gdb/
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
8acc9f48 3 Copyright (C) 1999-2013 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
a6c442d8 19#include "exceptions.h"
8b93c638
JM
20#include "value.h"
21#include "expression.h"
22#include "frame.h"
8b93c638 23#include "language.h"
8b93c638 24#include "gdbcmd.h"
d2353924 25#include "block.h"
79a45b7d 26#include "valprint.h"
a6c442d8
MK
27
28#include "gdb_assert.h"
b66d6d2e 29#include "gdb_string.h"
0cc7d26f 30#include "gdb_regex.h"
8b93c638
JM
31
32#include "varobj.h"
28335dcc 33#include "vec.h"
6208b47d
VP
34#include "gdbthread.h"
35#include "inferior.h"
8b93c638 36
b6313243
TT
37#if HAVE_PYTHON
38#include "python/python.h"
39#include "python/python-internal.h"
50389644
PA
40#else
41typedef int PyObject;
b6313243
TT
42#endif
43
8b93c638
JM
44/* Non-zero if we want to see trace of varobj level stuff. */
45
ccce17b0 46unsigned int varobjdebug = 0;
920d2a44
AC
47static void
48show_varobjdebug (struct ui_file *file, int from_tty,
49 struct cmd_list_element *c, const char *value)
50{
51 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
52}
8b93c638 53
581e13c1 54/* String representations of gdb's format codes. */
8b93c638 55char *varobj_format_string[] =
72330bd6 56 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 57
581e13c1 58/* String representations of gdb's known languages. */
c573f273 59char *varobj_language_string[] = { "C", "C++", "Java" };
8b93c638 60
0cc7d26f
TT
61/* True if we want to allow Python-based pretty-printing. */
62static int pretty_printing = 0;
63
64void
65varobj_enable_pretty_printing (void)
66{
67 pretty_printing = 1;
68}
69
8b93c638
JM
70/* Data structures */
71
72/* Every root variable has one of these structures saved in its
581e13c1 73 varobj. Members which must be free'd are noted. */
8b93c638 74struct varobj_root
72330bd6 75{
8b93c638 76
581e13c1 77 /* Alloc'd expression for this parent. */
72330bd6 78 struct expression *exp;
8b93c638 79
581e13c1 80 /* Block for which this expression is valid. */
270140bd 81 const struct block *valid_block;
8b93c638 82
44a67aa7
VP
83 /* The frame for this expression. This field is set iff valid_block is
84 not NULL. */
e64d9b3d 85 struct frame_id frame;
8b93c638 86
c5b48eac 87 /* The thread ID that this varobj_root belong to. This field
581e13c1 88 is only valid if valid_block is not NULL.
c5b48eac
VP
89 When not 0, indicates which thread 'frame' belongs to.
90 When 0, indicates that the thread list was empty when the varobj_root
91 was created. */
92 int thread_id;
93
a5defcdc
VP
94 /* If 1, the -var-update always recomputes the value in the
95 current thread and frame. Otherwise, variable object is
581e13c1 96 always updated in the specific scope/thread/frame. */
a5defcdc 97 int floating;
73a93a32 98
8756216b
DP
99 /* Flag that indicates validity: set to 0 when this varobj_root refers
100 to symbols that do not exist anymore. */
101 int is_valid;
102
99ad9427
YQ
103 /* Language-related operations for this variable and its
104 children. */
105 const struct lang_varobj_ops *lang;
8b93c638 106
581e13c1 107 /* The varobj for this root node. */
72330bd6 108 struct varobj *rootvar;
8b93c638 109
72330bd6
AC
110 /* Next root variable */
111 struct varobj_root *next;
112};
8b93c638 113
bb5ce47a 114/* Dynamic part of varobj. */
8b93c638 115
bb5ce47a
YQ
116struct varobj_dynamic
117{
b6313243
TT
118 /* Whether the children of this varobj were requested. This field is
119 used to decide if dynamic varobj should recompute their children.
120 In the event that the frontend never asked for the children, we
121 can avoid that. */
122 int children_requested;
123
0cc7d26f
TT
124 /* The pretty-printer constructor. If NULL, then the default
125 pretty-printer will be looked up. If None, then no
126 pretty-printer will be installed. */
127 PyObject *constructor;
128
b6313243
TT
129 /* The pretty-printer that has been constructed. If NULL, then a
130 new printer object is needed, and one will be constructed. */
131 PyObject *pretty_printer;
0cc7d26f
TT
132
133 /* The iterator returned by the printer's 'children' method, or NULL
134 if not available. */
135 PyObject *child_iter;
136
137 /* We request one extra item from the iterator, so that we can
138 report to the caller whether there are more items than we have
139 already reported. However, we don't want to install this value
140 when we read it, because that will mess up future updates. So,
141 we stash it here instead. */
142 PyObject *saved_item;
72330bd6 143};
8b93c638 144
8b93c638 145struct cpstack
72330bd6
AC
146{
147 char *name;
148 struct cpstack *next;
149};
8b93c638
JM
150
151/* A list of varobjs */
152
153struct vlist
72330bd6
AC
154{
155 struct varobj *var;
156 struct vlist *next;
157};
8b93c638
JM
158
159/* Private function prototypes */
160
581e13c1 161/* Helper functions for the above subcommands. */
8b93c638 162
a14ed312 163static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 164
a14ed312
KB
165static void delete_variable_1 (struct cpstack **, int *,
166 struct varobj *, int, int);
8b93c638 167
a14ed312 168static int install_variable (struct varobj *);
8b93c638 169
a14ed312 170static void uninstall_variable (struct varobj *);
8b93c638 171
a14ed312 172static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 173
b6313243 174static struct varobj *
5e5ac9a5 175create_child_with_value (struct varobj *parent, int index, char *name,
b6313243
TT
176 struct value *value);
177
8b93c638
JM
178/* Utility routines */
179
a14ed312 180static struct varobj *new_variable (void);
8b93c638 181
a14ed312 182static struct varobj *new_root_variable (void);
8b93c638 183
a14ed312 184static void free_variable (struct varobj *var);
8b93c638 185
74b7792f
AC
186static struct cleanup *make_cleanup_free_variable (struct varobj *var);
187
a14ed312 188static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 189
a14ed312 190static void cppush (struct cpstack **pstack, char *name);
8b93c638 191
a14ed312 192static char *cppop (struct cpstack **pstack);
8b93c638 193
8264ba82
AG
194static int update_type_if_necessary (struct varobj *var,
195 struct value *new_value);
196
acd65feb
VP
197static int install_new_value (struct varobj *var, struct value *value,
198 int initial);
199
581e13c1 200/* Language-specific routines. */
8b93c638 201
a14ed312 202static enum varobj_languages variable_language (struct varobj *var);
8b93c638 203
a14ed312 204static int number_of_children (struct varobj *);
8b93c638 205
a14ed312 206static char *name_of_variable (struct varobj *);
8b93c638 207
a14ed312 208static char *name_of_child (struct varobj *, int);
8b93c638 209
30b28db1 210static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 211
30b28db1 212static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 213
de051565
MK
214static char *my_value_of_variable (struct varobj *var,
215 enum varobj_display_formats format);
8b93c638 216
b2c2bd75 217static int is_root_p (struct varobj *var);
8b93c638 218
d8b65138
JK
219#if HAVE_PYTHON
220
9a1edae6 221static struct varobj *varobj_add_child (struct varobj *var,
5e5ac9a5 222 char *name,
9a1edae6 223 struct value *value);
b6313243 224
d8b65138
JK
225#endif /* HAVE_PYTHON */
226
581e13c1 227/* Array of known source language routines. */
99ad9427
YQ
228static const struct lang_varobj_ops *languages[vlang_end] = {
229 &c_varobj_ops,
230 &cplus_varobj_ops,
231 &java_varobj_ops,
232 &ada_varobj_ops,
72330bd6 233};
8b93c638
JM
234
235/* Private data */
236
581e13c1 237/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 238static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 239
581e13c1 240/* Header of the list of root variable objects. */
8b93c638 241static struct varobj_root *rootlist;
8b93c638 242
581e13c1
MS
243/* Prime number indicating the number of buckets in the hash table. */
244/* A prime large enough to avoid too many colisions. */
8b93c638
JM
245#define VAROBJ_TABLE_SIZE 227
246
581e13c1 247/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
248static struct vlist **varobj_table;
249
8b93c638
JM
250\f
251
252/* API Implementation */
b2c2bd75
VP
253static int
254is_root_p (struct varobj *var)
255{
256 return (var->root->rootvar == var);
257}
8b93c638 258
d452c4bc
UW
259#ifdef HAVE_PYTHON
260/* Helper function to install a Python environment suitable for
261 use during operations on VAR. */
70221824 262static struct cleanup *
d452c4bc
UW
263varobj_ensure_python_env (struct varobj *var)
264{
265 return ensure_python_env (var->root->exp->gdbarch,
266 var->root->exp->language_defn);
267}
268#endif
269
581e13c1 270/* Creates a varobj (not its children). */
8b93c638 271
7d8547c9
AC
272/* Return the full FRAME which corresponds to the given CORE_ADDR
273 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
274
275static struct frame_info *
276find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
277{
278 struct frame_info *frame = NULL;
279
280 if (frame_addr == (CORE_ADDR) 0)
281 return NULL;
282
9d49bdc2
PA
283 for (frame = get_current_frame ();
284 frame != NULL;
285 frame = get_prev_frame (frame))
7d8547c9 286 {
1fac167a
UW
287 /* The CORE_ADDR we get as argument was parsed from a string GDB
288 output as $fp. This output got truncated to gdbarch_addr_bit.
289 Truncate the frame base address in the same manner before
290 comparing it against our argument. */
291 CORE_ADDR frame_base = get_frame_base_address (frame);
292 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 293
1fac167a
UW
294 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
295 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
296
297 if (frame_base == frame_addr)
7d8547c9
AC
298 return frame;
299 }
9d49bdc2
PA
300
301 return NULL;
7d8547c9
AC
302}
303
8b93c638
JM
304struct varobj *
305varobj_create (char *objname,
72330bd6 306 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
307{
308 struct varobj *var;
8b93c638
JM
309 struct cleanup *old_chain;
310
581e13c1 311 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 312 var = new_root_variable ();
74b7792f 313 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
314
315 if (expression != NULL)
316 {
e4195b40 317 struct frame_info *fi;
35633fef 318 struct frame_id old_id = null_frame_id;
e4195b40 319 struct block *block;
bbc13ae3 320 const char *p;
8b93c638 321 enum varobj_languages lang;
e55dccf0 322 struct value *value = NULL;
8e7b59a5 323 volatile struct gdb_exception except;
1bb9788d 324 CORE_ADDR pc;
8b93c638 325
9d49bdc2
PA
326 /* Parse and evaluate the expression, filling in as much of the
327 variable's data as possible. */
328
329 if (has_stack_frames ())
330 {
581e13c1 331 /* Allow creator to specify context of variable. */
9d49bdc2
PA
332 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
333 fi = get_selected_frame (NULL);
334 else
335 /* FIXME: cagney/2002-11-23: This code should be doing a
336 lookup using the frame ID and not just the frame's
337 ``address''. This, of course, means an interface
338 change. However, with out that interface change ISAs,
339 such as the ia64 with its two stacks, won't work.
