj *var)
8b93c638
JM
2311{
2312 enum varobj_languages lang;
2313
2314 switch (var->root->exp->language_defn->la_language)
2315 {
2316 default:
2317 case language_c:
2318 lang = vlang_c;
2319 break;
2320 case language_cplus:
2321 lang = vlang_cplus;
2322 break;
2323 case language_java:
2324 lang = vlang_java;
2325 break;
2326 }
2327
2328 return lang;
2329}
2330
2331/* Return the number of children for a given variable.
2332 The result of this function is defined by the language
2333 implementation. The number of children returned by this function
2334 is the number of children that the user will see in the variable
2335 display. */
2336static int
fba45db2 2337number_of_children (struct varobj *var)
8b93c638
JM
2338{
2339 return (*var->root->lang->number_of_children) (var);;
2340}
2341
2342/* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2343static char *
fba45db2 2344name_of_variable (struct varobj *var)
8b93c638
JM
2345{
2346 return (*var->root->lang->name_of_variable) (var);
2347}
2348
2349/* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2350static char *
fba45db2 2351name_of_child (struct varobj *var, int index)
8b93c638
JM
2352{
2353 return (*var->root->lang->name_of_child) (var, index);
2354}
2355
a5defcdc
VP
2356/* What is the ``struct value *'' of the root variable VAR?
2357 For floating variable object, evaluation can get us a value
2358 of different type from what is stored in varobj already. In
2359 that case:
2360 - *type_changed will be set to 1
2361 - old varobj will be freed, and new one will be
2362 created, with the same name.
2363 - *var_handle will be set to the new varobj
2364 Otherwise, *type_changed will be set to 0. */
30b28db1 2365static struct value *
fba45db2 2366value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2367{
73a93a32
JI
2368 struct varobj *var;
2369
2370 if (var_handle == NULL)
2371 return NULL;
2372
2373 var = *var_handle;
2374
2375 /* This should really be an exception, since this should
2376 only get called with a root variable. */
2377
b2c2bd75 2378 if (!is_root_p (var))
73a93a32
JI
2379 return NULL;
2380
a5defcdc 2381 if (var->root->floating)
73a93a32
JI
2382 {
2383 struct varobj *tmp_var;
2384 char *old_type, *new_type;
6225abfa 2385
73a93a32
JI
2386 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2387 USE_SELECTED_FRAME);
2388 if (tmp_var == NULL)
2389 {
2390 return NULL;
2391 }
6225abfa 2392 old_type = varobj_get_type (var);
73a93a32 2393 new_type = varobj_get_type (tmp_var);
72330bd6 2394 if (strcmp (old_type, new_type) == 0)
73a93a32 2395 {
fcacd99f
VP
2396 /* The expression presently stored inside var->root->exp
2397 remembers the locations of local variables relatively to
2398 the frame where the expression was created (in DWARF location
2399 button, for example). Naturally, those locations are not
2400 correct in other frames, so update the expression. */
2401
2402 struct expression *tmp_exp = var->root->exp;
2403 var->root->exp = tmp_var->root->exp;
2404 tmp_var->root->exp = tmp_exp;
2405
73a93a32
JI
2406 varobj_delete (tmp_var, NULL, 0);
2407 *type_changed = 0;
2408 }
2409 else
2410 {
1b36a34b 2411 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2412 tmp_var->from = var->from;
2413 tmp_var->to = var->to;
a5defcdc
VP
2414 varobj_delete (var, NULL, 0);
2415
73a93a32
JI
2416 install_variable (tmp_var);
2417 *var_handle = tmp_var;
705da579 2418 var = *var_handle;
73a93a32
JI
2419 *type_changed = 1;
2420 }
74dddad3
MS
2421 xfree (old_type);
2422 xfree (new_type);
73a93a32
JI
2423 }
2424 else
2425 {
2426 *type_changed = 0;
2427 }
2428
2429 return (*var->root->lang->value_of_root) (var_handle);
8b93c638
JM
2430}
2431
30b28db1
AC
2432/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2433static struct value *
fba45db2 2434value_of_child (struct varobj *parent, int index)
8b93c638 2435{
30b28db1 2436 struct value *value;
8b93c638
JM
2437
2438 value = (*parent->root->lang->value_of_child) (parent, index);
2439
8b93c638
JM
2440 return value;
2441}
2442
8b93c638
JM
2443/* GDB already has a command called "value_of_variable". Sigh. */
2444static char *
de051565 2445my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2446{
