gdb
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
0fb0cc75 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008,
4c38e0a4 4 2009, 2010 Free Software Foundation, Inc.
8b93c638
JM
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
18
19#include "defs.h"
a6c442d8 20#include "exceptions.h"
8b93c638
JM
21#include "value.h"
22#include "expression.h"
23#include "frame.h"
8b93c638
JM
24#include "language.h"
25#include "wrapper.h"
26#include "gdbcmd.h"
d2353924 27#include "block.h"
79a45b7d 28#include "valprint.h"
a6c442d8
MK
29
30#include "gdb_assert.h"
b66d6d2e 31#include "gdb_string.h"
0cc7d26f 32#include "gdb_regex.h"
8b93c638
JM
33
34#include "varobj.h"
28335dcc 35#include "vec.h"
6208b47d
VP
36#include "gdbthread.h"
37#include "inferior.h"
8b93c638 38
b6313243
TT
39#if HAVE_PYTHON
40#include "python/python.h"
41#include "python/python-internal.h"
42#else
43typedef int PyObject;
44#endif
45
8b93c638
JM
46/* Non-zero if we want to see trace of varobj level stuff. */
47
48int varobjdebug = 0;
920d2a44
AC
49static void
50show_varobjdebug (struct ui_file *file, int from_tty,
51 struct cmd_list_element *c, const char *value)
52{
53 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
54}
8b93c638
JM
55
56/* String representations of gdb's format codes */
57char *varobj_format_string[] =
72330bd6 58 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638
JM
59
60/* String representations of gdb's known languages */
72330bd6 61char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638 62
0cc7d26f
TT
63/* True if we want to allow Python-based pretty-printing. */
64static int pretty_printing = 0;
65
66void
67varobj_enable_pretty_printing (void)
68{
69 pretty_printing = 1;
70}
71
8b93c638
JM
72/* Data structures */
73
74/* Every root variable has one of these structures saved in its
75 varobj. Members which must be free'd are noted. */
76struct varobj_root
72330bd6 77{
8b93c638 78
72330bd6
AC
79 /* Alloc'd expression for this parent. */
80 struct expression *exp;
8b93c638 81
72330bd6
AC
82 /* Block for which this expression is valid */
83 struct block *valid_block;
8b93c638 84
44a67aa7
VP
85 /* The frame for this expression. This field is set iff valid_block is
86 not NULL. */
e64d9b3d 87 struct frame_id frame;
8b93c638 88
c5b48eac
VP
89 /* The thread ID that this varobj_root belong to. This field
90 is only valid if valid_block is not NULL.
91 When not 0, indicates which thread 'frame' belongs to.
92 When 0, indicates that the thread list was empty when the varobj_root
93 was created. */
94 int thread_id;
95
a5defcdc
VP
96 /* If 1, the -var-update always recomputes the value in the
97 current thread and frame. Otherwise, variable object is
98 always updated in the specific scope/thread/frame */
99 int floating;
73a93a32 100
8756216b
DP
101 /* Flag that indicates validity: set to 0 when this varobj_root refers
102 to symbols that do not exist anymore. */
103 int is_valid;
104
72330bd6
AC
105 /* Language info for this variable and its children */
106 struct language_specific *lang;
8b93c638 107
72330bd6
AC
108 /* The varobj for this root node. */
109 struct varobj *rootvar;
8b93c638 110
72330bd6
AC
111 /* Next root variable */
112 struct varobj_root *next;
113};
8b93c638
JM
114
115/* Every variable in the system has a structure of this type defined
116 for it. This structure holds all information necessary to manipulate
117 a particular object variable. Members which must be freed are noted. */
118struct varobj
72330bd6 119{
8b93c638 120
72330bd6
AC
121 /* Alloc'd name of the variable for this object.. If this variable is a
122 child, then this name will be the child's source name.
123 (bar, not foo.bar) */
124 /* NOTE: This is the "expression" */
125 char *name;
8b93c638 126
02142340
VP
127 /* Alloc'd expression for this child. Can be used to create a
128 root variable corresponding to this child. */
129 char *path_expr;
130
72330bd6
AC
131 /* The alloc'd name for this variable's object. This is here for
132 convenience when constructing this object's children. */
133 char *obj_name;
8b93c638 134
72330bd6
AC
135 /* Index of this variable in its parent or -1 */
136 int index;
8b93c638 137
202ddcaa
VP
138 /* The type of this variable. This can be NULL
139 for artifial variable objects -- currently, the "accessibility"
140 variable objects in C++. */
72330bd6 141 struct type *type;
8b93c638 142
b20d8971
VP
143 /* The value of this expression or subexpression. A NULL value
144 indicates there was an error getting this value.
b2c2bd75
VP
145 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
146 the value is either NULL, or not lazy. */
30b28db1 147 struct value *value;
8b93c638 148
72330bd6
AC
149 /* The number of (immediate) children this variable has */
150 int num_children;
8b93c638 151
72330bd6
AC
152 /* If this object is a child, this points to its immediate parent. */
153 struct varobj *parent;
8b93c638 154
28335dcc
VP
155 /* Children of this object. */
156 VEC (varobj_p) *children;
8b93c638 157
b6313243
TT
158 /* Whether the children of this varobj were requested. This field is
159 used to decide if dynamic varobj should recompute their children.
160 In the event that the frontend never asked for the children, we
161 can avoid that. */
162 int children_requested;
163
72330bd6
AC
164 /* Description of the root variable. Points to root variable for children. */
165 struct varobj_root *root;
8b93c638 166
72330bd6
AC
167 /* The format of the output for this object */
168 enum varobj_display_formats format;
fb9b6b35
JJ
169
170 /* Was this variable updated via a varobj_set_value operation */
171 int updated;
85265413
NR
172
173 /* Last print value. */
174 char *print_value;
25d5ea92
VP
175
176 /* Is this variable frozen. Frozen variables are never implicitly
177 updated by -var-update *
178 or -var-update <direct-or-indirect-parent>. */
179 int frozen;
180
181 /* Is the value of this variable intentionally not fetched? It is
182 not fetched if either the variable is frozen, or any parents is
183 frozen. */
184 int not_fetched;
b6313243 185
0cc7d26f
TT
186 /* Sub-range of children which the MI consumer has requested. If
187 FROM < 0 or TO < 0, means that all children have been
188 requested. */
189 int from;
190 int to;
191
192 /* The pretty-printer constructor. If NULL, then the default
193 pretty-printer will be looked up. If None, then no
194 pretty-printer will be installed. */
195 PyObject *constructor;
196
b6313243
TT
197 /* The pretty-printer that has been constructed. If NULL, then a
198 new printer object is needed, and one will be constructed. */
199 PyObject *pretty_printer;
0cc7d26f
TT
200
201 /* The iterator returned by the printer's 'children' method, or NULL
202 if not available. */
203 PyObject *child_iter;
204
205 /* We request one extra item from the iterator, so that we can
206 report to the caller whether there are more items than we have
207 already reported. However, we don't want to install this value
208 when we read it, because that will mess up future updates. So,
209 we stash it here instead. */
210 PyObject *saved_item;
72330bd6 211};
8b93c638 212
8b93c638 213struct cpstack
72330bd6
AC
214{
215 char *name;
216 struct cpstack *next;
217};
8b93c638
JM
218
219/* A list of varobjs */
220
221struct vlist
72330bd6
AC
222{
223 struct varobj *var;
224 struct vlist *next;
225};
8b93c638
JM
226
227/* Private function prototypes */
228
229/* Helper functions for the above subcommands. */
230
a14ed312 231static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 232
a14ed312
KB
233static void delete_variable_1 (struct cpstack **, int *,
234 struct varobj *, int, int);
8b93c638 235
a14ed312 236static int install_variable (struct varobj *);
8b93c638 237
a14ed312 238static void uninstall_variable (struct varobj *);
8b93c638 239
a14ed312 240static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 241
b6313243
TT
242static struct varobj *
243create_child_with_value (struct varobj *parent, int index, const char *name,
244 struct value *value);
245
8b93c638
JM
246/* Utility routines */
247
a14ed312 248static struct varobj *new_variable (void);
8b93c638 249
a14ed312 250static struct varobj *new_root_variable (void);
8b93c638 251
a14ed312 252static void free_variable (struct varobj *var);
8b93c638 253
74b7792f
AC
254static struct cleanup *make_cleanup_free_variable (struct varobj *var);
255
a14ed312 256static struct type *get_type (struct varobj *var);
8b93c638 257
6e2a9270
VP
258static struct type *get_value_type (struct varobj *var);
259
a14ed312 260static struct type *get_target_type (struct type *);
8b93c638 261
a14ed312 262static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 263
a14ed312 264static void cppush (struct cpstack **pstack, char *name);
8b93c638 265
a14ed312 266static char *cppop (struct cpstack **pstack);
8b93c638 267
acd65feb
VP
268static int install_new_value (struct varobj *var, struct value *value,
269 int initial);
270
8b93c638
JM
271/* Language-specific routines. */
272
a14ed312 273static enum varobj_languages variable_language (struct varobj *var);
8b93c638 274
a14ed312 275static int number_of_children (struct varobj *);
8b93c638 276
a14ed312 277static char *name_of_variable (struct varobj *);
8b93c638 278
a14ed312 279static char *name_of_child (struct varobj *, int);
8b93c638 280
30b28db1 281static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 282
30b28db1 283static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 284
de051565
MK
285static char *my_value_of_variable (struct varobj *var,
286 enum varobj_display_formats format);
8b93c638 287
85265413 288static char *value_get_print_value (struct value *value,
b6313243 289 enum varobj_display_formats format,
d452c4bc 290 struct varobj *var);
85265413 291
b2c2bd75
VP
292static int varobj_value_is_changeable_p (struct varobj *var);
293
294static int is_root_p (struct varobj *var);
8b93c638 295
d8b65138
JK
296#if HAVE_PYTHON
297
b6313243
TT
298static struct varobj *
299varobj_add_child (struct varobj *var, const char *name, struct value *value);
300
d8b65138
JK
301#endif /* HAVE_PYTHON */
302
8b93c638
JM
303/* C implementation */
304
a14ed312 305static int c_number_of_children (struct varobj *var);
8b93c638 306
a14ed312 307static char *c_name_of_variable (struct varobj *parent);
8b93c638 308
a14ed312 309static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 310
02142340
VP
311static char *c_path_expr_of_child (struct varobj *child);
312
30b28db1 313static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 314
30b28db1 315static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 316
a14ed312 317static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 318
de051565
MK
319static char *c_value_of_variable (struct varobj *var,
320 enum varobj_display_formats format);
8b93c638
JM
321
322/* C++ implementation */
323
a14ed312 324static int cplus_number_of_children (struct varobj *var);
8b93c638 325
a14ed312 326static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 327
a14ed312 328static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 329
a14ed312 330static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 331
02142340
VP
332static char *cplus_path_expr_of_child (struct varobj *child);
333
30b28db1 334static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 335
30b28db1 336static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 337
a14ed312 338static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 339
de051565
MK
340static char *cplus_value_of_variable (struct varobj *var,
341 enum varobj_display_formats format);
8b93c638
JM
342
343/* Java implementation */
344
a14ed312 345static int java_number_of_children (struct varobj *var);
8b93c638 346
a14ed312 347static char *java_name_of_variable (struct varobj *parent);
8b93c638 348
a14ed312 349static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 350
02142340
VP
351static char *java_path_expr_of_child (struct varobj *child);
352
30b28db1 353static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 354
30b28db1 355static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 356
a14ed312 357static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 358
de051565
MK
359static char *java_value_of_variable (struct varobj *var,
360 enum varobj_display_formats format);
8b93c638
JM
361
362/* The language specific vector */
363
364struct language_specific
72330bd6 365{
8b93c638 366
72330bd6
AC
367 /* The language of this variable */
368 enum varobj_languages language;
8b93c638 369
72330bd6
AC
370 /* The number of children of PARENT. */
371 int (*number_of_children) (struct varobj * parent);
8b93c638 372
72330bd6
AC
373 /* The name (expression) of a root varobj. */
374 char *(*name_of_variable) (struct varobj * parent);
8b93c638 375
72330bd6
AC
376 /* The name of the INDEX'th child of PARENT. */
377 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 378
02142340
VP
379 /* Returns the rooted expression of CHILD, which is a variable
380 obtain that has some parent. */
381 char *(*path_expr_of_child) (struct varobj * child);
382
30b28db1
AC
383 /* The ``struct value *'' of the root variable ROOT. */
384 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 385
30b28db1
AC
386 /* The ``struct value *'' of the INDEX'th child of PARENT. */
387 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 388
72330bd6
AC
389 /* The type of the INDEX'th child of PARENT. */
390 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 391
72330bd6 392 /* The current value of VAR. */
de051565
MK
393 char *(*value_of_variable) (struct varobj * var,
394 enum varobj_display_formats format);
72330bd6 395};
8b93c638
JM
396
397/* Array of known source language routines. */
d5d6fca5 398static struct language_specific languages[vlang_end] = {
8b93c638
JM
399 /* Unknown (try treating as C */
400 {
72330bd6
AC
401 vlang_unknown,
402 c_number_of_children,
403 c_name_of_variable,
404 c_name_of_child,
02142340 405 c_path_expr_of_child,
72330bd6
AC
406 c_value_of_root,
407 c_value_of_child,
408 c_type_of_child,
72330bd6 409 c_value_of_variable}
8b93c638
JM
410 ,
411 /* C */
412 {
72330bd6
AC
413 vlang_c,
414 c_number_of_children,
415 c_name_of_variable,
416 c_name_of_child,
02142340 417 c_path_expr_of_child,
72330bd6
AC
418 c_value_of_root,
419 c_value_of_child,
420 c_type_of_child,
72330bd6 421 c_value_of_variable}
8b93c638
JM
422 ,
423 /* C++ */
424 {
72330bd6
AC
425 vlang_cplus,
426 cplus_number_of_children,
427 cplus_name_of_variable,
428 cplus_name_of_child,
02142340 429 cplus_path_expr_of_child,
72330bd6
AC
430 cplus_value_of_root,
431 cplus_value_of_child,
432 cplus_type_of_child,
72330bd6 433 cplus_value_of_variable}
8b93c638
JM
434 ,
435 /* Java */
436 {
72330bd6
AC
437 vlang_java,
438 java_number_of_children,
439 java_name_of_variable,
440 java_name_of_child,
02142340 441 java_path_expr_of_child,
72330bd6
AC
442 java_value_of_root,
443 java_value_of_child,
444 java_type_of_child,
72330bd6 445 java_value_of_variable}
8b93c638
JM
446};
447
448/* A little convenience enum for dealing with C++/Java */
449enum vsections
72330bd6
AC
450{
451 v_public = 0, v_private, v_protected
452};
8b93c638
JM
453
454/* Private data */
455
456/* Mappings of varobj_display_formats enums to gdb's format codes */
72330bd6 457static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638
JM
458
459/* Header of the list of root variable objects */
460static struct varobj_root *rootlist;
8b93c638
JM
461
462/* Prime number indicating the number of buckets in the hash table */
463/* A prime large enough to avoid too many colisions */
464#define VAROBJ_TABLE_SIZE 227
465
466/* Pointer to the varobj hash table (built at run time) */
467static struct vlist **varobj_table;
468
8b93c638
JM
469/* Is the variable X one of our "fake" children? */
470#define CPLUS_FAKE_CHILD(x) \
471((x) != NULL && (x)->type == NULL && (x)->value == NULL)
472\f
473
474/* API Implementation */
b2c2bd75
VP
475static int
476is_root_p (struct varobj *var)
477{
478 return (var->root->rootvar == var);
479}
8b93c638 480
d452c4bc
UW
481#ifdef HAVE_PYTHON
482/* Helper function to install a Python environment suitable for
483 use during operations on VAR. */
484struct cleanup *
485varobj_ensure_python_env (struct varobj *var)
486{
487 return ensure_python_env (var->root->exp->gdbarch,
488 var->root->exp->language_defn);
489}
490#endif
491
8b93c638
JM
492/* Creates a varobj (not its children) */
493
7d8547c9
AC
494/* Return the full FRAME which corresponds to the given CORE_ADDR
495 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
496
497static struct frame_info *
498find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
499{
500 struct frame_info *frame = NULL;
501
502 if (frame_addr == (CORE_ADDR) 0)
503 return NULL;
504
9d49bdc2
PA
505 for (frame = get_current_frame ();
506 frame != NULL;
507 frame = get_prev_frame (frame))
7d8547c9 508 {
1fac167a
UW
509 /* The CORE_ADDR we get as argument was parsed from a string GDB
510 output as $fp. This output got truncated to gdbarch_addr_bit.