340 Similar goes for the case where there is a frameless
341 function. */
342 fi = find_frame_addr_in_frame_chain (frame);
343 }
8b93c638 344 else
9d49bdc2 345 fi = NULL;
8b93c638 346
581e13c1 347 /* frame = -2 means always use selected frame. */
73a93a32 348 if (type == USE_SELECTED_FRAME)
a5defcdc 349 var->root->floating = 1;
73a93a32 350
1bb9788d 351 pc = 0;
8b93c638
JM
352 block = NULL;
353 if (fi != NULL)
1bb9788d
TT
354 {
355 block = get_frame_block (fi, 0);
356 pc = get_frame_pc (fi);
357 }
8b93c638
JM
358
359 p = expression;
360 innermost_block = NULL;
73a93a32 361 /* Wrap the call to parse expression, so we can
581e13c1 362 return a sensible error. */
8e7b59a5
KS
363 TRY_CATCH (except, RETURN_MASK_ERROR)
364 {
1bb9788d 365 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
366 }
367
368 if (except.reason < 0)
73a93a32 369 {
f748fb40 370 do_cleanups (old_chain);
73a93a32
JI
371 return NULL;
372 }
8b93c638 373
581e13c1 374 /* Don't allow variables to be created for types. */
608b4967
TT
375 if (var->root->exp->elts[0].opcode == OP_TYPE
376 || var->root->exp->elts[0].opcode == OP_TYPEOF
377 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638
JM
378 {
379 do_cleanups (old_chain);
bc8332bb
AC
380 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
381 " as an expression.\n");
8b93c638
JM
382 return NULL;
383 }
384
385 var->format = variable_default_display (var);
386 var->root->valid_block = innermost_block;
1b36a34b 387 var->name = xstrdup (expression);
02142340 388 /* For a root var, the name and the expr are the same. */
1b36a34b 389 var->path_expr = xstrdup (expression);
8b93c638
JM
390
391 /* When the frame is different from the current frame,
392 we must select the appropriate frame before parsing
393 the expression, otherwise the value will not be current.
581e13c1 394 Since select_frame is so benign, just call it for all cases. */
4e22772d 395 if (innermost_block)
8b93c638 396 {
4e22772d
JK
397 /* User could specify explicit FRAME-ADDR which was not found but
398 EXPRESSION is frame specific and we would not be able to evaluate
399 it correctly next time. With VALID_BLOCK set we must also set
400 FRAME and THREAD_ID. */
401 if (fi == NULL)
402 error (_("Failed to find the specified frame"));
403
7a424e99 404 var->root->frame = get_frame_id (fi);
c5b48eac 405 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 406 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 407 select_frame (fi);
8b93c638
JM
408 }
409
340a7723 410 /* We definitely need to catch errors here.
8b93c638 411 If evaluate_expression succeeds we got the value we wanted.
581e13c1 412 But if it fails, we still go on with a call to evaluate_type(). */
8e7b59a5
KS
413 TRY_CATCH (except, RETURN_MASK_ERROR)
414 {
415 value = evaluate_expression (var->root->exp);
416 }
417
418 if (except.reason < 0)
e55dccf0
VP
419 {
420 /* Error getting the value. Try to at least get the
421 right type. */
422 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 423
e55dccf0
VP
424 var->type = value_type (type_only_value);
425 }
8264ba82
AG
426 else
427 {
428 int real_type_found = 0;
429
430 var->type = value_actual_type (value, 0, &real_type_found);
431 if (real_type_found)
432 value = value_cast (var->type, value);
433 }
acd65feb 434
8b93c638
JM
435 /* Set language info */
436 lang = variable_language (var);
99ad9427 437 var->root->lang = languages[lang];
8b93c638 438
d32cafc7
JB
439 install_new_value (var, value, 1 /* Initial assignment */);
440
581e13c1 441 /* Set ourselves as our root. */
8b93c638
JM
442 var->root->rootvar = var;
443
581e13c1 444 /* Reset the selected frame. */
35633fef
JK
445 if (frame_id_p (old_id))
446 select_frame (frame_find_by_id (old_id));
8b93c638
JM
447 }
448
73a93a32 449 /* If the variable object name is null, that means this
581e13c1 450 is a temporary variable, so don't install it. */
73a93a32
JI
451
452 if ((var != NULL) && (objname != NULL))
8b93c638 453 {
1b36a34b 454 var->obj_name = xstrdup (objname);
8b93c638
JM
455
456 /* If a varobj name is duplicated, the install will fail so
581e13c1 457 we must cleanup. */
8b93c638
JM
458 if (!install_variable (var))
459 {
460 do_cleanups (old_chain);
461 return NULL;
462 }
463 }
464
465 discard_cleanups (old_chain);
466 return var;
467}
468
581e13c1 469/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
470
471char *
472varobj_gen_name (void)
473{
474 static int id = 0;
e64d9b3d 475 char *obj_name;
8b93c638 476
581e13c1 477 /* Generate a name for this object. */
8b93c638 478 id++;
b435e160 479 obj_name = xstrprintf ("var%d", id);
8b93c638 480
e64d9b3d 481 return obj_name;
8b93c638
JM
482}
483
61d8f275
JK
484/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
485 error if OBJNAME cannot be found. */
8b93c638
JM
486
487struct varobj *
488varobj_get_handle (char *objname)
489{
490 struct vlist *cv;
491 const char *chp;
492 unsigned int index = 0;
493 unsigned int i = 1;
494
495 for (chp = objname; *chp; chp++)
496 {
497 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
498 }
499
500 cv = *(varobj_table + index);
501 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
502 cv = cv->next;
503
504 if (cv == NULL)
8a3fe4f8 505 error (_("Variable object not found"));
8b93c638
JM
506
507 return cv->var;
508}
509
581e13c1 510/* Given the handle, return the name of the object. */
8b93c638
JM
511
512char *
513varobj_get_objname (struct varobj *var)
514{
515 return var->obj_name;
516}
517
581e13c1 518/* Given the handle, return the expression represented by the object. */
8b93c638
JM
519
520char *
521varobj_get_expression (struct varobj *var)
522{
523 return name_of_variable (var);
524}
525
526/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
527 otherwise deletes only the children; returns a malloc'ed list of
528 all the (malloc'ed) names of the variables that have been deleted
581e13c1 529 (NULL terminated). */
8b93c638
JM
530
531int
532varobj_delete (struct varobj *var, char ***dellist, int only_children)
533{
534 int delcount;
535 int mycount;
536 struct cpstack *result = NULL;
537 char **cp;
538
581e13c1 539 /* Initialize a stack for temporary results. */
8b93c638
JM
540 cppush (&result, NULL);
541
542 if (only_children)
581e13c1 543 /* Delete only the variable children. */
8b93c638
JM
544 delcount = delete_variable (&result, var, 1 /* only the children */ );
545 else
581e13c1 546 /* Delete the variable and all its children. */
8b93c638
JM
547 delcount = delete_variable (&result, var, 0 /* parent+children */ );
548
581e13c1 549 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
550 if (dellist != NULL)
551 {
552 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
553
554 cp = *dellist;
555 mycount = delcount;
556 *cp = cppop (&result);
557 while ((*cp != NULL) && (mycount > 0))
558 {
559 mycount--;
560 cp++;
561 *cp = cppop (&result);
562 }
563
564 if (mycount || (*cp != NULL))
8a3fe4f8 565 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 566 mycount);
8b93c638
JM
567 }
568
569 return delcount;
570}
571
d8b65138
JK
572#if HAVE_PYTHON
573
b6313243
TT
574/* Convenience function for varobj_set_visualizer. Instantiate a
575 pretty-printer for a given value. */
576static PyObject *
577instantiate_pretty_printer (PyObject *constructor, struct value *value)
578{
b6313243
TT
579 PyObject *val_obj = NULL;
580 PyObject *printer;
b6313243 581
b6313243 582 val_obj = value_to_value_object (value);
b6313243
TT
583 if (! val_obj)
584 return NULL;
585
586 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
587 Py_DECREF (val_obj);
588 return printer;
b6313243
TT
589}
590
d8b65138
JK
591#endif
592
581e13c1 593/* Set/Get variable object display format. */
8b93c638
JM
594
595enum varobj_display_formats
596varobj_set_display_format (struct varobj *var,
597 enum varobj_display_formats format)
598{
599 switch (format)
600 {
601 case FORMAT_NATURAL:
602 case FORMAT_BINARY:
603 case FORMAT_DECIMAL:
604 case FORMAT_HEXADECIMAL:
605 case FORMAT_OCTAL:
606 var->format = format;
607 break;
608
609 default:
610 var->format = variable_default_display (var);
611 }
612
ae7d22a6
VP
613 if (varobj_value_is_changeable_p (var)
614 && var->value && !value_lazy (var->value))
615 {
6c761d9c 616 xfree (var->print_value);
99ad9427
YQ
617 var->print_value = varobj_value_get_print_value (var->value,
618 var->format, var);
ae7d22a6
VP
619 }
620
8b93c638
JM
621 return var->format;
622}
623
624enum varobj_display_formats
625varobj_get_display_format (struct varobj *var)
626{
627 return var->format;
628}
629
b6313243
TT
630char *
631varobj_get_display_hint (struct varobj *var)
632{
633 char *result = NULL;
634
635#if HAVE_PYTHON
0646da15
TT
636 struct cleanup *back_to;
637
638 if (!gdb_python_initialized)
639 return NULL;
640
641 back_to = varobj_ensure_python_env (var);
d452c4bc 642
bb5ce47a
YQ
643 if (var->dynamic->pretty_printer != NULL)
644 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
d452c4bc
UW
645
646 do_cleanups (back_to);
b6313243
TT
647#endif
648
649 return result;
650}
651
0cc7d26f
TT
652/* Return true if the varobj has items after TO, false otherwise. */
653
654int
655varobj_has_more (struct varobj *var, int to)
656{
657 if (VEC_length (varobj_p, var->children) > to)
658 return 1;
659 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
bb5ce47a 660 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
661}
662
c5b48eac
VP
663/* If the variable object is bound to a specific thread, that
664 is its evaluation can always be done in context of a frame
665 inside that thread, returns GDB id of the thread -- which
581e13c1 666 is always positive. Otherwise, returns -1. */
c5b48eac
VP
667int
668varobj_get_thread_id (struct varobj *var)
669{
670 if (var->root->valid_block && var->root->thread_id > 0)
671 return var->root->thread_id;
672 else
673 return -1;
674}
675
25d5ea92
VP
676void
677varobj_set_frozen (struct varobj *var, int frozen)
678{
679 /* When a variable is unfrozen, we don't fetch its value.
680 The 'not_fetched' flag remains set, so next -var-update
681 won't complain.
