Remove #if HAVE_PYTHON
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
ecd75fc8 3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
a6c442d8 19#include "exceptions.h"
8b93c638
JM
20#include "value.h"
21#include "expression.h"
22#include "frame.h"
8b93c638 23#include "language.h"
8b93c638 24#include "gdbcmd.h"
d2353924 25#include "block.h"
79a45b7d 26#include "valprint.h"
a6c442d8
MK
27
28#include "gdb_assert.h"
0e9f083f 29#include <string.h>
0cc7d26f 30#include "gdb_regex.h"
8b93c638
JM
31
32#include "varobj.h"
28335dcc 33#include "vec.h"
6208b47d
VP
34#include "gdbthread.h"
35#include "inferior.h"
827f100c 36#include "varobj-iter.h"
8b93c638 37
b6313243
TT
38#if HAVE_PYTHON
39#include "python/python.h"
40#include "python/python-internal.h"
50389644
PA
41#else
42typedef int PyObject;
b6313243
TT
43#endif
44
8b93c638
JM
45/* Non-zero if we want to see trace of varobj level stuff. */
46
ccce17b0 47unsigned int varobjdebug = 0;
920d2a44
AC
48static void
49show_varobjdebug (struct ui_file *file, int from_tty,
50 struct cmd_list_element *c, const char *value)
51{
52 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
53}
8b93c638 54
581e13c1 55/* String representations of gdb's format codes. */
8b93c638 56char *varobj_format_string[] =
72330bd6 57 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 58
0cc7d26f
TT
59/* True if we want to allow Python-based pretty-printing. */
60static int pretty_printing = 0;
61
62void
63varobj_enable_pretty_printing (void)
64{
65 pretty_printing = 1;
66}
67
8b93c638
JM
68/* Data structures */
69
70/* Every root variable has one of these structures saved in its
581e13c1 71 varobj. Members which must be free'd are noted. */
8b93c638 72struct varobj_root
72330bd6 73{
8b93c638 74
581e13c1 75 /* Alloc'd expression for this parent. */
72330bd6 76 struct expression *exp;
8b93c638 77
581e13c1 78 /* Block for which this expression is valid. */
270140bd 79 const struct block *valid_block;
8b93c638 80
44a67aa7
VP
81 /* The frame for this expression. This field is set iff valid_block is
82 not NULL. */
e64d9b3d 83 struct frame_id frame;
8b93c638 84
c5b48eac 85 /* The thread ID that this varobj_root belong to. This field
581e13c1 86 is only valid if valid_block is not NULL.
c5b48eac
VP
87 When not 0, indicates which thread 'frame' belongs to.
88 When 0, indicates that the thread list was empty when the varobj_root
89 was created. */
90 int thread_id;
91
a5defcdc
VP
92 /* If 1, the -var-update always recomputes the value in the
93 current thread and frame. Otherwise, variable object is
581e13c1 94 always updated in the specific scope/thread/frame. */
a5defcdc 95 int floating;
73a93a32 96
8756216b
DP
97 /* Flag that indicates validity: set to 0 when this varobj_root refers
98 to symbols that do not exist anymore. */
99 int is_valid;
100
99ad9427
YQ
101 /* Language-related operations for this variable and its
102 children. */
ca20d462 103 const struct lang_varobj_ops *lang_ops;
8b93c638 104
581e13c1 105 /* The varobj for this root node. */
72330bd6 106 struct varobj *rootvar;
8b93c638 107
72330bd6
AC
108 /* Next root variable */
109 struct varobj_root *next;
110};
8b93c638 111
bb5ce47a 112/* Dynamic part of varobj. */
8b93c638 113
bb5ce47a
YQ
114struct varobj_dynamic
115{
b6313243
TT
116 /* Whether the children of this varobj were requested. This field is
117 used to decide if dynamic varobj should recompute their children.
118 In the event that the frontend never asked for the children, we
119 can avoid that. */
120 int children_requested;
121
0cc7d26f
TT
122 /* The pretty-printer constructor. If NULL, then the default
123 pretty-printer will be looked up. If None, then no
124 pretty-printer will be installed. */
125 PyObject *constructor;
126
b6313243
TT
127 /* The pretty-printer that has been constructed. If NULL, then a
128 new printer object is needed, and one will be constructed. */
129 PyObject *pretty_printer;
0cc7d26f
TT
130
131 /* The iterator returned by the printer's 'children' method, or NULL
132 if not available. */
e5250216 133 struct varobj_iter *child_iter;
0cc7d26f
TT
134
135 /* We request one extra item from the iterator, so that we can
136 report to the caller whether there are more items than we have
137 already reported. However, we don't want to install this value
138 when we read it, because that will mess up future updates. So,
139 we stash it here instead. */
e5250216 140 varobj_item *saved_item;
72330bd6 141};
8b93c638 142
8b93c638 143struct cpstack
72330bd6
AC
144{
145 char *name;
146 struct cpstack *next;
147};
8b93c638
JM
148
149/* A list of varobjs */
150
151struct vlist
72330bd6
AC
152{
153 struct varobj *var;
154 struct vlist *next;
155};
8b93c638
JM
156
157/* Private function prototypes */
158
581e13c1 159/* Helper functions for the above subcommands. */
8b93c638 160
a14ed312 161static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 162
a14ed312
KB
163static void delete_variable_1 (struct cpstack **, int *,
164 struct varobj *, int, int);
8b93c638 165
a14ed312 166static int install_variable (struct varobj *);
8b93c638 167
a14ed312 168static void uninstall_variable (struct varobj *);
8b93c638 169
a14ed312 170static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 171
b6313243 172static struct varobj *
5a2e0d6e
YQ
173create_child_with_value (struct varobj *parent, int index,
174 struct varobj_item *item);
b6313243 175
8b93c638
JM
176/* Utility routines */
177
a14ed312 178static struct varobj *new_variable (void);
8b93c638 179
a14ed312 180static struct varobj *new_root_variable (void);
8b93c638 181
a14ed312 182static void free_variable (struct varobj *var);
8b93c638 183
74b7792f
AC
184static struct cleanup *make_cleanup_free_variable (struct varobj *var);
185
a14ed312 186static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 187
a14ed312 188static void cppush (struct cpstack **pstack, char *name);
8b93c638 189
a14ed312 190static char *cppop (struct cpstack **pstack);
8b93c638 191
8264ba82
AG
192static int update_type_if_necessary (struct varobj *var,
193 struct value *new_value);
194
acd65feb
VP
195static int install_new_value (struct varobj *var, struct value *value,
196 int initial);
197
581e13c1 198/* Language-specific routines. */
8b93c638 199
a14ed312 200static int number_of_children (struct varobj *);
8b93c638 201
a14ed312 202static char *name_of_variable (struct varobj *);
8b93c638 203
a14ed312 204static char *name_of_child (struct varobj *, int);
8b93c638 205
30b28db1 206static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 207
30b28db1 208static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 209
de051565
MK
210static char *my_value_of_variable (struct varobj *var,
211 enum varobj_display_formats format);
8b93c638 212
b2c2bd75 213static int is_root_p (struct varobj *var);
8b93c638 214
9a1edae6 215static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 216 struct varobj_item *item);
b6313243 217
8b93c638
JM
218/* Private data */
219
581e13c1 220/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 221static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 222
581e13c1 223/* Header of the list of root variable objects. */
8b93c638 224static struct varobj_root *rootlist;
8b93c638 225
581e13c1
MS
226/* Prime number indicating the number of buckets in the hash table. */
227/* A prime large enough to avoid too many colisions. */
8b93c638
JM
228#define VAROBJ_TABLE_SIZE 227
229
581e13c1 230/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
231static struct vlist **varobj_table;
232
8b93c638
JM
233\f
234
235/* API Implementation */
b2c2bd75
VP
236static int
237is_root_p (struct varobj *var)
238{
239 return (var->root->rootvar == var);
240}
8b93c638 241
d452c4bc
UW
242#ifdef HAVE_PYTHON
243/* Helper function to install a Python environment suitable for
244 use during operations on VAR. */
e5250216 245struct cleanup *
d452c4bc
UW
246varobj_ensure_python_env (struct varobj *var)
247{
248 return ensure_python_env (var->root->exp->gdbarch,
249 var->root->exp->language_defn);
250}
251#endif
252
581e13c1 253/* Creates a varobj (not its children). */
8b93c638 254
7d8547c9
AC
255/* Return the full FRAME which corresponds to the given CORE_ADDR
256 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
257
258static struct frame_info *
259find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
260{
261 struct frame_info *frame = NULL;
262
263 if (frame_addr == (CORE_ADDR) 0)
264 return NULL;
265
9d49bdc2
PA
266 for (frame = get_current_frame ();
267 frame != NULL;
268 frame = get_prev_frame (frame))
7d8547c9 269 {
1fac167a
UW
270 /* The CORE_ADDR we get as argument was parsed from a string GDB
271 output as $fp. This output got truncated to gdbarch_addr_bit.
272 Truncate the frame base address in the same manner before
273 comparing it against our argument. */
274 CORE_ADDR frame_base = get_frame_base_address (frame);
275 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 276
1fac167a
UW
277 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
278 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
279
280 if (frame_base == frame_addr)
7d8547c9
AC
281 return frame;
282 }
9d49bdc2
PA
283
284 return NULL;
7d8547c9
AC
285}
286
8b93c638
JM
287struct varobj *
288varobj_create (char *objname,
72330bd6 289 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
290{
291 struct varobj *var;
8b93c638
JM
292 struct cleanup *old_chain;
293
581e13c1 294 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 295 var = new_root_variable ();
74b7792f 296 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
297
298 if (expression != NULL)
299 {
e4195b40 300 struct frame_info *fi;
35633fef 301 struct frame_id old_id = null_frame_id;
e4195b40 302 struct block *block;
bbc13ae3 303 const char *p;
e55dccf0 304 struct value *value = NULL;
8e7b59a5 305 volatile struct gdb_exception except;
1bb9788d 306 CORE_ADDR pc;
8b93c638 307
9d49bdc2
PA
308 /* Parse and evaluate the expression, filling in as much of the
309 variable's data as possible. */
310
311 if (has_stack_frames ())
312 {
581e13c1 313 /* Allow creator to specify context of variable. */
9d49bdc2
PA
314 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
315 fi = get_selected_frame (NULL);
316 else
317 /* FIXME: cagney/2002-11-23: This code should be doing a
318 lookup using the frame ID and not just the frame's
319 ``address''. This, of course, means an interface
320 change. However, with out that interface change ISAs,
321 such as the ia64 with its two stacks, won't work.