511 Truncate the frame base address in the same manner before
512 comparing it against our argument. */
513 CORE_ADDR frame_base = get_frame_base_address (frame);
514 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
515 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
516 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
517
518 if (frame_base == frame_addr)
7d8547c9
AC
519 return frame;
520 }
9d49bdc2
PA
521
522 return NULL;
7d8547c9
AC
523}
524
8b93c638
JM
525struct varobj *
526varobj_create (char *objname,
72330bd6 527 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
528{
529 struct varobj *var;
2c67cb8b
AC
530 struct frame_info *fi;
531 struct frame_info *old_fi = NULL;
8b93c638
JM
532 struct block *block;
533 struct cleanup *old_chain;
534
535 /* Fill out a varobj structure for the (root) variable being constructed. */
536 var = new_root_variable ();
74b7792f 537 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
538
539 if (expression != NULL)
540 {
541 char *p;
542 enum varobj_languages lang;
e55dccf0 543 struct value *value = NULL;
8b93c638 544
9d49bdc2
PA
545 /* Parse and evaluate the expression, filling in as much of the
546 variable's data as possible. */
547
548 if (has_stack_frames ())
549 {
550 /* Allow creator to specify context of variable */
551 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
552 fi = get_selected_frame (NULL);
553 else
554 /* FIXME: cagney/2002-11-23: This code should be doing a
555 lookup using the frame ID and not just the frame's
556 ``address''. This, of course, means an interface
557 change. However, with out that interface change ISAs,
558 such as the ia64 with its two stacks, won't work.
559 Similar goes for the case where there is a frameless
560 function. */
561 fi = find_frame_addr_in_frame_chain (frame);
562 }
8b93c638 563 else
9d49bdc2 564 fi = NULL;
8b93c638 565
73a93a32
JI
566 /* frame = -2 means always use selected frame */
567 if (type == USE_SELECTED_FRAME)
a5defcdc 568 var->root->floating = 1;
73a93a32 569
8b93c638
JM
570 block = NULL;
571 if (fi != NULL)
ae767bfb 572 block = get_frame_block (fi, 0);
8b93c638
JM
573
574 p = expression;
575 innermost_block = NULL;
73a93a32
JI
576 /* Wrap the call to parse expression, so we can
577 return a sensible error. */
578 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
579 {
580 return NULL;
581 }
8b93c638
JM
582
583 /* Don't allow variables to be created for types. */
584 if (var->root->exp->elts[0].opcode == OP_TYPE)
585 {
586 do_cleanups (old_chain);
bc8332bb
AC
587 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
588 " as an expression.\n");
8b93c638
JM
589 return NULL;
590 }
591
592 var->format = variable_default_display (var);
593 var->root->valid_block = innermost_block;
1b36a34b 594 var->name = xstrdup (expression);
02142340 595 /* For a root var, the name and the expr are the same. */
1b36a34b 596 var->path_expr = xstrdup (expression);
8b93c638
JM
597
598 /* When the frame is different from the current frame,
599 we must select the appropriate frame before parsing
600 the expression, otherwise the value will not be current.
601 Since select_frame is so benign, just call it for all cases. */
4e22772d 602 if (innermost_block)
8b93c638 603 {
4e22772d
JK
604 /* User could specify explicit FRAME-ADDR which was not found but
605 EXPRESSION is frame specific and we would not be able to evaluate
606 it correctly next time. With VALID_BLOCK set we must also set
607 FRAME and THREAD_ID. */
608 if (fi == NULL)
609 error (_("Failed to find the specified frame"));
610
7a424e99 611 var->root->frame = get_frame_id (fi);
c5b48eac 612 var->root->thread_id = pid_to_thread_id (inferior_ptid);
206415a3 613 old_fi = get_selected_frame (NULL);
c5b48eac 614 select_frame (fi);
8b93c638
JM
615 }
616
340a7723 617 /* We definitely need to catch errors here.
8b93c638
JM
618 If evaluate_expression succeeds we got the value we wanted.
619 But if it fails, we still go on with a call to evaluate_type() */
acd65feb 620 if (!gdb_evaluate_expression (var->root->exp, &value))
e55dccf0
VP
621 {
622 /* Error getting the value. Try to at least get the
623 right type. */
624 struct value *type_only_value = evaluate_type (var->root->exp);
625 var->type = value_type (type_only_value);
626 }
627 else
628 var->type = value_type (value);
acd65feb 629
acd65feb 630 install_new_value (var, value, 1 /* Initial assignment */);
8b93c638
JM
631
632 /* Set language info */
633 lang = variable_language (var);
d5d6fca5 634 var->root->lang = &languages[lang];
8b93c638
JM
635
636 /* Set ourselves as our root */
637 var->root->rootvar = var;
638
639 /* Reset the selected frame */
e21458b2 640 if (old_fi != NULL)
0f7d239c 641 select_frame (old_fi);
8b93c638
JM
642 }
643
73a93a32
JI
644 /* If the variable object name is null, that means this
645 is a temporary variable, so don't install it. */
646
647 if ((var != NULL) && (objname != NULL))
8b93c638 648 {
1b36a34b 649 var->obj_name = xstrdup (objname);
8b93c638
JM
650
651 /* If a varobj name is duplicated, the install will fail so
652 we must clenup */
653 if (!install_variable (var))
654 {
655 do_cleanups (old_chain);
656 return NULL;
657 }
658 }
659
660 discard_cleanups (old_chain);
661 return var;
662}
663
664/* Generates an unique name that can be used for a varobj */
665
666char *
667varobj_gen_name (void)
668{
669 static int id = 0;
e64d9b3d 670 char *obj_name;
8b93c638
JM
671
672 /* generate a name for this object */
673 id++;
b435e160 674 obj_name = xstrprintf ("var%d", id);
8b93c638 675
e64d9b3d 676 return obj_name;
8b93c638
JM
677}
678
61d8f275
JK
679/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
680 error if OBJNAME cannot be found. */
8b93c638
JM
681
682struct varobj *
683varobj_get_handle (char *objname)
684{
685 struct vlist *cv;
686 const char *chp;
687 unsigned int index = 0;
688 unsigned int i = 1;
689
690 for (chp = objname; *chp; chp++)
691 {
692 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
693 }
694
695 cv = *(varobj_table + index);
696 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
697 cv = cv->next;
698
699 if (cv == NULL)
8a3fe4f8 700 error (_("Variable object not found"));
8b93c638
JM
701
702 return cv->var;
703}
704
705/* Given the handle, return the name of the object */
706
707char *
708varobj_get_objname (struct varobj *var)
709{
710 return var->obj_name;
711}
712
713/* Given the handle, return the expression represented by the object */
714
715char *
716varobj_get_expression (struct varobj *var)
717{
718 return name_of_variable (var);
719}
720
721/* Deletes a varobj and all its children if only_children == 0,
722 otherwise deletes only the children; returns a malloc'ed list of all the
723 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
724
725int
726varobj_delete (struct varobj *var, char ***dellist, int only_children)
727{
728 int delcount;
729 int mycount;
730 struct cpstack *result = NULL;
731 char **cp;
732
733 /* Initialize a stack for temporary results */
734 cppush (&result, NULL);
735
736 if (only_children)
737 /* Delete only the variable children */
738 delcount = delete_variable (&result, var, 1 /* only the children */ );
739 else
740 /* Delete the variable and all its children */
741 delcount = delete_variable (&result, var, 0 /* parent+children */ );
742
743 /* We may have been asked to return a list of what has been deleted */
744 if (dellist != NULL)
745 {
746 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
747
748 cp = *dellist;
749 mycount = delcount;
750 *cp = cppop (&result);
751 while ((*cp != NULL) && (mycount > 0))
752 {
753 mycount--;
754 cp++;
755 *cp = cppop (&result);
756 }
757
758 if (mycount || (*cp != NULL))
8a3fe4f8 759 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 760 mycount);
8b93c638
JM
761 }
762
763 return delcount;
764}
765
d8b65138
JK
766#if HAVE_PYTHON
767
b6313243
TT
768/* Convenience function for varobj_set_visualizer. Instantiate a
769 pretty-printer for a given value. */
770static PyObject *
771instantiate_pretty_printer (PyObject *constructor, struct value *value)
772{
b6313243
TT
773 PyObject *val_obj = NULL;
774 PyObject *printer;
b6313243 775
b6313243 776 val_obj = value_to_value_object (value);
b6313243
TT
777 if (! val_obj)
778 return NULL;
779
780 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
781 Py_DECREF (val_obj);
782 return printer;
b6313243
TT
783 return NULL;
784}
785
d8b65138
JK
786#endif
787
8b93c638
JM
788/* Set/Get variable object display format */
789
790enum varobj_display_formats
791varobj_set_display_format (struct varobj *var,
792 enum varobj_display_formats format)
793{
794 switch (format)
795 {
796 case FORMAT_NATURAL:
797 case FORMAT_BINARY:
798 case FORMAT_DECIMAL:
799 case FORMAT_HEXADECIMAL:
800 case FORMAT_OCTAL:
801 var->format = format;
802 break;
803
804 default:
805 var->format = variable_default_display (var);
806 }
807
ae7d22a6
VP
808 if (varobj_value_is_changeable_p (var)
809 && var->value && !value_lazy (var->value))
810 {
6c761d9c 811 xfree (var->print_value);
d452c4bc 812 var->print_value = value_get_print_value (var->value, var->format, var);
ae7d22a6
VP
813 }
814
8b93c638
JM
815 return var->format;
816}
817
818enum varobj_display_formats
819varobj_get_display_format (struct varobj *var)
820{
821 return var->format;
822}
823
b6313243
TT
824char *
825varobj_get_display_hint (struct varobj *var)
826{
827 char *result = NULL;
828
829#if HAVE_PYTHON
d452c4bc
UW
830 struct cleanup *back_to = varobj_ensure_python_env (var);
831
b6313243
TT
832 if (var->pretty_printer)
833 result = gdbpy_get_display_hint (var->pretty_printer);
d452c4bc
UW
834
835 do_cleanups (back_to);
b6313243
TT
836#endif
837
838 return result;
839}
840
0cc7d26f
TT
841/* Return true if the varobj has items after TO, false otherwise. */
842
843int
844varobj_has_more (struct varobj *var, int to)
845{
846 if (VEC_length (varobj_p, var->children) > to)
847 return 1;
848 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
849 && var->saved_item != NULL);
850}
851
c5b48eac
VP
852/* If the variable object is bound to a specific thread, that
853 is its evaluation can always be done in context of a frame
854 inside that thread, returns GDB id of the thread -- which
855 is always positive. Otherwise, returns -1. */
856int
857varobj_get_thread_id (struct varobj *var)
858{
859 if (var->root->valid_block && var->root->thread_id > 0)
860 return var->root->thread_id;
861 else
862 return -1;
863}
864
25d5ea92
VP
865void
866varobj_set_frozen (struct varobj *var, int frozen)
867{
868 /* When a variable is unfrozen, we don't fetch its value.
869 The 'not_fetched' flag remains set, so next -var-update
870 won't complain.