682
683 We don't fetch the value, because for structures the client
684 should do -var-update anyway. It would be bad to have different
685 client-size logic for structure and other types. */
686 var->frozen = frozen;
687}
688
689int
690varobj_get_frozen (struct varobj *var)
691{
692 return var->frozen;
693}
694
0cc7d26f
TT
695/* A helper function that restricts a range to what is actually
696 available in a VEC. This follows the usual rules for the meaning
697 of FROM and TO -- if either is negative, the entire range is
698 used. */
699
99ad9427
YQ
700void
701varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
0cc7d26f
TT
702{
703 if (*from < 0 || *to < 0)
704 {
705 *from = 0;
706 *to = VEC_length (varobj_p, children);
707 }
708 else
709 {
710 if (*from > VEC_length (varobj_p, children))
711 *from = VEC_length (varobj_p, children);
712 if (*to > VEC_length (varobj_p, children))
713 *to = VEC_length (varobj_p, children);
714 if (*from > *to)
715 *from = *to;
716 }
717}
718
d8b65138
JK
719#if HAVE_PYTHON
720
0cc7d26f
TT
721/* A helper for update_dynamic_varobj_children that installs a new
722 child when needed. */
723
724static void
725install_dynamic_child (struct varobj *var,
726 VEC (varobj_p) **changed,
8264ba82 727 VEC (varobj_p) **type_changed,
0cc7d26f
TT
728 VEC (varobj_p) **new,
729 VEC (varobj_p) **unchanged,
730 int *cchanged,
731 int index,
5e5ac9a5 732 char *name,
0cc7d26f
TT
733 struct value *value)
734{
735 if (VEC_length (varobj_p, var->children) < index + 1)
736 {
737 /* There's no child yet. */
738 struct varobj *child = varobj_add_child (var, name, value);
a109c7c1 739
0cc7d26f
TT
740 if (new)
741 {
742 VEC_safe_push (varobj_p, *new, child);
743 *cchanged = 1;
744 }
745 }
bf8793bb 746 else
0cc7d26f
TT
747 {
748 varobj_p existing = VEC_index (varobj_p, var->children, index);
8264ba82 749 int type_updated = update_type_if_necessary (existing, value);
bf8793bb 750
8264ba82
AG
751 if (type_updated)
752 {
753 if (type_changed)
754 VEC_safe_push (varobj_p, *type_changed, existing);
755 }
0cc7d26f
TT
756 if (install_new_value (existing, value, 0))
757 {
8264ba82 758 if (!type_updated && changed)
0cc7d26f
TT
759 VEC_safe_push (varobj_p, *changed, existing);
760 }
8264ba82 761 else if (!type_updated && unchanged)
0cc7d26f
TT
762 VEC_safe_push (varobj_p, *unchanged, existing);
763 }
764}
765
0cc7d26f
TT
766static int
767dynamic_varobj_has_child_method (struct varobj *var)
768{
769 struct cleanup *back_to;
bb5ce47a 770 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f
TT
771 int result;
772
0646da15
TT
773 if (!gdb_python_initialized)
774 return 0;
775
0cc7d26f
TT
776 back_to = varobj_ensure_python_env (var);
777 result = PyObject_HasAttr (printer, gdbpy_children_cst);
778 do_cleanups (back_to);
779 return result;
780}
781
782#endif
783
b6313243
TT
784static int
785update_dynamic_varobj_children (struct varobj *var,
786 VEC (varobj_p) **changed,
8264ba82 787 VEC (varobj_p) **type_changed,
0cc7d26f
TT
788 VEC (varobj_p) **new,
789 VEC (varobj_p) **unchanged,
790 int *cchanged,
791 int update_children,
792 int from,
793 int to)
b6313243
TT
794{
795#if HAVE_PYTHON
b6313243
TT
796 struct cleanup *back_to;
797 PyObject *children;
b6313243 798 int i;
bb5ce47a 799 PyObject *printer = var->dynamic->pretty_printer;
b6313243 800
0646da15
TT
801 if (!gdb_python_initialized)
802 return 0;
803
d452c4bc 804 back_to = varobj_ensure_python_env (var);
b6313243
TT
805
806 *cchanged = 0;
807 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
808 {
809 do_cleanups (back_to);
810 return 0;
811 }
812
bb5ce47a 813 if (update_children || var->dynamic->child_iter == NULL)
b6313243 814 {
0cc7d26f
TT
815 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
816 NULL);
b6313243 817
0cc7d26f
TT
818 if (!children)
819 {
820 gdbpy_print_stack ();
821 error (_("Null value returned for children"));
822 }
b6313243 823
0cc7d26f 824 make_cleanup_py_decref (children);
b6313243 825
bb5ce47a
YQ
826 Py_XDECREF (var->dynamic->child_iter);
827 var->dynamic->child_iter = PyObject_GetIter (children);
828 if (var->dynamic->child_iter == NULL)
0cc7d26f
TT
829 {
830 gdbpy_print_stack ();
831 error (_("Could not get children iterator"));
832 }
833
bb5ce47a
YQ
834 Py_XDECREF (var->dynamic->saved_item);
835 var->dynamic->saved_item = NULL;
0cc7d26f
TT
836
837 i = 0;
b6313243 838 }
0cc7d26f
TT
839 else
840 i = VEC_length (varobj_p, var->children);
b6313243 841
0cc7d26f
TT
842 /* We ask for one extra child, so that MI can report whether there
843 are more children. */
844 for (; to < 0 || i < to + 1; ++i)
b6313243 845 {
0cc7d26f 846 PyObject *item;
a4c8e806 847 int force_done = 0;
b6313243 848
0cc7d26f 849 /* See if there was a leftover from last time. */
bb5ce47a 850 if (var->dynamic->saved_item)
0cc7d26f 851 {
bb5ce47a
YQ
852 item = var->dynamic->saved_item;
853 var->dynamic->saved_item = NULL;
0cc7d26f
TT
854 }
855 else
bb5ce47a 856 item = PyIter_Next (var->dynamic->child_iter);
b6313243 857
0cc7d26f 858 if (!item)
a4c8e806
TT
859 {
860 /* Normal end of iteration. */
861 if (!PyErr_Occurred ())
862 break;
863
864 /* If we got a memory error, just use the text as the
865 item. */
866 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
867 {
868 PyObject *type, *value, *trace;
869 char *name_str, *value_str;
870
871 PyErr_Fetch (&type, &value, &trace);
872 value_str = gdbpy_exception_to_string (type, value);
873 Py_XDECREF (type);
874 Py_XDECREF (value);
875 Py_XDECREF (trace);
876 if (!value_str)
877 {
878 gdbpy_print_stack ();
879 break;
880 }
881
882 name_str = xstrprintf ("<error at %d>", i);
883 item = Py_BuildValue ("(ss)", name_str, value_str);
884 xfree (name_str);
885 xfree (value_str);
886 if (!item)
887 {
888 gdbpy_print_stack ();
889 break;
890 }
891
892 force_done = 1;
893 }
894 else
895 {
896 /* Any other kind of error. */
897 gdbpy_print_stack ();
898 break;
899 }
900 }
b6313243 901
0cc7d26f
TT
902 /* We don't want to push the extra child on any report list. */
903 if (to < 0 || i < to)
b6313243 904 {
0cc7d26f 905 PyObject *py_v;
ddd49eee 906 const char *name;
0cc7d26f
TT
907 struct value *v;
908 struct cleanup *inner;
909 int can_mention = from < 0 || i >= from;
910
911 inner = make_cleanup_py_decref (item);
912
913 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
a4c8e806
TT
914 {
915 gdbpy_print_stack ();
916 error (_("Invalid item from the child list"));
917 }
0cc7d26f
TT
918
919 v = convert_value_from_python (py_v);
8dc78533
JK
920 if (v == NULL)
921 gdbpy_print_stack ();
0cc7d26f 922 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 923 can_mention ? type_changed : NULL,
0cc7d26f
TT
924 can_mention ? new : NULL,
925 can_mention ? unchanged : NULL,
5e5ac9a5
YQ
926 can_mention ? cchanged : NULL, i,
927 xstrdup (name), v);
0cc7d26f 928 do_cleanups (inner);
b6313243 929 }
0cc7d26f 930 else
b6313243 931 {
bb5ce47a
YQ
932 Py_XDECREF (var->dynamic->saved_item);
933 var->dynamic->saved_item = item;
b6313243 934
0cc7d26f
TT
935 /* We want to truncate the child list just before this
936 element. */
937 break;
938 }
a4c8e806
TT
939
940 if (force_done)
941 break;
b6313243
TT
942 }
943
944 if (i < VEC_length (varobj_p, var->children))
945 {
0cc7d26f 946 int j;
a109c7c1 947
0cc7d26f
TT
948 *cchanged = 1;
949 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
950 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
951 VEC_truncate (varobj_p, var->children, i);
b6313243 952 }
0cc7d26f
TT
953
954 /* If there are fewer children than requested, note that the list of
955 children changed. */
956 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
957 *cchanged = 1;
958
b6313243
TT
959 var->num_children = VEC_length (varobj_p, var->children);
960
961 do_cleanups (back_to);
962
b6313243
TT
963 return 1;
964#else
9e77999c 965 gdb_assert_not_reached ("should never be called if Python is not enabled");
b6313243
TT
966#endif
967}
25d5ea92 968
8b93c638
JM
969int
970varobj_get_num_children (struct varobj *var)
971{
972 if (var->num_children == -1)
b6313243 973 {
bb5ce47a 974 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
975 {
976 int dummy;
977
978 /* If we have a dynamic varobj, don't report -1 children.
979 So, try to fetch some children first. */
8264ba82 980 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
981 0, 0, 0);
982 }
983 else
b6313243
TT
984 var->num_children = number_of_children (var);
985 }
8b93c638 986
0cc7d26f 987 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
988}
989
990/* Creates a list of the immediate children of a variable object;
581e13c1 991 the return code is the number of such children or -1 on error. */
8b93c638 992
d56d46f5 993VEC (varobj_p)*
0cc7d26f 994varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 995{
8b93c638 996 char *name;
b6313243
TT
997 int i, children_changed;
998
bb5ce47a 999 var->dynamic->children_requested = 1;
b6313243 1000
bb5ce47a 1001 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 1002 {
b6313243
TT
1003 /* This, in theory, can result in the number of children changing without
1004 frontend noticing. But well, calling -var-list-children on the same
1005 varobj twice is not something a sane frontend would do. */
8264ba82
AG
1006 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
1007 &children_changed, 0, 0, *to);
99ad9427 1008 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
1009 return var->children;
1010 }
8b93c638 1011
8b93c638
JM
1012 if (var->num_children == -1)
1013 var->num_children = number_of_children (var);
1014
74a44383
DJ
1015 /* If that failed, give up. */
1016 if (var->num_children == -1)
d56d46f5 1017 return var->children;
74a44383 1018
28335dcc
VP
1019 /* If we're called when the list of children is not yet initialized,
1020 allocate enough elements in it. */
1021 while (VEC_length (varobj_p, var->children) < var->num_children)
1022 VEC_safe_push (varobj_p, var->children, NULL);
1023
8b93c638
JM
1024 for (i = 0; i < var->num_children; i++)
1025 {
d56d46f5 1026 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1027
1028 if (existing == NULL)
1029 {
1030 /* Either it's the first call to varobj_list_children for
1031 this variable object, and the child was never created,
1032 or it was explicitly deleted by the client. */
1033 name = name_of_child (var, i);
1034 existing = create_child (var, i, name);
1035 VEC_replace (varobj_p, var->children, i, existing);
1036 }
8b93c638
JM
1037 }
1038
99ad9427 1039 varobj_restrict_range (var->children, from, to);
d56d46f5 1040 return var->children;
8b93c638
JM
1041}
1042
d8b65138
JK
1043#if HAVE_PYTHON
1044
b6313243 1045static struct varobj *
5e5ac9a5 1046varobj_add_child (struct varobj *var, char *name, struct value *value)
b6313243
TT
1047{
1048 varobj_p v = create_child_with_value (var,
1049 VEC_length (varobj_p, var->children),
1050 name, value);
a109c7c1 1051
b6313243 1052 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1053 return v;
1054}
1055
d8b65138
JK
1056#endif /* HAVE_PYTHON */
1057
8b93c638 1058/* Obtain the type of an object Variable as a string similar to the one gdb
581e13c1 1059 prints on the console. */
8b93c638
JM
1060
1061char *
1062varobj_get_type (struct varobj *var)
1063{
581e13c1 1064 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1065 NULL, too.)
1066 Do not return a type for invalid variables as well. */
1067 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1068 return NULL;
1069
1a4300e9 1070 return type_to_string (var->type);
8b93c638
JM
1071}
1072
1ecb4ee0
DJ
1073/* Obtain the type of an object variable. */
1074
1075struct type *
1076varobj_get_gdb_type (struct varobj *var)
1077{
1078 return var->type;
1079}
1080
85254831
KS
1081/* Is VAR a path expression parent, i.e., can it be used to construct
1082 a valid path expression? */
1083
1084static int
1085is_path_expr_parent (struct varobj *var)
1086{
1087 struct type *type;
1088
1089 /* "Fake" children are not path_expr parents. */
1090 if (CPLUS_FAKE_CHILD (var))
1091 return 0;
1092
99ad9427 1093 type = varobj_get_value_type (var);
85254831
KS
1094
1095 /* Anonymous unions and structs are also not path_expr parents. */
1096 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1097 || TYPE_CODE (type) == TYPE_CODE_UNION)
1098 && TYPE_NAME (type) == NULL);
1099}
1100
1101/* Return the path expression parent for VAR. */
1102
99ad9427
YQ
1103struct varobj *
1104varobj_get_path_expr_parent (struct varobj *var)
85254831
KS
1105{
1106 struct varobj *parent = var;
1107
1108 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1109 parent = parent->parent;
1110
1111 return parent;
1112}
1113
02142340
VP
1114/* Return a pointer to the full rooted expression of varobj VAR.