322 Similar goes for the case where there is a frameless
323 function. */
324 fi = find_frame_addr_in_frame_chain (frame);
325 }
8b93c638 326 else
9d49bdc2 327 fi = NULL;
8b93c638 328
581e13c1 329 /* frame = -2 means always use selected frame. */
73a93a32 330 if (type == USE_SELECTED_FRAME)
a5defcdc 331 var->root->floating = 1;
73a93a32 332
1bb9788d 333 pc = 0;
8b93c638
JM
334 block = NULL;
335 if (fi != NULL)
1bb9788d
TT
336 {
337 block = get_frame_block (fi, 0);
338 pc = get_frame_pc (fi);
339 }
8b93c638
JM
340
341 p = expression;
342 innermost_block = NULL;
73a93a32 343 /* Wrap the call to parse expression, so we can
581e13c1 344 return a sensible error. */
8e7b59a5
KS
345 TRY_CATCH (except, RETURN_MASK_ERROR)
346 {
1bb9788d 347 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
348 }
349
350 if (except.reason < 0)
73a93a32 351 {
f748fb40 352 do_cleanups (old_chain);
73a93a32
JI
353 return NULL;
354 }
8b93c638 355
581e13c1 356 /* Don't allow variables to be created for types. */
608b4967
TT
357 if (var->root->exp->elts[0].opcode == OP_TYPE
358 || var->root->exp->elts[0].opcode == OP_TYPEOF
359 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638
JM
360 {
361 do_cleanups (old_chain);
bc8332bb
AC
362 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
363 " as an expression.\n");
8b93c638
JM
364 return NULL;
365 }
366
367 var->format = variable_default_display (var);
368 var->root->valid_block = innermost_block;
1b36a34b 369 var->name = xstrdup (expression);
02142340 370 /* For a root var, the name and the expr are the same. */
1b36a34b 371 var->path_expr = xstrdup (expression);
8b93c638
JM
372
373 /* When the frame is different from the current frame,
374 we must select the appropriate frame before parsing
375 the expression, otherwise the value will not be current.
581e13c1 376 Since select_frame is so benign, just call it for all cases. */
4e22772d 377 if (innermost_block)
8b93c638 378 {
4e22772d
JK
379 /* User could specify explicit FRAME-ADDR which was not found but
380 EXPRESSION is frame specific and we would not be able to evaluate
381 it correctly next time. With VALID_BLOCK set we must also set
382 FRAME and THREAD_ID. */
383 if (fi == NULL)
384 error (_("Failed to find the specified frame"));
385
7a424e99 386 var->root->frame = get_frame_id (fi);
c5b48eac 387 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 388 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 389 select_frame (fi);
8b93c638
JM
390 }
391
340a7723 392 /* We definitely need to catch errors here.
8b93c638 393 If evaluate_expression succeeds we got the value we wanted.
581e13c1 394 But if it fails, we still go on with a call to evaluate_type(). */
8e7b59a5
KS
395 TRY_CATCH (except, RETURN_MASK_ERROR)
396 {
397 value = evaluate_expression (var->root->exp);
398 }
399
400 if (except.reason < 0)
e55dccf0
VP
401 {
402 /* Error getting the value. Try to at least get the
403 right type. */
404 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 405
e55dccf0
VP
406 var->type = value_type (type_only_value);
407 }
8264ba82
AG
408 else
409 {
410 int real_type_found = 0;
411
412 var->type = value_actual_type (value, 0, &real_type_found);
413 if (real_type_found)
414 value = value_cast (var->type, value);
415 }
acd65feb 416
8b93c638 417 /* Set language info */
ca20d462 418 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 419
d32cafc7
JB
420 install_new_value (var, value, 1 /* Initial assignment */);
421
581e13c1 422 /* Set ourselves as our root. */
8b93c638
JM
423 var->root->rootvar = var;
424
581e13c1 425 /* Reset the selected frame. */
35633fef
JK
426 if (frame_id_p (old_id))
427 select_frame (frame_find_by_id (old_id));
8b93c638
JM
428 }
429
73a93a32 430 /* If the variable object name is null, that means this
581e13c1 431 is a temporary variable, so don't install it. */
73a93a32
JI
432
433 if ((var != NULL) && (objname != NULL))
8b93c638 434 {
1b36a34b 435 var->obj_name = xstrdup (objname);
8b93c638
JM
436
437 /* If a varobj name is duplicated, the install will fail so
581e13c1 438 we must cleanup. */
8b93c638
JM
439 if (!install_variable (var))
440 {
441 do_cleanups (old_chain);
442 return NULL;
443 }
444 }
445
446 discard_cleanups (old_chain);
447 return var;
448}
449
581e13c1 450/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
451
452char *
453varobj_gen_name (void)
454{
455 static int id = 0;
e64d9b3d 456 char *obj_name;
8b93c638 457
581e13c1 458 /* Generate a name for this object. */
8b93c638 459 id++;
b435e160 460 obj_name = xstrprintf ("var%d", id);
8b93c638 461
e64d9b3d 462 return obj_name;
8b93c638
JM
463}
464
61d8f275
JK
465/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
466 error if OBJNAME cannot be found. */
8b93c638
JM
467
468struct varobj *
469varobj_get_handle (char *objname)
470{
471 struct vlist *cv;
472 const char *chp;
473 unsigned int index = 0;
474 unsigned int i = 1;
475
476 for (chp = objname; *chp; chp++)
477 {
478 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
479 }
480
481 cv = *(varobj_table + index);
482 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
483 cv = cv->next;
484
485 if (cv == NULL)
8a3fe4f8 486 error (_("Variable object not found"));
8b93c638
JM
487
488 return cv->var;
489}
490
581e13c1 491/* Given the handle, return the name of the object. */
8b93c638
JM
492
493char *
494varobj_get_objname (struct varobj *var)
495{
496 return var->obj_name;
497}
498
581e13c1 499/* Given the handle, return the expression represented by the object. */
8b93c638
JM
500
501char *
502varobj_get_expression (struct varobj *var)
503{
504 return name_of_variable (var);
505}
506
507/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
508 otherwise deletes only the children; returns a malloc'ed list of
509 all the (malloc'ed) names of the variables that have been deleted
581e13c1 510 (NULL terminated). */
8b93c638
JM
511
512int
513varobj_delete (struct varobj *var, char ***dellist, int only_children)
514{
515 int delcount;
516 int mycount;
517 struct cpstack *result = NULL;
518 char **cp;
519
581e13c1 520 /* Initialize a stack for temporary results. */
8b93c638
JM
521 cppush (&result, NULL);
522
523 if (only_children)
581e13c1 524 /* Delete only the variable children. */
8b93c638
JM
525 delcount = delete_variable (&result, var, 1 /* only the children */ );
526 else
581e13c1 527 /* Delete the variable and all its children. */
8b93c638
JM
528 delcount = delete_variable (&result, var, 0 /* parent+children */ );
529
581e13c1 530 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
531 if (dellist != NULL)
532 {
533 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
534
535 cp = *dellist;
536 mycount = delcount;
537 *cp = cppop (&result);
538 while ((*cp != NULL) && (mycount > 0))
539 {
540 mycount--;
541 cp++;
542 *cp = cppop (&result);
543 }
544
545 if (mycount || (*cp != NULL))
8a3fe4f8 546 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 547 mycount);
8b93c638
JM
548 }
549
550 return delcount;
551}
552
d8b65138
JK
553#if HAVE_PYTHON
554
b6313243
TT
555/* Convenience function for varobj_set_visualizer. Instantiate a
556 pretty-printer for a given value. */
557static PyObject *
558instantiate_pretty_printer (PyObject *constructor, struct value *value)
559{
b6313243
TT
560 PyObject *val_obj = NULL;
561 PyObject *printer;
b6313243 562
b6313243 563 val_obj = value_to_value_object (value);
b6313243
TT
564 if (! val_obj)
565 return NULL;
566
567 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
568 Py_DECREF (val_obj);
569 return printer;
b6313243
TT
570}
571
d8b65138
JK
572#endif
573
581e13c1 574/* Set/Get variable object display format. */
8b93c638
JM
575
576enum varobj_display_formats
577varobj_set_display_format (struct varobj *var,
578 enum varobj_display_formats format)
579{
580 switch (format)
581 {
582 case FORMAT_NATURAL:
583 case FORMAT_BINARY:
584 case FORMAT_DECIMAL:
585 case FORMAT_HEXADECIMAL:
586 case FORMAT_OCTAL:
587 var->format = format;
588 break;
589
590 default:
591 var->format = variable_default_display (var);
592 }
593
ae7d22a6
VP
594 if (varobj_value_is_changeable_p (var)
595 && var->value && !value_lazy (var->value))
596 {
6c761d9c 597 xfree (var->print_value);
99ad9427
YQ
598 var->print_value = varobj_value_get_print_value (var->value,
599 var->format, var);
ae7d22a6
VP
600 }
601
8b93c638
JM
602 return var->format;
603}
604
605enum varobj_display_formats
606varobj_get_display_format (struct varobj *var)
607{
608 return var->format;
609}
610
b6313243
TT
611char *
612varobj_get_display_hint (struct varobj *var)
613{
614 char *result = NULL;
615
616#if HAVE_PYTHON
0646da15
TT
617 struct cleanup *back_to;
618
619 if (!gdb_python_initialized)
620 return NULL;
621
622 back_to = varobj_ensure_python_env (var);
d452c4bc 623
bb5ce47a
YQ
624 if (var->dynamic->pretty_printer != NULL)
625 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
d452c4bc
UW
626
627 do_cleanups (back_to);
b6313243
TT
628#endif
629
630 return result;
631}
632
0cc7d26f
TT
633/* Return true if the varobj has items after TO, false otherwise. */
634
635int
636varobj_has_more (struct varobj *var, int to)
637{
638 if (VEC_length (varobj_p, var->children) > to)
639 return 1;
640 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
bb5ce47a 641 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
642}
643
c5b48eac
VP
644/* If the variable object is bound to a specific thread, that
645 is its evaluation can always be done in context of a frame
646 inside that thread, returns GDB id of the thread -- which
581e13c1 647 is always positive. Otherwise, returns -1. */
c5b48eac
VP
648int
649varobj_get_thread_id (struct varobj *var)
650{
651 if (var->root->valid_block && var->root->thread_id > 0)
652 return var->root->thread_id;
653 else
654 return -1;
655}
656
25d5ea92
VP
657void
658varobj_set_frozen (struct varobj *var, int frozen)
659{
660 /* When a variable is unfrozen, we don't fetch its value.
661 The 'not_fetched' flag remains set, so next -var-update
662 won't complain.