871
872 We don't fetch the value, because for structures the client
873 should do -var-update anyway. It would be bad to have different
874 client-size logic for structure and other types. */
875 var->frozen = frozen;
876}
877
878int
879varobj_get_frozen (struct varobj *var)
880{
881 return var->frozen;
882}
883
0cc7d26f
TT
884/* A helper function that restricts a range to what is actually
885 available in a VEC. This follows the usual rules for the meaning
886 of FROM and TO -- if either is negative, the entire range is
887 used. */
888
889static void
890restrict_range (VEC (varobj_p) *children, int *from, int *to)
891{
892 if (*from < 0 || *to < 0)
893 {
894 *from = 0;
895 *to = VEC_length (varobj_p, children);
896 }
897 else
898 {
899 if (*from > VEC_length (varobj_p, children))
900 *from = VEC_length (varobj_p, children);
901 if (*to > VEC_length (varobj_p, children))
902 *to = VEC_length (varobj_p, children);
903 if (*from > *to)
904 *from = *to;
905 }
906}
907
d8b65138
JK
908#if HAVE_PYTHON
909
0cc7d26f
TT
910/* A helper for update_dynamic_varobj_children that installs a new
911 child when needed. */
912
913static void
914install_dynamic_child (struct varobj *var,
915 VEC (varobj_p) **changed,
916 VEC (varobj_p) **new,
917 VEC (varobj_p) **unchanged,
918 int *cchanged,
919 int index,
920 const char *name,
921 struct value *value)
922{
923 if (VEC_length (varobj_p, var->children) < index + 1)
924 {
925 /* There's no child yet. */
926 struct varobj *child = varobj_add_child (var, name, value);
927 if (new)
928 {
929 VEC_safe_push (varobj_p, *new, child);
930 *cchanged = 1;
931 }
932 }
933 else
934 {
935 varobj_p existing = VEC_index (varobj_p, var->children, index);
936 if (install_new_value (existing, value, 0))
937 {
938 if (changed)
939 VEC_safe_push (varobj_p, *changed, existing);
940 }
941 else if (unchanged)
942 VEC_safe_push (varobj_p, *unchanged, existing);
943 }
944}
945
0cc7d26f
TT
946static int
947dynamic_varobj_has_child_method (struct varobj *var)
948{
949 struct cleanup *back_to;
950 PyObject *printer = var->pretty_printer;
951 int result;
952
953 back_to = varobj_ensure_python_env (var);
954 result = PyObject_HasAttr (printer, gdbpy_children_cst);
955 do_cleanups (back_to);
956 return result;
957}
958
959#endif
960
b6313243
TT
961static int
962update_dynamic_varobj_children (struct varobj *var,
963 VEC (varobj_p) **changed,
0cc7d26f
TT
964 VEC (varobj_p) **new,
965 VEC (varobj_p) **unchanged,
966 int *cchanged,
967 int update_children,
968 int from,
969 int to)
b6313243
TT
970{
971#if HAVE_PYTHON
b6313243
TT
972 struct cleanup *back_to;
973 PyObject *children;
b6313243 974 int i;
b6313243 975 PyObject *printer = var->pretty_printer;
b6313243 976
d452c4bc 977 back_to = varobj_ensure_python_env (var);
b6313243
TT
978
979 *cchanged = 0;
980 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
981 {
982 do_cleanups (back_to);
983 return 0;
984 }
985
0cc7d26f 986 if (update_children || !var->child_iter)
b6313243 987 {
0cc7d26f
TT
988 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
989 NULL);
b6313243 990
0cc7d26f
TT
991 if (!children)
992 {
993 gdbpy_print_stack ();
994 error (_("Null value returned for children"));
995 }
b6313243 996
0cc7d26f 997 make_cleanup_py_decref (children);
b6313243 998
0cc7d26f
TT
999 if (!PyIter_Check (children))
1000 error (_("Returned value is not iterable"));
1001
1002 Py_XDECREF (var->child_iter);
1003 var->child_iter = PyObject_GetIter (children);
1004 if (!var->child_iter)
1005 {
1006 gdbpy_print_stack ();
1007 error (_("Could not get children iterator"));
1008 }
1009
1010 Py_XDECREF (var->saved_item);
1011 var->saved_item = NULL;
1012
1013 i = 0;
b6313243 1014 }
0cc7d26f
TT
1015 else
1016 i = VEC_length (varobj_p, var->children);
b6313243 1017
0cc7d26f
TT
1018 /* We ask for one extra child, so that MI can report whether there
1019 are more children. */
1020 for (; to < 0 || i < to + 1; ++i)
b6313243 1021 {
0cc7d26f 1022 PyObject *item;
b6313243 1023
0cc7d26f
TT
1024 /* See if there was a leftover from last time. */
1025 if (var->saved_item)
1026 {
1027 item = var->saved_item;
1028 var->saved_item = NULL;
1029 }
1030 else
1031 item = PyIter_Next (var->child_iter);
b6313243 1032
0cc7d26f
TT
1033 if (!item)
1034 break;
b6313243 1035
0cc7d26f
TT
1036 /* We don't want to push the extra child on any report list. */
1037 if (to < 0 || i < to)
b6313243 1038 {
0cc7d26f
TT
1039 PyObject *py_v;
1040 char *name;
1041 struct value *v;
1042 struct cleanup *inner;
1043 int can_mention = from < 0 || i >= from;
1044
1045 inner = make_cleanup_py_decref (item);
1046
1047 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
1048 error (_("Invalid item from the child list"));
1049
1050 v = convert_value_from_python (py_v);
1051 install_dynamic_child (var, can_mention ? changed : NULL,
1052 can_mention ? new : NULL,
1053 can_mention ? unchanged : NULL,
1054 can_mention ? cchanged : NULL, i, name, v);
1055 do_cleanups (inner);
b6313243 1056 }
0cc7d26f 1057 else
b6313243 1058 {
0cc7d26f
TT
1059 Py_XDECREF (var->saved_item);
1060 var->saved_item = item;
b6313243 1061
0cc7d26f
TT
1062 /* We want to truncate the child list just before this
1063 element. */
1064 break;
1065 }
b6313243
TT
1066 }
1067
1068 if (i < VEC_length (varobj_p, var->children))
1069 {
0cc7d26f
TT
1070 int j;
1071 *cchanged = 1;
1072 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1073 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1074 VEC_truncate (varobj_p, var->children, i);
b6313243 1075 }
0cc7d26f
TT
1076
1077 /* If there are fewer children than requested, note that the list of
1078 children changed. */
1079 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1080 *cchanged = 1;
1081
b6313243
TT
1082 var->num_children = VEC_length (varobj_p, var->children);
1083
1084 do_cleanups (back_to);
1085
b6313243
TT
1086 return 1;
1087#else
1088 gdb_assert (0 && "should never be called if Python is not enabled");
1089#endif
1090}
25d5ea92 1091
8b93c638
JM
1092int
1093varobj_get_num_children (struct varobj *var)
1094{
1095 if (var->num_children == -1)
b6313243 1096 {
0cc7d26f
TT
1097 if (var->pretty_printer)
1098 {
1099 int dummy;
1100
1101 /* If we have a dynamic varobj, don't report -1 children.
1102 So, try to fetch some children first. */
1103 update_dynamic_varobj_children (var, NULL, NULL, NULL, &dummy,
1104 0, 0, 0);
1105 }
1106 else
b6313243
TT
1107 var->num_children = number_of_children (var);
1108 }
8b93c638 1109
0cc7d26f 1110 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
1111}
1112
1113/* Creates a list of the immediate children of a variable object;
1114 the return code is the number of such children or -1 on error */
1115
d56d46f5 1116VEC (varobj_p)*
0cc7d26f 1117varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638
JM
1118{
1119 struct varobj *child;
1120 char *name;
b6313243
TT
1121 int i, children_changed;
1122
1123 var->children_requested = 1;
1124
0cc7d26f
TT
1125 if (var->pretty_printer)
1126 {
b6313243
TT
1127 /* This, in theory, can result in the number of children changing without
1128 frontend noticing. But well, calling -var-list-children on the same
1129 varobj twice is not something a sane frontend would do. */
0cc7d26f
TT
1130 update_dynamic_varobj_children (var, NULL, NULL, NULL, &children_changed,
1131 0, 0, *to);
1132 restrict_range (var->children, from, to);
1133 return var->children;
1134 }
8b93c638 1135
8b93c638
JM
1136 if (var->num_children == -1)
1137 var->num_children = number_of_children (var);
1138
74a44383
DJ
1139 /* If that failed, give up. */
1140 if (var->num_children == -1)
d56d46f5 1141 return var->children;
74a44383 1142
28335dcc
VP
1143 /* If we're called when the list of children is not yet initialized,
1144 allocate enough elements in it. */
1145 while (VEC_length (varobj_p, var->children) < var->num_children)
1146 VEC_safe_push (varobj_p, var->children, NULL);
1147
8b93c638
JM
1148 for (i = 0; i < var->num_children; i++)
1149 {
d56d46f5 1150 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1151
1152 if (existing == NULL)
1153 {
1154 /* Either it's the first call to varobj_list_children for
1155 this variable object, and the child was never created,
1156 or it was explicitly deleted by the client. */
1157 name = name_of_child (var, i);
1158 existing = create_child (var, i, name);
1159 VEC_replace (varobj_p, var->children, i, existing);
1160 }
8b93c638
JM
1161 }
1162
0cc7d26f 1163 restrict_range (var->children, from, to);
d56d46f5 1164 return var->children;
8b93c638
JM
1165}
1166
d8b65138
JK
1167#if HAVE_PYTHON
1168
b6313243
TT
1169static struct varobj *
1170varobj_add_child (struct varobj *var, const char *name, struct value *value)
1171{
1172 varobj_p v = create_child_with_value (var,
1173 VEC_length (varobj_p, var->children),
1174 name, value);
1175 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1176 return v;
1177}
1178
d8b65138
JK
1179#endif /* HAVE_PYTHON */
1180
8b93c638
JM
1181/* Obtain the type of an object Variable as a string similar to the one gdb
1182 prints on the console */
1183
1184char *
1185varobj_get_type (struct varobj *var)
1186{
8b93c638 1187 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1188 NULL, too.)
1189 Do not return a type for invalid variables as well. */
1190 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1191 return NULL;
1192
1a4300e9 1193 return type_to_string (var->type);
8b93c638
JM
1194}
1195
1ecb4ee0
DJ
1196/* Obtain the type of an object variable. */
1197
1198struct type *
1199varobj_get_gdb_type (struct varobj *var)
1200{
1201 return var->type;
1202}
1203
02142340
VP
1204/* Return a pointer to the full rooted expression of varobj VAR.
1205 If it has not been computed yet, compute it. */
1206char *
1207varobj_get_path_expr (struct varobj *var)
1208{
1209 if (var->path_expr != NULL)
1210 return var->path_expr;
1211 else
1212 {
1213 /* For root varobjs, we initialize path_expr
1214 when creating varobj, so here it should be
1215 child varobj. */
1216 gdb_assert (!is_root_p (var));
1217 return (*var->root->lang->path_expr_of_child) (var);
1218 }
1219}
1220
8b93c638
JM
1221enum varobj_languages
1222varobj_get_language (struct varobj *var)
1223{
1224 return variable_language (var);
1225}
1226
1227int
1228varobj_get_attributes (struct varobj *var)
1229{
1230 int attributes = 0;
1231
340a7723 1232 if (varobj_editable_p (var))
8b93c638
JM
1233 /* FIXME: define masks for attributes */
1234 attributes |= 0x00000001; /* Editable */
1235
1236 return attributes;
1237}
1238
0cc7d26f
TT
1239int
1240varobj_pretty_printed_p (struct varobj *var)
1241{
1242 return var->pretty_printer != NULL;
1243}
1244
de051565
MK
1245char *
1246varobj_get_formatted_value (struct varobj *var,
1247 enum varobj_display_formats format)
1248{
1249 return my_value_of_variable (var, format);
1250}
1251
8b93c638
JM
1252char *
1253varobj_get_value (struct varobj *var)
1254{
de051565 1255 return my_value_of_variable (var, var->format);
8b93c638
JM
1256}
1257
1258/* Set the value of an object variable (if it is editable) to the
1259 value of the given expression */
1260/* Note: Invokes functions that can call error() */
1261
1262int
1263varobj_set_value (struct varobj *var, char *expression)
1264{
30b28db1 1265 struct value *val;
8b93c638 1266 int offset = 0;
a6c442d8 1267 int error = 0;
8b93c638
JM
1268
1269 /* The argument "expression" contains the variable's new value.
1270 We need to first construct a legal expression for this -- ugh! */
1271 /* Does this cover all the bases? */
1272 struct expression *exp;
30b28db1 1273 struct value *value;
8b93c638 1274 int saved_input_radix = input_radix;
340a7723
NR
1275 char *s = expression;
1276 int i;
8b93c638 1277
340a7723 1278 gdb_assert (varobj_editable_p (var));
8b93c638 1279
340a7723
NR
1280 input_radix = 10; /* ALWAYS reset to decimal temporarily */
1281 exp = parse_exp_1 (&s, 0, 0);
1282 if (!gdb_evaluate_expression (exp, &value))
1283 {
1284 /* We cannot proceed without a valid expression. */
1285 xfree (exp);
1286 return 0;
8b93c638
JM
1287 }
1288
340a7723
NR
1289 /* All types that are editable must also be changeable. */
1290 gdb_assert (varobj_value_is_changeable_p (var));
1291
1292 /* The value of a changeable variable object must not be lazy. */
1293 gdb_assert (!value_lazy (var->value));
1294
1295 /* Need to coerce the input. We want to check if the
1296 value of the variable object will be different
1297 after assignment, and the first thing value_assign
1298 does is coerce the input.
1299 For example, if we are assigning an array to a pointer variable we
1300 should compare the pointer with the the array's address, not with the
1301 array's content. */
1302 value = coerce_array (value);
1303
1304 /* The new value may be lazy. gdb_value_assign, or
1305 rather value_contents, will take care of this.
