2009-06-04 Doug Kwan <dougkwan@google.com>
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
0fb0cc75
JB
3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4 2009 Free Software Foundation, Inc.
8b93c638
JM
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
18
19#include "defs.h"
a6c442d8 20#include "exceptions.h"
8b93c638
JM
21#include "value.h"
22#include "expression.h"
23#include "frame.h"
8b93c638
JM
24#include "language.h"
25#include "wrapper.h"
26#include "gdbcmd.h"
d2353924 27#include "block.h"
79a45b7d 28#include "valprint.h"
a6c442d8
MK
29
30#include "gdb_assert.h"
b66d6d2e 31#include "gdb_string.h"
8b93c638
JM
32
33#include "varobj.h"
28335dcc 34#include "vec.h"
6208b47d
VP
35#include "gdbthread.h"
36#include "inferior.h"
8b93c638 37
b6313243
TT
38#if HAVE_PYTHON
39#include "python/python.h"
40#include "python/python-internal.h"
41#else
42typedef int PyObject;
43#endif
44
8b93c638
JM
45/* Non-zero if we want to see trace of varobj level stuff. */
46
47int varobjdebug = 0;
920d2a44
AC
48static void
49show_varobjdebug (struct ui_file *file, int from_tty,
50 struct cmd_list_element *c, const char *value)
51{
52 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
53}
8b93c638
JM
54
55/* String representations of gdb's format codes */
56char *varobj_format_string[] =
72330bd6 57 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638
JM
58
59/* String representations of gdb's known languages */
72330bd6 60char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638
JM
61
62/* Data structures */
63
64/* Every root variable has one of these structures saved in its
65 varobj. Members which must be free'd are noted. */
66struct varobj_root
72330bd6 67{
8b93c638 68
72330bd6
AC
69 /* Alloc'd expression for this parent. */
70 struct expression *exp;
8b93c638 71
72330bd6
AC
72 /* Block for which this expression is valid */
73 struct block *valid_block;
8b93c638 74
44a67aa7
VP
75 /* The frame for this expression. This field is set iff valid_block is
76 not NULL. */
e64d9b3d 77 struct frame_id frame;
8b93c638 78
c5b48eac
VP
79 /* The thread ID that this varobj_root belong to. This field
80 is only valid if valid_block is not NULL.
81 When not 0, indicates which thread 'frame' belongs to.
82 When 0, indicates that the thread list was empty when the varobj_root
83 was created. */
84 int thread_id;
85
a5defcdc
VP
86 /* If 1, the -var-update always recomputes the value in the
87 current thread and frame. Otherwise, variable object is
88 always updated in the specific scope/thread/frame */
89 int floating;
73a93a32 90
8756216b
DP
91 /* Flag that indicates validity: set to 0 when this varobj_root refers
92 to symbols that do not exist anymore. */
93 int is_valid;
94
72330bd6
AC
95 /* Language info for this variable and its children */
96 struct language_specific *lang;
8b93c638 97
72330bd6
AC
98 /* The varobj for this root node. */
99 struct varobj *rootvar;
8b93c638 100
72330bd6
AC
101 /* Next root variable */
102 struct varobj_root *next;
103};
8b93c638
JM
104
105/* Every variable in the system has a structure of this type defined
106 for it. This structure holds all information necessary to manipulate
107 a particular object variable. Members which must be freed are noted. */
108struct varobj
72330bd6 109{
8b93c638 110
72330bd6
AC
111 /* Alloc'd name of the variable for this object.. If this variable is a
112 child, then this name will be the child's source name.
113 (bar, not foo.bar) */
114 /* NOTE: This is the "expression" */
115 char *name;
8b93c638 116
02142340
VP
117 /* Alloc'd expression for this child. Can be used to create a
118 root variable corresponding to this child. */
119 char *path_expr;
120
72330bd6
AC
121 /* The alloc'd name for this variable's object. This is here for
122 convenience when constructing this object's children. */
123 char *obj_name;
8b93c638 124
72330bd6
AC
125 /* Index of this variable in its parent or -1 */
126 int index;
8b93c638 127
202ddcaa
VP
128 /* The type of this variable. This can be NULL
129 for artifial variable objects -- currently, the "accessibility"
130 variable objects in C++. */
72330bd6 131 struct type *type;
8b93c638 132
b20d8971
VP
133 /* The value of this expression or subexpression. A NULL value
134 indicates there was an error getting this value.
b2c2bd75
VP
135 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
136 the value is either NULL, or not lazy. */
30b28db1 137 struct value *value;
8b93c638 138
72330bd6
AC
139 /* The number of (immediate) children this variable has */
140 int num_children;
8b93c638 141
72330bd6
AC
142 /* If this object is a child, this points to its immediate parent. */
143 struct varobj *parent;
8b93c638 144
28335dcc
VP
145 /* Children of this object. */
146 VEC (varobj_p) *children;
8b93c638 147
b6313243
TT
148 /* Whether the children of this varobj were requested. This field is
149 used to decide if dynamic varobj should recompute their children.
150 In the event that the frontend never asked for the children, we
151 can avoid that. */
152 int children_requested;
153
72330bd6
AC
154 /* Description of the root variable. Points to root variable for children. */
155 struct varobj_root *root;
8b93c638 156
72330bd6
AC
157 /* The format of the output for this object */
158 enum varobj_display_formats format;
fb9b6b35
JJ
159
160 /* Was this variable updated via a varobj_set_value operation */
161 int updated;
85265413
NR
162
163 /* Last print value. */
164 char *print_value;
25d5ea92
VP
165
166 /* Is this variable frozen. Frozen variables are never implicitly
167 updated by -var-update *
168 or -var-update <direct-or-indirect-parent>. */
169 int frozen;
170
171 /* Is the value of this variable intentionally not fetched? It is
172 not fetched if either the variable is frozen, or any parents is
173 frozen. */
174 int not_fetched;
b6313243
TT
175
176 /* The pretty-printer that has been constructed. If NULL, then a
177 new printer object is needed, and one will be constructed. */
178 PyObject *pretty_printer;
72330bd6 179};
8b93c638 180
8b93c638 181struct cpstack
72330bd6
AC
182{
183 char *name;
184 struct cpstack *next;
185};
8b93c638
JM
186
187/* A list of varobjs */
188
189struct vlist
72330bd6
AC
190{
191 struct varobj *var;
192 struct vlist *next;
193};
8b93c638
JM
194
195/* Private function prototypes */
196
197/* Helper functions for the above subcommands. */
198
a14ed312 199static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 200
a14ed312
KB
201static void delete_variable_1 (struct cpstack **, int *,
202 struct varobj *, int, int);
8b93c638 203
a14ed312 204static int install_variable (struct varobj *);
8b93c638 205
a14ed312 206static void uninstall_variable (struct varobj *);
8b93c638 207
a14ed312 208static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 209
b6313243
TT
210static struct varobj *
211create_child_with_value (struct varobj *parent, int index, const char *name,
212 struct value *value);
213
8b93c638
JM
214/* Utility routines */
215
a14ed312 216static struct varobj *new_variable (void);
8b93c638 217
a14ed312 218static struct varobj *new_root_variable (void);
8b93c638 219
a14ed312 220static void free_variable (struct varobj *var);
8b93c638 221
74b7792f
AC
222static struct cleanup *make_cleanup_free_variable (struct varobj *var);
223
a14ed312 224static struct type *get_type (struct varobj *var);
8b93c638 225
6e2a9270
VP
226static struct type *get_value_type (struct varobj *var);
227
a14ed312 228static struct type *get_target_type (struct type *);
8b93c638 229
a14ed312 230static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 231
a14ed312 232static void cppush (struct cpstack **pstack, char *name);
8b93c638 233
a14ed312 234static char *cppop (struct cpstack **pstack);
8b93c638 235
acd65feb
VP
236static int install_new_value (struct varobj *var, struct value *value,
237 int initial);
238
b6313243
TT
239static void install_default_visualizer (struct varobj *var);
240
8b93c638
JM
241/* Language-specific routines. */
242
a14ed312 243static enum varobj_languages variable_language (struct varobj *var);
8b93c638 244
a14ed312 245static int number_of_children (struct varobj *);
8b93c638 246
a14ed312 247static char *name_of_variable (struct varobj *);
8b93c638 248
a14ed312 249static char *name_of_child (struct varobj *, int);
8b93c638 250
30b28db1 251static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 252
30b28db1 253static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 254
de051565
MK
255static char *my_value_of_variable (struct varobj *var,
256 enum varobj_display_formats format);
8b93c638 257
85265413 258static char *value_get_print_value (struct value *value,
b6313243
TT
259 enum varobj_display_formats format,
260 PyObject *value_formatter);
85265413 261
b2c2bd75
VP
262static int varobj_value_is_changeable_p (struct varobj *var);
263
264static int is_root_p (struct varobj *var);
8b93c638 265
b6313243
TT
266static struct varobj *
267varobj_add_child (struct varobj *var, const char *name, struct value *value);
268
8b93c638
JM
269/* C implementation */
270
a14ed312 271static int c_number_of_children (struct varobj *var);
8b93c638 272
a14ed312 273static char *c_name_of_variable (struct varobj *parent);
8b93c638 274
a14ed312 275static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 276
02142340
VP
277static char *c_path_expr_of_child (struct varobj *child);
278
30b28db1 279static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 280
30b28db1 281static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 282
a14ed312 283static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 284
de051565
MK
285static char *c_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
8b93c638
JM
287
288/* C++ implementation */
289
a14ed312 290static int cplus_number_of_children (struct varobj *var);
8b93c638 291
a14ed312 292static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 293
a14ed312 294static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 295
a14ed312 296static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 297
02142340
VP
298static char *cplus_path_expr_of_child (struct varobj *child);
299
30b28db1 300static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 301
30b28db1 302static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 303
a14ed312 304static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 305
de051565
MK
306static char *cplus_value_of_variable (struct varobj *var,
307 enum varobj_display_formats format);
8b93c638
JM
308
309/* Java implementation */
310
a14ed312 311static int java_number_of_children (struct varobj *var);
8b93c638 312
a14ed312 313static char *java_name_of_variable (struct varobj *parent);
8b93c638 314
a14ed312 315static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 316
02142340
VP
317static char *java_path_expr_of_child (struct varobj *child);
318
30b28db1 319static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 320
30b28db1 321static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 322
a14ed312 323static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 324
de051565
MK
325static char *java_value_of_variable (struct varobj *var,
326 enum varobj_display_formats format);
8b93c638
JM
327
328/* The language specific vector */
329
330struct language_specific
72330bd6 331{
8b93c638 332
72330bd6
AC
333 /* The language of this variable */
334 enum varobj_languages language;
8b93c638 335
72330bd6
AC
336 /* The number of children of PARENT. */
337 int (*number_of_children) (struct varobj * parent);
8b93c638 338
72330bd6
AC
339 /* The name (expression) of a root varobj. */
340 char *(*name_of_variable) (struct varobj * parent);
8b93c638 341
72330bd6
AC
342 /* The name of the INDEX'th child of PARENT. */
343 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 344
02142340
VP
345 /* Returns the rooted expression of CHILD, which is a variable
346 obtain that has some parent. */
347 char *(*path_expr_of_child) (struct varobj * child);
348
30b28db1
AC
349 /* The ``struct value *'' of the root variable ROOT. */
350 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 351
30b28db1
AC
352 /* The ``struct value *'' of the INDEX'th child of PARENT. */
353 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 354
72330bd6
AC
355 /* The type of the INDEX'th child of PARENT. */
356 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 357
72330bd6 358 /* The current value of VAR. */
de051565
MK
359 char *(*value_of_variable) (struct varobj * var,
360 enum varobj_display_formats format);
72330bd6 361};
8b93c638
JM
362
363/* Array of known source language routines. */
d5d6fca5 364static struct language_specific languages[vlang_end] = {
8b93c638
JM
365 /* Unknown (try treating as C */
366 {
72330bd6
AC
367 vlang_unknown,
368 c_number_of_children,
369 c_name_of_variable,
370 c_name_of_child,
02142340 371 c_path_expr_of_child,
72330bd6
AC
372 c_value_of_root,
373 c_value_of_child,
374 c_type_of_child,
72330bd6 375 c_value_of_variable}
8b93c638
JM
376 ,
377 /* C */
378 {
72330bd6
AC
379 vlang_c,
380 c_number_of_children,
381 c_name_of_variable,
382 c_name_of_child,
02142340 383 c_path_expr_of_child,
72330bd6
AC
384 c_value_of_root,
385 c_value_of_child,
386 c_type_of_child,
72330bd6 387 c_value_of_variable}
8b93c638
JM
388 ,
389 /* C++ */
390 {
72330bd6
AC
391 vlang_cplus,
392 cplus_number_of_children,
393 cplus_name_of_variable,
394 cplus_name_of_child,
02142340 395 cplus_path_expr_of_child,
72330bd6
AC
396 cplus_value_of_root,
397 cplus_value_of_child,
398 cplus_type_of_child,
72330bd6 399 cplus_value_of_variable}
8b93c638
JM
400 ,
401 /* Java */
402 {
72330bd6
AC
403 vlang_java,
404 java_number_of_children,
405 java_name_of_variable,
406 java_name_of_child,
02142340 407 java_path_expr_of_child,
72330bd6
AC
408 java_value_of_root,
409 java_value_of_child,
410 java_type_of_child,
72330bd6 411 java_value_of_variable}
8b93c638
JM
412};
413
414/* A little convenience enum for dealing with C++/Java */
415enum vsections
72330bd6
AC
416{
417 v_public = 0, v_private, v_protected
418};
8b93c638
JM
419
420/* Private data */
421
422/* Mappings of varobj_display_formats enums to gdb's format codes */
72330bd6 423static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638
JM
424
425/* Header of the list of root variable objects */
426static struct varobj_root *rootlist;
427static int rootcount = 0; /* number of root varobjs in the list */
428
429/* Prime number indicating the number of buckets in the hash table */
430/* A prime large enough to avoid too many colisions */
431#define VAROBJ_TABLE_SIZE 227
432
433/* Pointer to the varobj hash table (built at run time) */
434static struct vlist **varobj_table;
435
8b93c638
JM
436/* Is the variable X one of our "fake" children? */
437#define CPLUS_FAKE_CHILD(x) \
438((x) != NULL && (x)->type == NULL && (x)->value == NULL)
439\f
440
441/* API Implementation */
b2c2bd75
VP
442static int
443is_root_p (struct varobj *var)
444{
445 return (var->root->rootvar == var);
446}
8b93c638
JM
447
448/* Creates a varobj (not its children) */
449
7d8547c9
AC
450/* Return the full FRAME which corresponds to the given CORE_ADDR
451 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
452
453static struct frame_info *
454find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
455{
456 struct frame_info *frame = NULL;
457
458 if (frame_addr == (CORE_ADDR) 0)
459 return NULL;
460
9d49bdc2
PA
461 for (frame = get_current_frame ();
462 frame != NULL;
463 frame = get_prev_frame (frame))
7d8547c9 464 {
eb5492fa 465 if (get_frame_base_address (frame) == frame_addr)
7d8547c9
AC
466 return frame;
467 }
9d49bdc2
PA
468
469 return NULL;
7d8547c9
AC
470}
471
8b93c638
JM
472struct varobj *
473varobj_create (char *objname,
72330bd6 474 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
475{
476 struct varobj *var;
2c67cb8b
AC
477 struct frame_info *fi;
478 struct frame_info *old_fi = NULL;
8b93c638
JM
479 struct block *block;
480 struct cleanup *old_chain;
481
482 /* Fill out a varobj structure for the (root) variable being constructed. */
483 var = new_root_variable ();
74b7792f 484 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
485
486 if (expression != NULL)
487 {
488 char *p;
489 enum varobj_languages lang;
e55dccf0 490 struct value *value = NULL;
8b93c638 491
9d49bdc2
PA
492 /* Parse and evaluate the expression, filling in as much of the
493 variable's data as possible. */
494
495 if (has_stack_frames ())
496 {
497 /* Allow creator to specify context of variable */
498 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
499 fi = get_selected_frame (NULL);
500 else
501 /* FIXME: cagney/2002-11-23: This code should be doing a
502 lookup using the frame ID and not just the frame's
503 ``address''. This, of course, means an interface
504 change. However, with out that interface change ISAs,
505 such as the ia64 with its two stacks, won't work.