663
664 We don't fetch the value, because for structures the client
665 should do -var-update anyway. It would be bad to have different
666 client-size logic for structure and other types. */
667 var->frozen = frozen;
668}
669
670int
671varobj_get_frozen (struct varobj *var)
672{
673 return var->frozen;
674}
675
0cc7d26f
TT
676/* A helper function that restricts a range to what is actually
677 available in a VEC. This follows the usual rules for the meaning
678 of FROM and TO -- if either is negative, the entire range is
679 used. */
680
99ad9427
YQ
681void
682varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
0cc7d26f
TT
683{
684 if (*from < 0 || *to < 0)
685 {
686 *from = 0;
687 *to = VEC_length (varobj_p, children);
688 }
689 else
690 {
691 if (*from > VEC_length (varobj_p, children))
692 *from = VEC_length (varobj_p, children);
693 if (*to > VEC_length (varobj_p, children))
694 *to = VEC_length (varobj_p, children);
695 if (*from > *to)
696 *from = *to;
697 }
698}
699
700/* A helper for update_dynamic_varobj_children that installs a new
701 child when needed. */
702
703static void
704install_dynamic_child (struct varobj *var,
705 VEC (varobj_p) **changed,
8264ba82 706 VEC (varobj_p) **type_changed,
0cc7d26f
TT
707 VEC (varobj_p) **new,
708 VEC (varobj_p) **unchanged,
709 int *cchanged,
710 int index,
5a2e0d6e 711 struct varobj_item *item)
0cc7d26f
TT
712{
713 if (VEC_length (varobj_p, var->children) < index + 1)
714 {
715 /* There's no child yet. */
5a2e0d6e 716 struct varobj *child = varobj_add_child (var, item);
a109c7c1 717
0cc7d26f
TT
718 if (new)
719 {
720 VEC_safe_push (varobj_p, *new, child);
721 *cchanged = 1;
722 }
723 }
bf8793bb 724 else
0cc7d26f
TT
725 {
726 varobj_p existing = VEC_index (varobj_p, var->children, index);
5a2e0d6e 727 int type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 728
8264ba82
AG
729 if (type_updated)
730 {
731 if (type_changed)
732 VEC_safe_push (varobj_p, *type_changed, existing);
733 }
5a2e0d6e 734 if (install_new_value (existing, item->value, 0))
0cc7d26f 735 {
8264ba82 736 if (!type_updated && changed)
0cc7d26f
TT
737 VEC_safe_push (varobj_p, *changed, existing);
738 }
8264ba82 739 else if (!type_updated && unchanged)
0cc7d26f
TT
740 VEC_safe_push (varobj_p, *unchanged, existing);
741 }
742}
743
576ea091
YQ
744#if HAVE_PYTHON
745
0cc7d26f
TT
746static int
747dynamic_varobj_has_child_method (struct varobj *var)
748{
749 struct cleanup *back_to;
bb5ce47a 750 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f
TT
751 int result;
752
0646da15
TT
753 if (!gdb_python_initialized)
754 return 0;
755
0cc7d26f
TT
756 back_to = varobj_ensure_python_env (var);
757 result = PyObject_HasAttr (printer, gdbpy_children_cst);
758 do_cleanups (back_to);
759 return result;
760}
576ea091 761#endif
0cc7d26f 762
e5250216
YQ
763/* A factory for creating dynamic varobj's iterators. Returns an
764 iterator object suitable for iterating over VAR's children. */
765
766static struct varobj_iter *
767varobj_get_iterator (struct varobj *var)
768{
576ea091 769#if HAVE_PYTHON
e5250216
YQ
770 if (var->dynamic->pretty_printer)
771 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 772#endif
e5250216
YQ
773
774 gdb_assert_not_reached (_("\
775requested an iterator from a non-dynamic varobj"));
776}
777
827f100c
YQ
778/* Release and clear VAR's saved item, if any. */
779
780static void
781varobj_clear_saved_item (struct varobj_dynamic *var)
782{
783 if (var->saved_item != NULL)
784 {
785 value_free (var->saved_item->value);
786 xfree (var->saved_item);
787 var->saved_item = NULL;
788 }
789}
0cc7d26f 790
b6313243
TT
791static int
792update_dynamic_varobj_children (struct varobj *var,
793 VEC (varobj_p) **changed,
8264ba82 794 VEC (varobj_p) **type_changed,
0cc7d26f
TT
795 VEC (varobj_p) **new,
796 VEC (varobj_p) **unchanged,
797 int *cchanged,
798 int update_children,
799 int from,
800 int to)
b6313243 801{
b6313243 802 int i;
b6313243 803
b6313243 804 *cchanged = 0;
b6313243 805
bb5ce47a 806 if (update_children || var->dynamic->child_iter == NULL)
b6313243 807 {
e5250216
YQ
808 varobj_iter_delete (var->dynamic->child_iter);
809 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 810
827f100c 811 varobj_clear_saved_item (var->dynamic);
b6313243 812
e5250216 813 i = 0;
b6313243 814
bb5ce47a 815 if (var->dynamic->child_iter == NULL)
827f100c 816 return 0;
b6313243 817 }
0cc7d26f
TT
818 else
819 i = VEC_length (varobj_p, var->children);
b6313243 820
0cc7d26f
TT
821 /* We ask for one extra child, so that MI can report whether there
822 are more children. */
823 for (; to < 0 || i < to + 1; ++i)
b6313243 824 {
827f100c 825 varobj_item *item;
b6313243 826
0cc7d26f 827 /* See if there was a leftover from last time. */
827f100c 828 if (var->dynamic->saved_item != NULL)
0cc7d26f 829 {
bb5ce47a
YQ
830 item = var->dynamic->saved_item;
831 var->dynamic->saved_item = NULL;
0cc7d26f
TT
832 }
833 else
a4c8e806 834 {
e5250216 835 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
836 /* Release vitem->value so its lifetime is not bound to the
837 execution of a command. */
838 if (item != NULL && item->value != NULL)
839 release_value_or_incref (item->value);
a4c8e806 840 }
b6313243 841
e5250216
YQ
842 if (item == NULL)
843 {
844 /* Iteration is done. Remove iterator from VAR. */
845 varobj_iter_delete (var->dynamic->child_iter);
846 var->dynamic->child_iter = NULL;
847 break;
848 }
0cc7d26f
TT
849 /* We don't want to push the extra child on any report list. */
850 if (to < 0 || i < to)
b6313243 851 {
0cc7d26f
TT
852 int can_mention = from < 0 || i >= from;
853
0cc7d26f 854 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 855 can_mention ? type_changed : NULL,
0cc7d26f
TT
856 can_mention ? new : NULL,
857 can_mention ? unchanged : NULL,
5e5ac9a5 858 can_mention ? cchanged : NULL, i,
827f100c
YQ
859 item);
860
861 xfree (item);
b6313243 862 }
0cc7d26f 863 else
b6313243 864 {
bb5ce47a 865 var->dynamic->saved_item = item;
b6313243 866
0cc7d26f
TT
867 /* We want to truncate the child list just before this
868 element. */
869 break;
870 }
b6313243
TT
871 }
872
873 if (i < VEC_length (varobj_p, var->children))
874 {
0cc7d26f 875 int j;
a109c7c1 876
0cc7d26f
TT
877 *cchanged = 1;
878 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
879 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
880 VEC_truncate (varobj_p, var->children, i);
b6313243 881 }
0cc7d26f
TT
882
883 /* If there are fewer children than requested, note that the list of
884 children changed. */
885 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
886 *cchanged = 1;
887
b6313243 888 var->num_children = VEC_length (varobj_p, var->children);
b6313243 889
b6313243 890 return 1;
b6313243 891}
25d5ea92 892
8b93c638
JM
893int
894varobj_get_num_children (struct varobj *var)
895{
896 if (var->num_children == -1)
b6313243 897 {
bb5ce47a 898 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
899 {
900 int dummy;
901
902 /* If we have a dynamic varobj, don't report -1 children.
903 So, try to fetch some children first. */
8264ba82 904 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
905 0, 0, 0);
906 }
907 else
b6313243
TT
908 var->num_children = number_of_children (var);
909 }
8b93c638 910
0cc7d26f 911 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
912}
913
914/* Creates a list of the immediate children of a variable object;
581e13c1 915 the return code is the number of such children or -1 on error. */
8b93c638 916
d56d46f5 917VEC (varobj_p)*
0cc7d26f 918varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 919{
8b93c638 920 char *name;
b6313243
TT
921 int i, children_changed;
922
bb5ce47a 923 var->dynamic->children_requested = 1;
b6313243 924
bb5ce47a 925 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 926 {
b6313243
TT
927 /* This, in theory, can result in the number of children changing without
928 frontend noticing. But well, calling -var-list-children on the same
929 varobj twice is not something a sane frontend would do. */
8264ba82
AG
930 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
931 &children_changed, 0, 0, *to);
99ad9427 932 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
933 return var->children;
934 }
8b93c638 935
8b93c638
JM
936 if (var->num_children == -1)
937 var->num_children = number_of_children (var);
938
74a44383
DJ
939 /* If that failed, give up. */
940 if (var->num_children == -1)
d56d46f5 941 return var->children;
74a44383 942
28335dcc
VP
943 /* If we're called when the list of children is not yet initialized,
944 allocate enough elements in it. */
945 while (VEC_length (varobj_p, var->children) < var->num_children)
946 VEC_safe_push (varobj_p, var->children, NULL);
947
8b93c638
JM
948 for (i = 0; i < var->num_children; i++)
949 {
d56d46f5 950 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
951
952 if (existing == NULL)
953 {
954 /* Either it's the first call to varobj_list_children for
955 this variable object, and the child was never created,
956 or it was explicitly deleted by the client. */
957 name = name_of_child (var, i);
958 existing = create_child (var, i, name);
959 VEC_replace (varobj_p, var->children, i, existing);
960 }
8b93c638
JM
961 }
962
99ad9427 963 varobj_restrict_range (var->children, from, to);
d56d46f5 964 return var->children;
8b93c638
JM
965}
966
b6313243 967static struct varobj *
5a2e0d6e 968varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 969{
5a2e0d6e 970 varobj_p v = create_child_with_value (var,
b6313243 971 VEC_length (varobj_p, var->children),
5a2e0d6e 972 item);
a109c7c1 973
b6313243 974 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
975 return v;
976}
977
8b93c638 978/* Obtain the type of an object Variable as a string similar to the one gdb
581e13c1 979 prints on the console. */
8b93c638
JM
980
981char *
982varobj_get_type (struct varobj *var)
983{
8ab91b96 984 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
985 NULL, too.)
986 Do not return a type for invalid variables as well. */
987 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
988 return NULL;
989
1a4300e9 990 return type_to_string (var->type);
8b93c638
JM
991}
992
1ecb4ee0
DJ
993/* Obtain the type of an object variable. */
994
995struct type *
996varobj_get_gdb_type (struct varobj *var)
997{
998 return var->type;
999}
1000
85254831
KS
1001/* Is VAR a path expression parent, i.e., can it be used to construct
1002 a valid path expression? */
1003
1004static int
1005is_path_expr_parent (struct varobj *var)
1006{
1007 struct type *type;
1008
1009 /* "Fake" children are not path_expr parents. */
1010 if (CPLUS_FAKE_CHILD (var))
1011 return 0;
1012
99ad9427 1013 type = varobj_get_value_type (var);
85254831
KS
1014
1015 /* Anonymous unions and structs are also not path_expr parents. */
1016 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1017 || TYPE_CODE (type) == TYPE_CODE_UNION)
1018 && TYPE_NAME (type) == NULL);
1019}
1020
1021/* Return the path expression parent for VAR. */
1022
99ad9427
YQ
1023struct varobj *
1024varobj_get_path_expr_parent (struct varobj *var)
85254831
KS
1025{
1026 struct varobj *parent = var;
1027
1028 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1029 parent = parent->parent;
1030
1031 return parent;
1032}
1033
02142340
VP
1034/* Return a pointer to the full rooted expression of varobj VAR.
