Commit | Line | Data |
---|---|---|
8b93c638 | 1 | /* Implementation of the GDB variable objects API. |
bc8332bb | 2 | |
c5a57081 | 3 | Copyright (C) 1999-2012 Free Software Foundation, Inc. |
8b93c638 JM |
4 | |
5 | This program is free software; you can redistribute it and/or modify | |
6 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 7 | the Free Software Foundation; either version 3 of the License, or |
8b93c638 JM |
8 | (at your option) any later version. |
9 | ||
10 | This program is distributed in the hope that it will be useful, | |
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
13 | GNU General Public License for more details. | |
14 | ||
15 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 16 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
8b93c638 JM |
17 | |
18 | #include "defs.h" | |
a6c442d8 | 19 | #include "exceptions.h" |
8b93c638 JM |
20 | #include "value.h" |
21 | #include "expression.h" | |
22 | #include "frame.h" | |
8b93c638 | 23 | #include "language.h" |
8b93c638 | 24 | #include "gdbcmd.h" |
d2353924 | 25 | #include "block.h" |
79a45b7d | 26 | #include "valprint.h" |
a6c442d8 MK |
27 | |
28 | #include "gdb_assert.h" | |
b66d6d2e | 29 | #include "gdb_string.h" |
0cc7d26f | 30 | #include "gdb_regex.h" |
8b93c638 JM |
31 | |
32 | #include "varobj.h" | |
28335dcc | 33 | #include "vec.h" |
6208b47d VP |
34 | #include "gdbthread.h" |
35 | #include "inferior.h" | |
8b93c638 | 36 | |
b6313243 TT |
37 | #if HAVE_PYTHON |
38 | #include "python/python.h" | |
39 | #include "python/python-internal.h" | |
50389644 PA |
40 | #else |
41 | typedef int PyObject; | |
b6313243 TT |
42 | #endif |
43 | ||
8b93c638 JM |
44 | /* Non-zero if we want to see trace of varobj level stuff. */ |
45 | ||
46 | int varobjdebug = 0; | |
920d2a44 AC |
47 | static void |
48 | show_varobjdebug (struct ui_file *file, int from_tty, | |
49 | struct cmd_list_element *c, const char *value) | |
50 | { | |
51 | fprintf_filtered (file, _("Varobj debugging is %s.\n"), value); | |
52 | } | |
8b93c638 | 53 | |
581e13c1 | 54 | /* String representations of gdb's format codes. */ |
8b93c638 | 55 | char *varobj_format_string[] = |
72330bd6 | 56 | { "natural", "binary", "decimal", "hexadecimal", "octal" }; |
8b93c638 | 57 | |
581e13c1 | 58 | /* String representations of gdb's known languages. */ |
72330bd6 | 59 | char *varobj_language_string[] = { "unknown", "C", "C++", "Java" }; |
8b93c638 | 60 | |
0cc7d26f TT |
61 | /* True if we want to allow Python-based pretty-printing. */ |
62 | static int pretty_printing = 0; | |
63 | ||
64 | void | |
65 | varobj_enable_pretty_printing (void) | |
66 | { | |
67 | pretty_printing = 1; | |
68 | } | |
69 | ||
8b93c638 JM |
70 | /* Data structures */ |
71 | ||
72 | /* Every root variable has one of these structures saved in its | |
581e13c1 | 73 | varobj. Members which must be free'd are noted. */ |
8b93c638 | 74 | struct varobj_root |
72330bd6 | 75 | { |
8b93c638 | 76 | |
581e13c1 | 77 | /* Alloc'd expression for this parent. */ |
72330bd6 | 78 | struct expression *exp; |
8b93c638 | 79 | |
581e13c1 | 80 | /* Block for which this expression is valid. */ |
72330bd6 | 81 | struct block *valid_block; |
8b93c638 | 82 | |
44a67aa7 VP |
83 | /* The frame for this expression. This field is set iff valid_block is |
84 | not NULL. */ | |
e64d9b3d | 85 | struct frame_id frame; |
8b93c638 | 86 | |
c5b48eac | 87 | /* The thread ID that this varobj_root belong to. This field |
581e13c1 | 88 | is only valid if valid_block is not NULL. |
c5b48eac VP |
89 | When not 0, indicates which thread 'frame' belongs to. |
90 | When 0, indicates that the thread list was empty when the varobj_root | |
91 | was created. */ | |
92 | int thread_id; | |
93 | ||
a5defcdc VP |
94 | /* If 1, the -var-update always recomputes the value in the |
95 | current thread and frame. Otherwise, variable object is | |
581e13c1 | 96 | always updated in the specific scope/thread/frame. */ |
a5defcdc | 97 | int floating; |
73a93a32 | 98 | |
8756216b DP |
99 | /* Flag that indicates validity: set to 0 when this varobj_root refers |
100 | to symbols that do not exist anymore. */ | |
101 | int is_valid; | |
102 | ||
581e13c1 | 103 | /* Language info for this variable and its children. */ |
72330bd6 | 104 | struct language_specific *lang; |
8b93c638 | 105 | |
581e13c1 | 106 | /* The varobj for this root node. */ |
72330bd6 | 107 | struct varobj *rootvar; |
8b93c638 | 108 | |
72330bd6 AC |
109 | /* Next root variable */ |
110 | struct varobj_root *next; | |
111 | }; | |
8b93c638 JM |
112 | |
113 | /* Every variable in the system has a structure of this type defined | |
581e13c1 MS |
114 | for it. This structure holds all information necessary to manipulate |
115 | a particular object variable. Members which must be freed are noted. */ | |
8b93c638 | 116 | struct varobj |
72330bd6 | 117 | { |
8b93c638 | 118 | |
581e13c1 | 119 | /* Alloc'd name of the variable for this object. If this variable is a |
72330bd6 | 120 | child, then this name will be the child's source name. |
581e13c1 MS |
121 | (bar, not foo.bar). */ |
122 | /* NOTE: This is the "expression". */ | |
72330bd6 | 123 | char *name; |
8b93c638 | 124 | |
02142340 VP |
125 | /* Alloc'd expression for this child. Can be used to create a |
126 | root variable corresponding to this child. */ | |
127 | char *path_expr; | |
128 | ||
581e13c1 MS |
129 | /* The alloc'd name for this variable's object. This is here for |
130 | convenience when constructing this object's children. */ | |
72330bd6 | 131 | char *obj_name; |
8b93c638 | 132 | |
581e13c1 | 133 | /* Index of this variable in its parent or -1. */ |
72330bd6 | 134 | int index; |
8b93c638 | 135 | |
202ddcaa VP |
136 | /* The type of this variable. This can be NULL |
137 | for artifial variable objects -- currently, the "accessibility" | |
138 | variable objects in C++. */ | |
72330bd6 | 139 | struct type *type; |
8b93c638 | 140 | |
b20d8971 VP |
141 | /* The value of this expression or subexpression. A NULL value |
142 | indicates there was an error getting this value. | |
b2c2bd75 VP |
143 | Invariant: if varobj_value_is_changeable_p (this) is non-zero, |
144 | the value is either NULL, or not lazy. */ | |
30b28db1 | 145 | struct value *value; |
8b93c638 | 146 | |
581e13c1 | 147 | /* The number of (immediate) children this variable has. */ |
72330bd6 | 148 | int num_children; |
8b93c638 | 149 | |
581e13c1 | 150 | /* If this object is a child, this points to its immediate parent. */ |
72330bd6 | 151 | struct varobj *parent; |
8b93c638 | 152 | |
28335dcc VP |
153 | /* Children of this object. */ |
154 | VEC (varobj_p) *children; | |
8b93c638 | 155 | |
b6313243 TT |
156 | /* Whether the children of this varobj were requested. This field is |
157 | used to decide if dynamic varobj should recompute their children. | |
158 | In the event that the frontend never asked for the children, we | |
159 | can avoid that. */ | |
160 | int children_requested; | |
161 | ||
581e13c1 MS |
162 | /* Description of the root variable. Points to root variable for |
163 | children. */ | |
72330bd6 | 164 | struct varobj_root *root; |
8b93c638 | 165 | |
581e13c1 | 166 | /* The format of the output for this object. */ |
72330bd6 | 167 | enum varobj_display_formats format; |
fb9b6b35 | 168 | |
581e13c1 | 169 | /* Was this variable updated via a varobj_set_value operation. */ |
fb9b6b35 | 170 | int updated; |
85265413 NR |
171 | |
172 | /* Last print value. */ | |
173 | char *print_value; | |
25d5ea92 VP |
174 | |
175 | /* Is this variable frozen. Frozen variables are never implicitly | |
176 | updated by -var-update * | |
177 | or -var-update <direct-or-indirect-parent>. */ | |
178 | int frozen; | |
179 | ||
180 | /* Is the value of this variable intentionally not fetched? It is | |
181 | not fetched if either the variable is frozen, or any parents is | |
182 | frozen. */ | |
183 | int not_fetched; | |
b6313243 | 184 | |
0cc7d26f TT |
185 | /* Sub-range of children which the MI consumer has requested. If |
186 | FROM < 0 or TO < 0, means that all children have been | |
187 | requested. */ | |
188 | int from; | |
189 | int to; | |
190 | ||
191 | /* The pretty-printer constructor. If NULL, then the default | |
192 | pretty-printer will be looked up. If None, then no | |
193 | pretty-printer will be installed. */ | |
194 | PyObject *constructor; | |
195 | ||
b6313243 TT |
196 | /* The pretty-printer that has been constructed. If NULL, then a |
197 | new printer object is needed, and one will be constructed. */ | |
198 | PyObject *pretty_printer; | |
0cc7d26f TT |
199 | |
200 | /* The iterator returned by the printer's 'children' method, or NULL | |
201 | if not available. */ | |
202 | PyObject *child_iter; | |
203 | ||
204 | /* We request one extra item from the iterator, so that we can | |
205 | report to the caller whether there are more items than we have | |
206 | already reported. However, we don't want to install this value | |
207 | when we read it, because that will mess up future updates. So, | |
208 | we stash it here instead. */ | |
209 | PyObject *saved_item; | |
72330bd6 | 210 | }; |
8b93c638 | 211 | |
8b93c638 | 212 | struct cpstack |
72330bd6 AC |
213 | { |
214 | char *name; | |
215 | struct cpstack *next; | |
216 | }; | |
8b93c638 JM |
217 | |
218 | /* A list of varobjs */ | |
219 | ||
220 | struct vlist | |
72330bd6 AC |
221 | { |
222 | struct varobj *var; | |
223 | struct vlist *next; | |
224 | }; | |
8b93c638 JM |
225 | |
226 | /* Private function prototypes */ | |
227 | ||
581e13c1 | 228 | /* Helper functions for the above subcommands. */ |
8b93c638 | 229 | |
a14ed312 | 230 | static int delete_variable (struct cpstack **, struct varobj *, int); |
8b93c638 | 231 | |
a14ed312 KB |
232 | static void delete_variable_1 (struct cpstack **, int *, |
233 | struct varobj *, int, int); | |
8b93c638 | 234 | |
a14ed312 | 235 | static int install_variable (struct varobj *); |
8b93c638 | 236 | |
a14ed312 | 237 | static void uninstall_variable (struct varobj *); |
8b93c638 | 238 | |
a14ed312 | 239 | static struct varobj *create_child (struct varobj *, int, char *); |
8b93c638 | 240 | |
b6313243 TT |
241 | static struct varobj * |
242 | create_child_with_value (struct varobj *parent, int index, const char *name, | |
243 | struct value *value); | |
244 | ||
8b93c638 JM |
245 | /* Utility routines */ |
246 | ||
a14ed312 | 247 | static struct varobj *new_variable (void); |
8b93c638 | 248 | |
a14ed312 | 249 | static struct varobj *new_root_variable (void); |
8b93c638 | 250 | |
a14ed312 | 251 | static void free_variable (struct varobj *var); |
8b93c638 | 252 | |
74b7792f AC |
253 | static struct cleanup *make_cleanup_free_variable (struct varobj *var); |
254 | ||
a14ed312 | 255 | static struct type *get_type (struct varobj *var); |
8b93c638 | 256 | |
6e2a9270 VP |
257 | static struct type *get_value_type (struct varobj *var); |
258 | ||
a14ed312 | 259 | static struct type *get_target_type (struct type *); |
8b93c638 | 260 | |
a14ed312 | 261 | static enum varobj_display_formats variable_default_display (struct varobj *); |
8b93c638 | 262 | |
a14ed312 | 263 | static void cppush (struct cpstack **pstack, char *name); |
8b93c638 | 264 | |
a14ed312 | 265 | static char *cppop (struct cpstack **pstack); |
8b93c638 | 266 | |
acd65feb VP |
267 | static int install_new_value (struct varobj *var, struct value *value, |
268 | int initial); | |
269 | ||
581e13c1 | 270 | /* Language-specific routines. */ |
8b93c638 | 271 | |
a14ed312 | 272 | static enum varobj_languages variable_language (struct varobj *var); |
8b93c638 | 273 | |
a14ed312 | 274 | static int number_of_children (struct varobj *); |
8b93c638 | 275 | |
a14ed312 | 276 | static char *name_of_variable (struct varobj *); |
8b93c638 | 277 | |
a14ed312 | 278 | static char *name_of_child (struct varobj *, int); |
8b93c638 | 279 | |
30b28db1 | 280 | static struct value *value_of_root (struct varobj **var_handle, int *); |
8b93c638 | 281 | |
30b28db1 | 282 | static struct value *value_of_child (struct varobj *parent, int index); |
8b93c638 | 283 | |
de051565 MK |
284 | static char *my_value_of_variable (struct varobj *var, |
285 | enum varobj_display_formats format); | |
8b93c638 | 286 | |
85265413 | 287 | static char *value_get_print_value (struct value *value, |
b6313243 | 288 | enum varobj_display_formats format, |
d452c4bc | 289 | struct varobj *var); |
85265413 | 290 | |
b2c2bd75 VP |
291 | static int varobj_value_is_changeable_p (struct varobj *var); |
292 | ||
293 | static int is_root_p (struct varobj *var); | |
8b93c638 | 294 | |
d8b65138 JK |
295 | #if HAVE_PYTHON |
296 | ||
9a1edae6 PM |
297 | static struct varobj *varobj_add_child (struct varobj *var, |
298 | const char *name, | |
299 | struct value *value); | |
b6313243 | 300 | |
d8b65138 JK |
301 | #endif /* HAVE_PYTHON */ |
302 | ||
8b93c638 JM |
303 | /* C implementation */ |
304 | ||
a14ed312 | 305 | static int c_number_of_children (struct varobj *var); |
8b93c638 | 306 | |
a14ed312 | 307 | static char *c_name_of_variable (struct varobj *parent); |
8b93c638 | 308 | |
a14ed312 | 309 | static char *c_name_of_child (struct varobj *parent, int index); |
8b93c638 | 310 | |
02142340 VP |
311 | static char *c_path_expr_of_child (struct varobj *child); |
312 | ||
30b28db1 | 313 | static struct value *c_value_of_root (struct varobj **var_handle); |
8b93c638 | 314 | |
30b28db1 | 315 | static struct value *c_value_of_child (struct varobj *parent, int index); |
8b93c638 | 316 | |
a14ed312 | 317 | static struct type *c_type_of_child (struct varobj *parent, int index); |
8b93c638 | 318 | |
de051565 MK |
319 | static char *c_value_of_variable (struct varobj *var, |
320 | enum varobj_display_formats format); | |
8b93c638 JM |
321 | |
322 | /* C++ implementation */ | |
323 | ||
a14ed312 | 324 | static int cplus_number_of_children (struct varobj *var); |
8b93c638 | 325 | |
a14ed312 | 326 | static void cplus_class_num_children (struct type *type, int children[3]); |
8b93c638 | 327 | |
a14ed312 | 328 | static char *cplus_name_of_variable (struct varobj *parent); |
8b93c638 | 329 | |
a14ed312 | 330 | static char *cplus_name_of_child (struct varobj *parent, int index); |
8b93c638 | 331 | |
02142340 VP |
332 | static char *cplus_path_expr_of_child (struct varobj *child); |
333 | ||
30b28db1 | 334 | static struct value *cplus_value_of_root (struct varobj **var_handle); |
8b93c638 | 335 | |
30b28db1 | 336 | static struct value *cplus_value_of_child (struct varobj *parent, int index); |
8b93c638 | 337 | |
a14ed312 | 338 | static struct type *cplus_type_of_child (struct varobj *parent, int index); |
8b93c638 | 339 | |
de051565 MK |
340 | static char *cplus_value_of_variable (struct varobj *var, |
341 | enum varobj_display_formats format); | |
8b93c638 JM |
342 | |
343 | /* Java implementation */ | |
344 | ||
a14ed312 | 345 | static int java_number_of_children (struct varobj *var); |
8b93c638 | 346 | |
a14ed312 | 347 | static char *java_name_of_variable (struct varobj *parent); |
8b93c638 | 348 | |
a14ed312 | 349 | static char *java_name_of_child (struct varobj *parent, int index); |
8b93c638 | 350 | |
02142340 VP |
351 | static char *java_path_expr_of_child (struct varobj *child); |
352 | ||
30b28db1 | 353 | static struct value *java_value_of_root (struct varobj **var_handle); |
8b93c638 | 354 | |
30b28db1 | 355 | static struct value *java_value_of_child (struct varobj *parent, int index); |
8b93c638 | 356 | |
a14ed312 | 357 | static struct type *java_type_of_child (struct varobj *parent, int index); |
8b93c638 | 358 | |
de051565 MK |
359 | static char *java_value_of_variable (struct varobj *var, |
360 | enum varobj_display_formats format); | |
8b93c638 | 361 | |
40591b7d JCD |
362 | /* Ada implementation */ |
363 | ||
364 | static int ada_number_of_children (struct varobj *var); | |
365 | ||
366 | static char *ada_name_of_variable (struct varobj *parent); | |
367 | ||
368 | static char *ada_name_of_child (struct varobj *parent, int index); | |
369 | ||
370 | static char *ada_path_expr_of_child (struct varobj *child); | |
371 | ||
372 | static struct value *ada_value_of_root (struct varobj **var_handle); | |
373 | ||
374 | static struct value *ada_value_of_child (struct varobj *parent, int index); | |
375 | ||
376 | static struct type *ada_type_of_child (struct varobj *parent, int index); | |
377 | ||
378 | static char *ada_value_of_variable (struct varobj *var, | |
379 | enum varobj_display_formats format); | |
380 | ||
8b93c638 JM |
381 | /* The language specific vector */ |
382 | ||
383 | struct language_specific | |
72330bd6 | 384 | { |
8b93c638 | 385 | |
581e13c1 | 386 | /* The language of this variable. */ |
72330bd6 | 387 | enum varobj_languages language; |
8b93c638 | 388 | |
581e13c1 | 389 | /* The number of children of PARENT. */ |
72330bd6 | 390 | int (*number_of_children) (struct varobj * parent); |
8b93c638 | 391 | |
581e13c1 | 392 | /* The name (expression) of a root varobj. */ |
72330bd6 | 393 | char *(*name_of_variable) (struct varobj * parent); |
8b93c638 | 394 | |
581e13c1 | 395 | /* The name of the INDEX'th child of PARENT. */ |
72330bd6 | 396 | char *(*name_of_child) (struct varobj * parent, int index); |
8b93c638 | 397 | |
02142340 VP |
398 | /* Returns the rooted expression of CHILD, which is a variable |
399 | obtain that has some parent. */ | |
400 | char *(*path_expr_of_child) (struct varobj * child); | |
401 | ||
581e13c1 | 402 | /* The ``struct value *'' of the root variable ROOT. */ |
30b28db1 | 403 | struct value *(*value_of_root) (struct varobj ** root_handle); |
8b93c638 | 404 | |
581e13c1 | 405 | /* The ``struct value *'' of the INDEX'th child of PARENT. */ |
30b28db1 | 406 | struct value *(*value_of_child) (struct varobj * parent, int index); |
8b93c638 | 407 | |
581e13c1 | 408 | /* The type of the INDEX'th child of PARENT. */ |
72330bd6 | 409 | struct type *(*type_of_child) (struct varobj * parent, int index); |
8b93c638 | 410 | |
581e13c1 | 411 | /* The current value of VAR. */ |
de051565 MK |
412 | char *(*value_of_variable) (struct varobj * var, |
