gdb: New API for tracking innermost block
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
e2882c85 3 Copyright (C) 1999-2018 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
19#include "value.h"
20#include "expression.h"
21#include "frame.h"
8b93c638 22#include "language.h"
8b93c638 23#include "gdbcmd.h"
d2353924 24#include "block.h"
79a45b7d 25#include "valprint.h"
0cc7d26f 26#include "gdb_regex.h"
8b93c638
JM
27
28#include "varobj.h"
28335dcc 29#include "vec.h"
6208b47d
VP
30#include "gdbthread.h"
31#include "inferior.h"
827f100c 32#include "varobj-iter.h"
396af9a1 33#include "parser-defs.h"
8b93c638 34
b6313243
TT
35#if HAVE_PYTHON
36#include "python/python.h"
37#include "python/python-internal.h"
bde7b3e3 38#include "python/py-ref.h"
50389644
PA
39#else
40typedef int PyObject;
b6313243
TT
41#endif
42
8b93c638
JM
43/* Non-zero if we want to see trace of varobj level stuff. */
44
ccce17b0 45unsigned int varobjdebug = 0;
920d2a44
AC
46static void
47show_varobjdebug (struct ui_file *file, int from_tty,
48 struct cmd_list_element *c, const char *value)
49{
50 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
51}
8b93c638 52
581e13c1 53/* String representations of gdb's format codes. */
a121b7c1 54const char *varobj_format_string[] =
1c35a88f 55 { "natural", "binary", "decimal", "hexadecimal", "octal", "zero-hexadecimal" };
8b93c638 56
0cc7d26f 57/* True if we want to allow Python-based pretty-printing. */
4c37490d 58static bool pretty_printing = false;
0cc7d26f
TT
59
60void
61varobj_enable_pretty_printing (void)
62{
4c37490d 63 pretty_printing = true;
0cc7d26f
TT
64}
65
8b93c638
JM
66/* Data structures */
67
68/* Every root variable has one of these structures saved in its
4d01a485 69 varobj. */
8b93c638 70struct varobj_root
72330bd6 71{
4d01a485
PA
72 /* The expression for this parent. */
73 expression_up exp;
8b93c638 74
581e13c1 75 /* Block for which this expression is valid. */
9e5b9d2b 76 const struct block *valid_block = NULL;
8b93c638 77
44a67aa7
VP
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
9e5b9d2b 80 struct frame_id frame = null_frame_id;
8b93c638 81
5d5658a1 82 /* The global thread ID that this varobj_root belongs to. This field
581e13c1 83 is only valid if valid_block is not NULL.
c5b48eac
VP
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
9e5b9d2b 87 int thread_id = 0;
c5b48eac 88
4c37490d 89 /* If true, the -var-update always recomputes the value in the
a5defcdc 90 current thread and frame. Otherwise, variable object is
581e13c1 91 always updated in the specific scope/thread/frame. */
4c37490d 92 bool floating = false;
73a93a32 93
4c37490d 94 /* Flag that indicates validity: set to false when this varobj_root refers
8756216b 95 to symbols that do not exist anymore. */
4c37490d 96 bool is_valid = true;
8756216b 97
99ad9427
YQ
98 /* Language-related operations for this variable and its
99 children. */
9e5b9d2b 100 const struct lang_varobj_ops *lang_ops = NULL;
8b93c638 101
581e13c1 102 /* The varobj for this root node. */
9e5b9d2b 103 struct varobj *rootvar = NULL;
8b93c638 104
72330bd6 105 /* Next root variable */
9e5b9d2b 106 struct varobj_root *next = NULL;
72330bd6 107};
8b93c638 108
bb5ce47a 109/* Dynamic part of varobj. */
8b93c638 110
bb5ce47a
YQ
111struct varobj_dynamic
112{
b6313243
TT
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
116 can avoid that. */
bd046f64 117 bool children_requested = false;
b6313243 118
0cc7d26f
TT
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
9e5b9d2b 122 PyObject *constructor = NULL;
0cc7d26f 123
b6313243
TT
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
9e5b9d2b 126 PyObject *pretty_printer = NULL;
0cc7d26f
TT
127
128 /* The iterator returned by the printer's 'children' method, or NULL
129 if not available. */
9e5b9d2b 130 struct varobj_iter *child_iter = NULL;
0cc7d26f
TT
131
