Fix cast to 'gdb_breakpoint *'
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
618f726f 3 Copyright (C) 1999-2016 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
28335dcc 29#include "vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
8b93c638 33
b6313243
TT
34#if HAVE_PYTHON
35#include "python/python.h"
36#include "python/python-internal.h"
50389644
PA
37#else
38typedef int PyObject;
b6313243
TT
39#endif
40
8b93c638
JM
41/* Non-zero if we want to see trace of varobj level stuff. */
42
ccce17b0 43unsigned int varobjdebug = 0;
920d2a44
AC
44static void
45show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
47{
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
49}
8b93c638 50
581e13c1 51/* String representations of gdb's format codes. */
8b93c638 52char *varobj_format_string[] =
1c35a88f 53 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
8b93c638 54
0cc7d26f
TT
55/* True if we want to allow Python-based pretty-printing. */
56static int pretty_printing = 0;
57
58void
59varobj_enable_pretty_printing (void)
60{
61 pretty_printing = 1;
62}
63
8b93c638
JM
64/* Data structures */
65
66/* Every root variable has one of these structures saved in its
581e13c1 67 varobj. Members which must be free'd are noted. */
8b93c638 68struct varobj_root
72330bd6 69{
8b93c638 70
581e13c1 71 /* Alloc'd expression for this parent. */
72330bd6 72 struct expression *exp;
8b93c638 73
581e13c1 74 /* Block for which this expression is valid. */
270140bd 75 const struct block *valid_block;
8b93c638 76
44a67aa7
VP
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
e64d9b3d 79 struct frame_id frame;
8b93c638 80
5d5658a1 81 /* The global thread ID that this varobj_root belongs to. This field
581e13c1 82 is only valid if valid_block is not NULL.
c5b48eac
VP
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id;
87
a5defcdc
VP
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
581e13c1 90 always updated in the specific scope/thread/frame. */
a5defcdc 91 int floating;
73a93a32 92
8756216b
DP
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
95 int is_valid;
96
99ad9427
YQ
97 /* Language-related operations for this variable and its
98 children. */
ca20d462 99 const struct lang_varobj_ops *lang_ops;
8b93c638 100
581e13c1 101 /* The varobj for this root node. */
72330bd6 102 struct varobj *rootvar;
8b93c638 103
72330bd6
AC
104 /* Next root variable */
105 struct varobj_root *next;
106};
8b93c638 107
bb5ce47a 108/* Dynamic part of varobj. */
8b93c638 109
bb5ce47a
YQ
110struct varobj_dynamic
111{
b6313243
TT
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 int children_requested;
117
0cc7d26f
TT
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
122
b6313243
TT
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
0cc7d26f
TT
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
e5250216 129 struct varobj_iter *child_iter;
0cc7d26f
TT
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
e5250216 136 varobj_item *saved_item;
72330bd6 137};
8b93c638 138
8b93c638
JM
139/* A list of varobjs */
140
141struct vlist
72330bd6
AC
142{
143 struct varobj *var;
144 struct vlist *next;
145};
8b93c638
JM
146
147/* Private function prototypes */
148
581e13c1 149/* Helper functions for the above subcommands. */
8b93c638 150
30914ca8 151static int delete_variable (struct varobj *, int);
8b93c638 152
30914ca8 153static void delete_variable_1 (int *, struct varobj *, int, int);
8b93c638 154
a14ed312 155static int install_variable (struct varobj *);
8b93c638 156
a14ed312 157static void uninstall_variable (struct varobj *);
8b93c638 158
a14ed312 159static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 160
b6313243 161static struct varobj *
5a2e0d6e
YQ
162create_child_with_value (struct varobj *parent, int index,
163 struct varobj_item *item);
b6313243 164
8b93c638
JM
165/* Utility routines */
166
a14ed312 167static struct varobj *new_variable (void);
8b93c638 168
a14ed312 169static struct varobj *new_root_variable (void);
8b93c638 170
a14ed312 171static void free_variable (struct varobj *var);
8b93c638 172
74b7792f
AC
173static struct cleanup *make_cleanup_free_variable (struct varobj *var);
174
a14ed312 175static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 176
8264ba82
AG
177static int update_type_if_necessary (struct varobj *var,
178 struct value *new_value);
179
acd65feb
VP
180static int install_new_value (struct varobj *var, struct value *value,
181 int initial);
182
581e13c1 183/* Language-specific routines. */
8b93c638 184
b09e2c59 185static int number_of_children (const struct varobj *);
8b93c638 186
b09e2c59 187static char *name_of_variable (const struct varobj *);
8b93c638 188
a14ed312 189static char *name_of_child (struct varobj *, int);
8b93c638 190
30b28db1 191static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 192
c1cc6152 193static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 194
de051565
MK
195static char *my_value_of_variable (struct varobj *var,
196 enum varobj_display_formats format);
8b93c638 197
b09e2c59 198static int is_root_p (const struct varobj *var);
8b93c638 199
9a1edae6 200static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 201 struct varobj_item *item);
b6313243 202
8b93c638
JM
203/* Private data */
204
581e13c1 205/* Mappings of varobj_display_formats enums to gdb's format codes. */
1c35a88f 206static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
8b93c638 207
581e13c1 208/* Header of the list of root variable objects. */
8b93c638 209static struct varobj_root *rootlist;
8b93c638 210
581e13c1 211/* Prime number indicating the number of buckets in the hash table. */
5fa13070 212/* A prime large enough to avoid too many collisions. */
8b93c638
JM
213#define VAROBJ_TABLE_SIZE 227
214
581e13c1 215/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
216static struct vlist **varobj_table;
217
8b93c638
JM
218\f
219
220/* API Implementation */
b2c2bd75 221static int
b09e2c59 222is_root_p (const struct varobj *var)
b2c2bd75
VP
223{
224 return (var->root->rootvar == var);
225}
8b93c638 226
d452c4bc
UW
227#ifdef HAVE_PYTHON
228/* Helper function to install a Python environment suitable for
229 use during operations on VAR. */
e5250216 230struct cleanup *
b09e2c59 231varobj_ensure_python_env (const struct varobj *var)
d452c4bc
UW
232{
233 return ensure_python_env (var->root->exp->gdbarch,
234 var->root->exp->language_defn);
235}
236#endif
237
7d8547c9
AC
238/* Return the full FRAME which corresponds to the given CORE_ADDR
239 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
240
241static struct frame_info *
242find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
243{
244 struct frame_info *frame = NULL;
245
246 if (frame_addr == (CORE_ADDR) 0)
247 return NULL;
248
9d49bdc2
PA
249 for (frame = get_current_frame ();
250 frame != NULL;
251 frame = get_prev_frame (frame))
7d8547c9 252 {
1fac167a
UW
253 /* The CORE_ADDR we get as argument was parsed from a string GDB
254 output as $fp. This output got truncated to gdbarch_addr_bit.
255 Truncate the frame base address in the same manner before
256 comparing it against our argument. */
257 CORE_ADDR frame_base = get_frame_base_address (frame);
258 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 259
1fac167a
UW
260 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
261 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
262
263 if (frame_base == frame_addr)
7d8547c9
AC
264 return frame;
265 }
9d49bdc2
PA
266
267 return NULL;
7d8547c9
AC
268}
269
5fa13070
SM
270/* Creates a varobj (not its children). */
271
8b93c638
JM
272struct varobj *
273varobj_create (char *objname,
72330bd6 274 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
275{
276 struct varobj *var;
8b93c638
JM
277 struct cleanup *old_chain;
278
581e13c1 279 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 280 var = new_root_variable ();
74b7792f 281 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
282
283 if (expression != NULL)
284 {
e4195b40 285 struct frame_info *fi;
35633fef 286 struct frame_id old_id = null_frame_id;
3977b71f 287 const struct block *block;
bbc13ae3 288 const char *p;
e55dccf0 289 struct value *value = NULL;
1bb9788d 290 CORE_ADDR pc;
8b93c638 291
9d49bdc2
PA
292 /* Parse and evaluate the expression, filling in as much of the
293 variable's data as possible. */
294
295 if (has_stack_frames ())
296 {
581e13c1 297 /* Allow creator to specify context of variable. */
9d49bdc2
PA
298 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
299 fi = get_selected_frame (NULL);
300 else
301 /* FIXME: cagney/2002-11-23: This code should be doing a
302 lookup using the frame ID and not just the frame's
303 ``address''. This, of course, means an interface
304 change. However, with out that interface change ISAs,
305 such as the ia64 with its two stacks, won't work.
306 Similar goes for the case where there is a frameless
307 function. */
308 fi = find_frame_addr_in_frame_chain (frame);
309 }
8b93c638 310 else
9d49bdc2 311 fi = NULL;
8b93c638 312
581e13c1 313 /* frame = -2 means always use selected frame. */
73a93a32 314 if (type == USE_SELECTED_FRAME)
a5defcdc 315 var->root->floating = 1;
73a93a32 316
1bb9788d 317 pc = 0;
8b93c638
JM
318 block = NULL;
319 if (fi != NULL)
1bb9788d
TT
320 {
321 block = get_frame_block (fi, 0);
322 pc = get_frame_pc (fi);
323 }
8b93c638
JM
324
325 p = expression;
326 innermost_block = NULL;
73a93a32 327 /* Wrap the call to parse expression, so we can
581e13c1 328 return a sensible error. */
492d29ea 329 TRY
8e7b59a5 330 {
1bb9788d 331 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
332 }
333
492d29ea 334 CATCH (except, RETURN_MASK_ERROR)
73a93a32 335 {
f748fb40 336 do_cleanups (old_chain);
73a93a32
JI
337 return NULL;
338 }
492d29ea 339 END_CATCH
8b93c638 340
581e13c1 341 /* Don't allow variables to be created for types. */
608b4967
TT
342 if (var->root->exp->elts[0].opcode == OP_TYPE
343 || var->root->exp->elts[0].opcode == OP_TYPEOF
344 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638
JM
345 {
346 do_cleanups (old_chain);
bc8332bb
AC
347 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
348 " as an expression.\n");
8b93c638
JM
349 return NULL;
350 }
351
352 var->format = variable_default_display (var);
353 var->root->valid_block = innermost_block;
1b36a34b 354 var->name = xstrdup (expression);
02142340 355 /* For a root var, the name and the expr are the same. */
1b36a34b 356 var->path_expr = xstrdup (expression);
8b93c638
JM
357
358 /* When the frame is different from the current frame,
359 we must select the appropriate frame before parsing
360 the expression, otherwise the value will not be current.
581e13c1 361 Since select_frame is so benign, just call it for all cases. */
4e22772d 362 if (innermost_block)
8b93c638 363 {
4e22772d
JK
364 /* User could specify explicit FRAME-ADDR which was not found but
365 EXPRESSION is frame specific and we would not be able to evaluate
366 it correctly next time. With VALID_BLOCK set we must also set
367 FRAME and THREAD_ID. */
368 if (fi == NULL)
369 error (_("Failed to find the specified frame"));
370
7a424e99 371 var->root->frame = get_frame_id (fi);
5d5658a1 372 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
35633fef 373 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 374 select_frame (fi);
8b93c638
JM
375 }
376
340a7723 377 /* We definitely need to catch errors here.