413 | enum varobj_display_formats format); | |
72330bd6 | 414 | }; |
8b93c638 | 415 | |
581e13c1 | 416 | /* Array of known source language routines. */ |
d5d6fca5 | 417 | static struct language_specific languages[vlang_end] = { |
581e13c1 | 418 | /* Unknown (try treating as C). */ |
8b93c638 | 419 | { |
72330bd6 AC |
420 | vlang_unknown, |
421 | c_number_of_children, | |
422 | c_name_of_variable, | |
423 | c_name_of_child, | |
02142340 | 424 | c_path_expr_of_child, |
72330bd6 AC |
425 | c_value_of_root, |
426 | c_value_of_child, | |
427 | c_type_of_child, | |
72330bd6 | 428 | c_value_of_variable} |
8b93c638 JM |
429 | , |
430 | /* C */ | |
431 | { | |
72330bd6 AC |
432 | vlang_c, |
433 | c_number_of_children, | |
434 | c_name_of_variable, | |
435 | c_name_of_child, | |
02142340 | 436 | c_path_expr_of_child, |
72330bd6 AC |
437 | c_value_of_root, |
438 | c_value_of_child, | |
439 | c_type_of_child, | |
72330bd6 | 440 | c_value_of_variable} |
8b93c638 JM |
441 | , |
442 | /* C++ */ | |
443 | { | |
72330bd6 AC |
444 | vlang_cplus, |
445 | cplus_number_of_children, | |
446 | cplus_name_of_variable, | |
447 | cplus_name_of_child, | |
02142340 | 448 | cplus_path_expr_of_child, |
72330bd6 AC |
449 | cplus_value_of_root, |
450 | cplus_value_of_child, | |
451 | cplus_type_of_child, | |
72330bd6 | 452 | cplus_value_of_variable} |
8b93c638 JM |
453 | , |
454 | /* Java */ | |
455 | { | |
72330bd6 AC |
456 | vlang_java, |
457 | java_number_of_children, | |
458 | java_name_of_variable, | |
459 | java_name_of_child, | |
02142340 | 460 | java_path_expr_of_child, |
72330bd6 AC |
461 | java_value_of_root, |
462 | java_value_of_child, | |
463 | java_type_of_child, | |
40591b7d JCD |
464 | java_value_of_variable}, |
465 | /* Ada */ | |
466 | { | |
467 | vlang_ada, | |
468 | ada_number_of_children, | |
469 | ada_name_of_variable, | |
470 | ada_name_of_child, | |
471 | ada_path_expr_of_child, | |
472 | ada_value_of_root, | |
473 | ada_value_of_child, | |
474 | ada_type_of_child, | |
475 | ada_value_of_variable} | |
8b93c638 JM |
476 | }; |
477 | ||
581e13c1 | 478 | /* A little convenience enum for dealing with C++/Java. */ |
8b93c638 | 479 | enum vsections |
72330bd6 AC |
480 | { |
481 | v_public = 0, v_private, v_protected | |
482 | }; | |
8b93c638 JM |
483 | |
484 | /* Private data */ | |
485 | ||
581e13c1 | 486 | /* Mappings of varobj_display_formats enums to gdb's format codes. */ |
72330bd6 | 487 | static int format_code[] = { 0, 't', 'd', 'x', 'o' }; |
8b93c638 | 488 | |
581e13c1 | 489 | /* Header of the list of root variable objects. */ |
8b93c638 | 490 | static struct varobj_root *rootlist; |
8b93c638 | 491 | |
581e13c1 MS |
492 | /* Prime number indicating the number of buckets in the hash table. */ |
493 | /* A prime large enough to avoid too many colisions. */ | |
8b93c638 JM |
494 | #define VAROBJ_TABLE_SIZE 227 |
495 | ||
581e13c1 | 496 | /* Pointer to the varobj hash table (built at run time). */ |
8b93c638 JM |
497 | static struct vlist **varobj_table; |
498 | ||
581e13c1 | 499 | /* Is the variable X one of our "fake" children? */ |
8b93c638 JM |
500 | #define CPLUS_FAKE_CHILD(x) \ |
501 | ((x) != NULL && (x)->type == NULL && (x)->value == NULL) | |
502 | \f | |
503 | ||
504 | /* API Implementation */ | |
b2c2bd75 VP |
505 | static int |
506 | is_root_p (struct varobj *var) | |
507 | { | |
508 | return (var->root->rootvar == var); | |
509 | } | |
8b93c638 | 510 | |
d452c4bc UW |
511 | #ifdef HAVE_PYTHON |
512 | /* Helper function to install a Python environment suitable for | |
513 | use during operations on VAR. */ | |
514 | struct cleanup * | |
515 | varobj_ensure_python_env (struct varobj *var) | |
516 | { | |
517 | return ensure_python_env (var->root->exp->gdbarch, | |
518 | var->root->exp->language_defn); | |
519 | } | |
520 | #endif | |
521 | ||
581e13c1 | 522 | /* Creates a varobj (not its children). */ |
8b93c638 | 523 | |
7d8547c9 AC |
524 | /* Return the full FRAME which corresponds to the given CORE_ADDR |
525 | or NULL if no FRAME on the chain corresponds to CORE_ADDR. */ | |
526 | ||
527 | static struct frame_info * | |
528 | find_frame_addr_in_frame_chain (CORE_ADDR frame_addr) | |
529 | { | |
530 | struct frame_info *frame = NULL; | |
531 | ||
532 | if (frame_addr == (CORE_ADDR) 0) | |
533 | return NULL; | |
534 | ||
9d49bdc2 PA |
535 | for (frame = get_current_frame (); |
536 | frame != NULL; | |
537 | frame = get_prev_frame (frame)) | |
7d8547c9 | 538 | { |
1fac167a UW |
539 | /* The CORE_ADDR we get as argument was parsed from a string GDB |
540 | output as $fp. This output got truncated to gdbarch_addr_bit. | |
541 | Truncate the frame base address in the same manner before | |
542 | comparing it against our argument. */ | |
543 | CORE_ADDR frame_base = get_frame_base_address (frame); | |
544 | int addr_bit = gdbarch_addr_bit (get_frame_arch (frame)); | |
a109c7c1 | 545 | |
1fac167a UW |
546 | if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT)) |
547 | frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1; | |
548 | ||
549 | if (frame_base == frame_addr) | |
7d8547c9 AC |
550 | return frame; |
551 | } | |
9d49bdc2 PA |
552 | |
553 | return NULL; | |
7d8547c9 AC |
554 | } |
555 | ||
8b93c638 JM |
556 | struct varobj * |
557 | varobj_create (char *objname, | |
72330bd6 | 558 | char *expression, CORE_ADDR frame, enum varobj_type type) |
8b93c638 JM |
559 | { |
560 | struct varobj *var; | |
8b93c638 JM |
561 | struct cleanup *old_chain; |
562 | ||
581e13c1 | 563 | /* Fill out a varobj structure for the (root) variable being constructed. */ |
8b93c638 | 564 | var = new_root_variable (); |
74b7792f | 565 | old_chain = make_cleanup_free_variable (var); |
8b93c638 JM |
566 | |
567 | if (expression != NULL) | |
568 | { | |
e4195b40 | 569 | struct frame_info *fi; |
35633fef | 570 | struct frame_id old_id = null_frame_id; |
e4195b40 | 571 | struct block *block; |
8b93c638 JM |
572 | char *p; |
573 | enum varobj_languages lang; | |
e55dccf0 | 574 | struct value *value = NULL; |
8e7b59a5 | 575 | volatile struct gdb_exception except; |
8b93c638 | 576 | |
9d49bdc2 PA |
577 | /* Parse and evaluate the expression, filling in as much of the |
578 | variable's data as possible. */ | |
579 | ||
580 | if (has_stack_frames ()) | |
581 | { | |
581e13c1 | 582 | /* Allow creator to specify context of variable. */ |
9d49bdc2 PA |
583 | if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME)) |
584 | fi = get_selected_frame (NULL); | |
585 | else | |
586 | /* FIXME: cagney/2002-11-23: This code should be doing a | |
587 | lookup using the frame ID and not just the frame's | |
588 | ``address''. This, of course, means an interface | |
589 | change. However, with out that interface change ISAs, | |
590 | such as the ia64 with its two stacks, won't work. | |
591 | Similar goes for the case where there is a frameless | |
592 | function. */ | |
593 | fi = find_frame_addr_in_frame_chain (frame); | |
594 | } | |
8b93c638 | 595 | else |
9d49bdc2 | 596 | fi = NULL; |
8b93c638 | 597 | |
581e13c1 | 598 | /* frame = -2 means always use selected frame. */ |
73a93a32 | 599 | if (type == USE_SELECTED_FRAME) |
a5defcdc | 600 | var->root->floating = 1; |
73a93a32 | 601 | |
8b93c638 JM |
602 | block = NULL; |
603 | if (fi != NULL) | |
ae767bfb | 604 | block = get_frame_block (fi, 0); |
8b93c638 JM |
605 | |
606 | p = expression; | |
607 | innermost_block = NULL; | |
73a93a32 | 608 | /* Wrap the call to parse expression, so we can |
581e13c1 | 609 | return a sensible error. */ |
8e7b59a5 KS |
610 | TRY_CATCH (except, RETURN_MASK_ERROR) |
611 | { | |
612 | var->root->exp = parse_exp_1 (&p, block, 0); | |
613 | } | |
614 | ||
615 | if (except.reason < 0) | |
73a93a32 | 616 | { |
f748fb40 | 617 | do_cleanups (old_chain); |
73a93a32 JI |
618 | return NULL; |
619 | } | |
8b93c638 | 620 | |
581e13c1 | 621 | /* Don't allow variables to be created for types. */ |
8b93c638 JM |
622 | if (var->root->exp->elts[0].opcode == OP_TYPE) |
623 | { | |
624 | do_cleanups (old_chain); | |
bc8332bb AC |
625 | fprintf_unfiltered (gdb_stderr, "Attempt to use a type name" |
626 | " as an expression.\n"); | |
8b93c638 JM |
627 | return NULL; |
628 | } | |
629 | ||
630 | var->format = variable_default_display (var); | |
631 | var->root->valid_block = innermost_block; | |
1b36a34b | 632 | var->name = xstrdup (expression); |
02142340 | 633 | /* For a root var, the name and the expr are the same. */ |
1b36a34b | 634 | var->path_expr = xstrdup (expression); |
8b93c638 JM |
635 | |
636 | /* When the frame is different from the current frame, | |
637 | we must select the appropriate frame before parsing | |
638 | the expression, otherwise the value will not be current. | |
581e13c1 | 639 | Since select_frame is so benign, just call it for all cases. */ |
4e22772d | 640 | if (innermost_block) |
8b93c638 | 641 | { |
4e22772d JK |
642 | /* User could specify explicit FRAME-ADDR which was not found but |
643 | EXPRESSION is frame specific and we would not be able to evaluate | |
644 | it correctly next time. With VALID_BLOCK set we must also set | |
645 | FRAME and THREAD_ID. */ | |
646 | if (fi == NULL) | |
647 | error (_("Failed to find the specified frame")); | |
648 | ||
7a424e99 | 649 | var->root->frame = get_frame_id (fi); |
c5b48eac | 650 | var->root->thread_id = pid_to_thread_id (inferior_ptid); |
35633fef | 651 | old_id = get_frame_id (get_selected_frame (NULL)); |
c5b48eac | 652 | select_frame (fi); |
8b93c638 JM |
653 | } |
654 | ||
340a7723 | 655 | /* We definitely need to catch errors here. |
8b93c638 | 656 | If evaluate_expression succeeds we got the value we wanted. |
581e13c1 | 657 | But if it fails, we still go on with a call to evaluate_type(). */ |
8e7b59a5 KS |
658 | TRY_CATCH (except, RETURN_MASK_ERROR) |
659 | { | |
660 | value = evaluate_expression (var->root->exp); | |
661 | } | |
662 | ||
663 | if (except.reason < 0) | |
e55dccf0 VP |
664 | { |
665 | /* Error getting the value. Try to at least get the | |
666 | right type. */ | |
667 | struct value *type_only_value = evaluate_type (var->root->exp); | |
a109c7c1 | 668 | |
e55dccf0 VP |
669 | var->type = value_type (type_only_value); |
670 | } | |
671 | else | |
672 | var->type = value_type (value); | |
acd65feb | 673 | |
acd65feb | 674 | install_new_value (var, value, 1 /* Initial assignment */); |
8b93c638 JM |
675 | |
676 | /* Set language info */ | |
677 | lang = variable_language (var); | |
d5d6fca5 | 678 | var->root->lang = &languages[lang]; |
8b93c638 | 679 | |
581e13c1 | 680 | /* Set ourselves as our root. */ |
8b93c638 JM |
681 | var->root->rootvar = var; |
682 | ||
581e13c1 | 683 | /* Reset the selected frame. */ |
35633fef JK |
684 | if (frame_id_p (old_id)) |
685 | select_frame (frame_find_by_id (old_id)); | |
8b93c638 JM |
686 | } |
687 | ||
73a93a32 | 688 | /* If the variable object name is null, that means this |
581e13c1 | 689 | is a temporary variable, so don't install it. */ |
73a93a32 JI |
690 | |
691 | if ((var != NULL) && (objname != NULL)) | |
8b93c638 | 692 | { |
1b36a34b | 693 | var->obj_name = xstrdup (objname); |
8b93c638 JM |
694 | |
695 | /* If a varobj name is duplicated, the install will fail so | |
581e13c1 | 696 | we must cleanup. */ |
8b93c638 JM |
697 | if (!install_variable (var)) |
698 | { | |
699 | do_cleanups (old_chain); | |
700 | return NULL; | |
701 | } | |
702 | } | |
703 | ||
704 | discard_cleanups (old_chain); | |
705 | return var; | |
706 | } | |
707 | ||
581e13c1 | 708 | /* Generates an unique name that can be used for a varobj. */ |
8b93c638 JM |
709 | |
710 | char * | |
711 | varobj_gen_name (void) | |
712 | { | |
713 | static int id = 0; | |
e64d9b3d | 714 | char *obj_name; |
8b93c638 | 715 | |
581e13c1 | 716 | /* Generate a name for this object. */ |
8b93c638 | 717 | id++; |
b435e160 | 718 | obj_name = xstrprintf ("var%d", id); |
8b93c638 | 719 | |
e64d9b3d | 720 | return obj_name; |
8b93c638 JM |
721 | } |
722 | ||
61d8f275 JK |
723 | /* Given an OBJNAME, returns the pointer to the corresponding varobj. Call |
724 | error if OBJNAME cannot be found. */ | |
8b93c638 JM |
725 | |
726 | struct varobj * | |
727 | varobj_get_handle (char *objname) | |
728 | { | |
729 | struct vlist *cv; | |
730 | const char *chp; | |
731 | unsigned int index = 0; | |
732 | unsigned int i = 1; | |
733 | ||
734 | for (chp = objname; *chp; chp++) | |
735 | { | |
736 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
737 | } | |
738 | ||
739 | cv = *(varobj_table + index); | |
740 | while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0)) | |
741 | cv = cv->next; | |
742 | ||
743 | if (cv == NULL) | |
8a3fe4f8 | 744 | error (_("Variable object not found")); |
8b93c638 JM |
745 | |
746 | return cv->var; | |
747 | } | |
748 | ||
581e13c1 | 749 | /* Given the handle, return the name of the object. */ |
8b93c638 JM |
750 | |
751 | char * | |
752 | varobj_get_objname (struct varobj *var) | |
753 | { | |
754 | return var->obj_name; | |
755 | } | |
756 | ||
581e13c1 | 757 | /* Given the handle, return the expression represented by the object. */ |
8b93c638 JM |
758 | |
759 | char * | |
760 | varobj_get_expression (struct varobj *var) | |
761 | { | |
762 | return name_of_variable (var); | |
763 | } | |
764 | ||
765 | /* Deletes a varobj and all its children if only_children == 0, | |
3e43a32a MS |
766 | otherwise deletes only the children; returns a malloc'ed list of |
767 | all the (malloc'ed) names of the variables that have been deleted | |
581e13c1 | 768 | (NULL terminated). */ |
8b93c638 JM |
769 | |
770 | int | |
771 | varobj_delete (struct varobj *var, char ***dellist, int only_children) | |
772 | { | |
773 | int delcount; | |
774 | int mycount; | |
775 | struct cpstack *result = NULL; | |
776 | char **cp; | |
777 | ||
581e13c1 | 778 | /* Initialize a stack for temporary results. */ |
8b93c638 JM |
779 | cppush (&result, NULL); |
780 | ||
781 | if (only_children) | |
581e13c1 | 782 | /* Delete only the variable children. */ |
8b93c638 JM |
783 | delcount = delete_variable (&result, var, 1 /* only the children */ ); |
784 | else | |
581e13c1 | 785 | /* Delete the variable and all its children. */ |
8b93c638 JM |
786 | delcount = delete_variable (&result, var, 0 /* parent+children */ ); |
787 | ||
581e13c1 | 788 | /* We may have been asked to return a list of what has been deleted. */ |
8b93c638 JM |
789 | if (dellist != NULL) |
790 | { | |
791 | *dellist = xmalloc ((delcount + 1) * sizeof (char *)); | |
792 | ||
793 | cp = *dellist; | |
794 | mycount = delcount; | |
795 | *cp = cppop (&result); | |
796 | while ((*cp != NULL) && (mycount > 0)) | |
797 | { | |
798 | mycount--; | |
799 | cp++; | |
800 | *cp = cppop (&result); | |
801 | } | |
802 | ||
803 | if (mycount || (*cp != NULL)) | |
8a3fe4f8 | 804 | warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"), |
72330bd6 | 805 | mycount); |
8b93c638 JM |
806 | } |
807 | ||
808 | return delcount; | |
809 | } | |
810 | ||
d8b65138 JK |
811 | #if HAVE_PYTHON |
812 | ||
b6313243 TT |
813 | /* Convenience function for varobj_set_visualizer. Instantiate a |
814 | pretty-printer for a given value. */ | |
815 | static PyObject * | |
816 | instantiate_pretty_printer (PyObject *constructor, struct value *value) | |
817 | { | |
b6313243 TT |
818 | PyObject *val_obj = NULL; |
819 | PyObject *printer; | |
b6313243 | 820 | |
b6313243 | 821 | val_obj = value_to_value_object (value); |
b6313243 TT |
822 | if (! val_obj) |
823 | return NULL; | |
824 | ||
825 | printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL); | |
826 | Py_DECREF (val_obj); | |
827 | return printer; | |
b6313243 TT |
828 | } |
829 | ||
d8b65138 JK |
830 | #endif |
831 | ||
581e13c1 | 832 | /* Set/Get variable object display format. */ |
8b93c638 JM |
833 | |
834 | enum varobj_display_formats | |
835 | varobj_set_display_format (struct varobj *var, | |
836 | enum varobj_display_formats format) | |
837 | { | |
838 | switch (format) | |
839 | { | |
840 | case FORMAT_NATURAL: | |
841 | case FORMAT_BINARY: | |
842 | case FORMAT_DECIMAL: | |
843 | case FORMAT_HEXADECIMAL: | |
844 | case FORMAT_OCTAL: | |
845 | var->format = format; | |
846 | break; | |
847 | ||
848 | default: | |
849 | var->format = variable_default_display (var); | |
850 | } | |
851 | ||
ae7d22a6 VP |
852 | if (varobj_value_is_changeable_p (var) |
853 | && var->value && !value_lazy (var->value)) | |
854 | { | |
6c761d9c | 855 | xfree (var->print_value); |
d452c4bc | 856 | var->print_value = value_get_print_value (var->value, var->format, var); |
ae7d22a6 VP |
857 | } |
858 | ||
8b93c638 JM |
859 | return var->format; |
860 | } | |
861 | ||
862 | enum varobj_display_formats | |
863 | varobj_get_display_format (struct varobj *var) | |
864 | { | |
865 | return var->format; | |
866 | } | |
867 | ||
b6313243 TT |
868 | char * |
869 | varobj_get_display_hint (struct varobj *var) | |
870 | { | |
871 | char *result = NULL; | |
872 | ||
873 | #if HAVE_PYTHON | |
d452c4bc UW |
874 | struct cleanup *back_to = varobj_ensure_python_env (var); |
875 | ||
b6313243 TT |
876 | if (var->pretty_printer) |
877 | result = gdbpy_get_display_hint (var->pretty_printer); | |
d452c4bc UW |
878 | |
879 | do_cleanups (back_to); | |
b6313243 TT |
880 | #endif |
881 | ||
882 | return result; | |
883 | } | |
884 | ||
0cc7d26f TT |
885 | /* Return true if the varobj has items after TO, false otherwise. */ |
886 | ||
887 | int | |
888 | varobj_has_more (struct varobj *var, int to) | |
889 | { | |
890 | if (VEC_length (varobj_p, var->children) > to) | |
891 | return 1; | |
892 | return ((to == -1 || VEC_length (varobj_p, var->children) == to) | |
893 | && var->saved_item != NULL); | |
894 | } | |
895 | ||
c5b48eac VP |
896 | /* If the variable object is bound to a specific thread, that |
897 | is its evaluation can always be done in context of a frame | |
898 | inside that thread, returns GDB id of the thread -- which | |
581e13c1 | 899 | is always positive. Otherwise, returns -1. */ |
c5b48eac VP |
900 | int |
901 | varobj_get_thread_id (struct varobj *var) | |
902 | { | |
903 | if (var->root->valid_block && var->root->thread_id > 0) | |