1115 If it has not been computed yet, compute it. */
1116char *
1117varobj_get_path_expr (struct varobj *var)
1118{
1119 if (var->path_expr != NULL)
1120 return var->path_expr;
1121 else
1122 {
1123 /* For root varobjs, we initialize path_expr
1124 when creating varobj, so here it should be
1125 child varobj. */
1126 gdb_assert (!is_root_p (var));
1127 return (*var->root->lang->path_expr_of_child) (var);
1128 }
1129}
1130
8b93c638
JM
1131enum varobj_languages
1132varobj_get_language (struct varobj *var)
1133{
1134 return variable_language (var);
1135}
1136
1137int
1138varobj_get_attributes (struct varobj *var)
1139{
1140 int attributes = 0;
1141
340a7723 1142 if (varobj_editable_p (var))
581e13c1 1143 /* FIXME: define masks for attributes. */
8b93c638
JM
1144 attributes |= 0x00000001; /* Editable */
1145
1146 return attributes;
1147}
1148
0cc7d26f
TT
1149int
1150varobj_pretty_printed_p (struct varobj *var)
1151{
bb5ce47a 1152 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1153}
1154
de051565
MK
1155char *
1156varobj_get_formatted_value (struct varobj *var,
1157 enum varobj_display_formats format)
1158{
1159 return my_value_of_variable (var, format);
1160}
1161
8b93c638
JM
1162char *
1163varobj_get_value (struct varobj *var)
1164{
de051565 1165 return my_value_of_variable (var, var->format);
8b93c638
JM
1166}
1167
1168/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1169 value of the given expression. */
1170/* Note: Invokes functions that can call error(). */
8b93c638
JM
1171
1172int
1173varobj_set_value (struct varobj *var, char *expression)
1174{
34365054 1175 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1176 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1177 We need to first construct a legal expression for this -- ugh! */
1178 /* Does this cover all the bases? */
8b93c638 1179 struct expression *exp;
34365054 1180 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1181 int saved_input_radix = input_radix;
bbc13ae3 1182 const char *s = expression;
8e7b59a5 1183 volatile struct gdb_exception except;
8b93c638 1184
340a7723 1185 gdb_assert (varobj_editable_p (var));
8b93c638 1186
581e13c1 1187 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1bb9788d 1188 exp = parse_exp_1 (&s, 0, 0, 0);
8e7b59a5
KS
1189 TRY_CATCH (except, RETURN_MASK_ERROR)
1190 {
1191 value = evaluate_expression (exp);
1192 }
1193
1194 if (except.reason < 0)
340a7723 1195 {
581e13c1 1196 /* We cannot proceed without a valid expression. */
340a7723
NR
1197 xfree (exp);
1198 return 0;
8b93c638
JM
1199 }
1200
340a7723
NR
1201 /* All types that are editable must also be changeable. */
1202 gdb_assert (varobj_value_is_changeable_p (var));
1203
1204 /* The value of a changeable variable object must not be lazy. */
1205 gdb_assert (!value_lazy (var->value));
1206
1207 /* Need to coerce the input. We want to check if the
1208 value of the variable object will be different
1209 after assignment, and the first thing value_assign
1210 does is coerce the input.
1211 For example, if we are assigning an array to a pointer variable we
b021a221 1212 should compare the pointer with the array's address, not with the
340a7723
NR
1213 array's content. */
1214 value = coerce_array (value);
1215
8e7b59a5
KS
1216 /* The new value may be lazy. value_assign, or
1217 rather value_contents, will take care of this. */
1218 TRY_CATCH (except, RETURN_MASK_ERROR)
1219 {
1220 val = value_assign (var->value, value);
1221 }
1222
1223 if (except.reason < 0)
340a7723 1224 return 0;
8e7b59a5 1225
340a7723
NR
1226 /* If the value has changed, record it, so that next -var-update can
1227 report this change. If a variable had a value of '1', we've set it
1228 to '333' and then set again to '1', when -var-update will report this
1229 variable as changed -- because the first assignment has set the
1230 'updated' flag. There's no need to optimize that, because return value
1231 of -var-update should be considered an approximation. */
581e13c1 1232 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1233 input_radix = saved_input_radix;
1234 return 1;
8b93c638
JM
1235}
1236
0cc7d26f
TT
1237#if HAVE_PYTHON
1238
1239/* A helper function to install a constructor function and visualizer
bb5ce47a 1240 in a varobj_dynamic. */
0cc7d26f
TT
1241
1242static void
bb5ce47a 1243install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1244 PyObject *visualizer)
1245{
1246 Py_XDECREF (var->constructor);
1247 var->constructor = constructor;
1248
1249 Py_XDECREF (var->pretty_printer);
1250 var->pretty_printer = visualizer;
1251
1252 Py_XDECREF (var->child_iter);
1253 var->child_iter = NULL;
1254}
1255
1256/* Install the default visualizer for VAR. */
1257
1258static void
1259install_default_visualizer (struct varobj *var)
1260{
d65aec65
PM
1261 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1262 if (CPLUS_FAKE_CHILD (var))
1263 return;
1264
0cc7d26f
TT
1265 if (pretty_printing)
1266 {
1267 PyObject *pretty_printer = NULL;
1268
1269 if (var->value)
1270 {
1271 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1272 if (! pretty_printer)
1273 {
1274 gdbpy_print_stack ();
1275 error (_("Cannot instantiate printer for default visualizer"));
1276 }
1277 }
1278
1279 if (pretty_printer == Py_None)
1280 {
1281 Py_DECREF (pretty_printer);
1282 pretty_printer = NULL;
1283 }
1284
bb5ce47a 1285 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1286 }
1287}
1288
1289/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1290 make a new object. */
1291
1292static void
1293construct_visualizer (struct varobj *var, PyObject *constructor)
1294{
1295 PyObject *pretty_printer;
1296
d65aec65
PM
1297 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1298 if (CPLUS_FAKE_CHILD (var))
1299 return;
1300
0cc7d26f
TT
1301 Py_INCREF (constructor);
1302 if (constructor == Py_None)
1303 pretty_printer = NULL;
1304 else
1305 {
1306 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1307 if (! pretty_printer)
1308 {
1309 gdbpy_print_stack ();
1310 Py_DECREF (constructor);
1311 constructor = Py_None;
1312 Py_INCREF (constructor);
1313 }
1314
1315 if (pretty_printer == Py_None)
1316 {
1317 Py_DECREF (pretty_printer);
1318 pretty_printer = NULL;
1319 }
1320 }
1321
bb5ce47a 1322 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1323}
1324
1325#endif /* HAVE_PYTHON */
1326
1327/* A helper function for install_new_value. This creates and installs
1328 a visualizer for VAR, if appropriate. */
1329
1330static void
1331install_new_value_visualizer (struct varobj *var)
1332{
1333#if HAVE_PYTHON
1334 /* If the constructor is None, then we want the raw value. If VAR
1335 does not have a value, just skip this. */
0646da15
TT
1336 if (!gdb_python_initialized)
1337 return;
1338
bb5ce47a 1339 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f
TT
1340 {
1341 struct cleanup *cleanup;
0cc7d26f
TT
1342
1343 cleanup = varobj_ensure_python_env (var);
1344
bb5ce47a 1345 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1346 install_default_visualizer (var);
1347 else
bb5ce47a 1348 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1349
1350 do_cleanups (cleanup);
1351 }
1352#else
1353 /* Do nothing. */
1354#endif
1355}
1356
8264ba82
AG
1357/* When using RTTI to determine variable type it may be changed in runtime when
1358 the variable value is changed. This function checks whether type of varobj
1359 VAR will change when a new value NEW_VALUE is assigned and if it is so
1360 updates the type of VAR. */
1361
1362static int
1363update_type_if_necessary (struct varobj *var, struct value *new_value)
1364{
1365 if (new_value)
1366 {
1367 struct value_print_options opts;
1368
1369 get_user_print_options (&opts);
1370 if (opts.objectprint)
1371 {
1372 struct type *new_type;
1373 char *curr_type_str, *new_type_str;
1374
1375 new_type = value_actual_type (new_value, 0, 0);
1376 new_type_str = type_to_string (new_type);
1377 curr_type_str = varobj_get_type (var);
1378 if (strcmp (curr_type_str, new_type_str) != 0)
1379 {
1380 var->type = new_type;
1381
1382 /* This information may be not valid for a new type. */
1383 varobj_delete (var, NULL, 1);
1384 VEC_free (varobj_p, var->children);
1385 var->num_children = -1;
1386 return 1;
1387 }
1388 }
1389 }
1390
1391 return 0;
1392}
1393
acd65feb
VP
1394/* Assign a new value to a variable object. If INITIAL is non-zero,
1395 this is the first assignement after the variable object was just
1396 created, or changed type. In that case, just assign the value
1397 and return 0.
581e13c1
MS
1398 Otherwise, assign the new value, and return 1 if the value is
1399 different from the current one, 0 otherwise. The comparison is
1400 done on textual representation of value. Therefore, some types
1401 need not be compared. E.g. for structures the reported value is
1402 always "{...}", so no comparison is necessary here. If the old
1403 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1404
1405 The VALUE parameter should not be released -- the function will
1406 take care of releasing it when needed. */
acd65feb
VP
1407static int
1408install_new_value (struct varobj *var, struct value *value, int initial)
1409{
1410 int changeable;
1411 int need_to_fetch;
1412 int changed = 0;
25d5ea92 1413 int intentionally_not_fetched = 0;
7a4d50bf 1414 char *print_value = NULL;
acd65feb 1415
acd65feb 1416 /* We need to know the varobj's type to decide if the value should
3e43a32a 1417 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1418 don't have a type. */
acd65feb 1419 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1420 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1421
1422 /* If the type has custom visualizer, we consider it to be always
581e13c1 1423 changeable. FIXME: need to make sure this behaviour will not
b6313243 1424 mess up read-sensitive values. */
bb5ce47a 1425 if (var->dynamic->pretty_printer != NULL)
b6313243
TT
1426 changeable = 1;
1427
acd65feb
VP
1428 need_to_fetch = changeable;
1429
b26ed50d
VP
1430 /* We are not interested in the address of references, and given
1431 that in C++ a reference is not rebindable, it cannot
1432 meaningfully change. So, get hold of the real value. */
1433 if (value)
0cc7d26f 1434 value = coerce_ref (value);
b26ed50d 1435
acd65feb
VP
1436 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1437 /* For unions, we need to fetch the value implicitly because
1438 of implementation of union member fetch. When gdb
1439 creates a value for a field and the value of the enclosing
1440 structure is not lazy, it immediately copies the necessary
1441 bytes from the enclosing values. If the enclosing value is
1442 lazy, the call to value_fetch_lazy on the field will read
1443 the data from memory. For unions, that means we'll read the
1444 same memory more than once, which is not desirable. So
1445 fetch now. */
1446 need_to_fetch = 1;
1447
1448 /* The new value might be lazy. If the type is changeable,
1449 that is we'll be comparing values of this type, fetch the
1450 value now. Otherwise, on the next update the old value
1451 will be lazy, which means we've lost that old value. */
1452 if (need_to_fetch && value && value_lazy (value))
1453 {
25d5ea92
VP
1454 struct varobj *parent = var->parent;
1455 int frozen = var->frozen;
a109c7c1 1456
25d5ea92
VP
1457 for (; !frozen && parent; parent = parent->parent)
1458 frozen |= parent->frozen;
1459
1460 if (frozen && initial)
1461 {
1462 /* For variables that are frozen, or are children of frozen
1463 variables, we don't do fetch on initial assignment.
