Fix memory access violations discovered by running readelf compiled with undefined...
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
32d0add0 3 Copyright (C) 1999-2015 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
28335dcc 29#include "vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
8b93c638 33
b6313243
TT
34#if HAVE_PYTHON
35#include "python/python.h"
36#include "python/python-internal.h"
50389644
PA
37#else
38typedef int PyObject;
b6313243
TT
39#endif
40
8b93c638
JM
41/* Non-zero if we want to see trace of varobj level stuff. */
42
ccce17b0 43unsigned int varobjdebug = 0;
920d2a44
AC
44static void
45show_varobjdebug (struct ui_file *file, int from_tty,
46 struct cmd_list_element *c, const char *value)
47{
48 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
49}
8b93c638 50
581e13c1 51/* String representations of gdb's format codes. */
8b93c638 52char *varobj_format_string[] =
72330bd6 53 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 54
0cc7d26f
TT
55/* True if we want to allow Python-based pretty-printing. */
56static int pretty_printing = 0;
57
58void
59varobj_enable_pretty_printing (void)
60{
61 pretty_printing = 1;
62}
63
8b93c638
JM
64/* Data structures */
65
66/* Every root variable has one of these structures saved in its
581e13c1 67 varobj. Members which must be free'd are noted. */
8b93c638 68struct varobj_root
72330bd6 69{
8b93c638 70
581e13c1 71 /* Alloc'd expression for this parent. */
72330bd6 72 struct expression *exp;
8b93c638 73
581e13c1 74 /* Block for which this expression is valid. */
270140bd 75 const struct block *valid_block;
8b93c638 76
44a67aa7
VP
77 /* The frame for this expression. This field is set iff valid_block is
78 not NULL. */
e64d9b3d 79 struct frame_id frame;
8b93c638 80
c5b48eac 81 /* The thread ID that this varobj_root belong to. This field
581e13c1 82 is only valid if valid_block is not NULL.
c5b48eac
VP
83 When not 0, indicates which thread 'frame' belongs to.
84 When 0, indicates that the thread list was empty when the varobj_root
85 was created. */
86 int thread_id;
87
a5defcdc
VP
88 /* If 1, the -var-update always recomputes the value in the
89 current thread and frame. Otherwise, variable object is
581e13c1 90 always updated in the specific scope/thread/frame. */
a5defcdc 91 int floating;
73a93a32 92
8756216b
DP
93 /* Flag that indicates validity: set to 0 when this varobj_root refers
94 to symbols that do not exist anymore. */
95 int is_valid;
96
99ad9427
YQ
97 /* Language-related operations for this variable and its
98 children. */
ca20d462 99 const struct lang_varobj_ops *lang_ops;
8b93c638 100
581e13c1 101 /* The varobj for this root node. */
72330bd6 102 struct varobj *rootvar;
8b93c638 103
72330bd6
AC
104 /* Next root variable */
105 struct varobj_root *next;
106};
8b93c638 107
bb5ce47a 108/* Dynamic part of varobj. */
8b93c638 109
bb5ce47a
YQ
110struct varobj_dynamic
111{
b6313243
TT
112 /* Whether the children of this varobj were requested. This field is
113 used to decide if dynamic varobj should recompute their children.
114 In the event that the frontend never asked for the children, we
115 can avoid that. */
116 int children_requested;
117
0cc7d26f
TT
118 /* The pretty-printer constructor. If NULL, then the default
119 pretty-printer will be looked up. If None, then no
120 pretty-printer will be installed. */
121 PyObject *constructor;
122
b6313243
TT
123 /* The pretty-printer that has been constructed. If NULL, then a
124 new printer object is needed, and one will be constructed. */
125 PyObject *pretty_printer;
0cc7d26f
TT
126
127 /* The iterator returned by the printer's 'children' method, or NULL
128 if not available. */
e5250216 129 struct varobj_iter *child_iter;
0cc7d26f
TT
130
131 /* We request one extra item from the iterator, so that we can
132 report to the caller whether there are more items than we have
133 already reported. However, we don't want to install this value
134 when we read it, because that will mess up future updates. So,
135 we stash it here instead. */
e5250216 136 varobj_item *saved_item;
72330bd6 137};
8b93c638 138
8b93c638 139struct cpstack
72330bd6
AC
140{
141 char *name;
142 struct cpstack *next;
143};
8b93c638
JM
144
145/* A list of varobjs */
146
147struct vlist
72330bd6
AC
148{
149 struct varobj *var;
150 struct vlist *next;
151};
8b93c638
JM
152
153/* Private function prototypes */
154
581e13c1 155/* Helper functions for the above subcommands. */
8b93c638 156
a14ed312 157static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 158
a14ed312
KB
159static void delete_variable_1 (struct cpstack **, int *,
160 struct varobj *, int, int);
8b93c638 161
a14ed312 162static int install_variable (struct varobj *);
8b93c638 163
a14ed312 164static void uninstall_variable (struct varobj *);
8b93c638 165
a14ed312 166static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 167
b6313243 168static struct varobj *
5a2e0d6e
YQ
169create_child_with_value (struct varobj *parent, int index,
170 struct varobj_item *item);
b6313243 171
8b93c638
JM
172/* Utility routines */
173
a14ed312 174static struct varobj *new_variable (void);
8b93c638 175
a14ed312 176static struct varobj *new_root_variable (void);
8b93c638 177
a14ed312 178static void free_variable (struct varobj *var);
8b93c638 179
74b7792f
AC
180static struct cleanup *make_cleanup_free_variable (struct varobj *var);
181
a14ed312 182static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 183
a14ed312 184static void cppush (struct cpstack **pstack, char *name);
8b93c638 185
a14ed312 186static char *cppop (struct cpstack **pstack);
8b93c638 187
8264ba82
AG
188static int update_type_if_necessary (struct varobj *var,
189 struct value *new_value);
190
acd65feb
VP
191static int install_new_value (struct varobj *var, struct value *value,
192 int initial);
193
581e13c1 194/* Language-specific routines. */
8b93c638 195
b09e2c59 196static int number_of_children (const struct varobj *);
8b93c638 197
b09e2c59 198static char *name_of_variable (const struct varobj *);
8b93c638 199
a14ed312 200static char *name_of_child (struct varobj *, int);
8b93c638 201
30b28db1 202static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 203
30b28db1 204static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 205
de051565
MK
206static char *my_value_of_variable (struct varobj *var,
207 enum varobj_display_formats format);
8b93c638 208
b09e2c59 209static int is_root_p (const struct varobj *var);
8b93c638 210
9a1edae6 211static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 212 struct varobj_item *item);
b6313243 213
8b93c638
JM
214/* Private data */
215
581e13c1 216/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 217static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 218
581e13c1 219/* Header of the list of root variable objects. */
8b93c638 220static struct varobj_root *rootlist;
8b93c638 221
581e13c1
MS
222/* Prime number indicating the number of buckets in the hash table. */
223/* A prime large enough to avoid too many colisions. */
8b93c638
JM
224#define VAROBJ_TABLE_SIZE 227
225
581e13c1 226/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
227static struct vlist **varobj_table;
228
8b93c638
JM
229\f
230
231/* API Implementation */
b2c2bd75 232static int
b09e2c59 233is_root_p (const struct varobj *var)
b2c2bd75
VP
234{
235 return (var->root->rootvar == var);
236}
8b93c638 237
d452c4bc
UW
238#ifdef HAVE_PYTHON
239/* Helper function to install a Python environment suitable for
240 use during operations on VAR. */
e5250216 241struct cleanup *
b09e2c59 242varobj_ensure_python_env (const struct varobj *var)
d452c4bc
UW
243{
244 return ensure_python_env (var->root->exp->gdbarch,
245 var->root->exp->language_defn);
246}
247#endif
248
581e13c1 249/* Creates a varobj (not its children). */
8b93c638 250
7d8547c9
AC
251/* Return the full FRAME which corresponds to the given CORE_ADDR
252 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
253
254static struct frame_info *
255find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
256{
257 struct frame_info *frame = NULL;
258
259 if (frame_addr == (CORE_ADDR) 0)
260 return NULL;
261
9d49bdc2
PA
262 for (frame = get_current_frame ();
263 frame != NULL;
264 frame = get_prev_frame (frame))
7d8547c9 265 {
1fac167a
UW
266 /* The CORE_ADDR we get as argument was parsed from a string GDB
267 output as $fp. This output got truncated to gdbarch_addr_bit.
268 Truncate the frame base address in the same manner before
269 comparing it against our argument. */
270 CORE_ADDR frame_base = get_frame_base_address (frame);
271 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 272
1fac167a
UW
273 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
274 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
275
276 if (frame_base == frame_addr)
7d8547c9
AC
277 return frame;
278 }
9d49bdc2
PA
279
280 return NULL;
7d8547c9
AC
281}
282
8b93c638
JM
283struct varobj *
284varobj_create (char *objname,
72330bd6 285 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
286{
287 struct varobj *var;
8b93c638
JM
288 struct cleanup *old_chain;
289
581e13c1 290 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 291 var = new_root_variable ();
74b7792f 292 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
293
294 if (expression != NULL)
295 {
e4195b40 296 struct frame_info *fi;
35633fef 297 struct frame_id old_id = null_frame_id;
3977b71f 298 const struct block *block;
bbc13ae3 299 const char *p;
e55dccf0 300 struct value *value = NULL;
8e7b59a5 301 volatile struct gdb_exception except;
1bb9788d 302 CORE_ADDR pc;
8b93c638 303
9d49bdc2
PA
304 /* Parse and evaluate the expression, filling in as much of the
305 variable's data as possible. */
306
307 if (has_stack_frames ())
308 {
581e13c1 309 /* Allow creator to specify context of variable. */
9d49bdc2
PA
310 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
311 fi = get_selected_frame (NULL);
312 else
313 /* FIXME: cagney/2002-11-23: This code should be doing a
314 lookup using the frame ID and not just the frame's
315 ``address''. This, of course, means an interface
316 change. However, with out that interface change ISAs,
317 such as the ia64 with its two stacks, won't work.
318 Similar goes for the case where there is a frameless
319 function. */
320 fi = find_frame_addr_in_frame_chain (frame);
321 }
8b93c638 322 else
9d49bdc2 323 fi = NULL;
8b93c638 324
581e13c1 325 /* frame = -2 means always use selected frame. */
73a93a32 326 if (type == USE_SELECTED_FRAME)
a5defcdc 327 var->root->floating = 1;
73a93a32 328
1bb9788d 329 pc = 0;
8b93c638
JM
330 block = NULL;
331 if (fi != NULL)
1bb9788d
TT
332 {
333 block = get_frame_block (fi, 0);
334 pc = get_frame_pc (fi);
335 }
8b93c638
JM
336
337 p = expression;
338 innermost_block = NULL;
73a93a32 339 /* Wrap the call to parse expression, so we can
581e13c1 340 return a sensible error. */
8e7b59a5
KS
341 TRY_CATCH (except, RETURN_MASK_ERROR)
342 {
1bb9788d 343 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
344 }
345
346 if (except.reason < 0)
73a93a32 347 {
f748fb40 348 do_cleanups (old_chain);
73a93a32
JI
349 return NULL;
350 }
8b93c638 351
581e13c1 352 /* Don't allow variables to be created for types. */
608b4967
TT
353 if (var->root->exp->elts[0].opcode == OP_TYPE
354 || var->root->exp->elts[0].opcode == OP_TYPEOF
355 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638
JM
356 {
357 do_cleanups (old_chain);
bc8332bb
AC
358 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
359 " as an expression.\n");
8b93c638
JM
360 return NULL;
361 }
362
363 var->format = variable_default_display (var);
364 var->root->valid_block = innermost_block;
1b36a34b 365 var->name = xstrdup (expression);
02142340 366 /* For a root var, the name and the expr are the same. */
1b36a34b 367 var->path_expr = xstrdup (expression);
8b93c638
JM
368
369 /* When the frame is different from the current frame,
370 we must select the appropriate frame before parsing
371 the expression, otherwise the value will not be current.