506 Similar goes for the case where there is a frameless
507 function. */
508 fi = find_frame_addr_in_frame_chain (frame);
509 }
8b93c638 510 else
9d49bdc2 511 fi = NULL;
8b93c638 512
73a93a32
JI
513 /* frame = -2 means always use selected frame */
514 if (type == USE_SELECTED_FRAME)
a5defcdc 515 var->root->floating = 1;
73a93a32 516
8b93c638
JM
517 block = NULL;
518 if (fi != NULL)
ae767bfb 519 block = get_frame_block (fi, 0);
8b93c638
JM
520
521 p = expression;
522 innermost_block = NULL;
73a93a32
JI
523 /* Wrap the call to parse expression, so we can
524 return a sensible error. */
525 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
526 {
527 return NULL;
528 }
8b93c638
JM
529
530 /* Don't allow variables to be created for types. */
531 if (var->root->exp->elts[0].opcode == OP_TYPE)
532 {
533 do_cleanups (old_chain);
bc8332bb
AC
534 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
535 " as an expression.\n");
8b93c638
JM
536 return NULL;
537 }
538
539 var->format = variable_default_display (var);
540 var->root->valid_block = innermost_block;
1b36a34b 541 var->name = xstrdup (expression);
02142340 542 /* For a root var, the name and the expr are the same. */
1b36a34b 543 var->path_expr = xstrdup (expression);
8b93c638
JM
544
545 /* When the frame is different from the current frame,
546 we must select the appropriate frame before parsing
547 the expression, otherwise the value will not be current.
548 Since select_frame is so benign, just call it for all cases. */
44a67aa7 549 if (innermost_block && fi != NULL)
8b93c638 550 {
7a424e99 551 var->root->frame = get_frame_id (fi);
c5b48eac 552 var->root->thread_id = pid_to_thread_id (inferior_ptid);
206415a3 553 old_fi = get_selected_frame (NULL);
c5b48eac 554 select_frame (fi);
8b93c638
JM
555 }
556
340a7723 557 /* We definitely need to catch errors here.
8b93c638
JM
558 If evaluate_expression succeeds we got the value we wanted.
559 But if it fails, we still go on with a call to evaluate_type() */
acd65feb 560 if (!gdb_evaluate_expression (var->root->exp, &value))
e55dccf0
VP
561 {
562 /* Error getting the value. Try to at least get the
563 right type. */
564 struct value *type_only_value = evaluate_type (var->root->exp);
565 var->type = value_type (type_only_value);
566 }
567 else
568 var->type = value_type (value);
acd65feb 569
acd65feb 570 install_new_value (var, value, 1 /* Initial assignment */);
8b93c638
JM
571
572 /* Set language info */
573 lang = variable_language (var);
d5d6fca5 574 var->root->lang = &languages[lang];
8b93c638
JM
575
576 /* Set ourselves as our root */
577 var->root->rootvar = var;
578
579 /* Reset the selected frame */
580 if (fi != NULL)
0f7d239c 581 select_frame (old_fi);
8b93c638
JM
582 }
583
73a93a32
JI
584 /* If the variable object name is null, that means this
585 is a temporary variable, so don't install it. */
586
587 if ((var != NULL) && (objname != NULL))
8b93c638 588 {
1b36a34b 589 var->obj_name = xstrdup (objname);
8b93c638
JM
590
591 /* If a varobj name is duplicated, the install will fail so
592 we must clenup */
593 if (!install_variable (var))
594 {
595 do_cleanups (old_chain);
596 return NULL;
597 }
598 }
599
b6313243 600 install_default_visualizer (var);
8b93c638
JM
601 discard_cleanups (old_chain);
602 return var;
603}
604
605/* Generates an unique name that can be used for a varobj */
606
607char *
608varobj_gen_name (void)
609{
610 static int id = 0;
e64d9b3d 611 char *obj_name;
8b93c638
JM
612
613 /* generate a name for this object */
614 id++;
b435e160 615 obj_name = xstrprintf ("var%d", id);
8b93c638 616
e64d9b3d 617 return obj_name;
8b93c638
JM
618}
619
61d8f275
JK
620/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
621 error if OBJNAME cannot be found. */
8b93c638
JM
622
623struct varobj *
624varobj_get_handle (char *objname)
625{
626 struct vlist *cv;
627 const char *chp;
628 unsigned int index = 0;
629 unsigned int i = 1;
630
631 for (chp = objname; *chp; chp++)
632 {
633 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
634 }
635
636 cv = *(varobj_table + index);
637 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
638 cv = cv->next;
639
640 if (cv == NULL)
8a3fe4f8 641 error (_("Variable object not found"));
8b93c638
JM
642
643 return cv->var;
644}
645
646/* Given the handle, return the name of the object */
647
648char *
649varobj_get_objname (struct varobj *var)
650{
651 return var->obj_name;
652}
653
654/* Given the handle, return the expression represented by the object */
655
656char *
657varobj_get_expression (struct varobj *var)
658{
659 return name_of_variable (var);
660}
661
662/* Deletes a varobj and all its children if only_children == 0,
663 otherwise deletes only the children; returns a malloc'ed list of all the
664 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
665
666int
667varobj_delete (struct varobj *var, char ***dellist, int only_children)
668{
669 int delcount;
670 int mycount;
671 struct cpstack *result = NULL;
672 char **cp;
673
674 /* Initialize a stack for temporary results */
675 cppush (&result, NULL);
676
677 if (only_children)
678 /* Delete only the variable children */
679 delcount = delete_variable (&result, var, 1 /* only the children */ );
680 else
681 /* Delete the variable and all its children */
682 delcount = delete_variable (&result, var, 0 /* parent+children */ );
683
684 /* We may have been asked to return a list of what has been deleted */
685 if (dellist != NULL)
686 {
687 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
688
689 cp = *dellist;
690 mycount = delcount;
691 *cp = cppop (&result);
692 while ((*cp != NULL) && (mycount > 0))
693 {
694 mycount--;
695 cp++;
696 *cp = cppop (&result);
697 }
698
699 if (mycount || (*cp != NULL))
8a3fe4f8 700 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 701 mycount);
8b93c638
JM
702 }
703
704 return delcount;
705}
706
b6313243
TT
707/* Convenience function for varobj_set_visualizer. Instantiate a
708 pretty-printer for a given value. */
709static PyObject *
710instantiate_pretty_printer (PyObject *constructor, struct value *value)
711{
712#if HAVE_PYTHON
713 PyObject *val_obj = NULL;
714 PyObject *printer;
715 volatile struct gdb_exception except;
716
717 TRY_CATCH (except, RETURN_MASK_ALL)
718 {
719 value = value_copy (value);
720 }
721 GDB_PY_HANDLE_EXCEPTION (except);
722 val_obj = value_to_value_object (value);
723
724 if (! val_obj)
725 return NULL;
726
727 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
728 Py_DECREF (val_obj);
729 return printer;
730#endif
731 return NULL;
732}
733
8b93c638
JM
734/* Set/Get variable object display format */
735
736enum varobj_display_formats
737varobj_set_display_format (struct varobj *var,
738 enum varobj_display_formats format)
739{
740 switch (format)
741 {
742 case FORMAT_NATURAL:
743 case FORMAT_BINARY:
744 case FORMAT_DECIMAL:
745 case FORMAT_HEXADECIMAL:
746 case FORMAT_OCTAL:
747 var->format = format;
748 break;
749
750 default:
751 var->format = variable_default_display (var);
752 }
753
ae7d22a6
VP
754 if (varobj_value_is_changeable_p (var)
755 && var->value && !value_lazy (var->value))
756 {
6c761d9c 757 xfree (var->print_value);
b6313243
TT
758 var->print_value = value_get_print_value (var->value, var->format,
759 var->pretty_printer);
ae7d22a6
VP
760 }
761
8b93c638
JM
762 return var->format;
763}
764
765enum varobj_display_formats
766varobj_get_display_format (struct varobj *var)
767{
768 return var->format;
769}
770
b6313243
TT
771char *
772varobj_get_display_hint (struct varobj *var)
773{
774 char *result = NULL;
775
776#if HAVE_PYTHON
777 PyGILState_STATE state = PyGILState_Ensure ();
778 if (var->pretty_printer)
779 result = gdbpy_get_display_hint (var->pretty_printer);
780 PyGILState_Release (state);
781#endif
782
783 return result;
784}
785
c5b48eac
VP
786/* If the variable object is bound to a specific thread, that
787 is its evaluation can always be done in context of a frame
788 inside that thread, returns GDB id of the thread -- which
789 is always positive. Otherwise, returns -1. */
790int
791varobj_get_thread_id (struct varobj *var)
792{
793 if (var->root->valid_block && var->root->thread_id > 0)
794 return var->root->thread_id;
795 else
796 return -1;
797}
798
25d5ea92
VP
799void
800varobj_set_frozen (struct varobj *var, int frozen)
801{
802 /* When a variable is unfrozen, we don't fetch its value.
803 The 'not_fetched' flag remains set, so next -var-update
804 won't complain.