1306 If fetching of the new value will fail, gdb_value_assign
1307 with catch the exception. */
1308 if (!gdb_value_assign (var->value, value, &val))
1309 return 0;
1310
1311 /* If the value has changed, record it, so that next -var-update can
1312 report this change. If a variable had a value of '1', we've set it
1313 to '333' and then set again to '1', when -var-update will report this
1314 variable as changed -- because the first assignment has set the
1315 'updated' flag. There's no need to optimize that, because return value
1316 of -var-update should be considered an approximation. */
1317 var->updated = install_new_value (var, val, 0 /* Compare values. */);
1318 input_radix = saved_input_radix;
1319 return 1;
8b93c638
JM
1320}
1321
0cc7d26f
TT
1322#if HAVE_PYTHON
1323
1324/* A helper function to install a constructor function and visualizer
1325 in a varobj. */
1326
1327static void
1328install_visualizer (struct varobj *var, PyObject *constructor,
1329 PyObject *visualizer)
1330{
1331 Py_XDECREF (var->constructor);
1332 var->constructor = constructor;
1333
1334 Py_XDECREF (var->pretty_printer);
1335 var->pretty_printer = visualizer;
1336
1337 Py_XDECREF (var->child_iter);
1338 var->child_iter = NULL;
1339}
1340
1341/* Install the default visualizer for VAR. */
1342
1343static void
1344install_default_visualizer (struct varobj *var)
1345{
1346 if (pretty_printing)
1347 {
1348 PyObject *pretty_printer = NULL;
1349
1350 if (var->value)
1351 {
1352 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1353 if (! pretty_printer)
1354 {
1355 gdbpy_print_stack ();
1356 error (_("Cannot instantiate printer for default visualizer"));
1357 }
1358 }
1359
1360 if (pretty_printer == Py_None)
1361 {
1362 Py_DECREF (pretty_printer);
1363 pretty_printer = NULL;
1364 }
1365
1366 install_visualizer (var, NULL, pretty_printer);
1367 }
1368}
1369
1370/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1371 make a new object. */
1372
1373static void
1374construct_visualizer (struct varobj *var, PyObject *constructor)
1375{
1376 PyObject *pretty_printer;
1377
1378 Py_INCREF (constructor);
1379 if (constructor == Py_None)
1380 pretty_printer = NULL;
1381 else
1382 {
1383 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1384 if (! pretty_printer)
1385 {
1386 gdbpy_print_stack ();
1387 Py_DECREF (constructor);
1388 constructor = Py_None;
1389 Py_INCREF (constructor);
1390 }
1391
1392 if (pretty_printer == Py_None)
1393 {
1394 Py_DECREF (pretty_printer);
1395 pretty_printer = NULL;
1396 }
1397 }
1398
1399 install_visualizer (var, constructor, pretty_printer);
1400}
1401
1402#endif /* HAVE_PYTHON */
1403
1404/* A helper function for install_new_value. This creates and installs
1405 a visualizer for VAR, if appropriate. */
1406
1407static void
1408install_new_value_visualizer (struct varobj *var)
1409{
1410#if HAVE_PYTHON
1411 /* If the constructor is None, then we want the raw value. If VAR
1412 does not have a value, just skip this. */
1413 if (var->constructor != Py_None && var->value)
1414 {
1415 struct cleanup *cleanup;
1416 PyObject *pretty_printer = NULL;
1417
1418 cleanup = varobj_ensure_python_env (var);
1419
1420 if (!var->constructor)
1421 install_default_visualizer (var);
1422 else
1423 construct_visualizer (var, var->constructor);
1424
1425 do_cleanups (cleanup);
1426 }
1427#else
1428 /* Do nothing. */
1429#endif
1430}
1431
acd65feb
VP
1432/* Assign a new value to a variable object. If INITIAL is non-zero,
1433 this is the first assignement after the variable object was just
1434 created, or changed type. In that case, just assign the value
1435 and return 0.
ee342b23
VP
1436 Otherwise, assign the new value, and return 1 if the value is different
1437 from the current one, 0 otherwise. The comparison is done on textual
1438 representation of value. Therefore, some types need not be compared. E.g.
1439 for structures the reported value is always "{...}", so no comparison is
1440 necessary here. If the old value was NULL and new one is not, or vice versa,
1441 we always return 1.
b26ed50d
VP
1442
1443 The VALUE parameter should not be released -- the function will
1444 take care of releasing it when needed. */
acd65feb
VP
1445static int
1446install_new_value (struct varobj *var, struct value *value, int initial)
1447{
1448 int changeable;
1449 int need_to_fetch;
1450 int changed = 0;
25d5ea92 1451 int intentionally_not_fetched = 0;
7a4d50bf 1452 char *print_value = NULL;
acd65feb 1453
acd65feb
VP
1454 /* We need to know the varobj's type to decide if the value should
1455 be fetched or not. C++ fake children (public/protected/private) don't have
1456 a type. */
1457 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1458 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1459
1460 /* If the type has custom visualizer, we consider it to be always
1461 changeable. FIXME: need to make sure this behaviour will not
1462 mess up read-sensitive values. */
1463 if (var->pretty_printer)
1464 changeable = 1;
1465
acd65feb
VP
1466 need_to_fetch = changeable;
1467
b26ed50d
VP
1468 /* We are not interested in the address of references, and given
1469 that in C++ a reference is not rebindable, it cannot
1470 meaningfully change. So, get hold of the real value. */
1471 if (value)
0cc7d26f 1472 value = coerce_ref (value);
b26ed50d 1473
acd65feb
VP
1474 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1475 /* For unions, we need to fetch the value implicitly because
1476 of implementation of union member fetch. When gdb
1477 creates a value for a field and the value of the enclosing
1478 structure is not lazy, it immediately copies the necessary
1479 bytes from the enclosing values. If the enclosing value is
1480 lazy, the call to value_fetch_lazy on the field will read
1481 the data from memory. For unions, that means we'll read the
1482 same memory more than once, which is not desirable. So
1483 fetch now. */
1484 need_to_fetch = 1;
1485
1486 /* The new value might be lazy. If the type is changeable,
1487 that is we'll be comparing values of this type, fetch the
1488 value now. Otherwise, on the next update the old value
1489 will be lazy, which means we've lost that old value. */
1490 if (need_to_fetch && value && value_lazy (value))
1491 {
25d5ea92
VP
1492 struct varobj *parent = var->parent;
1493 int frozen = var->frozen;
1494 for (; !frozen && parent; parent = parent->parent)
1495 frozen |= parent->frozen;
1496
1497 if (frozen && initial)
1498 {
1499 /* For variables that are frozen, or are children of frozen
1500 variables, we don't do fetch on initial assignment.
1501 For non-initial assignemnt we do the fetch, since it means we're
1502 explicitly asked to compare the new value with the old one. */
1503 intentionally_not_fetched = 1;
1504 }
1505 else if (!gdb_value_fetch_lazy (value))
acd65feb 1506 {
acd65feb
VP
1507 /* Set the value to NULL, so that for the next -var-update,
1508 we don't try to compare the new value with this value,
1509 that we couldn't even read. */
1510 value = NULL;
1511 }
acd65feb
VP
1512 }
1513
b6313243 1514
7a4d50bf
VP
1515 /* Below, we'll be comparing string rendering of old and new
1516 values. Don't get string rendering if the value is
1517 lazy -- if it is, the code above has decided that the value
1518 should not be fetched. */
0cc7d26f 1519 if (value && !value_lazy (value) && !var->pretty_printer)
d452c4bc 1520 print_value = value_get_print_value (value, var->format, var);
7a4d50bf 1521
acd65feb
VP
1522 /* If the type is changeable, compare the old and the new values.
1523 If this is the initial assignment, we don't have any old value
1524 to compare with. */
7a4d50bf 1525 if (!initial && changeable)
acd65feb
VP
1526 {
1527 /* If the value of the varobj was changed by -var-set-value, then the
1528 value in the varobj and in the target is the same. However, that value
1529 is different from the value that the varobj had after the previous
57e66780 1530 -var-update. So need to the varobj as changed. */
acd65feb 1531 if (var->updated)
57e66780 1532 {
57e66780
DJ
1533 changed = 1;
1534 }
0cc7d26f 1535 else if (! var->pretty_printer)
acd65feb
VP
1536 {
1537 /* Try to compare the values. That requires that both
1538 values are non-lazy. */
25d5ea92
VP
1539 if (var->not_fetched && value_lazy (var->value))
1540 {
1541 /* This is a frozen varobj and the value was never read.
1542 Presumably, UI shows some "never read" indicator.
1543 Now that we've fetched the real value, we need to report
1544 this varobj as changed so that UI can show the real
1545 value. */
1546 changed = 1;
1547 }
1548 else if (var->value == NULL && value == NULL)
acd65feb
VP
1549 /* Equal. */
1550 ;
1551 else if (var->value == NULL || value == NULL)
57e66780 1552 {
57e66780
DJ
1553 changed = 1;
1554 }
acd65feb
VP
1555 else
1556 {
1557 gdb_assert (!value_lazy (var->value));
1558 gdb_assert (!value_lazy (value));
85265413 1559
57e66780 1560 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1561 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1562 changed = 1;
acd65feb
VP
1563 }
1564 }
1565 }
85265413 1566
ee342b23
VP
1567 if (!initial && !changeable)
1568 {
1569 /* For values that are not changeable, we don't compare the values.
1570 However, we want to notice if a value was not NULL and now is NULL,
1571 or vise versa, so that we report when top-level varobjs come in scope
1572 and leave the scope. */
1573 changed = (var->value != NULL) != (value != NULL);
1574 }
1575
acd65feb 1576 /* We must always keep the new value, since children depend on it. */
25d5ea92 1577 if (var->value != NULL && var->value != value)
acd65feb
VP
1578 value_free (var->value);
1579 var->value = value;
0cc7d26f
TT
1580 if (value != NULL)
1581 value_incref (value);
25d5ea92
VP
1582 if (value && value_lazy (value) && intentionally_not_fetched)
1583 var->not_fetched = 1;
1584 else
1585 var->not_fetched = 0;
acd65feb 1586 var->updated = 0;
85265413 1587
0cc7d26f
TT
1588 install_new_value_visualizer (var);
1589
1590 /* If we installed a pretty-printer, re-compare the printed version
1591 to see if the variable changed. */
1592 if (var->pretty_printer)
1593 {
1594 xfree (print_value);
1595 print_value = value_get_print_value (var->value, var->format, var);
1596 if (!var->print_value || strcmp (var->print_value, print_value) != 0)
1597 changed = 1;
1598 }
1599 if (var->print_value)
1600 xfree (var->print_value);
1601 var->print_value = print_value;
1602
b26ed50d 1603 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1604
1605 return changed;
1606}
acd65feb 1607
0cc7d26f
TT
1608/* Return the requested range for a varobj. VAR is the varobj. FROM
1609 and TO are out parameters; *FROM and *TO will be set to the
1610 selected sub-range of VAR. If no range was selected using
1611 -var-set-update-range, then both will be -1. */
1612void
1613varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1614{
0cc7d26f
TT
1615 *from = var->from;
1616 *to = var->to;
b6313243
TT
1617}
1618
0cc7d26f
TT
1619/* Set the selected sub-range of children of VAR to start at index
1620 FROM and end at index TO. If either FROM or TO is less than zero,
1621 this is interpreted as a request for all children. */
1622void
1623varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1624{
0cc7d26f
TT
1625 var->from = from;
1626 var->to = to;
b6313243
TT
1627}
1628
1629void
1630varobj_set_visualizer (struct varobj *var, const char *visualizer)
1631{
1632#if HAVE_PYTHON
1633 PyObject *mainmod, *globals, *pretty_printer, *constructor;
1634 struct cleanup *back_to, *value;
b6313243 1635
d452c4bc 1636 back_to = varobj_ensure_python_env (var);
b6313243
TT
1637
1638 mainmod = PyImport_AddModule ("__main__");
1639 globals = PyModule_GetDict (mainmod);
1640 Py_INCREF (globals);
1641 make_cleanup_py_decref (globals);
1642
1643 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1644
0cc7d26f 1645 if (! constructor)
b6313243
TT
1646 {
1647 gdbpy_print_stack ();
da1f2771 1648 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1649 }
1650
0cc7d26f
TT
1651 construct_visualizer (var, constructor);
1652 Py_XDECREF (constructor);
b6313243 1653
0cc7d26f
TT
1654 /* If there are any children now, wipe them. */
1655 varobj_delete (var, NULL, 1 /* children only */);
1656 var->num_children = -1;
b6313243
TT
1657
1658 do_cleanups (back_to);
1659#else
da1f2771 1660 error (_("Python support required"));
b6313243
TT
1661#endif
1662}
1663
8b93c638
JM
1664/* Update the values for a variable and its children. This is a
1665 two-pronged attack. First, re-parse the value for the root's
1666 expression to see if it's changed. Then go all the way
1667 through its children, reconstructing them and noting if they've
1668 changed.
1669
25d5ea92
VP
1670 The EXPLICIT parameter specifies if this call is result
1671 of MI request to update this specific variable, or
1672 result of implicit -var-update *. For implicit request, we don't
1673 update frozen variables.
705da579
KS
1674
1675 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1676 returns TYPE_CHANGED, then it has done this and VARP will be modified
1677 to point to the new varobj. */
8b93c638 1678
f7f9ae2c 1679VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
8b93c638
JM
1680{
1681 int changed = 0;
25d5ea92 1682 int type_changed = 0;
8b93c638
JM
1683 int i;
1684 int vleft;
8b93c638
JM
1685 struct varobj *v;
1686 struct varobj **cv;
2c67cb8b 1687 struct varobj **templist = NULL;
30b28db1 1688 struct value *new;
b6313243 1689 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1690 VEC (varobj_update_result) *result = NULL;
e64d9b3d 1691 struct frame_info *fi;
8b93c638 1692
25d5ea92
VP
1693 /* Frozen means frozen -- we don't check for any change in
1694 this varobj, including its going out of scope, or
1695 changing type. One use case for frozen varobjs is
1696 retaining previously evaluated expressions, and we don't
1697 want them to be reevaluated at all. */
1698 if (!explicit && (*varp)->frozen)
f7f9ae2c 1699 return result;
8756216b
DP
1700
1701 if (!(*varp)->root->is_valid)
f7f9ae2c 1702 {
cfce2ea2
PA
1703 varobj_update_result r = {0};
1704 r.varobj = *varp;
f7f9ae2c
VP
1705 r.status = VAROBJ_INVALID;
1706 VEC_safe_push (varobj_update_result, result, &r);
1707 return result;
1708 }
8b93c638 1709
25d5ea92 1710 if ((*varp)->root->rootvar == *varp)
ae093f96 1711 {
cfce2ea2
PA
1712 varobj_update_result r = {0};
1713 r.varobj = *varp;
f7f9ae2c
VP
1714 r.status = VAROBJ_IN_SCOPE;
1715
25d5ea92
VP
1716 /* Update the root variable. value_of_root can return NULL
1717 if the variable is no longer around, i.e. we stepped out of
1718 the frame in which a local existed. We are letting the
1719 value_of_root variable dispose of the varobj if the type
1720 has changed. */
25d5ea92 1721 new = value_of_root (varp, &type_changed);
f7f9ae2c
VP
1722 r.varobj = *varp;
1723
1724 r.type_changed = type_changed;
ea56f9c2 1725 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1726 r.changed = 1;
ea56f9c2 1727
25d5ea92 1728 if (new == NULL)
f7f9ae2c 1729 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1730 r.value_installed = 1;
f7f9ae2c
VP
1731
1732 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1733 {
0b4bc29a
JK
1734 if (r.type_changed || r.changed)
1735 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1736 return result;
1737 }
1738
1739 VEC_safe_push (varobj_update_result, stack, &r);
1740 }
1741 else
1742 {
cfce2ea2
PA
1743 varobj_update_result r = {0};
1744 r.varobj = *varp;
b6313243 1745 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1746 }
8b93c638 1747
8756216b 1748 /* Walk through the children, reconstructing them all. */
b6313243 1749 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1750 {
b6313243
TT
1751 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1752 struct varobj *v = r.varobj;
1753
1754 VEC_pop (varobj_update_result, stack);
1755
1756 /* Update this variable, unless it's a root, which is already
1757 updated. */
1758 if (!r.value_installed)
1759 {
1760 new = value_of_child (v->parent, v->index);
1761 if (install_new_value (v, new, 0 /* type not changed */))
1762 {
1763 r.changed = 1;
1764 v->updated = 0;
1765 }
1766 }
1767
1768 /* We probably should not get children of a varobj that has a
1769 pretty-printer, but for which -var-list-children was never
0cc7d26f 1770 invoked. */
b6313243
TT
1771 if (v->pretty_printer)
1772 {
0cc7d26f 1773 VEC (varobj_p) *changed = 0, *new = 0, *unchanged = 0;
26f9bcee 1774 int i, children_changed = 0;
b6313243
TT
1775
1776 if (v->frozen)
1777 continue;
1778
0cc7d26f
TT
1779 if (!v->children_requested)
1780 {
1781 int dummy;
1782
1783 /* If we initially did not have potential children, but
1784 now we do, consider the varobj as changed.