581e13c1 372 Since select_frame is so benign, just call it for all cases. */
4e22772d 373 if (innermost_block)
8b93c638 374 {
4e22772d
JK
375 /* User could specify explicit FRAME-ADDR which was not found but
376 EXPRESSION is frame specific and we would not be able to evaluate
377 it correctly next time. With VALID_BLOCK set we must also set
378 FRAME and THREAD_ID. */
379 if (fi == NULL)
380 error (_("Failed to find the specified frame"));
381
7a424e99 382 var->root->frame = get_frame_id (fi);
c5b48eac 383 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 384 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 385 select_frame (fi);
8b93c638
JM
386 }
387
340a7723 388 /* We definitely need to catch errors here.
8b93c638 389 If evaluate_expression succeeds we got the value we wanted.
581e13c1 390 But if it fails, we still go on with a call to evaluate_type(). */
8e7b59a5
KS
391 TRY_CATCH (except, RETURN_MASK_ERROR)
392 {
393 value = evaluate_expression (var->root->exp);
394 }
395
396 if (except.reason < 0)
e55dccf0
VP
397 {
398 /* Error getting the value. Try to at least get the
399 right type. */
400 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 401
e55dccf0
VP
402 var->type = value_type (type_only_value);
403 }
8264ba82
AG
404 else
405 {
406 int real_type_found = 0;
407
408 var->type = value_actual_type (value, 0, &real_type_found);
409 if (real_type_found)
410 value = value_cast (var->type, value);
411 }
acd65feb 412
8b93c638 413 /* Set language info */
ca20d462 414 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 415
d32cafc7
JB
416 install_new_value (var, value, 1 /* Initial assignment */);
417
581e13c1 418 /* Set ourselves as our root. */
8b93c638
JM
419 var->root->rootvar = var;
420
581e13c1 421 /* Reset the selected frame. */
35633fef
JK
422 if (frame_id_p (old_id))
423 select_frame (frame_find_by_id (old_id));
8b93c638
JM
424 }
425
73a93a32 426 /* If the variable object name is null, that means this
581e13c1 427 is a temporary variable, so don't install it. */
73a93a32
JI
428
429 if ((var != NULL) && (objname != NULL))
8b93c638 430 {
1b36a34b 431 var->obj_name = xstrdup (objname);
8b93c638
JM
432
433 /* If a varobj name is duplicated, the install will fail so
581e13c1 434 we must cleanup. */
8b93c638
JM
435 if (!install_variable (var))
436 {
437 do_cleanups (old_chain);
438 return NULL;
439 }
440 }
441
442 discard_cleanups (old_chain);
443 return var;
444}
445
581e13c1 446/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
447
448char *
449varobj_gen_name (void)
450{
451 static int id = 0;
e64d9b3d 452 char *obj_name;
8b93c638 453
581e13c1 454 /* Generate a name for this object. */
8b93c638 455 id++;
b435e160 456 obj_name = xstrprintf ("var%d", id);
8b93c638 457
e64d9b3d 458 return obj_name;
8b93c638
JM
459}
460
61d8f275
JK
461/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
462 error if OBJNAME cannot be found. */
8b93c638
JM
463
464struct varobj *
465varobj_get_handle (char *objname)
466{
467 struct vlist *cv;
468 const char *chp;
469 unsigned int index = 0;
470 unsigned int i = 1;
471
472 for (chp = objname; *chp; chp++)
473 {
474 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
475 }
476
477 cv = *(varobj_table + index);
478 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
479 cv = cv->next;
480
481 if (cv == NULL)
8a3fe4f8 482 error (_("Variable object not found"));
8b93c638
JM
483
484 return cv->var;
485}
486
581e13c1 487/* Given the handle, return the name of the object. */
8b93c638
JM
488
489char *
b09e2c59 490varobj_get_objname (const struct varobj *var)
8b93c638
JM
491{
492 return var->obj_name;
493}
494
ca83fa81
SM
495/* Given the handle, return the expression represented by the object. The
496 result must be freed by the caller. */
8b93c638
JM
497
498char *
b09e2c59 499varobj_get_expression (const struct varobj *var)
8b93c638
JM
500{
501 return name_of_variable (var);
502}
503
504/* Deletes a varobj and all its children if only_children == 0,
6da58d3e
SM
505 otherwise deletes only the children. If DELLIST is non-NULL, it is
506 assigned a malloc'ed list of all the (malloc'ed) names of the variables
507 that have been deleted (NULL terminated). Returns the number of deleted
508 variables. */
8b93c638
JM
509
510int
511varobj_delete (struct varobj *var, char ***dellist, int only_children)
512{
513 int delcount;
514 int mycount;
515 struct cpstack *result = NULL;
516 char **cp;
517
581e13c1 518 /* Initialize a stack for temporary results. */
8b93c638
JM
519 cppush (&result, NULL);
520
521 if (only_children)
581e13c1 522 /* Delete only the variable children. */
8b93c638
JM
523 delcount = delete_variable (&result, var, 1 /* only the children */ );
524 else
581e13c1 525 /* Delete the variable and all its children. */
8b93c638
JM
526 delcount = delete_variable (&result, var, 0 /* parent+children */ );
527
581e13c1 528 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
529 if (dellist != NULL)
530 {
531 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
532
533 cp = *dellist;
534 mycount = delcount;
535 *cp = cppop (&result);
536 while ((*cp != NULL) && (mycount > 0))
537 {
538 mycount--;
539 cp++;
540 *cp = cppop (&result);
541 }
542
543 if (mycount || (*cp != NULL))
8a3fe4f8 544 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 545 mycount);
8b93c638
JM
546 }
547
548 return delcount;
549}
550
d8b65138
JK
551#if HAVE_PYTHON
552
b6313243
TT
553/* Convenience function for varobj_set_visualizer. Instantiate a
554 pretty-printer for a given value. */
555static PyObject *
556instantiate_pretty_printer (PyObject *constructor, struct value *value)
557{
b6313243
TT
558 PyObject *val_obj = NULL;
559 PyObject *printer;
b6313243 560
b6313243 561 val_obj = value_to_value_object (value);
b6313243
TT
562 if (! val_obj)
563 return NULL;
564
565 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
566 Py_DECREF (val_obj);
567 return printer;
b6313243
TT
568}
569
d8b65138
JK
570#endif
571
581e13c1 572/* Set/Get variable object display format. */
8b93c638
JM
573
574enum varobj_display_formats
575varobj_set_display_format (struct varobj *var,
576 enum varobj_display_formats format)
577{
578 switch (format)
579 {
580 case FORMAT_NATURAL:
581 case FORMAT_BINARY:
582 case FORMAT_DECIMAL:
583 case FORMAT_HEXADECIMAL:
584 case FORMAT_OCTAL:
585 var->format = format;
586 break;
587
588 default:
589 var->format = variable_default_display (var);
590 }
591
ae7d22a6
VP
592 if (varobj_value_is_changeable_p (var)
593 && var->value && !value_lazy (var->value))
594 {
6c761d9c 595 xfree (var->print_value);
99ad9427
YQ
596 var->print_value = varobj_value_get_print_value (var->value,
597 var->format, var);
ae7d22a6
VP
598 }
599
8b93c638
JM
600 return var->format;
601}
602
603enum varobj_display_formats
b09e2c59 604varobj_get_display_format (const struct varobj *var)
8b93c638
JM
605{
606 return var->format;
607}
608
b6313243 609char *
b09e2c59 610varobj_get_display_hint (const struct varobj *var)
b6313243
TT
611{
612 char *result = NULL;
613
614#if HAVE_PYTHON
0646da15
TT
615 struct cleanup *back_to;
616
617 if (!gdb_python_initialized)
618 return NULL;
619
620 back_to = varobj_ensure_python_env (var);
d452c4bc 621
bb5ce47a
YQ
622 if (var->dynamic->pretty_printer != NULL)
623 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
d452c4bc
UW
624
625 do_cleanups (back_to);
b6313243
TT
626#endif
627
628 return result;
629}
630
0cc7d26f
TT
631/* Return true if the varobj has items after TO, false otherwise. */
632
633int
b09e2c59 634varobj_has_more (const struct varobj *var, int to)
0cc7d26f
TT
635{
636 if (VEC_length (varobj_p, var->children) > to)
637 return 1;
638 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
bb5ce47a 639 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
640}
641
c5b48eac
VP
642/* If the variable object is bound to a specific thread, that
643 is its evaluation can always be done in context of a frame
644 inside that thread, returns GDB id of the thread -- which
581e13c1 645 is always positive. Otherwise, returns -1. */
c5b48eac 646int
b09e2c59 647varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
648{
649 if (var->root->valid_block && var->root->thread_id > 0)
650 return var->root->thread_id;
651 else
652 return -1;
653}
654
25d5ea92
VP
655void
656varobj_set_frozen (struct varobj *var, int frozen)
657{
658 /* When a variable is unfrozen, we don't fetch its value.
659 The 'not_fetched' flag remains set, so next -var-update
660 won't complain.