805
806 We don't fetch the value, because for structures the client
807 should do -var-update anyway. It would be bad to have different
808 client-size logic for structure and other types. */
809 var->frozen = frozen;
810}
811
812int
813varobj_get_frozen (struct varobj *var)
814{
815 return var->frozen;
816}
817
b6313243
TT
818static int
819update_dynamic_varobj_children (struct varobj *var,
820 VEC (varobj_p) **changed,
821 VEC (varobj_p) **new_and_unchanged,
822 int *cchanged)
823
824{
825#if HAVE_PYTHON
826 /* FIXME: we *might* want to provide this functionality as
827 a standalone function, so that other interested parties
828 than varobj code can benefit for this. */
829 struct cleanup *back_to;
830 PyObject *children;
831 PyObject *iterator;
832 int i;
833 int children_changed = 0;
834 PyObject *printer = var->pretty_printer;
835 PyGILState_STATE state;
836
837 state = PyGILState_Ensure ();
838 back_to = make_cleanup_py_restore_gil (&state);
839
840 *cchanged = 0;
841 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
842 {
843 do_cleanups (back_to);
844 return 0;
845 }
846
847 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
848 NULL);
849
850 if (!children)
851 {
852 gdbpy_print_stack ();
853 error ("Null value returned for children");
854 }
855
856 make_cleanup_py_decref (children);
857
858 if (!PyIter_Check (children))
859 error ("Returned value is not iterable");
860
861 iterator = PyObject_GetIter (children);
862 if (!iterator)
863 {
864 gdbpy_print_stack ();
865 error ("Could not get children iterator");
866 }
867 make_cleanup_py_decref (iterator);
868
869 for (i = 0; ; ++i)
870 {
871 PyObject *item = PyIter_Next (iterator);
872 PyObject *py_v;
873 struct value *v;
874 char *name;
875 struct cleanup *inner;
876
877 if (!item)
878 break;
879 inner = make_cleanup_py_decref (item);
880
881 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
882 error ("Invalid item from the child list");
883
884 if (PyObject_TypeCheck (py_v, &value_object_type))
885 {
886 /* If we just call convert_value_from_python for this type,
887 we won't know who owns the result. For this one case we
888 need to copy the resulting value. */
889 v = value_object_to_value (py_v);
890 v = value_copy (v);
891 }
892 else
893 v = convert_value_from_python (py_v);
894
895 /* TODO: This assume the name of the i-th child never changes. */
896
897 /* Now see what to do here. */
898 if (VEC_length (varobj_p, var->children) < i + 1)
899 {
900 /* There's no child yet. */
901 struct varobj *child = varobj_add_child (var, name, v);
902 if (new_and_unchanged)
903 VEC_safe_push (varobj_p, *new_and_unchanged, child);
904 children_changed = 1;
905 }
906 else
907 {
908 varobj_p existing = VEC_index (varobj_p, var->children, i);
909 if (install_new_value (existing, v, 0) && changed)
910 {
911 if (changed)
912 VEC_safe_push (varobj_p, *changed, existing);
913 }
914 else
915 {
916 if (new_and_unchanged)
917 VEC_safe_push (varobj_p, *new_and_unchanged, existing);
918 }
919 }
920
921 do_cleanups (inner);
922 }
923
924 if (i < VEC_length (varobj_p, var->children))
925 {
926 int i;
927 children_changed = 1;
928 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
929 varobj_delete (VEC_index (varobj_p, var->children, i), NULL, 0);
930 }
931 VEC_truncate (varobj_p, var->children, i);
932 var->num_children = VEC_length (varobj_p, var->children);
933
934 do_cleanups (back_to);
935
936 *cchanged = children_changed;
937 return 1;
938#else
939 gdb_assert (0 && "should never be called if Python is not enabled");
940#endif
941}
25d5ea92 942
8b93c638
JM
943int
944varobj_get_num_children (struct varobj *var)
945{
946 if (var->num_children == -1)
b6313243
TT
947 {
948 int changed;
949 if (!var->pretty_printer
950 || !update_dynamic_varobj_children (var, NULL, NULL, &changed))
951 var->num_children = number_of_children (var);
952 }
8b93c638
JM
953
954 return var->num_children;
955}
956
957/* Creates a list of the immediate children of a variable object;
958 the return code is the number of such children or -1 on error */
959
d56d46f5
VP
960VEC (varobj_p)*
961varobj_list_children (struct varobj *var)
8b93c638
JM
962{
963 struct varobj *child;
964 char *name;
b6313243
TT
965 int i, children_changed;
966
967 var->children_requested = 1;
968
969 if (var->pretty_printer
970 /* This, in theory, can result in the number of children changing without
971 frontend noticing. But well, calling -var-list-children on the same
972 varobj twice is not something a sane frontend would do. */
973 && update_dynamic_varobj_children (var, NULL, NULL, &children_changed))
974 return var->children;
8b93c638 975
8b93c638
JM
976 if (var->num_children == -1)
977 var->num_children = number_of_children (var);
978
74a44383
DJ
979 /* If that failed, give up. */
980 if (var->num_children == -1)
d56d46f5 981 return var->children;
74a44383 982
28335dcc
VP
983 /* If we're called when the list of children is not yet initialized,
984 allocate enough elements in it. */
985 while (VEC_length (varobj_p, var->children) < var->num_children)
986 VEC_safe_push (varobj_p, var->children, NULL);
987
8b93c638
JM
988 for (i = 0; i < var->num_children; i++)
989 {
d56d46f5 990 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
991
992 if (existing == NULL)
993 {
994 /* Either it's the first call to varobj_list_children for
995 this variable object, and the child was never created,
996 or it was explicitly deleted by the client. */
997 name = name_of_child (var, i);
998 existing = create_child (var, i, name);
999 VEC_replace (varobj_p, var->children, i, existing);
b6313243 1000 install_default_visualizer (existing);
28335dcc 1001 }
8b93c638
JM
1002 }
1003
d56d46f5 1004 return var->children;
8b93c638
JM
1005}
1006
b6313243
TT
1007static struct varobj *
1008varobj_add_child (struct varobj *var, const char *name, struct value *value)
1009{
1010 varobj_p v = create_child_with_value (var,
1011 VEC_length (varobj_p, var->children),
1012 name, value);
1013 VEC_safe_push (varobj_p, var->children, v);
1014 install_default_visualizer (v);
1015 return v;
1016}
1017
8b93c638
JM
1018/* Obtain the type of an object Variable as a string similar to the one gdb
1019 prints on the console */
1020
1021char *
1022varobj_get_type (struct varobj *var)
1023{
30b28db1 1024 struct value *val;
8b93c638
JM
1025 struct cleanup *old_chain;
1026 struct ui_file *stb;
1027 char *thetype;
1028 long length;
1029
1030 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1031 NULL, too.)
1032 Do not return a type for invalid variables as well. */
1033 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1034 return NULL;
1035
1036 stb = mem_fileopen ();
1037 old_chain = make_cleanup_ui_file_delete (stb);
1038
30b28db1 1039 /* To print the type, we simply create a zero ``struct value *'' and
8b93c638
JM
1040 cast it to our type. We then typeprint this variable. */
1041 val = value_zero (var->type, not_lval);
df407dfe 1042 type_print (value_type (val), "", stb, -1);
8b93c638
JM
1043
1044 thetype = ui_file_xstrdup (stb, &length);
1045 do_cleanups (old_chain);
1046 return thetype;
1047}
1048
1ecb4ee0
DJ
1049/* Obtain the type of an object variable. */
1050
1051struct type *
1052varobj_get_gdb_type (struct varobj *var)
1053{
1054 return var->type;
1055}
1056
02142340
VP
1057/* Return a pointer to the full rooted expression of varobj VAR.
1058 If it has not been computed yet, compute it. */
1059char *
1060varobj_get_path_expr (struct varobj *var)
1061{
1062 if (var->path_expr != NULL)
1063 return var->path_expr;
1064 else
1065 {
1066 /* For root varobjs, we initialize path_expr
1067 when creating varobj, so here it should be
1068 child varobj. */
1069 gdb_assert (!is_root_p (var));
1070 return (*var->root->lang->path_expr_of_child) (var);
1071 }
1072}
1073
8b93c638
JM
1074enum varobj_languages
1075varobj_get_language (struct varobj *var)
1076{
1077 return variable_language (var);
1078}
1079
1080int
1081varobj_get_attributes (struct varobj *var)
1082{
1083 int attributes = 0;
1084
340a7723 1085 if (varobj_editable_p (var))
8b93c638
JM
1086 /* FIXME: define masks for attributes */
1087 attributes |= 0x00000001; /* Editable */
1088
1089 return attributes;
1090}
1091
de051565
MK
1092char *
1093varobj_get_formatted_value (struct varobj *var,
1094 enum varobj_display_formats format)
1095{
1096 return my_value_of_variable (var, format);
1097}
1098
8b93c638
JM
1099char *
1100varobj_get_value (struct varobj *var)
1101{
de051565 1102 return my_value_of_variable (var, var->format);
8b93c638
JM
1103}
1104
1105/* Set the value of an object variable (if it is editable) to the
1106 value of the given expression */
1107/* Note: Invokes functions that can call error() */
1108
1109int
1110varobj_set_value (struct varobj *var, char *expression)
1111{
30b28db1 1112 struct value *val;
8b93c638 1113 int offset = 0;
a6c442d8 1114 int error = 0;
8b93c638
JM
1115
1116 /* The argument "expression" contains the variable's new value.
1117 We need to first construct a legal expression for this -- ugh! */
1118 /* Does this cover all the bases? */
1119 struct expression *exp;
30b28db1 1120 struct value *value;
8b93c638 1121 int saved_input_radix = input_radix;
340a7723
NR
1122 char *s = expression;
1123 int i;
8b93c638 1124
340a7723 1125 gdb_assert (varobj_editable_p (var));
8b93c638 1126
340a7723
NR
1127 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1128 exp = parse_exp_1 (&s, 0, 0);
1129 if (!gdb_evaluate_expression (exp, &value))
1130 {
1131 /* We cannot proceed without a valid expression. */
1132 xfree (exp);
1133 return 0;
8b93c638
JM
1134 }
1135
340a7723
NR
1136 /* All types that are editable must also be changeable. */
1137 gdb_assert (varobj_value_is_changeable_p (var));
1138
1139 /* The value of a changeable variable object must not be lazy. */
1140 gdb_assert (!value_lazy (var->value));
1141
1142 /* Need to coerce the input. We want to check if the
1143 value of the variable object will be different
1144 after assignment, and the first thing value_assign
1145 does is coerce the input.
1146 For example, if we are assigning an array to a pointer variable we
1147 should compare the pointer with the the array's address, not with the
1148 array's content. */
1149 value = coerce_array (value);
1150
1151 /* The new value may be lazy. gdb_value_assign, or
1152 rather value_contents, will take care of this.
1153 If fetching of the new value will fail, gdb_value_assign
1154 with catch the exception. */
1155 if (!gdb_value_assign (var->value, value, &val))
1156 return 0;
1157
1158 /* If the value has changed, record it, so that next -var-update can
1159 report this change. If a variable had a value of '1', we've set it
1160 to '333' and then set again to '1', when -var-update will report this
1161 variable as changed -- because the first assignment has set the
1162 'updated' flag. There's no need to optimize that, because return value
1163 of -var-update should be considered an approximation. */
1164 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1165 input_radix = saved_input_radix;
1166 return 1;
8b93c638
JM
1167}
1168
1169/* Returns a malloc'ed list with all root variable objects */
1170int
1171varobj_list (struct varobj ***varlist)
1172{
1173 struct varobj **cv;
1174 struct varobj_root *croot;
1175 int mycount = rootcount;
1176
1177 /* Alloc (rootcount + 1) entries for the result */
1178 *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));
1179
1180 cv = *varlist;
1181 croot = rootlist;
1182 while ((croot != NULL) && (mycount > 0))
1183 {
1184 *cv = croot->rootvar;
1185 mycount--;
1186 cv++;
1187 croot = croot->next;
1188 }
1189 /* Mark the end of the list */
1190 *cv = NULL;
1191
1192 if (mycount || (croot != NULL))
72330bd6
AC
1193 warning
1194 ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
1195 rootcount, mycount);
8b93c638
JM
1196
1197 return rootcount;
1198}
1199
acd65feb
VP
1200/* Assign a new value to a variable object. If INITIAL is non-zero,
1201 this is the first assignement after the variable object was just
1202 created, or changed type. In that case, just assign the value
1203 and return 0.
ee342b23
VP
1204 Otherwise, assign the new value, and return 1 if the value is different
1205 from the current one, 0 otherwise. The comparison is done on textual
1206 representation of value. Therefore, some types need not be compared. E.g.