8b93c638 378 If evaluate_expression succeeds we got the value we wanted.
581e13c1 379 But if it fails, we still go on with a call to evaluate_type(). */
492d29ea 380 TRY
8e7b59a5
KS
381 {
382 value = evaluate_expression (var->root->exp);
383 }
492d29ea 384 CATCH (except, RETURN_MASK_ERROR)
e55dccf0
VP
385 {
386 /* Error getting the value. Try to at least get the
387 right type. */
388 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 389
e55dccf0
VP
390 var->type = value_type (type_only_value);
391 }
492d29ea 392 END_CATCH
8264ba82 393
492d29ea
PA
394 if (value != NULL)
395 {
396 int real_type_found = 0;
397
398 var->type = value_actual_type (value, 0, &real_type_found);
399 if (real_type_found)
400 value = value_cast (var->type, value);
401 }
acd65feb 402
8b93c638 403 /* Set language info */
ca20d462 404 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 405
d32cafc7
JB
406 install_new_value (var, value, 1 /* Initial assignment */);
407
581e13c1 408 /* Set ourselves as our root. */
8b93c638
JM
409 var->root->rootvar = var;
410
581e13c1 411 /* Reset the selected frame. */
35633fef
JK
412 if (frame_id_p (old_id))
413 select_frame (frame_find_by_id (old_id));
8b93c638
JM
414 }
415
73a93a32 416 /* If the variable object name is null, that means this
581e13c1 417 is a temporary variable, so don't install it. */
73a93a32
JI
418
419 if ((var != NULL) && (objname != NULL))
8b93c638 420 {
1b36a34b 421 var->obj_name = xstrdup (objname);
8b93c638
JM
422
423 /* If a varobj name is duplicated, the install will fail so
581e13c1 424 we must cleanup. */
8b93c638
JM
425 if (!install_variable (var))
426 {
427 do_cleanups (old_chain);
428 return NULL;
429 }
430 }
431
432 discard_cleanups (old_chain);
433 return var;
434}
435
581e13c1 436/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
437
438char *
439varobj_gen_name (void)
440{
441 static int id = 0;
e64d9b3d 442 char *obj_name;
8b93c638 443
581e13c1 444 /* Generate a name for this object. */
8b93c638 445 id++;
b435e160 446 obj_name = xstrprintf ("var%d", id);
8b93c638 447
e64d9b3d 448 return obj_name;
8b93c638
JM
449}
450
61d8f275
JK
451/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
452 error if OBJNAME cannot be found. */
8b93c638
JM
453
454struct varobj *
455varobj_get_handle (char *objname)
456{
457 struct vlist *cv;
458 const char *chp;
459 unsigned int index = 0;
460 unsigned int i = 1;
461
462 for (chp = objname; *chp; chp++)
463 {
464 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
465 }
466
467 cv = *(varobj_table + index);
468 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
469 cv = cv->next;
470
471 if (cv == NULL)
8a3fe4f8 472 error (_("Variable object not found"));
8b93c638
JM
473
474 return cv->var;
475}
476
581e13c1 477/* Given the handle, return the name of the object. */
8b93c638
JM
478
479char *
b09e2c59 480varobj_get_objname (const struct varobj *var)
8b93c638
JM
481{
482 return var->obj_name;
483}
484
ca83fa81
SM
485/* Given the handle, return the expression represented by the object. The
486 result must be freed by the caller. */
8b93c638
JM
487
488char *
b09e2c59 489varobj_get_expression (const struct varobj *var)
8b93c638
JM
490{
491 return name_of_variable (var);
492}
493
30914ca8 494/* See varobj.h. */
8b93c638
JM
495
496int
30914ca8 497varobj_delete (struct varobj *var, int only_children)
8b93c638 498{
30914ca8 499 return delete_variable (var, only_children);
8b93c638
JM
500}
501
d8b65138
JK
502#if HAVE_PYTHON
503
b6313243
TT
504/* Convenience function for varobj_set_visualizer. Instantiate a
505 pretty-printer for a given value. */
506static PyObject *
507instantiate_pretty_printer (PyObject *constructor, struct value *value)
508{
b6313243
TT
509 PyObject *val_obj = NULL;
510 PyObject *printer;
b6313243 511
b6313243 512 val_obj = value_to_value_object (value);
b6313243
TT
513 if (! val_obj)
514 return NULL;
515
516 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
517 Py_DECREF (val_obj);
518 return printer;
b6313243
TT
519}
520
d8b65138
JK
521#endif
522
581e13c1 523/* Set/Get variable object display format. */
8b93c638
JM
524
525enum varobj_display_formats
526varobj_set_display_format (struct varobj *var,
527 enum varobj_display_formats format)
528{
529 switch (format)
530 {
531 case FORMAT_NATURAL:
532 case FORMAT_BINARY:
533 case FORMAT_DECIMAL:
534 case FORMAT_HEXADECIMAL:
535 case FORMAT_OCTAL:
1c35a88f 536 case FORMAT_ZHEXADECIMAL:
8b93c638
JM
537 var->format = format;
538 break;
539
540 default:
541 var->format = variable_default_display (var);
542 }
543
ae7d22a6
VP
544 if (varobj_value_is_changeable_p (var)
545 && var->value && !value_lazy (var->value))
546 {
6c761d9c 547 xfree (var->print_value);
99ad9427
YQ
548 var->print_value = varobj_value_get_print_value (var->value,
549 var->format, var);
ae7d22a6
VP
550 }
551
8b93c638
JM
552 return var->format;
553}
554
555enum varobj_display_formats
b09e2c59 556varobj_get_display_format (const struct varobj *var)
8b93c638
JM
557{
558 return var->format;
559}
560
b6313243 561char *
b09e2c59 562varobj_get_display_hint (const struct varobj *var)
b6313243
TT
563{
564 char *result = NULL;
565
566#if HAVE_PYTHON
0646da15
TT
567 struct cleanup *back_to;
568
569 if (!gdb_python_initialized)
570 return NULL;
571
572 back_to = varobj_ensure_python_env (var);
d452c4bc 573
bb5ce47a
YQ
574 if (var->dynamic->pretty_printer != NULL)
575 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
d452c4bc
UW
576
577 do_cleanups (back_to);
b6313243
TT
578#endif
579
580 return result;
581}
582
0cc7d26f
TT
583/* Return true if the varobj has items after TO, false otherwise. */
584
585int
b09e2c59 586varobj_has_more (const struct varobj *var, int to)
0cc7d26f
TT
587{
588 if (VEC_length (varobj_p, var->children) > to)
589 return 1;
590 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
bb5ce47a 591 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
592}
593
c5b48eac
VP
594/* If the variable object is bound to a specific thread, that
595 is its evaluation can always be done in context of a frame
596 inside that thread, returns GDB id of the thread -- which
581e13c1 597 is always positive. Otherwise, returns -1. */
c5b48eac 598int
b09e2c59 599varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
600{
601 if (var->root->valid_block && var->root->thread_id > 0)
602 return var->root->thread_id;
603 else
604 return -1;
605}
606
25d5ea92
VP
607void
608varobj_set_frozen (struct varobj *var, int frozen)
609{
610 /* When a variable is unfrozen, we don't fetch its value.
611 The 'not_fetched' flag remains set, so next -var-update
612 won't complain.
613
614 We don't fetch the value, because for structures the client
615 should do -var-update anyway. It would be bad to have different
616 client-size logic for structure and other types. */
617 var->frozen = frozen;
618}
619
620int
b09e2c59 621varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
622{
623 return var->frozen;
624}
625
0cc7d26f
TT
626/* A helper function that restricts a range to what is actually
627 available in a VEC. This follows the usual rules for the meaning
628 of FROM and TO -- if either is negative, the entire range is
629 used. */
630
99ad9427
YQ
631void
632varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
0cc7d26f
TT
633{
634 if (*from < 0 || *to < 0)
635 {
636 *from = 0;
637 *to = VEC_length (varobj_p, children);
638 }
639 else
640 {
641 if (*from > VEC_length (varobj_p, children))
642 *from = VEC_length (varobj_p, children);
643 if (*to > VEC_length (varobj_p, children))
644 *to = VEC_length (varobj_p, children);
645 if (*from > *to)
646 *from = *to;
647 }
648}
649
650/* A helper for update_dynamic_varobj_children that installs a new
651 child when needed. */
652
653static void
654install_dynamic_child (struct varobj *var,
655 VEC (varobj_p) **changed,
8264ba82 656 VEC (varobj_p) **type_changed,
fe978cb0 657 VEC (varobj_p) **newobj,
0cc7d26f
TT
658 VEC (varobj_p) **unchanged,
659 int *cchanged,
660 int index,
5a2e0d6e 661 struct varobj_item *item)
0cc7d26f
TT
662{
663 if (VEC_length (varobj_p, var->children) < index + 1)
664 {
665 /* There's no child yet. */
5a2e0d6e 666 struct varobj *child = varobj_add_child (var, item);
a109c7c1 667
fe978cb0 668 if (newobj)
0cc7d26f 669 {
fe978cb0 670 VEC_safe_push (varobj_p, *newobj, child);
0cc7d26f
TT
671 *cchanged = 1;
672 }
673 }
bf8793bb 674 else
0cc7d26f
TT
675 {
676 varobj_p existing = VEC_index (varobj_p, var->children, index);
5a2e0d6e 677 int type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 678
8264ba82
AG
679 if (type_updated)
680 {
681 if (type_changed)
682 VEC_safe_push (varobj_p, *type_changed, existing);
683 }
5a2e0d6e 684 if (install_new_value (existing, item->value, 0))
0cc7d26f 685 {
8264ba82 686 if (!type_updated && changed)
0cc7d26f
TT
687 VEC_safe_push (varobj_p, *changed, existing);
688 }
8264ba82 689 else if (!type_updated && unchanged)
0cc7d26f
TT
690 VEC_safe_push (varobj_p, *unchanged, existing);
691 }
692}
693
576ea091
YQ
694#if HAVE_PYTHON
695
0cc7d26f 696static int
b09e2c59 697dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f
TT
698{
699 struct cleanup *back_to;
bb5ce47a 700 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f
TT
701 int result;
702
0646da15
TT
703 if (!gdb_python_initialized)
704 return 0;
705
0cc7d26f
TT
706 back_to = varobj_ensure_python_env (var);
707 result = PyObject_HasAttr (printer, gdbpy_children_cst);
708 do_cleanups (back_to);
709 return result;
710}
576ea091 711#endif
0cc7d26f 712
e5250216
YQ
713/* A factory for creating dynamic varobj's iterators. Returns an
714 iterator object suitable for iterating over VAR's children. */
715
716static struct varobj_iter *
717varobj_get_iterator (struct varobj *var)
718{
576ea091 719#if HAVE_PYTHON
e5250216
YQ
720 if (var->dynamic->pretty_printer)
721 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 722#endif
e5250216
YQ
723
724 gdb_assert_not_reached (_("\
725requested an iterator from a non-dynamic varobj"));
726}
727
827f100c
YQ
728/* Release and clear VAR's saved item, if any. */
729
730static void
731varobj_clear_saved_item (struct varobj_dynamic *var)
732{
733 if (var->saved_item != NULL)
734 {
735 value_free (var->saved_item->value);
736 xfree (var->saved_item);
737 var->saved_item = NULL;
738 }
739}
0cc7d26f 740
b6313243
TT
741static int
742update_dynamic_varobj_children (struct varobj *var,
743 VEC (varobj_p) **changed,
8264ba82 744 VEC (varobj_p) **type_changed,
fe978cb0 745 VEC (varobj_p) **newobj,
0cc7d26f
TT
746 VEC (varobj_p) **unchanged,
747 int *cchanged,
748 int update_children,
749 int from,
750 int to)
b6313243 751{
b6313243 752 int i;
b6313243 753
b6313243 754 *cchanged = 0;
b6313243 755
bb5ce47a 756 if (update_children || var->dynamic->child_iter == NULL)