8756216b 2447 if (var->root->is_valid)
0cc7d26f
TT
2448 {
2449 if (var->pretty_printer)
2450 return value_get_print_value (var->value, var->format, var);
2451 return (*var->root->lang->value_of_variable) (var, format);
2452 }
8756216b
DP
2453 else
2454 return NULL;
8b93c638
JM
2455}
2456
85265413 2457static char *
b6313243 2458value_get_print_value (struct value *value, enum varobj_display_formats format,
d452c4bc 2459 struct varobj *var)
85265413 2460{
57e66780
DJ
2461 struct ui_file *stb;
2462 struct cleanup *old_chain;
fbb8f299 2463 gdb_byte *thevalue = NULL;
79a45b7d 2464 struct value_print_options opts;
be759fcf
PM
2465 struct type *type = NULL;
2466 long len = 0;
2467 char *encoding = NULL;
2468 struct gdbarch *gdbarch = NULL;
57e66780
DJ
2469
2470 if (value == NULL)
2471 return NULL;
2472
be759fcf 2473 gdbarch = get_type_arch (value_type (value));
b6313243
TT
2474#if HAVE_PYTHON
2475 {
d452c4bc
UW
2476 struct cleanup *back_to = varobj_ensure_python_env (var);
2477 PyObject *value_formatter = var->pretty_printer;
2478
0cc7d26f 2479 if (value_formatter)
b6313243 2480 {
0cc7d26f
TT
2481 /* First check to see if we have any children at all. If so,
2482 we simply return {...}. */
2483 if (dynamic_varobj_has_child_method (var))
2484 return xstrdup ("{...}");
b6313243 2485
0cc7d26f 2486 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
b6313243 2487 {
0cc7d26f
TT
2488 char *hint;
2489 struct value *replacement;
2490 int string_print = 0;
2491 PyObject *output = NULL;
2492
2493 hint = gdbpy_get_display_hint (value_formatter);
2494 if (hint)
2495 {
2496 if (!strcmp (hint, "string"))
2497 string_print = 1;
2498 xfree (hint);
2499 }
b6313243 2500
0cc7d26f
TT
2501 output = apply_varobj_pretty_printer (value_formatter,
2502 &replacement);
2503 if (output)
2504 {
be759fcf 2505 if (gdbpy_is_lazy_string (output))
0cc7d26f 2506 {
be759fcf
PM
2507 thevalue = gdbpy_extract_lazy_string (output, &type,
2508 &len, &encoding);
2509 string_print = 1;
2510 }
2511 else
2512 {
2513 PyObject *py_str
2514 = python_string_to_target_python_string (output);
2515 if (py_str)
2516 {
2517 char *s = PyString_AsString (py_str);
2518 len = PyString_Size (py_str);
2519 thevalue = xmemdup (s, len + 1, len + 1);
2520 type = builtin_type (gdbarch)->builtin_char;
2521 Py_DECREF (py_str);
2522 }
0cc7d26f
TT
2523 }
2524 Py_DECREF (output);
fbb8f299 2525 }
0cc7d26f
TT
2526 if (thevalue && !string_print)
2527 {
2528 do_cleanups (back_to);
be759fcf 2529 xfree (encoding);
0cc7d26f
TT
2530 return thevalue;
2531 }
2532 if (replacement)
2533 value = replacement;
b6313243 2534 }
b6313243 2535 }
d452c4bc 2536 do_cleanups (back_to);
b6313243
TT
2537 }
2538#endif
2539
57e66780
DJ
2540 stb = mem_fileopen ();
2541 old_chain = make_cleanup_ui_file_delete (stb);
2542
79a45b7d
TT
2543 get_formatted_print_options (&opts, format_code[(int) format]);
2544 opts.deref_ref = 0;
b6313243
TT
2545 opts.raw = 1;
2546 if (thevalue)
2547 {
2548 make_cleanup (xfree, thevalue);
be759fcf
PM
2549 make_cleanup (xfree, encoding);
2550 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
b6313243
TT
2551 }
2552 else
2553 common_val_print (value, stb, 0, &opts, current_language);
759ef836 2554 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2555
85265413
NR
2556 do_cleanups (old_chain);
2557 return thevalue;
2558}
2559
340a7723
NR
2560int
2561varobj_editable_p (struct varobj *var)
2562{
2563 struct type *type;
340a7723
NR
2564
2565 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2566 return 0;
2567
2568 type = get_value_type (var);
2569
2570 switch (TYPE_CODE (type))
2571 {
2572 case TYPE_CODE_STRUCT:
2573 case TYPE_CODE_UNION:
2574 case TYPE_CODE_ARRAY:
2575 case TYPE_CODE_FUNC:
2576 case TYPE_CODE_METHOD:
2577 return 0;
2578 break;
2579
2580 default:
2581 return 1;
2582 break;
2583 }
2584}
2585
acd65feb
VP
2586/* Return non-zero if changes in value of VAR
2587 must be detected and reported by -var-update.
2588 Return zero is -var-update should never report
2589 changes of such values. This makes sense for structures
2590 (since the changes in children values will be reported separately),
2591 or for artifical objects (like 'public' pseudo-field in C++).