1207 for structures the reported value is always "{...}", so no comparison is
1208 necessary here. If the old value was NULL and new one is not, or vice versa,
1209 we always return 1.
b26ed50d
VP
1210
1211 The VALUE parameter should not be released -- the function will
1212 take care of releasing it when needed. */
acd65feb
VP
1213static int
1214install_new_value (struct varobj *var, struct value *value, int initial)
1215{
1216 int changeable;
1217 int need_to_fetch;
1218 int changed = 0;
25d5ea92 1219 int intentionally_not_fetched = 0;
7a4d50bf 1220 char *print_value = NULL;
acd65feb 1221
acd65feb
VP
1222 /* We need to know the varobj's type to decide if the value should
1223 be fetched or not. C++ fake children (public/protected/private) don't have
1224 a type. */
1225 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1226 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1227
1228 /* If the type has custom visualizer, we consider it to be always
1229 changeable. FIXME: need to make sure this behaviour will not
1230 mess up read-sensitive values. */
1231 if (var->pretty_printer)
1232 changeable = 1;
1233
acd65feb
VP
1234 need_to_fetch = changeable;
1235
b26ed50d
VP
1236 /* We are not interested in the address of references, and given
1237 that in C++ a reference is not rebindable, it cannot
1238 meaningfully change. So, get hold of the real value. */
1239 if (value)
1240 {
1241 value = coerce_ref (value);
1242 release_value (value);
1243 }
1244
acd65feb
VP
1245 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1246 /* For unions, we need to fetch the value implicitly because
1247 of implementation of union member fetch. When gdb
1248 creates a value for a field and the value of the enclosing
1249 structure is not lazy, it immediately copies the necessary
1250 bytes from the enclosing values. If the enclosing value is
1251 lazy, the call to value_fetch_lazy on the field will read
1252 the data from memory. For unions, that means we'll read the
1253 same memory more than once, which is not desirable. So
1254 fetch now. */
1255 need_to_fetch = 1;
1256
1257 /* The new value might be lazy. If the type is changeable,
1258 that is we'll be comparing values of this type, fetch the
1259 value now. Otherwise, on the next update the old value
1260 will be lazy, which means we've lost that old value. */
1261 if (need_to_fetch && value && value_lazy (value))
1262 {
25d5ea92
VP
1263 struct varobj *parent = var->parent;
1264 int frozen = var->frozen;
1265 for (; !frozen && parent; parent = parent->parent)
1266 frozen |= parent->frozen;
1267
1268 if (frozen && initial)
1269 {
1270 /* For variables that are frozen, or are children of frozen
1271 variables, we don't do fetch on initial assignment.
1272 For non-initial assignemnt we do the fetch, since it means we're
1273 explicitly asked to compare the new value with the old one. */
1274 intentionally_not_fetched = 1;
1275 }
1276 else if (!gdb_value_fetch_lazy (value))
acd65feb 1277 {
acd65feb
VP
1278 /* Set the value to NULL, so that for the next -var-update,
1279 we don't try to compare the new value with this value,
1280 that we couldn't even read. */
1281 value = NULL;
1282 }
acd65feb
VP
1283 }
1284
b6313243 1285
7a4d50bf
VP
1286 /* Below, we'll be comparing string rendering of old and new
1287 values. Don't get string rendering if the value is
1288 lazy -- if it is, the code above has decided that the value
1289 should not be fetched. */
1290 if (value && !value_lazy (value))
b6313243
TT
1291 print_value = value_get_print_value (value, var->format,
1292 var->pretty_printer);
7a4d50bf 1293
acd65feb
VP
1294 /* If the type is changeable, compare the old and the new values.
1295 If this is the initial assignment, we don't have any old value
1296 to compare with. */
7a4d50bf 1297 if (!initial && changeable)
acd65feb
VP
1298 {
1299 /* If the value of the varobj was changed by -var-set-value, then the
1300 value in the varobj and in the target is the same. However, that value
1301 is different from the value that the varobj had after the previous
57e66780 1302 -var-update. So need to the varobj as changed. */
acd65feb 1303 if (var->updated)
57e66780 1304 {
57e66780
DJ
1305 changed = 1;
1306 }
acd65feb
VP
1307 else
1308 {
1309 /* Try to compare the values. That requires that both
1310 values are non-lazy. */
25d5ea92
VP
1311 if (var->not_fetched && value_lazy (var->value))
1312 {
1313 /* This is a frozen varobj and the value was never read.
1314 Presumably, UI shows some "never read" indicator.
1315 Now that we've fetched the real value, we need to report
1316 this varobj as changed so that UI can show the real
1317 value. */
1318 changed = 1;
1319 }
1320 else if (var->value == NULL && value == NULL)
acd65feb
VP
1321 /* Equal. */
1322 ;
1323 else if (var->value == NULL || value == NULL)
57e66780 1324 {
57e66780
DJ
1325 changed = 1;
1326 }
acd65feb
VP
1327 else
1328 {
1329 gdb_assert (!value_lazy (var->value));
1330 gdb_assert (!value_lazy (value));
85265413 1331
57e66780 1332 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1333 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1334 changed = 1;
acd65feb
VP
1335 }
1336 }
1337 }
85265413 1338
ee342b23
VP
1339 if (!initial && !changeable)
1340 {
1341 /* For values that are not changeable, we don't compare the values.
1342 However, we want to notice if a value was not NULL and now is NULL,
1343 or vise versa, so that we report when top-level varobjs come in scope
1344 and leave the scope. */
1345 changed = (var->value != NULL) != (value != NULL);
1346 }
1347
acd65feb 1348 /* We must always keep the new value, since children depend on it. */
25d5ea92 1349 if (var->value != NULL && var->value != value)
acd65feb
VP
1350 value_free (var->value);
1351 var->value = value;
7a4d50bf
VP
1352 if (var->print_value)
1353 xfree (var->print_value);
1354 var->print_value = print_value;
25d5ea92
VP
1355 if (value && value_lazy (value) && intentionally_not_fetched)
1356 var->not_fetched = 1;
1357 else
1358 var->not_fetched = 0;
acd65feb 1359 var->updated = 0;
85265413 1360
b26ed50d 1361 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1362
1363 return changed;
1364}
acd65feb 1365
b6313243
TT
1366static void
1367install_visualizer (struct varobj *var, PyObject *visualizer)
1368{
1369#if HAVE_PYTHON
1370 /* If there are any children now, wipe them. */
1371 varobj_delete (var, NULL, 1 /* children only */);
1372 var->num_children = -1;
1373
1374 Py_XDECREF (var->pretty_printer);
1375 var->pretty_printer = visualizer;
1376
1377 install_new_value (var, var->value, 1);
1378
1379 /* If we removed the visualizer, and the user ever requested the
1380 object's children, then we must compute the list of children.
1381 Note that we needn't do this when installing a visualizer,
1382 because updating will recompute dynamic children. */
1383 if (!visualizer && var->children_requested)
1384 varobj_list_children (var);
1385#else
1386 error ("Python support required");
1387#endif
1388}
1389
1390static void
1391install_default_visualizer (struct varobj *var)
1392{
1393#if HAVE_PYTHON
1394 struct cleanup *cleanup;
1395 PyGILState_STATE state;
1396 PyObject *pretty_printer = NULL;
1397
1398 state = PyGILState_Ensure ();
1399 cleanup = make_cleanup_py_restore_gil (&state);
1400
1401 if (var->value)
1402 {
1403 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1404 if (! pretty_printer)
1405 {
1406 gdbpy_print_stack ();
1407 error (_("Cannot instantiate printer for default visualizer"));
1408 }
1409 }
1410
1411 if (pretty_printer == Py_None)
1412 {
1413 Py_DECREF (pretty_printer);
1414 pretty_printer = NULL;
1415 }
1416
1417 install_visualizer (var, pretty_printer);
1418 do_cleanups (cleanup);
1419#else
1420 /* No error is right as this function is inserted just as a hook. */
1421#endif
1422}
1423
1424void
1425varobj_set_visualizer (struct varobj *var, const char *visualizer)
1426{
1427#if HAVE_PYTHON
1428 PyObject *mainmod, *globals, *pretty_printer, *constructor;
1429 struct cleanup *back_to, *value;
1430 PyGILState_STATE state;
1431
1432
1433 state = PyGILState_Ensure ();
1434 back_to = make_cleanup_py_restore_gil (&state);
1435
1436 mainmod = PyImport_AddModule ("__main__");
1437 globals = PyModule_GetDict (mainmod);
1438 Py_INCREF (globals);
1439 make_cleanup_py_decref (globals);
1440
1441 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
1442
1443 /* Do not instantiate NoneType. */
1444 if (constructor == Py_None)
1445 {
1446 pretty_printer = Py_None;
1447 Py_INCREF (pretty_printer);
1448 }
1449 else
1450 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1451
1452 Py_XDECREF (constructor);
1453
1454 if (! pretty_printer)
1455 {
1456 gdbpy_print_stack ();
1457 error ("Could not evaluate visualizer expression: %s", visualizer);
1458 }
1459
1460 if (pretty_printer == Py_None)
1461 {
1462 Py_DECREF (pretty_printer);
1463 pretty_printer = NULL;
1464 }
1465
1466 install_visualizer (var, pretty_printer);
1467
1468 do_cleanups (back_to);
1469#else
1470 error ("Python support required");
1471#endif
1472}
1473
8b93c638
JM
1474/* Update the values for a variable and its children. This is a
1475 two-pronged attack. First, re-parse the value for the root's
1476 expression to see if it's changed. Then go all the way
1477 through its children, reconstructing them and noting if they've
1478 changed.
1479
25d5ea92
VP
1480 The EXPLICIT parameter specifies if this call is result
1481 of MI request to update this specific variable, or
1482 result of implicit -var-update *. For implicit request, we don't
1483 update frozen variables.
705da579
KS
1484
1485 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1486 returns TYPE_CHANGED, then it has done this and VARP will be modified
1487 to point to the new varobj. */
8b93c638 1488
f7f9ae2c 1489VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
8b93c638
JM
1490{
1491 int changed = 0;
25d5ea92 1492 int type_changed = 0;
8b93c638
JM
1493 int i;
1494 int vleft;
8b93c638
JM
1495 struct varobj *v;
1496 struct varobj **cv;
2c67cb8b 1497 struct varobj **templist = NULL;
30b28db1 1498 struct value *new;
b6313243 1499 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1500 VEC (varobj_update_result) *result = NULL;
e64d9b3d 1501 struct frame_info *fi;
8b93c638 1502
25d5ea92
VP
1503 /* Frozen means frozen -- we don't check for any change in
1504 this varobj, including its going out of scope, or
1505 changing type. One use case for frozen varobjs is
1506 retaining previously evaluated expressions, and we don't
1507 want them to be reevaluated at all. */
1508 if (!explicit && (*varp)->frozen)
f7f9ae2c 1509 return result;
8756216b
DP
1510
1511 if (!(*varp)->root->is_valid)
f7f9ae2c
VP
1512 {
1513 varobj_update_result r = {*varp};
1514 r.status = VAROBJ_INVALID;
1515 VEC_safe_push (varobj_update_result, result, &r);
1516 return result;
1517 }
8b93c638 1518
25d5ea92 1519 if ((*varp)->root->rootvar == *varp)
ae093f96 1520 {
f7f9ae2c
VP
1521 varobj_update_result r = {*varp};
1522 r.status = VAROBJ_IN_SCOPE;
1523
25d5ea92
VP
1524 /* Update the root variable. value_of_root can return NULL
1525 if the variable is no longer around, i.e. we stepped out of
1526 the frame in which a local existed. We are letting the
1527 value_of_root variable dispose of the varobj if the type
1528 has changed. */
25d5ea92 1529 new = value_of_root (varp, &type_changed);
f7f9ae2c
VP
1530 r.varobj = *varp;
1531
1532 r.type_changed = type_changed;
ea56f9c2 1533 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1534 r.changed = 1;
ea56f9c2 1535
25d5ea92 1536 if (new == NULL)
f7f9ae2c 1537 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1538 r.value_installed = 1;
f7f9ae2c
VP
1539
1540 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243
TT
1541 {
1542 VEC_safe_push (varobj_update_result, result, &r);
1543 return result;
1544 }
1545
1546 VEC_safe_push (varobj_update_result, stack, &r);
1547 }
1548 else
1549 {
1550 varobj_update_result r = {*varp};
1551 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1552 }
8b93c638 1553
8756216b 1554 /* Walk through the children, reconstructing them all. */
b6313243 1555 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1556 {
b6313243
TT
1557 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1558 struct varobj *v = r.varobj;
1559
1560 VEC_pop (varobj_update_result, stack);
1561
1562 /* Update this variable, unless it's a root, which is already
1563 updated. */
1564 if (!r.value_installed)
1565 {
1566 new = value_of_child (v->parent, v->index);
1567 if (install_new_value (v, new, 0 /* type not changed */))
1568 {
1569 r.changed = 1;
1570 v->updated = 0;
1571 }
1572 }
1573
1574 /* We probably should not get children of a varobj that has a
1575 pretty-printer, but for which -var-list-children was never