1035 If it has not been computed yet, compute it. */
1036char *
1037varobj_get_path_expr (struct varobj *var)
1038{
1039 if (var->path_expr != NULL)
1040 return var->path_expr;
1041 else
1042 {
1043 /* For root varobjs, we initialize path_expr
1044 when creating varobj, so here it should be
1045 child varobj. */
1046 gdb_assert (!is_root_p (var));
ca20d462 1047 return (*var->root->lang_ops->path_expr_of_child) (var);
02142340
VP
1048 }
1049}
1050
fa4d0c40 1051const struct language_defn *
8b93c638
JM
1052varobj_get_language (struct varobj *var)
1053{
fa4d0c40 1054 return var->root->exp->language_defn;
8b93c638
JM
1055}
1056
1057int
1058varobj_get_attributes (struct varobj *var)
1059{
1060 int attributes = 0;
1061
340a7723 1062 if (varobj_editable_p (var))
581e13c1 1063 /* FIXME: define masks for attributes. */
8b93c638
JM
1064 attributes |= 0x00000001; /* Editable */
1065
1066 return attributes;
1067}
1068
0cc7d26f
TT
1069int
1070varobj_pretty_printed_p (struct varobj *var)
1071{
bb5ce47a 1072 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1073}
1074
de051565
MK
1075char *
1076varobj_get_formatted_value (struct varobj *var,
1077 enum varobj_display_formats format)
1078{
1079 return my_value_of_variable (var, format);
1080}
1081
8b93c638
JM
1082char *
1083varobj_get_value (struct varobj *var)
1084{
de051565 1085 return my_value_of_variable (var, var->format);
8b93c638
JM
1086}
1087
1088/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1089 value of the given expression. */
1090/* Note: Invokes functions that can call error(). */
8b93c638
JM
1091
1092int
1093varobj_set_value (struct varobj *var, char *expression)
1094{
34365054 1095 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1096 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1097 We need to first construct a legal expression for this -- ugh! */
1098 /* Does this cover all the bases? */
8b93c638 1099 struct expression *exp;
34365054 1100 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1101 int saved_input_radix = input_radix;
bbc13ae3 1102 const char *s = expression;
8e7b59a5 1103 volatile struct gdb_exception except;
8b93c638 1104
340a7723 1105 gdb_assert (varobj_editable_p (var));
8b93c638 1106
581e13c1 1107 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1bb9788d 1108 exp = parse_exp_1 (&s, 0, 0, 0);
8e7b59a5
KS
1109 TRY_CATCH (except, RETURN_MASK_ERROR)
1110 {
1111 value = evaluate_expression (exp);
1112 }
1113
1114 if (except.reason < 0)
340a7723 1115 {
581e13c1 1116 /* We cannot proceed without a valid expression. */
340a7723
NR
1117 xfree (exp);
1118 return 0;
8b93c638
JM
1119 }
1120
340a7723
NR
1121 /* All types that are editable must also be changeable. */
1122 gdb_assert (varobj_value_is_changeable_p (var));
1123
1124 /* The value of a changeable variable object must not be lazy. */
1125 gdb_assert (!value_lazy (var->value));
1126
1127 /* Need to coerce the input. We want to check if the
1128 value of the variable object will be different
1129 after assignment, and the first thing value_assign
1130 does is coerce the input.
1131 For example, if we are assigning an array to a pointer variable we
b021a221 1132 should compare the pointer with the array's address, not with the
340a7723
NR
1133 array's content. */
1134 value = coerce_array (value);
1135
8e7b59a5
KS
1136 /* The new value may be lazy. value_assign, or
1137 rather value_contents, will take care of this. */
1138 TRY_CATCH (except, RETURN_MASK_ERROR)
1139 {
1140 val = value_assign (var->value, value);
1141 }
1142
1143 if (except.reason < 0)
340a7723 1144 return 0;
8e7b59a5 1145
340a7723
NR
1146 /* If the value has changed, record it, so that next -var-update can
1147 report this change. If a variable had a value of '1', we've set it
1148 to '333' and then set again to '1', when -var-update will report this
1149 variable as changed -- because the first assignment has set the
1150 'updated' flag. There's no need to optimize that, because return value
1151 of -var-update should be considered an approximation. */
581e13c1 1152 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1153 input_radix = saved_input_radix;
1154 return 1;
8b93c638
JM
1155}
1156
0cc7d26f
TT
1157#if HAVE_PYTHON
1158
1159/* A helper function to install a constructor function and visualizer
bb5ce47a 1160 in a varobj_dynamic. */
0cc7d26f
TT
1161
1162static void
bb5ce47a 1163install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1164 PyObject *visualizer)
1165{
1166 Py_XDECREF (var->constructor);
1167 var->constructor = constructor;
1168
1169 Py_XDECREF (var->pretty_printer);
1170 var->pretty_printer = visualizer;
1171
e5250216 1172 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1173 var->child_iter = NULL;
1174}
1175
1176/* Install the default visualizer for VAR. */
1177
1178static void
1179install_default_visualizer (struct varobj *var)
1180{
d65aec65
PM
1181 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1182 if (CPLUS_FAKE_CHILD (var))
1183 return;
1184
0cc7d26f
TT
1185 if (pretty_printing)
1186 {
1187 PyObject *pretty_printer = NULL;
1188
1189 if (var->value)
1190 {
1191 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1192 if (! pretty_printer)
1193 {
1194 gdbpy_print_stack ();
1195 error (_("Cannot instantiate printer for default visualizer"));
1196 }
1197 }
1198
1199 if (pretty_printer == Py_None)
1200 {
1201 Py_DECREF (pretty_printer);
1202 pretty_printer = NULL;
1203 }
1204
bb5ce47a 1205 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1206 }
1207}
1208
1209/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1210 make a new object. */
1211
1212static void
1213construct_visualizer (struct varobj *var, PyObject *constructor)
1214{
1215 PyObject *pretty_printer;
1216
d65aec65
PM
1217 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1218 if (CPLUS_FAKE_CHILD (var))
1219 return;
1220
0cc7d26f
TT
1221 Py_INCREF (constructor);
1222 if (constructor == Py_None)
1223 pretty_printer = NULL;
1224 else
1225 {
1226 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1227 if (! pretty_printer)
1228 {
1229 gdbpy_print_stack ();
1230 Py_DECREF (constructor);
1231 constructor = Py_None;
1232 Py_INCREF (constructor);
1233 }
1234
1235 if (pretty_printer == Py_None)
1236 {
1237 Py_DECREF (pretty_printer);
1238 pretty_printer = NULL;
1239 }
1240 }
1241
bb5ce47a 1242 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1243}
1244
1245#endif /* HAVE_PYTHON */
1246
1247/* A helper function for install_new_value. This creates and installs
1248 a visualizer for VAR, if appropriate. */
1249
1250static void
1251install_new_value_visualizer (struct varobj *var)
1252{
1253#if HAVE_PYTHON
1254 /* If the constructor is None, then we want the raw value. If VAR
1255 does not have a value, just skip this. */
0646da15
TT
1256 if (!gdb_python_initialized)
1257 return;
1258
bb5ce47a 1259 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f
TT
1260 {
1261 struct cleanup *cleanup;
0cc7d26f
TT
1262
1263 cleanup = varobj_ensure_python_env (var);
1264
bb5ce47a 1265 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1266 install_default_visualizer (var);
1267 else
bb5ce47a 1268 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1269
1270 do_cleanups (cleanup);
1271 }
1272#else
1273 /* Do nothing. */
1274#endif
1275}
1276
8264ba82
AG
1277/* When using RTTI to determine variable type it may be changed in runtime when
1278 the variable value is changed. This function checks whether type of varobj
1279 VAR will change when a new value NEW_VALUE is assigned and if it is so
1280 updates the type of VAR. */
1281
1282static int
1283update_type_if_necessary (struct varobj *var, struct value *new_value)
1284{
1285 if (new_value)
1286 {
1287 struct value_print_options opts;
1288
1289 get_user_print_options (&opts);
1290 if (opts.objectprint)
1291 {
1292 struct type *new_type;
1293 char *curr_type_str, *new_type_str;
1294
1295 new_type = value_actual_type (new_value, 0, 0);
1296 new_type_str = type_to_string (new_type);
1297 curr_type_str = varobj_get_type (var);
1298 if (strcmp (curr_type_str, new_type_str) != 0)
1299 {
1300 var->type = new_type;
1301
1302 /* This information may be not valid for a new type. */
1303 varobj_delete (var, NULL, 1);
1304 VEC_free (varobj_p, var->children);
1305 var->num_children = -1;
1306 return 1;
1307 }
1308 }
1309 }
1310
1311 return 0;
1312}
1313
acd65feb
VP
1314/* Assign a new value to a variable object. If INITIAL is non-zero,
1315 this is the first assignement after the variable object was just
1316 created, or changed type. In that case, just assign the value
1317 and return 0.
581e13c1
MS
1318 Otherwise, assign the new value, and return 1 if the value is
1319 different from the current one, 0 otherwise. The comparison is
1320 done on textual representation of value. Therefore, some types
1321 need not be compared. E.g. for structures the reported value is
1322 always "{...}", so no comparison is necessary here. If the old
1323 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1324
1325 The VALUE parameter should not be released -- the function will
1326 take care of releasing it when needed. */
acd65feb
VP
1327static int
1328install_new_value (struct varobj *var, struct value *value, int initial)
1329{
1330 int changeable;
1331 int need_to_fetch;
1332 int changed = 0;
25d5ea92 1333 int intentionally_not_fetched = 0;
7a4d50bf 1334 char *print_value = NULL;
acd65feb 1335
acd65feb 1336 /* We need to know the varobj's type to decide if the value should
3e43a32a 1337 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1338 don't have a type. */
acd65feb 1339 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1340 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1341
1342 /* If the type has custom visualizer, we consider it to be always
581e13c1 1343 changeable. FIXME: need to make sure this behaviour will not
b6313243 1344 mess up read-sensitive values. */
bb5ce47a 1345 if (var->dynamic->pretty_printer != NULL)
b6313243
TT
1346 changeable = 1;
1347
acd65feb
VP
1348 need_to_fetch = changeable;
1349
b26ed50d
VP
1350 /* We are not interested in the address of references, and given
1351 that in C++ a reference is not rebindable, it cannot
1352 meaningfully change. So, get hold of the real value. */
1353 if (value)
0cc7d26f 1354 value = coerce_ref (value);
b26ed50d 1355
acd65feb
VP
1356 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1357 /* For unions, we need to fetch the value implicitly because
1358 of implementation of union member fetch. When gdb
1359 creates a value for a field and the value of the enclosing
1360 structure is not lazy, it immediately copies the necessary
1361 bytes from the enclosing values. If the enclosing value is
1362 lazy, the call to value_fetch_lazy on the field will read
1363 the data from memory. For unions, that means we'll read the
1364 same memory more than once, which is not desirable. So
1365 fetch now. */
1366 need_to_fetch = 1;
1367
1368 /* The new value might be lazy. If the type is changeable,
1369 that is we'll be comparing values of this type, fetch the
1370 value now. Otherwise, on the next update the old value
1371 will be lazy, which means we've lost that old value. */
1372 if (need_to_fetch && value && value_lazy (value))
1373 {
25d5ea92
VP
1374 struct varobj *parent = var->parent;
1375 int frozen = var->frozen;
a109c7c1 1376
25d5ea92
VP
1377 for (; !frozen && parent; parent = parent->parent)
1378 frozen |= parent->frozen;
1379
1380 if (frozen && initial)
1381 {
1382 /* For variables that are frozen, or are children of frozen
1383 variables, we don't do fetch on initial assignment.
1384 For non-initial assignemnt we do the fetch, since it means we're
1385 explicitly asked to compare the new value with the old one. */
1386 intentionally_not_fetched = 1;
1387 }
8e7b59a5 1388 else
acd65feb 1389 {
8e7b59a5
KS
1390 volatile struct gdb_exception except;
1391
1392 TRY_CATCH (except, RETURN_MASK_ERROR)
1393 {
1394 value_fetch_lazy (value);
1395 }
1396
1397 if (except.reason < 0)
1398 {
1399 /* Set the value to NULL, so that for the next -var-update,
1400 we don't try to compare the new value with this value,
1401 that we couldn't even read. */
1402 value = NULL;
1403 }
acd65feb 1404 }
acd65feb
VP
1405 }
1406
e848a8a5
TT
1407 /* Get a reference now, before possibly passing it to any Python
1408 code that might release it. */
1409 if (value != NULL)
1410 value_incref (value);
b6313243 1411
7a4d50bf
VP
1412 /* Below, we'll be comparing string rendering of old and new
1413 values. Don't get string rendering if the value is
1414 lazy -- if it is, the code above has decided that the value
1415 should not be fetched. */
bb5ce47a
YQ
1416 if (value != NULL && !value_lazy (value)
1417 && var->dynamic->pretty_printer == NULL)
99ad9427 1418 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1419
acd65feb
VP
1420 /* If the type is changeable, compare the old and the new values.