2592
2593 Return value of 0 means that gdb need not call value_fetch_lazy
2594 for the value of this variable object. */
8b93c638 2595static int
b2c2bd75 2596varobj_value_is_changeable_p (struct varobj *var)
8b93c638
JM
2597{
2598 int r;
2599 struct type *type;
2600
2601 if (CPLUS_FAKE_CHILD (var))
2602 return 0;
2603
6e2a9270 2604 type = get_value_type (var);
8b93c638
JM
2605
2606 switch (TYPE_CODE (type))
2607 {
72330bd6
AC
2608 case TYPE_CODE_STRUCT:
2609 case TYPE_CODE_UNION:
2610 case TYPE_CODE_ARRAY:
2611 r = 0;
2612 break;
8b93c638 2613
72330bd6
AC
2614 default:
2615 r = 1;
8b93c638
JM
2616 }
2617
2618 return r;
2619}
2620
5a413362
VP
2621/* Return 1 if that varobj is floating, that is is always evaluated in the
2622 selected frame, and not bound to thread/frame. Such variable objects
2623 are created using '@' as frame specifier to -var-create. */
2624int
2625varobj_floating_p (struct varobj *var)
2626{
2627 return var->root->floating;
2628}
2629
2024f65a
VP
2630/* Given the value and the type of a variable object,
2631 adjust the value and type to those necessary
2632 for getting children of the variable object.
2633 This includes dereferencing top-level references
2634 to all types and dereferencing pointers to
2635 structures.
2636
2637 Both TYPE and *TYPE should be non-null. VALUE
2638 can be null if we want to only translate type.
2639 *VALUE can be null as well -- if the parent
02142340
VP
2640 value is not known.
2641
2642 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
b6313243 2643 depending on whether pointer was dereferenced
02142340 2644 in this function. */
2024f65a
VP
2645static void
2646adjust_value_for_child_access (struct value **value,
02142340
VP
2647 struct type **type,
2648 int *was_ptr)
2024f65a
VP
2649{
2650 gdb_assert (type && *type);
2651
02142340
VP
2652 if (was_ptr)
2653 *was_ptr = 0;
2654
2024f65a
VP
2655 *type = check_typedef (*type);
2656
2657 /* The type of value stored in varobj, that is passed
2658 to us, is already supposed to be
2659 reference-stripped. */
2660
2661 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2662
2663 /* Pointers to structures are treated just like
2664 structures when accessing children. Don't
2665 dererences pointers to other types. */
2666 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2667 {
2668 struct type *target_type = get_target_type (*type);
2669 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2670 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2671 {
2672 if (value && *value)
3f4178d6
DJ
2673 {
2674 int success = gdb_value_ind (*value, value);
2675 if (!success)
2676 *value = NULL;
2677 }
2024f65a 2678 *type = target_type;
02142340
VP
2679 if (was_ptr)
2680 *was_ptr = 1;
2024f65a
VP
2681 }
2682 }
2683
2684 /* The 'get_target_type' function calls check_typedef on
2685 result, so we can immediately check type code. No
2686 need to call check_typedef here. */
2687}
2688
8b93c638
JM
2689/* C */
2690static int
fba45db2 2691c_number_of_children (struct varobj *var)
8b93c638 2692{
2024f65a
VP
2693 struct type *type = get_value_type (var);
2694 int children = 0;
8b93c638 2695 struct type *target;
8b93c638 2696
02142340 2697 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638 2698 target = get_target_type (type);
8b93c638
JM
2699
2700 switch (TYPE_CODE (type))
2701 {
2702 case TYPE_CODE_ARRAY:
2703 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 2704 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
2705 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2706 else
74a44383
DJ
2707 /* If we don't know how many elements there are, don't display
2708 any. */
2709 children = 0;
8b93c638
JM
2710 break;
2711
2712 case TYPE_CODE_STRUCT:
2713 case TYPE_CODE_UNION:
2714 children = TYPE_NFIELDS (type);
2715 break;
2716
2717 case TYPE_CODE_PTR:
2024f65a
VP
2718 /* The type here is a pointer to non-struct. Typically, pointers
2719 have one child, except for function ptrs, which have no children,
2720 and except for void*, as we don't know what to show.
2721
0755e6c1
FN
2722 We can show char* so we allow it to be dereferenced. If you decide
2723 to test for it, please mind that a little magic is necessary to
2724 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2725 TYPE_NAME == "char" */
2024f65a
VP
2726 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2727 || TYPE_CODE (target) == TYPE_CODE_VOID)
2728 children = 0;
2729 else
2730 children = 1;
8b93c638
JM
2731 break;
2732
2733 default:
2734 /* Other types have no children */
2735 break;
2736 }
2737
2738 return children;
2739}
2740
2741static char *
fba45db2 2742c_name_of_variable (struct varobj *parent)
8b93c638 2743{
1b36a34b 2744 return xstrdup (parent->name);
8b93c638
JM
2745}
2746
bbec2603
VP
2747/* Return the value of element TYPE_INDEX of a structure
2748 value VALUE. VALUE's type should be a structure,
2749 or union, or a typedef to struct/union.