1576 invoked. Presumably, such varobj is not yet expanded in the
1577 UI, so we need not bother getting it. */
1578 if (v->pretty_printer)
1579 {
1580 VEC (varobj_p) *changed = 0, *new_and_unchanged = 0;
1581 int i, children_changed;
1582 varobj_p tmp;
1583
1584 if (!v->children_requested)
1585 continue;
1586
1587 if (v->frozen)
1588 continue;
1589
1590 /* If update_dynamic_varobj_children returns 0, then we have
1591 a non-conforming pretty-printer, so we skip it. */
1592 if (update_dynamic_varobj_children (v, &changed, &new_and_unchanged,
1593 &children_changed))
1594 {
1595 if (children_changed)
1596 r.children_changed = 1;
1597 for (i = 0; VEC_iterate (varobj_p, changed, i, tmp); ++i)
1598 {
1599 varobj_update_result r = {tmp};
1600 r.changed = 1;
1601 r.value_installed = 1;
1602 VEC_safe_push (varobj_update_result, stack, &r);
1603 }
1604 for (i = 0;
1605 VEC_iterate (varobj_p, new_and_unchanged, i, tmp);
1606 ++i)
1607 {
1608 varobj_update_result r = {tmp};
1609 r.value_installed = 1;
1610 VEC_safe_push (varobj_update_result, stack, &r);
1611 }
1612 if (r.changed || r.children_changed)
1613 VEC_safe_push (varobj_update_result, result, &r);
1614 continue;
1615 }
1616 }
28335dcc
VP
1617
1618 /* Push any children. Use reverse order so that the first
1619 child is popped from the work stack first, and so
1620 will be added to result first. This does not
1621 affect correctness, just "nicer". */
1622 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1623 {
28335dcc
VP
1624 varobj_p c = VEC_index (varobj_p, v->children, i);
1625 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1626 if (c != NULL && !c->frozen)
28335dcc 1627 {
b6313243
TT
1628 varobj_update_result r = {c};
1629 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1630 }
8b93c638 1631 }
b6313243
TT
1632
1633 if (r.changed || r.type_changed)
1634 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1635 }
1636
b6313243
TT
1637 VEC_free (varobj_update_result, stack);
1638
f7f9ae2c 1639 return result;
8b93c638
JM
1640}
1641\f
1642
1643/* Helper functions */
1644
1645/*
1646 * Variable object construction/destruction
1647 */
1648
1649static int
fba45db2
KB
1650delete_variable (struct cpstack **resultp, struct varobj *var,
1651 int only_children_p)
8b93c638
JM
1652{
1653 int delcount = 0;
1654
1655 delete_variable_1 (resultp, &delcount, var,
1656 only_children_p, 1 /* remove_from_parent_p */ );
1657
1658 return delcount;
1659}
1660
1661/* Delete the variable object VAR and its children */
1662/* IMPORTANT NOTE: If we delete a variable which is a child
1663 and the parent is not removed we dump core. It must be always
1664 initially called with remove_from_parent_p set */
1665static void
72330bd6
AC
1666delete_variable_1 (struct cpstack **resultp, int *delcountp,
1667 struct varobj *var, int only_children_p,
1668 int remove_from_parent_p)
8b93c638 1669{
28335dcc 1670 int i;
8b93c638
JM
1671
1672 /* Delete any children of this variable, too. */
28335dcc
VP
1673 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1674 {
1675 varobj_p child = VEC_index (varobj_p, var->children, i);
214270ab
VP
1676 if (!child)
1677 continue;
8b93c638 1678 if (!remove_from_parent_p)
28335dcc
VP
1679 child->parent = NULL;
1680 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1681 }
28335dcc 1682 VEC_free (varobj_p, var->children);
8b93c638
JM
1683
1684 /* if we were called to delete only the children we are done here */
1685 if (only_children_p)
1686 return;
1687
1688 /* Otherwise, add it to the list of deleted ones and proceed to do so */
73a93a32
JI
1689 /* If the name is null, this is a temporary variable, that has not
1690 yet been installed, don't report it, it belongs to the caller... */
1691 if (var->obj_name != NULL)
8b93c638 1692 {
5b616ba1 1693 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1694 *delcountp = *delcountp + 1;
1695 }
1696
1697 /* If this variable has a parent, remove it from its parent's list */
1698 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1699 (as indicated by remove_from_parent_p) we don't bother doing an
1700 expensive list search to find the element to remove when we are
1701 discarding the list afterwards */
72330bd6 1702 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1703 {
28335dcc 1704 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1705 }
72330bd6 1706
73a93a32
JI
1707 if (var->obj_name != NULL)
1708 uninstall_variable (var);
8b93c638
JM
1709
1710 /* Free memory associated with this variable */
1711 free_variable (var);
1712}
1713
1714/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1715static int
fba45db2 1716install_variable (struct varobj *var)
8b93c638
JM
1717{
1718 struct vlist *cv;
1719 struct vlist *newvl;
1720 const char *chp;
1721 unsigned int index = 0;
1722 unsigned int i = 1;
1723
1724 for (chp = var->obj_name; *chp; chp++)
1725 {
1726 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1727 }
1728
1729 cv = *(varobj_table + index);
1730 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1731 cv = cv->next;
1732
1733 if (cv != NULL)
8a3fe4f8 1734 error (_("Duplicate variable object name"));
8b93c638
JM
1735
1736 /* Add varobj to hash table */
1737 newvl = xmalloc (sizeof (struct vlist));
1738 newvl->next = *(varobj_table + index);
1739 newvl->var = var;
1740 *(varobj_table + index) = newvl;
1741
1742 /* If root, add varobj to root list */
b2c2bd75 1743 if (is_root_p (var))
8b93c638
JM
1744 {
1745 /* Add to list of root variables */
1746 if (rootlist == NULL)
1747 var->root->next = NULL;
1748 else
1749 var->root->next = rootlist;
1750 rootlist = var->root;
1751 rootcount++;
1752 }
1753
1754 return 1; /* OK */
1755}
1756
1757/* Unistall the object VAR. */
1758static void
fba45db2 1759uninstall_variable (struct varobj *var)
8b93c638
JM
1760{
1761 struct vlist *cv;
1762 struct vlist *prev;
1763 struct varobj_root *cr;
1764 struct varobj_root *prer;
1765 const char *chp;
1766 unsigned int index = 0;
1767 unsigned int i = 1;
1768
1769 /* Remove varobj from hash table */
1770 for (chp = var->obj_name; *chp; chp++)
1771 {
1772 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1773 }
1774
1775 cv = *(varobj_table + index);
1776 prev = NULL;
1777 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1778 {
1779 prev = cv;
1780 cv = cv->next;
1781 }
1782
1783 if (varobjdebug)
1784 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1785
1786 if (cv == NULL)
1787 {
72330bd6
AC
1788 warning
1789 ("Assertion failed: Could not find variable object \"%s\" to delete",
1790 var->obj_name);
8b93c638
JM
1791 return;
1792 }
1793
1794 if (prev == NULL)
1795 *(varobj_table + index) = cv->next;
1796 else
1797 prev->next = cv->next;
1798
b8c9b27d 1799 xfree (cv);
8b93c638
JM
1800
1801 /* If root, remove varobj from root list */
b2c2bd75 1802 if (is_root_p (var))
8b93c638
JM
1803 {
1804 /* Remove from list of root variables */
1805 if (rootlist == var->root)
1806 rootlist = var->root->next;
1807 else
1808 {
1809 prer = NULL;
1810 cr = rootlist;
1811 while ((cr != NULL) && (cr->rootvar != var))
1812 {
1813 prer = cr;
1814 cr = cr->next;
1815 }
1816 if (cr == NULL)
1817 {
72330bd6
AC
1818 warning
1819 ("Assertion failed: Could not find varobj \"%s\" in root list",
1820 var->obj_name);
8b93c638
JM
1821 return;
1822 }
1823 if (prer == NULL)
1824 rootlist = NULL;
1825 else
1826 prer->next = cr->next;
1827 }
1828 rootcount--;
1829 }
1830
1831}
1832
8b93c638
JM
1833/* Create and install a child of the parent of the given name */
1834static struct varobj *
fba45db2 1835create_child (struct varobj *parent, int index, char *name)
b6313243
TT
1836{
1837 return create_child_with_value (parent, index, name,
1838 value_of_child (parent, index));
1839}
1840
1841static struct varobj *
1842create_child_with_value (struct varobj *parent, int index, const char *name,
1843 struct value *value)
8b93c638
JM
1844{
1845 struct varobj *child;
1846 char *childs_name;
1847
1848 child = new_variable ();
1849
1850 /* name is allocated by name_of_child */
b6313243
TT
1851 /* FIXME: xstrdup should not be here. */
1852 child->name = xstrdup (name);
8b93c638 1853 child->index = index;
8b93c638
JM
1854 child->parent = parent;
1855 child->root = parent->root;
b435e160 1856 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638
JM
1857 child->obj_name = childs_name;
1858 install_variable (child);
1859
acd65feb
VP
1860 /* Compute the type of the child. Must do this before
1861 calling install_new_value. */
1862 if (value != NULL)
1863 /* If the child had no evaluation errors, var->value
1864 will be non-NULL and contain a valid type. */
1865 child->type = value_type (value);
1866 else
1867 /* Otherwise, we must compute the type. */
1868 child->type = (*child->root->lang->type_of_child) (child->parent,
1869 child->index);
1870 install_new_value (child, value, 1);
1871
8b93c638
JM
1872 return child;
1873}
8b93c638
JM
1874\f
1875
1876/*
1877 * Miscellaneous utility functions.
1878 */
1879
1880/* Allocate memory and initialize a new variable */
1881static struct varobj *
1882new_variable (void)
1883{
1884 struct varobj *var;
1885
1886 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1887 var->name = NULL;
02142340 1888 var->path_expr = NULL;
8b93c638
JM
1889 var->obj_name = NULL;
1890 var->index = -1;
1891 var->type = NULL;
1892 var->value = NULL;
8b93c638
JM
1893 var->num_children = -1;
1894 var->parent = NULL;
1895 var->children = NULL;
1896 var->format = 0;
1897 var->root = NULL;
fb9b6b35 1898 var->updated = 0;
85265413 1899 var->print_value = NULL;
25d5ea92
VP
1900 var->frozen = 0;
1901 var->not_fetched = 0;
b6313243
TT
1902 var->children_requested = 0;
1903 var->pretty_printer = 0;
8b93c638
JM
1904
1905 return var;
1906}
1907
1908/* Allocate memory and initialize a new root variable */
1909static struct varobj *
1910new_root_variable (void)
1911{
1912 struct varobj *var = new_variable ();
1913 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1914 var->root->lang = NULL;
1915 var->root->exp = NULL;
1916 var->root->valid_block = NULL;
7a424e99 1917 var->root->frame = null_frame_id;
a5defcdc 1918 var->root->floating = 0;
8b93c638 1919 var->root->rootvar = NULL;
8756216b 1920 var->root->is_valid = 1;
8b93c638
JM
1921
1922 return var;
1923}
1924
1925/* Free any allocated memory associated with VAR. */
1926static void
fba45db2 1927free_variable (struct varobj *var)
8b93c638 1928{
36746093
JK
1929 value_free (var->value);
1930
8b93c638 1931 /* Free the expression if this is a root variable. */
b2c2bd75 1932 if (is_root_p (var))
8b93c638 1933 {
3038237c 1934 xfree (var->root->exp);
8038e1e2 1935 xfree (var->root);
8b93c638
JM
1936 }
1937
b6313243
TT
1938#if HAVE_PYTHON
1939 {
1940 PyGILState_STATE state = PyGILState_Ensure ();
1941 Py_XDECREF (var->pretty_printer);
1942 PyGILState_Release (state);
1943 }
1944#endif
1945
8038e1e2
AC
1946 xfree (var->name);
1947 xfree (var->obj_name);
85265413 1948 xfree (var->print_value);
02142340 1949 xfree (var->path_expr);
8038e1e2 1950 xfree (var);
8b93c638
JM
1951}
1952
74b7792f
AC
1953static void
1954do_free_variable_cleanup (void *var)
1955{
1956 free_variable (var);
1957}
1958
1959static struct cleanup *
1960make_cleanup_free_variable (struct varobj *var)
1961{
1962 return make_cleanup (do_free_variable_cleanup, var);
1963}
1964
6766a268
DJ
1965/* This returns the type of the variable. It also skips past typedefs
1966 to return the real type of the variable.
94b66fa7
KS
1967
1968 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1969 except within get_target_type and get_type. */
8b93c638 1970static struct type *
fba45db2 1971get_type (struct varobj *var)
8b93c638
JM
1972{
1973 struct type *type;
1974 type = var->type;
1975
6766a268
DJ
1976 if (type != NULL)
1977 type = check_typedef (type);
8b93c638
JM
1978
1979 return type;
1980}
1981
6e2a9270
VP
1982/* Return the type of the value that's stored in VAR,
1983 or that would have being stored there if the
1984 value were accessible.
1985
1986 This differs from VAR->type in that VAR->type is always
1987 the true type of the expession in the source language.
1988 The return value of this function is the type we're
1989 actually storing in varobj, and using for displaying
1990 the values and for comparing previous and new values.
1991
1992 For example, top-level references are always stripped. */
1993static struct type *
1994get_value_type (struct varobj *var)
1995{
1996 struct type *type;
1997
1998 if (var->value)
1999 type = value_type (var->value);
2000 else
2001 type = var->type;
2002
2003 type = check_typedef (type);
2004
2005 if (TYPE_CODE (type) == TYPE_CODE_REF)
2006 type = get_target_type (type);
2007
2008 type = check_typedef (type);
2009
2010 return type;
2011}
2012
8b93c638 2013/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
2014 past typedefs, just like get_type ().