1464 For non-initial assignemnt we do the fetch, since it means we're
1465 explicitly asked to compare the new value with the old one. */
1466 intentionally_not_fetched = 1;
1467 }
8e7b59a5 1468 else
acd65feb 1469 {
8e7b59a5
KS
1470 volatile struct gdb_exception except;
1471
1472 TRY_CATCH (except, RETURN_MASK_ERROR)
1473 {
1474 value_fetch_lazy (value);
1475 }
1476
1477 if (except.reason < 0)
1478 {
1479 /* Set the value to NULL, so that for the next -var-update,
1480 we don't try to compare the new value with this value,
1481 that we couldn't even read. */
1482 value = NULL;
1483 }
acd65feb 1484 }
acd65feb
VP
1485 }
1486
e848a8a5
TT
1487 /* Get a reference now, before possibly passing it to any Python
1488 code that might release it. */
1489 if (value != NULL)
1490 value_incref (value);
b6313243 1491
7a4d50bf
VP
1492 /* Below, we'll be comparing string rendering of old and new
1493 values. Don't get string rendering if the value is
1494 lazy -- if it is, the code above has decided that the value
1495 should not be fetched. */
bb5ce47a
YQ
1496 if (value != NULL && !value_lazy (value)
1497 && var->dynamic->pretty_printer == NULL)
99ad9427 1498 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1499
acd65feb
VP
1500 /* If the type is changeable, compare the old and the new values.
1501 If this is the initial assignment, we don't have any old value
1502 to compare with. */
7a4d50bf 1503 if (!initial && changeable)
acd65feb 1504 {
3e43a32a
MS
1505 /* If the value of the varobj was changed by -var-set-value,
1506 then the value in the varobj and in the target is the same.
1507 However, that value is different from the value that the
581e13c1 1508 varobj had after the previous -var-update. So need to the
3e43a32a 1509 varobj as changed. */
acd65feb 1510 if (var->updated)
57e66780 1511 {
57e66780
DJ
1512 changed = 1;
1513 }
bb5ce47a 1514 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1515 {
1516 /* Try to compare the values. That requires that both
1517 values are non-lazy. */
25d5ea92
VP
1518 if (var->not_fetched && value_lazy (var->value))
1519 {
1520 /* This is a frozen varobj and the value was never read.
1521 Presumably, UI shows some "never read" indicator.
1522 Now that we've fetched the real value, we need to report
1523 this varobj as changed so that UI can show the real
1524 value. */
1525 changed = 1;
1526 }
1527 else if (var->value == NULL && value == NULL)
581e13c1 1528 /* Equal. */
acd65feb
VP
1529 ;
1530 else if (var->value == NULL || value == NULL)
57e66780 1531 {
57e66780
DJ
1532 changed = 1;
1533 }
acd65feb
VP
1534 else
1535 {
1536 gdb_assert (!value_lazy (var->value));
1537 gdb_assert (!value_lazy (value));
85265413 1538
57e66780 1539 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1540 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1541 changed = 1;
acd65feb
VP
1542 }
1543 }
1544 }
85265413 1545
ee342b23
VP
1546 if (!initial && !changeable)
1547 {
1548 /* For values that are not changeable, we don't compare the values.
1549 However, we want to notice if a value was not NULL and now is NULL,
1550 or vise versa, so that we report when top-level varobjs come in scope
1551 and leave the scope. */
1552 changed = (var->value != NULL) != (value != NULL);
1553 }
1554
acd65feb 1555 /* We must always keep the new value, since children depend on it. */
25d5ea92 1556 if (var->value != NULL && var->value != value)
acd65feb
VP
1557 value_free (var->value);
1558 var->value = value;
25d5ea92
VP
1559 if (value && value_lazy (value) && intentionally_not_fetched)
1560 var->not_fetched = 1;
1561 else
1562 var->not_fetched = 0;
acd65feb 1563 var->updated = 0;
85265413 1564
0cc7d26f
TT
1565 install_new_value_visualizer (var);
1566
1567 /* If we installed a pretty-printer, re-compare the printed version
1568 to see if the variable changed. */
bb5ce47a 1569 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
1570 {
1571 xfree (print_value);
99ad9427
YQ
1572 print_value = varobj_value_get_print_value (var->value, var->format,
1573 var);
e8f781e2
TT
1574 if ((var->print_value == NULL && print_value != NULL)
1575 || (var->print_value != NULL && print_value == NULL)
1576 || (var->print_value != NULL && print_value != NULL
1577 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1578 changed = 1;
1579 }
1580 if (var->print_value)
1581 xfree (var->print_value);
1582 var->print_value = print_value;
1583
b26ed50d 1584 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1585
1586 return changed;
1587}
acd65feb 1588
0cc7d26f
TT
1589/* Return the requested range for a varobj. VAR is the varobj. FROM
1590 and TO are out parameters; *FROM and *TO will be set to the
1591 selected sub-range of VAR. If no range was selected using
1592 -var-set-update-range, then both will be -1. */
1593void
1594varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1595{
0cc7d26f
TT
1596 *from = var->from;
1597 *to = var->to;
b6313243
TT
1598}
1599
0cc7d26f
TT
1600/* Set the selected sub-range of children of VAR to start at index
1601 FROM and end at index TO. If either FROM or TO is less than zero,
1602 this is interpreted as a request for all children. */
1603void
1604varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1605{
0cc7d26f
TT
1606 var->from = from;
1607 var->to = to;
b6313243
TT
1608}
1609
1610void
1611varobj_set_visualizer (struct varobj *var, const char *visualizer)
1612{
1613#if HAVE_PYTHON
34fa1d9d
MS
1614 PyObject *mainmod, *globals, *constructor;
1615 struct cleanup *back_to;
b6313243 1616
0646da15
TT
1617 if (!gdb_python_initialized)
1618 return;
1619
d452c4bc 1620 back_to = varobj_ensure_python_env (var);
b6313243
TT
1621
1622 mainmod = PyImport_AddModule ("__main__");
1623 globals = PyModule_GetDict (mainmod);
1624 Py_INCREF (globals);
1625 make_cleanup_py_decref (globals);
1626
1627 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1628
0cc7d26f 1629 if (! constructor)
b6313243
TT
1630 {
1631 gdbpy_print_stack ();
da1f2771 1632 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1633 }
1634
0cc7d26f
TT
1635 construct_visualizer (var, constructor);
1636 Py_XDECREF (constructor);
b6313243 1637
0cc7d26f
TT
1638 /* If there are any children now, wipe them. */
1639 varobj_delete (var, NULL, 1 /* children only */);
1640 var->num_children = -1;
b6313243
TT
1641
1642 do_cleanups (back_to);
1643#else
da1f2771 1644 error (_("Python support required"));
b6313243
TT
1645#endif
1646}
1647
7a290c40
JB
1648/* If NEW_VALUE is the new value of the given varobj (var), return
1649 non-zero if var has mutated. In other words, if the type of
1650 the new value is different from the type of the varobj's old
1651 value.
1652
1653 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1654
1655static int
1656varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1657 struct type *new_type)
1658{
1659 /* If we haven't previously computed the number of children in var,
1660 it does not matter from the front-end's perspective whether
1661 the type has mutated or not. For all intents and purposes,
1662 it has not mutated. */
1663 if (var->num_children < 0)
1664 return 0;
1665
1666 if (var->root->lang->value_has_mutated)
1667 return var->root->lang->value_has_mutated (var, new_value, new_type);
1668 else
1669 return 0;
1670}
1671
8b93c638
JM
1672/* Update the values for a variable and its children. This is a
1673 two-pronged attack. First, re-parse the value for the root's
1674 expression to see if it's changed. Then go all the way
1675 through its children, reconstructing them and noting if they've
1676 changed.
1677
25d5ea92
VP
1678 The EXPLICIT parameter specifies if this call is result
1679 of MI request to update this specific variable, or
581e13c1 1680 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1681 update frozen variables.
705da579 1682
581e13c1 1683 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1684 returns TYPE_CHANGED, then it has done this and VARP will be modified
1685 to point to the new varobj. */
8b93c638 1686
1417b39d
JB
1687VEC(varobj_update_result) *
1688varobj_update (struct varobj **varp, int explicit)
8b93c638 1689{
25d5ea92 1690 int type_changed = 0;
8b93c638 1691 int i;
30b28db1 1692 struct value *new;
b6313243 1693 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1694 VEC (varobj_update_result) *result = NULL;
8b93c638 1695
25d5ea92
VP
1696 /* Frozen means frozen -- we don't check for any change in
1697 this varobj, including its going out of scope, or
1698 changing type. One use case for frozen varobjs is
1699 retaining previously evaluated expressions, and we don't
1700 want them to be reevaluated at all. */
1701 if (!explicit && (*varp)->frozen)
f7f9ae2c 1702 return result;
8756216b
DP
1703
1704 if (!(*varp)->root->is_valid)
f7f9ae2c 1705 {
cfce2ea2 1706 varobj_update_result r = {0};
a109c7c1 1707
cfce2ea2 1708 r.varobj = *varp;
f7f9ae2c
VP
1709 r.status = VAROBJ_INVALID;
1710 VEC_safe_push (varobj_update_result, result, &r);
1711 return result;
1712 }
8b93c638 1713
25d5ea92 1714 if ((*varp)->root->rootvar == *varp)
ae093f96 1715 {
cfce2ea2 1716 varobj_update_result r = {0};
a109c7c1 1717
cfce2ea2 1718 r.varobj = *varp;
f7f9ae2c
VP
1719 r.status = VAROBJ_IN_SCOPE;
1720
581e13c1 1721 /* Update the root variable. value_of_root can return NULL
25d5ea92 1722 if the variable is no longer around, i.e. we stepped out of
581e13c1 1723 the frame in which a local existed. We are letting the
25d5ea92
VP
1724 value_of_root variable dispose of the varobj if the type
1725 has changed. */
25d5ea92 1726 new = value_of_root (varp, &type_changed);
8264ba82
AG
1727 if (update_type_if_necessary(*varp, new))
1728 type_changed = 1;
f7f9ae2c 1729 r.varobj = *varp;
f7f9ae2c 1730 r.type_changed = type_changed;
ea56f9c2 1731 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1732 r.changed = 1;
ea56f9c2 1733
25d5ea92 1734 if (new == NULL)
f7f9ae2c 1735 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1736 r.value_installed = 1;
f7f9ae2c
VP
1737
1738 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1739 {
0b4bc29a
JK
1740 if (r.type_changed || r.changed)
1741 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1742 return result;
1743 }
1744
1745 VEC_safe_push (varobj_update_result, stack, &r);
1746 }
1747 else
1748 {
cfce2ea2 1749 varobj_update_result r = {0};
a109c7c1 1750
cfce2ea2 1751 r.varobj = *varp;
b6313243 1752 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1753 }
8b93c638 1754
8756216b 1755 /* Walk through the children, reconstructing them all. */
b6313243 1756 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1757 {
b6313243
TT
1758 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1759 struct varobj *v = r.varobj;
1760
1761 VEC_pop (varobj_update_result, stack);
1762
1763 /* Update this variable, unless it's a root, which is already
1764 updated. */
1765 if (!r.value_installed)
7a290c40
JB
1766 {
1767 struct type *new_type;
1768
b6313243 1769 new = value_of_child (v->parent, v->index);
8264ba82
AG
1770 if (update_type_if_necessary(v, new))
1771 r.type_changed = 1;
7a290c40
JB
1772 if (new)
1773 new_type = value_type (new);
1774 else
1775 new_type = v->root->lang->type_of_child (v->parent, v->index);
1776
1777 if (varobj_value_has_mutated (v, new, new_type))
1778 {
1779 /* The children are no longer valid; delete them now.