1785 Otherwise, if children were never requested, consider
1786 it as unchanged -- presumably, such varobj is not yet
1787 expanded in the UI, so we need not bother getting
1788 it. */
1789 if (!varobj_has_more (v, 0))
1790 {
1791 update_dynamic_varobj_children (v, NULL, NULL, NULL,
1792 &dummy, 0, 0, 0);
1793 if (varobj_has_more (v, 0))
1794 r.changed = 1;
1795 }
1796
1797 if (r.changed)
1798 VEC_safe_push (varobj_update_result, result, &r);
1799
1800 continue;
1801 }
1802
b6313243
TT
1803 /* If update_dynamic_varobj_children returns 0, then we have
1804 a non-conforming pretty-printer, so we skip it. */
0cc7d26f
TT
1805 if (update_dynamic_varobj_children (v, &changed, &new, &unchanged,
1806 &children_changed, 1,
1807 v->from, v->to))
b6313243 1808 {
0cc7d26f 1809 if (children_changed || new)
b6313243 1810 {
0cc7d26f
TT
1811 r.children_changed = 1;
1812 r.new = new;
b6313243 1813 }
0cc7d26f
TT
1814 /* Push in reverse order so that the first child is
1815 popped from the work stack first, and so will be
1816 added to result first. This does not affect
1817 correctness, just "nicer". */
1818 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1819 {
0cc7d26f 1820 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2
PA
1821 varobj_update_result r = {0};
1822 r.varobj = tmp;
0cc7d26f 1823 r.changed = 1;
b6313243
TT
1824 r.value_installed = 1;
1825 VEC_safe_push (varobj_update_result, stack, &r);
1826 }
0cc7d26f
TT
1827 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1828 {
1829 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
1830 if (!tmp->frozen)
1831 {
cfce2ea2
PA
1832 varobj_update_result r = {0};
1833 r.varobj = tmp;
0cc7d26f
TT
1834 r.value_installed = 1;
1835 VEC_safe_push (varobj_update_result, stack, &r);
1836 }
1837 }
b6313243
TT
1838 if (r.changed || r.children_changed)
1839 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f
TT
1840
1841 /* Free CHANGED and UNCHANGED, but not NEW, because NEW
1842 has been put into the result vector. */
1843 VEC_free (varobj_p, changed);
1844 VEC_free (varobj_p, unchanged);
1845
b6313243
TT
1846 continue;
1847 }
1848 }
28335dcc
VP
1849
1850 /* Push any children. Use reverse order so that the first
1851 child is popped from the work stack first, and so
1852 will be added to result first. This does not
1853 affect correctness, just "nicer". */
1854 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1855 {
28335dcc
VP
1856 varobj_p c = VEC_index (varobj_p, v->children, i);
1857 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1858 if (c != NULL && !c->frozen)
28335dcc 1859 {
cfce2ea2
PA
1860 varobj_update_result r = {0};
1861 r.varobj = c;
b6313243 1862 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1863 }
8b93c638 1864 }
b6313243
TT
1865
1866 if (r.changed || r.type_changed)
1867 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1868 }
1869
b6313243
TT
1870 VEC_free (varobj_update_result, stack);
1871
f7f9ae2c 1872 return result;
8b93c638
JM
1873}
1874\f
1875
1876/* Helper functions */
1877
1878/*
1879 * Variable object construction/destruction
1880 */
1881
1882static int
fba45db2
KB
1883delete_variable (struct cpstack **resultp, struct varobj *var,
1884 int only_children_p)
8b93c638
JM
1885{
1886 int delcount = 0;
1887
1888 delete_variable_1 (resultp, &delcount, var,
1889 only_children_p, 1 /* remove_from_parent_p */ );
1890
1891 return delcount;
1892}
1893
1894/* Delete the variable object VAR and its children */
1895/* IMPORTANT NOTE: If we delete a variable which is a child
1896 and the parent is not removed we dump core. It must be always
1897 initially called with remove_from_parent_p set */
1898static void
72330bd6
AC
1899delete_variable_1 (struct cpstack **resultp, int *delcountp,
1900 struct varobj *var, int only_children_p,
1901 int remove_from_parent_p)
8b93c638 1902{
28335dcc 1903 int i;
8b93c638
JM
1904
1905 /* Delete any children of this variable, too. */
28335dcc
VP
1906 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1907 {
1908 varobj_p child = VEC_index (varobj_p, var->children, i);
214270ab
VP
1909 if (!child)
1910 continue;
8b93c638 1911 if (!remove_from_parent_p)
28335dcc
VP
1912 child->parent = NULL;
1913 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1914 }
28335dcc 1915 VEC_free (varobj_p, var->children);
8b93c638
JM
1916
1917 /* if we were called to delete only the children we are done here */
1918 if (only_children_p)
1919 return;
1920
1921 /* Otherwise, add it to the list of deleted ones and proceed to do so */
73a93a32
JI
1922 /* If the name is null, this is a temporary variable, that has not
1923 yet been installed, don't report it, it belongs to the caller... */
1924 if (var->obj_name != NULL)
8b93c638 1925 {
5b616ba1 1926 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1927 *delcountp = *delcountp + 1;
1928 }
1929
1930 /* If this variable has a parent, remove it from its parent's list */
1931 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1932 (as indicated by remove_from_parent_p) we don't bother doing an
1933 expensive list search to find the element to remove when we are
1934 discarding the list afterwards */
72330bd6 1935 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1936 {
28335dcc 1937 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1938 }
72330bd6 1939
73a93a32
JI
1940 if (var->obj_name != NULL)
1941 uninstall_variable (var);
8b93c638
JM
1942
1943 /* Free memory associated with this variable */
1944 free_variable (var);
1945}
1946
1947/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1948static int
fba45db2 1949install_variable (struct varobj *var)
8b93c638
JM
1950{
1951 struct vlist *cv;
1952 struct vlist *newvl;
1953 const char *chp;
1954 unsigned int index = 0;
1955 unsigned int i = 1;
1956
1957 for (chp = var->obj_name; *chp; chp++)
1958 {
1959 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1960 }
1961
1962 cv = *(varobj_table + index);
1963 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1964 cv = cv->next;
1965
1966 if (cv != NULL)
8a3fe4f8 1967 error (_("Duplicate variable object name"));
8b93c638
JM
1968
1969 /* Add varobj to hash table */
1970 newvl = xmalloc (sizeof (struct vlist));
1971 newvl->next = *(varobj_table + index);
1972 newvl->var = var;
1973 *(varobj_table + index) = newvl;
1974
1975 /* If root, add varobj to root list */
b2c2bd75 1976 if (is_root_p (var))
8b93c638
JM
1977 {
1978 /* Add to list of root variables */
1979 if (rootlist == NULL)
1980 var->root->next = NULL;
1981 else
1982 var->root->next = rootlist;
1983 rootlist = var->root;
8b93c638
JM
1984 }
1985
1986 return 1; /* OK */
1987}
1988
1989/* Unistall the object VAR. */
1990static void
fba45db2 1991uninstall_variable (struct varobj *var)
8b93c638
JM
1992{
1993 struct vlist *cv;
1994 struct vlist *prev;
1995 struct varobj_root *cr;
1996 struct varobj_root *prer;
1997 const char *chp;
1998 unsigned int index = 0;
1999 unsigned int i = 1;
2000
2001 /* Remove varobj from hash table */
2002 for (chp = var->obj_name; *chp; chp++)
2003 {
2004 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2005 }
2006
2007 cv = *(varobj_table + index);
2008 prev = NULL;
2009 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2010 {
2011 prev = cv;
2012 cv = cv->next;
2013 }
2014
2015 if (varobjdebug)
2016 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2017
2018 if (cv == NULL)
2019 {
72330bd6
AC
2020 warning
2021 ("Assertion failed: Could not find variable object \"%s\" to delete",
2022 var->obj_name);
8b93c638
JM
2023 return;
2024 }
2025
2026 if (prev == NULL)
2027 *(varobj_table + index) = cv->next;
2028 else
2029 prev->next = cv->next;
2030
b8c9b27d 2031 xfree (cv);
8b93c638
JM
2032
2033 /* If root, remove varobj from root list */
b2c2bd75 2034 if (is_root_p (var))
8b93c638
JM
2035 {
2036 /* Remove from list of root variables */
2037 if (rootlist == var->root)
2038 rootlist = var->root->next;
2039 else
2040 {
2041 prer = NULL;
2042 cr = rootlist;
2043 while ((cr != NULL) && (cr->rootvar != var))
2044 {
2045 prer = cr;
2046 cr = cr->next;
2047 }
2048 if (cr == NULL)
2049 {
72330bd6
AC
2050 warning
2051 ("Assertion failed: Could not find varobj \"%s\" in root list",
2052 var->obj_name);
8b93c638
JM
2053 return;
2054 }
2055 if (prer == NULL)
2056 rootlist = NULL;
2057 else
2058 prer->next = cr->next;
2059 }
8b93c638
JM
2060 }
2061
2062}
2063
8b93c638
JM
2064/* Create and install a child of the parent of the given name */
2065static struct varobj *
fba45db2 2066create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2067{
2068 return create_child_with_value (parent, index, name,
2069 value_of_child (parent, index));
2070}
2071
2072static struct varobj *
2073create_child_with_value (struct varobj *parent, int index, const char *name,
2074 struct value *value)
8b93c638
JM
2075{
2076 struct varobj *child;
2077 char *childs_name;
2078
2079 child = new_variable ();
2080
2081 /* name is allocated by name_of_child */
b6313243
TT
2082 /* FIXME: xstrdup should not be here. */
2083 child->name = xstrdup (name);
8b93c638 2084 child->index = index;
8b93c638
JM
2085 child->parent = parent;
2086 child->root = parent->root;
b435e160 2087 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638
JM
2088 child->obj_name = childs_name;
2089 install_variable (child);
2090
acd65feb
VP
2091 /* Compute the type of the child. Must do this before
2092 calling install_new_value. */
2093 if (value != NULL)
2094 /* If the child had no evaluation errors, var->value
2095 will be non-NULL and contain a valid type. */
2096 child->type = value_type (value);
2097 else
2098 /* Otherwise, we must compute the type. */
2099 child->type = (*child->root->lang->type_of_child) (child->parent,
2100 child->index);
2101 install_new_value (child, value, 1);
2102
8b93c638
JM
2103 return child;
2104}
8b93c638
JM
2105\f
2106
2107/*
2108 * Miscellaneous utility functions.
2109 */
2110
2111/* Allocate memory and initialize a new variable */
2112static struct varobj *
2113new_variable (void)
2114{
2115 struct varobj *var;
2116
2117 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2118 var->name = NULL;
02142340 2119 var->path_expr = NULL;
8b93c638
JM
2120 var->obj_name = NULL;
2121 var->index = -1;
2122 var->type = NULL;
2123 var->value = NULL;
8b93c638
JM
2124 var->num_children = -1;
2125 var->parent = NULL;
2126 var->children = NULL;
2127 var->format = 0;
2128 var->root = NULL;
fb9b6b35 2129 var->updated = 0;
85265413 2130 var->print_value = NULL;
25d5ea92
VP
2131 var->frozen = 0;
2132 var->not_fetched = 0;
b6313243 2133 var->children_requested = 0;
0cc7d26f
TT
2134 var->from = -1;
2135 var->to = -1;
2136 var->constructor = 0;
b6313243 2137 var->pretty_printer = 0;
0cc7d26f
TT
2138 var->child_iter = 0;
2139 var->saved_item = 0;
8b93c638
JM
2140
2141 return var;
2142}
2143
2144/* Allocate memory and initialize a new root variable */
2145static struct varobj *
2146new_root_variable (void)
2147{
2148 struct varobj *var = new_variable ();
2149 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
2150 var->root->lang = NULL;
2151 var->root->exp = NULL;
2152 var->root->valid_block = NULL;
7a424e99 2153 var->root->frame = null_frame_id;
a5defcdc 2154 var->root->floating = 0;
8b93c638 2155 var->root->rootvar = NULL;
8756216b 2156 var->root->is_valid = 1;
8b93c638
JM
2157
2158 return var;
2159}
2160
2161/* Free any allocated memory associated with VAR. */
2162static void
fba45db2 2163free_variable (struct varobj *var)
8b93c638 2164{
d452c4bc
UW
2165#if HAVE_PYTHON
2166 if (var->pretty_printer)
2167 {
2168 struct cleanup *cleanup = varobj_ensure_python_env (var);
0cc7d26f
TT
2169 Py_XDECREF (var->constructor);
2170 Py_XDECREF (var->pretty_printer);
2171 Py_XDECREF (var->child_iter);
2172 Py_XDECREF (var->saved_item);
d452c4bc
UW
2173 do_cleanups (cleanup);
2174 }
2175#endif
2176
36746093
JK
2177 value_free (var->value);
2178
8b93c638 2179 /* Free the expression if this is a root variable. */
b2c2bd75 2180 if (is_root_p (var))
8b93c638 2181 {
3038237c 2182 xfree (var->root->exp);
8038e1e2 2183 xfree (var->root);
8b93c638
JM
2184 }
2185
8038e1e2
AC
2186 xfree (var->name);
2187 xfree (var->obj_name);
85265413 2188 xfree (var->print_value);
02142340 2189 xfree (var->path_expr);
8038e1e2 2190 xfree (var);
8b93c638
JM
2191}
2192
74b7792f
AC
2193static void
2194do_free_variable_cleanup (void *var)
2195{
2196 free_variable (var);
2197}
2198
2199static struct cleanup *
2200make_cleanup_free_variable (struct varobj *var)
2201{
2202 return make_cleanup (do_free_variable_cleanup, var);
2203}
2204
6766a268
DJ
2205/* This returns the type of the variable. It also skips past typedefs
2206 to return the real type of the variable.