661
662 We don't fetch the value, because for structures the client
663 should do -var-update anyway. It would be bad to have different
664 client-size logic for structure and other types. */
665 var->frozen = frozen;
666}
667
668int
b09e2c59 669varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
670{
671 return var->frozen;
672}
673
0cc7d26f
TT
674/* A helper function that restricts a range to what is actually
675 available in a VEC. This follows the usual rules for the meaning
676 of FROM and TO -- if either is negative, the entire range is
677 used. */
678
99ad9427
YQ
679void
680varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
0cc7d26f
TT
681{
682 if (*from < 0 || *to < 0)
683 {
684 *from = 0;
685 *to = VEC_length (varobj_p, children);
686 }
687 else
688 {
689 if (*from > VEC_length (varobj_p, children))
690 *from = VEC_length (varobj_p, children);
691 if (*to > VEC_length (varobj_p, children))
692 *to = VEC_length (varobj_p, children);
693 if (*from > *to)
694 *from = *to;
695 }
696}
697
698/* A helper for update_dynamic_varobj_children that installs a new
699 child when needed. */
700
701static void
702install_dynamic_child (struct varobj *var,
703 VEC (varobj_p) **changed,
8264ba82 704 VEC (varobj_p) **type_changed,
0cc7d26f
TT
705 VEC (varobj_p) **new,
706 VEC (varobj_p) **unchanged,
707 int *cchanged,
708 int index,
5a2e0d6e 709 struct varobj_item *item)
0cc7d26f
TT
710{
711 if (VEC_length (varobj_p, var->children) < index + 1)
712 {
713 /* There's no child yet. */
5a2e0d6e 714 struct varobj *child = varobj_add_child (var, item);
a109c7c1 715
0cc7d26f
TT
716 if (new)
717 {
718 VEC_safe_push (varobj_p, *new, child);
719 *cchanged = 1;
720 }
721 }
bf8793bb 722 else
0cc7d26f
TT
723 {
724 varobj_p existing = VEC_index (varobj_p, var->children, index);
5a2e0d6e 725 int type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 726
8264ba82
AG
727 if (type_updated)
728 {
729 if (type_changed)
730 VEC_safe_push (varobj_p, *type_changed, existing);
731 }
5a2e0d6e 732 if (install_new_value (existing, item->value, 0))
0cc7d26f 733 {
8264ba82 734 if (!type_updated && changed)
0cc7d26f
TT
735 VEC_safe_push (varobj_p, *changed, existing);
736 }
8264ba82 737 else if (!type_updated && unchanged)
0cc7d26f
TT
738 VEC_safe_push (varobj_p, *unchanged, existing);
739 }
740}
741
576ea091
YQ
742#if HAVE_PYTHON
743
0cc7d26f 744static int
b09e2c59 745dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f
TT
746{
747 struct cleanup *back_to;
bb5ce47a 748 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f
TT
749 int result;
750
0646da15
TT
751 if (!gdb_python_initialized)
752 return 0;
753
0cc7d26f
TT
754 back_to = varobj_ensure_python_env (var);
755 result = PyObject_HasAttr (printer, gdbpy_children_cst);
756 do_cleanups (back_to);
757 return result;
758}
576ea091 759#endif
0cc7d26f 760
e5250216
YQ
761/* A factory for creating dynamic varobj's iterators. Returns an
762 iterator object suitable for iterating over VAR's children. */
763
764static struct varobj_iter *
765varobj_get_iterator (struct varobj *var)
766{
576ea091 767#if HAVE_PYTHON
e5250216
YQ
768 if (var->dynamic->pretty_printer)
769 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 770#endif
e5250216
YQ
771
772 gdb_assert_not_reached (_("\
773requested an iterator from a non-dynamic varobj"));
774}
775
827f100c
YQ
776/* Release and clear VAR's saved item, if any. */
777
778static void
779varobj_clear_saved_item (struct varobj_dynamic *var)
780{
781 if (var->saved_item != NULL)
782 {
783 value_free (var->saved_item->value);
784 xfree (var->saved_item);
785 var->saved_item = NULL;
786 }
787}
0cc7d26f 788
b6313243
TT
789static int
790update_dynamic_varobj_children (struct varobj *var,
791 VEC (varobj_p) **changed,
8264ba82 792 VEC (varobj_p) **type_changed,
0cc7d26f
TT
793 VEC (varobj_p) **new,
794 VEC (varobj_p) **unchanged,
795 int *cchanged,
796 int update_children,
797 int from,
798 int to)
b6313243 799{
b6313243 800 int i;
b6313243 801
b6313243 802 *cchanged = 0;
b6313243 803
bb5ce47a 804 if (update_children || var->dynamic->child_iter == NULL)
b6313243 805 {
e5250216
YQ
806 varobj_iter_delete (var->dynamic->child_iter);
807 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 808
827f100c 809 varobj_clear_saved_item (var->dynamic);
b6313243 810
e5250216 811 i = 0;
b6313243 812
bb5ce47a 813 if (var->dynamic->child_iter == NULL)
827f100c 814 return 0;
b6313243 815 }
0cc7d26f
TT
816 else
817 i = VEC_length (varobj_p, var->children);
b6313243 818
0cc7d26f
TT
819 /* We ask for one extra child, so that MI can report whether there
820 are more children. */
821 for (; to < 0 || i < to + 1; ++i)
b6313243 822 {
827f100c 823 varobj_item *item;
b6313243 824
0cc7d26f 825 /* See if there was a leftover from last time. */
827f100c 826 if (var->dynamic->saved_item != NULL)
0cc7d26f 827 {
bb5ce47a
YQ
828 item = var->dynamic->saved_item;
829 var->dynamic->saved_item = NULL;
0cc7d26f
TT
830 }
831 else
a4c8e806 832 {
e5250216 833 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
834 /* Release vitem->value so its lifetime is not bound to the
835 execution of a command. */
836 if (item != NULL && item->value != NULL)
837 release_value_or_incref (item->value);
a4c8e806 838 }
b6313243 839
e5250216
YQ
840 if (item == NULL)
841 {
842 /* Iteration is done. Remove iterator from VAR. */
843 varobj_iter_delete (var->dynamic->child_iter);
844 var->dynamic->child_iter = NULL;
845 break;
846 }
0cc7d26f
TT
847 /* We don't want to push the extra child on any report list. */
848 if (to < 0 || i < to)
b6313243 849 {
0cc7d26f
TT
850 int can_mention = from < 0 || i >= from;
851
0cc7d26f 852 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 853 can_mention ? type_changed : NULL,
0cc7d26f
TT
854 can_mention ? new : NULL,
855 can_mention ? unchanged : NULL,
5e5ac9a5 856 can_mention ? cchanged : NULL, i,
827f100c
YQ
857 item);
858
859 xfree (item);
b6313243 860 }
0cc7d26f 861 else
b6313243 862 {
bb5ce47a 863 var->dynamic->saved_item = item;
b6313243 864
0cc7d26f
TT
865 /* We want to truncate the child list just before this
866 element. */
867 break;
868 }
b6313243
TT
869 }
870
871 if (i < VEC_length (varobj_p, var->children))
872 {
0cc7d26f 873 int j;
a109c7c1 874
0cc7d26f
TT
875 *cchanged = 1;
876 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
877 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
878 VEC_truncate (varobj_p, var->children, i);
b6313243 879 }
0cc7d26f
TT
880
881 /* If there are fewer children than requested, note that the list of
882 children changed. */
883 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
884 *cchanged = 1;
885
b6313243 886 var->num_children = VEC_length (varobj_p, var->children);
b6313243 887
b6313243 888 return 1;
b6313243 889}
25d5ea92 890
8b93c638
JM
891int
892varobj_get_num_children (struct varobj *var)
893{
894 if (var->num_children == -1)
b6313243 895 {
31f628ae 896 if (varobj_is_dynamic_p (var))
0cc7d26f
TT
897 {
898 int dummy;
899
900 /* If we have a dynamic varobj, don't report -1 children.
901 So, try to fetch some children first. */
8264ba82 902 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
903 0, 0, 0);
904 }
905 else
b6313243
TT
906 var->num_children = number_of_children (var);
907 }
8b93c638 908
0cc7d26f 909 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
910}
911
912/* Creates a list of the immediate children of a variable object;
581e13c1 913 the return code is the number of such children or -1 on error. */
8b93c638 914
d56d46f5 915VEC (varobj_p)*
0cc7d26f 916varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 917{
8b93c638 918 char *name;
b6313243
TT
919 int i, children_changed;
920
bb5ce47a 921 var->dynamic->children_requested = 1;
b6313243 922
31f628ae 923 if (varobj_is_dynamic_p (var))
0cc7d26f 924 {
b6313243
TT
925 /* This, in theory, can result in the number of children changing without
926 frontend noticing. But well, calling -var-list-children on the same
927 varobj twice is not something a sane frontend would do. */
8264ba82
AG
928 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
929 &children_changed, 0, 0, *to);
99ad9427 930 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
931 return var->children;
932 }
8b93c638 933
8b93c638
JM
934 if (var->num_children == -1)
935 var->num_children = number_of_children (var);
936
74a44383
DJ
937 /* If that failed, give up. */
938 if (var->num_children == -1)
d56d46f5 939 return var->children;
74a44383 940
28335dcc
VP
941 /* If we're called when the list of children is not yet initialized,
942 allocate enough elements in it. */
943 while (VEC_length (varobj_p, var->children) < var->num_children)
944 VEC_safe_push (varobj_p, var->children, NULL);
945
8b93c638
JM
946 for (i = 0; i < var->num_children; i++)
947 {
d56d46f5 948 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
949
950 if (existing == NULL)
951 {
952 /* Either it's the first call to varobj_list_children for
953 this variable object, and the child was never created,
954 or it was explicitly deleted by the client. */
955 name = name_of_child (var, i);
956 existing = create_child (var, i, name);
957 VEC_replace (varobj_p, var->children, i, existing);
958 }
8b93c638
JM
959 }
960
99ad9427 961 varobj_restrict_range (var->children, from, to);
d56d46f5 962 return var->children;
8b93c638
JM
963}
964
b6313243 965static struct varobj *
5a2e0d6e 966varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 967{
5a2e0d6e 968 varobj_p v = create_child_with_value (var,
b6313243 969 VEC_length (varobj_p, var->children),
5a2e0d6e 970 item);
a109c7c1 971
b6313243 972 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
973 return v;
974}
975
8b93c638 976/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
977 prints on the console. The caller is responsible for freeing the string.
978 */
8b93c638
JM
979
980char *
981varobj_get_type (struct varobj *var)
982{
8ab91b96 983 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
984 NULL, too.)
985 Do not return a type for invalid variables as well. */
986 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
987 return NULL;
988
1a4300e9 989 return type_to_string (var->type);
8b93c638
JM
990}
991
1ecb4ee0
DJ
992/* Obtain the type of an object variable. */
993
994struct type *
b09e2c59 995varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
996{
997 return var->type;
998}
999
85254831
KS
1000/* Is VAR a path expression parent, i.e., can it be used to construct
1001 a valid path expression? */
1002
1003static int
b09e2c59 1004is_path_expr_parent (const struct varobj *var)
85254831 1005{
9a9a7608
AB
1006 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1007 return var->root->lang_ops->is_path_expr_parent (var);
1008}
85254831 1009
9a9a7608
AB
1010/* Is VAR a path expression parent, i.e., can it be used to construct
1011 a valid path expression? By default we assume any VAR can be a path
1012 parent. */
85254831 1013
9a9a7608 1014int
b09e2c59 1015varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608
AB
1016{
1017 return 1;
85254831
KS
1018}
1019
1020/* Return the path expression parent for VAR. */
1021
99ad9427
YQ
1022struct varobj *
1023varobj_get_path_expr_parent (struct varobj *var)
85254831
KS
1024{
1025 struct varobj *parent = var;
1026
1027 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1028 parent = parent->parent;
1029
1030 return parent;
1031}
1032
02142340
VP
1033/* Return a pointer to the full rooted expression of varobj VAR.