1780 Report the fact that its type changed as well. */
1781 varobj_delete (v, NULL, 1 /* only_children */);
1782 v->num_children = -1;
1783 v->to = -1;
1784 v->from = -1;
1785 v->type = new_type;
1786 r.type_changed = 1;
1787 }
1788
1789 if (install_new_value (v, new, r.type_changed))
b6313243
TT
1790 {
1791 r.changed = 1;
1792 v->updated = 0;
1793 }
1794 }
1795
1796 /* We probably should not get children of a varobj that has a
1797 pretty-printer, but for which -var-list-children was never
581e13c1 1798 invoked. */
bb5ce47a 1799 if (v->dynamic->pretty_printer != NULL)
b6313243 1800 {
8264ba82
AG
1801 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1802 VEC (varobj_p) *new = 0;
26f9bcee 1803 int i, children_changed = 0;
b6313243
TT
1804
1805 if (v->frozen)
1806 continue;
1807
bb5ce47a 1808 if (!v->dynamic->children_requested)
0cc7d26f
TT
1809 {
1810 int dummy;
1811
1812 /* If we initially did not have potential children, but
1813 now we do, consider the varobj as changed.
1814 Otherwise, if children were never requested, consider
1815 it as unchanged -- presumably, such varobj is not yet
1816 expanded in the UI, so we need not bother getting
1817 it. */
1818 if (!varobj_has_more (v, 0))
1819 {
8264ba82 1820 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
1821 &dummy, 0, 0, 0);
1822 if (varobj_has_more (v, 0))
1823 r.changed = 1;
1824 }
1825
1826 if (r.changed)
1827 VEC_safe_push (varobj_update_result, result, &r);
1828
1829 continue;
1830 }
1831
b6313243
TT
1832 /* If update_dynamic_varobj_children returns 0, then we have
1833 a non-conforming pretty-printer, so we skip it. */
8264ba82
AG
1834 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1835 &unchanged, &children_changed, 1,
0cc7d26f 1836 v->from, v->to))
b6313243 1837 {
0cc7d26f 1838 if (children_changed || new)
b6313243 1839 {
0cc7d26f
TT
1840 r.children_changed = 1;
1841 r.new = new;
b6313243 1842 }
0cc7d26f
TT
1843 /* Push in reverse order so that the first child is
1844 popped from the work stack first, and so will be
1845 added to result first. This does not affect
1846 correctness, just "nicer". */
8264ba82
AG
1847 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1848 {
1849 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1850 varobj_update_result r = {0};
1851
1852 /* Type may change only if value was changed. */
1853 r.varobj = tmp;
1854 r.changed = 1;
1855 r.type_changed = 1;
1856 r.value_installed = 1;
1857 VEC_safe_push (varobj_update_result, stack, &r);
1858 }
0cc7d26f 1859 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1860 {
0cc7d26f 1861 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1862 varobj_update_result r = {0};
a109c7c1 1863
cfce2ea2 1864 r.varobj = tmp;
0cc7d26f 1865 r.changed = 1;
b6313243
TT
1866 r.value_installed = 1;
1867 VEC_safe_push (varobj_update_result, stack, &r);
1868 }
0cc7d26f
TT
1869 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1870 {
1871 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1872
0cc7d26f
TT
1873 if (!tmp->frozen)
1874 {
cfce2ea2 1875 varobj_update_result r = {0};
a109c7c1 1876
cfce2ea2 1877 r.varobj = tmp;
0cc7d26f
TT
1878 r.value_installed = 1;
1879 VEC_safe_push (varobj_update_result, stack, &r);
1880 }
1881 }
b6313243
TT
1882 if (r.changed || r.children_changed)
1883 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 1884
8264ba82
AG
1885 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1886 because NEW has been put into the result vector. */
0cc7d26f 1887 VEC_free (varobj_p, changed);
8264ba82 1888 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
1889 VEC_free (varobj_p, unchanged);
1890
b6313243
TT
1891 continue;
1892 }
1893 }
28335dcc
VP
1894
1895 /* Push any children. Use reverse order so that the first
1896 child is popped from the work stack first, and so
1897 will be added to result first. This does not
1898 affect correctness, just "nicer". */
1899 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1900 {
28335dcc 1901 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1902
28335dcc 1903 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1904 if (c != NULL && !c->frozen)
28335dcc 1905 {
cfce2ea2 1906 varobj_update_result r = {0};
a109c7c1 1907
cfce2ea2 1908 r.varobj = c;
b6313243 1909 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1910 }
8b93c638 1911 }
b6313243
TT
1912
1913 if (r.changed || r.type_changed)
1914 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1915 }
1916
b6313243
TT
1917 VEC_free (varobj_update_result, stack);
1918
f7f9ae2c 1919 return result;
8b93c638
JM
1920}
1921\f
1922
1923/* Helper functions */
1924
1925/*
1926 * Variable object construction/destruction
1927 */
1928
1929static int
fba45db2
KB
1930delete_variable (struct cpstack **resultp, struct varobj *var,
1931 int only_children_p)
8b93c638
JM
1932{
1933 int delcount = 0;
1934
1935 delete_variable_1 (resultp, &delcount, var,
1936 only_children_p, 1 /* remove_from_parent_p */ );
1937
1938 return delcount;
1939}
1940
581e13c1 1941/* Delete the variable object VAR and its children. */
8b93c638
JM
1942/* IMPORTANT NOTE: If we delete a variable which is a child
1943 and the parent is not removed we dump core. It must be always
581e13c1 1944 initially called with remove_from_parent_p set. */
8b93c638 1945static void
72330bd6
AC
1946delete_variable_1 (struct cpstack **resultp, int *delcountp,
1947 struct varobj *var, int only_children_p,
1948 int remove_from_parent_p)
8b93c638 1949{
28335dcc 1950 int i;
8b93c638 1951
581e13c1 1952 /* Delete any children of this variable, too. */
28335dcc
VP
1953 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1954 {
1955 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1956
214270ab
VP
1957 if (!child)
1958 continue;
8b93c638 1959 if (!remove_from_parent_p)
28335dcc
VP
1960 child->parent = NULL;
1961 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1962 }
28335dcc 1963 VEC_free (varobj_p, var->children);
8b93c638 1964
581e13c1 1965 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1966 if (only_children_p)
1967 return;
1968
581e13c1 1969 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 1970 /* If the name is null, this is a temporary variable, that has not
581e13c1 1971 yet been installed, don't report it, it belongs to the caller... */
73a93a32 1972 if (var->obj_name != NULL)
8b93c638 1973 {
5b616ba1 1974 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1975 *delcountp = *delcountp + 1;
1976 }
1977
581e13c1 1978 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1979 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1980 (as indicated by remove_from_parent_p) we don't bother doing an
1981 expensive list search to find the element to remove when we are
581e13c1 1982 discarding the list afterwards. */
72330bd6 1983 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1984 {
28335dcc 1985 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1986 }
72330bd6 1987
73a93a32
JI
1988 if (var->obj_name != NULL)
1989 uninstall_variable (var);
8b93c638 1990
581e13c1 1991 /* Free memory associated with this variable. */
8b93c638
JM
1992 free_variable (var);
1993}
1994
581e13c1 1995/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1996static int
fba45db2 1997install_variable (struct varobj *var)
8b93c638
JM
1998{
1999 struct vlist *cv;
2000 struct vlist *newvl;
2001 const char *chp;
2002 unsigned int index = 0;
2003 unsigned int i = 1;
2004
2005 for (chp = var->obj_name; *chp; chp++)
2006 {
2007 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2008 }
2009
2010 cv = *(varobj_table + index);
2011 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2012 cv = cv->next;
2013
2014 if (cv != NULL)
8a3fe4f8 2015 error (_("Duplicate variable object name"));
8b93c638 2016
581e13c1 2017 /* Add varobj to hash table. */
8b93c638
JM
2018 newvl = xmalloc (sizeof (struct vlist));
2019 newvl->next = *(varobj_table + index);
2020 newvl->var = var;
2021 *(varobj_table + index) = newvl;
2022
581e13c1 2023 /* If root, add varobj to root list. */
b2c2bd75 2024 if (is_root_p (var))
8b93c638 2025 {
581e13c1 2026 /* Add to list of root variables. */
8b93c638
JM
2027 if (rootlist == NULL)
2028 var->root->next = NULL;
2029 else
2030 var->root->next = rootlist;
2031 rootlist = var->root;
8b93c638
JM
2032 }
2033
2034 return 1; /* OK */
2035}
2036
581e13c1 2037/* Unistall the object VAR. */
8b93c638 2038static void
fba45db2 2039uninstall_variable (struct varobj *var)
8b93c638
JM
2040{
2041 struct vlist *cv;
2042 struct vlist *prev;
2043 struct varobj_root *cr;
2044 struct varobj_root *prer;
2045 const char *chp;
2046 unsigned int index = 0;
2047 unsigned int i = 1;
2048
581e13c1 2049 /* Remove varobj from hash table. */
8b93c638
JM
2050 for (chp = var->obj_name; *chp; chp++)
2051 {
2052 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2053 }
2054
2055 cv = *(varobj_table + index);
2056 prev = NULL;
2057 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2058 {
2059 prev = cv;
2060 cv = cv->next;
2061 }
2062
2063 if (varobjdebug)
2064 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2065
2066 if (cv == NULL)
2067 {
72330bd6
AC
2068 warning
2069 ("Assertion failed: Could not find variable object \"%s\" to delete",
2070 var->obj_name);
8b93c638
JM
2071 return;
2072 }
2073
2074 if (prev == NULL)
2075 *(varobj_table + index) = cv->next;
2076 else
2077 prev->next = cv->next;
2078
b8c9b27d 2079 xfree (cv);
8b93c638 2080
581e13c1 2081 /* If root, remove varobj from root list. */
b2c2bd75 2082 if (is_root_p (var))
8b93c638 2083 {
581e13c1 2084 /* Remove from list of root variables. */
8b93c638
JM
2085 if (rootlist == var->root)
2086 rootlist = var->root->next;
2087 else
2088 {
2089 prer = NULL;
2090 cr = rootlist;
2091 while ((cr != NULL) && (cr->rootvar != var))
2092 {
2093 prer = cr;
2094 cr = cr->next;
2095 }
2096 if (cr == NULL)
2097 {
8f7e195f
JB
2098 warning (_("Assertion failed: Could not find "
2099 "varobj \"%s\" in root list"),
3e43a32a 2100 var->obj_name);
8b93c638
JM
2101 return;
2102 }
2103 if (prer == NULL)
2104 rootlist = NULL;
2105 else
2106 prer->next = cr->next;
2107 }
8b93c638
JM
2108 }
2109
2110}
2111
581e13c1 2112/* Create and install a child of the parent of the given name. */
8b93c638 2113static struct varobj *
fba45db2 2114create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2115{
2116 return create_child_with_value (parent, index, name,
2117 value_of_child (parent, index));
2118}
2119
2120static struct varobj *
5e5ac9a5 2121create_child_with_value (struct varobj *parent, int index, char *name,
b6313243 2122 struct value *value)
8b93c638
JM
2123{
2124 struct varobj *child;
2125 char *childs_name;
2126
2127 child = new_variable ();
2128
5e5ac9a5
YQ
2129 /* NAME is allocated by caller. */
2130 child->name = name;
8b93c638 2131 child->index = index;
8b93c638
JM
2132 child->parent = parent;
2133 child->root = parent->root;
85254831 2134
99ad9427 2135 if (varobj_is_anonymous_child (child))
85254831
KS
2136 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2137 else
2138 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638 2139 child->obj_name = childs_name;
85254831 2140
8b93c638
JM
2141 install_variable (child);
2142
acd65feb
VP
2143 /* Compute the type of the child. Must do this before
2144 calling install_new_value. */
2145 if (value != NULL)
2146 /* If the child had no evaluation errors, var->value
581e13c1 2147 will be non-NULL and contain a valid type. */
8264ba82 2148 child->type = value_actual_type (value, 0, NULL);
acd65feb 2149 else
581e13c1 2150 /* Otherwise, we must compute the type. */
acd65feb
VP
2151 child->type = (*child->root->lang->type_of_child) (child->parent,
2152 child->index);
2153 install_new_value (child, value, 1);
2154
8b93c638
JM
2155 return child;
2156}
8b93c638
JM
2157\f
2158
2159/*
2160 * Miscellaneous utility functions.