2750
2751 Returns NULL if getting the value fails. Never throws. */
2752static struct value *
2753value_struct_element_index (struct value *value, int type_index)
8b93c638 2754{
bbec2603
VP
2755 struct value *result = NULL;
2756 volatile struct gdb_exception e;
8b93c638 2757
bbec2603
VP
2758 struct type *type = value_type (value);
2759 type = check_typedef (type);
2760
2761 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2762 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 2763
bbec2603
VP
2764 TRY_CATCH (e, RETURN_MASK_ERROR)
2765 {
d6a843b5 2766 if (field_is_static (&TYPE_FIELD (type, type_index)))
bbec2603
VP
2767 result = value_static_field (type, type_index);
2768 else
2769 result = value_primitive_field (value, 0, type_index, type);
2770 }
2771 if (e.reason < 0)
2772 {
2773 return NULL;
2774 }
2775 else
2776 {
2777 return result;
2778 }
2779}
2780
2781/* Obtain the information about child INDEX of the variable
2782 object PARENT.
2783 If CNAME is not null, sets *CNAME to the name of the child relative
2784 to the parent.
2785 If CVALUE is not null, sets *CVALUE to the value of the child.
2786 If CTYPE is not null, sets *CTYPE to the type of the child.
2787
2788 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2789 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2790 to NULL. */
2791static void
2792c_describe_child (struct varobj *parent, int index,
02142340
VP
2793 char **cname, struct value **cvalue, struct type **ctype,
2794 char **cfull_expression)
bbec2603
VP
2795{
2796 struct value *value = parent->value;
2024f65a 2797 struct type *type = get_value_type (parent);
02142340
VP
2798 char *parent_expression = NULL;
2799 int was_ptr;
bbec2603
VP
2800
2801 if (cname)
2802 *cname = NULL;
2803 if (cvalue)
2804 *cvalue = NULL;
2805 if (ctype)
2806 *ctype = NULL;
02142340
VP
2807 if (cfull_expression)
2808 {
2809 *cfull_expression = NULL;
2810 parent_expression = varobj_get_path_expr (parent);
2811 }
2812 adjust_value_for_child_access (&value, &type, &was_ptr);
bbec2603 2813
8b93c638
JM
2814 switch (TYPE_CODE (type))
2815 {
2816 case TYPE_CODE_ARRAY:
bbec2603 2817 if (cname)
43bbcdc2
PH
2818 *cname = xstrdup (int_string (index
2819 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2820 10, 1, 0, 0));
bbec2603
VP
2821
2822 if (cvalue && value)
2823 {
2824 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2497b498 2825 gdb_value_subscript (value, real_index, cvalue);
bbec2603
VP
2826 }
2827
2828 if (ctype)
2829 *ctype = get_target_type (type);
2830
02142340 2831 if (cfull_expression)
43bbcdc2
PH
2832 *cfull_expression =
2833 xstrprintf ("(%s)[%s]", parent_expression,
2834 int_string (index
2835 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2836 10, 1, 0, 0));
02142340
VP
2837
2838
8b93c638
JM
2839 break;
2840
2841 case TYPE_CODE_STRUCT:
2842 case TYPE_CODE_UNION:
bbec2603 2843 if (cname)
1b36a34b 2844 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
bbec2603
VP
2845
2846 if (cvalue && value)
2847 {
2848 /* For C, varobj index is the same as type index. */
2849 *cvalue = value_struct_element_index (value, index);
2850 }
2851
2852 if (ctype)
2853 *ctype = TYPE_FIELD_TYPE (type, index);
2854
02142340
VP
2855 if (cfull_expression)
2856 {
2857 char *join = was_ptr ? "->" : ".";
2858 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2859 TYPE_FIELD_NAME (type, index));
2860 }
2861
8b93c638
JM
2862 break;
2863
2864 case TYPE_CODE_PTR:
bbec2603
VP
2865 if (cname)
2866 *cname = xstrprintf ("*%s", parent->name);
8b93c638 2867
bbec2603 2868 if (cvalue && value)
3f4178d6
DJ
2869 {
2870 int success = gdb_value_ind (value, cvalue);
2871 if (!success)
2872 *cvalue = NULL;
2873 }
bbec2603 2874
2024f65a
VP
2875 /* Don't use get_target_type because it calls
2876 check_typedef and here, we want to show the true
2877 declared type of the variable. */
bbec2603 2878 if (ctype)
2024f65a 2879 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
2880
2881 if (cfull_expression)
2882 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 2883
8b93c638
JM
2884 break;
2885
2886 default:
2887 /* This should not happen */
bbec2603
VP
2888 if (cname)
2889 *cname = xstrdup ("???");
02142340
VP
2890 if (cfull_expression)
2891 *cfull_expression = xstrdup ("???");
bbec2603 2892 /* Don't set value and type, we don't know then. */
8b93c638 2893 }
bbec2603 2894}
8b93c638 2895
bbec2603
VP
2896static char *
2897c_name_of_child (struct varobj *parent, int index)
2898{
2899 char *name;
02142340 2900 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
2901 return name;
2902}
2903
02142340
VP
2904static char *
2905c_path_expr_of_child (struct varobj *child)
2906{
2907 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2908 &child->path_expr);
2909 return child->path_expr;
2910}
2911
c5b48eac
VP
2912/* If frame associated with VAR can be found, switch
2913 to it and return 1. Otherwise, return 0. */
2914static int
2915check_scope (struct varobj *var)
2916{
2917 struct frame_info *fi;
2918 int scope;
2919
2920 fi = frame_find_by_id (var->root->frame);
2921 scope = fi != NULL;
2922
2923 if (fi)
2924 {
2925 CORE_ADDR pc = get_frame_pc (fi);
2926 if (pc < BLOCK_START (var->root->valid_block) ||
2927 pc >= BLOCK_END (var->root->valid_block))
2928 scope = 0;
2929 else
2930 select_frame (fi);
2931 }
2932 return scope;
2933}
2934
30b28db1 2935static struct value *
fba45db2 2936c_value_of_root (struct varobj **var_handle)
8b93c638 2937{
5e572bb4 2938 struct value *new_val = NULL;