1421 If this is the initial assignment, we don't have any old value
1422 to compare with. */
7a4d50bf 1423 if (!initial && changeable)
acd65feb 1424 {
3e43a32a
MS
1425 /* If the value of the varobj was changed by -var-set-value,
1426 then the value in the varobj and in the target is the same.
1427 However, that value is different from the value that the
581e13c1 1428 varobj had after the previous -var-update. So need to the
3e43a32a 1429 varobj as changed. */
acd65feb 1430 if (var->updated)
57e66780 1431 {
57e66780
DJ
1432 changed = 1;
1433 }
bb5ce47a 1434 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1435 {
1436 /* Try to compare the values. That requires that both
1437 values are non-lazy. */
25d5ea92
VP
1438 if (var->not_fetched && value_lazy (var->value))
1439 {
1440 /* This is a frozen varobj and the value was never read.
1441 Presumably, UI shows some "never read" indicator.
1442 Now that we've fetched the real value, we need to report
1443 this varobj as changed so that UI can show the real
1444 value. */
1445 changed = 1;
1446 }
1447 else if (var->value == NULL && value == NULL)
581e13c1 1448 /* Equal. */
acd65feb
VP
1449 ;
1450 else if (var->value == NULL || value == NULL)
57e66780 1451 {
57e66780
DJ
1452 changed = 1;
1453 }
acd65feb
VP
1454 else
1455 {
1456 gdb_assert (!value_lazy (var->value));
1457 gdb_assert (!value_lazy (value));
85265413 1458
57e66780 1459 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1460 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1461 changed = 1;
acd65feb
VP
1462 }
1463 }
1464 }
85265413 1465
ee342b23
VP
1466 if (!initial && !changeable)
1467 {
1468 /* For values that are not changeable, we don't compare the values.
1469 However, we want to notice if a value was not NULL and now is NULL,
1470 or vise versa, so that we report when top-level varobjs come in scope
1471 and leave the scope. */
1472 changed = (var->value != NULL) != (value != NULL);
1473 }
1474
acd65feb 1475 /* We must always keep the new value, since children depend on it. */
25d5ea92 1476 if (var->value != NULL && var->value != value)
acd65feb
VP
1477 value_free (var->value);
1478 var->value = value;
25d5ea92
VP
1479 if (value && value_lazy (value) && intentionally_not_fetched)
1480 var->not_fetched = 1;
1481 else
1482 var->not_fetched = 0;
acd65feb 1483 var->updated = 0;
85265413 1484
0cc7d26f
TT
1485 install_new_value_visualizer (var);
1486
1487 /* If we installed a pretty-printer, re-compare the printed version
1488 to see if the variable changed. */
bb5ce47a 1489 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
1490 {
1491 xfree (print_value);
99ad9427
YQ
1492 print_value = varobj_value_get_print_value (var->value, var->format,
1493 var);
e8f781e2
TT
1494 if ((var->print_value == NULL && print_value != NULL)
1495 || (var->print_value != NULL && print_value == NULL)
1496 || (var->print_value != NULL && print_value != NULL
1497 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1498 changed = 1;
1499 }
1500 if (var->print_value)
1501 xfree (var->print_value);
1502 var->print_value = print_value;
1503
b26ed50d 1504 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1505
1506 return changed;
1507}
acd65feb 1508
0cc7d26f
TT
1509/* Return the requested range for a varobj. VAR is the varobj. FROM
1510 and TO are out parameters; *FROM and *TO will be set to the
1511 selected sub-range of VAR. If no range was selected using
1512 -var-set-update-range, then both will be -1. */
1513void
1514varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1515{
0cc7d26f
TT
1516 *from = var->from;
1517 *to = var->to;
b6313243
TT
1518}
1519
0cc7d26f
TT
1520/* Set the selected sub-range of children of VAR to start at index
1521 FROM and end at index TO. If either FROM or TO is less than zero,
1522 this is interpreted as a request for all children. */
1523void
1524varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1525{
0cc7d26f
TT
1526 var->from = from;
1527 var->to = to;
b6313243
TT
1528}
1529
1530void
1531varobj_set_visualizer (struct varobj *var, const char *visualizer)
1532{
1533#if HAVE_PYTHON
34fa1d9d
MS
1534 PyObject *mainmod, *globals, *constructor;
1535 struct cleanup *back_to;
b6313243 1536
0646da15
TT
1537 if (!gdb_python_initialized)
1538 return;
1539
d452c4bc 1540 back_to = varobj_ensure_python_env (var);
b6313243
TT
1541
1542 mainmod = PyImport_AddModule ("__main__");
1543 globals = PyModule_GetDict (mainmod);
1544 Py_INCREF (globals);
1545 make_cleanup_py_decref (globals);
1546
1547 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1548
0cc7d26f 1549 if (! constructor)
b6313243
TT
1550 {
1551 gdbpy_print_stack ();
da1f2771 1552 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1553 }
1554
0cc7d26f
TT
1555 construct_visualizer (var, constructor);
1556 Py_XDECREF (constructor);
b6313243 1557
0cc7d26f
TT
1558 /* If there are any children now, wipe them. */
1559 varobj_delete (var, NULL, 1 /* children only */);
1560 var->num_children = -1;
b6313243
TT
1561
1562 do_cleanups (back_to);
1563#else
da1f2771 1564 error (_("Python support required"));
b6313243
TT
1565#endif
1566}
1567
7a290c40
JB
1568/* If NEW_VALUE is the new value of the given varobj (var), return
1569 non-zero if var has mutated. In other words, if the type of
1570 the new value is different from the type of the varobj's old
1571 value.
1572
1573 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1574
1575static int
1576varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1577 struct type *new_type)
1578{
1579 /* If we haven't previously computed the number of children in var,
1580 it does not matter from the front-end's perspective whether
1581 the type has mutated or not. For all intents and purposes,
1582 it has not mutated. */
1583 if (var->num_children < 0)
1584 return 0;
1585
ca20d462 1586 if (var->root->lang_ops->value_has_mutated)
8776cfe9
JB
1587 {
1588 /* The varobj module, when installing new values, explicitly strips
1589 references, saying that we're not interested in those addresses.
1590 But detection of mutation happens before installing the new
1591 value, so our value may be a reference that we need to strip
1592 in order to remain consistent. */
1593 if (new_value != NULL)
1594 new_value = coerce_ref (new_value);
1595 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1596 }
7a290c40
JB
1597 else
1598 return 0;
1599}
1600
8b93c638
JM
1601/* Update the values for a variable and its children. This is a
1602 two-pronged attack. First, re-parse the value for the root's
1603 expression to see if it's changed. Then go all the way
1604 through its children, reconstructing them and noting if they've
1605 changed.
1606
25d5ea92
VP
1607 The EXPLICIT parameter specifies if this call is result
1608 of MI request to update this specific variable, or
581e13c1 1609 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1610 update frozen variables.
705da579 1611
581e13c1 1612 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1613 returns TYPE_CHANGED, then it has done this and VARP will be modified
1614 to point to the new varobj. */
8b93c638 1615
1417b39d
JB
1616VEC(varobj_update_result) *
1617varobj_update (struct varobj **varp, int explicit)
8b93c638 1618{
25d5ea92 1619 int type_changed = 0;
8b93c638 1620 int i;
30b28db1 1621 struct value *new;
b6313243 1622 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1623 VEC (varobj_update_result) *result = NULL;
8b93c638 1624
25d5ea92
VP
1625 /* Frozen means frozen -- we don't check for any change in
1626 this varobj, including its going out of scope, or
1627 changing type. One use case for frozen varobjs is
1628 retaining previously evaluated expressions, and we don't
1629 want them to be reevaluated at all. */
1630 if (!explicit && (*varp)->frozen)
f7f9ae2c 1631 return result;
8756216b
DP
1632
1633 if (!(*varp)->root->is_valid)
f7f9ae2c 1634 {
cfce2ea2 1635 varobj_update_result r = {0};
a109c7c1 1636
cfce2ea2 1637 r.varobj = *varp;
f7f9ae2c
VP
1638 r.status = VAROBJ_INVALID;
1639 VEC_safe_push (varobj_update_result, result, &r);
1640 return result;
1641 }
8b93c638 1642
25d5ea92 1643 if ((*varp)->root->rootvar == *varp)
ae093f96 1644 {
cfce2ea2 1645 varobj_update_result r = {0};
a109c7c1 1646
cfce2ea2 1647 r.varobj = *varp;
f7f9ae2c
VP
1648 r.status = VAROBJ_IN_SCOPE;
1649
581e13c1 1650 /* Update the root variable. value_of_root can return NULL
25d5ea92 1651 if the variable is no longer around, i.e. we stepped out of
581e13c1 1652 the frame in which a local existed. We are letting the
25d5ea92
VP
1653 value_of_root variable dispose of the varobj if the type
1654 has changed. */
25d5ea92 1655 new = value_of_root (varp, &type_changed);
8264ba82
AG
1656 if (update_type_if_necessary(*varp, new))
1657 type_changed = 1;
f7f9ae2c 1658 r.varobj = *varp;
f7f9ae2c 1659 r.type_changed = type_changed;
ea56f9c2 1660 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1661 r.changed = 1;
ea56f9c2 1662
25d5ea92 1663 if (new == NULL)
f7f9ae2c 1664 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1665 r.value_installed = 1;
f7f9ae2c
VP
1666
1667 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1668 {
0b4bc29a
JK
1669 if (r.type_changed || r.changed)
1670 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1671 return result;
1672 }
1673
1674 VEC_safe_push (varobj_update_result, stack, &r);
1675 }
1676 else
1677 {
cfce2ea2 1678 varobj_update_result r = {0};
a109c7c1 1679
cfce2ea2 1680 r.varobj = *varp;
b6313243 1681 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1682 }
8b93c638 1683
8756216b 1684 /* Walk through the children, reconstructing them all. */
b6313243 1685 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1686 {
b6313243
TT
1687 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1688 struct varobj *v = r.varobj;
1689
1690 VEC_pop (varobj_update_result, stack);
1691
1692 /* Update this variable, unless it's a root, which is already
1693 updated. */
1694 if (!r.value_installed)
7a290c40
JB
1695 {
1696 struct type *new_type;
1697
b6313243 1698 new = value_of_child (v->parent, v->index);
8264ba82
AG
1699 if (update_type_if_necessary(v, new))
1700 r.type_changed = 1;
7a290c40
JB
1701 if (new)
1702 new_type = value_type (new);
1703 else
ca20d462 1704 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40
JB
1705
1706 if (varobj_value_has_mutated (v, new, new_type))
1707 {
1708 /* The children are no longer valid; delete them now.