904 | return var->root->thread_id; | |
905 | else | |
906 | return -1; | |
907 | } | |
908 | ||
25d5ea92 VP |
909 | void |
910 | varobj_set_frozen (struct varobj *var, int frozen) | |
911 | { | |
912 | /* When a variable is unfrozen, we don't fetch its value. | |
913 | The 'not_fetched' flag remains set, so next -var-update | |
914 | won't complain. | |
915 | ||
916 | We don't fetch the value, because for structures the client | |
917 | should do -var-update anyway. It would be bad to have different | |
918 | client-size logic for structure and other types. */ | |
919 | var->frozen = frozen; | |
920 | } | |
921 | ||
922 | int | |
923 | varobj_get_frozen (struct varobj *var) | |
924 | { | |
925 | return var->frozen; | |
926 | } | |
927 | ||
0cc7d26f TT |
928 | /* A helper function that restricts a range to what is actually |
929 | available in a VEC. This follows the usual rules for the meaning | |
930 | of FROM and TO -- if either is negative, the entire range is | |
931 | used. */ | |
932 | ||
933 | static void | |
934 | restrict_range (VEC (varobj_p) *children, int *from, int *to) | |
935 | { | |
936 | if (*from < 0 || *to < 0) | |
937 | { | |
938 | *from = 0; | |
939 | *to = VEC_length (varobj_p, children); | |
940 | } | |
941 | else | |
942 | { | |
943 | if (*from > VEC_length (varobj_p, children)) | |
944 | *from = VEC_length (varobj_p, children); | |
945 | if (*to > VEC_length (varobj_p, children)) | |
946 | *to = VEC_length (varobj_p, children); | |
947 | if (*from > *to) | |
948 | *from = *to; | |
949 | } | |
950 | } | |
951 | ||
d8b65138 JK |
952 | #if HAVE_PYTHON |
953 | ||
0cc7d26f TT |
954 | /* A helper for update_dynamic_varobj_children that installs a new |
955 | child when needed. */ | |
956 | ||
957 | static void | |
958 | install_dynamic_child (struct varobj *var, | |
959 | VEC (varobj_p) **changed, | |
960 | VEC (varobj_p) **new, | |
961 | VEC (varobj_p) **unchanged, | |
962 | int *cchanged, | |
963 | int index, | |
964 | const char *name, | |
965 | struct value *value) | |
966 | { | |
967 | if (VEC_length (varobj_p, var->children) < index + 1) | |
968 | { | |
969 | /* There's no child yet. */ | |
970 | struct varobj *child = varobj_add_child (var, name, value); | |
a109c7c1 | 971 | |
0cc7d26f TT |
972 | if (new) |
973 | { | |
974 | VEC_safe_push (varobj_p, *new, child); | |
975 | *cchanged = 1; | |
976 | } | |
977 | } | |
978 | else | |
979 | { | |
980 | varobj_p existing = VEC_index (varobj_p, var->children, index); | |
a109c7c1 | 981 | |
0cc7d26f TT |
982 | if (install_new_value (existing, value, 0)) |
983 | { | |
984 | if (changed) | |
985 | VEC_safe_push (varobj_p, *changed, existing); | |
986 | } | |
987 | else if (unchanged) | |
988 | VEC_safe_push (varobj_p, *unchanged, existing); | |
989 | } | |
990 | } | |
991 | ||
0cc7d26f TT |
992 | static int |
993 | dynamic_varobj_has_child_method (struct varobj *var) | |
994 | { | |
995 | struct cleanup *back_to; | |
996 | PyObject *printer = var->pretty_printer; | |
997 | int result; | |
998 | ||
999 | back_to = varobj_ensure_python_env (var); | |
1000 | result = PyObject_HasAttr (printer, gdbpy_children_cst); | |
1001 | do_cleanups (back_to); | |
1002 | return result; | |
1003 | } | |
1004 | ||
1005 | #endif | |
1006 | ||
b6313243 TT |
1007 | static int |
1008 | update_dynamic_varobj_children (struct varobj *var, | |
1009 | VEC (varobj_p) **changed, | |
0cc7d26f TT |
1010 | VEC (varobj_p) **new, |
1011 | VEC (varobj_p) **unchanged, | |
1012 | int *cchanged, | |
1013 | int update_children, | |
1014 | int from, | |
1015 | int to) | |
b6313243 TT |
1016 | { |
1017 | #if HAVE_PYTHON | |
b6313243 TT |
1018 | struct cleanup *back_to; |
1019 | PyObject *children; | |
b6313243 | 1020 | int i; |
b6313243 | 1021 | PyObject *printer = var->pretty_printer; |
b6313243 | 1022 | |
d452c4bc | 1023 | back_to = varobj_ensure_python_env (var); |
b6313243 TT |
1024 | |
1025 | *cchanged = 0; | |
1026 | if (!PyObject_HasAttr (printer, gdbpy_children_cst)) | |
1027 | { | |
1028 | do_cleanups (back_to); | |
1029 | return 0; | |
1030 | } | |
1031 | ||
0cc7d26f | 1032 | if (update_children || !var->child_iter) |
b6313243 | 1033 | { |
0cc7d26f TT |
1034 | children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst, |
1035 | NULL); | |
b6313243 | 1036 | |
0cc7d26f TT |
1037 | if (!children) |
1038 | { | |
1039 | gdbpy_print_stack (); | |
1040 | error (_("Null value returned for children")); | |
1041 | } | |
b6313243 | 1042 | |
0cc7d26f | 1043 | make_cleanup_py_decref (children); |
b6313243 | 1044 | |
0cc7d26f TT |
1045 | if (!PyIter_Check (children)) |
1046 | error (_("Returned value is not iterable")); | |
1047 | ||
1048 | Py_XDECREF (var->child_iter); | |
1049 | var->child_iter = PyObject_GetIter (children); | |
1050 | if (!var->child_iter) | |
1051 | { | |
1052 | gdbpy_print_stack (); | |
1053 | error (_("Could not get children iterator")); | |
1054 | } | |
1055 | ||
1056 | Py_XDECREF (var->saved_item); | |
1057 | var->saved_item = NULL; | |
1058 | ||
1059 | i = 0; | |
b6313243 | 1060 | } |
0cc7d26f TT |
1061 | else |
1062 | i = VEC_length (varobj_p, var->children); | |
b6313243 | 1063 | |
0cc7d26f TT |
1064 | /* We ask for one extra child, so that MI can report whether there |
1065 | are more children. */ | |
1066 | for (; to < 0 || i < to + 1; ++i) | |
b6313243 | 1067 | { |
0cc7d26f | 1068 | PyObject *item; |
a4c8e806 | 1069 | int force_done = 0; |
b6313243 | 1070 | |
0cc7d26f TT |
1071 | /* See if there was a leftover from last time. */ |
1072 | if (var->saved_item) | |
1073 | { | |
1074 | item = var->saved_item; | |
1075 | var->saved_item = NULL; | |
1076 | } | |
1077 | else | |
1078 | item = PyIter_Next (var->child_iter); | |
b6313243 | 1079 | |
0cc7d26f | 1080 | if (!item) |
a4c8e806 TT |
1081 | { |
1082 | /* Normal end of iteration. */ | |
1083 | if (!PyErr_Occurred ()) | |
1084 | break; | |
1085 | ||
1086 | /* If we got a memory error, just use the text as the | |
1087 | item. */ | |
1088 | if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error)) | |
1089 | { | |
1090 | PyObject *type, *value, *trace; | |
1091 | char *name_str, *value_str; | |
1092 | ||
1093 | PyErr_Fetch (&type, &value, &trace); | |
1094 | value_str = gdbpy_exception_to_string (type, value); | |
1095 | Py_XDECREF (type); | |
1096 | Py_XDECREF (value); | |
1097 | Py_XDECREF (trace); | |
1098 | if (!value_str) | |
1099 | { | |
1100 | gdbpy_print_stack (); | |
1101 | break; | |
1102 | } | |
1103 | ||
1104 | name_str = xstrprintf ("<error at %d>", i); | |
1105 | item = Py_BuildValue ("(ss)", name_str, value_str); | |
1106 | xfree (name_str); | |
1107 | xfree (value_str); | |
1108 | if (!item) | |
1109 | { | |
1110 | gdbpy_print_stack (); | |
1111 | break; | |
1112 | } | |
1113 | ||
1114 | force_done = 1; | |
1115 | } | |
1116 | else | |
1117 | { | |
1118 | /* Any other kind of error. */ | |
1119 | gdbpy_print_stack (); | |
1120 | break; | |
1121 | } | |
1122 | } | |
b6313243 | 1123 | |
0cc7d26f TT |
1124 | /* We don't want to push the extra child on any report list. */ |
1125 | if (to < 0 || i < to) | |
b6313243 | 1126 | { |
0cc7d26f | 1127 | PyObject *py_v; |
ddd49eee | 1128 | const char *name; |
0cc7d26f TT |
1129 | struct value *v; |
1130 | struct cleanup *inner; | |
1131 | int can_mention = from < 0 || i >= from; | |
1132 | ||
1133 | inner = make_cleanup_py_decref (item); | |
1134 | ||
1135 | if (!PyArg_ParseTuple (item, "sO", &name, &py_v)) | |
a4c8e806 TT |
1136 | { |
1137 | gdbpy_print_stack (); | |
1138 | error (_("Invalid item from the child list")); | |
1139 | } | |
0cc7d26f TT |
1140 | |
1141 | v = convert_value_from_python (py_v); | |
8dc78533 JK |
1142 | if (v == NULL) |
1143 | gdbpy_print_stack (); | |
0cc7d26f TT |
1144 | install_dynamic_child (var, can_mention ? changed : NULL, |
1145 | can_mention ? new : NULL, | |
1146 | can_mention ? unchanged : NULL, | |
1147 | can_mention ? cchanged : NULL, i, name, v); | |
1148 | do_cleanups (inner); | |
b6313243 | 1149 | } |
0cc7d26f | 1150 | else |
b6313243 | 1151 | { |
0cc7d26f TT |
1152 | Py_XDECREF (var->saved_item); |
1153 | var->saved_item = item; | |
b6313243 | 1154 | |
0cc7d26f TT |
1155 | /* We want to truncate the child list just before this |
1156 | element. */ | |
1157 | break; | |
1158 | } | |
a4c8e806 TT |
1159 | |
1160 | if (force_done) | |
1161 | break; | |
b6313243 TT |
1162 | } |
1163 | ||
1164 | if (i < VEC_length (varobj_p, var->children)) | |
1165 | { | |
0cc7d26f | 1166 | int j; |
a109c7c1 | 1167 | |
0cc7d26f TT |
1168 | *cchanged = 1; |
1169 | for (j = i; j < VEC_length (varobj_p, var->children); ++j) | |
1170 | varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0); | |
1171 | VEC_truncate (varobj_p, var->children, i); | |
b6313243 | 1172 | } |
0cc7d26f TT |
1173 | |
1174 | /* If there are fewer children than requested, note that the list of | |
1175 | children changed. */ | |
1176 | if (to >= 0 && VEC_length (varobj_p, var->children) < to) | |
1177 | *cchanged = 1; | |
1178 | ||
b6313243 TT |
1179 | var->num_children = VEC_length (varobj_p, var->children); |
1180 | ||
1181 | do_cleanups (back_to); | |
1182 | ||
b6313243 TT |
1183 | return 1; |
1184 | #else | |
1185 | gdb_assert (0 && "should never be called if Python is not enabled"); | |
1186 | #endif | |
1187 | } | |
25d5ea92 | 1188 | |
8b93c638 JM |
1189 | int |
1190 | varobj_get_num_children (struct varobj *var) | |
1191 | { | |
1192 | if (var->num_children == -1) | |
b6313243 | 1193 | { |
0cc7d26f TT |
1194 | if (var->pretty_printer) |
1195 | { | |
1196 | int dummy; | |
1197 | ||
1198 | /* If we have a dynamic varobj, don't report -1 children. | |
1199 | So, try to fetch some children first. */ | |
1200 | update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy, | |
1201 | 0, 0, 0); | |
1202 | } | |
1203 | else | |
b6313243 TT |
1204 | var->num_children = number_of_children (var); |
1205 | } | |
8b93c638 | 1206 | |
0cc7d26f | 1207 | return var->num_children >= 0 ? var->num_children : 0; |
8b93c638 JM |
1208 | } |
1209 | ||
1210 | /* Creates a list of the immediate children of a variable object; | |
581e13c1 | 1211 | the return code is the number of such children or -1 on error. */ |
8b93c638 | 1212 | |
d56d46f5 | 1213 | VEC (varobj_p)* |
0cc7d26f | 1214 | varobj_list_children (struct varobj *var, int *from, int *to) |
8b93c638 | 1215 | { |
8b93c638 | 1216 | char *name; |
b6313243 TT |
1217 | int i, children_changed; |
1218 | ||
1219 | var->children_requested = 1; | |
1220 | ||
0cc7d26f TT |
1221 | if (var->pretty_printer) |
1222 | { | |
b6313243 TT |
1223 | /* This, in theory, can result in the number of children changing without |
1224 | frontend noticing. But well, calling -var-list-children on the same | |
1225 | varobj twice is not something a sane frontend would do. */ | |
0cc7d26f TT |
1226 | update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed, |
1227 | 0, 0, *to); | |
1228 | restrict_range (var->children, from, to); | |
1229 | return var->children; | |
1230 | } | |
8b93c638 | 1231 | |
8b93c638 JM |
1232 | if (var->num_children == -1) |
1233 | var->num_children = number_of_children (var); | |
1234 | ||
74a44383 DJ |
1235 | /* If that failed, give up. */ |
1236 | if (var->num_children == -1) | |
d56d46f5 | 1237 | return var->children; |
74a44383 | 1238 | |
28335dcc VP |
1239 | /* If we're called when the list of children is not yet initialized, |
1240 | allocate enough elements in it. */ | |
1241 | while (VEC_length (varobj_p, var->children) < var->num_children) | |
1242 | VEC_safe_push (varobj_p, var->children, NULL); | |
1243 | ||
8b93c638 JM |
1244 | for (i = 0; i < var->num_children; i++) |
1245 | { | |
d56d46f5 | 1246 | varobj_p existing = VEC_index (varobj_p, var->children, i); |
28335dcc VP |
1247 | |
1248 | if (existing == NULL) | |
1249 | { | |
1250 | /* Either it's the first call to varobj_list_children for | |
1251 | this variable object, and the child was never created, | |
1252 | or it was explicitly deleted by the client. */ | |
1253 | name = name_of_child (var, i); | |
1254 | existing = create_child (var, i, name); | |
1255 | VEC_replace (varobj_p, var->children, i, existing); | |
1256 | } | |
8b93c638 JM |
1257 | } |
1258 | ||
0cc7d26f | 1259 | restrict_range (var->children, from, to); |
d56d46f5 | 1260 | return var->children; |
8b93c638 JM |
1261 | } |
1262 | ||
d8b65138 JK |
1263 | #if HAVE_PYTHON |
1264 | ||
b6313243 TT |
1265 | static struct varobj * |
1266 | varobj_add_child (struct varobj *var, const char *name, struct value *value) | |
1267 | { | |
1268 | varobj_p v = create_child_with_value (var, | |
1269 | VEC_length (varobj_p, var->children), | |
1270 | name, value); | |
a109c7c1 | 1271 | |
b6313243 | 1272 | VEC_safe_push (varobj_p, var->children, v); |
b6313243 TT |
1273 | return v; |
1274 | } | |
1275 | ||
d8b65138 JK |
1276 | #endif /* HAVE_PYTHON */ |
1277 | ||
8b93c638 | 1278 | /* Obtain the type of an object Variable as a string similar to the one gdb |
581e13c1 | 1279 | prints on the console. */ |
8b93c638 JM |
1280 | |
1281 | char * | |
1282 | varobj_get_type (struct varobj *var) | |
1283 | { | |
581e13c1 | 1284 | /* For the "fake" variables, do not return a type. (It's type is |
8756216b DP |
1285 | NULL, too.) |
1286 | Do not return a type for invalid variables as well. */ | |
1287 | if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid) | |
8b93c638 JM |
1288 | return NULL; |
1289 | ||
1a4300e9 | 1290 | return type_to_string (var->type); |
8b93c638 JM |
1291 | } |
1292 | ||
1ecb4ee0 DJ |
1293 | /* Obtain the type of an object variable. */ |
1294 | ||
1295 | struct type * | |
1296 | varobj_get_gdb_type (struct varobj *var) | |
1297 | { | |
1298 | return var->type; | |
1299 | } | |
1300 | ||
02142340 VP |
1301 | /* Return a pointer to the full rooted expression of varobj VAR. |
1302 | If it has not been computed yet, compute it. */ | |
1303 | char * | |
1304 | varobj_get_path_expr (struct varobj *var) | |
1305 | { | |
1306 | if (var->path_expr != NULL) | |
1307 | return var->path_expr; | |
1308 | else | |
1309 | { | |
1310 | /* For root varobjs, we initialize path_expr | |
1311 | when creating varobj, so here it should be | |
1312 | child varobj. */ | |
1313 | gdb_assert (!is_root_p (var)); | |
1314 | return (*var->root->lang->path_expr_of_child) (var); | |
1315 | } | |
1316 | } | |
1317 | ||
8b93c638 JM |
1318 | enum varobj_languages |
1319 | varobj_get_language (struct varobj *var) | |
1320 | { | |
1321 | return variable_language (var); | |
1322 | } | |
1323 | ||
1324 | int | |
1325 | varobj_get_attributes (struct varobj *var) | |
1326 | { | |
1327 | int attributes = 0; | |
1328 | ||
340a7723 | 1329 | if (varobj_editable_p (var)) |
581e13c1 | 1330 | /* FIXME: define masks for attributes. */ |
8b93c638 JM |
1331 | attributes |= 0x00000001; /* Editable */ |
1332 | ||
1333 | return attributes; | |
1334 | } | |
1335 | ||
0cc7d26f TT |
1336 | int |
1337 | varobj_pretty_printed_p (struct varobj *var) | |
1338 | { | |
1339 | return var->pretty_printer != NULL; | |
1340 | } | |
1341 | ||
de051565 MK |
1342 | char * |
1343 | varobj_get_formatted_value (struct varobj *var, | |
1344 | enum varobj_display_formats format) | |
1345 | { | |
1346 | return my_value_of_variable (var, format); | |
1347 | } | |
1348 | ||
8b93c638 JM |
1349 | char * |
1350 | varobj_get_value (struct varobj *var) | |
1351 | { | |
de051565 | 1352 | return my_value_of_variable (var, var->format); |
8b93c638 JM |
1353 | } |
1354 | ||
1355 | /* Set the value of an object variable (if it is editable) to the | |
581e13c1 MS |
1356 | value of the given expression. */ |
1357 | /* Note: Invokes functions that can call error(). */ | |
8b93c638 JM |
1358 | |
1359 | int | |
1360 | varobj_set_value (struct varobj *var, char *expression) | |
1361 | { | |
30b28db1 | 1362 | struct value *val; |
8b93c638 JM |
1363 | |
1364 | /* The argument "expression" contains the variable's new value. | |
581e13c1 MS |
1365 | We need to first construct a legal expression for this -- ugh! */ |
1366 | /* Does this cover all the bases? */ | |
8b93c638 | 1367 | struct expression *exp; |
30b28db1 | 1368 | struct value *value; |
8b93c638 | 1369 | int saved_input_radix = input_radix; |
340a7723 | 1370 | char *s = expression; |
8e7b59a5 | 1371 | volatile struct gdb_exception except; |
8b93c638 | 1372 | |
340a7723 | 1373 | gdb_assert (varobj_editable_p (var)); |
8b93c638 | 1374 | |
581e13c1 | 1375 | input_radix = 10; /* ALWAYS reset to decimal temporarily. */ |
340a7723 | 1376 | exp = parse_exp_1 (&s, 0, 0); |
8e7b59a5 KS |
1377 | TRY_CATCH (except, RETURN_MASK_ERROR) |
1378 | { | |
1379 | value = evaluate_expression (exp); | |
1380 | } | |
1381 | ||
1382 | if (except.reason < 0) | |
340a7723 | 1383 | { |
581e13c1 | 1384 | /* We cannot proceed without a valid expression. */ |
340a7723 NR |
1385 | xfree (exp); |
1386 | return 0; | |
8b93c638 JM |
1387 | } |
1388 | ||
340a7723 NR |
1389 | /* All types that are editable must also be changeable. */ |
1390 | gdb_assert (varobj_value_is_changeable_p (var)); | |
1391 | ||
1392 | /* The value of a changeable variable object must not be lazy. */ | |
1393 | gdb_assert (!value_lazy (var->value)); | |
1394 | ||
1395 | /* Need to coerce the input. We want to check if the | |
1396 | value of the variable object will be different | |
1397 | after assignment, and the first thing value_assign | |
1398 | does is coerce the input. | |
1399 | For example, if we are assigning an array to a pointer variable we | |
b021a221 | 1400 | should compare the pointer with the array's address, not with the |
340a7723 NR |
1401 | array's content. */ |
1402 | value = coerce_array (value); | |
1403 | ||
8e7b59a5 KS |
1404 | /* The new value may be lazy. value_assign, or |
1405 | rather value_contents, will take care of this. */ | |
1406 | TRY_CATCH (except, RETURN_MASK_ERROR) | |
1407 | { | |
1408 | val = value_assign (var->value, value); | |
1409 | } | |
1410 | ||
1411 | if (except.reason < 0) | |
340a7723 | 1412 | return 0; |
8e7b59a5 | 1413 | |
340a7723 NR |
1414 | /* If the value has changed, record it, so that next -var-update can |