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
9e5b9d2b 137 varobj_item *saved_item = NULL;
72330bd6 138};
8b93c638 139
8b93c638
JM
140/* A list of varobjs */
141
142struct vlist
72330bd6
AC
143{
144 struct varobj *var;
145 struct vlist *next;
146};
8b93c638
JM
147
148/* Private function prototypes */
149
581e13c1 150/* Helper functions for the above subcommands. */
8b93c638 151
4c37490d 152static int delete_variable (struct varobj *, bool);
8b93c638 153
4c37490d 154static void delete_variable_1 (int *, struct varobj *, bool, bool);
8b93c638 155
4c37490d 156static bool install_variable (struct varobj *);
8b93c638 157
a14ed312 158static void uninstall_variable (struct varobj *);
8b93c638 159
2f408ecb 160static struct varobj *create_child (struct varobj *, int, std::string &);
8b93c638 161
b6313243 162static struct varobj *
5a2e0d6e
YQ
163create_child_with_value (struct varobj *parent, int index,
164 struct varobj_item *item);
b6313243 165
8b93c638
JM
166/* Utility routines */
167
a14ed312 168static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 169
4c37490d
SM
170static bool update_type_if_necessary (struct varobj *var,
171 struct value *new_value);
8264ba82 172
4c37490d
SM
173static bool install_new_value (struct varobj *var, struct value *value,
174 bool initial);
acd65feb 175
581e13c1 176/* Language-specific routines. */
8b93c638 177
b09e2c59 178static int number_of_children (const struct varobj *);
8b93c638 179
2f408ecb 180static std::string name_of_variable (const struct varobj *);
8b93c638 181
2f408ecb 182static std::string name_of_child (struct varobj *, int);
8b93c638 183
4c37490d 184static struct value *value_of_root (struct varobj **var_handle, bool *);
8b93c638 185
c1cc6152 186static struct value *value_of_child (const struct varobj *parent, int index);
8b93c638 187
2f408ecb
PA
188static std::string my_value_of_variable (struct varobj *var,
189 enum varobj_display_formats format);
8b93c638 190
4c37490d 191static bool is_root_p (const struct varobj *var);
8b93c638 192
9a1edae6 193static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 194 struct varobj_item *item);
b6313243 195
8b93c638
JM
196/* Private data */
197
581e13c1 198/* Mappings of varobj_display_formats enums to gdb's format codes. */
1c35a88f 199static int format_code[] = { 0, 't', 'd', 'x', 'o', 'z' };
8b93c638 200
581e13c1 201/* Header of the list of root variable objects. */
8b93c638 202static struct varobj_root *rootlist;
8b93c638 203
581e13c1 204/* Prime number indicating the number of buckets in the hash table. */
5fa13070 205/* A prime large enough to avoid too many collisions. */
8b93c638
JM
206#define VAROBJ_TABLE_SIZE 227
207
581e13c1 208/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
209static struct vlist **varobj_table;
210
8b93c638
JM
211\f
212
213/* API Implementation */
4c37490d 214static bool
b09e2c59 215is_root_p (const struct varobj *var)
b2c2bd75
VP
216{
217 return (var->root->rootvar == var);
218}
8b93c638 219
d452c4bc 220#ifdef HAVE_PYTHON
6cd67bea
TT
221
222/* See python-internal.h. */
223gdbpy_enter_varobj::gdbpy_enter_varobj (const struct varobj *var)
224: gdbpy_enter (var->root->exp->gdbarch, var->root->exp->language_defn)
225{
226}
227
d452c4bc
UW
228#endif
229
7d8547c9
AC
230/* Return the full FRAME which corresponds to the given CORE_ADDR
231 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
232
233static struct frame_info *
234find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
235{
236 struct frame_info *frame = NULL;
237
238 if (frame_addr == (CORE_ADDR) 0)
239 return NULL;
240
9d49bdc2
PA
241 for (frame = get_current_frame ();
242 frame != NULL;
243 frame = get_prev_frame (frame))
7d8547c9 244 {
1fac167a
UW
245 /* The CORE_ADDR we get as argument was parsed from a string GDB
246 output as $fp. This output got truncated to gdbarch_addr_bit.