1709 Report the fact that its type changed as well. */
1710 varobj_delete (v, NULL, 1 /* only_children */);
1711 v->num_children = -1;
1712 v->to = -1;
1713 v->from = -1;
1714 v->type = new_type;
1715 r.type_changed = 1;
1716 }
1717
1718 if (install_new_value (v, new, r.type_changed))
b6313243
TT
1719 {
1720 r.changed = 1;
1721 v->updated = 0;
1722 }
1723 }
1724
1725 /* We probably should not get children of a varobj that has a
1726 pretty-printer, but for which -var-list-children was never
581e13c1 1727 invoked. */
bb5ce47a 1728 if (v->dynamic->pretty_printer != NULL)
b6313243 1729 {
8264ba82
AG
1730 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1731 VEC (varobj_p) *new = 0;
26f9bcee 1732 int i, children_changed = 0;
b6313243
TT
1733
1734 if (v->frozen)
1735 continue;
1736
bb5ce47a 1737 if (!v->dynamic->children_requested)
0cc7d26f
TT
1738 {
1739 int dummy;
1740
1741 /* If we initially did not have potential children, but
1742 now we do, consider the varobj as changed.
1743 Otherwise, if children were never requested, consider
1744 it as unchanged -- presumably, such varobj is not yet
1745 expanded in the UI, so we need not bother getting
1746 it. */
1747 if (!varobj_has_more (v, 0))
1748 {
8264ba82 1749 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
1750 &dummy, 0, 0, 0);
1751 if (varobj_has_more (v, 0))
1752 r.changed = 1;
1753 }
1754
1755 if (r.changed)
1756 VEC_safe_push (varobj_update_result, result, &r);
1757
1758 continue;
1759 }
1760
b6313243
TT
1761 /* If update_dynamic_varobj_children returns 0, then we have
1762 a non-conforming pretty-printer, so we skip it. */
8264ba82
AG
1763 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1764 &unchanged, &children_changed, 1,
0cc7d26f 1765 v->from, v->to))
b6313243 1766 {
0cc7d26f 1767 if (children_changed || new)
b6313243 1768 {
0cc7d26f
TT
1769 r.children_changed = 1;
1770 r.new = new;
b6313243 1771 }
0cc7d26f
TT
1772 /* Push in reverse order so that the first child is
1773 popped from the work stack first, and so will be
1774 added to result first. This does not affect
1775 correctness, just "nicer". */
8264ba82
AG
1776 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1777 {
1778 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1779 varobj_update_result r = {0};
1780
1781 /* Type may change only if value was changed. */
1782 r.varobj = tmp;
1783 r.changed = 1;
1784 r.type_changed = 1;
1785 r.value_installed = 1;
1786 VEC_safe_push (varobj_update_result, stack, &r);
1787 }
0cc7d26f 1788 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1789 {
0cc7d26f 1790 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1791 varobj_update_result r = {0};
a109c7c1 1792
cfce2ea2 1793 r.varobj = tmp;
0cc7d26f 1794 r.changed = 1;
b6313243
TT
1795 r.value_installed = 1;
1796 VEC_safe_push (varobj_update_result, stack, &r);
1797 }
0cc7d26f
TT
1798 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1799 {
1800 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1801
0cc7d26f
TT
1802 if (!tmp->frozen)
1803 {
cfce2ea2 1804 varobj_update_result r = {0};
a109c7c1 1805
cfce2ea2 1806 r.varobj = tmp;
0cc7d26f
TT
1807 r.value_installed = 1;
1808 VEC_safe_push (varobj_update_result, stack, &r);
1809 }
1810 }
b6313243
TT
1811 if (r.changed || r.children_changed)
1812 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 1813
8264ba82
AG
1814 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1815 because NEW has been put into the result vector. */
0cc7d26f 1816 VEC_free (varobj_p, changed);
8264ba82 1817 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
1818 VEC_free (varobj_p, unchanged);
1819
b6313243
TT
1820 continue;
1821 }
1822 }
28335dcc
VP
1823
1824 /* Push any children. Use reverse order so that the first
1825 child is popped from the work stack first, and so
1826 will be added to result first. This does not
1827 affect correctness, just "nicer". */
1828 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1829 {
28335dcc 1830 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1831
28335dcc 1832 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1833 if (c != NULL && !c->frozen)
28335dcc 1834 {
cfce2ea2 1835 varobj_update_result r = {0};
a109c7c1 1836
cfce2ea2 1837 r.varobj = c;
b6313243 1838 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1839 }
8b93c638 1840 }
b6313243
TT
1841
1842 if (r.changed || r.type_changed)
1843 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1844 }
1845
b6313243
TT
1846 VEC_free (varobj_update_result, stack);
1847
f7f9ae2c 1848 return result;
8b93c638
JM
1849}
1850\f
1851
1852/* Helper functions */
1853
1854/*
1855 * Variable object construction/destruction
1856 */
1857
1858static int
fba45db2
KB
1859delete_variable (struct cpstack **resultp, struct varobj *var,
1860 int only_children_p)
8b93c638
JM
1861{
1862 int delcount = 0;
1863
1864 delete_variable_1 (resultp, &delcount, var,
1865 only_children_p, 1 /* remove_from_parent_p */ );
1866
1867 return delcount;
1868}
1869
581e13c1 1870/* Delete the variable object VAR and its children. */
8b93c638
JM
1871/* IMPORTANT NOTE: If we delete a variable which is a child
1872 and the parent is not removed we dump core. It must be always
581e13c1 1873 initially called with remove_from_parent_p set. */
8b93c638 1874static void
72330bd6
AC
1875delete_variable_1 (struct cpstack **resultp, int *delcountp,
1876 struct varobj *var, int only_children_p,
1877 int remove_from_parent_p)
8b93c638 1878{
28335dcc 1879 int i;
8b93c638 1880
581e13c1 1881 /* Delete any children of this variable, too. */
28335dcc
VP
1882 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1883 {
1884 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1885
214270ab
VP
1886 if (!child)
1887 continue;
8b93c638 1888 if (!remove_from_parent_p)
28335dcc
VP
1889 child->parent = NULL;
1890 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1891 }
28335dcc 1892 VEC_free (varobj_p, var->children);
8b93c638 1893
581e13c1 1894 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1895 if (only_children_p)
1896 return;
1897
581e13c1 1898 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 1899 /* If the name is null, this is a temporary variable, that has not
581e13c1 1900 yet been installed, don't report it, it belongs to the caller... */
73a93a32 1901 if (var->obj_name != NULL)
8b93c638 1902 {
5b616ba1 1903 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1904 *delcountp = *delcountp + 1;
1905 }
1906
581e13c1 1907 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1908 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1909 (as indicated by remove_from_parent_p) we don't bother doing an
1910 expensive list search to find the element to remove when we are
581e13c1 1911 discarding the list afterwards. */
72330bd6 1912 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1913 {
28335dcc 1914 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1915 }
72330bd6 1916
73a93a32
JI
1917 if (var->obj_name != NULL)
1918 uninstall_variable (var);
8b93c638 1919
581e13c1 1920 /* Free memory associated with this variable. */
8b93c638
JM
1921 free_variable (var);
1922}
1923
581e13c1 1924/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1925static int
fba45db2 1926install_variable (struct varobj *var)
8b93c638
JM
1927{
1928 struct vlist *cv;
1929 struct vlist *newvl;
1930 const char *chp;
1931 unsigned int index = 0;
1932 unsigned int i = 1;
1933
1934 for (chp = var->obj_name; *chp; chp++)
1935 {
1936 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1937 }
1938
1939 cv = *(varobj_table + index);
1940 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1941 cv = cv->next;
1942
1943 if (cv != NULL)
8a3fe4f8 1944 error (_("Duplicate variable object name"));
8b93c638 1945
581e13c1 1946 /* Add varobj to hash table. */
8b93c638
JM
1947 newvl = xmalloc (sizeof (struct vlist));
1948 newvl->next = *(varobj_table + index);
1949 newvl->var = var;
1950 *(varobj_table + index) = newvl;
1951
581e13c1 1952 /* If root, add varobj to root list. */
b2c2bd75 1953 if (is_root_p (var))
8b93c638 1954 {
581e13c1 1955 /* Add to list of root variables. */
8b93c638
JM
1956 if (rootlist == NULL)
1957 var->root->next = NULL;
1958 else
1959 var->root->next = rootlist;
1960 rootlist = var->root;
8b93c638
JM
1961 }
1962
1963 return 1; /* OK */
1964}
1965
581e13c1 1966/* Unistall the object VAR. */
8b93c638 1967static void
fba45db2 1968uninstall_variable (struct varobj *var)
8b93c638
JM
1969{
1970 struct vlist *cv;
1971 struct vlist *prev;
1972 struct varobj_root *cr;
1973 struct varobj_root *prer;
1974 const char *chp;
1975 unsigned int index = 0;
1976 unsigned int i = 1;
1977
581e13c1 1978 /* Remove varobj from hash table. */
8b93c638
JM
1979 for (chp = var->obj_name; *chp; chp++)
1980 {
1981 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1982 }
1983
1984 cv = *(varobj_table + index);
1985 prev = NULL;
1986 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1987 {
1988 prev = cv;
1989 cv = cv->next;
1990 }
1991
1992 if (varobjdebug)
1993 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1994
1995 if (cv == NULL)
1996 {
72330bd6
AC
1997 warning
1998 ("Assertion failed: Could not find variable object \"%s\" to delete",
1999 var->obj_name);
8b93c638
JM
2000 return;
2001 }
2002
2003 if (prev == NULL)
2004 *(varobj_table + index) = cv->next;
2005 else
2006 prev->next = cv->next;
2007
b8c9b27d 2008 xfree (cv);
8b93c638 2009
581e13c1 2010 /* If root, remove varobj from root list. */
b2c2bd75 2011 if (is_root_p (var))
8b93c638 2012 {
581e13c1 2013 /* Remove from list of root variables. */
8b93c638
JM
2014 if (rootlist == var->root)
2015 rootlist = var->root->next;
2016 else
2017 {
2018 prer = NULL;
2019 cr = rootlist;
2020 while ((cr != NULL) && (cr->rootvar != var))
2021 {
2022 prer = cr;
2023 cr = cr->next;
2024 }
2025 if (cr == NULL)
2026 {
8f7e195f
JB
2027 warning (_("Assertion failed: Could not find "
2028 "varobj \"%s\" in root list"),
3e43a32a 2029 var->obj_name);
8b93c638
JM
2030 return;
2031 }
2032 if (prer == NULL)
2033 rootlist = NULL;
2034 else
2035 prer->next = cr->next;
2036 }
8b93c638
JM
2037 }
2038
2039}
2040
581e13c1 2041/* Create and install a child of the parent of the given name. */
8b93c638 2042static struct varobj *
fba45db2 2043create_child (struct varobj *parent, int index, char *name)
b6313243 2044{
5a2e0d6e
YQ
2045 struct varobj_item item;
2046
2047 item.name = name;
2048 item.value = value_of_child (parent, index);
2049
2050 return create_child_with_value (parent, index, &item);
b6313243
TT
2051}
2052
2053static struct varobj *
5a2e0d6e
YQ
2054create_child_with_value (struct varobj *parent, int index,
2055 struct varobj_item *item)
8b93c638
JM
2056{
2057 struct varobj *child;
2058 char *childs_name;
2059
2060 child = new_variable ();
2061
5e5ac9a5 2062 /* NAME is allocated by caller. */
5a2e0d6e 2063 child->name = item->name;
8b93c638 2064 child->index = index;
8b93c638
JM
2065 child->parent = parent;
2066 child->root = parent->root;
85254831 2067
99ad9427 2068 if (varobj_is_anonymous_child (child))
85254831
KS
2069 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2070 else
5a2e0d6e 2071 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
8b93c638 2072 child->obj_name = childs_name;
85254831 2073
8b93c638
JM
2074 install_variable (child);
2075
acd65feb
VP
2076 /* Compute the type of the child. Must do this before
2077 calling install_new_value. */
5a2e0d6e 2078 if (item->value != NULL)
acd65feb 2079 /* If the child had no evaluation errors, var->value
581e13c1 2080 will be non-NULL and contain a valid type. */
5a2e0d6e 2081 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 2082 else
581e13c1 2083 /* Otherwise, we must compute the type. */
ca20d462
YQ
2084 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2085 child->index);
5a2e0d6e 2086 install_new_value (child, item->value, 1);
acd65feb 2087
8b93c638
JM
2088 return child;
2089}
8b93c638
JM
2090\f
2091
2092/*
2093 * Miscellaneous utility functions.