73a93a32 2939 struct varobj *var = *var_handle;
c5b48eac 2940 int within_scope = 0;
6208b47d
VP
2941 struct cleanup *back_to;
2942
73a93a32 2943 /* Only root variables can be updated... */
b2c2bd75 2944 if (!is_root_p (var))
73a93a32
JI
2945 /* Not a root var */
2946 return NULL;
2947
4f8d22e3 2948 back_to = make_cleanup_restore_current_thread ();
72330bd6 2949
8b93c638 2950 /* Determine whether the variable is still around. */
a5defcdc 2951 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 2952 within_scope = 1;
c5b48eac
VP
2953 else if (var->root->thread_id == 0)
2954 {
2955 /* The program was single-threaded when the variable object was
2956 created. Technically, it's possible that the program became
2957 multi-threaded since then, but we don't support such
2958 scenario yet. */
2959 within_scope = check_scope (var);
2960 }
8b93c638
JM
2961 else
2962 {
c5b48eac
VP
2963 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2964 if (in_thread_list (ptid))
d2353924 2965 {
c5b48eac
VP
2966 switch_to_thread (ptid);
2967 within_scope = check_scope (var);
2968 }
8b93c638 2969 }
72330bd6 2970
8b93c638
JM
2971 if (within_scope)
2972 {
73a93a32 2973 /* We need to catch errors here, because if evaluate
85d93f1d
VP
2974 expression fails we want to just return NULL. */
2975 gdb_evaluate_expression (var->root->exp, &new_val);
8b93c638
JM
2976 return new_val;
2977 }
2978
6208b47d
VP
2979 do_cleanups (back_to);
2980
8b93c638
JM
2981 return NULL;
2982}
2983
30b28db1 2984static struct value *
fba45db2 2985c_value_of_child (struct varobj *parent, int index)
8b93c638 2986{
bbec2603 2987 struct value *value = NULL;
02142340 2988 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
2989
2990 return value;
2991}
2992
2993static struct type *
fba45db2 2994c_type_of_child (struct varobj *parent, int index)
8b93c638 2995{
bbec2603 2996 struct type *type = NULL;
02142340 2997 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
2998 return type;
2999}
3000
8b93c638 3001static char *
de051565 3002c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3003{
14b3d9c9
JB
3004 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3005 it will print out its children instead of "{...}". So we need to
3006 catch that case explicitly. */
3007 struct type *type = get_type (var);
e64d9b3d 3008
b6313243
TT
3009 /* If we have a custom formatter, return whatever string it has
3010 produced. */
3011 if (var->pretty_printer && var->print_value)
3012 return xstrdup (var->print_value);
3013
14b3d9c9
JB
3014 /* Strip top-level references. */
3015 while (TYPE_CODE (type) == TYPE_CODE_REF)
3016 type = check_typedef (TYPE_TARGET_TYPE (type));
3017
3018 switch (TYPE_CODE (type))
8b93c638
JM
3019 {
3020 case TYPE_CODE_STRUCT:
3021 case TYPE_CODE_UNION:
3022 return xstrdup ("{...}");
3023 /* break; */
3024
3025 case TYPE_CODE_ARRAY:
3026 {
e64d9b3d 3027 char *number;
b435e160 3028 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 3029 return (number);
8b93c638
JM
3030 }
3031 /* break; */
3032
3033 default:
3034 {
575bbeb6
KS
3035 if (var->value == NULL)
3036 {
3037 /* This can happen if we attempt to get the value of a struct
3038 member when the parent is an invalid pointer. This is an
3039 error condition, so we should tell the caller. */
3040 return NULL;
3041 }
3042 else
3043 {
25d5ea92
VP
3044 if (var->not_fetched && value_lazy (var->value))
3045 /* Frozen variable and no value yet. We don't
3046 implicitly fetch the value. MI response will
3047 use empty string for the value, which is OK. */
3048 return NULL;
3049
b2c2bd75 3050 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 3051 gdb_assert (!value_lazy (var->value));
de051565
MK
3052
3053 /* If the specified format is the current one,
3054 we can reuse print_value */
3055 if (format == var->format)
3056 return xstrdup (var->print_value);
3057 else
d452c4bc 3058 return value_get_print_value (var->value, format, var);
85265413 3059 }
e64d9b3d 3060 }
8b93c638
JM
3061 }
3062}
3063\f
3064
3065/* C++ */
3066
3067static int
fba45db2 3068cplus_number_of_children (struct varobj *var)
8b93c638
JM
3069{
3070 struct type *type;
3071 int children, dont_know;
3072
3073 dont_know = 1;
3074 children = 0;
3075
3076 if (!CPLUS_FAKE_CHILD (var))
3077 {
2024f65a 3078 type = get_value_type (var);
02142340 3079 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3080
3081 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 3082 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
3083 {
3084 int kids[3];
3085
3086 cplus_class_num_children (type, kids);
3087 if (kids[v_public] != 0)
3088 children++;
3089 if (kids[v_private] != 0)
3090 children++;
3091 if (kids[v_protected] != 0)
3092 children++;
3093
3094 /* Add any baseclasses */
3095 children += TYPE_N_BASECLASSES (type);
3096 dont_know = 0;
3097
3098 /* FIXME: save children in var */
3099 }
3100 }
3101 else
3102 {
3103 int kids[3];
3104
2024f65a 3105 type = get_value_type (var->parent);
02142340 3106 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3107
3108 cplus_class_num_children (type, kids);
6e382aa3 3109 if (strcmp (var->name, "public") == 0)
8b93c638 3110 children = kids[v_public];
6e382aa3 3111 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
3112 children = kids[v_private];
3113 else
3114 children = kids[v_protected];
3115 dont_know = 0;
3116 }
3117
3118 if (dont_know)
3119 children = c_number_of_children (var);
3120
3121 return children;
3122}
3123
3124/* Compute # of public, private, and protected variables in this class.