1034 If it has not been computed yet, compute it. */
1035char *
1036varobj_get_path_expr (struct varobj *var)
1037{
2568868e 1038 if (var->path_expr == NULL)
02142340
VP
1039 {
1040 /* For root varobjs, we initialize path_expr
1041 when creating varobj, so here it should be
1042 child varobj. */
1043 gdb_assert (!is_root_p (var));
2568868e
SM
1044
1045 var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 1046 }
2568868e
SM
1047
1048 return var->path_expr;
02142340
VP
1049}
1050
fa4d0c40 1051const struct language_defn *
b09e2c59 1052varobj_get_language (const struct varobj *var)
8b93c638 1053{
fa4d0c40 1054 return var->root->exp->language_defn;
8b93c638
JM
1055}
1056
1057int
b09e2c59 1058varobj_get_attributes (const struct varobj *var)
8b93c638
JM
1059{
1060 int attributes = 0;
1061
340a7723 1062 if (varobj_editable_p (var))
581e13c1 1063 /* FIXME: define masks for attributes. */
8b93c638
JM
1064 attributes |= 0x00000001; /* Editable */
1065
1066 return attributes;
1067}
1068
cde5ef40
YQ
1069/* Return true if VAR is a dynamic varobj. */
1070
0cc7d26f 1071int
b09e2c59 1072varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 1073{
bb5ce47a 1074 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1075}
1076
de051565
MK
1077char *
1078varobj_get_formatted_value (struct varobj *var,
1079 enum varobj_display_formats format)
1080{
1081 return my_value_of_variable (var, format);
1082}
1083
8b93c638
JM
1084char *
1085varobj_get_value (struct varobj *var)
1086{
de051565 1087 return my_value_of_variable (var, var->format);
8b93c638
JM
1088}
1089
1090/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1091 value of the given expression. */
1092/* Note: Invokes functions that can call error(). */
8b93c638
JM
1093
1094int
1095varobj_set_value (struct varobj *var, char *expression)
1096{
34365054 1097 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1098 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1099 We need to first construct a legal expression for this -- ugh! */
1100 /* Does this cover all the bases? */
8b93c638 1101 struct expression *exp;
34365054 1102 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1103 int saved_input_radix = input_radix;
bbc13ae3 1104 const char *s = expression;
8e7b59a5 1105 volatile struct gdb_exception except;
8b93c638 1106
340a7723 1107 gdb_assert (varobj_editable_p (var));
8b93c638 1108
581e13c1 1109 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1bb9788d 1110 exp = parse_exp_1 (&s, 0, 0, 0);
8e7b59a5
KS
1111 TRY_CATCH (except, RETURN_MASK_ERROR)
1112 {
1113 value = evaluate_expression (exp);
1114 }
1115
1116 if (except.reason < 0)
340a7723 1117 {
581e13c1 1118 /* We cannot proceed without a valid expression. */
340a7723
NR
1119 xfree (exp);
1120 return 0;
8b93c638
JM
1121 }
1122
340a7723
NR
1123 /* All types that are editable must also be changeable. */
1124 gdb_assert (varobj_value_is_changeable_p (var));
1125
1126 /* The value of a changeable variable object must not be lazy. */
1127 gdb_assert (!value_lazy (var->value));
1128
1129 /* Need to coerce the input. We want to check if the
1130 value of the variable object will be different
1131 after assignment, and the first thing value_assign
1132 does is coerce the input.
1133 For example, if we are assigning an array to a pointer variable we
b021a221 1134 should compare the pointer with the array's address, not with the
340a7723
NR
1135 array's content. */
1136 value = coerce_array (value);
1137
8e7b59a5
KS
1138 /* The new value may be lazy. value_assign, or
1139 rather value_contents, will take care of this. */
1140 TRY_CATCH (except, RETURN_MASK_ERROR)
1141 {
1142 val = value_assign (var->value, value);
1143 }
1144
1145 if (except.reason < 0)
340a7723 1146 return 0;
8e7b59a5 1147
340a7723
NR
1148 /* If the value has changed, record it, so that next -var-update can
1149 report this change. If a variable had a value of '1', we've set it
1150 to '333' and then set again to '1', when -var-update will report this
1151 variable as changed -- because the first assignment has set the
1152 'updated' flag. There's no need to optimize that, because return value
1153 of -var-update should be considered an approximation. */
581e13c1 1154 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1155 input_radix = saved_input_radix;
1156 return 1;
8b93c638
JM
1157}
1158
0cc7d26f
TT
1159#if HAVE_PYTHON
1160
1161/* A helper function to install a constructor function and visualizer
bb5ce47a 1162 in a varobj_dynamic. */
0cc7d26f
TT
1163
1164static void
bb5ce47a 1165install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1166 PyObject *visualizer)
1167{
1168 Py_XDECREF (var->constructor);
1169 var->constructor = constructor;
1170
1171 Py_XDECREF (var->pretty_printer);
1172 var->pretty_printer = visualizer;
1173
e5250216 1174 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1175 var->child_iter = NULL;
1176}
1177
1178/* Install the default visualizer for VAR. */
1179
1180static void
1181install_default_visualizer (struct varobj *var)
1182{
d65aec65
PM
1183 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1184 if (CPLUS_FAKE_CHILD (var))
1185 return;
1186
0cc7d26f
TT
1187 if (pretty_printing)
1188 {
1189 PyObject *pretty_printer = NULL;
1190
1191 if (var->value)
1192 {
1193 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1194 if (! pretty_printer)
1195 {
1196 gdbpy_print_stack ();
1197 error (_("Cannot instantiate printer for default visualizer"));
1198 }
1199 }
1200
1201 if (pretty_printer == Py_None)
1202 {
1203 Py_DECREF (pretty_printer);
1204 pretty_printer = NULL;
1205 }
1206
bb5ce47a 1207 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1208 }
1209}
1210
1211/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1212 make a new object. */
1213
1214static void
1215construct_visualizer (struct varobj *var, PyObject *constructor)
1216{
1217 PyObject *pretty_printer;
1218
d65aec65
PM
1219 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1220 if (CPLUS_FAKE_CHILD (var))
1221 return;
1222
0cc7d26f
TT
1223 Py_INCREF (constructor);
1224 if (constructor == Py_None)
1225 pretty_printer = NULL;
1226 else
1227 {
1228 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1229 if (! pretty_printer)
1230 {
1231 gdbpy_print_stack ();
1232 Py_DECREF (constructor);
1233 constructor = Py_None;
1234 Py_INCREF (constructor);
1235 }
1236
1237 if (pretty_printer == Py_None)
1238 {
1239 Py_DECREF (pretty_printer);
1240 pretty_printer = NULL;
1241 }
1242 }
1243
bb5ce47a 1244 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1245}
1246
1247#endif /* HAVE_PYTHON */
1248
1249/* A helper function for install_new_value. This creates and installs
1250 a visualizer for VAR, if appropriate. */
1251
1252static void
1253install_new_value_visualizer (struct varobj *var)
1254{
1255#if HAVE_PYTHON
1256 /* If the constructor is None, then we want the raw value. If VAR
1257 does not have a value, just skip this. */
0646da15
TT
1258 if (!gdb_python_initialized)
1259 return;
1260
bb5ce47a 1261 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f
TT
1262 {
1263 struct cleanup *cleanup;
0cc7d26f
TT
1264
1265 cleanup = varobj_ensure_python_env (var);
1266
bb5ce47a 1267 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1268 install_default_visualizer (var);
1269 else
bb5ce47a 1270 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1271
1272 do_cleanups (cleanup);
1273 }
1274#else
1275 /* Do nothing. */
1276#endif
1277}
1278
8264ba82
AG
1279/* When using RTTI to determine variable type it may be changed in runtime when
1280 the variable value is changed. This function checks whether type of varobj
1281 VAR will change when a new value NEW_VALUE is assigned and if it is so
1282 updates the type of VAR. */
1283
1284static int
1285update_type_if_necessary (struct varobj *var, struct value *new_value)
1286{
1287 if (new_value)
1288 {
1289 struct value_print_options opts;
1290
1291 get_user_print_options (&opts);
1292 if (opts.objectprint)
1293 {
1294 struct type *new_type;
1295 char *curr_type_str, *new_type_str;
afa269ae 1296 int type_name_changed;
8264ba82
AG
1297
1298 new_type = value_actual_type (new_value, 0, 0);
1299 new_type_str = type_to_string (new_type);
1300 curr_type_str = varobj_get_type (var);
afa269ae
SM
1301 type_name_changed = strcmp (curr_type_str, new_type_str) != 0;
1302 xfree (curr_type_str);
1303 xfree (new_type_str);
1304
1305 if (type_name_changed)
8264ba82
AG
1306 {
1307 var->type = new_type;
1308
1309 /* This information may be not valid for a new type. */
1310 varobj_delete (var, NULL, 1);
1311 VEC_free (varobj_p, var->children);
1312 var->num_children = -1;
1313 return 1;
1314 }
1315 }
1316 }
1317
1318 return 0;
1319}
1320
acd65feb
VP
1321/* Assign a new value to a variable object. If INITIAL is non-zero,
1322 this is the first assignement after the variable object was just
1323 created, or changed type. In that case, just assign the value
1324 and return 0.
581e13c1
MS
1325 Otherwise, assign the new value, and return 1 if the value is
1326 different from the current one, 0 otherwise. The comparison is
1327 done on textual representation of value. Therefore, some types
1328 need not be compared. E.g. for structures the reported value is
1329 always "{...}", so no comparison is necessary here. If the old
1330 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1331
1332 The VALUE parameter should not be released -- the function will
1333 take care of releasing it when needed. */
acd65feb
VP
1334static int
1335install_new_value (struct varobj *var, struct value *value, int initial)
1336{
1337 int changeable;
1338 int need_to_fetch;
1339 int changed = 0;
25d5ea92 1340 int intentionally_not_fetched = 0;
7a4d50bf 1341 char *print_value = NULL;
acd65feb 1342
acd65feb 1343 /* We need to know the varobj's type to decide if the value should
3e43a32a 1344 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1345 don't have a type. */
acd65feb 1346 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1347 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1348
1349 /* If the type has custom visualizer, we consider it to be always
581e13c1 1350 changeable. FIXME: need to make sure this behaviour will not
b6313243 1351 mess up read-sensitive values. */
bb5ce47a 1352 if (var->dynamic->pretty_printer != NULL)
b6313243
TT
1353 changeable = 1;
1354
acd65feb
VP
1355 need_to_fetch = changeable;
1356
b26ed50d
VP
1357 /* We are not interested in the address of references, and given
1358 that in C++ a reference is not rebindable, it cannot
1359 meaningfully change. So, get hold of the real value. */
1360 if (value)
0cc7d26f 1361 value = coerce_ref (value);
b26ed50d 1362
acd65feb
VP
1363 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1364 /* For unions, we need to fetch the value implicitly because
1365 of implementation of union member fetch. When gdb
1366 creates a value for a field and the value of the enclosing
1367 structure is not lazy, it immediately copies the necessary
1368 bytes from the enclosing values. If the enclosing value is
1369 lazy, the call to value_fetch_lazy on the field will read
1370 the data from memory. For unions, that means we'll read the
1371 same memory more than once, which is not desirable. So
1372 fetch now. */
1373 need_to_fetch = 1;
1374
1375 /* The new value might be lazy. If the type is changeable,
1376 that is we'll be comparing values of this type, fetch the
1377 value now. Otherwise, on the next update the old value
1378 will be lazy, which means we've lost that old value. */
1379 if (need_to_fetch && value && value_lazy (value))
1380 {
25d5ea92
VP
1381 struct varobj *parent = var->parent;
1382 int frozen = var->frozen;
a109c7c1 1383
25d5ea92
VP
1384 for (; !frozen && parent; parent = parent->parent)
1385 frozen |= parent->frozen;
1386
1387 if (frozen && initial)
1388 {
1389 /* For variables that are frozen, or are children of frozen
1390 variables, we don't do fetch on initial assignment.