247 Truncate the frame base address in the same manner before
248 comparing it against our argument. */
249 CORE_ADDR frame_base = get_frame_base_address (frame);
250 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 251
1fac167a
UW
252 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
253 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
254
255 if (frame_base == frame_addr)
7d8547c9
AC
256 return frame;
257 }
9d49bdc2
PA
258
259 return NULL;
7d8547c9
AC
260}
261
5fa13070
SM
262/* Creates a varobj (not its children). */
263
8b93c638 264struct varobj *
2f408ecb
PA
265varobj_create (const char *objname,
266 const char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638 267{
581e13c1 268 /* Fill out a varobj structure for the (root) variable being constructed. */
9e5b9d2b 269 std::unique_ptr<varobj> var (new varobj (new varobj_root));
8b93c638
JM
270
271 if (expression != NULL)
272 {
e4195b40 273 struct frame_info *fi;
35633fef 274 struct frame_id old_id = null_frame_id;
3977b71f 275 const struct block *block;
bbc13ae3 276 const char *p;
e55dccf0 277 struct value *value = NULL;
1bb9788d 278 CORE_ADDR pc;
8b93c638 279
9d49bdc2
PA
280 /* Parse and evaluate the expression, filling in as much of the
281 variable's data as possible. */
282
283 if (has_stack_frames ())
284 {
581e13c1 285 /* Allow creator to specify context of variable. */
9d49bdc2
PA
286 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
287 fi = get_selected_frame (NULL);
288 else
289 /* FIXME: cagney/2002-11-23: This code should be doing a
290 lookup using the frame ID and not just the frame's
291 ``address''. This, of course, means an interface
292 change. However, with out that interface change ISAs,
293 such as the ia64 with its two stacks, won't work.
294 Similar goes for the case where there is a frameless
295 function. */
296 fi = find_frame_addr_in_frame_chain (frame);
297 }
8b93c638 298 else
9d49bdc2 299 fi = NULL;
8b93c638 300
581e13c1 301 /* frame = -2 means always use selected frame. */
73a93a32 302 if (type == USE_SELECTED_FRAME)
4c37490d 303 var->root->floating = true;
73a93a32 304
1bb9788d 305 pc = 0;
8b93c638
JM
306 block = NULL;
307 if (fi != NULL)
1bb9788d
TT
308 {
309 block = get_frame_block (fi, 0);
310 pc = get_frame_pc (fi);
311 }
8b93c638
JM
312
313 p = expression;
aee1fcdf 314 innermost_block.reset ();
73a93a32 315 /* Wrap the call to parse expression, so we can
581e13c1 316 return a sensible error. */
492d29ea 317 TRY
8e7b59a5 318 {
1bb9788d 319 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
320 }
321
492d29ea 322 CATCH (except, RETURN_MASK_ERROR)
73a93a32
JI
323 {
324 return NULL;
325 }
492d29ea 326 END_CATCH
8b93c638 327
581e13c1 328 /* Don't allow variables to be created for types. */
608b4967
TT
329 if (var->root->exp->elts[0].opcode == OP_TYPE
330 || var->root->exp->elts[0].opcode == OP_TYPEOF
331 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638 332 {
bc8332bb
AC
333 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
334 " as an expression.\n");
8b93c638
JM
335 return NULL;
336 }
337
9e5b9d2b 338 var->format = variable_default_display (var.get ());
aee1fcdf 339 var->root->valid_block = innermost_block.block ();
2f408ecb 340 var->name = expression;
02142340 341 /* For a root var, the name and the expr are the same. */
2f408ecb 342 var->path_expr = expression;
8b93c638
JM
343
344 /* When the frame is different from the current frame,
345 we must select the appropriate frame before parsing
346 the expression, otherwise the value will not be current.