2015
2016 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2017 except within get_target_type and get_type. */
8b93c638 2018static struct type *
fba45db2 2019get_target_type (struct type *type)
8b93c638
JM
2020{
2021 if (type != NULL)
2022 {
2023 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
2024 if (type != NULL)
2025 type = check_typedef (type);
8b93c638
JM
2026 }
2027
2028 return type;
2029}
2030
2031/* What is the default display for this variable? We assume that
2032 everything is "natural". Any exceptions? */
2033static enum varobj_display_formats
fba45db2 2034variable_default_display (struct varobj *var)
8b93c638
JM
2035{
2036 return FORMAT_NATURAL;
2037}
2038
8b93c638
JM
2039/* FIXME: The following should be generic for any pointer */
2040static void
fba45db2 2041cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2042{
2043 struct cpstack *s;
2044
2045 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2046 s->name = name;
2047 s->next = *pstack;
2048 *pstack = s;
2049}
2050
2051/* FIXME: The following should be generic for any pointer */
2052static char *
fba45db2 2053cppop (struct cpstack **pstack)
8b93c638
JM
2054{
2055 struct cpstack *s;
2056 char *v;
2057
2058 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2059 return NULL;
2060
2061 s = *pstack;
2062 v = s->name;
2063 *pstack = (*pstack)->next;
b8c9b27d 2064 xfree (s);
8b93c638
JM
2065
2066 return v;
2067}
2068\f
2069/*
2070 * Language-dependencies
2071 */
2072
2073/* Common entry points */
2074
2075/* Get the language of variable VAR. */
2076static enum varobj_languages
fba45db2 2077variable_language (struct varobj *var)
8b93c638
JM
2078{
2079 enum varobj_languages lang;
2080
2081 switch (var->root->exp->language_defn->la_language)
2082 {
2083 default:
2084 case language_c:
2085 lang = vlang_c;
2086 break;
2087 case language_cplus:
2088 lang = vlang_cplus;
2089 break;
2090 case language_java:
2091 lang = vlang_java;
2092 break;
2093 }
2094
2095 return lang;
2096}
2097
2098/* Return the number of children for a given variable.
2099 The result of this function is defined by the language
2100 implementation. The number of children returned by this function
2101 is the number of children that the user will see in the variable
2102 display. */
2103static int
fba45db2 2104number_of_children (struct varobj *var)
8b93c638
JM
2105{
2106 return (*var->root->lang->number_of_children) (var);;
2107}
2108
2109/* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2110static char *
fba45db2 2111name_of_variable (struct varobj *var)
8b93c638
JM
2112{
2113 return (*var->root->lang->name_of_variable) (var);
2114}
2115
2116/* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2117static char *
fba45db2 2118name_of_child (struct varobj *var, int index)
8b93c638
JM
2119{
2120 return (*var->root->lang->name_of_child) (var, index);
2121}
2122
a5defcdc
VP
2123/* What is the ``struct value *'' of the root variable VAR?
2124 For floating variable object, evaluation can get us a value
2125 of different type from what is stored in varobj already. In
2126 that case:
2127 - *type_changed will be set to 1
2128 - old varobj will be freed, and new one will be
2129 created, with the same name.
2130 - *var_handle will be set to the new varobj
2131 Otherwise, *type_changed will be set to 0. */
30b28db1 2132static struct value *
fba45db2 2133value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2134{
73a93a32
JI
2135 struct varobj *var;
2136
2137 if (var_handle == NULL)
2138 return NULL;
2139
2140 var = *var_handle;
2141
2142 /* This should really be an exception, since this should
2143 only get called with a root variable. */
2144
b2c2bd75 2145 if (!is_root_p (var))
73a93a32
JI
2146 return NULL;
2147
a5defcdc 2148 if (var->root->floating)
73a93a32
JI
2149 {
2150 struct varobj *tmp_var;
2151 char *old_type, *new_type;
6225abfa 2152
73a93a32
JI
2153 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2154 USE_SELECTED_FRAME);
2155 if (tmp_var == NULL)
2156 {
2157 return NULL;
2158 }
6225abfa 2159 old_type = varobj_get_type (var);
73a93a32 2160 new_type = varobj_get_type (tmp_var);
72330bd6 2161 if (strcmp (old_type, new_type) == 0)
73a93a32 2162 {
fcacd99f
VP
2163 /* The expression presently stored inside var->root->exp
2164 remembers the locations of local variables relatively to
2165 the frame where the expression was created (in DWARF location
2166 button, for example). Naturally, those locations are not
2167 correct in other frames, so update the expression. */
2168
2169 struct expression *tmp_exp = var->root->exp;
2170 var->root->exp = tmp_var->root->exp;
2171 tmp_var->root->exp = tmp_exp;
2172
73a93a32
JI
2173 varobj_delete (tmp_var, NULL, 0);
2174 *type_changed = 0;
2175 }
2176 else
2177 {
1b36a34b 2178 tmp_var->obj_name = xstrdup (var->obj_name);
a5defcdc
VP
2179 varobj_delete (var, NULL, 0);
2180
73a93a32
JI
2181 install_variable (tmp_var);
2182 *var_handle = tmp_var;
705da579 2183 var = *var_handle;
73a93a32
JI
2184 *type_changed = 1;
2185 }
74dddad3
MS
2186 xfree (old_type);
2187 xfree (new_type);
73a93a32
JI
2188 }
2189 else
2190 {
2191 *type_changed = 0;
2192 }
2193
2194 return (*var->root->lang->value_of_root) (var_handle);
8b93c638
JM
2195}
2196
30b28db1
AC
2197/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2198static struct value *
fba45db2 2199value_of_child (struct varobj *parent, int index)
8b93c638 2200{
30b28db1 2201 struct value *value;
8b93c638
JM
2202
2203 value = (*parent->root->lang->value_of_child) (parent, index);
2204
8b93c638
JM
2205 return value;
2206}
2207
8b93c638
JM
2208/* GDB already has a command called "value_of_variable". Sigh. */
2209static char *
de051565 2210my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2211{
8756216b 2212 if (var->root->is_valid)
de051565 2213 return (*var->root->lang->value_of_variable) (var, format);
8756216b
DP
2214 else
2215 return NULL;
8b93c638
JM
2216}
2217
85265413 2218static char *
b6313243
TT
2219value_get_print_value (struct value *value, enum varobj_display_formats format,
2220 PyObject *value_formatter)
85265413
NR
2221{
2222 long dummy;
57e66780
DJ
2223 struct ui_file *stb;
2224 struct cleanup *old_chain;
b6313243 2225 char *thevalue = NULL;
79a45b7d 2226 struct value_print_options opts;
57e66780
DJ
2227
2228 if (value == NULL)
2229 return NULL;
2230
b6313243
TT
2231#if HAVE_PYTHON
2232 {
2233 PyGILState_STATE state = PyGILState_Ensure ();
2234 if (value_formatter && PyObject_HasAttr (value_formatter,
2235 gdbpy_to_string_cst))
2236 {
2237 char *hint;
2238 struct value *replacement;
2239 int string_print = 0;
2240
2241 hint = gdbpy_get_display_hint (value_formatter);
2242 if (hint)
2243 {
2244 if (!strcmp (hint, "string"))
2245 string_print = 1;
2246 xfree (hint);
2247 }
2248
2249 thevalue = apply_varobj_pretty_printer (value_formatter,
2250 &replacement);
2251 if (thevalue && !string_print)
2252 {
2253 PyGILState_Release (state);
2254 return thevalue;
2255 }
2256 if (replacement)
2257 value = replacement;
2258 }
2259 PyGILState_Release (state);
2260 }
2261#endif
2262
57e66780
DJ
2263 stb = mem_fileopen ();
2264 old_chain = make_cleanup_ui_file_delete (stb);
2265
79a45b7d
TT
2266 get_formatted_print_options (&opts, format_code[(int) format]);
2267 opts.deref_ref = 0;
b6313243
TT
2268 opts.raw = 1;
2269 if (thevalue)
2270 {
2271 make_cleanup (xfree, thevalue);
2272 LA_PRINT_STRING (stb, builtin_type (current_gdbarch)->builtin_char,
2273 (gdb_byte *) thevalue, strlen (thevalue),
2274 0, &opts);
2275 }
2276 else
2277 common_val_print (value, stb, 0, &opts, current_language);
85265413 2278 thevalue = ui_file_xstrdup (stb, &dummy);
57e66780 2279
85265413
NR
2280 do_cleanups (old_chain);
2281 return thevalue;
2282}
2283
340a7723
NR
2284int
2285varobj_editable_p (struct varobj *var)
2286{
2287 struct type *type;
2288 struct value *value;
2289
2290 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2291 return 0;
2292
2293 type = get_value_type (var);
2294
2295 switch (TYPE_CODE (type))
2296 {
2297 case TYPE_CODE_STRUCT:
2298 case TYPE_CODE_UNION:
2299 case TYPE_CODE_ARRAY:
2300 case TYPE_CODE_FUNC:
2301 case TYPE_CODE_METHOD:
2302 return 0;
2303 break;
2304
2305 default:
2306 return 1;
2307 break;
2308 }
2309}
2310
acd65feb
VP
2311/* Return non-zero if changes in value of VAR
2312 must be detected and reported by -var-update.
2313 Return zero is -var-update should never report
2314 changes of such values. This makes sense for structures
2315 (since the changes in children values will be reported separately),
2316 or for artifical objects (like 'public' pseudo-field in C++).
2317
2318 Return value of 0 means that gdb need not call value_fetch_lazy
2319 for the value of this variable object. */
8b93c638 2320static int
b2c2bd75 2321varobj_value_is_changeable_p (struct varobj *var)
8b93c638
JM
2322{
2323 int r;
2324 struct type *type;
2325
2326 if (CPLUS_FAKE_CHILD (var))
2327 return 0;
2328
6e2a9270 2329 type = get_value_type (var);
8b93c638
JM
2330
2331 switch (TYPE_CODE (type))
2332 {
72330bd6
AC
2333 case TYPE_CODE_STRUCT:
2334 case TYPE_CODE_UNION:
2335 case TYPE_CODE_ARRAY:
2336 r = 0;
2337 break;
8b93c638 2338
72330bd6
AC
2339 default:
2340 r = 1;
8b93c638
JM
2341 }
2342
2343 return r;
2344}
2345
5a413362
VP
2346/* Return 1 if that varobj is floating, that is is always evaluated in the
2347 selected frame, and not bound to thread/frame. Such variable objects
2348 are created using '@' as frame specifier to -var-create. */
2349int
2350varobj_floating_p (struct varobj *var)
2351{
2352 return var->root->floating;
2353}
2354
2024f65a
VP
2355/* Given the value and the type of a variable object,
2356 adjust the value and type to those necessary
2357 for getting children of the variable object.
2358 This includes dereferencing top-level references
2359 to all types and dereferencing pointers to
2360 structures.
2361
2362 Both TYPE and *TYPE should be non-null. VALUE
2363 can be null if we want to only translate type.
2364 *VALUE can be null as well -- if the parent
02142340
VP
2365 value is not known.
2366
2367 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
b6313243 2368 depending on whether pointer was dereferenced
02142340 2369 in this function. */
2024f65a
VP
2370static void
2371adjust_value_for_child_access (struct value **value,
02142340
VP
2372 struct type **type,
2373 int *was_ptr)
2024f65a
VP
2374{
2375 gdb_assert (type && *type);
2376
02142340
VP
2377 if (was_ptr)
2378 *was_ptr = 0;
2379
2024f65a
VP
2380 *type = check_typedef (*type);
2381
2382 /* The type of value stored in varobj, that is passed
2383 to us, is already supposed to be
2384 reference-stripped. */
2385
2386 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2387
2388 /* Pointers to structures are treated just like
2389 structures when accessing children. Don't
2390 dererences pointers to other types. */
2391 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2392 {
2393 struct type *target_type = get_target_type (*type);
2394 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2395 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2396 {
2397 if (value && *value)
3f4178d6
DJ
2398 {
2399 int success = gdb_value_ind (*value, value);
2400 if (!success)
2401 *value = NULL;
2402 }
2024f65a 2403 *type = target_type;
02142340
VP
2404 if (was_ptr)
2405 *was_ptr = 1;
2024f65a
VP
2406 }
2407 }
2408
2409 /* The 'get_target_type' function calls check_typedef on
2410 result, so we can immediately check type code. No
2411 need to call check_typedef here. */
2412}
2413
8b93c638
JM
2414/* C */
2415static int
fba45db2 2416c_number_of_children (struct varobj *var)
8b93c638 2417{
2024f65a
VP
2418 struct type *type = get_value_type (var);
2419 int children = 0;
8b93c638 2420 struct type *target;
8b93c638 2421
02142340 2422 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638 2423 target = get_target_type (type);
8b93c638
JM
2424
2425 switch (TYPE_CODE (type))
2426 {
2427 case TYPE_CODE_ARRAY:
2428 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 2429 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
2430 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2431 else
74a44383
DJ
2432 /* If we don't know how many elements there are, don't display
2433 any. */
2434 children = 0;
8b93c638
JM
2435 break;
2436
2437 case TYPE_CODE_STRUCT:
2438 case TYPE_CODE_UNION:
2439 children = TYPE_NFIELDS (type);
2440 break;
2441
2442 case TYPE_CODE_PTR:
2024f65a
VP
2443 /* The type here is a pointer to non-struct. Typically, pointers
2444 have one child, except for function ptrs, which have no children,
2445 and except for void*, as we don't know what to show.