2094 */
2095
581e13c1 2096/* Allocate memory and initialize a new variable. */
8b93c638
JM
2097static struct varobj *
2098new_variable (void)
2099{
2100 struct varobj *var;
2101
2102 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2103 var->name = NULL;
02142340 2104 var->path_expr = NULL;
8b93c638
JM
2105 var->obj_name = NULL;
2106 var->index = -1;
2107 var->type = NULL;
2108 var->value = NULL;
8b93c638
JM
2109 var->num_children = -1;
2110 var->parent = NULL;
2111 var->children = NULL;
2112 var->format = 0;
2113 var->root = NULL;
fb9b6b35 2114 var->updated = 0;
85265413 2115 var->print_value = NULL;
25d5ea92
VP
2116 var->frozen = 0;
2117 var->not_fetched = 0;
bb5ce47a
YQ
2118 var->dynamic
2119 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2120 var->dynamic->children_requested = 0;
0cc7d26f
TT
2121 var->from = -1;
2122 var->to = -1;
bb5ce47a
YQ
2123 var->dynamic->constructor = 0;
2124 var->dynamic->pretty_printer = 0;
2125 var->dynamic->child_iter = 0;
2126 var->dynamic->saved_item = 0;
8b93c638
JM
2127
2128 return var;
2129}
2130
581e13c1 2131/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2132static struct varobj *
2133new_root_variable (void)
2134{
2135 struct varobj *var = new_variable ();
a109c7c1 2136
3e43a32a 2137 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
ca20d462 2138 var->root->lang_ops = NULL;
8b93c638
JM
2139 var->root->exp = NULL;
2140 var->root->valid_block = NULL;
7a424e99 2141 var->root->frame = null_frame_id;
a5defcdc 2142 var->root->floating = 0;
8b93c638 2143 var->root->rootvar = NULL;
8756216b 2144 var->root->is_valid = 1;
8b93c638
JM
2145
2146 return var;
2147}
2148
581e13c1 2149/* Free any allocated memory associated with VAR. */
8b93c638 2150static void
fba45db2 2151free_variable (struct varobj *var)
8b93c638 2152{
d452c4bc 2153#if HAVE_PYTHON
bb5ce47a 2154 if (var->dynamic->pretty_printer != NULL)
d452c4bc
UW
2155 {
2156 struct cleanup *cleanup = varobj_ensure_python_env (var);
bb5ce47a
YQ
2157
2158 Py_XDECREF (var->dynamic->constructor);
2159 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
2160 do_cleanups (cleanup);
2161 }
2162#endif
2163
827f100c
YQ
2164 varobj_iter_delete (var->dynamic->child_iter);
2165 varobj_clear_saved_item (var->dynamic);
36746093
JK
2166 value_free (var->value);
2167
581e13c1 2168 /* Free the expression if this is a root variable. */
b2c2bd75 2169 if (is_root_p (var))
8b93c638 2170 {
3038237c 2171 xfree (var->root->exp);
8038e1e2 2172 xfree (var->root);
8b93c638
JM
2173 }
2174
8038e1e2
AC
2175 xfree (var->name);
2176 xfree (var->obj_name);
85265413 2177 xfree (var->print_value);
02142340 2178 xfree (var->path_expr);
bb5ce47a 2179 xfree (var->dynamic);
8038e1e2 2180 xfree (var);
8b93c638
JM
2181}
2182
74b7792f
AC
2183static void
2184do_free_variable_cleanup (void *var)
2185{
2186 free_variable (var);
2187}
2188
2189static struct cleanup *
2190make_cleanup_free_variable (struct varobj *var)
2191{
2192 return make_cleanup (do_free_variable_cleanup, var);
2193}
2194
6e2a9270
VP
2195/* Return the type of the value that's stored in VAR,
2196 or that would have being stored there if the
581e13c1 2197 value were accessible.
6e2a9270
VP
2198
2199 This differs from VAR->type in that VAR->type is always
2200 the true type of the expession in the source language.
2201 The return value of this function is the type we're
2202 actually storing in varobj, and using for displaying
2203 the values and for comparing previous and new values.
2204
2205 For example, top-level references are always stripped. */
99ad9427
YQ
2206struct type *
2207varobj_get_value_type (struct varobj *var)
6e2a9270
VP
2208{
2209 struct type *type;
2210
2211 if (var->value)
2212 type = value_type (var->value);
2213 else
2214 type = var->type;
2215
2216 type = check_typedef (type);
2217
2218 if (TYPE_CODE (type) == TYPE_CODE_REF)
2219 type = get_target_type (type);
2220
2221 type = check_typedef (type);
2222
2223 return type;
2224}
2225
8b93c638 2226/* What is the default display for this variable? We assume that
581e13c1 2227 everything is "natural". Any exceptions? */
8b93c638 2228static enum varobj_display_formats
fba45db2 2229variable_default_display (struct varobj *var)
8b93c638
JM
2230{
2231 return FORMAT_NATURAL;
2232}
2233
581e13c1 2234/* FIXME: The following should be generic for any pointer. */
8b93c638 2235static void
fba45db2 2236cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2237{
2238 struct cpstack *s;
2239
2240 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2241 s->name = name;
2242 s->next = *pstack;
2243 *pstack = s;
2244}
2245
581e13c1 2246/* FIXME: The following should be generic for any pointer. */
8b93c638 2247static char *
fba45db2 2248cppop (struct cpstack **pstack)
8b93c638
JM
2249{
2250 struct cpstack *s;
2251 char *v;
2252
2253 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2254 return NULL;
2255
2256 s = *pstack;
2257 v = s->name;
2258 *pstack = (*pstack)->next;
b8c9b27d 2259 xfree (s);
8b93c638
JM
2260
2261 return v;
2262}
2263\f
2264/*
2265 * Language-dependencies
2266 */
2267
2268/* Common entry points */
2269
8b93c638
JM
2270/* Return the number of children for a given variable.
2271 The result of this function is defined by the language
581e13c1 2272 implementation. The number of children returned by this function
8b93c638 2273 is the number of children that the user will see in the variable
581e13c1 2274 display. */
8b93c638 2275static int
fba45db2 2276number_of_children (struct varobj *var)
8b93c638 2277{
ca20d462 2278 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2279}
2280
3e43a32a 2281/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2282 string. */
8b93c638 2283static char *
fba45db2 2284name_of_variable (struct varobj *var)
8b93c638 2285{
ca20d462 2286 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2287}
2288
3e43a32a 2289/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2290 string. */
8b93c638 2291static char *
fba45db2 2292name_of_child (struct varobj *var, int index)
8b93c638 2293{
ca20d462 2294 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2295}
2296
2213e2be
YQ
2297/* If frame associated with VAR can be found, switch
2298 to it and return 1. Otherwise, return 0. */
2299
2300static int
2301check_scope (struct varobj *var)
2302{
2303 struct frame_info *fi;
2304 int scope;
2305
2306 fi = frame_find_by_id (var->root->frame);
2307 scope = fi != NULL;
2308
2309 if (fi)
2310 {
2311 CORE_ADDR pc = get_frame_pc (fi);
2312
2313 if (pc < BLOCK_START (var->root->valid_block) ||
2314 pc >= BLOCK_END (var->root->valid_block))
2315 scope = 0;
2316 else
2317 select_frame (fi);
2318 }
2319 return scope;
2320}
2321
2322/* Helper function to value_of_root. */
2323
2324static struct value *
2325value_of_root_1 (struct varobj **var_handle)
2326{
2327 struct value *new_val = NULL;
2328 struct varobj *var = *var_handle;
2329 int within_scope = 0;
2330 struct cleanup *back_to;
2331
2332 /* Only root variables can be updated... */
2333 if (!is_root_p (var))
2334 /* Not a root var. */
2335 return NULL;
2336
2337 back_to = make_cleanup_restore_current_thread ();
2338
2339 /* Determine whether the variable is still around. */
2340 if (var->root->valid_block == NULL || var->root->floating)
2341 within_scope = 1;
2342 else if (var->root->thread_id == 0)
2343 {
2344 /* The program was single-threaded when the variable object was
2345 created. Technically, it's possible that the program became
2346 multi-threaded since then, but we don't support such
2347 scenario yet. */
2348 within_scope = check_scope (var);
2349 }
2350 else
2351 {
2352 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2353 if (in_thread_list (ptid))
2354 {
2355 switch_to_thread (ptid);
2356 within_scope = check_scope (var);
2357 }
2358 }
2359
2360 if (within_scope)
2361 {
2362 volatile struct gdb_exception except;
2363
2364 /* We need to catch errors here, because if evaluate
2365 expression fails we want to just return NULL. */
2366 TRY_CATCH (except, RETURN_MASK_ERROR)
2367 {
2368 new_val = evaluate_expression (var->root->exp);
2369 }
2370 }
2371
2372 do_cleanups (back_to);
2373
2374 return new_val;
2375}
2376
a5defcdc
VP
2377/* What is the ``struct value *'' of the root variable VAR?
2378 For floating variable object, evaluation can get us a value
2379 of different type from what is stored in varobj already. In
2380 that case:
2381 - *type_changed will be set to 1
2382 - old varobj will be freed, and new one will be
2383 created, with the same name.