b6313243 757 {
e5250216
YQ
758 varobj_iter_delete (var->dynamic->child_iter);
759 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 760
827f100c 761 varobj_clear_saved_item (var->dynamic);
b6313243 762
e5250216 763 i = 0;
b6313243 764
bb5ce47a 765 if (var->dynamic->child_iter == NULL)
827f100c 766 return 0;
b6313243 767 }
0cc7d26f
TT
768 else
769 i = VEC_length (varobj_p, var->children);
b6313243 770
0cc7d26f
TT
771 /* We ask for one extra child, so that MI can report whether there
772 are more children. */
773 for (; to < 0 || i < to + 1; ++i)
b6313243 774 {
827f100c 775 varobj_item *item;
b6313243 776
0cc7d26f 777 /* See if there was a leftover from last time. */
827f100c 778 if (var->dynamic->saved_item != NULL)
0cc7d26f 779 {
bb5ce47a
YQ
780 item = var->dynamic->saved_item;
781 var->dynamic->saved_item = NULL;
0cc7d26f
TT
782 }
783 else
a4c8e806 784 {
e5250216 785 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
786 /* Release vitem->value so its lifetime is not bound to the
787 execution of a command. */
788 if (item != NULL && item->value != NULL)
789 release_value_or_incref (item->value);
a4c8e806 790 }
b6313243 791
e5250216
YQ
792 if (item == NULL)
793 {
794 /* Iteration is done. Remove iterator from VAR. */
795 varobj_iter_delete (var->dynamic->child_iter);
796 var->dynamic->child_iter = NULL;
797 break;
798 }
0cc7d26f
TT
799 /* We don't want to push the extra child on any report list. */
800 if (to < 0 || i < to)
b6313243 801 {
0cc7d26f
TT
802 int can_mention = from < 0 || i >= from;
803
0cc7d26f 804 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 805 can_mention ? type_changed : NULL,
fe978cb0 806 can_mention ? newobj : NULL,
0cc7d26f 807 can_mention ? unchanged : NULL,
5e5ac9a5 808 can_mention ? cchanged : NULL, i,
827f100c
YQ
809 item);
810
811 xfree (item);
b6313243 812 }
0cc7d26f 813 else
b6313243 814 {
bb5ce47a 815 var->dynamic->saved_item = item;
b6313243 816
0cc7d26f
TT
817 /* We want to truncate the child list just before this
818 element. */
819 break;
820 }
b6313243
TT
821 }
822
823 if (i < VEC_length (varobj_p, var->children))
824 {
0cc7d26f 825 int j;
a109c7c1 826
0cc7d26f
TT
827 *cchanged = 1;
828 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
30914ca8 829 varobj_delete (VEC_index (varobj_p, var->children, j), 0);
0cc7d26f 830 VEC_truncate (varobj_p, var->children, i);
b6313243 831 }
0cc7d26f
TT
832
833 /* If there are fewer children than requested, note that the list of
834 children changed. */
835 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
836 *cchanged = 1;
837
b6313243 838 var->num_children = VEC_length (varobj_p, var->children);
b6313243 839
b6313243 840 return 1;
b6313243 841}
25d5ea92 842
8b93c638
JM
843int
844varobj_get_num_children (struct varobj *var)
845{
846 if (var->num_children == -1)
b6313243 847 {
31f628ae 848 if (varobj_is_dynamic_p (var))
0cc7d26f
TT
849 {
850 int dummy;
851
852 /* If we have a dynamic varobj, don't report -1 children.
853 So, try to fetch some children first. */
8264ba82 854 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
855 0, 0, 0);
856 }
857 else
b6313243
TT
858 var->num_children = number_of_children (var);
859 }
8b93c638 860
0cc7d26f 861 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
862}
863
864/* Creates a list of the immediate children of a variable object;
581e13c1 865 the return code is the number of such children or -1 on error. */
8b93c638 866
d56d46f5 867VEC (varobj_p)*
0cc7d26f 868varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 869{
8b93c638 870 char *name;
b6313243
TT
871 int i, children_changed;
872
bb5ce47a 873 var->dynamic->children_requested = 1;
b6313243 874
31f628ae 875 if (varobj_is_dynamic_p (var))
0cc7d26f 876 {
b6313243
TT
877 /* This, in theory, can result in the number of children changing without
878 frontend noticing. But well, calling -var-list-children on the same
879 varobj twice is not something a sane frontend would do. */
8264ba82
AG
880 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
881 &children_changed, 0, 0, *to);
99ad9427 882 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
883 return var->children;
884 }
8b93c638 885
8b93c638
JM
886 if (var->num_children == -1)
887 var->num_children = number_of_children (var);
888
74a44383
DJ
889 /* If that failed, give up. */
890 if (var->num_children == -1)
d56d46f5 891 return var->children;
74a44383 892
28335dcc
VP
893 /* If we're called when the list of children is not yet initialized,
894 allocate enough elements in it. */
895 while (VEC_length (varobj_p, var->children) < var->num_children)
896 VEC_safe_push (varobj_p, var->children, NULL);
897
8b93c638
JM
898 for (i = 0; i < var->num_children; i++)
899 {
d56d46f5 900 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
901
902 if (existing == NULL)
903 {
904 /* Either it's the first call to varobj_list_children for
905 this variable object, and the child was never created,
906 or it was explicitly deleted by the client. */
907 name = name_of_child (var, i);
908 existing = create_child (var, i, name);
909 VEC_replace (varobj_p, var->children, i, existing);
910 }
8b93c638
JM
911 }
912
99ad9427 913 varobj_restrict_range (var->children, from, to);
d56d46f5 914 return var->children;
8b93c638
JM
915}
916
b6313243 917static struct varobj *
5a2e0d6e 918varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 919{
5a2e0d6e 920 varobj_p v = create_child_with_value (var,
b6313243 921 VEC_length (varobj_p, var->children),
5a2e0d6e 922 item);
a109c7c1 923
b6313243 924 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
925 return v;
926}
927
8b93c638 928/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
929 prints on the console. The caller is responsible for freeing the string.
930 */
8b93c638
JM
931
932char *
933varobj_get_type (struct varobj *var)
934{
8ab91b96 935 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
936 NULL, too.)
937 Do not return a type for invalid variables as well. */
938 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
939 return NULL;
940
1a4300e9 941 return type_to_string (var->type);
8b93c638
JM
942}
943
1ecb4ee0
DJ
944/* Obtain the type of an object variable. */
945
946struct type *
b09e2c59 947varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
948{
949 return var->type;
950}
951
85254831
KS
952/* Is VAR a path expression parent, i.e., can it be used to construct
953 a valid path expression? */
954
955static int
b09e2c59 956is_path_expr_parent (const struct varobj *var)
85254831 957{
9a9a7608
AB
958 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
959 return var->root->lang_ops->is_path_expr_parent (var);
960}
85254831 961
9a9a7608
AB
962/* Is VAR a path expression parent, i.e., can it be used to construct
963 a valid path expression? By default we assume any VAR can be a path
964 parent. */
85254831 965
9a9a7608 966int
b09e2c59 967varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608
AB
968{
969 return 1;
85254831
KS
970}
971
972/* Return the path expression parent for VAR. */
973
c1cc6152
SM
974const struct varobj *
975varobj_get_path_expr_parent (const struct varobj *var)
85254831 976{
c1cc6152 977 const struct varobj *parent = var;
85254831
KS
978
979 while (!is_root_p (parent) && !is_path_expr_parent (parent))
980 parent = parent->parent;
981
982 return parent;
983}
984
02142340
VP
985/* Return a pointer to the full rooted expression of varobj VAR.
986 If it has not been computed yet, compute it. */
987char *
c1cc6152 988varobj_get_path_expr (const struct varobj *var)
02142340 989{
2568868e 990 if (var->path_expr == NULL)
02142340
VP
991 {
992 /* For root varobjs, we initialize path_expr
993 when creating varobj, so here it should be
994 child varobj. */
c1cc6152 995 struct varobj *mutable_var = (struct varobj *) var;
02142340 996 gdb_assert (!is_root_p (var));
2568868e 997
c1cc6152 998 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 999 }
2568868e
SM
1000
1001 return var->path_expr;
02142340
VP
1002}
1003
fa4d0c40 1004const struct language_defn *
b09e2c59 1005varobj_get_language (const struct varobj *var)
8b93c638 1006{
fa4d0c40 1007 return var->root->exp->language_defn;
8b93c638
JM
1008}
1009
1010int
b09e2c59 1011varobj_get_attributes (const struct varobj *var)
8b93c638
JM
1012{
1013 int attributes = 0;
1014
340a7723 1015 if (varobj_editable_p (var))
581e13c1 1016 /* FIXME: define masks for attributes. */
8b93c638
JM
1017 attributes |= 0x00000001; /* Editable */
1018
1019 return attributes;
1020}
1021
cde5ef40
YQ
1022/* Return true if VAR is a dynamic varobj. */
1023
0cc7d26f 1024int
b09e2c59 1025varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 1026{
bb5ce47a 1027 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1028}
1029
de051565
MK
1030char *
1031varobj_get_formatted_value (struct varobj *var,
1032 enum varobj_display_formats format)
1033{
1034 return my_value_of_variable (var, format);
1035}
1036
8b93c638
JM
1037char *
1038varobj_get_value (struct varobj *var)
1039{
de051565 1040 return my_value_of_variable (var, var->format);
8b93c638
JM
1041}
1042
1043/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1044 value of the given expression. */
1045/* Note: Invokes functions that can call error(). */
8b93c638
JM
1046
1047int
1048varobj_set_value (struct varobj *var, char *expression)
1049{
34365054 1050 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1051 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1052 We need to first construct a legal expression for this -- ugh! */
1053 /* Does this cover all the bases? */
8b93c638 1054 struct expression *exp;
34365054 1055 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1056 int saved_input_radix = input_radix;
bbc13ae3 1057 const char *s = expression;
8b93c638 1058
340a7723 1059 gdb_assert (varobj_editable_p (var));
8b93c638 1060
581e13c1 1061 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1bb9788d 1062 exp = parse_exp_1 (&s, 0, 0, 0);
492d29ea 1063 TRY
8e7b59a5
KS
1064 {
1065 value = evaluate_expression (exp);
1066 }
1067
492d29ea 1068 CATCH (except, RETURN_MASK_ERROR)
340a7723 1069 {
581e13c1 1070 /* We cannot proceed without a valid expression. */
340a7723
NR
1071 xfree (exp);
1072 return 0;
8b93c638 1073 }
492d29ea 1074 END_CATCH
8b93c638 1075
340a7723
NR
1076 /* All types that are editable must also be changeable. */
1077 gdb_assert (varobj_value_is_changeable_p (var));
1078
1079 /* The value of a changeable variable object must not be lazy. */
1080 gdb_assert (!value_lazy (var->value));
1081
1082 /* Need to coerce the input. We want to check if the
1083 value of the variable object will be different
1084 after assignment, and the first thing value_assign
1085 does is coerce the input.