2446
0755e6c1
FN
2447 We can show char* so we allow it to be dereferenced. If you decide
2448 to test for it, please mind that a little magic is necessary to
2449 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2450 TYPE_NAME == "char" */
2024f65a
VP
2451 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2452 || TYPE_CODE (target) == TYPE_CODE_VOID)
2453 children = 0;
2454 else
2455 children = 1;
8b93c638
JM
2456 break;
2457
2458 default:
2459 /* Other types have no children */
2460 break;
2461 }
2462
2463 return children;
2464}
2465
2466static char *
fba45db2 2467c_name_of_variable (struct varobj *parent)
8b93c638 2468{
1b36a34b 2469 return xstrdup (parent->name);
8b93c638
JM
2470}
2471
bbec2603
VP
2472/* Return the value of element TYPE_INDEX of a structure
2473 value VALUE. VALUE's type should be a structure,
2474 or union, or a typedef to struct/union.
2475
2476 Returns NULL if getting the value fails. Never throws. */
2477static struct value *
2478value_struct_element_index (struct value *value, int type_index)
8b93c638 2479{
bbec2603
VP
2480 struct value *result = NULL;
2481 volatile struct gdb_exception e;
8b93c638 2482
bbec2603
VP
2483 struct type *type = value_type (value);
2484 type = check_typedef (type);
2485
2486 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2487 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 2488
bbec2603
VP
2489 TRY_CATCH (e, RETURN_MASK_ERROR)
2490 {
d6a843b5 2491 if (field_is_static (&TYPE_FIELD (type, type_index)))
bbec2603
VP
2492 result = value_static_field (type, type_index);
2493 else
2494 result = value_primitive_field (value, 0, type_index, type);
2495 }
2496 if (e.reason < 0)
2497 {
2498 return NULL;
2499 }
2500 else
2501 {
2502 return result;
2503 }
2504}
2505
2506/* Obtain the information about child INDEX of the variable
2507 object PARENT.
2508 If CNAME is not null, sets *CNAME to the name of the child relative
2509 to the parent.
2510 If CVALUE is not null, sets *CVALUE to the value of the child.
2511 If CTYPE is not null, sets *CTYPE to the type of the child.
2512
2513 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2514 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2515 to NULL. */
2516static void
2517c_describe_child (struct varobj *parent, int index,
02142340
VP
2518 char **cname, struct value **cvalue, struct type **ctype,
2519 char **cfull_expression)
bbec2603
VP
2520{
2521 struct value *value = parent->value;
2024f65a 2522 struct type *type = get_value_type (parent);
02142340
VP
2523 char *parent_expression = NULL;
2524 int was_ptr;
bbec2603
VP
2525
2526 if (cname)
2527 *cname = NULL;
2528 if (cvalue)
2529 *cvalue = NULL;
2530 if (ctype)
2531 *ctype = NULL;
02142340
VP
2532 if (cfull_expression)
2533 {
2534 *cfull_expression = NULL;
2535 parent_expression = varobj_get_path_expr (parent);
2536 }
2537 adjust_value_for_child_access (&value, &type, &was_ptr);
bbec2603 2538
8b93c638
JM
2539 switch (TYPE_CODE (type))
2540 {
2541 case TYPE_CODE_ARRAY:
bbec2603
VP
2542 if (cname)
2543 *cname = xstrprintf ("%d", index
2544 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2545
2546 if (cvalue && value)
2547 {
2548 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2549 struct value *indval =
6d84d3d8 2550 value_from_longest (builtin_type_int32, (LONGEST) real_index);
bbec2603
VP
2551 gdb_value_subscript (value, indval, cvalue);
2552 }
2553
2554 if (ctype)
2555 *ctype = get_target_type (type);
2556
02142340
VP
2557 if (cfull_expression)
2558 *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression,
2559 index
2560 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2561
2562
8b93c638
JM
2563 break;
2564
2565 case TYPE_CODE_STRUCT:
2566 case TYPE_CODE_UNION:
bbec2603 2567 if (cname)
1b36a34b 2568 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
bbec2603
VP
2569
2570 if (cvalue && value)
2571 {
2572 /* For C, varobj index is the same as type index. */
2573 *cvalue = value_struct_element_index (value, index);
2574 }
2575
2576 if (ctype)
2577 *ctype = TYPE_FIELD_TYPE (type, index);
2578
02142340
VP
2579 if (cfull_expression)
2580 {
2581 char *join = was_ptr ? "->" : ".";
2582 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2583 TYPE_FIELD_NAME (type, index));
2584 }
2585
8b93c638
JM
2586 break;
2587
2588 case TYPE_CODE_PTR:
bbec2603
VP
2589 if (cname)
2590 *cname = xstrprintf ("*%s", parent->name);
8b93c638 2591
bbec2603 2592 if (cvalue && value)
3f4178d6
DJ
2593 {
2594 int success = gdb_value_ind (value, cvalue);
2595 if (!success)
2596 *cvalue = NULL;
2597 }
bbec2603 2598
2024f65a
VP
2599 /* Don't use get_target_type because it calls
2600 check_typedef and here, we want to show the true
2601 declared type of the variable. */
bbec2603 2602 if (ctype)
2024f65a 2603 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
2604
2605 if (cfull_expression)
2606 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 2607
8b93c638
JM
2608 break;
2609
2610 default:
2611 /* This should not happen */
bbec2603
VP
2612 if (cname)
2613 *cname = xstrdup ("???");
02142340
VP
2614 if (cfull_expression)
2615 *cfull_expression = xstrdup ("???");
bbec2603 2616 /* Don't set value and type, we don't know then. */
8b93c638 2617 }
bbec2603 2618}
8b93c638 2619
bbec2603
VP
2620static char *
2621c_name_of_child (struct varobj *parent, int index)
2622{
2623 char *name;
02142340 2624 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
2625 return name;
2626}
2627
02142340
VP
2628static char *
2629c_path_expr_of_child (struct varobj *child)
2630{
2631 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2632 &child->path_expr);
2633 return child->path_expr;
2634}
2635
c5b48eac
VP
2636/* If frame associated with VAR can be found, switch
2637 to it and return 1. Otherwise, return 0. */
2638static int
2639check_scope (struct varobj *var)
2640{
2641 struct frame_info *fi;
2642 int scope;
2643
2644 fi = frame_find_by_id (var->root->frame);
2645 scope = fi != NULL;
2646
2647 if (fi)
2648 {
2649 CORE_ADDR pc = get_frame_pc (fi);
2650 if (pc < BLOCK_START (var->root->valid_block) ||
2651 pc >= BLOCK_END (var->root->valid_block))
2652 scope = 0;
2653 else
2654 select_frame (fi);
2655 }
2656 return scope;
2657}
2658
30b28db1 2659static struct value *
fba45db2 2660c_value_of_root (struct varobj **var_handle)
8b93c638 2661{
5e572bb4 2662 struct value *new_val = NULL;
73a93a32 2663 struct varobj *var = *var_handle;
8b93c638 2664 struct frame_info *fi;
c5b48eac 2665 int within_scope = 0;
6208b47d
VP
2666 struct cleanup *back_to;
2667
73a93a32 2668 /* Only root variables can be updated... */
b2c2bd75 2669 if (!is_root_p (var))
73a93a32
JI
2670 /* Not a root var */
2671 return NULL;
2672
4f8d22e3 2673 back_to = make_cleanup_restore_current_thread ();
72330bd6 2674
8b93c638 2675 /* Determine whether the variable is still around. */
a5defcdc 2676 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 2677 within_scope = 1;
c5b48eac
VP
2678 else if (var->root->thread_id == 0)
2679 {
2680 /* The program was single-threaded when the variable object was
2681 created. Technically, it's possible that the program became
2682 multi-threaded since then, but we don't support such
2683 scenario yet. */
2684 within_scope = check_scope (var);
2685 }
8b93c638
JM
2686 else
2687 {
c5b48eac
VP
2688 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2689 if (in_thread_list (ptid))
d2353924 2690 {
c5b48eac
VP
2691 switch_to_thread (ptid);
2692 within_scope = check_scope (var);
2693 }
8b93c638 2694 }
72330bd6 2695
8b93c638
JM
2696 if (within_scope)
2697 {
73a93a32 2698 /* We need to catch errors here, because if evaluate
85d93f1d
VP
2699 expression fails we want to just return NULL. */
2700 gdb_evaluate_expression (var->root->exp, &new_val);
8b93c638
JM
2701 return new_val;
2702 }
2703
6208b47d
VP
2704 do_cleanups (back_to);
2705
8b93c638
JM
2706 return NULL;
2707}
2708
30b28db1 2709static struct value *
fba45db2 2710c_value_of_child (struct varobj *parent, int index)
8b93c638 2711{
bbec2603 2712 struct value *value = NULL;
02142340 2713 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
2714
2715 return value;
2716}
2717
2718static struct type *
fba45db2 2719c_type_of_child (struct varobj *parent, int index)
8b93c638 2720{
bbec2603 2721 struct type *type = NULL;
02142340 2722 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
2723 return type;
2724}
2725
8b93c638 2726static char *
de051565 2727c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2728{
14b3d9c9
JB
2729 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2730 it will print out its children instead of "{...}". So we need to
2731 catch that case explicitly. */
2732 struct type *type = get_type (var);
e64d9b3d 2733
b6313243
TT
2734 /* If we have a custom formatter, return whatever string it has
2735 produced. */
2736 if (var->pretty_printer && var->print_value)
2737 return xstrdup (var->print_value);
2738
14b3d9c9
JB
2739 /* Strip top-level references. */
2740 while (TYPE_CODE (type) == TYPE_CODE_REF)
2741 type = check_typedef (TYPE_TARGET_TYPE (type));
2742
2743 switch (TYPE_CODE (type))
8b93c638
JM
2744 {
2745 case TYPE_CODE_STRUCT:
2746 case TYPE_CODE_UNION:
2747 return xstrdup ("{...}");
2748 /* break; */
2749
2750 case TYPE_CODE_ARRAY:
2751 {
e64d9b3d 2752 char *number;
b435e160 2753 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 2754 return (number);
8b93c638
JM
2755 }
2756 /* break; */
2757
2758 default:
2759 {
575bbeb6
KS
2760 if (var->value == NULL)
2761 {
2762 /* This can happen if we attempt to get the value of a struct
2763 member when the parent is an invalid pointer. This is an
2764 error condition, so we should tell the caller. */
2765 return NULL;
2766 }
2767 else
2768 {
25d5ea92
VP
2769 if (var->not_fetched && value_lazy (var->value))
2770 /* Frozen variable and no value yet. We don't
2771 implicitly fetch the value. MI response will
2772 use empty string for the value, which is OK. */
2773 return NULL;
2774
b2c2bd75 2775 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 2776 gdb_assert (!value_lazy (var->value));
de051565
MK
2777
2778 /* If the specified format is the current one,
2779 we can reuse print_value */
2780 if (format == var->format)
2781 return xstrdup (var->print_value);
2782 else
b6313243
TT
2783 return value_get_print_value (var->value, format,
2784 var->pretty_printer);
85265413 2785 }
e64d9b3d 2786 }
8b93c638
JM
2787 }
2788}
2789\f
2790
2791/* C++ */
2792
2793static int
fba45db2 2794cplus_number_of_children (struct varobj *var)
8b93c638
JM
2795{
2796 struct type *type;
2797 int children, dont_know;
2798
2799 dont_know = 1;
2800 children = 0;
2801
2802 if (!CPLUS_FAKE_CHILD (var))
2803 {
2024f65a 2804 type = get_value_type (var);
02142340 2805 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
2806
2807 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 2808 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
2809 {
2810 int kids[3];
2811
2812 cplus_class_num_children (type, kids);
2813 if (kids[v_public] != 0)
2814 children++;
2815 if (kids[v_private] != 0)
2816 children++;
2817 if (kids[v_protected] != 0)
2818 children++;
2819
2820 /* Add any baseclasses */
2821 children += TYPE_N_BASECLASSES (type);
2822 dont_know = 0;
2823
2824 /* FIXME: save children in var */
2825 }
2826 }
2827 else
2828 {
2829 int kids[3];
2830
2024f65a 2831 type = get_value_type (var->parent);
02142340 2832 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
2833
2834 cplus_class_num_children (type, kids);
6e382aa3 2835 if (strcmp (var->name, "public") == 0)
8b93c638 2836 children = kids[v_public];
6e382aa3 2837 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
2838 children = kids[v_private];
2839 else
2840 children = kids[v_protected];
2841 dont_know = 0;
2842 }
2843
2844 if (dont_know)
2845 children = c_number_of_children (var);
2846
2847 return children;
2848}
2849
2850/* Compute # of public, private, and protected variables in this class.