3125 That means we need to descend into all baseclasses and find out
3126 how many are there, too. */
3127static void
1669605f 3128cplus_class_num_children (struct type *type, int children[3])
8b93c638 3129{
d48cc9dd
DJ
3130 int i, vptr_fieldno;
3131 struct type *basetype = NULL;
8b93c638
JM
3132
3133 children[v_public] = 0;
3134 children[v_private] = 0;
3135 children[v_protected] = 0;
3136
d48cc9dd 3137 vptr_fieldno = get_vptr_fieldno (type, &basetype);
8b93c638
JM
3138 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3139 {
d48cc9dd
DJ
3140 /* If we have a virtual table pointer, omit it. Even if virtual
3141 table pointers are not specifically marked in the debug info,
3142 they should be artificial. */
3143 if ((type == basetype && i == vptr_fieldno)
3144 || TYPE_FIELD_ARTIFICIAL (type, i))
8b93c638
JM
3145 continue;
3146
3147 if (TYPE_FIELD_PROTECTED (type, i))
3148 children[v_protected]++;
3149 else if (TYPE_FIELD_PRIVATE (type, i))
3150 children[v_private]++;
3151 else
3152 children[v_public]++;
3153 }
3154}
3155
3156static char *
fba45db2 3157cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
3158{
3159 return c_name_of_variable (parent);
3160}
3161
2024f65a
VP
3162enum accessibility { private_field, protected_field, public_field };
3163
3164/* Check if field INDEX of TYPE has the specified accessibility.
3165 Return 0 if so and 1 otherwise. */
3166static int
3167match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 3168{
2024f65a
VP
3169 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3170 return 1;
3171 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3172 return 1;
3173 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3174 && !TYPE_FIELD_PROTECTED (type, index))
3175 return 1;
3176 else
3177 return 0;
3178}
3179
3180static void
3181cplus_describe_child (struct varobj *parent, int index,
02142340
VP
3182 char **cname, struct value **cvalue, struct type **ctype,
3183 char **cfull_expression)
2024f65a 3184{
2024f65a 3185 struct value *value;
8b93c638 3186 struct type *type;
02142340
VP
3187 int was_ptr;
3188 char *parent_expression = NULL;
8b93c638 3189
2024f65a
VP
3190 if (cname)
3191 *cname = NULL;
3192 if (cvalue)
3193 *cvalue = NULL;
3194 if (ctype)
3195 *ctype = NULL;
02142340
VP
3196 if (cfull_expression)
3197 *cfull_expression = NULL;
2024f65a 3198
8b93c638
JM
3199 if (CPLUS_FAKE_CHILD (parent))
3200 {
2024f65a
VP
3201 value = parent->parent->value;
3202 type = get_value_type (parent->parent);
02142340
VP
3203 if (cfull_expression)
3204 parent_expression = varobj_get_path_expr (parent->parent);
8b93c638
JM
3205 }
3206 else
2024f65a
VP
3207 {
3208 value = parent->value;
3209 type = get_value_type (parent);
02142340
VP
3210 if (cfull_expression)
3211 parent_expression = varobj_get_path_expr (parent);
2024f65a 3212 }
8b93c638 3213
02142340 3214 adjust_value_for_child_access (&value, &type, &was_ptr);
2024f65a
VP
3215
3216 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 3217 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 3218 {
02142340 3219 char *join = was_ptr ? "->" : ".";
8b93c638
JM
3220 if (CPLUS_FAKE_CHILD (parent))
3221 {
6e382aa3
JJ
3222 /* The fields of the class type are ordered as they
3223 appear in the class. We are given an index for a
3224 particular access control type ("public","protected",
3225 or "private"). We must skip over fields that don't
3226 have the access control we are looking for to properly
3227 find the indexed field. */
3228 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 3229 enum accessibility acc = public_field;
d48cc9dd
DJ
3230 int vptr_fieldno;
3231 struct type *basetype = NULL;
3232
3233 vptr_fieldno = get_vptr_fieldno (type, &basetype);
6e382aa3 3234 if (strcmp (parent->name, "private") == 0)
2024f65a 3235 acc = private_field;
6e382aa3 3236 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
3237 acc = protected_field;
3238
3239 while (index >= 0)
6e382aa3 3240 {
d48cc9dd
DJ
3241 if ((type == basetype && type_index == vptr_fieldno)
3242 || TYPE_FIELD_ARTIFICIAL (type, type_index))
2024f65a
VP
3243 ; /* ignore vptr */
3244 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
3245 --index;
3246 ++type_index;
6e382aa3 3247 }
2024f65a
VP
3248 --type_index;
3249
3250 if (cname)
3251 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3252