1391 For non-initial assignemnt we do the fetch, since it means we're
1392 explicitly asked to compare the new value with the old one. */
1393 intentionally_not_fetched = 1;
1394 }
8e7b59a5 1395 else
acd65feb 1396 {
8e7b59a5
KS
1397 volatile struct gdb_exception except;
1398
1399 TRY_CATCH (except, RETURN_MASK_ERROR)
1400 {
1401 value_fetch_lazy (value);
1402 }
1403
1404 if (except.reason < 0)
1405 {
1406 /* Set the value to NULL, so that for the next -var-update,
1407 we don't try to compare the new value with this value,
1408 that we couldn't even read. */
1409 value = NULL;
1410 }
acd65feb 1411 }
acd65feb
VP
1412 }
1413
e848a8a5
TT
1414 /* Get a reference now, before possibly passing it to any Python
1415 code that might release it. */
1416 if (value != NULL)
1417 value_incref (value);
b6313243 1418
7a4d50bf
VP
1419 /* Below, we'll be comparing string rendering of old and new
1420 values. Don't get string rendering if the value is
1421 lazy -- if it is, the code above has decided that the value
1422 should not be fetched. */
bb5ce47a
YQ
1423 if (value != NULL && !value_lazy (value)
1424 && var->dynamic->pretty_printer == NULL)
99ad9427 1425 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1426
acd65feb
VP
1427 /* If the type is changeable, compare the old and the new values.
1428 If this is the initial assignment, we don't have any old value
1429 to compare with. */
7a4d50bf 1430 if (!initial && changeable)
acd65feb 1431 {
3e43a32a
MS
1432 /* If the value of the varobj was changed by -var-set-value,
1433 then the value in the varobj and in the target is the same.
1434 However, that value is different from the value that the
581e13c1 1435 varobj had after the previous -var-update. So need to the
3e43a32a 1436 varobj as changed. */
acd65feb 1437 if (var->updated)
57e66780 1438 {
57e66780
DJ
1439 changed = 1;
1440 }
bb5ce47a 1441 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1442 {
1443 /* Try to compare the values. That requires that both
1444 values are non-lazy. */
25d5ea92
VP
1445 if (var->not_fetched && value_lazy (var->value))
1446 {
1447 /* This is a frozen varobj and the value was never read.
1448 Presumably, UI shows some "never read" indicator.
1449 Now that we've fetched the real value, we need to report
1450 this varobj as changed so that UI can show the real
1451 value. */
1452 changed = 1;
1453 }
1454 else if (var->value == NULL && value == NULL)
581e13c1 1455 /* Equal. */
acd65feb
VP
1456 ;
1457 else if (var->value == NULL || value == NULL)
57e66780 1458 {
57e66780
DJ
1459 changed = 1;
1460 }
acd65feb
VP
1461 else
1462 {
1463 gdb_assert (!value_lazy (var->value));
1464 gdb_assert (!value_lazy (value));
85265413 1465
57e66780 1466 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1467 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1468 changed = 1;
acd65feb
VP
1469 }
1470 }
1471 }
85265413 1472
ee342b23
VP
1473 if (!initial && !changeable)
1474 {
1475 /* For values that are not changeable, we don't compare the values.
1476 However, we want to notice if a value was not NULL and now is NULL,
1477 or vise versa, so that we report when top-level varobjs come in scope
1478 and leave the scope. */
1479 changed = (var->value != NULL) != (value != NULL);
1480 }
1481
acd65feb 1482 /* We must always keep the new value, since children depend on it. */
25d5ea92 1483 if (var->value != NULL && var->value != value)
acd65feb
VP
1484 value_free (var->value);
1485 var->value = value;
25d5ea92
VP
1486 if (value && value_lazy (value) && intentionally_not_fetched)
1487 var->not_fetched = 1;
1488 else
1489 var->not_fetched = 0;
acd65feb 1490 var->updated = 0;
85265413 1491
0cc7d26f
TT
1492 install_new_value_visualizer (var);
1493
1494 /* If we installed a pretty-printer, re-compare the printed version
1495 to see if the variable changed. */
bb5ce47a 1496 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
1497 {
1498 xfree (print_value);
99ad9427
YQ
1499 print_value = varobj_value_get_print_value (var->value, var->format,
1500 var);
e8f781e2
TT
1501 if ((var->print_value == NULL && print_value != NULL)
1502 || (var->print_value != NULL && print_value == NULL)
1503 || (var->print_value != NULL && print_value != NULL
1504 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1505 changed = 1;
1506 }
1507 if (var->print_value)
1508 xfree (var->print_value);
1509 var->print_value = print_value;
1510
b26ed50d 1511 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1512
1513 return changed;
1514}
acd65feb 1515
0cc7d26f
TT
1516/* Return the requested range for a varobj. VAR is the varobj. FROM
1517 and TO are out parameters; *FROM and *TO will be set to the
1518 selected sub-range of VAR. If no range was selected using
1519 -var-set-update-range, then both will be -1. */
1520void
b09e2c59 1521varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1522{
0cc7d26f
TT
1523 *from = var->from;
1524 *to = var->to;
b6313243
TT
1525}
1526
0cc7d26f
TT
1527/* Set the selected sub-range of children of VAR to start at index
1528 FROM and end at index TO. If either FROM or TO is less than zero,
1529 this is interpreted as a request for all children. */
1530void
1531varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1532{
0cc7d26f
TT
1533 var->from = from;
1534 var->to = to;
b6313243
TT
1535}
1536
1537void
1538varobj_set_visualizer (struct varobj *var, const char *visualizer)
1539{
1540#if HAVE_PYTHON
34fa1d9d
MS
1541 PyObject *mainmod, *globals, *constructor;
1542 struct cleanup *back_to;
b6313243 1543
0646da15
TT
1544 if (!gdb_python_initialized)
1545 return;
1546
d452c4bc 1547 back_to = varobj_ensure_python_env (var);
b6313243
TT
1548
1549 mainmod = PyImport_AddModule ("__main__");
1550 globals = PyModule_GetDict (mainmod);
1551 Py_INCREF (globals);
1552 make_cleanup_py_decref (globals);
1553
1554 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1555
0cc7d26f 1556 if (! constructor)
b6313243
TT
1557 {
1558 gdbpy_print_stack ();
da1f2771 1559 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1560 }
1561
0cc7d26f
TT
1562 construct_visualizer (var, constructor);
1563 Py_XDECREF (constructor);
b6313243 1564
0cc7d26f
TT
1565 /* If there are any children now, wipe them. */
1566 varobj_delete (var, NULL, 1 /* children only */);
1567 var->num_children = -1;
b6313243
TT
1568
1569 do_cleanups (back_to);
1570#else
da1f2771 1571 error (_("Python support required"));
b6313243
TT
1572#endif
1573}
1574
7a290c40
JB
1575/* If NEW_VALUE is the new value of the given varobj (var), return
1576 non-zero if var has mutated. In other words, if the type of
1577 the new value is different from the type of the varobj's old
1578 value.
1579
1580 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1581
1582static int
b09e2c59 1583varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1584 struct type *new_type)
1585{
1586 /* If we haven't previously computed the number of children in var,
1587 it does not matter from the front-end's perspective whether
1588 the type has mutated or not. For all intents and purposes,
1589 it has not mutated. */
1590 if (var->num_children < 0)
1591 return 0;
1592
ca20d462 1593 if (var->root->lang_ops->value_has_mutated)
8776cfe9
JB
1594 {
1595 /* The varobj module, when installing new values, explicitly strips
1596 references, saying that we're not interested in those addresses.
1597 But detection of mutation happens before installing the new
1598 value, so our value may be a reference that we need to strip
1599 in order to remain consistent. */
1600 if (new_value != NULL)
1601 new_value = coerce_ref (new_value);
1602 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1603 }
7a290c40
JB
1604 else
1605 return 0;
1606}
1607
8b93c638
JM
1608/* Update the values for a variable and its children. This is a
1609 two-pronged attack. First, re-parse the value for the root's
1610 expression to see if it's changed. Then go all the way
1611 through its children, reconstructing them and noting if they've
1612 changed.
1613
25d5ea92
VP
1614 The EXPLICIT parameter specifies if this call is result
1615 of MI request to update this specific variable, or
581e13c1 1616 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1617 update frozen variables.
705da579 1618
581e13c1 1619 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1620 returns TYPE_CHANGED, then it has done this and VARP will be modified
1621 to point to the new varobj. */
8b93c638 1622
1417b39d
JB
1623VEC(varobj_update_result) *
1624varobj_update (struct varobj **varp, int explicit)
8b93c638 1625{
25d5ea92 1626 int type_changed = 0;
8b93c638 1627 int i;
30b28db1 1628 struct value *new;
b6313243 1629 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1630 VEC (varobj_update_result) *result = NULL;
8b93c638 1631
25d5ea92
VP
1632 /* Frozen means frozen -- we don't check for any change in
1633 this varobj, including its going out of scope, or
1634 changing type. One use case for frozen varobjs is
1635 retaining previously evaluated expressions, and we don't
1636 want them to be reevaluated at all. */
1637 if (!explicit && (*varp)->frozen)
f7f9ae2c 1638 return result;
8756216b
DP
1639
1640 if (!(*varp)->root->is_valid)
f7f9ae2c 1641 {
cfce2ea2 1642 varobj_update_result r = {0};
a109c7c1 1643
cfce2ea2 1644 r.varobj = *varp;
f7f9ae2c
VP
1645 r.status = VAROBJ_INVALID;
1646 VEC_safe_push (varobj_update_result, result, &r);
1647 return result;
1648 }
8b93c638 1649
25d5ea92 1650 if ((*varp)->root->rootvar == *varp)
ae093f96 1651 {
cfce2ea2 1652 varobj_update_result r = {0};
a109c7c1 1653
cfce2ea2 1654 r.varobj = *varp;
f7f9ae2c
VP
1655 r.status = VAROBJ_IN_SCOPE;
1656
581e13c1 1657 /* Update the root variable. value_of_root can return NULL
25d5ea92 1658 if the variable is no longer around, i.e. we stepped out of
581e13c1 1659 the frame in which a local existed. We are letting the
25d5ea92
VP
1660 value_of_root variable dispose of the varobj if the type
1661 has changed. */
25d5ea92 1662 new = value_of_root (varp, &type_changed);
8264ba82
AG
1663 if (update_type_if_necessary(*varp, new))
1664 type_changed = 1;
f7f9ae2c 1665 r.varobj = *varp;
f7f9ae2c 1666 r.type_changed = type_changed;
ea56f9c2 1667 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1668 r.changed = 1;
ea56f9c2 1669
25d5ea92 1670 if (new == NULL)
f7f9ae2c 1671 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1672 r.value_installed = 1;
f7f9ae2c
VP
1673
1674 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1675 {
0b4bc29a
JK
1676 if (r.type_changed || r.changed)
1677 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1678 return result;
1679 }
1680
1681 VEC_safe_push (varobj_update_result, stack, &r);
1682 }
1683 else
1684 {
cfce2ea2 1685 varobj_update_result r = {0};
a109c7c1 1686
cfce2ea2 1687 r.varobj = *varp;
b6313243 1688 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1689 }
8b93c638 1690
8756216b 1691 /* Walk through the children, reconstructing them all. */
b6313243 1692 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1693 {
b6313243
TT
1694 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1695 struct varobj *v = r.varobj;
1696
1697 VEC_pop (varobj_update_result, stack);
1698
1699 /* Update this variable, unless it's a root, which is already
1700 updated. */
1701 if (!r.value_installed)
7a290c40
JB
1702 {
1703 struct type *new_type;
1704
b6313243 1705 new = value_of_child (v->parent, v->index);
8264ba82
AG
1706 if (update_type_if_necessary(v, new))
1707 r.type_changed = 1;
7a290c40
JB
1708 if (new)
1709 new_type = value_type (new);
1710 else
ca20d462 1711 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40
JB
1712
1713 if (varobj_value_has_mutated (v, new, new_type))
1714 {
1715 /* The children are no longer valid; delete them now.