1086 For example, if we are assigning an array to a pointer variable we
b021a221 1087 should compare the pointer with the array's address, not with the
340a7723
NR
1088 array's content. */
1089 value = coerce_array (value);
1090
8e7b59a5
KS
1091 /* The new value may be lazy. value_assign, or
1092 rather value_contents, will take care of this. */
492d29ea 1093 TRY
8e7b59a5
KS
1094 {
1095 val = value_assign (var->value, value);
1096 }
1097
492d29ea
PA
1098 CATCH (except, RETURN_MASK_ERROR)
1099 {
1100 return 0;
1101 }
1102 END_CATCH
8e7b59a5 1103
340a7723
NR
1104 /* If the value has changed, record it, so that next -var-update can
1105 report this change. If a variable had a value of '1', we've set it
1106 to '333' and then set again to '1', when -var-update will report this
1107 variable as changed -- because the first assignment has set the
1108 'updated' flag. There's no need to optimize that, because return value
1109 of -var-update should be considered an approximation. */
581e13c1 1110 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1111 input_radix = saved_input_radix;
1112 return 1;
8b93c638
JM
1113}
1114
0cc7d26f
TT
1115#if HAVE_PYTHON
1116
1117/* A helper function to install a constructor function and visualizer
bb5ce47a 1118 in a varobj_dynamic. */
0cc7d26f
TT
1119
1120static void
bb5ce47a 1121install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1122 PyObject *visualizer)
1123{
1124 Py_XDECREF (var->constructor);
1125 var->constructor = constructor;
1126
1127 Py_XDECREF (var->pretty_printer);
1128 var->pretty_printer = visualizer;
1129
e5250216 1130 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1131 var->child_iter = NULL;
1132}
1133
1134/* Install the default visualizer for VAR. */
1135
1136static void
1137install_default_visualizer (struct varobj *var)
1138{
d65aec65
PM
1139 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1140 if (CPLUS_FAKE_CHILD (var))
1141 return;
1142
0cc7d26f
TT
1143 if (pretty_printing)
1144 {
1145 PyObject *pretty_printer = NULL;
1146
1147 if (var->value)
1148 {
1149 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1150 if (! pretty_printer)
1151 {
1152 gdbpy_print_stack ();
1153 error (_("Cannot instantiate printer for default visualizer"));
1154 }
1155 }
1156
1157 if (pretty_printer == Py_None)
1158 {
1159 Py_DECREF (pretty_printer);
1160 pretty_printer = NULL;
1161 }
1162
bb5ce47a 1163 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1164 }
1165}
1166
1167/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1168 make a new object. */
1169
1170static void
1171construct_visualizer (struct varobj *var, PyObject *constructor)
1172{
1173 PyObject *pretty_printer;
1174
d65aec65
PM
1175 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1176 if (CPLUS_FAKE_CHILD (var))
1177 return;
1178
0cc7d26f
TT
1179 Py_INCREF (constructor);
1180 if (constructor == Py_None)
1181 pretty_printer = NULL;
1182 else
1183 {
1184 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1185 if (! pretty_printer)
1186 {
1187 gdbpy_print_stack ();
1188 Py_DECREF (constructor);
1189 constructor = Py_None;
1190 Py_INCREF (constructor);
1191 }
1192
1193 if (pretty_printer == Py_None)
1194 {
1195 Py_DECREF (pretty_printer);
1196 pretty_printer = NULL;
1197 }
1198 }
1199
bb5ce47a 1200 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1201}
1202
1203#endif /* HAVE_PYTHON */
1204
1205/* A helper function for install_new_value. This creates and installs
1206 a visualizer for VAR, if appropriate. */
1207
1208static void
1209install_new_value_visualizer (struct varobj *var)
1210{
1211#if HAVE_PYTHON
1212 /* If the constructor is None, then we want the raw value. If VAR
1213 does not have a value, just skip this. */
0646da15
TT
1214 if (!gdb_python_initialized)
1215 return;
1216
bb5ce47a 1217 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f
TT
1218 {
1219 struct cleanup *cleanup;
0cc7d26f
TT
1220
1221 cleanup = varobj_ensure_python_env (var);
1222
bb5ce47a 1223 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1224 install_default_visualizer (var);
1225 else
bb5ce47a 1226 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1227
1228 do_cleanups (cleanup);
1229 }
1230#else
1231 /* Do nothing. */
1232#endif
1233}
1234
8264ba82
AG
1235/* When using RTTI to determine variable type it may be changed in runtime when
1236 the variable value is changed. This function checks whether type of varobj
1237 VAR will change when a new value NEW_VALUE is assigned and if it is so
1238 updates the type of VAR. */
1239
1240static int
1241update_type_if_necessary (struct varobj *var, struct value *new_value)
1242{
1243 if (new_value)
1244 {
1245 struct value_print_options opts;
1246
1247 get_user_print_options (&opts);
1248 if (opts.objectprint)
1249 {
1250 struct type *new_type;
1251 char *curr_type_str, *new_type_str;
afa269ae 1252 int type_name_changed;
8264ba82
AG
1253
1254 new_type = value_actual_type (new_value, 0, 0);
1255 new_type_str = type_to_string (new_type);
1256 curr_type_str = varobj_get_type (var);
afa269ae
SM
1257 type_name_changed = strcmp (curr_type_str, new_type_str) != 0;
1258 xfree (curr_type_str);
1259 xfree (new_type_str);
1260
1261 if (type_name_changed)
8264ba82
AG
1262 {
1263 var->type = new_type;
1264
1265 /* This information may be not valid for a new type. */
30914ca8 1266 varobj_delete (var, 1);
8264ba82
AG
1267 VEC_free (varobj_p, var->children);
1268 var->num_children = -1;
1269 return 1;
1270 }
1271 }
1272 }
1273
1274 return 0;
1275}
1276
acd65feb
VP
1277/* Assign a new value to a variable object. If INITIAL is non-zero,
1278 this is the first assignement after the variable object was just
1279 created, or changed type. In that case, just assign the value
1280 and return 0.
581e13c1
MS
1281 Otherwise, assign the new value, and return 1 if the value is
1282 different from the current one, 0 otherwise. The comparison is
1283 done on textual representation of value. Therefore, some types
1284 need not be compared. E.g. for structures the reported value is
1285 always "{...}", so no comparison is necessary here. If the old
1286 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1287
1288 The VALUE parameter should not be released -- the function will
1289 take care of releasing it when needed. */
acd65feb
VP
1290static int
1291install_new_value (struct varobj *var, struct value *value, int initial)
1292{
1293 int changeable;
1294 int need_to_fetch;
1295 int changed = 0;
25d5ea92 1296 int intentionally_not_fetched = 0;
7a4d50bf 1297 char *print_value = NULL;
acd65feb 1298
acd65feb 1299 /* We need to know the varobj's type to decide if the value should
3e43a32a 1300 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1301 don't have a type. */
acd65feb 1302 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1303 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1304
1305 /* If the type has custom visualizer, we consider it to be always
581e13c1 1306 changeable. FIXME: need to make sure this behaviour will not
b6313243 1307 mess up read-sensitive values. */
bb5ce47a 1308 if (var->dynamic->pretty_printer != NULL)
b6313243
TT
1309 changeable = 1;
1310
acd65feb
VP
1311 need_to_fetch = changeable;
1312
b26ed50d
VP
1313 /* We are not interested in the address of references, and given
1314 that in C++ a reference is not rebindable, it cannot
1315 meaningfully change. So, get hold of the real value. */
1316 if (value)
0cc7d26f 1317 value = coerce_ref (value);
b26ed50d 1318
acd65feb
VP
1319 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1320 /* For unions, we need to fetch the value implicitly because
1321 of implementation of union member fetch. When gdb
1322 creates a value for a field and the value of the enclosing
1323 structure is not lazy, it immediately copies the necessary
1324 bytes from the enclosing values. If the enclosing value is
1325 lazy, the call to value_fetch_lazy on the field will read
1326 the data from memory. For unions, that means we'll read the
1327 same memory more than once, which is not desirable. So
1328 fetch now. */
1329 need_to_fetch = 1;
1330
1331 /* The new value might be lazy. If the type is changeable,
1332 that is we'll be comparing values of this type, fetch the
1333 value now. Otherwise, on the next update the old value
1334 will be lazy, which means we've lost that old value. */
1335 if (need_to_fetch && value && value_lazy (value))
1336 {
c1cc6152 1337 const struct varobj *parent = var->parent;
25d5ea92 1338 int frozen = var->frozen;
a109c7c1 1339
25d5ea92
VP
1340 for (; !frozen && parent; parent = parent->parent)
1341 frozen |= parent->frozen;
1342
1343 if (frozen && initial)
1344 {
1345 /* For variables that are frozen, or are children of frozen
1346 variables, we don't do fetch on initial assignment.
1347 For non-initial assignemnt we do the fetch, since it means we're
1348 explicitly asked to compare the new value with the old one. */
1349 intentionally_not_fetched = 1;
1350 }
8e7b59a5 1351 else
acd65feb 1352 {
8e7b59a5 1353
492d29ea 1354 TRY
8e7b59a5
KS
1355 {
1356 value_fetch_lazy (value);
1357 }
1358
492d29ea 1359 CATCH (except, RETURN_MASK_ERROR)
8e7b59a5
KS
1360 {
1361 /* Set the value to NULL, so that for the next -var-update,
1362 we don't try to compare the new value with this value,
1363 that we couldn't even read. */
1364 value = NULL;
1365 }
492d29ea 1366 END_CATCH
acd65feb 1367 }
acd65feb
VP
1368 }
1369
e848a8a5
TT
1370 /* Get a reference now, before possibly passing it to any Python
1371 code that might release it. */
1372 if (value != NULL)
1373 value_incref (value);
b6313243 1374
7a4d50bf
VP
1375 /* Below, we'll be comparing string rendering of old and new
1376 values. Don't get string rendering if the value is
1377 lazy -- if it is, the code above has decided that the value
1378 should not be fetched. */
bb5ce47a
YQ
1379 if (value != NULL && !value_lazy (value)
1380 && var->dynamic->pretty_printer == NULL)
99ad9427 1381 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1382
acd65feb
VP
1383 /* If the type is changeable, compare the old and the new values.
1384 If this is the initial assignment, we don't have any old value
1385 to compare with. */
7a4d50bf 1386 if (!initial && changeable)
acd65feb 1387 {
3e43a32a
MS
1388 /* If the value of the varobj was changed by -var-set-value,
1389 then the value in the varobj and in the target is the same.