3253 if (cvalue && value)
3254 *cvalue = value_struct_element_index (value, type_index);
3255
3256 if (ctype)
3257 *ctype = TYPE_FIELD_TYPE (type, type_index);
02142340
VP
3258
3259 if (cfull_expression)
3260 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3261 join,
3262 TYPE_FIELD_NAME (type, type_index));
2024f65a
VP
3263 }
3264 else if (index < TYPE_N_BASECLASSES (type))
3265 {
3266 /* This is a baseclass. */
3267 if (cname)
3268 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3269
3270 if (cvalue && value)
0cc7d26f 3271 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
6e382aa3 3272
2024f65a
VP
3273 if (ctype)
3274 {
3275 *ctype = TYPE_FIELD_TYPE (type, index);
3276 }
02142340
VP
3277
3278 if (cfull_expression)
3279 {
3280 char *ptr = was_ptr ? "*" : "";
3281 /* Cast the parent to the base' type. Note that in gdb,
3282 expression like
3283 (Base1)d
3284 will create an lvalue, for all appearences, so we don't
3285 need to use more fancy:
3286 *(Base1*)(&d)
3287 construct. */
3288 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3289 ptr,
3290 TYPE_FIELD_NAME (type, index),
3291 ptr,
3292 parent_expression);
3293 }
8b93c638 3294 }
8b93c638
JM
3295 else
3296 {
348144ba 3297 char *access = NULL;
6e382aa3 3298 int children[3];
2024f65a 3299 cplus_class_num_children (type, children);
6e382aa3 3300
8b93c638 3301 /* Everything beyond the baseclasses can
6e382aa3
JJ
3302 only be "public", "private", or "protected"
3303
3304 The special "fake" children are always output by varobj in
3305 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
3306 index -= TYPE_N_BASECLASSES (type);
3307 switch (index)
3308 {
3309 case 0:
6e382aa3 3310 if (children[v_public] > 0)
2024f65a 3311 access = "public";
6e382aa3 3312 else if (children[v_private] > 0)
2024f65a 3313 access = "private";
6e382aa3 3314 else
2024f65a 3315 access = "protected";
6e382aa3 3316 break;
8b93c638 3317 case 1:
6e382aa3 3318 if (children[v_public] > 0)
8b93c638 3319 {
6e382aa3 3320 if (children[v_private] > 0)
2024f65a 3321 access = "private";
6e382aa3 3322 else
2024f65a 3323 access = "protected";
8b93c638 3324 }
6e382aa3 3325 else if (children[v_private] > 0)
2024f65a 3326 access = "protected";
6e382aa3 3327 break;
8b93c638 3328 case 2:
6e382aa3 3329 /* Must be protected */
2024f65a 3330 access = "protected";
6e382aa3 3331 break;
8b93c638
JM
3332 default:
3333 /* error! */
3334 break;
3335 }
348144ba
MS
3336
3337 gdb_assert (access);
2024f65a
VP
3338 if (cname)
3339 *cname = xstrdup (access);
8b93c638 3340
02142340 3341 /* Value and type and full expression are null here. */
2024f65a 3342 }
8b93c638 3343 }
8b93c638
JM
3344 else
3345 {
02142340 3346 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
3347 }
3348}
8b93c638 3349
2024f65a
VP
3350static char *
3351cplus_name_of_child (struct varobj *parent, int index)
3352{
3353 char *name = NULL;
02142340 3354 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3355 return name;
3356}
3357
02142340
VP
3358static char *
3359cplus_path_expr_of_child (struct varobj *child)
3360{
3361 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3362 &child->path_expr);
3363 return child->path_expr;
3364}
3365
30b28db1 3366static struct value *
fba45db2 3367cplus_value_of_root (struct varobj **var_handle)
8b93c638 3368{
73a93a32 3369 return c_value_of_root (var_handle);
8b93c638
JM
3370}
3371
30b28db1 3372static struct value *
fba45db2 3373cplus_value_of_child (struct varobj *parent, int index)
8b93c638 3374{
2024f65a 3375 struct value *value = NULL;
02142340 3376 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3377 return value;
3378}
3379
3380static struct type *
fba45db2 3381cplus_type_of_child (struct varobj *parent, int index)
8b93c638 3382{
2024f65a 3383 struct type *type = NULL;
02142340 3384 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3385 return type;
3386}
3387
8b93c638 3388static char *
de051565 3389cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638
JM
3390{
3391
3392 /* If we have one of our special types, don't print out
3393 any value. */
3394 if (CPLUS_FAKE_CHILD (var))
3395 return xstrdup ("");
3396
de051565 3397 return c_value_of_variable (var, format);
8b93c638
JM
3398}
3399\f
3400/* Java */
3401
3402static int