1716 Report the fact that its type changed as well. */
1717 varobj_delete (v, NULL, 1 /* only_children */);
1718 v->num_children = -1;
1719 v->to = -1;
1720 v->from = -1;
1721 v->type = new_type;
1722 r.type_changed = 1;
1723 }
1724
1725 if (install_new_value (v, new, r.type_changed))
b6313243
TT
1726 {
1727 r.changed = 1;
1728 v->updated = 0;
1729 }
1730 }
1731
31f628ae
YQ
1732 /* We probably should not get children of a dynamic varobj, but
1733 for which -var-list-children was never invoked. */
1734 if (varobj_is_dynamic_p (v))
b6313243 1735 {
8264ba82
AG
1736 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1737 VEC (varobj_p) *new = 0;
26f9bcee 1738 int i, children_changed = 0;
b6313243
TT
1739
1740 if (v->frozen)
1741 continue;
1742
bb5ce47a 1743 if (!v->dynamic->children_requested)
0cc7d26f
TT
1744 {
1745 int dummy;
1746
1747 /* If we initially did not have potential children, but
1748 now we do, consider the varobj as changed.
1749 Otherwise, if children were never requested, consider
1750 it as unchanged -- presumably, such varobj is not yet
1751 expanded in the UI, so we need not bother getting
1752 it. */
1753 if (!varobj_has_more (v, 0))
1754 {
8264ba82 1755 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
1756 &dummy, 0, 0, 0);
1757 if (varobj_has_more (v, 0))
1758 r.changed = 1;
1759 }
1760
1761 if (r.changed)
1762 VEC_safe_push (varobj_update_result, result, &r);
1763
1764 continue;
1765 }
1766
b6313243
TT
1767 /* If update_dynamic_varobj_children returns 0, then we have
1768 a non-conforming pretty-printer, so we skip it. */
8264ba82
AG
1769 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1770 &unchanged, &children_changed, 1,
0cc7d26f 1771 v->from, v->to))
b6313243 1772 {
0cc7d26f 1773 if (children_changed || new)
b6313243 1774 {
0cc7d26f
TT
1775 r.children_changed = 1;
1776 r.new = new;
b6313243 1777 }
0cc7d26f
TT
1778 /* Push in reverse order so that the first child is
1779 popped from the work stack first, and so will be
1780 added to result first. This does not affect
1781 correctness, just "nicer". */
8264ba82
AG
1782 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1783 {
1784 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1785 varobj_update_result r = {0};
1786
1787 /* Type may change only if value was changed. */
1788 r.varobj = tmp;
1789 r.changed = 1;
1790 r.type_changed = 1;
1791 r.value_installed = 1;
1792 VEC_safe_push (varobj_update_result, stack, &r);
1793 }
0cc7d26f 1794 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1795 {
0cc7d26f 1796 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1797 varobj_update_result r = {0};
a109c7c1 1798
cfce2ea2 1799 r.varobj = tmp;
0cc7d26f 1800 r.changed = 1;
b6313243
TT
1801 r.value_installed = 1;
1802 VEC_safe_push (varobj_update_result, stack, &r);
1803 }
0cc7d26f
TT
1804 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1805 {
1806 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1807
0cc7d26f
TT
1808 if (!tmp->frozen)
1809 {
cfce2ea2 1810 varobj_update_result r = {0};
a109c7c1 1811
cfce2ea2 1812 r.varobj = tmp;
0cc7d26f
TT
1813 r.value_installed = 1;
1814 VEC_safe_push (varobj_update_result, stack, &r);
1815 }
1816 }
b6313243
TT
1817 if (r.changed || r.children_changed)
1818 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 1819
8264ba82
AG
1820 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1821 because NEW has been put into the result vector. */
0cc7d26f 1822 VEC_free (varobj_p, changed);
8264ba82 1823 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
1824 VEC_free (varobj_p, unchanged);
1825
b6313243
TT
1826 continue;
1827 }
1828 }
28335dcc
VP
1829
1830 /* Push any children. Use reverse order so that the first
1831 child is popped from the work stack first, and so
1832 will be added to result first. This does not
1833 affect correctness, just "nicer". */
1834 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1835 {
28335dcc 1836 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1837
28335dcc 1838 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1839 if (c != NULL && !c->frozen)
28335dcc 1840 {
cfce2ea2 1841 varobj_update_result r = {0};
a109c7c1 1842
cfce2ea2 1843 r.varobj = c;
b6313243 1844 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1845 }
8b93c638 1846 }
b6313243
TT
1847
1848 if (r.changed || r.type_changed)
1849 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1850 }
1851
b6313243
TT
1852 VEC_free (varobj_update_result, stack);
1853
f7f9ae2c 1854 return result;
8b93c638
JM
1855}
1856\f
1857
1858/* Helper functions */
1859
1860/*
1861 * Variable object construction/destruction
1862 */
1863
1864static int
fba45db2
KB
1865delete_variable (struct cpstack **resultp, struct varobj *var,
1866 int only_children_p)
8b93c638
JM
1867{
1868 int delcount = 0;
1869
1870 delete_variable_1 (resultp, &delcount, var,
1871 only_children_p, 1 /* remove_from_parent_p */ );
1872
1873 return delcount;
1874}
1875
581e13c1 1876/* Delete the variable object VAR and its children. */
8b93c638
JM
1877/* IMPORTANT NOTE: If we delete a variable which is a child
1878 and the parent is not removed we dump core. It must be always
581e13c1 1879 initially called with remove_from_parent_p set. */
8b93c638 1880static void
72330bd6
AC
1881delete_variable_1 (struct cpstack **resultp, int *delcountp,
1882 struct varobj *var, int only_children_p,
1883 int remove_from_parent_p)
8b93c638 1884{
28335dcc 1885 int i;
8b93c638 1886
581e13c1 1887 /* Delete any children of this variable, too. */
28335dcc
VP
1888 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1889 {
1890 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1891
214270ab
VP
1892 if (!child)
1893 continue;
8b93c638 1894 if (!remove_from_parent_p)
28335dcc
VP
1895 child->parent = NULL;
1896 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1897 }
28335dcc 1898 VEC_free (varobj_p, var->children);
8b93c638 1899
581e13c1 1900 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1901 if (only_children_p)
1902 return;
1903
581e13c1 1904 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 1905 /* If the name is null, this is a temporary variable, that has not
581e13c1 1906 yet been installed, don't report it, it belongs to the caller... */
73a93a32 1907 if (var->obj_name != NULL)
8b93c638 1908 {
5b616ba1 1909 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1910 *delcountp = *delcountp + 1;
1911 }
1912
581e13c1 1913 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1914 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1915 (as indicated by remove_from_parent_p) we don't bother doing an
1916 expensive list search to find the element to remove when we are
581e13c1 1917 discarding the list afterwards. */
72330bd6 1918 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1919 {
28335dcc 1920 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1921 }
72330bd6 1922
73a93a32
JI
1923 if (var->obj_name != NULL)
1924 uninstall_variable (var);
8b93c638 1925
581e13c1 1926 /* Free memory associated with this variable. */
8b93c638
JM
1927 free_variable (var);
1928}
1929
581e13c1 1930/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1931static int
fba45db2 1932install_variable (struct varobj *var)
8b93c638
JM
1933{
1934 struct vlist *cv;
1935 struct vlist *newvl;
1936 const char *chp;
1937 unsigned int index = 0;
1938 unsigned int i = 1;
1939
1940 for (chp = var->obj_name; *chp; chp++)
1941 {
1942 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1943 }
1944
1945 cv = *(varobj_table + index);
1946 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1947 cv = cv->next;
1948
1949 if (cv != NULL)
8a3fe4f8 1950 error (_("Duplicate variable object name"));
8b93c638 1951
581e13c1 1952 /* Add varobj to hash table. */
8b93c638
JM
1953 newvl = xmalloc (sizeof (struct vlist));
1954 newvl->next = *(varobj_table + index);
1955 newvl->var = var;
1956 *(varobj_table + index) = newvl;
1957
581e13c1 1958 /* If root, add varobj to root list. */
b2c2bd75 1959 if (is_root_p (var))
8b93c638 1960 {
581e13c1 1961 /* Add to list of root variables. */
8b93c638
JM
1962 if (rootlist == NULL)
1963 var->root->next = NULL;
1964 else
1965 var->root->next = rootlist;
1966 rootlist = var->root;
8b93c638
JM
1967 }
1968
1969 return 1; /* OK */
1970}
1971
581e13c1 1972/* Unistall the object VAR. */
8b93c638 1973static void
fba45db2 1974uninstall_variable (struct varobj *var)
8b93c638
JM
1975{
1976 struct vlist *cv;
1977 struct vlist *prev;
1978 struct varobj_root *cr;
1979 struct varobj_root *prer;
1980 const char *chp;
1981 unsigned int index = 0;
1982 unsigned int i = 1;
1983
581e13c1 1984 /* Remove varobj from hash table. */
8b93c638
JM
1985 for (chp = var->obj_name; *chp; chp++)
1986 {
1987 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1988 }
1989
1990 cv = *(varobj_table + index);
1991 prev = NULL;
1992 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1993 {
1994 prev = cv;
1995 cv = cv->next;
1996 }
1997
1998 if (varobjdebug)
1999 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2000
2001 if (cv == NULL)
2002 {
72330bd6
AC
2003 warning
2004 ("Assertion failed: Could not find variable object \"%s\" to delete",
2005 var->obj_name);
8b93c638
JM
2006 return;
2007 }
2008
2009 if (prev == NULL)
2010 *(varobj_table + index) = cv->next;
2011 else
2012 prev->next = cv->next;
2013
b8c9b27d 2014 xfree (cv);
8b93c638 2015
581e13c1 2016 /* If root, remove varobj from root list. */
b2c2bd75 2017 if (is_root_p (var))
8b93c638 2018 {
581e13c1 2019 /* Remove from list of root variables. */
8b93c638
JM
2020 if (rootlist == var->root)
2021 rootlist = var->root->next;
2022 else
2023 {
2024 prer = NULL;
2025 cr = rootlist;
2026 while ((cr != NULL) && (cr->rootvar != var))
2027 {
2028 prer = cr;
2029 cr = cr->next;
2030 }
2031 if (cr == NULL)
2032 {
8f7e195f
JB
2033 warning (_("Assertion failed: Could not find "
2034 "varobj \"%s\" in root list"),
3e43a32a 2035 var->obj_name);
8b93c638
JM
2036 return;
2037 }
2038 if (prer == NULL)
2039 rootlist = NULL;
2040 else
2041 prer->next = cr->next;
2042 }
8b93c638
JM
2043 }
2044
2045}
2046
837ce252
SM
2047/* Create and install a child of the parent of the given name.