1390 However, that value is different from the value that the
581e13c1 1391 varobj had after the previous -var-update. So need to the
3e43a32a 1392 varobj as changed. */
acd65feb 1393 if (var->updated)
57e66780 1394 {
57e66780
DJ
1395 changed = 1;
1396 }
bb5ce47a 1397 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1398 {
1399 /* Try to compare the values. That requires that both
1400 values are non-lazy. */
25d5ea92
VP
1401 if (var->not_fetched && value_lazy (var->value))
1402 {
1403 /* This is a frozen varobj and the value was never read.
1404 Presumably, UI shows some "never read" indicator.
1405 Now that we've fetched the real value, we need to report
1406 this varobj as changed so that UI can show the real
1407 value. */
1408 changed = 1;
1409 }
1410 else if (var->value == NULL && value == NULL)
581e13c1 1411 /* Equal. */
acd65feb
VP
1412 ;
1413 else if (var->value == NULL || value == NULL)
57e66780 1414 {
57e66780
DJ
1415 changed = 1;
1416 }
acd65feb
VP
1417 else
1418 {
1419 gdb_assert (!value_lazy (var->value));
1420 gdb_assert (!value_lazy (value));
85265413 1421
57e66780 1422 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1423 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1424 changed = 1;
acd65feb
VP
1425 }
1426 }
1427 }
85265413 1428
ee342b23
VP
1429 if (!initial && !changeable)
1430 {
1431 /* For values that are not changeable, we don't compare the values.
1432 However, we want to notice if a value was not NULL and now is NULL,
1433 or vise versa, so that we report when top-level varobjs come in scope
1434 and leave the scope. */
1435 changed = (var->value != NULL) != (value != NULL);
1436 }
1437
acd65feb 1438 /* We must always keep the new value, since children depend on it. */
25d5ea92 1439 if (var->value != NULL && var->value != value)
acd65feb
VP
1440 value_free (var->value);
1441 var->value = value;
25d5ea92
VP
1442 if (value && value_lazy (value) && intentionally_not_fetched)
1443 var->not_fetched = 1;
1444 else
1445 var->not_fetched = 0;
acd65feb 1446 var->updated = 0;
85265413 1447
0cc7d26f
TT
1448 install_new_value_visualizer (var);
1449
1450 /* If we installed a pretty-printer, re-compare the printed version
1451 to see if the variable changed. */
bb5ce47a 1452 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
1453 {
1454 xfree (print_value);
99ad9427
YQ
1455 print_value = varobj_value_get_print_value (var->value, var->format,
1456 var);
e8f781e2
TT
1457 if ((var->print_value == NULL && print_value != NULL)
1458 || (var->print_value != NULL && print_value == NULL)
1459 || (var->print_value != NULL && print_value != NULL
1460 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1461 changed = 1;
1462 }
1463 if (var->print_value)
1464 xfree (var->print_value);
1465 var->print_value = print_value;
1466
b26ed50d 1467 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1468
1469 return changed;
1470}
acd65feb 1471
0cc7d26f
TT
1472/* Return the requested range for a varobj. VAR is the varobj. FROM
1473 and TO are out parameters; *FROM and *TO will be set to the
1474 selected sub-range of VAR. If no range was selected using
1475 -var-set-update-range, then both will be -1. */
1476void
b09e2c59 1477varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1478{
0cc7d26f
TT
1479 *from = var->from;
1480 *to = var->to;
b6313243
TT
1481}
1482
0cc7d26f
TT
1483/* Set the selected sub-range of children of VAR to start at index
1484 FROM and end at index TO. If either FROM or TO is less than zero,
1485 this is interpreted as a request for all children. */
1486void
1487varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1488{
0cc7d26f
TT
1489 var->from = from;
1490 var->to = to;
b6313243
TT
1491}
1492
1493void
1494varobj_set_visualizer (struct varobj *var, const char *visualizer)
1495{
1496#if HAVE_PYTHON
34fa1d9d
MS
1497 PyObject *mainmod, *globals, *constructor;
1498 struct cleanup *back_to;
b6313243 1499
0646da15
TT
1500 if (!gdb_python_initialized)
1501 return;
1502
d452c4bc 1503 back_to = varobj_ensure_python_env (var);
b6313243
TT
1504
1505 mainmod = PyImport_AddModule ("__main__");
1506 globals = PyModule_GetDict (mainmod);
1507 Py_INCREF (globals);
1508 make_cleanup_py_decref (globals);
1509
1510 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1511
0cc7d26f 1512 if (! constructor)
b6313243
TT
1513 {
1514 gdbpy_print_stack ();
da1f2771 1515 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1516 }
1517
0cc7d26f
TT
1518 construct_visualizer (var, constructor);
1519 Py_XDECREF (constructor);
b6313243 1520
0cc7d26f 1521 /* If there are any children now, wipe them. */
30914ca8 1522 varobj_delete (var, 1 /* children only */);
0cc7d26f 1523 var->num_children = -1;
b6313243
TT
1524
1525 do_cleanups (back_to);
1526#else
da1f2771 1527 error (_("Python support required"));
b6313243
TT
1528#endif
1529}
1530
7a290c40
JB
1531/* If NEW_VALUE is the new value of the given varobj (var), return
1532 non-zero if var has mutated. In other words, if the type of
1533 the new value is different from the type of the varobj's old
1534 value.
1535
1536 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1537
1538static int
b09e2c59 1539varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1540 struct type *new_type)
1541{
1542 /* If we haven't previously computed the number of children in var,
1543 it does not matter from the front-end's perspective whether
1544 the type has mutated or not. For all intents and purposes,
1545 it has not mutated. */
1546 if (var->num_children < 0)
1547 return 0;
1548
ca20d462 1549 if (var->root->lang_ops->value_has_mutated)
8776cfe9
JB
1550 {
1551 /* The varobj module, when installing new values, explicitly strips
1552 references, saying that we're not interested in those addresses.
1553 But detection of mutation happens before installing the new
1554 value, so our value may be a reference that we need to strip
1555 in order to remain consistent. */
1556 if (new_value != NULL)
1557 new_value = coerce_ref (new_value);
1558 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1559 }
7a290c40
JB
1560 else
1561 return 0;
1562}
1563
8b93c638
JM
1564/* Update the values for a variable and its children. This is a
1565 two-pronged attack. First, re-parse the value for the root's
1566 expression to see if it's changed. Then go all the way
1567 through its children, reconstructing them and noting if they've
1568 changed.
1569
25d5ea92
VP
1570 The EXPLICIT parameter specifies if this call is result
1571 of MI request to update this specific variable, or
581e13c1 1572 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1573 update frozen variables.
705da579 1574
581e13c1 1575 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1576 returns TYPE_CHANGED, then it has done this and VARP will be modified
1577 to point to the new varobj. */
8b93c638 1578
1417b39d 1579VEC(varobj_update_result) *
fe978cb0 1580varobj_update (struct varobj **varp, int is_explicit)
8b93c638 1581{
25d5ea92 1582 int type_changed = 0;
8b93c638 1583 int i;
fe978cb0 1584 struct value *newobj;
b6313243 1585 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1586 VEC (varobj_update_result) *result = NULL;
8b93c638 1587
25d5ea92
VP
1588 /* Frozen means frozen -- we don't check for any change in
1589 this varobj, including its going out of scope, or
1590 changing type. One use case for frozen varobjs is
1591 retaining previously evaluated expressions, and we don't
1592 want them to be reevaluated at all. */
fe978cb0 1593 if (!is_explicit && (*varp)->frozen)
f7f9ae2c 1594 return result;
8756216b
DP
1595
1596 if (!(*varp)->root->is_valid)
f7f9ae2c 1597 {
cfce2ea2 1598 varobj_update_result r = {0};
a109c7c1 1599
cfce2ea2 1600 r.varobj = *varp;
f7f9ae2c
VP
1601 r.status = VAROBJ_INVALID;
1602 VEC_safe_push (varobj_update_result, result, &r);
1603 return result;
1604 }
8b93c638 1605
25d5ea92 1606 if ((*varp)->root->rootvar == *varp)
ae093f96 1607 {
cfce2ea2 1608 varobj_update_result r = {0};
a109c7c1 1609
cfce2ea2 1610 r.varobj = *varp;
f7f9ae2c
VP
1611 r.status = VAROBJ_IN_SCOPE;
1612
581e13c1 1613 /* Update the root variable. value_of_root can return NULL
25d5ea92 1614 if the variable is no longer around, i.e. we stepped out of
581e13c1 1615 the frame in which a local existed. We are letting the
25d5ea92
VP
1616 value_of_root variable dispose of the varobj if the type
1617 has changed. */
fe978cb0
PA
1618 newobj = value_of_root (varp, &type_changed);
1619 if (update_type_if_necessary(*varp, newobj))
8264ba82 1620 type_changed = 1;
f7f9ae2c 1621 r.varobj = *varp;
f7f9ae2c 1622 r.type_changed = type_changed;
fe978cb0 1623 if (install_new_value ((*varp), newobj, type_changed))
f7f9ae2c 1624 r.changed = 1;
ea56f9c2 1625
fe978cb0 1626 if (newobj == NULL)
f7f9ae2c 1627 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1628 r.value_installed = 1;
f7f9ae2c
VP
1629
1630 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1631 {
0b4bc29a
JK
1632 if (r.type_changed || r.changed)
1633 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1634 return result;
1635 }
1636
1637 VEC_safe_push (varobj_update_result, stack, &r);
1638 }
1639 else
1640 {
cfce2ea2 1641 varobj_update_result r = {0};
a109c7c1 1642
cfce2ea2 1643 r.varobj = *varp;
b6313243 1644 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1645 }
8b93c638 1646
8756216b 1647 /* Walk through the children, reconstructing them all. */
b6313243 1648 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1649 {
b6313243
TT
1650 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1651 struct varobj *v = r.varobj;
1652
1653 VEC_pop (varobj_update_result, stack);
1654
1655 /* Update this variable, unless it's a root, which is already
1656 updated. */
1657 if (!r.value_installed)
7a290c40
JB
1658 {
1659 struct type *new_type;
1660
fe978cb0
PA
1661 newobj = value_of_child (v->parent, v->index);
1662 if (update_type_if_necessary(v, newobj))
8264ba82 1663 r.type_changed = 1;
fe978cb0
PA
1664 if (newobj)
1665 new_type = value_type (newobj);
7a290c40 1666 else
ca20d462 1667 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40 1668
fe978cb0 1669 if (varobj_value_has_mutated (v, newobj, new_type))
7a290c40
JB
1670 {
1671 /* The children are no longer valid; delete them now.
1672 Report the fact that its type changed as well. */
30914ca8 1673 varobj_delete (v, 1 /* only_children */);
7a290c40
JB
1674 v->num_children = -1;
1675 v->to = -1;
1676 v->from = -1;
1677 v->type = new_type;
1678 r.type_changed = 1;
1679 }
1680
fe978cb0 1681 if (install_new_value (v, newobj, r.type_changed))
b6313243
TT
1682 {
1683 r.changed = 1;
1684 v->updated = 0;
1685 }
1686 }
1687
31f628ae
YQ
1688 /* We probably should not get children of a dynamic varobj, but
1689 for which -var-list-children was never invoked. */
1690 if (varobj_is_dynamic_p (v))
b6313243 1691 {
8264ba82 1692 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
fe978cb0 1693 VEC (varobj_p) *newobj = 0;
26f9bcee 1694 int i, children_changed = 0;
b6313243
TT
1695
1696 if (v->frozen)
1697 continue;
1698
bb5ce47a 1699 if (!v->dynamic->children_requested)
0cc7d26f
TT
1700 {
1701 int dummy;
1702
1703 /* If we initially did not have potential children, but
1704 now we do, consider the varobj as changed.