2851 That means we need to descend into all baseclasses and find out
2852 how many are there, too. */
2853static void
1669605f 2854cplus_class_num_children (struct type *type, int children[3])
8b93c638
JM
2855{
2856 int i;
2857
2858 children[v_public] = 0;
2859 children[v_private] = 0;
2860 children[v_protected] = 0;
2861
2862 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2863 {
2864 /* If we have a virtual table pointer, omit it. */
72330bd6 2865 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
8b93c638
JM
2866 continue;
2867
2868 if (TYPE_FIELD_PROTECTED (type, i))
2869 children[v_protected]++;
2870 else if (TYPE_FIELD_PRIVATE (type, i))
2871 children[v_private]++;
2872 else
2873 children[v_public]++;
2874 }
2875}
2876
2877static char *
fba45db2 2878cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
2879{
2880 return c_name_of_variable (parent);
2881}
2882
2024f65a
VP
2883enum accessibility { private_field, protected_field, public_field };
2884
2885/* Check if field INDEX of TYPE has the specified accessibility.
2886 Return 0 if so and 1 otherwise. */
2887static int
2888match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 2889{
2024f65a
VP
2890 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
2891 return 1;
2892 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
2893 return 1;
2894 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
2895 && !TYPE_FIELD_PROTECTED (type, index))
2896 return 1;
2897 else
2898 return 0;
2899}
2900
2901static void
2902cplus_describe_child (struct varobj *parent, int index,
02142340
VP
2903 char **cname, struct value **cvalue, struct type **ctype,
2904 char **cfull_expression)
2024f65a 2905{
348144ba 2906 char *name = NULL;
2024f65a 2907 struct value *value;
8b93c638 2908 struct type *type;
02142340
VP
2909 int was_ptr;
2910 char *parent_expression = NULL;
8b93c638 2911
2024f65a
VP
2912 if (cname)
2913 *cname = NULL;
2914 if (cvalue)
2915 *cvalue = NULL;
2916 if (ctype)
2917 *ctype = NULL;
02142340
VP
2918 if (cfull_expression)
2919 *cfull_expression = NULL;
2024f65a 2920
8b93c638
JM
2921 if (CPLUS_FAKE_CHILD (parent))
2922 {
2024f65a
VP
2923 value = parent->parent->value;
2924 type = get_value_type (parent->parent);
02142340
VP
2925 if (cfull_expression)
2926 parent_expression = varobj_get_path_expr (parent->parent);
8b93c638
JM
2927 }
2928 else
2024f65a
VP
2929 {
2930 value = parent->value;
2931 type = get_value_type (parent);
02142340
VP
2932 if (cfull_expression)
2933 parent_expression = varobj_get_path_expr (parent);
2024f65a 2934 }
8b93c638 2935
02142340 2936 adjust_value_for_child_access (&value, &type, &was_ptr);
2024f65a
VP
2937
2938 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 2939 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 2940 {
02142340 2941 char *join = was_ptr ? "->" : ".";
8b93c638
JM
2942 if (CPLUS_FAKE_CHILD (parent))
2943 {
6e382aa3
JJ
2944 /* The fields of the class type are ordered as they
2945 appear in the class. We are given an index for a
2946 particular access control type ("public","protected",
2947 or "private"). We must skip over fields that don't
2948 have the access control we are looking for to properly
2949 find the indexed field. */
2950 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 2951 enum accessibility acc = public_field;
6e382aa3 2952 if (strcmp (parent->name, "private") == 0)
2024f65a 2953 acc = private_field;
6e382aa3 2954 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
2955 acc = protected_field;
2956
2957 while (index >= 0)
6e382aa3 2958 {
2024f65a
VP
2959 if (TYPE_VPTR_BASETYPE (type) == type
2960 && type_index == TYPE_VPTR_FIELDNO (type))
2961 ; /* ignore vptr */
2962 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
2963 --index;
2964 ++type_index;
6e382aa3 2965 }
2024f65a
VP
2966 --type_index;
2967
2968 if (cname)
2969 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
2970
2971 if (cvalue && value)
2972 *cvalue = value_struct_element_index (value, type_index);
2973
2974 if (ctype)
2975 *ctype = TYPE_FIELD_TYPE (type, type_index);
02142340
VP
2976
2977 if (cfull_expression)
2978 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
2979 join,
2980 TYPE_FIELD_NAME (type, type_index));
2024f65a
VP
2981 }
2982 else if (index < TYPE_N_BASECLASSES (type))
2983 {
2984 /* This is a baseclass. */
2985 if (cname)
2986 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2987
2988 if (cvalue && value)
6e382aa3 2989 {
2024f65a 2990 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
02142340 2991 release_value (*cvalue);
6e382aa3
JJ
2992 }
2993
2024f65a
VP
2994 if (ctype)
2995 {
2996 *ctype = TYPE_FIELD_TYPE (type, index);
2997 }
02142340
VP
2998
2999 if (cfull_expression)
3000 {
3001 char *ptr = was_ptr ? "*" : "";
3002 /* Cast the parent to the base' type. Note that in gdb,
3003 expression like
3004 (Base1)d
3005 will create an lvalue, for all appearences, so we don't
3006 need to use more fancy:
3007 *(Base1*)(&d)
3008 construct. */
3009 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3010 ptr,
3011 TYPE_FIELD_NAME (type, index),
3012 ptr,
3013 parent_expression);
3014 }
8b93c638 3015 }
8b93c638
JM
3016 else
3017 {
348144ba 3018 char *access = NULL;
6e382aa3 3019 int children[3];
2024f65a 3020 cplus_class_num_children (type, children);
6e382aa3 3021
8b93c638 3022 /* Everything beyond the baseclasses can
6e382aa3
JJ
3023 only be "public", "private", or "protected"
3024
3025 The special "fake" children are always output by varobj in
3026 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
3027 index -= TYPE_N_BASECLASSES (type);
3028 switch (index)
3029 {
3030 case 0:
6e382aa3 3031 if (children[v_public] > 0)
2024f65a 3032 access = "public";
6e382aa3 3033 else if (children[v_private] > 0)
2024f65a 3034 access = "private";
6e382aa3 3035 else
2024f65a 3036 access = "protected";
6e382aa3 3037 break;
8b93c638 3038 case 1:
6e382aa3 3039 if (children[v_public] > 0)
8b93c638 3040 {
6e382aa3 3041 if (children[v_private] > 0)
2024f65a 3042 access = "private";
6e382aa3 3043 else
2024f65a 3044 access = "protected";
8b93c638 3045 }
6e382aa3 3046 else if (children[v_private] > 0)
2024f65a 3047 access = "protected";
6e382aa3 3048 break;
8b93c638 3049 case 2:
6e382aa3 3050 /* Must be protected */
2024f65a 3051 access = "protected";
6e382aa3 3052 break;
8b93c638
JM
3053 default:
3054 /* error! */
3055 break;
3056 }
348144ba
MS
3057
3058 gdb_assert (access);
2024f65a
VP
3059 if (cname)
3060 *cname = xstrdup (access);
8b93c638 3061
02142340 3062 /* Value and type and full expression are null here. */
2024f65a 3063 }
8b93c638 3064 }
8b93c638
JM
3065 else
3066 {
02142340 3067 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
3068 }
3069}
8b93c638 3070
2024f65a
VP
3071static char *
3072cplus_name_of_child (struct varobj *parent, int index)
3073{
3074 char *name = NULL;
02142340 3075 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3076 return name;
3077}
3078
02142340
VP
3079static char *
3080cplus_path_expr_of_child (struct varobj *child)
3081{
3082 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3083 &child->path_expr);
3084 return child->path_expr;
3085}
3086
30b28db1 3087static struct value *
fba45db2 3088cplus_value_of_root (struct varobj **var_handle)
8b93c638 3089{
73a93a32 3090 return c_value_of_root (var_handle);
8b93c638
JM
3091}
3092
30b28db1 3093static struct value *
fba45db2 3094cplus_value_of_child (struct varobj *parent, int index)
8b93c638 3095{
2024f65a 3096 struct value *value = NULL;
02142340 3097 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3098 return value;
3099}
3100
3101static struct type *
fba45db2 3102cplus_type_of_child (struct varobj *parent, int index)
8b93c638 3103{
2024f65a 3104 struct type *type = NULL;
02142340 3105 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3106 return type;
3107}
3108
8b93c638 3109static char *
de051565 3110cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638
JM
3111{
3112
3113 /* If we have one of our special types, don't print out
3114 any value. */
3115 if (CPLUS_FAKE_CHILD (var))
3116 return xstrdup ("");
3117
de051565 3118 return c_value_of_variable (var, format);
8b93c638
JM
3119}
3120\f
3121/* Java */
3122
3123static int
fba45db2 3124java_number_of_children (struct varobj *var)
8b93c638
JM
3125{
3126 return cplus_number_of_children (var);
3127}
3128
3129static char *
fba45db2 3130java_name_of_variable (struct varobj *parent)
8b93c638
JM
3131{
3132 char *p, *name;
3133
3134 name = cplus_name_of_variable (parent);
3135 /* If the name has "-" in it, it is because we
3136 needed to escape periods in the name... */
3137 p = name;
3138
3139 while (*p != '\000')
3140 {
3141 if (*p == '-')
3142 *p = '.';
3143 p++;
3144 }
3145
3146 return name;
3147}
3148
3149static char *
fba45db2 3150java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
3151{
3152 char *name, *p;
3153
3154 name = cplus_name_of_child (parent, index);
3155 /* Escape any periods in the name... */
3156 p = name;
3157
3158 while (*p != '\000')
3159 {
3160 if (*p == '.')
3161 *p = '-';
3162 p++;
3163 }
3164
3165 return name;
3166}
3167
02142340
VP
3168static char *
3169java_path_expr_of_child (struct varobj *child)
3170{
3171 return NULL;
3172}
3173
30b28db1 3174static struct value *
fba45db2 3175java_value_of_root (struct varobj **var_handle)
8b93c638 3176{
73a93a32 3177 return cplus_value_of_root (var_handle);
8b93c638
JM
3178}
3179
30b28db1 3180static struct value *
fba45db2 3181java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
3182{
3183 return cplus_value_of_child (parent, index);
3184}
3185
3186static struct type *
fba45db2 3187java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
3188{
3189 return cplus_type_of_child (parent, index);
3190}
3191
8b93c638 3192static char *
de051565 3193java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3194{
de051565 3195 return cplus_value_of_variable (var, format);
8b93c638
JM
3196}
3197\f
3198extern void _initialize_varobj (void);
3199void
3200_initialize_varobj (void)
3201{
3202 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3203
3204 varobj_table = xmalloc (sizeof_table);
3205 memset (varobj_table, 0, sizeof_table);
3206
85c07804
AC
3207 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3208 &varobjdebug, _("\
3209Set varobj debugging."), _("\
3210Show varobj debugging."), _("\
3211When non-zero, varobj debugging is enabled."),
3212 NULL,
920d2a44 3213 show_varobjdebug,
85c07804 3214 &setlist, &showlist);
8b93c638 3215}
8756216b
DP
3216
3217/* Invalidate the varobjs that are tied to locals and re-create the ones that
3218 are defined on globals.
3219 Invalidated varobjs will be always printed in_scope="invalid". */
2dbd25e5 3220
8756216b
DP
3221void
3222varobj_invalidate (void)
3223{
3224 struct varobj **all_rootvarobj;
3225 struct varobj **varp;
3226
3227 if (varobj_list (&all_rootvarobj) > 0)
2dbd25e5
JK
3228 {
3229 varp = all_rootvarobj;
3230 while (*varp != NULL)
3231 {
3232 /* Floating varobjs are reparsed on each stop, so we don't care if
f4a34a08
JK
3233 the presently parsed expression refers to something that's gone.
3234 */
2dbd25e5
JK
3235 if ((*varp)->root->floating)
3236 continue;
3237
3238 /* global var must be re-evaluated. */
3239 if ((*varp)->root->valid_block == NULL)
3240 {
3241 struct varobj *tmp_var;
3242
f4a34a08
JK
3243 /* Try to create a varobj with same expression. If we succeed
3244 replace the old varobj, otherwise invalidate it. */
3245 tmp_var = varobj_create (NULL, (*varp)->name, (CORE_ADDR) 0,
3246 USE_CURRENT_FRAME);
2dbd25e5
JK
3247 if (tmp_var != NULL)
3248 {
3249 tmp_var->obj_name = xstrdup ((*varp)->obj_name);
3250 varobj_delete (*varp, NULL, 0);
3251 install_variable (tmp_var);
3252 }
3253 else
3254 (*varp)->root->is_valid = 0;
3255 }
3256 else /* locals must be invalidated. */
3257 (*varp)->root->is_valid = 0;
3258
3259 varp++;
3260 }
3261 }
f7545552 3262 xfree (all_rootvarobj);
8756216b
DP
3263 return;
3264}
This page took 1.066796 seconds and 4 git commands to generate.