2048
2049 The created VAROBJ takes ownership of the allocated NAME. */
2050
8b93c638 2051static struct varobj *
fba45db2 2052create_child (struct varobj *parent, int index, char *name)
b6313243 2053{
5a2e0d6e
YQ
2054 struct varobj_item item;
2055
2056 item.name = name;
2057 item.value = value_of_child (parent, index);
2058
2059 return create_child_with_value (parent, index, &item);
b6313243
TT
2060}
2061
2062static struct varobj *
5a2e0d6e
YQ
2063create_child_with_value (struct varobj *parent, int index,
2064 struct varobj_item *item)
8b93c638
JM
2065{
2066 struct varobj *child;
2067 char *childs_name;
2068
2069 child = new_variable ();
2070
5e5ac9a5 2071 /* NAME is allocated by caller. */
5a2e0d6e 2072 child->name = item->name;
8b93c638 2073 child->index = index;
8b93c638
JM
2074 child->parent = parent;
2075 child->root = parent->root;
85254831 2076
99ad9427 2077 if (varobj_is_anonymous_child (child))
85254831
KS
2078 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2079 else
5a2e0d6e 2080 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
8b93c638 2081 child->obj_name = childs_name;
85254831 2082
8b93c638
JM
2083 install_variable (child);
2084
acd65feb
VP
2085 /* Compute the type of the child. Must do this before
2086 calling install_new_value. */
5a2e0d6e 2087 if (item->value != NULL)
acd65feb 2088 /* If the child had no evaluation errors, var->value
581e13c1 2089 will be non-NULL and contain a valid type. */
5a2e0d6e 2090 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 2091 else
581e13c1 2092 /* Otherwise, we must compute the type. */
ca20d462
YQ
2093 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2094 child->index);
5a2e0d6e 2095 install_new_value (child, item->value, 1);
acd65feb 2096
8b93c638
JM
2097 return child;
2098}
8b93c638
JM
2099\f
2100
2101/*
2102 * Miscellaneous utility functions.
2103 */
2104
581e13c1 2105/* Allocate memory and initialize a new variable. */
8b93c638
JM
2106static struct varobj *
2107new_variable (void)
2108{
2109 struct varobj *var;
2110
2111 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2112 var->name = NULL;
02142340 2113 var->path_expr = NULL;
8b93c638
JM
2114 var->obj_name = NULL;
2115 var->index = -1;
2116 var->type = NULL;
2117 var->value = NULL;
8b93c638
JM
2118 var->num_children = -1;
2119 var->parent = NULL;
2120 var->children = NULL;
2121 var->format = 0;
2122 var->root = NULL;
fb9b6b35 2123 var->updated = 0;
85265413 2124 var->print_value = NULL;
25d5ea92
VP
2125 var->frozen = 0;
2126 var->not_fetched = 0;
bb5ce47a
YQ
2127 var->dynamic
2128 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2129 var->dynamic->children_requested = 0;
0cc7d26f
TT
2130 var->from = -1;
2131 var->to = -1;
bb5ce47a
YQ
2132 var->dynamic->constructor = 0;
2133 var->dynamic->pretty_printer = 0;
2134 var->dynamic->child_iter = 0;
2135 var->dynamic->saved_item = 0;
8b93c638
JM
2136
2137 return var;
2138}
2139
581e13c1 2140/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2141static struct varobj *
2142new_root_variable (void)
2143{
2144 struct varobj *var = new_variable ();
a109c7c1 2145
3e43a32a 2146 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
ca20d462 2147 var->root->lang_ops = NULL;
8b93c638
JM
2148 var->root->exp = NULL;
2149 var->root->valid_block = NULL;
7a424e99 2150 var->root->frame = null_frame_id;
a5defcdc 2151 var->root->floating = 0;
8b93c638 2152 var->root->rootvar = NULL;
8756216b 2153 var->root->is_valid = 1;
8b93c638
JM
2154
2155 return var;
2156}
2157
581e13c1 2158/* Free any allocated memory associated with VAR. */
8b93c638 2159static void
fba45db2 2160free_variable (struct varobj *var)
8b93c638 2161{
d452c4bc 2162#if HAVE_PYTHON
bb5ce47a 2163 if (var->dynamic->pretty_printer != NULL)
d452c4bc
UW
2164 {
2165 struct cleanup *cleanup = varobj_ensure_python_env (var);
bb5ce47a
YQ
2166
2167 Py_XDECREF (var->dynamic->constructor);
2168 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
2169 do_cleanups (cleanup);
2170 }
2171#endif
2172
827f100c
YQ
2173 varobj_iter_delete (var->dynamic->child_iter);
2174 varobj_clear_saved_item (var->dynamic);
36746093
JK
2175 value_free (var->value);
2176
581e13c1 2177 /* Free the expression if this is a root variable. */
b2c2bd75 2178 if (is_root_p (var))
8b93c638 2179 {
3038237c 2180 xfree (var->root->exp);
8038e1e2 2181 xfree (var->root);
8b93c638
JM
2182 }
2183
8038e1e2
AC
2184 xfree (var->name);
2185 xfree (var->obj_name);
85265413 2186 xfree (var->print_value);
02142340 2187 xfree (var->path_expr);
bb5ce47a 2188 xfree (var->dynamic);
8038e1e2 2189 xfree (var);
8b93c638
JM
2190}
2191
74b7792f
AC
2192static void
2193do_free_variable_cleanup (void *var)
2194{
2195 free_variable (var);
2196}
2197
2198static struct cleanup *
2199make_cleanup_free_variable (struct varobj *var)
2200{
2201 return make_cleanup (do_free_variable_cleanup, var);
2202}
2203
6e2a9270
VP
2204/* Return the type of the value that's stored in VAR,
2205 or that would have being stored there if the
581e13c1 2206 value were accessible.
6e2a9270
VP
2207
2208 This differs from VAR->type in that VAR->type is always
2209 the true type of the expession in the source language.
2210 The return value of this function is the type we're
2211 actually storing in varobj, and using for displaying
2212 the values and for comparing previous and new values.
2213
2214 For example, top-level references are always stripped. */
99ad9427 2215struct type *
b09e2c59 2216varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2217{
2218 struct type *type;
2219
2220 if (var->value)
2221 type = value_type (var->value);
2222 else
2223 type = var->type;
2224
2225 type = check_typedef (type);
2226
2227 if (TYPE_CODE (type) == TYPE_CODE_REF)
2228 type = get_target_type (type);
2229
2230 type = check_typedef (type);
2231
2232 return type;
2233}
2234
8b93c638 2235/* What is the default display for this variable? We assume that
581e13c1 2236 everything is "natural". Any exceptions? */
8b93c638 2237static enum varobj_display_formats
fba45db2 2238variable_default_display (struct varobj *var)
8b93c638
JM
2239{
2240 return FORMAT_NATURAL;
2241}
2242
581e13c1 2243/* FIXME: The following should be generic for any pointer. */
8b93c638 2244static void
fba45db2 2245cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2246{
2247 struct cpstack *s;
2248
2249 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2250 s->name = name;
2251 s->next = *pstack;
2252 *pstack = s;
2253}
2254
581e13c1 2255/* FIXME: The following should be generic for any pointer. */
8b93c638 2256static char *
fba45db2 2257cppop (struct cpstack **pstack)
8b93c638
JM
2258{
2259 struct cpstack *s;
2260 char *v;
2261
2262 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2263 return NULL;
2264
2265 s = *pstack;
2266 v = s->name;
2267 *pstack = (*pstack)->next;
b8c9b27d 2268 xfree (s);
8b93c638
JM
2269
2270 return v;
2271}
2272\f
2273/*
2274 * Language-dependencies
2275 */
2276
2277/* Common entry points */
2278
8b93c638
JM
2279/* Return the number of children for a given variable.
2280 The result of this function is defined by the language
581e13c1 2281 implementation. The number of children returned by this function
8b93c638 2282 is the number of children that the user will see in the variable
581e13c1 2283 display. */
8b93c638 2284static int
b09e2c59 2285number_of_children (const struct varobj *var)
8b93c638 2286{
ca20d462 2287 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2288}
2289
3e43a32a 2290/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2291 string. */
8b93c638 2292static char *
b09e2c59 2293name_of_variable (const struct varobj *var)
8b93c638 2294{
ca20d462 2295 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2296}
2297
3e43a32a 2298/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2299 string. */
8b93c638 2300static char *
fba45db2 2301name_of_child (struct varobj *var, int index)
8b93c638 2302{
ca20d462 2303 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2304}
2305
2213e2be
YQ
2306/* If frame associated with VAR can be found, switch
2307 to it and return 1. Otherwise, return 0. */
2308
2309static int
b09e2c59 2310check_scope (const struct varobj *var)
2213e2be
YQ
2311{
2312 struct frame_info *fi;
2313 int scope;
2314
2315 fi = frame_find_by_id (var->root->frame);
2316 scope = fi != NULL;
2317
2318 if (fi)
2319 {
2320 CORE_ADDR pc = get_frame_pc (fi);
2321
2322 if (pc < BLOCK_START (var->root->valid_block) ||
2323 pc >= BLOCK_END (var->root->valid_block))
2324 scope = 0;
2325 else
2326 select_frame (fi);
2327 }
2328 return scope;
2329}
2330
2331/* Helper function to value_of_root. */
2332
2333static struct value *
2334value_of_root_1 (struct varobj **var_handle)
2335{
2336 struct value *new_val = NULL;
2337 struct varobj *var = *var_handle;
2338 int within_scope = 0;
2339 struct cleanup *back_to;
2340
2341 /* Only root variables can be updated... */
2342 if (!is_root_p (var))
2343 /* Not a root var. */
2344 return NULL;
2345
2346 back_to = make_cleanup_restore_current_thread ();
2347
2348 /* Determine whether the variable is still around. */
2349 if (var->root->valid_block == NULL || var->root->floating)
2350 within_scope = 1;
2351 else if (var->root->thread_id == 0)
2352 {
2353 /* The program was single-threaded when the variable object was
2354 created. Technically, it's possible that the program became
2355 multi-threaded since then, but we don't support such
2356 scenario yet. */
2357 within_scope = check_scope (var);
2358 }
2359 else
2360 {
2361 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2362 if (in_thread_list (ptid))
2363 {
2364 switch_to_thread (ptid);
2365 within_scope = check_scope (var);
2366 }
2367 }
2368
2369 if (within_scope)
2370 {
2371 volatile struct gdb_exception except;
2372
2373 /* We need to catch errors here, because if evaluate
2374 expression fails we want to just return NULL. */
2375 TRY_CATCH (except, RETURN_MASK_ERROR)
2376 {
2377 new_val = evaluate_expression (var->root->exp);
2378 }
2379 }
2380
2381 do_cleanups (back_to);
2382
2383 return new_val;
2384}
2385
a5defcdc
VP
2386/* What is the ``struct value *'' of the root variable VAR?
2387 For floating variable object, evaluation can get us a value
2388 of different type from what is stored in varobj already. In
2389 that case:
2390 - *type_changed will be set to 1
2391 - old varobj will be freed, and new one will be
2392 created, with the same name.