1705 Otherwise, if children were never requested, consider
1706 it as unchanged -- presumably, such varobj is not yet
1707 expanded in the UI, so we need not bother getting
1708 it. */
1709 if (!varobj_has_more (v, 0))
1710 {
8264ba82 1711 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
1712 &dummy, 0, 0, 0);
1713 if (varobj_has_more (v, 0))
1714 r.changed = 1;
1715 }
1716
1717 if (r.changed)
1718 VEC_safe_push (varobj_update_result, result, &r);
1719
1720 continue;
1721 }
1722
b6313243
TT
1723 /* If update_dynamic_varobj_children returns 0, then we have
1724 a non-conforming pretty-printer, so we skip it. */
fe978cb0 1725 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
8264ba82 1726 &unchanged, &children_changed, 1,
0cc7d26f 1727 v->from, v->to))
b6313243 1728 {
fe978cb0 1729 if (children_changed || newobj)
b6313243 1730 {
0cc7d26f 1731 r.children_changed = 1;
fe978cb0 1732 r.newobj = newobj;
b6313243 1733 }
0cc7d26f
TT
1734 /* Push in reverse order so that the first child is
1735 popped from the work stack first, and so will be
1736 added to result first. This does not affect
1737 correctness, just "nicer". */
8264ba82
AG
1738 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1739 {
1740 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1741 varobj_update_result r = {0};
1742
1743 /* Type may change only if value was changed. */
1744 r.varobj = tmp;
1745 r.changed = 1;
1746 r.type_changed = 1;
1747 r.value_installed = 1;
1748 VEC_safe_push (varobj_update_result, stack, &r);
1749 }
0cc7d26f 1750 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1751 {
0cc7d26f 1752 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1753 varobj_update_result r = {0};
a109c7c1 1754
cfce2ea2 1755 r.varobj = tmp;
0cc7d26f 1756 r.changed = 1;
b6313243
TT
1757 r.value_installed = 1;
1758 VEC_safe_push (varobj_update_result, stack, &r);
1759 }
0cc7d26f
TT
1760 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1761 {
1762 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1763
0cc7d26f
TT
1764 if (!tmp->frozen)
1765 {
cfce2ea2 1766 varobj_update_result r = {0};
a109c7c1 1767
cfce2ea2 1768 r.varobj = tmp;
0cc7d26f
TT
1769 r.value_installed = 1;
1770 VEC_safe_push (varobj_update_result, stack, &r);
1771 }
1772 }
b6313243
TT
1773 if (r.changed || r.children_changed)
1774 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 1775
8264ba82
AG
1776 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1777 because NEW has been put into the result vector. */
0cc7d26f 1778 VEC_free (varobj_p, changed);
8264ba82 1779 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
1780 VEC_free (varobj_p, unchanged);
1781
b6313243
TT
1782 continue;
1783 }
1784 }
28335dcc
VP
1785
1786 /* Push any children. Use reverse order so that the first
1787 child is popped from the work stack first, and so
1788 will be added to result first. This does not
1789 affect correctness, just "nicer". */
1790 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1791 {
28335dcc 1792 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1793
28335dcc 1794 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1795 if (c != NULL && !c->frozen)
28335dcc 1796 {
cfce2ea2 1797 varobj_update_result r = {0};
a109c7c1 1798
cfce2ea2 1799 r.varobj = c;
b6313243 1800 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1801 }
8b93c638 1802 }
b6313243
TT
1803
1804 if (r.changed || r.type_changed)
1805 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1806 }
1807
b6313243
TT
1808 VEC_free (varobj_update_result, stack);
1809
f7f9ae2c 1810 return result;
8b93c638
JM
1811}
1812\f
1813
1814/* Helper functions */
1815
1816/*
1817 * Variable object construction/destruction
1818 */
1819
1820static int
30914ca8 1821delete_variable (struct varobj *var, int only_children_p)
8b93c638
JM
1822{
1823 int delcount = 0;
1824
30914ca8
SM
1825 delete_variable_1 (&delcount, var, only_children_p,
1826 1 /* remove_from_parent_p */ );
8b93c638
JM
1827
1828 return delcount;
1829}
1830
581e13c1 1831/* Delete the variable object VAR and its children. */
8b93c638
JM
1832/* IMPORTANT NOTE: If we delete a variable which is a child
1833 and the parent is not removed we dump core. It must be always
581e13c1 1834 initially called with remove_from_parent_p set. */
8b93c638 1835static void
30914ca8 1836delete_variable_1 (int *delcountp, struct varobj *var, int only_children_p,
72330bd6 1837 int remove_from_parent_p)
8b93c638 1838{
28335dcc 1839 int i;
8b93c638 1840
581e13c1 1841 /* Delete any children of this variable, too. */
28335dcc
VP
1842 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1843 {
1844 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1845
214270ab
VP
1846 if (!child)
1847 continue;
8b93c638 1848 if (!remove_from_parent_p)
28335dcc 1849 child->parent = NULL;
30914ca8 1850 delete_variable_1 (delcountp, child, 0, only_children_p);
8b93c638 1851 }
28335dcc 1852 VEC_free (varobj_p, var->children);
8b93c638 1853
581e13c1 1854 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1855 if (only_children_p)
1856 return;
1857
581e13c1 1858 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 1859 /* If the name is null, this is a temporary variable, that has not
581e13c1 1860 yet been installed, don't report it, it belongs to the caller... */
73a93a32 1861 if (var->obj_name != NULL)
8b93c638 1862 {
8b93c638
JM
1863 *delcountp = *delcountp + 1;
1864 }
1865
581e13c1 1866 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1867 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1868 (as indicated by remove_from_parent_p) we don't bother doing an
1869 expensive list search to find the element to remove when we are
581e13c1 1870 discarding the list afterwards. */
72330bd6 1871 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1872 {
28335dcc 1873 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1874 }
72330bd6 1875
73a93a32
JI
1876 if (var->obj_name != NULL)
1877 uninstall_variable (var);
8b93c638 1878
581e13c1 1879 /* Free memory associated with this variable. */
8b93c638
JM
1880 free_variable (var);
1881}
1882
581e13c1 1883/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1884static int
fba45db2 1885install_variable (struct varobj *var)
8b93c638
JM
1886{
1887 struct vlist *cv;
1888 struct vlist *newvl;
1889 const char *chp;
1890 unsigned int index = 0;
1891 unsigned int i = 1;
1892
1893 for (chp = var->obj_name; *chp; chp++)
1894 {
1895 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1896 }
1897
1898 cv = *(varobj_table + index);
1899 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1900 cv = cv->next;
1901
1902 if (cv != NULL)
8a3fe4f8 1903 error (_("Duplicate variable object name"));
8b93c638 1904
581e13c1 1905 /* Add varobj to hash table. */
8d749320 1906 newvl = XNEW (struct vlist);
8b93c638
JM
1907 newvl->next = *(varobj_table + index);
1908 newvl->var = var;
1909 *(varobj_table + index) = newvl;
1910
581e13c1 1911 /* If root, add varobj to root list. */
b2c2bd75 1912 if (is_root_p (var))
8b93c638 1913 {
581e13c1 1914 /* Add to list of root variables. */
8b93c638
JM
1915 if (rootlist == NULL)
1916 var->root->next = NULL;
1917 else
1918 var->root->next = rootlist;
1919 rootlist = var->root;
8b93c638
JM
1920 }
1921
1922 return 1; /* OK */
1923}
1924
581e13c1 1925/* Unistall the object VAR. */
8b93c638 1926static void
fba45db2 1927uninstall_variable (struct varobj *var)
8b93c638
JM
1928{
1929 struct vlist *cv;
1930 struct vlist *prev;
1931 struct varobj_root *cr;
1932 struct varobj_root *prer;
1933 const char *chp;
1934 unsigned int index = 0;
1935 unsigned int i = 1;
1936
581e13c1 1937 /* Remove varobj from hash table. */
8b93c638
JM
1938 for (chp = var->obj_name; *chp; chp++)
1939 {
1940 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1941 }
1942
1943 cv = *(varobj_table + index);
1944 prev = NULL;
1945 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1946 {
1947 prev = cv;
1948 cv = cv->next;
1949 }
1950
1951 if (varobjdebug)
1952 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1953
1954 if (cv == NULL)
1955 {
72330bd6
AC
1956 warning
1957 ("Assertion failed: Could not find variable object \"%s\" to delete",
1958 var->obj_name);
8b93c638
JM
1959 return;
1960 }
1961
1962 if (prev == NULL)
1963 *(varobj_table + index) = cv->next;
1964 else
1965 prev->next = cv->next;
1966
b8c9b27d 1967 xfree (cv);
8b93c638 1968
581e13c1 1969 /* If root, remove varobj from root list. */
b2c2bd75 1970 if (is_root_p (var))
8b93c638 1971 {
581e13c1 1972 /* Remove from list of root variables. */
8b93c638
JM
1973 if (rootlist == var->root)
1974 rootlist = var->root->next;
1975 else
1976 {
1977 prer = NULL;
1978 cr = rootlist;
1979 while ((cr != NULL) && (cr->rootvar != var))
1980 {
1981 prer = cr;
1982 cr = cr->next;
1983 }
1984 if (cr == NULL)
1985 {
8f7e195f
JB
1986 warning (_("Assertion failed: Could not find "
1987 "varobj \"%s\" in root list"),
3e43a32a 1988 var->obj_name);
8b93c638
JM
1989 return;
1990 }
1991 if (prer == NULL)
1992 rootlist = NULL;
1993 else
1994 prer->next = cr->next;
1995 }
8b93c638
JM
1996 }
1997
1998}
1999
837ce252
SM
2000/* Create and install a child of the parent of the given name.
2001
2002 The created VAROBJ takes ownership of the allocated NAME. */
2003
8b93c638 2004static struct varobj *
fba45db2 2005create_child (struct varobj *parent, int index, char *name)
b6313243 2006{
5a2e0d6e
YQ
2007 struct varobj_item item;
2008
2009 item.name = name;
2010 item.value = value_of_child (parent, index);
2011
2012 return create_child_with_value (parent, index, &item);
b6313243
TT
2013}
2014
2015static struct varobj *
5a2e0d6e
YQ
2016create_child_with_value (struct varobj *parent, int index,
2017 struct varobj_item *item)
8b93c638
JM
2018{
2019 struct varobj *child;
2020 char *childs_name;
2021
2022 child = new_variable ();
2023
5e5ac9a5 2024 /* NAME is allocated by caller. */
5a2e0d6e 2025 child->name = item->name;
8b93c638 2026 child->index = index;
8b93c638
JM
2027 child->parent = parent;
2028 child->root = parent->root;
85254831 2029
99ad9427 2030 if (varobj_is_anonymous_child (child))
85254831
KS
2031 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2032 else
5a2e0d6e 2033 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
8b93c638 2034 child->obj_name = childs_name;
85254831 2035
8b93c638
JM
2036 install_variable (child);
2037
acd65feb
VP
2038 /* Compute the type of the child. Must do this before
2039 calling install_new_value. */
5a2e0d6e 2040 if (item->value != NULL)
acd65feb 2041 /* If the child had no evaluation errors, var->value
581e13c1 2042 will be non-NULL and contain a valid type. */
5a2e0d6e 2043 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 2044 else
581e13c1 2045 /* Otherwise, we must compute the type. */
ca20d462
YQ
2046 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2047 child->index);
5a2e0d6e 2048 install_new_value (child, item->value, 1);
acd65feb 2049
8b93c638
JM
2050 return child;
2051}
8b93c638
JM
2052\f
2053
2054/*
2055 * Miscellaneous utility functions.