94b66fa7
KS
2207
2208 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2209 except within get_target_type and get_type. */
8b93c638 2210static struct type *
fba45db2 2211get_type (struct varobj *var)
8b93c638
JM
2212{
2213 struct type *type;
2214 type = var->type;
2215
6766a268
DJ
2216 if (type != NULL)
2217 type = check_typedef (type);
8b93c638
JM
2218
2219 return type;
2220}
2221
6e2a9270
VP
2222/* Return the type of the value that's stored in VAR,
2223 or that would have being stored there if the
2224 value were accessible.
2225
2226 This differs from VAR->type in that VAR->type is always
2227 the true type of the expession in the source language.
2228 The return value of this function is the type we're
2229 actually storing in varobj, and using for displaying
2230 the values and for comparing previous and new values.
2231
2232 For example, top-level references are always stripped. */
2233static struct type *
2234get_value_type (struct varobj *var)
2235{
2236 struct type *type;
2237
2238 if (var->value)
2239 type = value_type (var->value);
2240 else
2241 type = var->type;
2242
2243 type = check_typedef (type);
2244
2245 if (TYPE_CODE (type) == TYPE_CODE_REF)
2246 type = get_target_type (type);
2247
2248 type = check_typedef (type);
2249
2250 return type;
2251}
2252
8b93c638 2253/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
2254 past typedefs, just like get_type ().
2255
2256 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
2257 except within get_target_type and get_type. */
8b93c638 2258static struct type *
fba45db2 2259get_target_type (struct type *type)
8b93c638
JM
2260{
2261 if (type != NULL)
2262 {
2263 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
2264 if (type != NULL)
2265 type = check_typedef (type);
8b93c638
JM
2266 }
2267
2268 return type;
2269}
2270
2271/* What is the default display for this variable? We assume that
2272 everything is "natural". Any exceptions? */
2273static enum varobj_display_formats
fba45db2 2274variable_default_display (struct varobj *var)
8b93c638
JM
2275{
2276 return FORMAT_NATURAL;
2277}
2278
8b93c638
JM
2279/* FIXME: The following should be generic for any pointer */
2280static void
fba45db2 2281cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2282{
2283 struct cpstack *s;
2284
2285 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2286 s->name = name;
2287 s->next = *pstack;
2288 *pstack = s;
2289}
2290
2291/* FIXME: The following should be generic for any pointer */
2292static char *
fba45db2 2293cppop (struct cpstack **pstack)
8b93c638
JM
2294{
2295 struct cpstack *s;
2296 char *v;
2297
2298 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2299 return NULL;
2300
2301 s = *pstack;
2302 v = s->name;
2303 *pstack = (*pstack)->next;
b8c9b27d 2304 xfree (s);
8b93c638
JM
2305
2306 return v;
2307}
2308\f
2309/*
2310 * Language-dependencies
2311 */
2312
2313/* Common entry points */
2314
2315/* Get the language of variable VAR. */
2316static enum varobj_languages
fba45db2 2317variable_language (struct varobj *var)
8b93c638
JM
2318{
2319 enum varobj_languages lang;
2320
2321 switch (var->root->exp->language_defn->la_language)
2322 {
2323 default:
2324 case language_c:
2325 lang = vlang_c;
2326 break;
2327 case language_cplus:
2328 lang = vlang_cplus;
2329 break;
2330 case language_java:
2331 lang = vlang_java;
2332 break;
2333 }
2334
2335 return lang;
2336}
2337
2338/* Return the number of children for a given variable.
2339 The result of this function is defined by the language
2340 implementation. The number of children returned by this function
2341 is the number of children that the user will see in the variable
2342 display. */
2343static int
fba45db2 2344number_of_children (struct varobj *var)
8b93c638
JM
2345{
2346 return (*var->root->lang->number_of_children) (var);;
2347}
2348
2349/* What is the expression for the root varobj VAR? Returns a malloc'd string. */
2350static char *
fba45db2 2351name_of_variable (struct varobj *var)
8b93c638
JM
2352{
2353 return (*var->root->lang->name_of_variable) (var);
2354}
2355
2356/* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
2357static char *
fba45db2 2358name_of_child (struct varobj *var, int index)
8b93c638
JM
2359{
2360 return (*var->root->lang->name_of_child) (var, index);
2361}
2362
a5defcdc
VP
2363/* What is the ``struct value *'' of the root variable VAR?
2364 For floating variable object, evaluation can get us a value
2365 of different type from what is stored in varobj already. In
2366 that case:
2367 - *type_changed will be set to 1
2368 - old varobj will be freed, and new one will be
2369 created, with the same name.
2370 - *var_handle will be set to the new varobj
2371 Otherwise, *type_changed will be set to 0. */
30b28db1 2372static struct value *
fba45db2 2373value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2374{
73a93a32
JI
2375 struct varobj *var;
2376
2377 if (var_handle == NULL)
2378 return NULL;
2379
2380 var = *var_handle;
2381
2382 /* This should really be an exception, since this should
2383 only get called with a root variable. */
2384
b2c2bd75 2385 if (!is_root_p (var))
73a93a32
JI
2386 return NULL;
2387
a5defcdc 2388 if (var->root->floating)
73a93a32
JI
2389 {
2390 struct varobj *tmp_var;
2391 char *old_type, *new_type;
6225abfa 2392
73a93a32
JI
2393 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2394 USE_SELECTED_FRAME);
2395 if (tmp_var == NULL)
2396 {
2397 return NULL;
2398 }
6225abfa 2399 old_type = varobj_get_type (var);
73a93a32 2400 new_type = varobj_get_type (tmp_var);
72330bd6 2401 if (strcmp (old_type, new_type) == 0)
73a93a32 2402 {
fcacd99f
VP
2403 /* The expression presently stored inside var->root->exp
2404 remembers the locations of local variables relatively to
2405 the frame where the expression was created (in DWARF location
2406 button, for example). Naturally, those locations are not
2407 correct in other frames, so update the expression. */
2408
2409 struct expression *tmp_exp = var->root->exp;
2410 var->root->exp = tmp_var->root->exp;
2411 tmp_var->root->exp = tmp_exp;
2412
73a93a32
JI
2413 varobj_delete (tmp_var, NULL, 0);
2414 *type_changed = 0;
2415 }
2416 else
2417 {
1b36a34b 2418 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2419 tmp_var->from = var->from;
2420 tmp_var->to = var->to;
a5defcdc
VP
2421 varobj_delete (var, NULL, 0);
2422
73a93a32
JI
2423 install_variable (tmp_var);
2424 *var_handle = tmp_var;
705da579 2425 var = *var_handle;
73a93a32
JI
2426 *type_changed = 1;
2427 }
74dddad3
MS
2428 xfree (old_type);
2429 xfree (new_type);
73a93a32
JI
2430 }
2431 else
2432 {
2433 *type_changed = 0;
2434 }
2435
2436 return (*var->root->lang->value_of_root) (var_handle);
8b93c638
JM
2437}
2438
30b28db1
AC
2439/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
2440static struct value *
fba45db2 2441value_of_child (struct varobj *parent, int index)
8b93c638 2442{
30b28db1 2443 struct value *value;
8b93c638
JM
2444
2445 value = (*parent->root->lang->value_of_child) (parent, index);
2446
8b93c638
JM
2447 return value;
2448}
2449
8b93c638
JM
2450/* GDB already has a command called "value_of_variable". Sigh. */
2451static char *
de051565 2452my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2453{
8756216b 2454 if (var->root->is_valid)
0cc7d26f
TT
2455 {
2456 if (var->pretty_printer)
2457 return value_get_print_value (var->value, var->format, var);
2458 return (*var->root->lang->value_of_variable) (var, format);
2459 }
8756216b
DP
2460 else
2461 return NULL;
8b93c638
JM
2462}
2463
85265413 2464static char *
b6313243 2465value_get_print_value (struct value *value, enum varobj_display_formats format,
d452c4bc 2466 struct varobj *var)
85265413 2467{
57e66780
DJ
2468 struct ui_file *stb;
2469 struct cleanup *old_chain;
fbb8f299 2470 gdb_byte *thevalue = NULL;
79a45b7d 2471 struct value_print_options opts;
be759fcf
PM
2472 struct type *type = NULL;
2473 long len = 0;
2474 char *encoding = NULL;
2475 struct gdbarch *gdbarch = NULL;
57e66780
DJ
2476
2477 if (value == NULL)
2478 return NULL;
2479
be759fcf 2480 gdbarch = get_type_arch (value_type (value));
b6313243
TT
2481#if HAVE_PYTHON
2482 {
d452c4bc
UW
2483 struct cleanup *back_to = varobj_ensure_python_env (var);
2484 PyObject *value_formatter = var->pretty_printer;
2485
0cc7d26f 2486 if (value_formatter)
b6313243 2487 {
0cc7d26f
TT
2488 /* First check to see if we have any children at all. If so,
2489 we simply return {...}. */
2490 if (dynamic_varobj_has_child_method (var))
2491 return xstrdup ("{...}");
b6313243 2492
0cc7d26f 2493 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
b6313243 2494 {
0cc7d26f
TT
2495 char *hint;
2496 struct value *replacement;
2497 int string_print = 0;
2498 PyObject *output = NULL;
2499
2500 hint = gdbpy_get_display_hint (value_formatter);
2501 if (hint)
2502 {
2503 if (!strcmp (hint, "string"))
2504 string_print = 1;
2505 xfree (hint);
2506 }
b6313243 2507
0cc7d26f
TT
2508 output = apply_varobj_pretty_printer (value_formatter,
2509 &replacement);
2510 if (output)
2511 {
be759fcf 2512 if (gdbpy_is_lazy_string (output))
0cc7d26f 2513 {
be759fcf
PM
2514 thevalue = gdbpy_extract_lazy_string (output, &type,
2515 &len, &encoding);
2516 string_print = 1;
2517 }
2518 else
2519 {
2520 PyObject *py_str
2521 = python_string_to_target_python_string (output);
2522 if (py_str)
2523 {
2524 char *s = PyString_AsString (py_str);
2525 len = PyString_Size (py_str);
2526 thevalue = xmemdup (s, len + 1, len + 1);
2527 type = builtin_type (gdbarch)->builtin_char;
2528 Py_DECREF (py_str);
2529 }
0cc7d26f
TT
2530 }
2531 Py_DECREF (output);
fbb8f299 2532 }
0cc7d26f
TT
2533 if (thevalue && !string_print)
2534 {
2535 do_cleanups (back_to);
be759fcf 2536 xfree (encoding);
0cc7d26f
TT
2537 return thevalue;
2538 }
2539 if (replacement)
2540 value = replacement;
b6313243 2541 }
b6313243 2542 }
d452c4bc 2543 do_cleanups (back_to);
b6313243
TT
2544 }
2545#endif
2546
57e66780
DJ
2547 stb = mem_fileopen ();
2548 old_chain = make_cleanup_ui_file_delete (stb);
2549
79a45b7d
TT
2550 get_formatted_print_options (&opts, format_code[(int) format]);
2551 opts.deref_ref = 0;
b6313243
TT
2552 opts.raw = 1;
2553 if (thevalue)
2554 {
2555 make_cleanup (xfree, thevalue);
be759fcf
PM
2556 make_cleanup (xfree, encoding);
2557 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
b6313243
TT
2558 }
2559 else
2560 common_val_print (value, stb, 0, &opts, current_language);
759ef836 2561 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2562
85265413
NR
2563 do_cleanups (old_chain);
2564 return thevalue;
2565}
2566
340a7723
NR
2567int
2568varobj_editable_p (struct varobj *var)
2569{
2570 struct type *type;
2571 struct value *value;
2572
2573 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2574 return 0;
2575
2576 type = get_value_type (var);
2577
2578 switch (TYPE_CODE (type))
2579 {
2580 case TYPE_CODE_STRUCT:
2581 case TYPE_CODE_UNION:
2582 case TYPE_CODE_ARRAY:
2583 case TYPE_CODE_FUNC:
2584 case TYPE_CODE_METHOD:
2585 return 0;
2586 break;
2587
2588 default:
2589 return 1;
2590 break;
2591 }
2592}
2593
acd65feb
VP
2594/* Return non-zero if changes in value of VAR
2595 must be detected and reported by -var-update.
2596 Return zero is -var-update should never report
2597 changes of such values. This makes sense for structures
2598 (since the changes in children values will be reported separately),
2599 or for artifical objects (like 'public' pseudo-field in C++).
2600
2601 Return value of 0 means that gdb need not call value_fetch_lazy
2602 for the value of this variable object. */
8b93c638 2603static int
b2c2bd75 2604varobj_value_is_changeable_p (struct varobj *var)
8b93c638
JM
2605{
2606 int r;
2607 struct type *type;
2608
2609 if (CPLUS_FAKE_CHILD (var))
2610 return 0;
2611
6e2a9270 2612 type = get_value_type (var);
8b93c638
JM
2613
2614 switch (TYPE_CODE (type))
2615 {
72330bd6
AC
2616 case TYPE_CODE_STRUCT:
2617 case TYPE_CODE_UNION:
2618 case TYPE_CODE_ARRAY:
2619 r = 0;
2620 break;
8b93c638 2621
72330bd6
AC
2622 default:
2623 r = 1;
8b93c638
JM
2624 }
2625
2626 return r;
2627}
2628
5a413362
VP
2629/* Return 1 if that varobj is floating, that is is always evaluated in the
2630 selected frame, and not bound to thread/frame. Such variable objects
2631 are created using '@' as frame specifier to -var-create. */
2632int
2633varobj_floating_p (struct varobj *var)
2634{
2635 return var->root->floating;
2636}
2637
2024f65a
VP
2638/* Given the value and the type of a variable object,
2639 adjust the value and type to those necessary
2640 for getting children of the variable object.
2641 This includes dereferencing top-level references
2642 to all types and dereferencing pointers to
2643 structures.
2644
2645 Both TYPE and *TYPE should be non-null. VALUE
2646 can be null if we want to only translate type.