2161 */
2162
581e13c1 2163/* Allocate memory and initialize a new variable. */
8b93c638
JM
2164static struct varobj *
2165new_variable (void)
2166{
2167 struct varobj *var;
2168
2169 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2170 var->name = NULL;
02142340 2171 var->path_expr = NULL;
8b93c638
JM
2172 var->obj_name = NULL;
2173 var->index = -1;
2174 var->type = NULL;
2175 var->value = NULL;
8b93c638
JM
2176 var->num_children = -1;
2177 var->parent = NULL;
2178 var->children = NULL;
2179 var->format = 0;
2180 var->root = NULL;
fb9b6b35 2181 var->updated = 0;
85265413 2182 var->print_value = NULL;
25d5ea92
VP
2183 var->frozen = 0;
2184 var->not_fetched = 0;
bb5ce47a
YQ
2185 var->dynamic
2186 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2187 var->dynamic->children_requested = 0;
0cc7d26f
TT
2188 var->from = -1;
2189 var->to = -1;
bb5ce47a
YQ
2190 var->dynamic->constructor = 0;
2191 var->dynamic->pretty_printer = 0;
2192 var->dynamic->child_iter = 0;
2193 var->dynamic->saved_item = 0;
8b93c638
JM
2194
2195 return var;
2196}
2197
581e13c1 2198/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2199static struct varobj *
2200new_root_variable (void)
2201{
2202 struct varobj *var = new_variable ();
a109c7c1 2203
3e43a32a 2204 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
8b93c638
JM
2205 var->root->lang = NULL;
2206 var->root->exp = NULL;
2207 var->root->valid_block = NULL;
7a424e99 2208 var->root->frame = null_frame_id;
a5defcdc 2209 var->root->floating = 0;
8b93c638 2210 var->root->rootvar = NULL;
8756216b 2211 var->root->is_valid = 1;
8b93c638
JM
2212
2213 return var;
2214}
2215
581e13c1 2216/* Free any allocated memory associated with VAR. */
8b93c638 2217static void
fba45db2 2218free_variable (struct varobj *var)
8b93c638 2219{
d452c4bc 2220#if HAVE_PYTHON
bb5ce47a 2221 if (var->dynamic->pretty_printer != NULL)
d452c4bc
UW
2222 {
2223 struct cleanup *cleanup = varobj_ensure_python_env (var);
bb5ce47a
YQ
2224
2225 Py_XDECREF (var->dynamic->constructor);
2226 Py_XDECREF (var->dynamic->pretty_printer);
2227 Py_XDECREF (var->dynamic->child_iter);
2228 Py_XDECREF (var->dynamic->saved_item);
d452c4bc
UW
2229 do_cleanups (cleanup);
2230 }
2231#endif
2232
36746093
JK
2233 value_free (var->value);
2234
581e13c1 2235 /* Free the expression if this is a root variable. */
b2c2bd75 2236 if (is_root_p (var))
8b93c638 2237 {
3038237c 2238 xfree (var->root->exp);
8038e1e2 2239 xfree (var->root);
8b93c638
JM
2240 }
2241
8038e1e2
AC
2242 xfree (var->name);
2243 xfree (var->obj_name);
85265413 2244 xfree (var->print_value);
02142340 2245 xfree (var->path_expr);
bb5ce47a 2246 xfree (var->dynamic);
8038e1e2 2247 xfree (var);
8b93c638
JM
2248}
2249
74b7792f
AC
2250static void
2251do_free_variable_cleanup (void *var)
2252{
2253 free_variable (var);
2254}
2255
2256static struct cleanup *
2257make_cleanup_free_variable (struct varobj *var)
2258{
2259 return make_cleanup (do_free_variable_cleanup, var);
2260}
2261
6e2a9270
VP
2262/* Return the type of the value that's stored in VAR,
2263 or that would have being stored there if the
581e13c1 2264 value were accessible.
6e2a9270
VP
2265
2266 This differs from VAR->type in that VAR->type is always
2267 the true type of the expession in the source language.
2268 The return value of this function is the type we're
2269 actually storing in varobj, and using for displaying
2270 the values and for comparing previous and new values.
2271
2272 For example, top-level references are always stripped. */
99ad9427
YQ
2273struct type *
2274varobj_get_value_type (struct varobj *var)
6e2a9270
VP
2275{
2276 struct type *type;
2277
2278 if (var->value)
2279 type = value_type (var->value);
2280 else
2281 type = var->type;
2282
2283 type = check_typedef (type);
2284
2285 if (TYPE_CODE (type) == TYPE_CODE_REF)
2286 type = get_target_type (type);
2287
2288 type = check_typedef (type);
2289
2290 return type;
2291}
2292
8b93c638 2293/* What is the default display for this variable? We assume that
581e13c1 2294 everything is "natural". Any exceptions? */
8b93c638 2295static enum varobj_display_formats
fba45db2 2296variable_default_display (struct varobj *var)
8b93c638
JM
2297{
2298 return FORMAT_NATURAL;
2299}
2300
581e13c1 2301/* FIXME: The following should be generic for any pointer. */
8b93c638 2302static void
fba45db2 2303cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2304{
2305 struct cpstack *s;
2306
2307 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2308 s->name = name;
2309 s->next = *pstack;
2310 *pstack = s;
2311}
2312
581e13c1 2313/* FIXME: The following should be generic for any pointer. */
8b93c638 2314static char *
fba45db2 2315cppop (struct cpstack **pstack)
8b93c638
JM
2316{
2317 struct cpstack *s;
2318 char *v;
2319
2320 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2321 return NULL;
2322
2323 s = *pstack;
2324 v = s->name;
2325 *pstack = (*pstack)->next;
b8c9b27d 2326 xfree (s);
8b93c638
JM
2327
2328 return v;
2329}
2330\f
2331/*
2332 * Language-dependencies
2333 */
2334
2335/* Common entry points */
2336
581e13c1 2337/* Get the language of variable VAR. */
8b93c638 2338static enum varobj_languages
fba45db2 2339variable_language (struct varobj *var)
8b93c638
JM
2340{
2341 enum varobj_languages lang;
2342
2343 switch (var->root->exp->language_defn->la_language)
2344 {
2345 default:
2346 case language_c:
2347 lang = vlang_c;
2348 break;
2349 case language_cplus:
2350 lang = vlang_cplus;
2351 break;
2352 case language_java:
2353 lang = vlang_java;
2354 break;
40591b7d
JCD
2355 case language_ada:
2356 lang = vlang_ada;
2357 break;
8b93c638
JM
2358 }
2359
2360 return lang;
2361}
2362
2363/* Return the number of children for a given variable.
2364 The result of this function is defined by the language
581e13c1 2365 implementation. The number of children returned by this function
8b93c638 2366 is the number of children that the user will see in the variable
581e13c1 2367 display. */
8b93c638 2368static int
fba45db2 2369number_of_children (struct varobj *var)
8b93c638 2370{
82ae4854 2371 return (*var->root->lang->number_of_children) (var);
8b93c638
JM
2372}
2373
3e43a32a 2374/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2375 string. */
8b93c638 2376static char *
fba45db2 2377name_of_variable (struct varobj *var)
8b93c638
JM
2378{
2379 return (*var->root->lang->name_of_variable) (var);
2380}
2381
3e43a32a 2382/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2383 string. */
8b93c638 2384static char *
fba45db2 2385name_of_child (struct varobj *var, int index)
8b93c638
JM
2386{
2387 return (*var->root->lang->name_of_child) (var, index);
2388}
2389
2213e2be
YQ
2390/* If frame associated with VAR can be found, switch
2391 to it and return 1. Otherwise, return 0. */
2392
2393static int
2394check_scope (struct varobj *var)
2395{
2396 struct frame_info *fi;
2397 int scope;
2398
2399 fi = frame_find_by_id (var->root->frame);
2400 scope = fi != NULL;
2401
2402 if (fi)
2403 {
2404 CORE_ADDR pc = get_frame_pc (fi);
2405
2406 if (pc < BLOCK_START (var->root->valid_block) ||
2407 pc >= BLOCK_END (var->root->valid_block))
2408 scope = 0;
2409 else
2410 select_frame (fi);
2411 }
2412 return scope;
2413}
2414
2415/* Helper function to value_of_root. */
2416
2417static struct value *
2418value_of_root_1 (struct varobj **var_handle)
2419{
2420 struct value *new_val = NULL;
2421 struct varobj *var = *var_handle;
2422 int within_scope = 0;
2423 struct cleanup *back_to;
2424
2425 /* Only root variables can be updated... */
2426 if (!is_root_p (var))
2427 /* Not a root var. */
2428 return NULL;
2429
2430 back_to = make_cleanup_restore_current_thread ();
2431
2432 /* Determine whether the variable is still around. */
2433 if (var->root->valid_block == NULL || var->root->floating)
2434 within_scope = 1;
2435 else if (var->root->thread_id == 0)
2436 {
2437 /* The program was single-threaded when the variable object was
2438 created. Technically, it's possible that the program became
2439 multi-threaded since then, but we don't support such
2440 scenario yet. */
2441 within_scope = check_scope (var);
2442 }
2443 else
2444 {
2445 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2446 if (in_thread_list (ptid))
2447 {
2448 switch_to_thread (ptid);
2449 within_scope = check_scope (var);
2450 }
2451 }
2452
2453 if (within_scope)
2454 {
2455 volatile struct gdb_exception except;
2456
2457 /* We need to catch errors here, because if evaluate
2458 expression fails we want to just return NULL. */
2459 TRY_CATCH (except, RETURN_MASK_ERROR)
2460 {
2461 new_val = evaluate_expression (var->root->exp);
2462 }
2463 }
2464
2465 do_cleanups (back_to);
2466
2467 return new_val;
2468}
2469
a5defcdc
VP
2470/* What is the ``struct value *'' of the root variable VAR?
2471 For floating variable object, evaluation can get us a value
2472 of different type from what is stored in varobj already. In
2473 that case:
2474 - *type_changed will be set to 1
2475 - old varobj will be freed, and new one will be
2476 created, with the same name.