2056 */
2057
581e13c1 2058/* Allocate memory and initialize a new variable. */
8b93c638
JM
2059static struct varobj *
2060new_variable (void)
2061{
2062 struct varobj *var;
2063
8d749320 2064 var = XNEW (struct varobj);
8b93c638 2065 var->name = NULL;
02142340 2066 var->path_expr = NULL;
8b93c638
JM
2067 var->obj_name = NULL;
2068 var->index = -1;
2069 var->type = NULL;
2070 var->value = NULL;
8b93c638
JM
2071 var->num_children = -1;
2072 var->parent = NULL;
2073 var->children = NULL;
f486487f 2074 var->format = FORMAT_NATURAL;
8b93c638 2075 var->root = NULL;
fb9b6b35 2076 var->updated = 0;
85265413 2077 var->print_value = NULL;
25d5ea92
VP
2078 var->frozen = 0;
2079 var->not_fetched = 0;
8d749320 2080 var->dynamic = XNEW (struct varobj_dynamic);
bb5ce47a 2081 var->dynamic->children_requested = 0;
0cc7d26f
TT
2082 var->from = -1;
2083 var->to = -1;
bb5ce47a
YQ
2084 var->dynamic->constructor = 0;
2085 var->dynamic->pretty_printer = 0;
2086 var->dynamic->child_iter = 0;
2087 var->dynamic->saved_item = 0;
8b93c638
JM
2088
2089 return var;
2090}
2091
581e13c1 2092/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2093static struct varobj *
2094new_root_variable (void)
2095{
2096 struct varobj *var = new_variable ();
a109c7c1 2097
8d749320 2098 var->root = XNEW (struct varobj_root);
ca20d462 2099 var->root->lang_ops = NULL;
8b93c638
JM
2100 var->root->exp = NULL;
2101 var->root->valid_block = NULL;
7a424e99 2102 var->root->frame = null_frame_id;
a5defcdc 2103 var->root->floating = 0;
8b93c638 2104 var->root->rootvar = NULL;
8756216b 2105 var->root->is_valid = 1;
8b93c638
JM
2106
2107 return var;
2108}
2109
581e13c1 2110/* Free any allocated memory associated with VAR. */
8b93c638 2111static void
fba45db2 2112free_variable (struct varobj *var)
8b93c638 2113{
d452c4bc 2114#if HAVE_PYTHON
bb5ce47a 2115 if (var->dynamic->pretty_printer != NULL)
d452c4bc
UW
2116 {
2117 struct cleanup *cleanup = varobj_ensure_python_env (var);
bb5ce47a
YQ
2118
2119 Py_XDECREF (var->dynamic->constructor);
2120 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
2121 do_cleanups (cleanup);
2122 }
2123#endif
2124
827f100c
YQ
2125 varobj_iter_delete (var->dynamic->child_iter);
2126 varobj_clear_saved_item (var->dynamic);
36746093
JK
2127 value_free (var->value);
2128
581e13c1 2129 /* Free the expression if this is a root variable. */
b2c2bd75 2130 if (is_root_p (var))
8b93c638 2131 {
3038237c 2132 xfree (var->root->exp);
8038e1e2 2133 xfree (var->root);
8b93c638
JM
2134 }
2135
8038e1e2
AC
2136 xfree (var->name);
2137 xfree (var->obj_name);
85265413 2138 xfree (var->print_value);
02142340 2139 xfree (var->path_expr);
bb5ce47a 2140 xfree (var->dynamic);
8038e1e2 2141 xfree (var);
8b93c638
JM
2142}
2143
74b7792f
AC
2144static void
2145do_free_variable_cleanup (void *var)
2146{
19ba03f4 2147 free_variable ((struct varobj *) var);
74b7792f
AC
2148}
2149
2150static struct cleanup *
2151make_cleanup_free_variable (struct varobj *var)
2152{
2153 return make_cleanup (do_free_variable_cleanup, var);
2154}
2155
6e2a9270
VP
2156/* Return the type of the value that's stored in VAR,
2157 or that would have being stored there if the
581e13c1 2158 value were accessible.
6e2a9270
VP
2159
2160 This differs from VAR->type in that VAR->type is always
2161 the true type of the expession in the source language.
2162 The return value of this function is the type we're
2163 actually storing in varobj, and using for displaying
2164 the values and for comparing previous and new values.
2165
2166 For example, top-level references are always stripped. */
99ad9427 2167struct type *
b09e2c59 2168varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2169{
2170 struct type *type;
2171
2172 if (var->value)
2173 type = value_type (var->value);
2174 else
2175 type = var->type;
2176
2177 type = check_typedef (type);
2178
2179 if (TYPE_CODE (type) == TYPE_CODE_REF)
2180 type = get_target_type (type);
2181
2182 type = check_typedef (type);
2183
2184 return type;
2185}
2186
8b93c638 2187/* What is the default display for this variable? We assume that
581e13c1 2188 everything is "natural". Any exceptions? */
8b93c638 2189static enum varobj_display_formats
fba45db2 2190variable_default_display (struct varobj *var)
8b93c638
JM
2191{
2192 return FORMAT_NATURAL;
2193}
2194
8b93c638
JM
2195/*
2196 * Language-dependencies
2197 */
2198
2199/* Common entry points */
2200
8b93c638
JM
2201/* Return the number of children for a given variable.
2202 The result of this function is defined by the language
581e13c1 2203 implementation. The number of children returned by this function
8b93c638 2204 is the number of children that the user will see in the variable
581e13c1 2205 display. */
8b93c638 2206static int
b09e2c59 2207number_of_children (const struct varobj *var)
8b93c638 2208{
ca20d462 2209 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2210}
2211
3e43a32a 2212/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2213 string. */
8b93c638 2214static char *
b09e2c59 2215name_of_variable (const struct varobj *var)
8b93c638 2216{
ca20d462 2217 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2218}
2219
3e43a32a 2220/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2221 string. */
8b93c638 2222static char *
fba45db2 2223name_of_child (struct varobj *var, int index)
8b93c638 2224{
ca20d462 2225 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2226}
2227
2213e2be
YQ
2228/* If frame associated with VAR can be found, switch
2229 to it and return 1. Otherwise, return 0. */
2230
2231static int
b09e2c59 2232check_scope (const struct varobj *var)
2213e2be
YQ
2233{
2234 struct frame_info *fi;
2235 int scope;
2236
2237 fi = frame_find_by_id (var->root->frame);
2238 scope = fi != NULL;
2239
2240 if (fi)
2241 {
2242 CORE_ADDR pc = get_frame_pc (fi);
2243
2244 if (pc < BLOCK_START (var->root->valid_block) ||
2245 pc >= BLOCK_END (var->root->valid_block))
2246 scope = 0;
2247 else
2248 select_frame (fi);
2249 }
2250 return scope;
2251}
2252
2253/* Helper function to value_of_root. */
2254
2255static struct value *
2256value_of_root_1 (struct varobj **var_handle)
2257{
2258 struct value *new_val = NULL;
2259 struct varobj *var = *var_handle;
2260 int within_scope = 0;
2261 struct cleanup *back_to;
2262
2263 /* Only root variables can be updated... */
2264 if (!is_root_p (var))
2265 /* Not a root var. */
2266 return NULL;
2267
2268 back_to = make_cleanup_restore_current_thread ();
2269
2270 /* Determine whether the variable is still around. */
2271 if (var->root->valid_block == NULL || var->root->floating)
2272 within_scope = 1;
2273 else if (var->root->thread_id == 0)
2274 {
2275 /* The program was single-threaded when the variable object was
2276 created. Technically, it's possible that the program became
2277 multi-threaded since then, but we don't support such
2278 scenario yet. */
2279 within_scope = check_scope (var);
2280 }
2281 else
2282 {
5d5658a1
PA
2283 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2284
2285 if (!ptid_equal (minus_one_ptid, ptid))
2213e2be
YQ
2286 {
2287 switch_to_thread (ptid);
2288 within_scope = check_scope (var);
2289 }
2290 }
2291
2292 if (within_scope)
2293 {
2213e2be
YQ
2294
2295 /* We need to catch errors here, because if evaluate
2296 expression fails we want to just return NULL. */
492d29ea 2297 TRY
2213e2be
YQ
2298 {
2299 new_val = evaluate_expression (var->root->exp);
2300 }
492d29ea
PA
2301 CATCH (except, RETURN_MASK_ERROR)
2302 {
2303 }
2304 END_CATCH
2213e2be
YQ
2305 }
2306
2307 do_cleanups (back_to);
2308
2309 return new_val;
2310}
2311
a5defcdc
VP
2312/* What is the ``struct value *'' of the root variable VAR?
2313 For floating variable object, evaluation can get us a value
2314 of different type from what is stored in varobj already. In
2315 that case:
2316 - *type_changed will be set to 1
2317 - old varobj will be freed, and new one will be
2318 created, with the same name.
2319 - *var_handle will be set to the new varobj
2320 Otherwise, *type_changed will be set to 0. */
30b28db1 2321static struct value *
fba45db2 2322value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2323{
73a93a32
JI
2324 struct varobj *var;
2325
2326 if (var_handle == NULL)
2327 return NULL;
2328
2329 var = *var_handle;
2330
2331 /* This should really be an exception, since this should
581e13c1 2332 only get called with a root variable. */
73a93a32 2333
b2c2bd75 2334 if (!is_root_p (var))
73a93a32
JI
2335 return NULL;
2336
a5defcdc 2337 if (var->root->floating)
73a93a32
JI
2338 {
2339 struct varobj *tmp_var;
2340 char *old_type, *new_type;
6225abfa 2341
73a93a32
JI
2342 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2343 USE_SELECTED_FRAME);
2344 if (tmp_var == NULL)
2345 {
2346 return NULL;
2347 }
6225abfa 2348 old_type = varobj_get_type (var);
73a93a32 2349 new_type = varobj_get_type (tmp_var);
72330bd6 2350 if (strcmp (old_type, new_type) == 0)
73a93a32 2351 {
fcacd99f
VP
2352 /* The expression presently stored inside var->root->exp
2353 remembers the locations of local variables relatively to
2354 the frame where the expression was created (in DWARF location
2355 button, for example). Naturally, those locations are not
2356 correct in other frames, so update the expression. */
2357
2358 struct expression *tmp_exp = var->root->exp;
a109c7c1 2359
fcacd99f
VP
2360 var->root->exp = tmp_var->root->exp;
2361 tmp_var->root->exp = tmp_exp;
2362
30914ca8 2363 varobj_delete (tmp_var, 0);
73a93a32
JI
2364 *type_changed = 0;
2365 }
2366 else
2367 {
1b36a34b 2368 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2369 tmp_var->from = var->from;
2370 tmp_var->to = var->to;
30914ca8 2371 varobj_delete (var, 0);
a5defcdc 2372
73a93a32
JI
2373 install_variable (tmp_var);
2374 *var_handle = tmp_var;
705da579 2375 var = *var_handle;
73a93a32
JI
2376 *type_changed = 1;
2377 }
74dddad3
MS
2378 xfree (old_type);
2379 xfree (new_type);
73a93a32
JI
2380 }
2381 else
2382 {
2383 *type_changed = 0;
2384 }
2385
7a290c40
JB
2386 {
2387 struct value *value;
2388
2213e2be 2389 value = value_of_root_1 (var_handle);
7a290c40
JB
2390 if (var->value == NULL || value == NULL)
2391 {
2392 /* For root varobj-s, a NULL value indicates a scoping issue.