1415 | report this change. If a variable had a value of '1', we've set it | |
1416 | to '333' and then set again to '1', when -var-update will report this | |
1417 | variable as changed -- because the first assignment has set the | |
1418 | 'updated' flag. There's no need to optimize that, because return value | |
1419 | of -var-update should be considered an approximation. */ | |
581e13c1 | 1420 | var->updated = install_new_value (var, val, 0 /* Compare values. */); |
340a7723 NR |
1421 | input_radix = saved_input_radix; |
1422 | return 1; | |
8b93c638 JM |
1423 | } |
1424 | ||
0cc7d26f TT |
1425 | #if HAVE_PYTHON |
1426 | ||
1427 | /* A helper function to install a constructor function and visualizer | |
1428 | in a varobj. */ | |
1429 | ||
1430 | static void | |
1431 | install_visualizer (struct varobj *var, PyObject *constructor, | |
1432 | PyObject *visualizer) | |
1433 | { | |
1434 | Py_XDECREF (var->constructor); | |
1435 | var->constructor = constructor; | |
1436 | ||
1437 | Py_XDECREF (var->pretty_printer); | |
1438 | var->pretty_printer = visualizer; | |
1439 | ||
1440 | Py_XDECREF (var->child_iter); | |
1441 | var->child_iter = NULL; | |
1442 | } | |
1443 | ||
1444 | /* Install the default visualizer for VAR. */ | |
1445 | ||
1446 | static void | |
1447 | install_default_visualizer (struct varobj *var) | |
1448 | { | |
d65aec65 PM |
1449 | /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */ |
1450 | if (CPLUS_FAKE_CHILD (var)) | |
1451 | return; | |
1452 | ||
0cc7d26f TT |
1453 | if (pretty_printing) |
1454 | { | |
1455 | PyObject *pretty_printer = NULL; | |
1456 | ||
1457 | if (var->value) | |
1458 | { | |
1459 | pretty_printer = gdbpy_get_varobj_pretty_printer (var->value); | |
1460 | if (! pretty_printer) | |
1461 | { | |
1462 | gdbpy_print_stack (); | |
1463 | error (_("Cannot instantiate printer for default visualizer")); | |
1464 | } | |
1465 | } | |
1466 | ||
1467 | if (pretty_printer == Py_None) | |
1468 | { | |
1469 | Py_DECREF (pretty_printer); | |
1470 | pretty_printer = NULL; | |
1471 | } | |
1472 | ||
1473 | install_visualizer (var, NULL, pretty_printer); | |
1474 | } | |
1475 | } | |
1476 | ||
1477 | /* Instantiate and install a visualizer for VAR using CONSTRUCTOR to | |
1478 | make a new object. */ | |
1479 | ||
1480 | static void | |
1481 | construct_visualizer (struct varobj *var, PyObject *constructor) | |
1482 | { | |
1483 | PyObject *pretty_printer; | |
1484 | ||
d65aec65 PM |
1485 | /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */ |
1486 | if (CPLUS_FAKE_CHILD (var)) | |
1487 | return; | |
1488 | ||
0cc7d26f TT |
1489 | Py_INCREF (constructor); |
1490 | if (constructor == Py_None) | |
1491 | pretty_printer = NULL; | |
1492 | else | |
1493 | { | |
1494 | pretty_printer = instantiate_pretty_printer (constructor, var->value); | |
1495 | if (! pretty_printer) | |
1496 | { | |
1497 | gdbpy_print_stack (); | |
1498 | Py_DECREF (constructor); | |
1499 | constructor = Py_None; | |
1500 | Py_INCREF (constructor); | |
1501 | } | |
1502 | ||
1503 | if (pretty_printer == Py_None) | |
1504 | { | |
1505 | Py_DECREF (pretty_printer); | |
1506 | pretty_printer = NULL; | |
1507 | } | |
1508 | } | |
1509 | ||
1510 | install_visualizer (var, constructor, pretty_printer); | |
1511 | } | |
1512 | ||
1513 | #endif /* HAVE_PYTHON */ | |
1514 | ||
1515 | /* A helper function for install_new_value. This creates and installs | |
1516 | a visualizer for VAR, if appropriate. */ | |
1517 | ||
1518 | static void | |
1519 | install_new_value_visualizer (struct varobj *var) | |
1520 | { | |
1521 | #if HAVE_PYTHON | |
1522 | /* If the constructor is None, then we want the raw value. If VAR | |
1523 | does not have a value, just skip this. */ | |
1524 | if (var->constructor != Py_None && var->value) | |
1525 | { | |
1526 | struct cleanup *cleanup; | |
0cc7d26f TT |
1527 | |
1528 | cleanup = varobj_ensure_python_env (var); | |
1529 | ||
1530 | if (!var->constructor) | |
1531 | install_default_visualizer (var); | |
1532 | else | |
1533 | construct_visualizer (var, var->constructor); | |
1534 | ||
1535 | do_cleanups (cleanup); | |
1536 | } | |
1537 | #else | |
1538 | /* Do nothing. */ | |
1539 | #endif | |
1540 | } | |
1541 | ||
acd65feb VP |
1542 | /* Assign a new value to a variable object. If INITIAL is non-zero, |
1543 | this is the first assignement after the variable object was just | |
1544 | created, or changed type. In that case, just assign the value | |
1545 | and return 0. | |
581e13c1 MS |
1546 | Otherwise, assign the new value, and return 1 if the value is |
1547 | different from the current one, 0 otherwise. The comparison is | |
1548 | done on textual representation of value. Therefore, some types | |
1549 | need not be compared. E.g. for structures the reported value is | |
1550 | always "{...}", so no comparison is necessary here. If the old | |
1551 | value was NULL and new one is not, or vice versa, we always return 1. | |
b26ed50d VP |
1552 | |
1553 | The VALUE parameter should not be released -- the function will | |
1554 | take care of releasing it when needed. */ | |
acd65feb VP |
1555 | static int |
1556 | install_new_value (struct varobj *var, struct value *value, int initial) | |
1557 | { | |
1558 | int changeable; | |
1559 | int need_to_fetch; | |
1560 | int changed = 0; | |
25d5ea92 | 1561 | int intentionally_not_fetched = 0; |
7a4d50bf | 1562 | char *print_value = NULL; |
acd65feb | 1563 | |
acd65feb | 1564 | /* We need to know the varobj's type to decide if the value should |
3e43a32a | 1565 | be fetched or not. C++ fake children (public/protected/private) |
581e13c1 | 1566 | don't have a type. */ |
acd65feb | 1567 | gdb_assert (var->type || CPLUS_FAKE_CHILD (var)); |
b2c2bd75 | 1568 | changeable = varobj_value_is_changeable_p (var); |
b6313243 TT |
1569 | |
1570 | /* If the type has custom visualizer, we consider it to be always | |
581e13c1 | 1571 | changeable. FIXME: need to make sure this behaviour will not |
b6313243 TT |
1572 | mess up read-sensitive values. */ |
1573 | if (var->pretty_printer) | |
1574 | changeable = 1; | |
1575 | ||
acd65feb VP |
1576 | need_to_fetch = changeable; |
1577 | ||
b26ed50d VP |
1578 | /* We are not interested in the address of references, and given |
1579 | that in C++ a reference is not rebindable, it cannot | |
1580 | meaningfully change. So, get hold of the real value. */ | |
1581 | if (value) | |
0cc7d26f | 1582 | value = coerce_ref (value); |
b26ed50d | 1583 | |
acd65feb VP |
1584 | if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION) |
1585 | /* For unions, we need to fetch the value implicitly because | |
1586 | of implementation of union member fetch. When gdb | |
1587 | creates a value for a field and the value of the enclosing | |
1588 | structure is not lazy, it immediately copies the necessary | |
1589 | bytes from the enclosing values. If the enclosing value is | |
1590 | lazy, the call to value_fetch_lazy on the field will read | |
1591 | the data from memory. For unions, that means we'll read the | |
1592 | same memory more than once, which is not desirable. So | |
1593 | fetch now. */ | |
1594 | need_to_fetch = 1; | |
1595 | ||
1596 | /* The new value might be lazy. If the type is changeable, | |
1597 | that is we'll be comparing values of this type, fetch the | |
1598 | value now. Otherwise, on the next update the old value | |
1599 | will be lazy, which means we've lost that old value. */ | |
1600 | if (need_to_fetch && value && value_lazy (value)) | |
1601 | { | |
25d5ea92 VP |
1602 | struct varobj *parent = var->parent; |
1603 | int frozen = var->frozen; | |
a109c7c1 | 1604 | |
25d5ea92 VP |
1605 | for (; !frozen && parent; parent = parent->parent) |
1606 | frozen |= parent->frozen; | |
1607 | ||
1608 | if (frozen && initial) | |
1609 | { | |
1610 | /* For variables that are frozen, or are children of frozen | |
1611 | variables, we don't do fetch on initial assignment. | |
1612 | For non-initial assignemnt we do the fetch, since it means we're | |
1613 | explicitly asked to compare the new value with the old one. */ | |
1614 | intentionally_not_fetched = 1; | |
1615 | } | |
8e7b59a5 | 1616 | else |
acd65feb | 1617 | { |
8e7b59a5 KS |
1618 | volatile struct gdb_exception except; |
1619 | ||
1620 | TRY_CATCH (except, RETURN_MASK_ERROR) | |
1621 | { | |
1622 | value_fetch_lazy (value); | |
1623 | } | |
1624 | ||
1625 | if (except.reason < 0) | |
1626 | { | |
1627 | /* Set the value to NULL, so that for the next -var-update, | |
1628 | we don't try to compare the new value with this value, | |
1629 | that we couldn't even read. */ | |
1630 | value = NULL; | |
1631 | } | |
acd65feb | 1632 | } |
acd65feb VP |
1633 | } |
1634 | ||
e848a8a5 TT |
1635 | /* Get a reference now, before possibly passing it to any Python |
1636 | code that might release it. */ | |
1637 | if (value != NULL) | |
1638 | value_incref (value); | |
b6313243 | 1639 | |
7a4d50bf VP |
1640 | /* Below, we'll be comparing string rendering of old and new |
1641 | values. Don't get string rendering if the value is | |
1642 | lazy -- if it is, the code above has decided that the value | |
1643 | should not be fetched. */ | |
0cc7d26f | 1644 | if (value && !value_lazy (value) && !var->pretty_printer) |
d452c4bc | 1645 | print_value = value_get_print_value (value, var->format, var); |
7a4d50bf | 1646 | |
acd65feb VP |
1647 | /* If the type is changeable, compare the old and the new values. |
1648 | If this is the initial assignment, we don't have any old value | |
1649 | to compare with. */ | |
7a4d50bf | 1650 | if (!initial && changeable) |
acd65feb | 1651 | { |
3e43a32a MS |
1652 | /* If the value of the varobj was changed by -var-set-value, |
1653 | then the value in the varobj and in the target is the same. | |
1654 | However, that value is different from the value that the | |
581e13c1 | 1655 | varobj had after the previous -var-update. So need to the |
3e43a32a | 1656 | varobj as changed. */ |
acd65feb | 1657 | if (var->updated) |
57e66780 | 1658 | { |
57e66780 DJ |
1659 | changed = 1; |
1660 | } | |
0cc7d26f | 1661 | else if (! var->pretty_printer) |
acd65feb VP |
1662 | { |
1663 | /* Try to compare the values. That requires that both | |
1664 | values are non-lazy. */ | |
25d5ea92 VP |
1665 | if (var->not_fetched && value_lazy (var->value)) |
1666 | { | |
1667 | /* This is a frozen varobj and the value was never read. | |
1668 | Presumably, UI shows some "never read" indicator. | |
1669 | Now that we've fetched the real value, we need to report | |
1670 | this varobj as changed so that UI can show the real | |
1671 | value. */ | |
1672 | changed = 1; | |
1673 | } | |
1674 | else if (var->value == NULL && value == NULL) | |
581e13c1 | 1675 | /* Equal. */ |
acd65feb VP |
1676 | ; |
1677 | else if (var->value == NULL || value == NULL) | |
57e66780 | 1678 | { |
57e66780 DJ |
1679 | changed = 1; |
1680 | } | |
acd65feb VP |
1681 | else |
1682 | { | |
1683 | gdb_assert (!value_lazy (var->value)); | |
1684 | gdb_assert (!value_lazy (value)); | |
85265413 | 1685 | |
57e66780 | 1686 | gdb_assert (var->print_value != NULL && print_value != NULL); |
85265413 | 1687 | if (strcmp (var->print_value, print_value) != 0) |
7a4d50bf | 1688 | changed = 1; |
acd65feb VP |
1689 | } |
1690 | } | |
1691 | } | |
85265413 | 1692 | |
ee342b23 VP |
1693 | if (!initial && !changeable) |
1694 | { | |
1695 | /* For values that are not changeable, we don't compare the values. | |
1696 | However, we want to notice if a value was not NULL and now is NULL, | |
1697 | or vise versa, so that we report when top-level varobjs come in scope | |
1698 | and leave the scope. */ | |
1699 | changed = (var->value != NULL) != (value != NULL); | |
1700 | } | |
1701 | ||
acd65feb | 1702 | /* We must always keep the new value, since children depend on it. */ |
25d5ea92 | 1703 | if (var->value != NULL && var->value != value) |
acd65feb VP |
1704 | value_free (var->value); |
1705 | var->value = value; | |
25d5ea92 VP |
1706 | if (value && value_lazy (value) && intentionally_not_fetched) |
1707 | var->not_fetched = 1; | |
1708 | else | |
1709 | var->not_fetched = 0; | |
acd65feb | 1710 | var->updated = 0; |
85265413 | 1711 | |
0cc7d26f TT |
1712 | install_new_value_visualizer (var); |
1713 | ||
1714 | /* If we installed a pretty-printer, re-compare the printed version | |
1715 | to see if the variable changed. */ | |
1716 | if (var->pretty_printer) | |
1717 | { | |
1718 | xfree (print_value); | |
1719 | print_value = value_get_print_value (var->value, var->format, var); | |
e8f781e2 TT |
1720 | if ((var->print_value == NULL && print_value != NULL) |
1721 | || (var->print_value != NULL && print_value == NULL) | |
1722 | || (var->print_value != NULL && print_value != NULL | |
1723 | && strcmp (var->print_value, print_value) != 0)) | |
0cc7d26f TT |
1724 | changed = 1; |
1725 | } | |
1726 | if (var->print_value) | |
1727 | xfree (var->print_value); | |
1728 | var->print_value = print_value; | |
1729 | ||
b26ed50d | 1730 | gdb_assert (!var->value || value_type (var->value)); |
acd65feb VP |
1731 | |
1732 | return changed; | |
1733 | } | |
acd65feb | 1734 | |
0cc7d26f TT |
1735 | /* Return the requested range for a varobj. VAR is the varobj. FROM |
1736 | and TO are out parameters; *FROM and *TO will be set to the | |
1737 | selected sub-range of VAR. If no range was selected using | |
1738 | -var-set-update-range, then both will be -1. */ | |
1739 | void | |
1740 | varobj_get_child_range (struct varobj *var, int *from, int *to) | |
b6313243 | 1741 | { |
0cc7d26f TT |
1742 | *from = var->from; |
1743 | *to = var->to; | |
b6313243 TT |
1744 | } |
1745 | ||
0cc7d26f TT |
1746 | /* Set the selected sub-range of children of VAR to start at index |
1747 | FROM and end at index TO. If either FROM or TO is less than zero, | |
1748 | this is interpreted as a request for all children. */ | |
1749 | void | |
1750 | varobj_set_child_range (struct varobj *var, int from, int to) | |
b6313243 | 1751 | { |
0cc7d26f TT |
1752 | var->from = from; |
1753 | var->to = to; | |
b6313243 TT |
1754 | } |
1755 | ||
1756 | void | |
1757 | varobj_set_visualizer (struct varobj *var, const char *visualizer) | |
1758 | { | |
1759 | #if HAVE_PYTHON | |
34fa1d9d MS |
1760 | PyObject *mainmod, *globals, *constructor; |
1761 | struct cleanup *back_to; | |
b6313243 | 1762 | |
d452c4bc | 1763 | back_to = varobj_ensure_python_env (var); |
b6313243 TT |
1764 | |
1765 | mainmod = PyImport_AddModule ("__main__"); | |
1766 | globals = PyModule_GetDict (mainmod); | |
1767 | Py_INCREF (globals); | |
1768 | make_cleanup_py_decref (globals); | |
1769 | ||
1770 | constructor = PyRun_String (visualizer, Py_eval_input, globals, globals); | |
b6313243 | 1771 | |
0cc7d26f | 1772 | if (! constructor) |
b6313243 TT |
1773 | { |
1774 | gdbpy_print_stack (); | |
da1f2771 | 1775 | error (_("Could not evaluate visualizer expression: %s"), visualizer); |
b6313243 TT |
1776 | } |
1777 | ||
0cc7d26f TT |
1778 | construct_visualizer (var, constructor); |
1779 | Py_XDECREF (constructor); | |
b6313243 | 1780 | |
0cc7d26f TT |
1781 | /* If there are any children now, wipe them. */ |
1782 | varobj_delete (var, NULL, 1 /* children only */); | |
1783 | var->num_children = -1; | |
b6313243 TT |
1784 | |
1785 | do_cleanups (back_to); | |
1786 | #else | |
da1f2771 | 1787 | error (_("Python support required")); |
b6313243 TT |
1788 | #endif |
1789 | } | |
1790 | ||
8b93c638 JM |
1791 | /* Update the values for a variable and its children. This is a |
1792 | two-pronged attack. First, re-parse the value for the root's | |
1793 | expression to see if it's changed. Then go all the way | |
1794 | through its children, reconstructing them and noting if they've | |
1795 | changed. | |
1796 | ||
25d5ea92 VP |
1797 | The EXPLICIT parameter specifies if this call is result |
1798 | of MI request to update this specific variable, or | |
581e13c1 | 1799 | result of implicit -var-update *. For implicit request, we don't |
25d5ea92 | 1800 | update frozen variables. |
705da579 | 1801 | |
581e13c1 | 1802 | NOTE: This function may delete the caller's varobj. If it |
8756216b DP |
1803 | returns TYPE_CHANGED, then it has done this and VARP will be modified |
1804 | to point to the new varobj. */ | |
8b93c638 | 1805 | |
1417b39d JB |
1806 | VEC(varobj_update_result) * |
1807 | varobj_update (struct varobj **varp, int explicit) | |
8b93c638 JM |
1808 | { |
1809 | int changed = 0; | |
25d5ea92 | 1810 | int type_changed = 0; |
8b93c638 | 1811 | int i; |
30b28db1 | 1812 | struct value *new; |
b6313243 | 1813 | VEC (varobj_update_result) *stack = NULL; |
f7f9ae2c | 1814 | VEC (varobj_update_result) *result = NULL; |
8b93c638 | 1815 | |
25d5ea92 VP |
1816 | /* Frozen means frozen -- we don't check for any change in |
1817 | this varobj, including its going out of scope, or | |
1818 | changing type. One use case for frozen varobjs is | |
1819 | retaining previously evaluated expressions, and we don't | |
1820 | want them to be reevaluated at all. */ | |
1821 | if (!explicit && (*varp)->frozen) | |
f7f9ae2c | 1822 | return result; |
8756216b DP |
1823 | |
1824 | if (!(*varp)->root->is_valid) | |
f7f9ae2c | 1825 | { |
cfce2ea2 | 1826 | varobj_update_result r = {0}; |
a109c7c1 | 1827 | |
cfce2ea2 | 1828 | r.varobj = *varp; |
f7f9ae2c VP |
1829 | r.status = VAROBJ_INVALID; |
1830 | VEC_safe_push (varobj_update_result, result, &r); | |
1831 | return result; | |
1832 | } | |
8b93c638 | 1833 | |
25d5ea92 | 1834 | if ((*varp)->root->rootvar == *varp) |
ae093f96 | 1835 | { |
cfce2ea2 | 1836 | varobj_update_result r = {0}; |
a109c7c1 | 1837 | |
cfce2ea2 | 1838 | r.varobj = *varp; |
f7f9ae2c VP |
1839 | r.status = VAROBJ_IN_SCOPE; |
1840 | ||
581e13c1 | 1841 | /* Update the root variable. value_of_root can return NULL |
25d5ea92 | 1842 | if the variable is no longer around, i.e. we stepped out of |
581e13c1 | 1843 | the frame in which a local existed. We are letting the |
25d5ea92 VP |
1844 | value_of_root variable dispose of the varobj if the type |
1845 | has changed. */ | |
25d5ea92 | 1846 | new = value_of_root (varp, &type_changed); |