2477 - *var_handle will be set to the new varobj
2478 Otherwise, *type_changed will be set to 0. */
30b28db1 2479static struct value *
fba45db2 2480value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2481{
73a93a32
JI
2482 struct varobj *var;
2483
2484 if (var_handle == NULL)
2485 return NULL;
2486
2487 var = *var_handle;
2488
2489 /* This should really be an exception, since this should
581e13c1 2490 only get called with a root variable. */
73a93a32 2491
b2c2bd75 2492 if (!is_root_p (var))
73a93a32
JI
2493 return NULL;
2494
a5defcdc 2495 if (var->root->floating)
73a93a32
JI
2496 {
2497 struct varobj *tmp_var;
2498 char *old_type, *new_type;
6225abfa 2499
73a93a32
JI
2500 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2501 USE_SELECTED_FRAME);
2502 if (tmp_var == NULL)
2503 {
2504 return NULL;
2505 }
6225abfa 2506 old_type = varobj_get_type (var);
73a93a32 2507 new_type = varobj_get_type (tmp_var);
72330bd6 2508 if (strcmp (old_type, new_type) == 0)
73a93a32 2509 {
fcacd99f
VP
2510 /* The expression presently stored inside var->root->exp
2511 remembers the locations of local variables relatively to
2512 the frame where the expression was created (in DWARF location
2513 button, for example). Naturally, those locations are not
2514 correct in other frames, so update the expression. */
2515
2516 struct expression *tmp_exp = var->root->exp;
a109c7c1 2517
fcacd99f
VP
2518 var->root->exp = tmp_var->root->exp;
2519 tmp_var->root->exp = tmp_exp;
2520
73a93a32
JI
2521 varobj_delete (tmp_var, NULL, 0);
2522 *type_changed = 0;
2523 }
2524 else
2525 {
1b36a34b 2526 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2527 tmp_var->from = var->from;
2528 tmp_var->to = var->to;
a5defcdc
VP
2529 varobj_delete (var, NULL, 0);
2530
73a93a32
JI
2531 install_variable (tmp_var);
2532 *var_handle = tmp_var;
705da579 2533 var = *var_handle;
73a93a32
JI
2534 *type_changed = 1;
2535 }
74dddad3
MS
2536 xfree (old_type);
2537 xfree (new_type);
73a93a32
JI
2538 }
2539 else
2540 {
2541 *type_changed = 0;
2542 }
2543
7a290c40
JB
2544 {
2545 struct value *value;
2546
2213e2be 2547 value = value_of_root_1 (var_handle);
7a290c40
JB
2548 if (var->value == NULL || value == NULL)
2549 {
2550 /* For root varobj-s, a NULL value indicates a scoping issue.
2551 So, nothing to do in terms of checking for mutations. */
2552 }
2553 else if (varobj_value_has_mutated (var, value, value_type (value)))
2554 {
2555 /* The type has mutated, so the children are no longer valid.
2556 Just delete them, and tell our caller that the type has
2557 changed. */
2558 varobj_delete (var, NULL, 1 /* only_children */);
2559 var->num_children = -1;
2560 var->to = -1;
2561 var->from = -1;
2562 *type_changed = 1;
2563 }
2564 return value;
2565 }
8b93c638
JM
2566}
2567
581e13c1 2568/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2569static struct value *
fba45db2 2570value_of_child (struct varobj *parent, int index)
8b93c638 2571{
30b28db1 2572 struct value *value;
8b93c638
JM
2573
2574 value = (*parent->root->lang->value_of_child) (parent, index);
2575
8b93c638
JM
2576 return value;
2577}
2578
581e13c1 2579/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2580static char *
de051565 2581my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2582{
8756216b 2583 if (var->root->is_valid)
0cc7d26f 2584 {
bb5ce47a 2585 if (var->dynamic->pretty_printer != NULL)
99ad9427 2586 return varobj_value_get_print_value (var->value, var->format, var);
0cc7d26f
TT
2587 return (*var->root->lang->value_of_variable) (var, format);
2588 }
8756216b
DP
2589 else
2590 return NULL;
8b93c638
JM
2591}
2592
99ad9427
YQ
2593void
2594varobj_formatted_print_options (struct value_print_options *opts,
2595 enum varobj_display_formats format)
2596{
2597 get_formatted_print_options (opts, format_code[(int) format]);
2598 opts->deref_ref = 0;
2599 opts->raw = 1;
2600}
2601
2602char *
2603varobj_value_get_print_value (struct value *value,
2604 enum varobj_display_formats format,
2605 struct varobj *var)
85265413 2606{
57e66780 2607 struct ui_file *stb;
621c8364 2608 struct cleanup *old_chain;
ac91cd70 2609 char *thevalue = NULL;
79a45b7d 2610 struct value_print_options opts;
be759fcf
PM
2611 struct type *type = NULL;
2612 long len = 0;
2613 char *encoding = NULL;
2614 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2615 /* Initialize it just to avoid a GCC false warning. */
2616 CORE_ADDR str_addr = 0;
09ca9e2e 2617 int string_print = 0;
57e66780
DJ
2618
2619 if (value == NULL)
2620 return NULL;
2621
621c8364
TT
2622 stb = mem_fileopen ();
2623 old_chain = make_cleanup_ui_file_delete (stb);
2624
be759fcf 2625 gdbarch = get_type_arch (value_type (value));
b6313243 2626#if HAVE_PYTHON
0646da15
TT
2627 if (gdb_python_initialized)
2628 {
bb5ce47a 2629 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2630
0646da15 2631 varobj_ensure_python_env (var);
09ca9e2e 2632
0646da15
TT
2633 if (value_formatter)
2634 {
2635 /* First check to see if we have any children at all. If so,
2636 we simply return {...}. */
2637 if (dynamic_varobj_has_child_method (var))
2638 {
2639 do_cleanups (old_chain);
2640 return xstrdup ("{...}");
2641 }
b6313243 2642
0646da15
TT
2643 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2644 {
2645 struct value *replacement;
2646 PyObject *output = NULL;
2647
2648 output = apply_varobj_pretty_printer (value_formatter,
2649 &replacement,
2650 stb);
2651
2652 /* If we have string like output ... */
2653 if (output)
2654 {
2655 make_cleanup_py_decref (output);
2656
2657 /* If this is a lazy string, extract it. For lazy
2658 strings we always print as a string, so set
2659 string_print. */
2660 if (gdbpy_is_lazy_string (output))
2661 {
2662 gdbpy_extract_lazy_string (output, &str_addr, &type,
2663 &len, &encoding);
2664 make_cleanup (free_current_contents, &encoding);
2665 string_print = 1;
2666 }
2667 else
2668 {
2669 /* If it is a regular (non-lazy) string, extract
2670 it and copy the contents into THEVALUE. If the
2671 hint says to print it as a string, set
2672 string_print. Otherwise just return the extracted
2673 string as a value. */
2674
2675 char *s = python_string_to_target_string (output);
2676
2677 if (s)
2678 {
2679 char *hint;
2680
2681 hint = gdbpy_get_display_hint (value_formatter);
2682 if (hint)
2683 {
2684 if (!strcmp (hint, "string"))
2685 string_print = 1;
2686 xfree (hint);
2687 }
2688
2689 len = strlen (s);
2690 thevalue = xmemdup (s, len + 1, len + 1);
2691 type = builtin_type (gdbarch)->builtin_char;
2692 xfree (s);
2693
2694 if (!string_print)
2695 {
2696 do_cleanups (old_chain);
2697 return thevalue;
2698 }
2699
2700 make_cleanup (xfree, thevalue);
2701 }
2702 else
2703 gdbpy_print_stack ();
2704 }
2705 }
2706 /* If the printer returned a replacement value, set VALUE
2707 to REPLACEMENT. If there is not a replacement value,
2708 just use the value passed to this function. */
2709 if (replacement)
2710 value = replacement;
2711 }
2712 }
2713 }
b6313243
TT
2714#endif
2715
99ad9427 2716 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2717
2718 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2719 if (thevalue)
ac91cd70 2720 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
09ca9e2e 2721 else if (string_print)
00bd41d6
PM
2722 /* Otherwise, if string_print is set, and it is not a regular
2723 string, it is a lazy string. */
09ca9e2e 2724 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2725 else
00bd41d6 2726 /* All other cases. */
b6313243 2727 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2728
759ef836 2729 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2730
85265413
NR
2731 do_cleanups (old_chain);
2732 return thevalue;
2733}
2734
340a7723
NR
2735int
2736varobj_editable_p (struct varobj *var)
2737{
2738 struct type *type;
340a7723
NR
2739
2740 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2741 return 0;
2742
99ad9427 2743 type = varobj_get_value_type (var);
340a7723
NR
2744
2745 switch (TYPE_CODE (type))
2746 {
2747 case TYPE_CODE_STRUCT:
2748 case TYPE_CODE_UNION:
2749 case TYPE_CODE_ARRAY:
2750 case TYPE_CODE_FUNC:
2751 case TYPE_CODE_METHOD:
2752 return 0;
2753 break;
2754
2755 default:
2756 return 1;
2757 break;
2758 }
2759}
2760
d32cafc7 2761/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2762
99ad9427 2763int
b2c2bd75 2764varobj_value_is_changeable_p (struct varobj *var)
8b93c638 2765{
d32cafc7 2766 return var->root->lang->value_is_changeable_p (var);
8b93c638
JM
2767}
2768
5a413362
VP
2769/* Return 1 if that varobj is floating, that is is always evaluated in the
2770 selected frame, and not bound to thread/frame. Such variable objects
2771 are created using '@' as frame specifier to -var-create. */
2772int
2773varobj_floating_p (struct varobj *var)
2774{
2775 return var->root->floating;
2776}
2777
d32cafc7
JB
2778/* Implement the "value_is_changeable_p" varobj callback for most
2779 languages. */
2780
99ad9427
YQ
2781int
2782varobj_default_value_is_changeable_p (struct varobj *var)
d32cafc7
JB
2783{
2784 int r;
2785 struct type *type;
2786
2787 if (CPLUS_FAKE_CHILD (var))
2788 return 0;
2789
99ad9427 2790 type = varobj_get_value_type (var);
d32cafc7
JB
2791
2792 switch (TYPE_CODE (type))
2793 {
2794 case TYPE_CODE_STRUCT:
2795 case TYPE_CODE_UNION:
2796 case TYPE_CODE_ARRAY:
2797 r = 0;
2798 break;
2799
2800 default:
2801 r = 1;
2802 }
2803
2804 return r;
2805}
2806
54333c3b
JK
2807/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2808 with an arbitrary caller supplied DATA pointer. */
2809
2810void
2811all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2812{
2813 struct varobj_root *var_root, *var_root_next;
2814
2815 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2816
2817 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2818 {
2819 var_root_next = var_root->next;
2820
2821 (*func) (var_root->rootvar, data);
2822 }
2823}
8b93c638
JM
2824\f
2825extern void _initialize_varobj (void);
2826void
2827_initialize_varobj (void)
2828{
2829 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2830
2831 varobj_table = xmalloc (sizeof_table);
2832 memset (varobj_table, 0, sizeof_table);
2833
ccce17b0
YQ
2834 add_setshow_zuinteger_cmd ("debugvarobj", class_maintenance,
2835 &varobjdebug,
2836 _("Set varobj debugging."),
2837 _("Show varobj debugging."),
2838 _("When non-zero, varobj debugging is enabled."),
2839 NULL, show_varobjdebug,
2840 &setlist, &showlist);
8b93c638 2841}
8756216b 2842
54333c3b 2843/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2844 defined on globals. It is a helper for varobj_invalidate.
2845
2846 This function is called after changing the symbol file, in this case the
2847 pointers to "struct type" stored by the varobj are no longer valid. All
2848 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2849
54333c3b
JK
2850static void
2851varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2852{
4e969b4f
AB
2853 /* global and floating var must be re-evaluated. */
2854 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2855 {
54333c3b 2856 struct varobj *tmp_var;
2dbd25e5 2857
54333c3b
JK
2858 /* Try to create a varobj with same expression. If we succeed
2859 replace the old varobj, otherwise invalidate it. */
2860 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2861 USE_CURRENT_FRAME);
2862 if (tmp_var != NULL)
2863 {
2864 tmp_var->obj_name = xstrdup (var->obj_name);
2865 varobj_delete (var, NULL, 0);
2866 install_variable (tmp_var);
2dbd25e5 2867 }
54333c3b
JK
2868 else
2869 var->root->is_valid = 0;
2dbd25e5 2870 }
54333c3b
JK
2871 else /* locals must be invalidated. */
2872 var->root->is_valid = 0;
2873}
2874
2875/* Invalidate the varobjs that are tied to locals and re-create the ones that
2876 are defined on globals.
2877 Invalidated varobjs will be always printed in_scope="invalid". */
2878
2879void
2880varobj_invalidate (void)
2881{
2882 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2883}
This page took 2.580998 seconds and 4 git commands to generate.