2647 *VALUE can be null as well -- if the parent
02142340
VP
2648 value is not known.
2649
2650 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
b6313243 2651 depending on whether pointer was dereferenced
02142340 2652 in this function. */
2024f65a
VP
2653static void
2654adjust_value_for_child_access (struct value **value,
02142340
VP
2655 struct type **type,
2656 int *was_ptr)
2024f65a
VP
2657{
2658 gdb_assert (type && *type);
2659
02142340
VP
2660 if (was_ptr)
2661 *was_ptr = 0;
2662
2024f65a
VP
2663 *type = check_typedef (*type);
2664
2665 /* The type of value stored in varobj, that is passed
2666 to us, is already supposed to be
2667 reference-stripped. */
2668
2669 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
2670
2671 /* Pointers to structures are treated just like
2672 structures when accessing children. Don't
2673 dererences pointers to other types. */
2674 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
2675 {
2676 struct type *target_type = get_target_type (*type);
2677 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
2678 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
2679 {
2680 if (value && *value)
3f4178d6
DJ
2681 {
2682 int success = gdb_value_ind (*value, value);
2683 if (!success)
2684 *value = NULL;
2685 }
2024f65a 2686 *type = target_type;
02142340
VP
2687 if (was_ptr)
2688 *was_ptr = 1;
2024f65a
VP
2689 }
2690 }
2691
2692 /* The 'get_target_type' function calls check_typedef on
2693 result, so we can immediately check type code. No
2694 need to call check_typedef here. */
2695}
2696
8b93c638
JM
2697/* C */
2698static int
fba45db2 2699c_number_of_children (struct varobj *var)
8b93c638 2700{
2024f65a
VP
2701 struct type *type = get_value_type (var);
2702 int children = 0;
8b93c638 2703 struct type *target;
8b93c638 2704
02142340 2705 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638 2706 target = get_target_type (type);
8b93c638
JM
2707
2708 switch (TYPE_CODE (type))
2709 {
2710 case TYPE_CODE_ARRAY:
2711 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 2712 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
2713 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
2714 else
74a44383
DJ
2715 /* If we don't know how many elements there are, don't display
2716 any. */
2717 children = 0;
8b93c638
JM
2718 break;
2719
2720 case TYPE_CODE_STRUCT:
2721 case TYPE_CODE_UNION:
2722 children = TYPE_NFIELDS (type);
2723 break;
2724
2725 case TYPE_CODE_PTR:
2024f65a
VP
2726 /* The type here is a pointer to non-struct. Typically, pointers
2727 have one child, except for function ptrs, which have no children,
2728 and except for void*, as we don't know what to show.
2729
0755e6c1
FN
2730 We can show char* so we allow it to be dereferenced. If you decide
2731 to test for it, please mind that a little magic is necessary to
2732 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
2733 TYPE_NAME == "char" */
2024f65a
VP
2734 if (TYPE_CODE (target) == TYPE_CODE_FUNC
2735 || TYPE_CODE (target) == TYPE_CODE_VOID)
2736 children = 0;
2737 else
2738 children = 1;
8b93c638
JM
2739 break;
2740
2741 default:
2742 /* Other types have no children */
2743 break;
2744 }
2745
2746 return children;
2747}
2748
2749static char *
fba45db2 2750c_name_of_variable (struct varobj *parent)
8b93c638 2751{
1b36a34b 2752 return xstrdup (parent->name);
8b93c638
JM
2753}
2754
bbec2603
VP
2755/* Return the value of element TYPE_INDEX of a structure
2756 value VALUE. VALUE's type should be a structure,
2757 or union, or a typedef to struct/union.
2758
2759 Returns NULL if getting the value fails. Never throws. */
2760static struct value *
2761value_struct_element_index (struct value *value, int type_index)
8b93c638 2762{
bbec2603
VP
2763 struct value *result = NULL;
2764 volatile struct gdb_exception e;
8b93c638 2765
bbec2603
VP
2766 struct type *type = value_type (value);
2767 type = check_typedef (type);
2768
2769 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2770 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 2771
bbec2603
VP
2772 TRY_CATCH (e, RETURN_MASK_ERROR)
2773 {
d6a843b5 2774 if (field_is_static (&TYPE_FIELD (type, type_index)))
bbec2603
VP
2775 result = value_static_field (type, type_index);
2776 else
2777 result = value_primitive_field (value, 0, type_index, type);
2778 }
2779 if (e.reason < 0)
2780 {
2781 return NULL;
2782 }
2783 else
2784 {
2785 return result;
2786 }
2787}
2788
2789/* Obtain the information about child INDEX of the variable
2790 object PARENT.
2791 If CNAME is not null, sets *CNAME to the name of the child relative
2792 to the parent.
2793 If CVALUE is not null, sets *CVALUE to the value of the child.
2794 If CTYPE is not null, sets *CTYPE to the type of the child.
2795
2796 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2797 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2798 to NULL. */
2799static void
2800c_describe_child (struct varobj *parent, int index,
02142340
VP
2801 char **cname, struct value **cvalue, struct type **ctype,
2802 char **cfull_expression)
bbec2603
VP
2803{
2804 struct value *value = parent->value;
2024f65a 2805 struct type *type = get_value_type (parent);
02142340
VP
2806 char *parent_expression = NULL;
2807 int was_ptr;
bbec2603
VP
2808
2809 if (cname)
2810 *cname = NULL;
2811 if (cvalue)
2812 *cvalue = NULL;
2813 if (ctype)
2814 *ctype = NULL;
02142340
VP
2815 if (cfull_expression)
2816 {
2817 *cfull_expression = NULL;
2818 parent_expression = varobj_get_path_expr (parent);
2819 }
2820 adjust_value_for_child_access (&value, &type, &was_ptr);
bbec2603 2821
8b93c638
JM
2822 switch (TYPE_CODE (type))
2823 {
2824 case TYPE_CODE_ARRAY:
bbec2603 2825 if (cname)
43bbcdc2
PH
2826 *cname = xstrdup (int_string (index
2827 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2828 10, 1, 0, 0));
bbec2603
VP
2829
2830 if (cvalue && value)
2831 {
2832 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2497b498 2833 gdb_value_subscript (value, real_index, cvalue);
bbec2603
VP
2834 }
2835
2836 if (ctype)
2837 *ctype = get_target_type (type);
2838
02142340 2839 if (cfull_expression)
43bbcdc2
PH
2840 *cfull_expression =
2841 xstrprintf ("(%s)[%s]", parent_expression,
2842 int_string (index
2843 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
2844 10, 1, 0, 0));
02142340
VP
2845
2846
8b93c638
JM
2847 break;
2848
2849 case TYPE_CODE_STRUCT:
2850 case TYPE_CODE_UNION:
bbec2603 2851 if (cname)
1b36a34b 2852 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
bbec2603
VP
2853
2854 if (cvalue && value)
2855 {
2856 /* For C, varobj index is the same as type index. */
2857 *cvalue = value_struct_element_index (value, index);
2858 }
2859
2860 if (ctype)
2861 *ctype = TYPE_FIELD_TYPE (type, index);
2862
02142340
VP
2863 if (cfull_expression)
2864 {
2865 char *join = was_ptr ? "->" : ".";
2866 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2867 TYPE_FIELD_NAME (type, index));
2868 }
2869
8b93c638
JM
2870 break;
2871
2872 case TYPE_CODE_PTR:
bbec2603
VP
2873 if (cname)
2874 *cname = xstrprintf ("*%s", parent->name);
8b93c638 2875
bbec2603 2876 if (cvalue && value)
3f4178d6
DJ
2877 {
2878 int success = gdb_value_ind (value, cvalue);
2879 if (!success)
2880 *cvalue = NULL;
2881 }
bbec2603 2882
2024f65a
VP
2883 /* Don't use get_target_type because it calls
2884 check_typedef and here, we want to show the true
2885 declared type of the variable. */
bbec2603 2886 if (ctype)
2024f65a 2887 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
2888
2889 if (cfull_expression)
2890 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 2891
8b93c638
JM
2892 break;
2893
2894 default:
2895 /* This should not happen */
bbec2603
VP
2896 if (cname)
2897 *cname = xstrdup ("???");
02142340
VP
2898 if (cfull_expression)
2899 *cfull_expression = xstrdup ("???");
bbec2603 2900 /* Don't set value and type, we don't know then. */
8b93c638 2901 }
bbec2603 2902}
8b93c638 2903
bbec2603
VP
2904static char *
2905c_name_of_child (struct varobj *parent, int index)
2906{
2907 char *name;
02142340 2908 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
2909 return name;
2910}
2911
02142340
VP
2912static char *
2913c_path_expr_of_child (struct varobj *child)
2914{
2915 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2916 &child->path_expr);
2917 return child->path_expr;
2918}
2919
c5b48eac
VP
2920/* If frame associated with VAR can be found, switch
2921 to it and return 1. Otherwise, return 0. */
2922static int
2923check_scope (struct varobj *var)
2924{
2925 struct frame_info *fi;
2926 int scope;
2927
2928 fi = frame_find_by_id (var->root->frame);
2929 scope = fi != NULL;
2930
2931 if (fi)
2932 {
2933 CORE_ADDR pc = get_frame_pc (fi);
2934 if (pc < BLOCK_START (var->root->valid_block) ||
2935 pc >= BLOCK_END (var->root->valid_block))
2936 scope = 0;
2937 else
2938 select_frame (fi);
2939 }
2940 return scope;
2941}
2942
30b28db1 2943static struct value *
fba45db2 2944c_value_of_root (struct varobj **var_handle)
8b93c638 2945{
5e572bb4 2946 struct value *new_val = NULL;
73a93a32 2947 struct varobj *var = *var_handle;
8b93c638 2948 struct frame_info *fi;
c5b48eac 2949 int within_scope = 0;
6208b47d
VP
2950 struct cleanup *back_to;
2951
73a93a32 2952 /* Only root variables can be updated... */
b2c2bd75 2953 if (!is_root_p (var))
73a93a32
JI
2954 /* Not a root var */
2955 return NULL;
2956
4f8d22e3 2957 back_to = make_cleanup_restore_current_thread ();
72330bd6 2958
8b93c638 2959 /* Determine whether the variable is still around. */
a5defcdc 2960 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 2961 within_scope = 1;
c5b48eac
VP
2962 else if (var->root->thread_id == 0)
2963 {
2964 /* The program was single-threaded when the variable object was
2965 created. Technically, it's possible that the program became
2966 multi-threaded since then, but we don't support such
2967 scenario yet. */
2968 within_scope = check_scope (var);
2969 }
8b93c638
JM
2970 else
2971 {
c5b48eac
VP
2972 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2973 if (in_thread_list (ptid))
d2353924 2974 {
c5b48eac
VP
2975 switch_to_thread (ptid);
2976 within_scope = check_scope (var);
2977 }
8b93c638 2978 }
72330bd6 2979
8b93c638
JM
2980 if (within_scope)
2981 {
73a93a32 2982 /* We need to catch errors here, because if evaluate
85d93f1d
VP
2983 expression fails we want to just return NULL. */
2984 gdb_evaluate_expression (var->root->exp, &new_val);
8b93c638
JM
2985 return new_val;
2986 }
2987
6208b47d
VP
2988 do_cleanups (back_to);
2989
8b93c638
JM
2990 return NULL;
2991}
2992
30b28db1 2993static struct value *
fba45db2 2994c_value_of_child (struct varobj *parent, int index)
8b93c638 2995{
bbec2603 2996 struct value *value = NULL;
02142340 2997 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
2998
2999 return value;
3000}
3001
3002static struct type *
fba45db2 3003c_type_of_child (struct varobj *parent, int index)
8b93c638 3004{
bbec2603 3005 struct type *type = NULL;
02142340 3006 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3007 return type;
3008}
3009
8b93c638 3010static char *
de051565 3011c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3012{
14b3d9c9
JB
3013 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3014 it will print out its children instead of "{...}". So we need to
3015 catch that case explicitly. */
3016 struct type *type = get_type (var);
e64d9b3d 3017
b6313243
TT
3018 /* If we have a custom formatter, return whatever string it has
3019 produced. */
3020 if (var->pretty_printer && var->print_value)
3021 return xstrdup (var->print_value);
3022
14b3d9c9
JB
3023 /* Strip top-level references. */
3024 while (TYPE_CODE (type) == TYPE_CODE_REF)
3025 type = check_typedef (TYPE_TARGET_TYPE (type));
3026
3027 switch (TYPE_CODE (type))
8b93c638
JM
3028 {
3029 case TYPE_CODE_STRUCT:
3030 case TYPE_CODE_UNION:
3031 return xstrdup ("{...}");
3032 /* break; */
3033
3034 case TYPE_CODE_ARRAY:
3035 {
e64d9b3d 3036 char *number;
b435e160 3037 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 3038 return (number);
8b93c638
JM
3039 }
3040 /* break; */
3041
3042 default:
3043 {
575bbeb6
KS
3044 if (var->value == NULL)
3045 {
3046 /* This can happen if we attempt to get the value of a struct
3047 member when the parent is an invalid pointer. This is an
3048 error condition, so we should tell the caller. */
3049 return NULL;
3050 }
3051 else
3052 {
25d5ea92
VP
3053 if (var->not_fetched && value_lazy (var->value))
3054 /* Frozen variable and no value yet. We don't
3055 implicitly fetch the value. MI response will
3056 use empty string for the value, which is OK. */
3057 return NULL;
3058
b2c2bd75 3059 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 3060 gdb_assert (!value_lazy (var->value));
de051565
MK
3061
3062 /* If the specified format is the current one,
3063 we can reuse print_value */
3064 if (format == var->format)
3065 return xstrdup (var->print_value);
3066 else
d452c4bc 3067 return value_get_print_value (var->value, format, var);
85265413 3068 }
e64d9b3d 3069 }
8b93c638
JM
3070 }
3071}
3072\f
3073
3074/* C++ */
3075
3076static int
fba45db2 3077cplus_number_of_children (struct varobj *var)
8b93c638
JM
3078{
3079 struct type *type;
3080 int children, dont_know;
3081
3082 dont_know = 1;
3083 children = 0;
3084
3085 if (!CPLUS_FAKE_CHILD (var))
3086 {
2024f65a 3087 type = get_value_type (var);
02142340 3088 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3089
3090 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 3091 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
3092 {
3093 int kids[3];
3094
3095 cplus_class_num_children (type, kids);
3096 if (kids[v_public] != 0)
3097 children++;
3098 if (kids[v_private] != 0)
3099 children++;
3100 if (kids[v_protected] != 0)
3101 children++;
3102
3103 /* Add any baseclasses */
3104 children += TYPE_N_BASECLASSES (type);
3105 dont_know = 0;
3106
3107 /* FIXME: save children in var */
3108 }
3109 }
3110 else
3111 {
3112 int kids[3];
3113
2024f65a 3114 type = get_value_type (var->parent);
02142340 3115 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
3116
3117 cplus_class_num_children (type, kids);
6e382aa3 3118 if (strcmp (var->name, "public") == 0)
8b93c638 3119 children = kids[v_public];
6e382aa3 3120 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
3121 children = kids[v_private];
3122 else
3123 children = kids[v_protected];
3124 dont_know = 0;
3125 }
3126
3127 if (dont_know)
3128 children = c_number_of_children (var);
3129
3130 return children;
3131}
3132
3133/* Compute # of public, private, and protected variables in this class.