f7f9ae2c VP |
1847 | r.varobj = *varp; |
1848 | ||
1849 | r.type_changed = type_changed; | |
ea56f9c2 | 1850 | if (install_new_value ((*varp), new, type_changed)) |
f7f9ae2c | 1851 | r.changed = 1; |
ea56f9c2 | 1852 | |
25d5ea92 | 1853 | if (new == NULL) |
f7f9ae2c | 1854 | r.status = VAROBJ_NOT_IN_SCOPE; |
b6313243 | 1855 | r.value_installed = 1; |
f7f9ae2c VP |
1856 | |
1857 | if (r.status == VAROBJ_NOT_IN_SCOPE) | |
b6313243 | 1858 | { |
0b4bc29a JK |
1859 | if (r.type_changed || r.changed) |
1860 | VEC_safe_push (varobj_update_result, result, &r); | |
b6313243 TT |
1861 | return result; |
1862 | } | |
1863 | ||
1864 | VEC_safe_push (varobj_update_result, stack, &r); | |
1865 | } | |
1866 | else | |
1867 | { | |
cfce2ea2 | 1868 | varobj_update_result r = {0}; |
a109c7c1 | 1869 | |
cfce2ea2 | 1870 | r.varobj = *varp; |
b6313243 | 1871 | VEC_safe_push (varobj_update_result, stack, &r); |
b20d8971 | 1872 | } |
8b93c638 | 1873 | |
8756216b | 1874 | /* Walk through the children, reconstructing them all. */ |
b6313243 | 1875 | while (!VEC_empty (varobj_update_result, stack)) |
8b93c638 | 1876 | { |
b6313243 TT |
1877 | varobj_update_result r = *(VEC_last (varobj_update_result, stack)); |
1878 | struct varobj *v = r.varobj; | |
1879 | ||
1880 | VEC_pop (varobj_update_result, stack); | |
1881 | ||
1882 | /* Update this variable, unless it's a root, which is already | |
1883 | updated. */ | |
1884 | if (!r.value_installed) | |
1885 | { | |
1886 | new = value_of_child (v->parent, v->index); | |
1887 | if (install_new_value (v, new, 0 /* type not changed */)) | |
1888 | { | |
1889 | r.changed = 1; | |
1890 | v->updated = 0; | |
1891 | } | |
1892 | } | |
1893 | ||
1894 | /* We probably should not get children of a varobj that has a | |
1895 | pretty-printer, but for which -var-list-children was never | |
581e13c1 | 1896 | invoked. */ |
b6313243 TT |
1897 | if (v->pretty_printer) |
1898 | { | |
0cc7d26f | 1899 | VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0; |
26f9bcee | 1900 | int i, children_changed = 0; |
b6313243 TT |
1901 | |
1902 | if (v->frozen) | |
1903 | continue; | |
1904 | ||
0cc7d26f TT |
1905 | if (!v->children_requested) |
1906 | { | |
1907 | int dummy; | |
1908 | ||
1909 | /* If we initially did not have potential children, but | |
1910 | now we do, consider the varobj as changed. | |
1911 | Otherwise, if children were never requested, consider | |
1912 | it as unchanged -- presumably, such varobj is not yet | |
1913 | expanded in the UI, so we need not bother getting | |
1914 | it. */ | |
1915 | if (!varobj_has_more (v, 0)) | |
1916 | { | |
1917 | update_dynamic_varobj_children (v, NULL, NULL, NULL, | |
1918 | &dummy, 0, 0, 0); | |
1919 | if (varobj_has_more (v, 0)) | |
1920 | r.changed = 1; | |
1921 | } | |
1922 | ||
1923 | if (r.changed) | |
1924 | VEC_safe_push (varobj_update_result, result, &r); | |
1925 | ||
1926 | continue; | |
1927 | } | |
1928 | ||
b6313243 TT |
1929 | /* If update_dynamic_varobj_children returns 0, then we have |
1930 | a non-conforming pretty-printer, so we skip it. */ | |
0cc7d26f TT |
1931 | if (update_dynamic_varobj_children (v, &changed, &new, &unchanged, |
1932 | &children_changed, 1, | |
1933 | v->from, v->to)) | |
b6313243 | 1934 | { |
0cc7d26f | 1935 | if (children_changed || new) |
b6313243 | 1936 | { |
0cc7d26f TT |
1937 | r.children_changed = 1; |
1938 | r.new = new; | |
b6313243 | 1939 | } |
0cc7d26f TT |
1940 | /* Push in reverse order so that the first child is |
1941 | popped from the work stack first, and so will be | |
1942 | added to result first. This does not affect | |
1943 | correctness, just "nicer". */ | |
1944 | for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i) | |
b6313243 | 1945 | { |
0cc7d26f | 1946 | varobj_p tmp = VEC_index (varobj_p, changed, i); |
cfce2ea2 | 1947 | varobj_update_result r = {0}; |
a109c7c1 | 1948 | |
cfce2ea2 | 1949 | r.varobj = tmp; |
0cc7d26f | 1950 | r.changed = 1; |
b6313243 TT |
1951 | r.value_installed = 1; |
1952 | VEC_safe_push (varobj_update_result, stack, &r); | |
1953 | } | |
0cc7d26f TT |
1954 | for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i) |
1955 | { | |
1956 | varobj_p tmp = VEC_index (varobj_p, unchanged, i); | |
a109c7c1 | 1957 | |
0cc7d26f TT |
1958 | if (!tmp->frozen) |
1959 | { | |
cfce2ea2 | 1960 | varobj_update_result r = {0}; |
a109c7c1 | 1961 | |
cfce2ea2 | 1962 | r.varobj = tmp; |
0cc7d26f TT |
1963 | r.value_installed = 1; |
1964 | VEC_safe_push (varobj_update_result, stack, &r); | |
1965 | } | |
1966 | } | |
b6313243 TT |
1967 | if (r.changed || r.children_changed) |
1968 | VEC_safe_push (varobj_update_result, result, &r); | |
0cc7d26f TT |
1969 | |
1970 | /* Free CHANGED and UNCHANGED, but not NEW, because NEW | |
1971 | has been put into the result vector. */ | |
1972 | VEC_free (varobj_p, changed); | |
1973 | VEC_free (varobj_p, unchanged); | |
1974 | ||
b6313243 TT |
1975 | continue; |
1976 | } | |
1977 | } | |
28335dcc VP |
1978 | |
1979 | /* Push any children. Use reverse order so that the first | |
1980 | child is popped from the work stack first, and so | |
1981 | will be added to result first. This does not | |
1982 | affect correctness, just "nicer". */ | |
1983 | for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i) | |
8b93c638 | 1984 | { |
28335dcc | 1985 | varobj_p c = VEC_index (varobj_p, v->children, i); |
a109c7c1 | 1986 | |
28335dcc | 1987 | /* Child may be NULL if explicitly deleted by -var-delete. */ |
25d5ea92 | 1988 | if (c != NULL && !c->frozen) |
28335dcc | 1989 | { |
cfce2ea2 | 1990 | varobj_update_result r = {0}; |
a109c7c1 | 1991 | |
cfce2ea2 | 1992 | r.varobj = c; |
b6313243 | 1993 | VEC_safe_push (varobj_update_result, stack, &r); |
28335dcc | 1994 | } |
8b93c638 | 1995 | } |
b6313243 TT |
1996 | |
1997 | if (r.changed || r.type_changed) | |
1998 | VEC_safe_push (varobj_update_result, result, &r); | |
8b93c638 JM |
1999 | } |
2000 | ||
b6313243 TT |
2001 | VEC_free (varobj_update_result, stack); |
2002 | ||
f7f9ae2c | 2003 | return result; |
8b93c638 JM |
2004 | } |
2005 | \f | |
2006 | ||
2007 | /* Helper functions */ | |
2008 | ||
2009 | /* | |
2010 | * Variable object construction/destruction | |
2011 | */ | |
2012 | ||
2013 | static int | |
fba45db2 KB |
2014 | delete_variable (struct cpstack **resultp, struct varobj *var, |
2015 | int only_children_p) | |
8b93c638 JM |
2016 | { |
2017 | int delcount = 0; | |
2018 | ||
2019 | delete_variable_1 (resultp, &delcount, var, | |
2020 | only_children_p, 1 /* remove_from_parent_p */ ); | |
2021 | ||
2022 | return delcount; | |
2023 | } | |
2024 | ||
581e13c1 | 2025 | /* Delete the variable object VAR and its children. */ |
8b93c638 JM |
2026 | /* IMPORTANT NOTE: If we delete a variable which is a child |
2027 | and the parent is not removed we dump core. It must be always | |
581e13c1 | 2028 | initially called with remove_from_parent_p set. */ |
8b93c638 | 2029 | static void |
72330bd6 AC |
2030 | delete_variable_1 (struct cpstack **resultp, int *delcountp, |
2031 | struct varobj *var, int only_children_p, | |
2032 | int remove_from_parent_p) | |
8b93c638 | 2033 | { |
28335dcc | 2034 | int i; |
8b93c638 | 2035 | |
581e13c1 | 2036 | /* Delete any children of this variable, too. */ |
28335dcc VP |
2037 | for (i = 0; i < VEC_length (varobj_p, var->children); ++i) |
2038 | { | |
2039 | varobj_p child = VEC_index (varobj_p, var->children, i); | |
a109c7c1 | 2040 | |
214270ab VP |
2041 | if (!child) |
2042 | continue; | |
8b93c638 | 2043 | if (!remove_from_parent_p) |
28335dcc VP |
2044 | child->parent = NULL; |
2045 | delete_variable_1 (resultp, delcountp, child, 0, only_children_p); | |
8b93c638 | 2046 | } |
28335dcc | 2047 | VEC_free (varobj_p, var->children); |
8b93c638 | 2048 | |
581e13c1 | 2049 | /* if we were called to delete only the children we are done here. */ |
8b93c638 JM |
2050 | if (only_children_p) |
2051 | return; | |
2052 | ||
581e13c1 | 2053 | /* Otherwise, add it to the list of deleted ones and proceed to do so. */ |
73a93a32 | 2054 | /* If the name is null, this is a temporary variable, that has not |
581e13c1 | 2055 | yet been installed, don't report it, it belongs to the caller... */ |
73a93a32 | 2056 | if (var->obj_name != NULL) |
8b93c638 | 2057 | { |
5b616ba1 | 2058 | cppush (resultp, xstrdup (var->obj_name)); |
8b93c638 JM |
2059 | *delcountp = *delcountp + 1; |
2060 | } | |
2061 | ||
581e13c1 | 2062 | /* If this variable has a parent, remove it from its parent's list. */ |
8b93c638 JM |
2063 | /* OPTIMIZATION: if the parent of this variable is also being deleted, |
2064 | (as indicated by remove_from_parent_p) we don't bother doing an | |
2065 | expensive list search to find the element to remove when we are | |
581e13c1 | 2066 | discarding the list afterwards. */ |
72330bd6 | 2067 | if ((remove_from_parent_p) && (var->parent != NULL)) |
8b93c638 | 2068 | { |
28335dcc | 2069 | VEC_replace (varobj_p, var->parent->children, var->index, NULL); |
8b93c638 | 2070 | } |
72330bd6 | 2071 | |
73a93a32 JI |
2072 | if (var->obj_name != NULL) |
2073 | uninstall_variable (var); | |
8b93c638 | 2074 | |
581e13c1 | 2075 | /* Free memory associated with this variable. */ |
8b93c638 JM |
2076 | free_variable (var); |
2077 | } | |
2078 | ||
581e13c1 | 2079 | /* Install the given variable VAR with the object name VAR->OBJ_NAME. */ |
8b93c638 | 2080 | static int |
fba45db2 | 2081 | install_variable (struct varobj *var) |
8b93c638 JM |
2082 | { |
2083 | struct vlist *cv; | |
2084 | struct vlist *newvl; | |
2085 | const char *chp; | |
2086 | unsigned int index = 0; | |
2087 | unsigned int i = 1; | |
2088 | ||
2089 | for (chp = var->obj_name; *chp; chp++) | |
2090 | { | |
2091 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
2092 | } | |
2093 | ||
2094 | cv = *(varobj_table + index); | |
2095 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
2096 | cv = cv->next; | |
2097 | ||
2098 | if (cv != NULL) | |
8a3fe4f8 | 2099 | error (_("Duplicate variable object name")); |
8b93c638 | 2100 | |
581e13c1 | 2101 | /* Add varobj to hash table. */ |
8b93c638 JM |
2102 | newvl = xmalloc (sizeof (struct vlist)); |
2103 | newvl->next = *(varobj_table + index); | |
2104 | newvl->var = var; | |
2105 | *(varobj_table + index) = newvl; | |
2106 | ||
581e13c1 | 2107 | /* If root, add varobj to root list. */ |
b2c2bd75 | 2108 | if (is_root_p (var)) |
8b93c638 | 2109 | { |
581e13c1 | 2110 | /* Add to list of root variables. */ |
8b93c638 JM |
2111 | if (rootlist == NULL) |
2112 | var->root->next = NULL; | |
2113 | else | |
2114 | var->root->next = rootlist; | |
2115 | rootlist = var->root; | |
8b93c638 JM |
2116 | } |
2117 | ||
2118 | return 1; /* OK */ | |
2119 | } | |
2120 | ||
581e13c1 | 2121 | /* Unistall the object VAR. */ |
8b93c638 | 2122 | static void |
fba45db2 | 2123 | uninstall_variable (struct varobj *var) |
8b93c638 JM |
2124 | { |
2125 | struct vlist *cv; | |
2126 | struct vlist *prev; | |
2127 | struct varobj_root *cr; | |
2128 | struct varobj_root *prer; | |
2129 | const char *chp; | |
2130 | unsigned int index = 0; | |
2131 | unsigned int i = 1; | |
2132 | ||
581e13c1 | 2133 | /* Remove varobj from hash table. */ |
8b93c638 JM |
2134 | for (chp = var->obj_name; *chp; chp++) |
2135 | { | |
2136 | index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE; | |
2137 | } | |
2138 | ||
2139 | cv = *(varobj_table + index); | |
2140 | prev = NULL; | |
2141 | while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0)) | |
2142 | { | |
2143 | prev = cv; | |
2144 | cv = cv->next; | |
2145 | } | |
2146 | ||
2147 | if (varobjdebug) | |
2148 | fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name); | |
2149 | ||
2150 | if (cv == NULL) | |
2151 | { | |
72330bd6 AC |
2152 | warning |
2153 | ("Assertion failed: Could not find variable object \"%s\" to delete", | |
2154 | var->obj_name); | |
8b93c638 JM |
2155 | return; |
2156 | } | |
2157 | ||
2158 | if (prev == NULL) | |
2159 | *(varobj_table + index) = cv->next; | |
2160 | else | |
2161 | prev->next = cv->next; | |
2162 | ||
b8c9b27d | 2163 | xfree (cv); |
8b93c638 | 2164 | |
581e13c1 | 2165 | /* If root, remove varobj from root list. */ |
b2c2bd75 | 2166 | if (is_root_p (var)) |
8b93c638 | 2167 | { |
581e13c1 | 2168 | /* Remove from list of root variables. */ |
8b93c638 JM |
2169 | if (rootlist == var->root) |
2170 | rootlist = var->root->next; | |
2171 | else | |
2172 | { | |
2173 | prer = NULL; | |
2174 | cr = rootlist; | |
2175 | while ((cr != NULL) && (cr->rootvar != var)) | |
2176 | { | |
2177 | prer = cr; | |
2178 | cr = cr->next; | |
2179 | } | |
2180 | if (cr == NULL) | |
2181 | { | |
8f7e195f JB |
2182 | warning (_("Assertion failed: Could not find " |
2183 | "varobj \"%s\" in root list"), | |
3e43a32a | 2184 | var->obj_name); |
8b93c638 JM |
2185 | return; |
2186 | } | |
2187 | if (prer == NULL) | |
2188 | rootlist = NULL; | |
2189 | else | |
2190 | prer->next = cr->next; | |
2191 | } | |
8b93c638 JM |
2192 | } |
2193 | ||
2194 | } | |
2195 | ||
581e13c1 | 2196 | /* Create and install a child of the parent of the given name. */ |
8b93c638 | 2197 | static struct varobj * |
fba45db2 | 2198 | create_child (struct varobj *parent, int index, char *name) |
b6313243 TT |
2199 | { |
2200 | return create_child_with_value (parent, index, name, | |
2201 | value_of_child (parent, index)); | |
2202 | } | |
2203 | ||
2204 | static struct varobj * | |
2205 | create_child_with_value (struct varobj *parent, int index, const char *name, | |
2206 | struct value *value) | |
8b93c638 JM |
2207 | { |
2208 | struct varobj *child; | |
2209 | char *childs_name; | |
2210 | ||
2211 | child = new_variable (); | |
2212 | ||
581e13c1 | 2213 | /* Name is allocated by name_of_child. */ |
b6313243 TT |
2214 | /* FIXME: xstrdup should not be here. */ |
2215 | child->name = xstrdup (name); | |
8b93c638 | 2216 | child->index = index; |
8b93c638 JM |
2217 | child->parent = parent; |
2218 | child->root = parent->root; | |
b435e160 | 2219 | childs_name = xstrprintf ("%s.%s", parent->obj_name, name); |
8b93c638 JM |
2220 | child->obj_name = childs_name; |
2221 | install_variable (child); | |
2222 | ||
acd65feb VP |
2223 | /* Compute the type of the child. Must do this before |
2224 | calling install_new_value. */ | |
2225 | if (value != NULL) | |
2226 | /* If the child had no evaluation errors, var->value | |
581e13c1 | 2227 | will be non-NULL and contain a valid type. */ |
acd65feb VP |
2228 | child->type = value_type (value); |
2229 | else | |
581e13c1 | 2230 | /* Otherwise, we must compute the type. */ |
acd65feb VP |
2231 | child->type = (*child->root->lang->type_of_child) (child->parent, |
2232 | child->index); | |
2233 | install_new_value (child, value, 1); | |
2234 | ||
8b93c638 JM |
2235 | return child; |
2236 | } | |
8b93c638 JM |
2237 | \f |
2238 | ||
2239 | /* | |
2240 | * Miscellaneous utility functions. | |
2241 | */ | |
2242 | ||
581e13c1 | 2243 | /* Allocate memory and initialize a new variable. */ |
8b93c638 JM |
2244 | static struct varobj * |
2245 | new_variable (void) | |
2246 | { | |
2247 | struct varobj *var; | |
2248 | ||
2249 | var = (struct varobj *) xmalloc (sizeof (struct varobj)); | |
2250 | var->name = NULL; | |
02142340 | 2251 | var->path_expr = NULL; |
8b93c638 JM |
2252 | var->obj_name = NULL; |
2253 | var->index = -1; | |
2254 | var->type = NULL; | |
2255 | var->value = NULL; | |
8b93c638 JM |
2256 | var->num_children = -1; |
2257 | var->parent = NULL; | |
2258 | var->children = NULL; | |
2259 | var->format = 0; | |
2260 | var->root = NULL; | |
fb9b6b35 | 2261 | var->updated = 0; |
85265413 | 2262 | var->print_value = NULL; |
25d5ea92 VP |
2263 | var->frozen = 0; |
2264 | var->not_fetched = 0; | |
b6313243 | 2265 | var->children_requested = 0; |
0cc7d26f TT |
2266 | var->from = -1; |
2267 | var->to = -1; | |
2268 | var->constructor = 0; | |
b6313243 | 2269 | var->pretty_printer = 0; |
0cc7d26f TT |
2270 | var->child_iter = 0; |
2271 | var->saved_item = 0; | |
8b93c638 JM |
2272 | |
2273 | return var; | |
2274 | } | |
2275 | ||
581e13c1 | 2276 | /* Allocate memory and initialize a new root variable. */ |
8b93c638 JM |
2277 | static struct varobj * |
2278 | new_root_variable (void) | |
2279 | { | |
2280 | struct varobj *var = new_variable (); | |
a109c7c1 | 2281 | |
3e43a32a | 2282 | var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root)); |
8b93c638 JM |
2283 | var->root->lang = NULL; |
2284 | var->root->exp = NULL; | |
2285 | var->root->valid_block = NULL; | |
7a424e99 | 2286 | var->root->frame = null_frame_id; |
a5defcdc | 2287 | var->root->floating = 0; |
8b93c638 | 2288 | var->root->rootvar = NULL; |
8756216b | 2289 | var->root->is_valid = 1; |
8b93c638 JM |
2290 | |
2291 | return var; | |
2292 | } | |
2293 | ||
581e13c1 | 2294 | /* Free any allocated memory associated with VAR. */ |
8b93c638 | 2295 | static void |
fba45db2 | 2296 | free_variable (struct varobj *var) |
8b93c638 | 2297 | { |
d452c4bc UW |
2298 | #if HAVE_PYTHON |
2299 | if (var->pretty_printer) | |
2300 | { | |
2301 | struct cleanup *cleanup = varobj_ensure_python_env (var); | |
0cc7d26f TT |
2302 | Py_XDECREF (var->constructor); |
2303 | Py_XDECREF (var->pretty_printer); | |
2304 | Py_XDECREF (var->child_iter); | |
2305 | Py_XDECREF (var->saved_item); | |
d452c4bc UW |
2306 | do_cleanups (cleanup); |
2307 | } | |
2308 | #endif | |
2309 | ||
36746093 JK |
2310 | value_free (var->value); |
2311 | ||
581e13c1 | 2312 | /* Free the expression if this is a root variable. */ |
b2c2bd75 | 2313 | if (is_root_p (var)) |
8b93c638 | 2314 | { |
3038237c | 2315 | xfree (var->root->exp); |
8038e1e2 | 2316 | xfree (var->root); |
8b93c638 JM |
2317 | } |
2318 | ||
8038e1e2 AC |
2319 | xfree (var->name); |
2320 | xfree (var->obj_name); | |
85265413 | 2321 | xfree (var->print_value); |
02142340 | 2322 | xfree (var->path_expr); |
8038e1e2 | 2323 | xfree (var); |
8b93c638 JM |
2324 | } |
2325 | ||
74b7792f AC |
2326 | static void |
2327 | do_free_variable_cleanup (void *var) | |
2328 | { | |
2329 | free_variable (var); | |
2330 | } | |
2331 | ||
2332 | static struct cleanup * | |