fba45db2 3403java_number_of_children (struct varobj *var)
8b93c638
JM
3404{
3405 return cplus_number_of_children (var);
3406}
3407
3408static char *
fba45db2 3409java_name_of_variable (struct varobj *parent)
8b93c638
JM
3410{
3411 char *p, *name;
3412
3413 name = cplus_name_of_variable (parent);
3414 /* If the name has "-" in it, it is because we
3415 needed to escape periods in the name... */
3416 p = name;
3417
3418 while (*p != '\000')
3419 {
3420 if (*p == '-')
3421 *p = '.';
3422 p++;
3423 }
3424
3425 return name;
3426}
3427
3428static char *
fba45db2 3429java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
3430{
3431 char *name, *p;
3432
3433 name = cplus_name_of_child (parent, index);
3434 /* Escape any periods in the name... */
3435 p = name;
3436
3437 while (*p != '\000')
3438 {
3439 if (*p == '.')
3440 *p = '-';
3441 p++;
3442 }
3443
3444 return name;
3445}
3446
02142340
VP
3447static char *
3448java_path_expr_of_child (struct varobj *child)
3449{
3450 return NULL;
3451}
3452
30b28db1 3453static struct value *
fba45db2 3454java_value_of_root (struct varobj **var_handle)
8b93c638 3455{
73a93a32 3456 return cplus_value_of_root (var_handle);
8b93c638
JM
3457}
3458
30b28db1 3459static struct value *
fba45db2 3460java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
3461{
3462 return cplus_value_of_child (parent, index);
3463}
3464
3465static struct type *
fba45db2 3466java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
3467{
3468 return cplus_type_of_child (parent, index);
3469}
3470
8b93c638 3471static char *
de051565 3472java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3473{
de051565 3474 return cplus_value_of_variable (var, format);
8b93c638 3475}
54333c3b
JK
3476
3477/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3478 with an arbitrary caller supplied DATA pointer. */
3479
3480void
3481all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3482{
3483 struct varobj_root *var_root, *var_root_next;
3484
3485 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3486
3487 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3488 {
3489 var_root_next = var_root->next;
3490
3491 (*func) (var_root->rootvar, data);
3492 }
3493}
8b93c638
JM
3494\f
3495extern void _initialize_varobj (void);
3496void
3497_initialize_varobj (void)
3498{
3499 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3500
3501 varobj_table = xmalloc (sizeof_table);
3502 memset (varobj_table, 0, sizeof_table);
3503
85c07804
AC
3504 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3505 &varobjdebug, _("\
3506Set varobj debugging."), _("\
3507Show varobj debugging."), _("\
3508When non-zero, varobj debugging is enabled."),
3509 NULL,
920d2a44 3510 show_varobjdebug,
85c07804 3511 &setlist, &showlist);
8b93c638 3512}
8756216b 3513
54333c3b
JK
3514/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3515 defined on globals. It is a helper for varobj_invalidate. */
2dbd25e5 3516
54333c3b
JK
3517static void
3518varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 3519{
54333c3b
JK
3520 /* Floating varobjs are reparsed on each stop, so we don't care if the
3521 presently parsed expression refers to something that's gone. */
3522 if (var->root->floating)
3523 return;
8756216b 3524
54333c3b
JK
3525 /* global var must be re-evaluated. */
3526 if (var->root->valid_block == NULL)
2dbd25e5 3527 {
54333c3b 3528 struct varobj *tmp_var;
2dbd25e5 3529
54333c3b
JK
3530 /* Try to create a varobj with same expression. If we succeed
3531 replace the old varobj, otherwise invalidate it. */
3532 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3533 USE_CURRENT_FRAME);
3534 if (tmp_var != NULL)
3535 {
3536 tmp_var->obj_name = xstrdup (var->obj_name);
3537 varobj_delete (var, NULL, 0);
3538 install_variable (tmp_var);
2dbd25e5 3539 }
54333c3b
JK
3540 else
3541 var->root->is_valid = 0;
2dbd25e5 3542 }
54333c3b
JK
3543 else /* locals must be invalidated. */
3544 var->root->is_valid = 0;
3545}
3546
3547/* Invalidate the varobjs that are tied to locals and re-create the ones that
3548 are defined on globals.
3549 Invalidated varobjs will be always printed in_scope="invalid". */
3550
3551void
3552varobj_invalidate (void)
3553{
3554 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 3555}
This page took 1.187956 seconds and 4 git commands to generate.