2384 - *var_handle will be set to the new varobj
2385 Otherwise, *type_changed will be set to 0. */
30b28db1 2386static struct value *
fba45db2 2387value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2388{
73a93a32
JI
2389 struct varobj *var;
2390
2391 if (var_handle == NULL)
2392 return NULL;
2393
2394 var = *var_handle;
2395
2396 /* This should really be an exception, since this should
581e13c1 2397 only get called with a root variable. */
73a93a32 2398
b2c2bd75 2399 if (!is_root_p (var))
73a93a32
JI
2400 return NULL;
2401
a5defcdc 2402 if (var->root->floating)
73a93a32
JI
2403 {
2404 struct varobj *tmp_var;
2405 char *old_type, *new_type;
6225abfa 2406
73a93a32
JI
2407 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2408 USE_SELECTED_FRAME);
2409 if (tmp_var == NULL)
2410 {
2411 return NULL;
2412 }
6225abfa 2413 old_type = varobj_get_type (var);
73a93a32 2414 new_type = varobj_get_type (tmp_var);
72330bd6 2415 if (strcmp (old_type, new_type) == 0)
73a93a32 2416 {
fcacd99f
VP
2417 /* The expression presently stored inside var->root->exp
2418 remembers the locations of local variables relatively to
2419 the frame where the expression was created (in DWARF location
2420 button, for example). Naturally, those locations are not
2421 correct in other frames, so update the expression. */
2422
2423 struct expression *tmp_exp = var->root->exp;
a109c7c1 2424
fcacd99f
VP
2425 var->root->exp = tmp_var->root->exp;
2426 tmp_var->root->exp = tmp_exp;
2427
73a93a32
JI
2428 varobj_delete (tmp_var, NULL, 0);
2429 *type_changed = 0;
2430 }
2431 else
2432 {
1b36a34b 2433 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2434 tmp_var->from = var->from;
2435 tmp_var->to = var->to;
a5defcdc
VP
2436 varobj_delete (var, NULL, 0);
2437
73a93a32
JI
2438 install_variable (tmp_var);
2439 *var_handle = tmp_var;
705da579 2440 var = *var_handle;
73a93a32
JI
2441 *type_changed = 1;
2442 }
74dddad3
MS
2443 xfree (old_type);
2444 xfree (new_type);
73a93a32
JI
2445 }
2446 else
2447 {
2448 *type_changed = 0;
2449 }
2450
7a290c40
JB
2451 {
2452 struct value *value;
2453
2213e2be 2454 value = value_of_root_1 (var_handle);
7a290c40
JB
2455 if (var->value == NULL || value == NULL)
2456 {
2457 /* For root varobj-s, a NULL value indicates a scoping issue.
2458 So, nothing to do in terms of checking for mutations. */
2459 }
2460 else if (varobj_value_has_mutated (var, value, value_type (value)))
2461 {
2462 /* The type has mutated, so the children are no longer valid.
2463 Just delete them, and tell our caller that the type has
2464 changed. */
2465 varobj_delete (var, NULL, 1 /* only_children */);
2466 var->num_children = -1;
2467 var->to = -1;
2468 var->from = -1;
2469 *type_changed = 1;
2470 }
2471 return value;
2472 }
8b93c638
JM
2473}
2474
581e13c1 2475/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2476static struct value *
fba45db2 2477value_of_child (struct varobj *parent, int index)
8b93c638 2478{
30b28db1 2479 struct value *value;
8b93c638 2480
ca20d462 2481 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2482
8b93c638
JM
2483 return value;
2484}
2485
581e13c1 2486/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2487static char *
de051565 2488my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2489{
8756216b 2490 if (var->root->is_valid)
0cc7d26f 2491 {
bb5ce47a 2492 if (var->dynamic->pretty_printer != NULL)
99ad9427 2493 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2494 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2495 }
8756216b
DP
2496 else
2497 return NULL;
8b93c638
JM
2498}
2499
99ad9427
YQ
2500void
2501varobj_formatted_print_options (struct value_print_options *opts,
2502 enum varobj_display_formats format)
2503{
2504 get_formatted_print_options (opts, format_code[(int) format]);
2505 opts->deref_ref = 0;
2506 opts->raw = 1;
2507}
2508
2509char *
2510varobj_value_get_print_value (struct value *value,
2511 enum varobj_display_formats format,
2512 struct varobj *var)
85265413 2513{
57e66780 2514 struct ui_file *stb;
621c8364 2515 struct cleanup *old_chain;
ac91cd70 2516 char *thevalue = NULL;
79a45b7d 2517 struct value_print_options opts;
be759fcf
PM
2518 struct type *type = NULL;
2519 long len = 0;
2520 char *encoding = NULL;
2521 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2522 /* Initialize it just to avoid a GCC false warning. */
2523 CORE_ADDR str_addr = 0;
09ca9e2e 2524 int string_print = 0;
57e66780
DJ
2525
2526 if (value == NULL)
2527 return NULL;
2528
621c8364
TT
2529 stb = mem_fileopen ();
2530 old_chain = make_cleanup_ui_file_delete (stb);
2531
be759fcf 2532 gdbarch = get_type_arch (value_type (value));
b6313243 2533#if HAVE_PYTHON
0646da15
TT
2534 if (gdb_python_initialized)
2535 {
bb5ce47a 2536 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2537
0646da15 2538 varobj_ensure_python_env (var);
09ca9e2e 2539
0646da15
TT
2540 if (value_formatter)
2541 {
2542 /* First check to see if we have any children at all. If so,
2543 we simply return {...}. */
2544 if (dynamic_varobj_has_child_method (var))
2545 {
2546 do_cleanups (old_chain);
2547 return xstrdup ("{...}");
2548 }
b6313243 2549
0646da15
TT
2550 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2551 {
2552 struct value *replacement;
2553 PyObject *output = NULL;
2554
2555 output = apply_varobj_pretty_printer (value_formatter,
2556 &replacement,
2557 stb);
2558
2559 /* If we have string like output ... */
2560 if (output)
2561 {
2562 make_cleanup_py_decref (output);
2563
2564 /* If this is a lazy string, extract it. For lazy
2565 strings we always print as a string, so set
2566 string_print. */
2567 if (gdbpy_is_lazy_string (output))
2568 {
2569 gdbpy_extract_lazy_string (output, &str_addr, &type,
2570 &len, &encoding);
2571 make_cleanup (free_current_contents, &encoding);
2572 string_print = 1;
2573 }
2574 else
2575 {
2576 /* If it is a regular (non-lazy) string, extract
2577 it and copy the contents into THEVALUE. If the
2578 hint says to print it as a string, set
2579 string_print. Otherwise just return the extracted
2580 string as a value. */
2581
2582 char *s = python_string_to_target_string (output);
2583
2584 if (s)
2585 {
2586 char *hint;
2587
2588 hint = gdbpy_get_display_hint (value_formatter);
2589 if (hint)
2590 {
2591 if (!strcmp (hint, "string"))
2592 string_print = 1;
2593 xfree (hint);
2594 }
2595
2596 len = strlen (s);
2597 thevalue = xmemdup (s, len + 1, len + 1);
2598 type = builtin_type (gdbarch)->builtin_char;
2599 xfree (s);
2600
2601 if (!string_print)
2602 {
2603 do_cleanups (old_chain);
2604 return thevalue;
2605 }
2606
2607 make_cleanup (xfree, thevalue);
2608 }
2609 else
2610 gdbpy_print_stack ();
2611 }
2612 }
2613 /* If the printer returned a replacement value, set VALUE
2614 to REPLACEMENT. If there is not a replacement value,
2615 just use the value passed to this function. */
2616 if (replacement)
2617 value = replacement;
2618 }
2619 }
2620 }
b6313243
TT
2621#endif
2622
99ad9427 2623 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2624
2625 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2626 if (thevalue)
ac91cd70 2627 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
09ca9e2e 2628 else if (string_print)
00bd41d6
PM
2629 /* Otherwise, if string_print is set, and it is not a regular
2630 string, it is a lazy string. */
09ca9e2e 2631 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2632 else
00bd41d6 2633 /* All other cases. */
b6313243 2634 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2635
759ef836 2636 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2637
85265413
NR
2638 do_cleanups (old_chain);
2639 return thevalue;
2640}
2641
340a7723
NR
2642int
2643varobj_editable_p (struct varobj *var)
2644{
2645 struct type *type;
340a7723
NR
2646
2647 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2648 return 0;
2649
99ad9427 2650 type = varobj_get_value_type (var);
340a7723
NR
2651
2652 switch (TYPE_CODE (type))
2653 {
2654 case TYPE_CODE_STRUCT:
2655 case TYPE_CODE_UNION:
2656 case TYPE_CODE_ARRAY:
2657 case TYPE_CODE_FUNC:
2658 case TYPE_CODE_METHOD:
2659 return 0;
2660 break;
2661
2662 default:
2663 return 1;
2664 break;
2665 }
2666}
2667
d32cafc7 2668/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2669
99ad9427 2670int
b2c2bd75 2671varobj_value_is_changeable_p (struct varobj *var)
8b93c638 2672{
ca20d462 2673 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2674}
2675
5a413362
VP
2676/* Return 1 if that varobj is floating, that is is always evaluated in the
2677 selected frame, and not bound to thread/frame. Such variable objects
2678 are created using '@' as frame specifier to -var-create. */
2679int
2680varobj_floating_p (struct varobj *var)
2681{
2682 return var->root->floating;
2683}
2684
d32cafc7
JB
2685/* Implement the "value_is_changeable_p" varobj callback for most
2686 languages. */
2687
99ad9427
YQ
2688int
2689varobj_default_value_is_changeable_p (struct varobj *var)
d32cafc7
JB
2690{
2691 int r;
2692 struct type *type;
2693
2694 if (CPLUS_FAKE_CHILD (var))
2695 return 0;
2696
99ad9427 2697 type = varobj_get_value_type (var);
d32cafc7
JB
2698
2699 switch (TYPE_CODE (type))
2700 {
2701 case TYPE_CODE_STRUCT:
2702 case TYPE_CODE_UNION:
2703 case TYPE_CODE_ARRAY:
2704 r = 0;
2705 break;
2706
2707 default:
2708 r = 1;
2709 }
2710
2711 return r;
2712}
2713
54333c3b
JK
2714/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2715 with an arbitrary caller supplied DATA pointer. */
2716
2717void
2718all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2719{
2720 struct varobj_root *var_root, *var_root_next;
2721
2722 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2723
2724 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2725 {
2726 var_root_next = var_root->next;
2727
2728 (*func) (var_root->rootvar, data);
2729 }
2730}
8b93c638
JM
2731\f
2732extern void _initialize_varobj (void);
2733void
2734_initialize_varobj (void)
2735{
2736 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2737
2738 varobj_table = xmalloc (sizeof_table);
2739 memset (varobj_table, 0, sizeof_table);
2740
f989a1c8 2741 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
ccce17b0
YQ
2742 &varobjdebug,
2743 _("Set varobj debugging."),
2744 _("Show varobj debugging."),
2745 _("When non-zero, varobj debugging is enabled."),
2746 NULL, show_varobjdebug,
f989a1c8 2747 &setdebuglist, &showdebuglist);
8b93c638 2748}
8756216b 2749
54333c3b 2750/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2751 defined on globals. It is a helper for varobj_invalidate.
2752
2753 This function is called after changing the symbol file, in this case the
2754 pointers to "struct type" stored by the varobj are no longer valid. All
2755 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2756
54333c3b
JK
2757static void
2758varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2759{
4e969b4f
AB
2760 /* global and floating var must be re-evaluated. */
2761 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2762 {
54333c3b 2763 struct varobj *tmp_var;
2dbd25e5 2764
54333c3b
JK
2765 /* Try to create a varobj with same expression. If we succeed
2766 replace the old varobj, otherwise invalidate it. */
2767 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2768 USE_CURRENT_FRAME);
2769 if (tmp_var != NULL)
2770 {
2771 tmp_var->obj_name = xstrdup (var->obj_name);
2772 varobj_delete (var, NULL, 0);
2773 install_variable (tmp_var);
2dbd25e5 2774 }
54333c3b
JK
2775 else
2776 var->root->is_valid = 0;
2dbd25e5 2777 }
54333c3b
JK
2778 else /* locals must be invalidated. */
2779 var->root->is_valid = 0;
2780}
2781
2782/* Invalidate the varobjs that are tied to locals and re-create the ones that
2783 are defined on globals.
2784 Invalidated varobjs will be always printed in_scope="invalid". */
2785
2786void
2787varobj_invalidate (void)
2788{
2789 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2790}
This page took 1.611029 seconds and 4 git commands to generate.