2333 | make_cleanup_free_variable (struct varobj *var) | |
2334 | { | |
2335 | return make_cleanup (do_free_variable_cleanup, var); | |
2336 | } | |
2337 | ||
581e13c1 | 2338 | /* This returns the type of the variable. It also skips past typedefs |
6766a268 | 2339 | to return the real type of the variable. |
94b66fa7 KS |
2340 | |
2341 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
581e13c1 | 2342 | except within get_target_type and get_type. */ |
8b93c638 | 2343 | static struct type * |
fba45db2 | 2344 | get_type (struct varobj *var) |
8b93c638 JM |
2345 | { |
2346 | struct type *type; | |
8b93c638 | 2347 | |
a109c7c1 | 2348 | type = var->type; |
6766a268 DJ |
2349 | if (type != NULL) |
2350 | type = check_typedef (type); | |
8b93c638 JM |
2351 | |
2352 | return type; | |
2353 | } | |
2354 | ||
6e2a9270 VP |
2355 | /* Return the type of the value that's stored in VAR, |
2356 | or that would have being stored there if the | |
581e13c1 | 2357 | value were accessible. |
6e2a9270 VP |
2358 | |
2359 | This differs from VAR->type in that VAR->type is always | |
2360 | the true type of the expession in the source language. | |
2361 | The return value of this function is the type we're | |
2362 | actually storing in varobj, and using for displaying | |
2363 | the values and for comparing previous and new values. | |
2364 | ||
2365 | For example, top-level references are always stripped. */ | |
2366 | static struct type * | |
2367 | get_value_type (struct varobj *var) | |
2368 | { | |
2369 | struct type *type; | |
2370 | ||
2371 | if (var->value) | |
2372 | type = value_type (var->value); | |
2373 | else | |
2374 | type = var->type; | |
2375 | ||
2376 | type = check_typedef (type); | |
2377 | ||
2378 | if (TYPE_CODE (type) == TYPE_CODE_REF) | |
2379 | type = get_target_type (type); | |
2380 | ||
2381 | type = check_typedef (type); | |
2382 | ||
2383 | return type; | |
2384 | } | |
2385 | ||
8b93c638 | 2386 | /* This returns the target type (or NULL) of TYPE, also skipping |
94b66fa7 KS |
2387 | past typedefs, just like get_type (). |
2388 | ||
2389 | NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file | |
581e13c1 | 2390 | except within get_target_type and get_type. */ |
8b93c638 | 2391 | static struct type * |
fba45db2 | 2392 | get_target_type (struct type *type) |
8b93c638 JM |
2393 | { |
2394 | if (type != NULL) | |
2395 | { | |
2396 | type = TYPE_TARGET_TYPE (type); | |
6766a268 DJ |
2397 | if (type != NULL) |
2398 | type = check_typedef (type); | |
8b93c638 JM |
2399 | } |
2400 | ||
2401 | return type; | |
2402 | } | |
2403 | ||
2404 | /* What is the default display for this variable? We assume that | |
581e13c1 | 2405 | everything is "natural". Any exceptions? */ |
8b93c638 | 2406 | static enum varobj_display_formats |
fba45db2 | 2407 | variable_default_display (struct varobj *var) |
8b93c638 JM |
2408 | { |
2409 | return FORMAT_NATURAL; | |
2410 | } | |
2411 | ||
581e13c1 | 2412 | /* FIXME: The following should be generic for any pointer. */ |
8b93c638 | 2413 | static void |
fba45db2 | 2414 | cppush (struct cpstack **pstack, char *name) |
8b93c638 JM |
2415 | { |
2416 | struct cpstack *s; | |
2417 | ||
2418 | s = (struct cpstack *) xmalloc (sizeof (struct cpstack)); | |
2419 | s->name = name; | |
2420 | s->next = *pstack; | |
2421 | *pstack = s; | |
2422 | } | |
2423 | ||
581e13c1 | 2424 | /* FIXME: The following should be generic for any pointer. */ |
8b93c638 | 2425 | static char * |
fba45db2 | 2426 | cppop (struct cpstack **pstack) |
8b93c638 JM |
2427 | { |
2428 | struct cpstack *s; | |
2429 | char *v; | |
2430 | ||
2431 | if ((*pstack)->name == NULL && (*pstack)->next == NULL) | |
2432 | return NULL; | |
2433 | ||
2434 | s = *pstack; | |
2435 | v = s->name; | |
2436 | *pstack = (*pstack)->next; | |
b8c9b27d | 2437 | xfree (s); |
8b93c638 JM |
2438 | |
2439 | return v; | |
2440 | } | |
2441 | \f | |
2442 | /* | |
2443 | * Language-dependencies | |
2444 | */ | |
2445 | ||
2446 | /* Common entry points */ | |
2447 | ||
581e13c1 | 2448 | /* Get the language of variable VAR. */ |
8b93c638 | 2449 | static enum varobj_languages |
fba45db2 | 2450 | variable_language (struct varobj *var) |
8b93c638 JM |
2451 | { |
2452 | enum varobj_languages lang; | |
2453 | ||
2454 | switch (var->root->exp->language_defn->la_language) | |
2455 | { | |
2456 | default: | |
2457 | case language_c: | |
2458 | lang = vlang_c; | |
2459 | break; | |
2460 | case language_cplus: | |
2461 | lang = vlang_cplus; | |
2462 | break; | |
2463 | case language_java: | |
2464 | lang = vlang_java; | |
2465 | break; | |
40591b7d JCD |
2466 | case language_ada: |
2467 | lang = vlang_ada; | |
2468 | break; | |
8b93c638 JM |
2469 | } |
2470 | ||
2471 | return lang; | |
2472 | } | |
2473 | ||
2474 | /* Return the number of children for a given variable. | |
2475 | The result of this function is defined by the language | |
581e13c1 | 2476 | implementation. The number of children returned by this function |
8b93c638 | 2477 | is the number of children that the user will see in the variable |
581e13c1 | 2478 | display. */ |
8b93c638 | 2479 | static int |
fba45db2 | 2480 | number_of_children (struct varobj *var) |
8b93c638 | 2481 | { |
82ae4854 | 2482 | return (*var->root->lang->number_of_children) (var); |
8b93c638 JM |
2483 | } |
2484 | ||
3e43a32a | 2485 | /* What is the expression for the root varobj VAR? Returns a malloc'd |
581e13c1 | 2486 | string. */ |
8b93c638 | 2487 | static char * |
fba45db2 | 2488 | name_of_variable (struct varobj *var) |
8b93c638 JM |
2489 | { |
2490 | return (*var->root->lang->name_of_variable) (var); | |
2491 | } | |
2492 | ||
3e43a32a | 2493 | /* What is the name of the INDEX'th child of VAR? Returns a malloc'd |
581e13c1 | 2494 | string. */ |
8b93c638 | 2495 | static char * |
fba45db2 | 2496 | name_of_child (struct varobj *var, int index) |
8b93c638 JM |
2497 | { |
2498 | return (*var->root->lang->name_of_child) (var, index); | |
2499 | } | |
2500 | ||
a5defcdc VP |
2501 | /* What is the ``struct value *'' of the root variable VAR? |
2502 | For floating variable object, evaluation can get us a value | |
2503 | of different type from what is stored in varobj already. In | |
2504 | that case: | |
2505 | - *type_changed will be set to 1 | |
2506 | - old varobj will be freed, and new one will be | |
2507 | created, with the same name. | |
2508 | - *var_handle will be set to the new varobj | |
2509 | Otherwise, *type_changed will be set to 0. */ | |
30b28db1 | 2510 | static struct value * |
fba45db2 | 2511 | value_of_root (struct varobj **var_handle, int *type_changed) |
8b93c638 | 2512 | { |
73a93a32 JI |
2513 | struct varobj *var; |
2514 | ||
2515 | if (var_handle == NULL) | |
2516 | return NULL; | |
2517 | ||
2518 | var = *var_handle; | |
2519 | ||
2520 | /* This should really be an exception, since this should | |
581e13c1 | 2521 | only get called with a root variable. */ |
73a93a32 | 2522 | |
b2c2bd75 | 2523 | if (!is_root_p (var)) |
73a93a32 JI |
2524 | return NULL; |
2525 | ||
a5defcdc | 2526 | if (var->root->floating) |
73a93a32 JI |
2527 | { |
2528 | struct varobj *tmp_var; | |
2529 | char *old_type, *new_type; | |
6225abfa | 2530 | |
73a93a32 JI |
2531 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, |
2532 | USE_SELECTED_FRAME); | |
2533 | if (tmp_var == NULL) | |
2534 | { | |
2535 | return NULL; | |
2536 | } | |
6225abfa | 2537 | old_type = varobj_get_type (var); |
73a93a32 | 2538 | new_type = varobj_get_type (tmp_var); |
72330bd6 | 2539 | if (strcmp (old_type, new_type) == 0) |
73a93a32 | 2540 | { |
fcacd99f VP |
2541 | /* The expression presently stored inside var->root->exp |
2542 | remembers the locations of local variables relatively to | |
2543 | the frame where the expression was created (in DWARF location | |
2544 | button, for example). Naturally, those locations are not | |
2545 | correct in other frames, so update the expression. */ | |
2546 | ||
2547 | struct expression *tmp_exp = var->root->exp; | |
a109c7c1 | 2548 | |
fcacd99f VP |
2549 | var->root->exp = tmp_var->root->exp; |
2550 | tmp_var->root->exp = tmp_exp; | |
2551 | ||
73a93a32 JI |
2552 | varobj_delete (tmp_var, NULL, 0); |
2553 | *type_changed = 0; | |
2554 | } | |
2555 | else | |
2556 | { | |
1b36a34b | 2557 | tmp_var->obj_name = xstrdup (var->obj_name); |
0cc7d26f TT |
2558 | tmp_var->from = var->from; |
2559 | tmp_var->to = var->to; | |
a5defcdc VP |
2560 | varobj_delete (var, NULL, 0); |
2561 | ||
73a93a32 JI |
2562 | install_variable (tmp_var); |
2563 | *var_handle = tmp_var; | |
705da579 | 2564 | var = *var_handle; |
73a93a32 JI |
2565 | *type_changed = 1; |
2566 | } | |
74dddad3 MS |
2567 | xfree (old_type); |
2568 | xfree (new_type); | |
73a93a32 JI |
2569 | } |
2570 | else | |
2571 | { | |
2572 | *type_changed = 0; | |
2573 | } | |
2574 | ||
2575 | return (*var->root->lang->value_of_root) (var_handle); | |
8b93c638 JM |
2576 | } |
2577 | ||
581e13c1 | 2578 | /* What is the ``struct value *'' for the INDEX'th child of PARENT? */ |
30b28db1 | 2579 | static struct value * |
fba45db2 | 2580 | value_of_child (struct varobj *parent, int index) |
8b93c638 | 2581 | { |
30b28db1 | 2582 | struct value *value; |
8b93c638 JM |
2583 | |
2584 | value = (*parent->root->lang->value_of_child) (parent, index); | |
2585 | ||
8b93c638 JM |
2586 | return value; |
2587 | } | |
2588 | ||
581e13c1 | 2589 | /* GDB already has a command called "value_of_variable". Sigh. */ |
8b93c638 | 2590 | static char * |
de051565 | 2591 | my_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 2592 | { |
8756216b | 2593 | if (var->root->is_valid) |
0cc7d26f TT |
2594 | { |
2595 | if (var->pretty_printer) | |
2596 | return value_get_print_value (var->value, var->format, var); | |
2597 | return (*var->root->lang->value_of_variable) (var, format); | |
2598 | } | |
8756216b DP |
2599 | else |
2600 | return NULL; | |
8b93c638 JM |
2601 | } |
2602 | ||
85265413 | 2603 | static char * |
b6313243 | 2604 | value_get_print_value (struct value *value, enum varobj_display_formats format, |
d452c4bc | 2605 | struct varobj *var) |
85265413 | 2606 | { |
57e66780 | 2607 | struct ui_file *stb; |
621c8364 | 2608 | struct cleanup *old_chain; |
fbb8f299 | 2609 | gdb_byte *thevalue = NULL; |
79a45b7d | 2610 | struct value_print_options opts; |
be759fcf PM |
2611 | struct type *type = NULL; |
2612 | long len = 0; | |
2613 | char *encoding = NULL; | |
2614 | struct gdbarch *gdbarch = NULL; | |
3a182a69 JK |
2615 | /* Initialize it just to avoid a GCC false warning. */ |
2616 | CORE_ADDR str_addr = 0; | |
09ca9e2e | 2617 | int string_print = 0; |
57e66780 DJ |
2618 | |
2619 | if (value == NULL) | |
2620 | return NULL; | |
2621 | ||
621c8364 TT |
2622 | stb = mem_fileopen (); |
2623 | old_chain = make_cleanup_ui_file_delete (stb); | |
2624 | ||
be759fcf | 2625 | gdbarch = get_type_arch (value_type (value)); |
b6313243 TT |
2626 | #if HAVE_PYTHON |
2627 | { | |
d452c4bc UW |
2628 | PyObject *value_formatter = var->pretty_printer; |
2629 | ||
09ca9e2e TT |
2630 | varobj_ensure_python_env (var); |
2631 | ||
0cc7d26f | 2632 | if (value_formatter) |
b6313243 | 2633 | { |
0cc7d26f TT |
2634 | /* First check to see if we have any children at all. If so, |
2635 | we simply return {...}. */ | |
2636 | if (dynamic_varobj_has_child_method (var)) | |
621c8364 TT |
2637 | { |
2638 | do_cleanups (old_chain); | |
2639 | return xstrdup ("{...}"); | |
2640 | } | |
b6313243 | 2641 | |
0cc7d26f | 2642 | if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst)) |
b6313243 | 2643 | { |
0cc7d26f | 2644 | struct value *replacement; |
0cc7d26f TT |
2645 | PyObject *output = NULL; |
2646 | ||
0cc7d26f | 2647 | output = apply_varobj_pretty_printer (value_formatter, |
621c8364 TT |
2648 | &replacement, |
2649 | stb); | |
00bd41d6 PM |
2650 | |
2651 | /* If we have string like output ... */ | |
0cc7d26f TT |
2652 | if (output) |
2653 | { | |
09ca9e2e TT |
2654 | make_cleanup_py_decref (output); |
2655 | ||
00bd41d6 PM |
2656 | /* If this is a lazy string, extract it. For lazy |
2657 | strings we always print as a string, so set | |
2658 | string_print. */ | |
be759fcf | 2659 | if (gdbpy_is_lazy_string (output)) |
0cc7d26f | 2660 | { |
09ca9e2e TT |
2661 | gdbpy_extract_lazy_string (output, &str_addr, &type, |
2662 | &len, &encoding); | |
2663 | make_cleanup (free_current_contents, &encoding); | |
be759fcf PM |
2664 | string_print = 1; |
2665 | } | |
2666 | else | |
2667 | { | |
00bd41d6 PM |
2668 | /* If it is a regular (non-lazy) string, extract |
2669 | it and copy the contents into THEVALUE. If the | |
2670 | hint says to print it as a string, set | |
2671 | string_print. Otherwise just return the extracted | |
2672 | string as a value. */ | |
2673 | ||
be759fcf PM |
2674 | PyObject *py_str |
2675 | = python_string_to_target_python_string (output); | |
a109c7c1 | 2676 | |
be759fcf PM |
2677 | if (py_str) |
2678 | { | |
2679 | char *s = PyString_AsString (py_str); | |
00bd41d6 PM |
2680 | char *hint; |
2681 | ||
2682 | hint = gdbpy_get_display_hint (value_formatter); | |
2683 | if (hint) | |
2684 | { | |
2685 | if (!strcmp (hint, "string")) | |
2686 | string_print = 1; | |
2687 | xfree (hint); | |
2688 | } | |
a109c7c1 | 2689 | |
be759fcf PM |
2690 | len = PyString_Size (py_str); |
2691 | thevalue = xmemdup (s, len + 1, len + 1); | |
2692 | type = builtin_type (gdbarch)->builtin_char; | |
2693 | Py_DECREF (py_str); | |
09ca9e2e TT |
2694 | |
2695 | if (!string_print) | |
2696 | { | |
2697 | do_cleanups (old_chain); | |
2698 | return thevalue; | |
2699 | } | |
2700 | ||
2701 | make_cleanup (xfree, thevalue); | |
be759fcf | 2702 | } |
8dc78533 JK |
2703 | else |
2704 | gdbpy_print_stack (); | |
0cc7d26f | 2705 | } |
0cc7d26f | 2706 | } |
00bd41d6 PM |
2707 | /* If the printer returned a replacement value, set VALUE |
2708 | to REPLACEMENT. If there is not a replacement value, | |
2709 | just use the value passed to this function. */ | |
0cc7d26f TT |
2710 | if (replacement) |
2711 | value = replacement; | |
b6313243 | 2712 | } |
b6313243 | 2713 | } |
b6313243 TT |
2714 | } |
2715 | #endif | |
2716 | ||
79a45b7d TT |
2717 | get_formatted_print_options (&opts, format_code[(int) format]); |
2718 | opts.deref_ref = 0; | |
b6313243 | 2719 | opts.raw = 1; |
00bd41d6 PM |
2720 | |
2721 | /* If the THEVALUE has contents, it is a regular string. */ | |
b6313243 | 2722 | if (thevalue) |
09ca9e2e TT |
2723 | LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts); |
2724 | else if (string_print) | |
00bd41d6 PM |
2725 | /* Otherwise, if string_print is set, and it is not a regular |
2726 | string, it is a lazy string. */ | |
09ca9e2e | 2727 | val_print_string (type, encoding, str_addr, len, stb, &opts); |
b6313243 | 2728 | else |
00bd41d6 | 2729 | /* All other cases. */ |
b6313243 | 2730 | common_val_print (value, stb, 0, &opts, current_language); |
00bd41d6 | 2731 | |
759ef836 | 2732 | thevalue = ui_file_xstrdup (stb, NULL); |
57e66780 | 2733 | |
85265413 NR |
2734 | do_cleanups (old_chain); |
2735 | return thevalue; | |
2736 | } | |
2737 | ||
340a7723 NR |
2738 | int |
2739 | varobj_editable_p (struct varobj *var) | |
2740 | { | |
2741 | struct type *type; | |
340a7723 NR |
2742 | |
2743 | if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value))) | |
2744 | return 0; | |
2745 | ||
2746 | type = get_value_type (var); | |
2747 | ||
2748 | switch (TYPE_CODE (type)) | |
2749 | { | |
2750 | case TYPE_CODE_STRUCT: | |
2751 | case TYPE_CODE_UNION: | |
2752 | case TYPE_CODE_ARRAY: | |
2753 | case TYPE_CODE_FUNC: | |
2754 | case TYPE_CODE_METHOD: | |
2755 | return 0; | |
2756 | break; | |
2757 | ||
2758 | default: | |
2759 | return 1; | |
2760 | break; | |
2761 | } | |
2762 | } | |
2763 | ||
acd65feb VP |
2764 | /* Return non-zero if changes in value of VAR |
2765 | must be detected and reported by -var-update. | |
2766 | Return zero is -var-update should never report | |
2767 | changes of such values. This makes sense for structures | |
2768 | (since the changes in children values will be reported separately), | |
2769 | or for artifical objects (like 'public' pseudo-field in C++). | |
2770 | ||
2771 | Return value of 0 means that gdb need not call value_fetch_lazy | |
2772 | for the value of this variable object. */ | |
8b93c638 | 2773 | static int |
b2c2bd75 | 2774 | varobj_value_is_changeable_p (struct varobj *var) |
8b93c638 JM |
2775 | { |
2776 | int r; | |
2777 | struct type *type; | |
2778 | ||
2779 | if (CPLUS_FAKE_CHILD (var)) | |
2780 | return 0; | |
2781 | ||
6e2a9270 | 2782 | type = get_value_type (var); |
8b93c638 JM |
2783 | |
2784 | switch (TYPE_CODE (type)) | |
2785 | { | |
72330bd6 AC |
2786 | case TYPE_CODE_STRUCT: |
2787 | case TYPE_CODE_UNION: | |
2788 | case TYPE_CODE_ARRAY: | |
2789 | r = 0; | |
2790 | break; | |
8b93c638 | 2791 | |
72330bd6 AC |
2792 | default: |
2793 | r = 1; | |
8b93c638 JM |
2794 | } |
2795 | ||
2796 | return r; | |
2797 | } | |
2798 | ||
5a413362 VP |
2799 | /* Return 1 if that varobj is floating, that is is always evaluated in the |
2800 | selected frame, and not bound to thread/frame. Such variable objects | |
2801 | are created using '@' as frame specifier to -var-create. */ | |
2802 | int | |
2803 | varobj_floating_p (struct varobj *var) | |
2804 | { | |
2805 | return var->root->floating; | |
2806 | } | |
2807 | ||
2024f65a VP |
2808 | /* Given the value and the type of a variable object, |
2809 | adjust the value and type to those necessary | |
2810 | for getting children of the variable object. | |
2811 | This includes dereferencing top-level references | |
2812 | to all types and dereferencing pointers to | |
581e13c1 | 2813 | structures. |
2024f65a | 2814 | |
581e13c1 | 2815 | Both TYPE and *TYPE should be non-null. VALUE |
2024f65a VP |
2816 | can be null if we want to only translate type. |
2817 | *VALUE can be null as well -- if the parent | |
581e13c1 | 2818 | value is not known. |
02142340 VP |
2819 | |
2820 | If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1 | |
b6313243 | 2821 | depending on whether pointer was dereferenced |
02142340 | 2822 | in this function. */ |
2024f65a VP |