2393 - *var_handle will be set to the new varobj
2394 Otherwise, *type_changed will be set to 0. */
30b28db1 2395static struct value *
fba45db2 2396value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2397{
73a93a32
JI
2398 struct varobj *var;
2399
2400 if (var_handle == NULL)
2401 return NULL;
2402
2403 var = *var_handle;
2404
2405 /* This should really be an exception, since this should
581e13c1 2406 only get called with a root variable. */
73a93a32 2407
b2c2bd75 2408 if (!is_root_p (var))
73a93a32
JI
2409 return NULL;
2410
a5defcdc 2411 if (var->root->floating)
73a93a32
JI
2412 {
2413 struct varobj *tmp_var;
2414 char *old_type, *new_type;
6225abfa 2415
73a93a32
JI
2416 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2417 USE_SELECTED_FRAME);
2418 if (tmp_var == NULL)
2419 {
2420 return NULL;
2421 }
6225abfa 2422 old_type = varobj_get_type (var);
73a93a32 2423 new_type = varobj_get_type (tmp_var);
72330bd6 2424 if (strcmp (old_type, new_type) == 0)
73a93a32 2425 {
fcacd99f
VP
2426 /* The expression presently stored inside var->root->exp
2427 remembers the locations of local variables relatively to
2428 the frame where the expression was created (in DWARF location
2429 button, for example). Naturally, those locations are not
2430 correct in other frames, so update the expression. */
2431
2432 struct expression *tmp_exp = var->root->exp;
a109c7c1 2433
fcacd99f
VP
2434 var->root->exp = tmp_var->root->exp;
2435 tmp_var->root->exp = tmp_exp;
2436
73a93a32
JI
2437 varobj_delete (tmp_var, NULL, 0);
2438 *type_changed = 0;
2439 }
2440 else
2441 {
1b36a34b 2442 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2443 tmp_var->from = var->from;
2444 tmp_var->to = var->to;
a5defcdc
VP
2445 varobj_delete (var, NULL, 0);
2446
73a93a32
JI
2447 install_variable (tmp_var);
2448 *var_handle = tmp_var;
705da579 2449 var = *var_handle;
73a93a32
JI
2450 *type_changed = 1;
2451 }
74dddad3
MS
2452 xfree (old_type);
2453 xfree (new_type);
73a93a32
JI
2454 }
2455 else
2456 {
2457 *type_changed = 0;
2458 }
2459
7a290c40
JB
2460 {
2461 struct value *value;
2462
2213e2be 2463 value = value_of_root_1 (var_handle);
7a290c40
JB
2464 if (var->value == NULL || value == NULL)
2465 {
2466 /* For root varobj-s, a NULL value indicates a scoping issue.
2467 So, nothing to do in terms of checking for mutations. */
2468 }
2469 else if (varobj_value_has_mutated (var, value, value_type (value)))
2470 {
2471 /* The type has mutated, so the children are no longer valid.
2472 Just delete them, and tell our caller that the type has
2473 changed. */
2474 varobj_delete (var, NULL, 1 /* only_children */);
2475 var->num_children = -1;
2476 var->to = -1;
2477 var->from = -1;
2478 *type_changed = 1;
2479 }
2480 return value;
2481 }
8b93c638
JM
2482}
2483
581e13c1 2484/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2485static struct value *
fba45db2 2486value_of_child (struct varobj *parent, int index)
8b93c638 2487{
30b28db1 2488 struct value *value;
8b93c638 2489
ca20d462 2490 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2491
8b93c638
JM
2492 return value;
2493}
2494
581e13c1 2495/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2496static char *
de051565 2497my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2498{
8756216b 2499 if (var->root->is_valid)
0cc7d26f 2500 {
bb5ce47a 2501 if (var->dynamic->pretty_printer != NULL)
99ad9427 2502 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2503 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2504 }
8756216b
DP
2505 else
2506 return NULL;
8b93c638
JM
2507}
2508
99ad9427
YQ
2509void
2510varobj_formatted_print_options (struct value_print_options *opts,
2511 enum varobj_display_formats format)
2512{
2513 get_formatted_print_options (opts, format_code[(int) format]);
2514 opts->deref_ref = 0;
2515 opts->raw = 1;
2516}
2517
2518char *
2519varobj_value_get_print_value (struct value *value,
2520 enum varobj_display_formats format,
b09e2c59 2521 const struct varobj *var)
85265413 2522{
57e66780 2523 struct ui_file *stb;
621c8364 2524 struct cleanup *old_chain;
ac91cd70 2525 char *thevalue = NULL;
79a45b7d 2526 struct value_print_options opts;
be759fcf
PM
2527 struct type *type = NULL;
2528 long len = 0;
2529 char *encoding = NULL;
2530 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2531 /* Initialize it just to avoid a GCC false warning. */
2532 CORE_ADDR str_addr = 0;
09ca9e2e 2533 int string_print = 0;
57e66780
DJ
2534
2535 if (value == NULL)
2536 return NULL;
2537
621c8364
TT
2538 stb = mem_fileopen ();
2539 old_chain = make_cleanup_ui_file_delete (stb);
2540
be759fcf 2541 gdbarch = get_type_arch (value_type (value));
b6313243 2542#if HAVE_PYTHON
0646da15
TT
2543 if (gdb_python_initialized)
2544 {
bb5ce47a 2545 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2546
0646da15 2547 varobj_ensure_python_env (var);
09ca9e2e 2548
0646da15
TT
2549 if (value_formatter)
2550 {
2551 /* First check to see if we have any children at all. If so,
2552 we simply return {...}. */
2553 if (dynamic_varobj_has_child_method (var))
2554 {
2555 do_cleanups (old_chain);
2556 return xstrdup ("{...}");
2557 }
b6313243 2558
0646da15
TT
2559 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2560 {
2561 struct value *replacement;
2562 PyObject *output = NULL;
2563
2564 output = apply_varobj_pretty_printer (value_formatter,
2565 &replacement,
2566 stb);
2567
2568 /* If we have string like output ... */
2569 if (output)
2570 {
2571 make_cleanup_py_decref (output);
2572
2573 /* If this is a lazy string, extract it. For lazy
2574 strings we always print as a string, so set
2575 string_print. */
2576 if (gdbpy_is_lazy_string (output))
2577 {
2578 gdbpy_extract_lazy_string (output, &str_addr, &type,
2579 &len, &encoding);
2580 make_cleanup (free_current_contents, &encoding);
2581 string_print = 1;
2582 }
2583 else
2584 {
2585 /* If it is a regular (non-lazy) string, extract
2586 it and copy the contents into THEVALUE. If the
2587 hint says to print it as a string, set
2588 string_print. Otherwise just return the extracted
2589 string as a value. */
2590
2591 char *s = python_string_to_target_string (output);
2592
2593 if (s)
2594 {
2595 char *hint;
2596
2597 hint = gdbpy_get_display_hint (value_formatter);
2598 if (hint)
2599 {
2600 if (!strcmp (hint, "string"))
2601 string_print = 1;
2602 xfree (hint);
2603 }
2604
2605 len = strlen (s);
2606 thevalue = xmemdup (s, len + 1, len + 1);
2607 type = builtin_type (gdbarch)->builtin_char;
2608 xfree (s);
2609
2610 if (!string_print)
2611 {
2612 do_cleanups (old_chain);
2613 return thevalue;
2614 }
2615
2616 make_cleanup (xfree, thevalue);
2617 }
2618 else
2619 gdbpy_print_stack ();
2620 }
2621 }
2622 /* If the printer returned a replacement value, set VALUE
2623 to REPLACEMENT. If there is not a replacement value,
2624 just use the value passed to this function. */
2625 if (replacement)
2626 value = replacement;
2627 }
2628 }
2629 }
b6313243
TT
2630#endif
2631
99ad9427 2632 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2633
2634 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2635 if (thevalue)
ac91cd70 2636 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
09ca9e2e 2637 else if (string_print)
00bd41d6
PM
2638 /* Otherwise, if string_print is set, and it is not a regular
2639 string, it is a lazy string. */
09ca9e2e 2640 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2641 else
00bd41d6 2642 /* All other cases. */
b6313243 2643 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2644
759ef836 2645 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2646
85265413
NR
2647 do_cleanups (old_chain);
2648 return thevalue;
2649}
2650
340a7723 2651int
b09e2c59 2652varobj_editable_p (const struct varobj *var)
340a7723
NR
2653{
2654 struct type *type;
340a7723
NR
2655
2656 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2657 return 0;
2658
99ad9427 2659 type = varobj_get_value_type (var);
340a7723
NR
2660
2661 switch (TYPE_CODE (type))
2662 {
2663 case TYPE_CODE_STRUCT:
2664 case TYPE_CODE_UNION:
2665 case TYPE_CODE_ARRAY:
2666 case TYPE_CODE_FUNC:
2667 case TYPE_CODE_METHOD:
2668 return 0;
2669 break;
2670
2671 default:
2672 return 1;
2673 break;
2674 }
2675}
2676
d32cafc7 2677/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2678
99ad9427 2679int
b09e2c59 2680varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2681{
ca20d462 2682 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2683}
2684
5a413362
VP
2685/* Return 1 if that varobj is floating, that is is always evaluated in the
2686 selected frame, and not bound to thread/frame. Such variable objects
2687 are created using '@' as frame specifier to -var-create. */
2688int
b09e2c59 2689varobj_floating_p (const struct varobj *var)
5a413362
VP
2690{
2691 return var->root->floating;
2692}
2693
d32cafc7
JB
2694/* Implement the "value_is_changeable_p" varobj callback for most
2695 languages. */
2696
99ad9427 2697int
b09e2c59 2698varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7
JB
2699{
2700 int r;
2701 struct type *type;
2702
2703 if (CPLUS_FAKE_CHILD (var))
2704 return 0;
2705
99ad9427 2706 type = varobj_get_value_type (var);
d32cafc7
JB
2707
2708 switch (TYPE_CODE (type))
2709 {
2710 case TYPE_CODE_STRUCT:
2711 case TYPE_CODE_UNION:
2712 case TYPE_CODE_ARRAY:
2713 r = 0;
2714 break;
2715
2716 default:
2717 r = 1;
2718 }
2719
2720 return r;
2721}
2722
54333c3b
JK
2723/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2724 with an arbitrary caller supplied DATA pointer. */
2725
2726void
2727all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2728{
2729 struct varobj_root *var_root, *var_root_next;
2730
2731 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2732
2733 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2734 {
2735 var_root_next = var_root->next;
2736
2737 (*func) (var_root->rootvar, data);
2738 }
2739}
8756216b 2740
54333c3b 2741/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2742 defined on globals. It is a helper for varobj_invalidate.
2743
2744 This function is called after changing the symbol file, in this case the
2745 pointers to "struct type" stored by the varobj are no longer valid. All
2746 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2747
54333c3b
JK
2748static void
2749varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2750{
4e969b4f
AB
2751 /* global and floating var must be re-evaluated. */
2752 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2753 {
54333c3b 2754 struct varobj *tmp_var;
2dbd25e5 2755
54333c3b
JK
2756 /* Try to create a varobj with same expression. If we succeed
2757 replace the old varobj, otherwise invalidate it. */
2758 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2759 USE_CURRENT_FRAME);
2760 if (tmp_var != NULL)
2761 {
2762 tmp_var->obj_name = xstrdup (var->obj_name);
2763 varobj_delete (var, NULL, 0);
2764 install_variable (tmp_var);
2dbd25e5 2765 }
54333c3b
JK
2766 else
2767 var->root->is_valid = 0;
2dbd25e5 2768 }
54333c3b
JK
2769 else /* locals must be invalidated. */
2770 var->root->is_valid = 0;
2771}
2772
2773/* Invalidate the varobjs that are tied to locals and re-create the ones that
2774 are defined on globals.
2775 Invalidated varobjs will be always printed in_scope="invalid". */
2776
2777void
2778varobj_invalidate (void)
2779{
2780 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2781}
1c3569d4
MR
2782\f
2783extern void _initialize_varobj (void);
2784void
2785_initialize_varobj (void)
2786{
2787 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2788
2789 varobj_table = xmalloc (sizeof_table);
2790 memset (varobj_table, 0, sizeof_table);
2791
2792 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2793 &varobjdebug,
2794 _("Set varobj debugging."),
2795 _("Show varobj debugging."),
2796 _("When non-zero, varobj debugging is enabled."),
2797 NULL, show_varobjdebug,
2798 &setdebuglist, &showdebuglist);
2799}
This page took 1.802524 seconds and 4 git commands to generate.