3134 That means we need to descend into all baseclasses and find out
3135 how many are there, too. */
3136static void
1669605f 3137cplus_class_num_children (struct type *type, int children[3])
8b93c638 3138{
d48cc9dd
DJ
3139 int i, vptr_fieldno;
3140 struct type *basetype = NULL;
8b93c638
JM
3141
3142 children[v_public] = 0;
3143 children[v_private] = 0;
3144 children[v_protected] = 0;
3145
d48cc9dd 3146 vptr_fieldno = get_vptr_fieldno (type, &basetype);
8b93c638
JM
3147 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3148 {
d48cc9dd
DJ
3149 /* If we have a virtual table pointer, omit it. Even if virtual
3150 table pointers are not specifically marked in the debug info,
3151 they should be artificial. */
3152 if ((type == basetype && i == vptr_fieldno)
3153 || TYPE_FIELD_ARTIFICIAL (type, i))
8b93c638
JM
3154 continue;
3155
3156 if (TYPE_FIELD_PROTECTED (type, i))
3157 children[v_protected]++;
3158 else if (TYPE_FIELD_PRIVATE (type, i))
3159 children[v_private]++;
3160 else
3161 children[v_public]++;
3162 }
3163}
3164
3165static char *
fba45db2 3166cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
3167{
3168 return c_name_of_variable (parent);
3169}
3170
2024f65a
VP
3171enum accessibility { private_field, protected_field, public_field };
3172
3173/* Check if field INDEX of TYPE has the specified accessibility.
3174 Return 0 if so and 1 otherwise. */
3175static int
3176match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 3177{
2024f65a
VP
3178 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3179 return 1;
3180 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3181 return 1;
3182 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3183 && !TYPE_FIELD_PROTECTED (type, index))
3184 return 1;
3185 else
3186 return 0;
3187}
3188
3189static void
3190cplus_describe_child (struct varobj *parent, int index,
02142340
VP
3191 char **cname, struct value **cvalue, struct type **ctype,
3192 char **cfull_expression)
2024f65a 3193{
348144ba 3194 char *name = NULL;
2024f65a 3195 struct value *value;
8b93c638 3196 struct type *type;
02142340
VP
3197 int was_ptr;
3198 char *parent_expression = NULL;
8b93c638 3199
2024f65a
VP
3200 if (cname)
3201 *cname = NULL;
3202 if (cvalue)
3203 *cvalue = NULL;
3204 if (ctype)
3205 *ctype = NULL;
02142340
VP
3206 if (cfull_expression)
3207 *cfull_expression = NULL;
2024f65a 3208
8b93c638
JM
3209 if (CPLUS_FAKE_CHILD (parent))
3210 {
2024f65a
VP
3211 value = parent->parent->value;
3212 type = get_value_type (parent->parent);
02142340
VP
3213 if (cfull_expression)
3214 parent_expression = varobj_get_path_expr (parent->parent);
8b93c638
JM
3215 }
3216 else
2024f65a
VP
3217 {
3218 value = parent->value;
3219 type = get_value_type (parent);
02142340
VP
3220 if (cfull_expression)
3221 parent_expression = varobj_get_path_expr (parent);
2024f65a 3222 }
8b93c638 3223
02142340 3224 adjust_value_for_child_access (&value, &type, &was_ptr);
2024f65a
VP
3225
3226 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 3227 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 3228 {
02142340 3229 char *join = was_ptr ? "->" : ".";
8b93c638
JM
3230 if (CPLUS_FAKE_CHILD (parent))
3231 {
6e382aa3
JJ
3232 /* The fields of the class type are ordered as they
3233 appear in the class. We are given an index for a
3234 particular access control type ("public","protected",
3235 or "private"). We must skip over fields that don't
3236 have the access control we are looking for to properly
3237 find the indexed field. */
3238 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 3239 enum accessibility acc = public_field;
d48cc9dd
DJ
3240 int vptr_fieldno;
3241 struct type *basetype = NULL;
3242
3243 vptr_fieldno = get_vptr_fieldno (type, &basetype);
6e382aa3 3244 if (strcmp (parent->name, "private") == 0)
2024f65a 3245 acc = private_field;
6e382aa3 3246 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
3247 acc = protected_field;
3248
3249 while (index >= 0)
6e382aa3 3250 {
d48cc9dd
DJ
3251 if ((type == basetype && type_index == vptr_fieldno)
3252 || TYPE_FIELD_ARTIFICIAL (type, type_index))
2024f65a
VP
3253 ; /* ignore vptr */
3254 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
3255 --index;
3256 ++type_index;
6e382aa3 3257 }
2024f65a
VP
3258 --type_index;
3259
3260 if (cname)
3261 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3262
3263 if (cvalue && value)
3264 *cvalue = value_struct_element_index (value, type_index);
3265
3266 if (ctype)
3267 *ctype = TYPE_FIELD_TYPE (type, type_index);
02142340
VP
3268
3269 if (cfull_expression)
3270 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
3271 join,
3272 TYPE_FIELD_NAME (type, type_index));
2024f65a
VP
3273 }
3274 else if (index < TYPE_N_BASECLASSES (type))
3275 {
3276 /* This is a baseclass. */
3277 if (cname)
3278 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3279
3280 if (cvalue && value)
0cc7d26f 3281 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
6e382aa3 3282
2024f65a
VP
3283 if (ctype)
3284 {
3285 *ctype = TYPE_FIELD_TYPE (type, index);
3286 }
02142340
VP
3287
3288 if (cfull_expression)
3289 {
3290 char *ptr = was_ptr ? "*" : "";
3291 /* Cast the parent to the base' type. Note that in gdb,
3292 expression like
3293 (Base1)d
3294 will create an lvalue, for all appearences, so we don't
3295 need to use more fancy:
3296 *(Base1*)(&d)
3297 construct. */
3298 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
3299 ptr,
3300 TYPE_FIELD_NAME (type, index),
3301 ptr,
3302 parent_expression);
3303 }
8b93c638 3304 }
8b93c638
JM
3305 else
3306 {
348144ba 3307 char *access = NULL;
6e382aa3 3308 int children[3];
2024f65a 3309 cplus_class_num_children (type, children);
6e382aa3 3310
8b93c638 3311 /* Everything beyond the baseclasses can
6e382aa3
JJ
3312 only be "public", "private", or "protected"
3313
3314 The special "fake" children are always output by varobj in
3315 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
3316 index -= TYPE_N_BASECLASSES (type);
3317 switch (index)
3318 {
3319 case 0:
6e382aa3 3320 if (children[v_public] > 0)
2024f65a 3321 access = "public";
6e382aa3 3322 else if (children[v_private] > 0)
2024f65a 3323 access = "private";
6e382aa3 3324 else
2024f65a 3325 access = "protected";
6e382aa3 3326 break;
8b93c638 3327 case 1:
6e382aa3 3328 if (children[v_public] > 0)
8b93c638 3329 {
6e382aa3 3330 if (children[v_private] > 0)
2024f65a 3331 access = "private";
6e382aa3 3332 else
2024f65a 3333 access = "protected";
8b93c638 3334 }
6e382aa3 3335 else if (children[v_private] > 0)
2024f65a 3336 access = "protected";
6e382aa3 3337 break;
8b93c638 3338 case 2:
6e382aa3 3339 /* Must be protected */
2024f65a 3340 access = "protected";
6e382aa3 3341 break;
8b93c638
JM
3342 default:
3343 /* error! */
3344 break;
3345 }
348144ba
MS
3346
3347 gdb_assert (access);
2024f65a
VP
3348 if (cname)
3349 *cname = xstrdup (access);
8b93c638 3350
02142340 3351 /* Value and type and full expression are null here. */
2024f65a 3352 }
8b93c638 3353 }
8b93c638
JM
3354 else
3355 {
02142340 3356 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
3357 }
3358}
8b93c638 3359
2024f65a
VP
3360static char *
3361cplus_name_of_child (struct varobj *parent, int index)
3362{
3363 char *name = NULL;
02142340 3364 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3365 return name;
3366}
3367
02142340
VP
3368static char *
3369cplus_path_expr_of_child (struct varobj *child)
3370{
3371 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3372 &child->path_expr);
3373 return child->path_expr;
3374}
3375
30b28db1 3376static struct value *
fba45db2 3377cplus_value_of_root (struct varobj **var_handle)
8b93c638 3378{
73a93a32 3379 return c_value_of_root (var_handle);
8b93c638
JM
3380}
3381
30b28db1 3382static struct value *
fba45db2 3383cplus_value_of_child (struct varobj *parent, int index)
8b93c638 3384{
2024f65a 3385 struct value *value = NULL;
02142340 3386 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3387 return value;
3388}
3389
3390static struct type *
fba45db2 3391cplus_type_of_child (struct varobj *parent, int index)
8b93c638 3392{
2024f65a 3393 struct type *type = NULL;
02142340 3394 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3395 return type;
3396}
3397
8b93c638 3398static char *
de051565 3399cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638
JM
3400{
3401
3402 /* If we have one of our special types, don't print out
3403 any value. */
3404 if (CPLUS_FAKE_CHILD (var))
3405 return xstrdup ("");
3406
de051565 3407 return c_value_of_variable (var, format);
8b93c638
JM
3408}
3409\f
3410/* Java */
3411
3412static int
fba45db2 3413java_number_of_children (struct varobj *var)
8b93c638
JM
3414{
3415 return cplus_number_of_children (var);
3416}
3417
3418static char *
fba45db2 3419java_name_of_variable (struct varobj *parent)
8b93c638
JM
3420{
3421 char *p, *name;
3422
3423 name = cplus_name_of_variable (parent);
3424 /* If the name has "-" in it, it is because we
3425 needed to escape periods in the name... */
3426 p = name;
3427
3428 while (*p != '\000')
3429 {
3430 if (*p == '-')
3431 *p = '.';
3432 p++;
3433 }
3434
3435 return name;
3436}
3437
3438static char *
fba45db2 3439java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
3440{
3441 char *name, *p;
3442
3443 name = cplus_name_of_child (parent, index);
3444 /* Escape any periods in the name... */
3445 p = name;
3446
3447 while (*p != '\000')
3448 {
3449 if (*p == '.')
3450 *p = '-';
3451 p++;
3452 }
3453
3454 return name;
3455}
3456
02142340
VP
3457static char *
3458java_path_expr_of_child (struct varobj *child)
3459{
3460 return NULL;
3461}
3462
30b28db1 3463static struct value *
fba45db2 3464java_value_of_root (struct varobj **var_handle)
8b93c638 3465{
73a93a32 3466 return cplus_value_of_root (var_handle);
8b93c638
JM
3467}
3468
30b28db1 3469static struct value *
fba45db2 3470java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
3471{
3472 return cplus_value_of_child (parent, index);
3473}
3474
3475static struct type *
fba45db2 3476java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
3477{
3478 return cplus_type_of_child (parent, index);
3479}
3480
8b93c638 3481static char *
de051565 3482java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3483{
de051565 3484 return cplus_value_of_variable (var, format);
8b93c638 3485}
54333c3b
JK
3486
3487/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
3488 with an arbitrary caller supplied DATA pointer. */
3489
3490void
3491all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
3492{
3493 struct varobj_root *var_root, *var_root_next;
3494
3495 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
3496
3497 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
3498 {
3499 var_root_next = var_root->next;
3500
3501 (*func) (var_root->rootvar, data);
3502 }
3503}
8b93c638
JM
3504\f
3505extern void _initialize_varobj (void);
3506void
3507_initialize_varobj (void)
3508{
3509 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
3510
3511 varobj_table = xmalloc (sizeof_table);
3512 memset (varobj_table, 0, sizeof_table);
3513
85c07804
AC
3514 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3515 &varobjdebug, _("\
3516Set varobj debugging."), _("\
3517Show varobj debugging."), _("\
3518When non-zero, varobj debugging is enabled."),
3519 NULL,
920d2a44 3520 show_varobjdebug,
85c07804 3521 &setlist, &showlist);
8b93c638 3522}
8756216b 3523
54333c3b
JK
3524/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
3525 defined on globals. It is a helper for varobj_invalidate. */
2dbd25e5 3526
54333c3b
JK
3527static void
3528varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 3529{
54333c3b
JK
3530 /* Floating varobjs are reparsed on each stop, so we don't care if the
3531 presently parsed expression refers to something that's gone. */
3532 if (var->root->floating)
3533 return;
8756216b 3534
54333c3b
JK
3535 /* global var must be re-evaluated. */
3536 if (var->root->valid_block == NULL)
2dbd25e5 3537 {
54333c3b 3538 struct varobj *tmp_var;
2dbd25e5 3539
54333c3b
JK
3540 /* Try to create a varobj with same expression. If we succeed
3541 replace the old varobj, otherwise invalidate it. */
3542 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
3543 USE_CURRENT_FRAME);
3544 if (tmp_var != NULL)
3545 {
3546 tmp_var->obj_name = xstrdup (var->obj_name);
3547 varobj_delete (var, NULL, 0);
3548 install_variable (tmp_var);
2dbd25e5 3549 }
54333c3b
JK
3550 else
3551 var->root->is_valid = 0;
2dbd25e5 3552 }
54333c3b
JK
3553 else /* locals must be invalidated. */
3554 var->root->is_valid = 0;
3555}
3556
3557/* Invalidate the varobjs that are tied to locals and re-create the ones that
3558 are defined on globals.
3559 Invalidated varobjs will be always printed in_scope="invalid". */
3560
3561void
3562varobj_invalidate (void)
3563{
3564 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 3565}
This page took 1.259825 seconds and 4 git commands to generate.