2393 So, nothing to do in terms of checking for mutations. */
2394 }
2395 else if (varobj_value_has_mutated (var, value, value_type (value)))
2396 {
2397 /* The type has mutated, so the children are no longer valid.
2398 Just delete them, and tell our caller that the type has
2399 changed. */
30914ca8 2400 varobj_delete (var, 1 /* only_children */);
7a290c40
JB
2401 var->num_children = -1;
2402 var->to = -1;
2403 var->from = -1;
2404 *type_changed = 1;
2405 }
2406 return value;
2407 }
8b93c638
JM
2408}
2409
581e13c1 2410/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2411static struct value *
c1cc6152 2412value_of_child (const struct varobj *parent, int index)
8b93c638 2413{
30b28db1 2414 struct value *value;
8b93c638 2415
ca20d462 2416 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2417
8b93c638
JM
2418 return value;
2419}
2420
581e13c1 2421/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2422static char *
de051565 2423my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2424{
8756216b 2425 if (var->root->is_valid)
0cc7d26f 2426 {
bb5ce47a 2427 if (var->dynamic->pretty_printer != NULL)
99ad9427 2428 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2429 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2430 }
8756216b
DP
2431 else
2432 return NULL;
8b93c638
JM
2433}
2434
99ad9427
YQ
2435void
2436varobj_formatted_print_options (struct value_print_options *opts,
2437 enum varobj_display_formats format)
2438{
2439 get_formatted_print_options (opts, format_code[(int) format]);
2440 opts->deref_ref = 0;
2441 opts->raw = 1;
2442}
2443
2444char *
2445varobj_value_get_print_value (struct value *value,
2446 enum varobj_display_formats format,
b09e2c59 2447 const struct varobj *var)
85265413 2448{
57e66780 2449 struct ui_file *stb;
621c8364 2450 struct cleanup *old_chain;
ac91cd70 2451 char *thevalue = NULL;
79a45b7d 2452 struct value_print_options opts;
be759fcf
PM
2453 struct type *type = NULL;
2454 long len = 0;
2455 char *encoding = NULL;
2456 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2457 /* Initialize it just to avoid a GCC false warning. */
2458 CORE_ADDR str_addr = 0;
09ca9e2e 2459 int string_print = 0;
57e66780
DJ
2460
2461 if (value == NULL)
2462 return NULL;
2463
621c8364
TT
2464 stb = mem_fileopen ();
2465 old_chain = make_cleanup_ui_file_delete (stb);
2466
be759fcf 2467 gdbarch = get_type_arch (value_type (value));
b6313243 2468#if HAVE_PYTHON
0646da15
TT
2469 if (gdb_python_initialized)
2470 {
bb5ce47a 2471 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2472
0646da15 2473 varobj_ensure_python_env (var);
09ca9e2e 2474
0646da15
TT
2475 if (value_formatter)
2476 {
2477 /* First check to see if we have any children at all. If so,
2478 we simply return {...}. */
2479 if (dynamic_varobj_has_child_method (var))
2480 {
2481 do_cleanups (old_chain);
2482 return xstrdup ("{...}");
2483 }
b6313243 2484
0646da15
TT
2485 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2486 {
2487 struct value *replacement;
2488 PyObject *output = NULL;
2489
2490 output = apply_varobj_pretty_printer (value_formatter,
2491 &replacement,
2492 stb);
2493
2494 /* If we have string like output ... */
2495 if (output)
2496 {
2497 make_cleanup_py_decref (output);
2498
2499 /* If this is a lazy string, extract it. For lazy
2500 strings we always print as a string, so set
2501 string_print. */
2502 if (gdbpy_is_lazy_string (output))
2503 {
2504 gdbpy_extract_lazy_string (output, &str_addr, &type,
2505 &len, &encoding);
2506 make_cleanup (free_current_contents, &encoding);
2507 string_print = 1;
2508 }
2509 else
2510 {
2511 /* If it is a regular (non-lazy) string, extract
2512 it and copy the contents into THEVALUE. If the
2513 hint says to print it as a string, set
2514 string_print. Otherwise just return the extracted
2515 string as a value. */
2516
2517 char *s = python_string_to_target_string (output);
2518
2519 if (s)
2520 {
2521 char *hint;
2522
2523 hint = gdbpy_get_display_hint (value_formatter);
2524 if (hint)
2525 {
2526 if (!strcmp (hint, "string"))
2527 string_print = 1;
2528 xfree (hint);
2529 }
2530
2531 len = strlen (s);
224c3ddb 2532 thevalue = (char *) xmemdup (s, len + 1, len + 1);
0646da15
TT
2533 type = builtin_type (gdbarch)->builtin_char;
2534 xfree (s);
2535
2536 if (!string_print)
2537 {
2538 do_cleanups (old_chain);
2539 return thevalue;
2540 }
2541
2542 make_cleanup (xfree, thevalue);
2543 }
2544 else
2545 gdbpy_print_stack ();
2546 }
2547 }
2548 /* If the printer returned a replacement value, set VALUE
2549 to REPLACEMENT. If there is not a replacement value,
2550 just use the value passed to this function. */
2551 if (replacement)
2552 value = replacement;
2553 }
2554 }
2555 }
b6313243
TT
2556#endif
2557
99ad9427 2558 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2559
2560 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2561 if (thevalue)
ac91cd70 2562 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
09ca9e2e 2563 else if (string_print)
00bd41d6
PM
2564 /* Otherwise, if string_print is set, and it is not a regular
2565 string, it is a lazy string. */
09ca9e2e 2566 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2567 else
00bd41d6 2568 /* All other cases. */
b6313243 2569 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2570
759ef836 2571 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2572
85265413
NR
2573 do_cleanups (old_chain);
2574 return thevalue;
2575}
2576
340a7723 2577int
b09e2c59 2578varobj_editable_p (const struct varobj *var)
340a7723
NR
2579{
2580 struct type *type;
340a7723
NR
2581
2582 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2583 return 0;
2584
99ad9427 2585 type = varobj_get_value_type (var);
340a7723
NR
2586
2587 switch (TYPE_CODE (type))
2588 {
2589 case TYPE_CODE_STRUCT:
2590 case TYPE_CODE_UNION:
2591 case TYPE_CODE_ARRAY:
2592 case TYPE_CODE_FUNC:
2593 case TYPE_CODE_METHOD:
2594 return 0;
2595 break;
2596
2597 default:
2598 return 1;
2599 break;
2600 }
2601}
2602
d32cafc7 2603/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2604
99ad9427 2605int
b09e2c59 2606varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2607{
ca20d462 2608 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2609}
2610
5a413362
VP
2611/* Return 1 if that varobj is floating, that is is always evaluated in the
2612 selected frame, and not bound to thread/frame. Such variable objects
2613 are created using '@' as frame specifier to -var-create. */
2614int
b09e2c59 2615varobj_floating_p (const struct varobj *var)
5a413362
VP
2616{
2617 return var->root->floating;
2618}
2619
d32cafc7
JB
2620/* Implement the "value_is_changeable_p" varobj callback for most
2621 languages. */
2622
99ad9427 2623int
b09e2c59 2624varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7
JB
2625{
2626 int r;
2627 struct type *type;
2628
2629 if (CPLUS_FAKE_CHILD (var))
2630 return 0;
2631
99ad9427 2632 type = varobj_get_value_type (var);
d32cafc7
JB
2633
2634 switch (TYPE_CODE (type))
2635 {
2636 case TYPE_CODE_STRUCT:
2637 case TYPE_CODE_UNION:
2638 case TYPE_CODE_ARRAY:
2639 r = 0;
2640 break;
2641
2642 default:
2643 r = 1;
2644 }
2645
2646 return r;
2647}
2648
54333c3b
JK
2649/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2650 with an arbitrary caller supplied DATA pointer. */
2651
2652void
2653all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2654{
2655 struct varobj_root *var_root, *var_root_next;
2656
2657 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2658
2659 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2660 {
2661 var_root_next = var_root->next;
2662
2663 (*func) (var_root->rootvar, data);
2664 }
2665}
8756216b 2666
54333c3b 2667/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2668 defined on globals. It is a helper for varobj_invalidate.
2669
2670 This function is called after changing the symbol file, in this case the
2671 pointers to "struct type" stored by the varobj are no longer valid. All
2672 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2673
54333c3b
JK
2674static void
2675varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2676{
4e969b4f
AB
2677 /* global and floating var must be re-evaluated. */
2678 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2679 {
54333c3b 2680 struct varobj *tmp_var;
2dbd25e5 2681
54333c3b
JK
2682 /* Try to create a varobj with same expression. If we succeed
2683 replace the old varobj, otherwise invalidate it. */
2684 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2685 USE_CURRENT_FRAME);
2686 if (tmp_var != NULL)
2687 {
2688 tmp_var->obj_name = xstrdup (var->obj_name);
30914ca8 2689 varobj_delete (var, 0);
54333c3b 2690 install_variable (tmp_var);
2dbd25e5 2691 }
54333c3b
JK
2692 else
2693 var->root->is_valid = 0;
2dbd25e5 2694 }
54333c3b
JK
2695 else /* locals must be invalidated. */
2696 var->root->is_valid = 0;
2697}
2698
2699/* Invalidate the varobjs that are tied to locals and re-create the ones that
2700 are defined on globals.
2701 Invalidated varobjs will be always printed in_scope="invalid". */
2702
2703void
2704varobj_invalidate (void)
2705{
2706 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2707}
1c3569d4
MR
2708\f
2709extern void _initialize_varobj (void);
2710void
2711_initialize_varobj (void)
2712{
8d749320 2713 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
1c3569d4
MR
2714
2715 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2716 &varobjdebug,
2717 _("Set varobj debugging."),
2718 _("Show varobj debugging."),
2719 _("When non-zero, varobj debugging is enabled."),
2720 NULL, show_varobjdebug,
2721 &setdebuglist, &showdebuglist);
2722}
This page took 1.884245 seconds and 4 git commands to generate.