2823 | static void |
2824 | adjust_value_for_child_access (struct value **value, | |
02142340 VP |
2825 | struct type **type, |
2826 | int *was_ptr) | |
2024f65a VP |
2827 | { |
2828 | gdb_assert (type && *type); | |
2829 | ||
02142340 VP |
2830 | if (was_ptr) |
2831 | *was_ptr = 0; | |
2832 | ||
2024f65a VP |
2833 | *type = check_typedef (*type); |
2834 | ||
2835 | /* The type of value stored in varobj, that is passed | |
2836 | to us, is already supposed to be | |
2837 | reference-stripped. */ | |
2838 | ||
2839 | gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF); | |
2840 | ||
2841 | /* Pointers to structures are treated just like | |
2842 | structures when accessing children. Don't | |
2843 | dererences pointers to other types. */ | |
2844 | if (TYPE_CODE (*type) == TYPE_CODE_PTR) | |
2845 | { | |
2846 | struct type *target_type = get_target_type (*type); | |
2847 | if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT | |
2848 | || TYPE_CODE (target_type) == TYPE_CODE_UNION) | |
2849 | { | |
2850 | if (value && *value) | |
3f4178d6 | 2851 | { |
8e7b59a5 | 2852 | volatile struct gdb_exception except; |
a109c7c1 | 2853 | |
8e7b59a5 KS |
2854 | TRY_CATCH (except, RETURN_MASK_ERROR) |
2855 | { | |
2856 | *value = value_ind (*value); | |
2857 | } | |
2858 | ||
2859 | if (except.reason < 0) | |
3f4178d6 DJ |
2860 | *value = NULL; |
2861 | } | |
2024f65a | 2862 | *type = target_type; |
02142340 VP |
2863 | if (was_ptr) |
2864 | *was_ptr = 1; | |
2024f65a VP |
2865 | } |
2866 | } | |
2867 | ||
2868 | /* The 'get_target_type' function calls check_typedef on | |
2869 | result, so we can immediately check type code. No | |
2870 | need to call check_typedef here. */ | |
2871 | } | |
2872 | ||
8b93c638 JM |
2873 | /* C */ |
2874 | static int | |
fba45db2 | 2875 | c_number_of_children (struct varobj *var) |
8b93c638 | 2876 | { |
2024f65a VP |
2877 | struct type *type = get_value_type (var); |
2878 | int children = 0; | |
8b93c638 | 2879 | struct type *target; |
8b93c638 | 2880 | |
02142340 | 2881 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 | 2882 | target = get_target_type (type); |
8b93c638 JM |
2883 | |
2884 | switch (TYPE_CODE (type)) | |
2885 | { | |
2886 | case TYPE_CODE_ARRAY: | |
2887 | if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0 | |
d78df370 | 2888 | && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type)) |
8b93c638 JM |
2889 | children = TYPE_LENGTH (type) / TYPE_LENGTH (target); |
2890 | else | |
74a44383 DJ |
2891 | /* If we don't know how many elements there are, don't display |
2892 | any. */ | |
2893 | children = 0; | |
8b93c638 JM |
2894 | break; |
2895 | ||
2896 | case TYPE_CODE_STRUCT: | |
2897 | case TYPE_CODE_UNION: | |
2898 | children = TYPE_NFIELDS (type); | |
2899 | break; | |
2900 | ||
2901 | case TYPE_CODE_PTR: | |
581e13c1 | 2902 | /* The type here is a pointer to non-struct. Typically, pointers |
2024f65a VP |
2903 | have one child, except for function ptrs, which have no children, |
2904 | and except for void*, as we don't know what to show. | |
2905 | ||
0755e6c1 FN |
2906 | We can show char* so we allow it to be dereferenced. If you decide |
2907 | to test for it, please mind that a little magic is necessary to | |
2908 | properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and | |
581e13c1 | 2909 | TYPE_NAME == "char". */ |
2024f65a VP |
2910 | if (TYPE_CODE (target) == TYPE_CODE_FUNC |
2911 | || TYPE_CODE (target) == TYPE_CODE_VOID) | |
2912 | children = 0; | |
2913 | else | |
2914 | children = 1; | |
8b93c638 JM |
2915 | break; |
2916 | ||
2917 | default: | |
581e13c1 | 2918 | /* Other types have no children. */ |
8b93c638 JM |
2919 | break; |
2920 | } | |
2921 | ||
2922 | return children; | |
2923 | } | |
2924 | ||
2925 | static char * | |
fba45db2 | 2926 | c_name_of_variable (struct varobj *parent) |
8b93c638 | 2927 | { |
1b36a34b | 2928 | return xstrdup (parent->name); |
8b93c638 JM |
2929 | } |
2930 | ||
bbec2603 VP |
2931 | /* Return the value of element TYPE_INDEX of a structure |
2932 | value VALUE. VALUE's type should be a structure, | |
581e13c1 | 2933 | or union, or a typedef to struct/union. |
bbec2603 VP |
2934 | |
2935 | Returns NULL if getting the value fails. Never throws. */ | |
2936 | static struct value * | |
2937 | value_struct_element_index (struct value *value, int type_index) | |
8b93c638 | 2938 | { |
bbec2603 VP |
2939 | struct value *result = NULL; |
2940 | volatile struct gdb_exception e; | |
bbec2603 | 2941 | struct type *type = value_type (value); |
a109c7c1 | 2942 | |
bbec2603 VP |
2943 | type = check_typedef (type); |
2944 | ||
2945 | gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
2946 | || TYPE_CODE (type) == TYPE_CODE_UNION); | |
8b93c638 | 2947 | |
bbec2603 VP |
2948 | TRY_CATCH (e, RETURN_MASK_ERROR) |
2949 | { | |
d6a843b5 | 2950 | if (field_is_static (&TYPE_FIELD (type, type_index))) |
bbec2603 VP |
2951 | result = value_static_field (type, type_index); |
2952 | else | |
2953 | result = value_primitive_field (value, 0, type_index, type); | |
2954 | } | |
2955 | if (e.reason < 0) | |
2956 | { | |
2957 | return NULL; | |
2958 | } | |
2959 | else | |
2960 | { | |
2961 | return result; | |
2962 | } | |
2963 | } | |
2964 | ||
2965 | /* Obtain the information about child INDEX of the variable | |
581e13c1 | 2966 | object PARENT. |
bbec2603 VP |
2967 | If CNAME is not null, sets *CNAME to the name of the child relative |
2968 | to the parent. | |
2969 | If CVALUE is not null, sets *CVALUE to the value of the child. | |
2970 | If CTYPE is not null, sets *CTYPE to the type of the child. | |
2971 | ||
2972 | If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding | |
2973 | information cannot be determined, set *CNAME, *CVALUE, or *CTYPE | |
2974 | to NULL. */ | |
2975 | static void | |
2976 | c_describe_child (struct varobj *parent, int index, | |
02142340 VP |
2977 | char **cname, struct value **cvalue, struct type **ctype, |
2978 | char **cfull_expression) | |
bbec2603 VP |
2979 | { |
2980 | struct value *value = parent->value; | |
2024f65a | 2981 | struct type *type = get_value_type (parent); |
02142340 VP |
2982 | char *parent_expression = NULL; |
2983 | int was_ptr; | |
8e7b59a5 | 2984 | volatile struct gdb_exception except; |
bbec2603 VP |
2985 | |
2986 | if (cname) | |
2987 | *cname = NULL; | |
2988 | if (cvalue) | |
2989 | *cvalue = NULL; | |
2990 | if (ctype) | |
2991 | *ctype = NULL; | |
02142340 VP |
2992 | if (cfull_expression) |
2993 | { | |
2994 | *cfull_expression = NULL; | |
2995 | parent_expression = varobj_get_path_expr (parent); | |
2996 | } | |
2997 | adjust_value_for_child_access (&value, &type, &was_ptr); | |
bbec2603 | 2998 | |
8b93c638 JM |
2999 | switch (TYPE_CODE (type)) |
3000 | { | |
3001 | case TYPE_CODE_ARRAY: | |
bbec2603 | 3002 | if (cname) |
3e43a32a MS |
3003 | *cname |
3004 | = xstrdup (int_string (index | |
3005 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)), | |
3006 | 10, 1, 0, 0)); | |
bbec2603 VP |
3007 | |
3008 | if (cvalue && value) | |
3009 | { | |
3010 | int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)); | |
a109c7c1 | 3011 | |
8e7b59a5 KS |
3012 | TRY_CATCH (except, RETURN_MASK_ERROR) |
3013 | { | |
3014 | *cvalue = value_subscript (value, real_index); | |
3015 | } | |
bbec2603 VP |
3016 | } |
3017 | ||
3018 | if (ctype) | |
3019 | *ctype = get_target_type (type); | |
3020 | ||
02142340 | 3021 | if (cfull_expression) |
43bbcdc2 PH |
3022 | *cfull_expression = |
3023 | xstrprintf ("(%s)[%s]", parent_expression, | |
3024 | int_string (index | |
3025 | + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)), | |
3026 | 10, 1, 0, 0)); | |
02142340 VP |
3027 | |
3028 | ||
8b93c638 JM |
3029 | break; |
3030 | ||
3031 | case TYPE_CODE_STRUCT: | |
3032 | case TYPE_CODE_UNION: | |
bbec2603 | 3033 | if (cname) |
1b36a34b | 3034 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); |
bbec2603 VP |
3035 | |
3036 | if (cvalue && value) | |
3037 | { | |
3038 | /* For C, varobj index is the same as type index. */ | |
3039 | *cvalue = value_struct_element_index (value, index); | |
3040 | } | |
3041 | ||
3042 | if (ctype) | |
3043 | *ctype = TYPE_FIELD_TYPE (type, index); | |
3044 | ||
02142340 VP |
3045 | if (cfull_expression) |
3046 | { | |
3047 | char *join = was_ptr ? "->" : "."; | |
a109c7c1 | 3048 | |
02142340 VP |
3049 | *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join, |
3050 | TYPE_FIELD_NAME (type, index)); | |
3051 | } | |
3052 | ||
8b93c638 JM |
3053 | break; |
3054 | ||
3055 | case TYPE_CODE_PTR: | |
bbec2603 VP |
3056 | if (cname) |
3057 | *cname = xstrprintf ("*%s", parent->name); | |
8b93c638 | 3058 | |
bbec2603 | 3059 | if (cvalue && value) |
3f4178d6 | 3060 | { |
8e7b59a5 KS |
3061 | TRY_CATCH (except, RETURN_MASK_ERROR) |
3062 | { | |
3063 | *cvalue = value_ind (value); | |
3064 | } | |
a109c7c1 | 3065 | |
8e7b59a5 | 3066 | if (except.reason < 0) |
3f4178d6 DJ |
3067 | *cvalue = NULL; |
3068 | } | |
bbec2603 | 3069 | |
2024f65a VP |
3070 | /* Don't use get_target_type because it calls |
3071 | check_typedef and here, we want to show the true | |
3072 | declared type of the variable. */ | |
bbec2603 | 3073 | if (ctype) |
2024f65a | 3074 | *ctype = TYPE_TARGET_TYPE (type); |
02142340 VP |
3075 | |
3076 | if (cfull_expression) | |
3077 | *cfull_expression = xstrprintf ("*(%s)", parent_expression); | |
bbec2603 | 3078 | |
8b93c638 JM |
3079 | break; |
3080 | ||
3081 | default: | |
581e13c1 | 3082 | /* This should not happen. */ |
bbec2603 VP |
3083 | if (cname) |
3084 | *cname = xstrdup ("???"); | |
02142340 VP |
3085 | if (cfull_expression) |
3086 | *cfull_expression = xstrdup ("???"); | |
581e13c1 | 3087 | /* Don't set value and type, we don't know then. */ |
8b93c638 | 3088 | } |
bbec2603 | 3089 | } |
8b93c638 | 3090 | |
bbec2603 VP |
3091 | static char * |
3092 | c_name_of_child (struct varobj *parent, int index) | |
3093 | { | |
3094 | char *name; | |
a109c7c1 | 3095 | |
02142340 | 3096 | c_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
3097 | return name; |
3098 | } | |
3099 | ||
02142340 VP |
3100 | static char * |
3101 | c_path_expr_of_child (struct varobj *child) | |
3102 | { | |
3103 | c_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
3104 | &child->path_expr); | |
3105 | return child->path_expr; | |
3106 | } | |
3107 | ||
c5b48eac VP |
3108 | /* If frame associated with VAR can be found, switch |
3109 | to it and return 1. Otherwise, return 0. */ | |
3110 | static int | |
3111 | check_scope (struct varobj *var) | |
3112 | { | |
3113 | struct frame_info *fi; | |
3114 | int scope; | |
3115 | ||
3116 | fi = frame_find_by_id (var->root->frame); | |
3117 | scope = fi != NULL; | |
3118 | ||
3119 | if (fi) | |
3120 | { | |
3121 | CORE_ADDR pc = get_frame_pc (fi); | |
a109c7c1 | 3122 | |
c5b48eac VP |
3123 | if (pc < BLOCK_START (var->root->valid_block) || |
3124 | pc >= BLOCK_END (var->root->valid_block)) | |
3125 | scope = 0; | |
3126 | else | |
3127 | select_frame (fi); | |
3128 | } | |
3129 | return scope; | |
3130 | } | |
3131 | ||
30b28db1 | 3132 | static struct value * |
fba45db2 | 3133 | c_value_of_root (struct varobj **var_handle) |
8b93c638 | 3134 | { |
5e572bb4 | 3135 | struct value *new_val = NULL; |
73a93a32 | 3136 | struct varobj *var = *var_handle; |
c5b48eac | 3137 | int within_scope = 0; |
6208b47d VP |
3138 | struct cleanup *back_to; |
3139 | ||
581e13c1 | 3140 | /* Only root variables can be updated... */ |
b2c2bd75 | 3141 | if (!is_root_p (var)) |
581e13c1 | 3142 | /* Not a root var. */ |
73a93a32 JI |
3143 | return NULL; |
3144 | ||
4f8d22e3 | 3145 | back_to = make_cleanup_restore_current_thread (); |
72330bd6 | 3146 | |
581e13c1 | 3147 | /* Determine whether the variable is still around. */ |
a5defcdc | 3148 | if (var->root->valid_block == NULL || var->root->floating) |
8b93c638 | 3149 | within_scope = 1; |
c5b48eac VP |
3150 | else if (var->root->thread_id == 0) |
3151 | { | |
3152 | /* The program was single-threaded when the variable object was | |
3153 | created. Technically, it's possible that the program became | |
3154 | multi-threaded since then, but we don't support such | |
3155 | scenario yet. */ | |
3156 | within_scope = check_scope (var); | |
3157 | } | |
8b93c638 JM |
3158 | else |
3159 | { | |
c5b48eac VP |
3160 | ptid_t ptid = thread_id_to_pid (var->root->thread_id); |
3161 | if (in_thread_list (ptid)) | |
d2353924 | 3162 | { |
c5b48eac VP |
3163 | switch_to_thread (ptid); |
3164 | within_scope = check_scope (var); | |
3165 | } | |
8b93c638 | 3166 | } |
72330bd6 | 3167 | |
8b93c638 JM |
3168 | if (within_scope) |
3169 | { | |
8e7b59a5 KS |
3170 | volatile struct gdb_exception except; |
3171 | ||
73a93a32 | 3172 | /* We need to catch errors here, because if evaluate |
85d93f1d | 3173 | expression fails we want to just return NULL. */ |
8e7b59a5 KS |
3174 | TRY_CATCH (except, RETURN_MASK_ERROR) |
3175 | { | |
3176 | new_val = evaluate_expression (var->root->exp); | |
3177 | } | |
3178 | ||
8b93c638 JM |
3179 | return new_val; |
3180 | } | |
3181 | ||
6208b47d VP |
3182 | do_cleanups (back_to); |
3183 | ||
8b93c638 JM |
3184 | return NULL; |
3185 | } | |
3186 | ||
30b28db1 | 3187 | static struct value * |
fba45db2 | 3188 | c_value_of_child (struct varobj *parent, int index) |
8b93c638 | 3189 | { |
bbec2603 | 3190 | struct value *value = NULL; |
8b93c638 | 3191 | |
a109c7c1 | 3192 | c_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
3193 | return value; |
3194 | } | |
3195 | ||
3196 | static struct type * | |
fba45db2 | 3197 | c_type_of_child (struct varobj *parent, int index) |
8b93c638 | 3198 | { |
bbec2603 | 3199 | struct type *type = NULL; |
a109c7c1 | 3200 | |
02142340 | 3201 | c_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
3202 | return type; |
3203 | } | |
3204 | ||
8b93c638 | 3205 | static char * |
de051565 | 3206 | c_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 3207 | { |
14b3d9c9 JB |
3208 | /* BOGUS: if val_print sees a struct/class, or a reference to one, |
3209 | it will print out its children instead of "{...}". So we need to | |
3210 | catch that case explicitly. */ | |
3211 | struct type *type = get_type (var); | |
e64d9b3d | 3212 | |
b6313243 TT |
3213 | /* If we have a custom formatter, return whatever string it has |
3214 | produced. */ | |
3215 | if (var->pretty_printer && var->print_value) | |
3216 | return xstrdup (var->print_value); | |
3217 | ||
581e13c1 | 3218 | /* Strip top-level references. */ |
14b3d9c9 JB |
3219 | while (TYPE_CODE (type) == TYPE_CODE_REF) |
3220 | type = check_typedef (TYPE_TARGET_TYPE (type)); | |
3221 | ||
3222 | switch (TYPE_CODE (type)) | |
8b93c638 JM |
3223 | { |
3224 | case TYPE_CODE_STRUCT: | |
3225 | case TYPE_CODE_UNION: | |
3226 | return xstrdup ("{...}"); | |
3227 | /* break; */ | |
3228 | ||
3229 | case TYPE_CODE_ARRAY: | |
3230 | { | |
e64d9b3d | 3231 | char *number; |
a109c7c1 | 3232 | |
b435e160 | 3233 | number = xstrprintf ("[%d]", var->num_children); |
e64d9b3d | 3234 | return (number); |
8b93c638 JM |
3235 | } |
3236 | /* break; */ | |
3237 | ||
3238 | default: | |
3239 | { | |
575bbeb6 KS |
3240 | if (var->value == NULL) |
3241 | { | |
3242 | /* This can happen if we attempt to get the value of a struct | |
581e13c1 MS |
3243 | member when the parent is an invalid pointer. This is an |
3244 | error condition, so we should tell the caller. */ | |
575bbeb6 KS |
3245 | return NULL; |
3246 | } | |
3247 | else | |
3248 | { | |
25d5ea92 VP |
3249 | if (var->not_fetched && value_lazy (var->value)) |
3250 | /* Frozen variable and no value yet. We don't | |
3251 | implicitly fetch the value. MI response will | |
3252 | use empty string for the value, which is OK. */ | |
3253 | return NULL; | |
3254 | ||
b2c2bd75 | 3255 | gdb_assert (varobj_value_is_changeable_p (var)); |
acd65feb | 3256 | gdb_assert (!value_lazy (var->value)); |
de051565 MK |
3257 | |
3258 | /* If the specified format is the current one, | |
581e13c1 | 3259 | we can reuse print_value. */ |
de051565 MK |
3260 | if (format == var->format) |
3261 | return xstrdup (var->print_value); | |
3262 | else | |
d452c4bc | 3263 | return value_get_print_value (var->value, format, var); |
85265413 | 3264 | } |
e64d9b3d | 3265 | } |
8b93c638 JM |
3266 | } |
3267 | } | |
3268 | \f | |
3269 | ||
3270 | /* C++ */ | |
3271 | ||
3272 | static int | |
fba45db2 | 3273 | cplus_number_of_children (struct varobj *var) |
8b93c638 JM |
3274 | { |
3275 | struct type *type; | |
3276 | int children, dont_know; | |
3277 | ||
3278 | dont_know = 1; | |
3279 | children = 0; | |
3280 | ||
3281 | if (!CPLUS_FAKE_CHILD (var)) | |
3282 | { | |
2024f65a | 3283 | type = get_value_type (var); |
02142340 | 3284 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
3285 | |
3286 | if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) || | |
72330bd6 | 3287 | ((TYPE_CODE (type)) == TYPE_CODE_UNION)) |
8b93c638 JM |
3288 | { |
3289 | int kids[3]; | |
3290 | ||
3291 | cplus_class_num_children (type, kids); | |
3292 | if (kids[v_public] != 0) | |
3293 | children++; | |
3294 | if (kids[v_private] != 0) | |
3295 | children++; | |
3296 | if (kids[v_protected] != 0) | |
3297 | children++; | |
3298 | ||
581e13c1 | 3299 | /* Add any baseclasses. */ |
8b93c638 JM |
3300 | children += TYPE_N_BASECLASSES (type); |
3301 | dont_know = 0; | |
3302 | ||
581e13c1 | 3303 | /* FIXME: save children in var. */ |
8b93c638 JM |
3304 | } |
3305 | } | |
3306 | else | |
3307 | { | |
3308 | int kids[3]; | |
3309 | ||
2024f65a | 3310 | type = get_value_type (var->parent); |
02142340 | 3311 | adjust_value_for_child_access (NULL, &type, NULL); |
8b93c638 JM |
3312 | |
3313 | cplus_class_num_children (type, kids); | |
6e382aa3 | 3314 | if (strcmp (var->name, "public") == 0) |
8b93c638 | 3315 | children = kids[v_public]; |
6e382aa3 | 3316 | else if (strcmp (var->name, "private") == 0) |
8b93c638 JM |
3317 | children = kids[v_private]; |
3318 | else | |
3319 | children = kids[v_protected]; | |
3320 | dont_know = 0; | |
3321 | } | |
3322 | ||
3323 | if (dont_know) | |
3324 | children = c_number_of_children (var); | |
3325 | ||
3326 | return children; | |
3327 | } | |
3328 | ||
3329 | /* Compute # of public, private, and protected variables in this class. | |
3330 | That means we need to descend into all baseclasses and find out | |
581e13c1 | 3331 | how many are there, too. */ |
8b93c638 | 3332 | static void |
1669605f | 3333 | cplus_class_num_children (struct type *type, int children[3]) |
8b93c638 | 3334 | { |
d48cc9dd DJ |
3335 | int i, vptr_fieldno; |
3336 | struct type *basetype = NULL; | |
8b93c638 JM |
3337 | |
3338 | children[v_public] = 0; | |
3339 | children[v_private] = 0; | |
3340 | children[v_protected] = 0; | |
3341 | ||
d48cc9dd | 3342 | vptr_fieldno = get_vptr_fieldno (type, &basetype); |
8b93c638 JM |
3343 | for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++) |
3344 | { | |
d48cc9dd DJ |
3345 | /* If we have a virtual table pointer, omit it. Even if virtual |
3346 | table pointers are not specifically marked in the debug info, | |
3347 | they should be artificial. */ | |
3348 | if ((type == basetype && i == vptr_fieldno) | |
3349 | || TYPE_FIELD_ARTIFICIAL (type, i)) | |
8b93c638 JM |
3350 | continue; |
3351 | ||
3352 | if (TYPE_FIELD_PROTECTED (type, i)) | |
3353 | children[v_protected]++; | |
3354 | else if (TYPE_FIELD_PRIVATE (type, i)) | |
3355 | children[v_private]++; | |
3356 | else | |
3357 | children[v_public]++; | |
3358 | } | |
3359 | } | |
3360 | ||
3361 | static char * | |
fba45db2 | 3362 | cplus_name_of_variable (struct varobj *parent) |
8b93c638 JM |
3363 | { |
3364 | return c_name_of_variable (parent); | |
3365 | } | |
3366 | ||
2024f65a VP |
3367 | enum accessibility { private_field, protected_field, public_field }; |
3368 | ||
3369 | /* Check if field INDEX of TYPE has the specified accessibility. | |
3370 | Return 0 if so and 1 otherwise. */ | |
3371 | static int | |
3372 | match_accessibility (struct type *type, int index, enum accessibility acc) | |
8b93c638 | 3373 | { |
2024f65a VP |
3374 | if (acc == private_field && TYPE_FIELD_PRIVATE (type, index)) |
3375 | return 1; | |
3376 | else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index)) | |
3377 | return 1; | |
3378 | else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index) | |
3379 | && !TYPE_FIELD_PROTECTED (type, index)) | |
3380 | return 1; | |
3381 | else | |
3382 | return 0; | |
3383 | } | |
3384 | ||
3385 | static void | |
3386 | cplus_describe_child (struct varobj *parent, int index, | |
02142340 VP |
3387 | char **cname, struct value **cvalue, struct type **ctype, |
3388 | char **cfull_expression) | |
2024f65a | 3389 | { |
2024f65a | 3390 | struct value *value; |
8b93c638 | 3391 | struct type *type; |
02142340 VP |
3392 | int was_ptr; |
3393 | char *parent_expression = NULL; | |
8b93c638 | 3394 | |
2024f65a VP |
3395 | if (cname) |
3396 | *cname = NULL; | |
3397 | if (cvalue) | |
3398 | *cvalue = NULL; | |
3399 | if (ctype) | |
3400 | *ctype = NULL; | |
02142340 VP |
3401 | if (cfull_expression) |
3402 | *cfull_expression = NULL; | |
2024f65a | 3403 | |
8b93c638 JM |
3404 | if (CPLUS_FAKE_CHILD (parent)) |
3405 | { | |
2024f65a VP |
3406 | value = parent->parent->value; |
3407 | type = get_value_type (parent->parent); | |
02142340 VP |
3408 | if (cfull_expression) |
3409 | parent_expression = varobj_get_path_expr (parent->parent); | |
8b93c638 JM |
3410 | } |
3411 | else | |
2024f65a VP |
3412 | { |
3413 | value = parent->value; | |
3414 | type = get_value_type (parent); | |
02142340 VP |
3415 | if (cfull_expression) |
3416 | parent_expression = varobj_get_path_expr (parent); | |
2024f65a | 3417 | } |
8b93c638 | 3418 | |
02142340 | 3419 | adjust_value_for_child_access (&value, &type, &was_ptr); |
2024f65a VP |
3420 | |
3421 | if (TYPE_CODE (type) == TYPE_CODE_STRUCT | |
3f4178d6 | 3422 | || TYPE_CODE (type) == TYPE_CODE_UNION) |
8b93c638 | 3423 | { |
02142340 | 3424 | char *join = was_ptr ? "->" : "."; |
a109c7c1 | 3425 | |
8b93c638 JM |
3426 | if (CPLUS_FAKE_CHILD (parent)) |
3427 | { | |
6e382aa3 JJ |
3428 | /* The fields of the class type are ordered as they |
3429 | appear in the class. We are given an index for a | |
3430 | particular access control type ("public","protected", | |
3431 | or "private"). We must skip over fields that don't | |
3432 | have the access control we are looking for to properly | |
581e13c1 | 3433 | find the indexed field. */ |
6e382aa3 | 3434 | int type_index = TYPE_N_BASECLASSES (type); |
2024f65a | 3435 | enum accessibility acc = public_field; |
d48cc9dd DJ |
3436 | int vptr_fieldno; |
3437 | struct type *basetype = NULL; | |
3438 | ||
3439 | vptr_fieldno = get_vptr_fieldno (type, &basetype); | |
6e382aa3 | 3440 | if (strcmp (parent->name, "private") == 0) |
2024f65a | 3441 | acc = private_field; |
6e382aa3 | 3442 | else if (strcmp (parent->name, "protected") == 0) |
2024f65a VP |
3443 | acc = protected_field; |
3444 | ||
3445 | while (index >= 0) | |
6e382aa3 | 3446 | { |
d48cc9dd DJ |
3447 | if ((type == basetype && type_index == vptr_fieldno) |
3448 | || TYPE_FIELD_ARTIFICIAL (type, type_index)) | |
2024f65a VP |
3449 | ; /* ignore vptr */ |
3450 | else if (match_accessibility (type, type_index, acc)) | |
6e382aa3 JJ |
3451 | --index; |
3452 | ++type_index; | |
6e382aa3 | 3453 | } |
2024f65a VP |
3454 | --type_index; |
3455 | ||
3456 | if (cname) | |
3457 | *cname = xstrdup (TYPE_FIELD_NAME (type, type_index)); | |
3458 | ||
3459 | if (cvalue && value) | |
3460 | *cvalue = value_struct_element_index (value, type_index); | |
3461 | ||
3462 | if (ctype) | |
3463 | *ctype = TYPE_FIELD_TYPE (type, type_index); | |
02142340 VP |
3464 | |
3465 | if (cfull_expression) | |
3e43a32a MS |
3466 | *cfull_expression |
3467 | = xstrprintf ("((%s)%s%s)", parent_expression, | |
3468 | join, | |
3469 | TYPE_FIELD_NAME (type, type_index)); | |
2024f65a VP |
3470 | } |
3471 | else if (index < TYPE_N_BASECLASSES (type)) | |
3472 | { | |
3473 | /* This is a baseclass. */ | |
3474 | if (cname) | |
3475 | *cname = xstrdup (TYPE_FIELD_NAME (type, index)); | |
3476 | ||
3477 | if (cvalue && value) | |
0cc7d26f | 3478 | *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value); |
6e382aa3 | 3479 | |
2024f65a VP |
3480 | if (ctype) |
3481 | { | |
3482 | *ctype = TYPE_FIELD_TYPE (type, index); | |
3483 | } | |
02142340 VP |
3484 | |
3485 | if (cfull_expression) | |
3486 | { | |
3487 | char *ptr = was_ptr ? "*" : ""; | |
a109c7c1 | 3488 | |
581e13c1 | 3489 | /* Cast the parent to the base' type. Note that in gdb, |
02142340 VP |
3490 | expression like |
3491 | (Base1)d | |
3492 | will create an lvalue, for all appearences, so we don't | |
3493 | need to use more fancy: | |
3494 | *(Base1*)(&d) | |
0d932b2f MK |
3495 | construct. |
3496 | ||
3497 | When we are in the scope of the base class or of one | |
3498 | of its children, the type field name will be interpreted | |
3499 | as a constructor, if it exists. Therefore, we must | |
3500 | indicate that the name is a class name by using the | |
3501 | 'class' keyword. See PR mi/11912 */ | |
3502 | *cfull_expression = xstrprintf ("(%s(class %s%s) %s)", | |
02142340 VP |
3503 | ptr, |
3504 | TYPE_FIELD_NAME (type, index), | |
3505 | ptr, | |
3506 | parent_expression); | |
3507 | } | |
8b93c638 | 3508 | } |
8b93c638 JM |
3509 | else |
3510 | { | |
348144ba | 3511 | char *access = NULL; |
6e382aa3 | 3512 | int children[3]; |
a109c7c1 | 3513 | |
2024f65a | 3514 | cplus_class_num_children (type, children); |
6e382aa3 | 3515 | |
8b93c638 | 3516 | /* Everything beyond the baseclasses can |
6e382aa3 JJ |
3517 | only be "public", "private", or "protected" |
3518 | ||
3519 | The special "fake" children are always output by varobj in | |
581e13c1 | 3520 | this order. So if INDEX == 2, it MUST be "protected". */ |
8b93c638 JM |
3521 | index -= TYPE_N_BASECLASSES (type); |
3522 | switch (index) | |
3523 | { | |
3524 | case 0: | |
6e382aa3 | 3525 | if (children[v_public] > 0) |
2024f65a | 3526 | access = "public"; |
6e382aa3 | 3527 | else if (children[v_private] > 0) |
2024f65a | 3528 | access = "private"; |
6e382aa3 | 3529 | else |
2024f65a | 3530 | access = "protected"; |
6e382aa3 | 3531 | break; |
8b93c638 | 3532 | case 1: |
6e382aa3 | 3533 | if (children[v_public] > 0) |
8b93c638 | 3534 | { |
6e382aa3 | 3535 | if (children[v_private] > 0) |
2024f65a | 3536 | access = "private"; |
6e382aa3 | 3537 | else |
2024f65a | 3538 | access = "protected"; |
8b93c638 | 3539 | } |
6e382aa3 | 3540 | else if (children[v_private] > 0) |
2024f65a | 3541 | access = "protected"; |
6e382aa3 | 3542 | break; |
8b93c638 | 3543 | case 2: |
581e13c1 | 3544 | /* Must be protected. */ |
2024f65a | 3545 | access = "protected"; |
6e382aa3 | 3546 | break; |
8b93c638 | 3547 | default: |
581e13c1 | 3548 | /* error! */ |
8b93c638 JM |
3549 | break; |
3550 | } | |
348144ba MS |
3551 | |
3552 | gdb_assert (access); | |
2024f65a VP |
3553 | if (cname) |
3554 | *cname = xstrdup (access); | |
8b93c638 | 3555 | |
02142340 | 3556 | /* Value and type and full expression are null here. */ |
2024f65a | 3557 | } |
8b93c638 | 3558 | } |
8b93c638 JM |
3559 | else |
3560 | { | |
02142340 | 3561 | c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression); |
2024f65a VP |
3562 | } |
3563 | } | |
8b93c638 | 3564 | |
2024f65a VP |
3565 | static char * |
3566 | cplus_name_of_child (struct varobj *parent, int index) | |
3567 | { | |
3568 | char *name = NULL; | |
a109c7c1 | 3569 | |
02142340 | 3570 | cplus_describe_child (parent, index, &name, NULL, NULL, NULL); |
8b93c638 JM |
3571 | return name; |
3572 | } | |
3573 | ||
02142340 VP |
3574 | static char * |
3575 | cplus_path_expr_of_child (struct varobj *child) | |
3576 | { | |
3577 | cplus_describe_child (child->parent, child->index, NULL, NULL, NULL, | |
3578 | &child->path_expr); | |
3579 | return child->path_expr; | |
3580 | } | |
3581 | ||
30b28db1 | 3582 | static struct value * |
fba45db2 | 3583 | cplus_value_of_root (struct varobj **var_handle) |
8b93c638 | 3584 | { |
73a93a32 | 3585 | return c_value_of_root (var_handle); |
8b93c638 JM |
3586 | } |
3587 | ||
30b28db1 | 3588 | static struct value * |
fba45db2 | 3589 | cplus_value_of_child (struct varobj *parent, int index) |
8b93c638 | 3590 | { |
2024f65a | 3591 | struct value *value = NULL; |
a109c7c1 | 3592 | |
02142340 | 3593 | cplus_describe_child (parent, index, NULL, &value, NULL, NULL); |
8b93c638 JM |
3594 | return value; |
3595 | } | |
3596 | ||
3597 | static struct type * | |
fba45db2 | 3598 | cplus_type_of_child (struct varobj *parent, int index) |
8b93c638 | 3599 | { |
2024f65a | 3600 | struct type *type = NULL; |
a109c7c1 | 3601 | |
02142340 | 3602 | cplus_describe_child (parent, index, NULL, NULL, &type, NULL); |
8b93c638 JM |
3603 | return type; |
3604 | } | |
3605 | ||
8b93c638 | 3606 | static char * |
a109c7c1 MS |
3607 | cplus_value_of_variable (struct varobj *var, |
3608 | enum varobj_display_formats format) | |
8b93c638 JM |
3609 | { |
3610 | ||
3611 | /* If we have one of our special types, don't print out | |
581e13c1 | 3612 | any value. */ |
8b93c638 JM |
3613 | if (CPLUS_FAKE_CHILD (var)) |
3614 | return xstrdup (""); | |
3615 | ||
de051565 | 3616 | return c_value_of_variable (var, format); |
8b93c638 JM |
3617 | } |
3618 | \f | |
3619 | /* Java */ | |
3620 | ||
3621 | static int | |
fba45db2 | 3622 | java_number_of_children (struct varobj *var) |
8b93c638 JM |
3623 | { |
3624 | return cplus_number_of_children (var); | |
3625 | } | |
3626 | ||
3627 | static char * | |
fba45db2 | 3628 | java_name_of_variable (struct varobj *parent) |
8b93c638 JM |
3629 | { |
3630 | char *p, *name; | |
3631 | ||
3632 | name = cplus_name_of_variable (parent); | |
3633 | /* If the name has "-" in it, it is because we | |
581e13c1 | 3634 | needed to escape periods in the name... */ |
8b93c638 JM |
3635 | p = name; |
3636 | ||
3637 | while (*p != '\000') | |
3638 | { | |
3639 | if (*p == '-') | |
3640 | *p = '.'; | |
3641 | p++; | |
3642 | } | |
3643 | ||
3644 | return name; | |
3645 | } | |
3646 | ||
3647 | static char * | |
fba45db2 | 3648 | java_name_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3649 | { |
3650 | char *name, *p; | |
3651 | ||
3652 | name = cplus_name_of_child (parent, index); | |
581e13c1 | 3653 | /* Escape any periods in the name... */ |
8b93c638 JM |
3654 | p = name; |
3655 | ||
3656 | while (*p != '\000') | |
3657 | { | |
3658 | if (*p == '.') | |
3659 | *p = '-'; | |
3660 | p++; | |
3661 | } | |
3662 | ||
3663 | return name; | |
3664 | } | |
3665 | ||
02142340 VP |
3666 | static char * |
3667 | java_path_expr_of_child (struct varobj *child) | |
3668 | { | |
3669 | return NULL; | |
3670 | } | |
3671 | ||
30b28db1 | 3672 | static struct value * |
fba45db2 | 3673 | java_value_of_root (struct varobj **var_handle) |
8b93c638 | 3674 | { |
73a93a32 | 3675 | return cplus_value_of_root (var_handle); |
8b93c638 JM |
3676 | } |
3677 | ||
30b28db1 | 3678 | static struct value * |
fba45db2 | 3679 | java_value_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3680 | { |
3681 | return cplus_value_of_child (parent, index); | |
3682 | } | |
3683 | ||
3684 | static struct type * | |
fba45db2 | 3685 | java_type_of_child (struct varobj *parent, int index) |
8b93c638 JM |
3686 | { |
3687 | return cplus_type_of_child (parent, index); | |
3688 | } | |
3689 | ||
8b93c638 | 3690 | static char * |
de051565 | 3691 | java_value_of_variable (struct varobj *var, enum varobj_display_formats format) |
8b93c638 | 3692 | { |
de051565 | 3693 | return cplus_value_of_variable (var, format); |
8b93c638 | 3694 | } |
54333c3b | 3695 | |
40591b7d JCD |
3696 | /* Ada specific callbacks for VAROBJs. */ |
3697 | ||
3698 | static int | |
3699 | ada_number_of_children (struct varobj *var) | |
3700 | { | |
3701 | return c_number_of_children (var); | |
3702 | } | |
3703 | ||
3704 | static char * | |
3705 | ada_name_of_variable (struct varobj *parent) | |
3706 | { | |
3707 | return c_name_of_variable (parent); | |
3708 | } | |
3709 | ||
3710 | static char * | |
3711 | ada_name_of_child (struct varobj *parent, int index) | |
3712 | { | |
3713 | return c_name_of_child (parent, index); | |
3714 | } | |
3715 | ||
3716 | static char* | |
3717 | ada_path_expr_of_child (struct varobj *child) | |
3718 | { | |
3719 | return c_path_expr_of_child (child); | |
3720 | } | |
3721 | ||
3722 | static struct value * | |
3723 | ada_value_of_root (struct varobj **var_handle) | |
3724 | { | |
3725 | return c_value_of_root (var_handle); | |
3726 | } | |
3727 | ||
3728 | static struct value * | |
3729 | ada_value_of_child (struct varobj *parent, int index) | |
3730 | { | |
3731 | return c_value_of_child (parent, index); | |
3732 | } | |
3733 | ||
3734 | static struct type * | |
3735 | ada_type_of_child (struct varobj *parent, int index) | |
3736 | { | |
3737 | return c_type_of_child (parent, index); | |
3738 | } | |
3739 | ||
3740 | static char * | |
3741 | ada_value_of_variable (struct varobj *var, enum varobj_display_formats format) | |
3742 | { | |
3743 | return c_value_of_variable (var, format); | |
3744 | } | |
3745 | ||
54333c3b JK |
3746 | /* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them |
3747 | with an arbitrary caller supplied DATA pointer. */ | |
3748 | ||
3749 | void | |
3750 | all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data) | |
3751 | { | |
3752 | struct varobj_root *var_root, *var_root_next; | |
3753 | ||
3754 | /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */ | |
3755 | ||
3756 | for (var_root = rootlist; var_root != NULL; var_root = var_root_next) | |
3757 | { | |
3758 | var_root_next = var_root->next; | |
3759 | ||
3760 | (*func) (var_root->rootvar, data); | |
3761 | } | |
3762 | } | |
8b93c638 JM |
3763 | \f |
3764 | extern void _initialize_varobj (void); | |
3765 | void | |
3766 | _initialize_varobj (void) | |
3767 | { | |
3768 | int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE; | |
3769 | ||
3770 | varobj_table = xmalloc (sizeof_table); | |
3771 | memset (varobj_table, 0, sizeof_table); | |
3772 | ||
85c07804 | 3773 | add_setshow_zinteger_cmd ("debugvarobj", class_maintenance, |
3e43a32a MS |
3774 | &varobjdebug, |
3775 | _("Set varobj debugging."), | |
3776 | _("Show varobj debugging."), | |
3777 | _("When non-zero, varobj debugging is enabled."), | |
3778 | NULL, show_varobjdebug, | |
85c07804 | 3779 | &setlist, &showlist); |
8b93c638 | 3780 | } |
8756216b | 3781 | |
54333c3b JK |
3782 | /* Invalidate varobj VAR if it is tied to locals and re-create it if it is |
3783 | defined on globals. It is a helper for varobj_invalidate. */ | |
2dbd25e5 | 3784 | |
54333c3b JK |
3785 | static void |
3786 | varobj_invalidate_iter (struct varobj *var, void *unused) | |
8756216b | 3787 | { |
54333c3b JK |
3788 | /* Floating varobjs are reparsed on each stop, so we don't care if the |
3789 | presently parsed expression refers to something that's gone. */ | |
3790 | if (var->root->floating) | |
3791 | return; | |
8756216b | 3792 | |
54333c3b JK |
3793 | /* global var must be re-evaluated. */ |
3794 | if (var->root->valid_block == NULL) | |
2dbd25e5 | 3795 | { |
54333c3b | 3796 | struct varobj *tmp_var; |
2dbd25e5 | 3797 | |
54333c3b JK |
3798 | /* Try to create a varobj with same expression. If we succeed |
3799 | replace the old varobj, otherwise invalidate it. */ | |
3800 | tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0, | |
3801 | USE_CURRENT_FRAME); | |
3802 | if (tmp_var != NULL) | |
3803 | { | |
3804 | tmp_var->obj_name = xstrdup (var->obj_name); | |
3805 | varobj_delete (var, NULL, 0); | |
3806 | install_variable (tmp_var); | |
2dbd25e5 | 3807 | } |
54333c3b JK |
3808 | else |
3809 | var->root->is_valid = 0; | |
2dbd25e5 | 3810 | } |
54333c3b JK |
3811 | else /* locals must be invalidated. */ |
3812 | var->root->is_valid = 0; | |
3813 | } | |
3814 | ||
3815 | /* Invalidate the varobjs that are tied to locals and re-create the ones that | |
3816 | are defined on globals. | |
3817 | Invalidated varobjs will be always printed in_scope="invalid". */ | |
3818 | ||
3819 | void | |
3820 | varobj_invalidate (void) | |
3821 | { | |
3822 | all_root_varobjs (varobj_invalidate_iter, NULL); | |
8756216b | 3823 | } |