581e13c1 347 Since select_frame is so benign, just call it for all cases. */
aee1fcdf 348 if (var->root->valid_block)
8b93c638 349 {
4e22772d
JK
350 /* User could specify explicit FRAME-ADDR which was not found but
351 EXPRESSION is frame specific and we would not be able to evaluate
352 it correctly next time. With VALID_BLOCK set we must also set
353 FRAME and THREAD_ID. */
354 if (fi == NULL)
355 error (_("Failed to find the specified frame"));
356
7a424e99 357 var->root->frame = get_frame_id (fi);
5d5658a1 358 var->root->thread_id = ptid_to_global_thread_id (inferior_ptid);
35633fef 359 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 360 select_frame (fi);
8b93c638
JM
361 }
362
340a7723 363 /* We definitely need to catch errors here.
8b93c638 364 If evaluate_expression succeeds we got the value we wanted.
581e13c1 365 But if it fails, we still go on with a call to evaluate_type(). */
492d29ea 366 TRY
8e7b59a5 367 {
4d01a485 368 value = evaluate_expression (var->root->exp.get ());
8e7b59a5 369 }
492d29ea 370 CATCH (except, RETURN_MASK_ERROR)
e55dccf0
VP
371 {
372 /* Error getting the value. Try to at least get the
373 right type. */
4d01a485 374 struct value *type_only_value = evaluate_type (var->root->exp.get ());
a109c7c1 375
e55dccf0
VP
376 var->type = value_type (type_only_value);
377 }
492d29ea 378 END_CATCH
8264ba82 379
492d29ea
PA
380 if (value != NULL)
381 {
382 int real_type_found = 0;
383
384 var->type = value_actual_type (value, 0, &real_type_found);
385 if (real_type_found)
386 value = value_cast (var->type, value);
387 }
acd65feb 388
8b93c638 389 /* Set language info */
ca20d462 390 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 391
9e5b9d2b 392 install_new_value (var.get (), value, 1 /* Initial assignment */);
d32cafc7 393
581e13c1 394 /* Set ourselves as our root. */
9e5b9d2b 395 var->root->rootvar = var.get ();
8b93c638 396
581e13c1 397 /* Reset the selected frame. */
35633fef
JK
398 if (frame_id_p (old_id))
399 select_frame (frame_find_by_id (old_id));
8b93c638
JM
400 }
401
73a93a32 402 /* If the variable object name is null, that means this
581e13c1 403 is a temporary variable, so don't install it. */
73a93a32
JI
404
405 if ((var != NULL) && (objname != NULL))
8b93c638 406 {
2f408ecb 407 var->obj_name = objname;
8b93c638
JM
408
409 /* If a varobj name is duplicated, the install will fail so
581e13c1 410 we must cleanup. */
9e5b9d2b
SM
411 if (!install_variable (var.get ()))
412 return NULL;
8b93c638
JM
413 }
414
9e5b9d2b 415 return var.release ();
8b93c638
JM
416}
417
581e13c1 418/* Generates an unique name that can be used for a varobj. */
8b93c638 419
2d6960b4 420std::string
8b93c638
JM
421varobj_gen_name (void)
422{
423 static int id = 0;
8b93c638 424
581e13c1 425 /* Generate a name for this object. */
8b93c638 426 id++;
2d6960b4 427 return string_printf ("var%d", id);
8b93c638
JM
428}
429
61d8f275
JK
430/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
431 error if OBJNAME cannot be found. */
8b93c638
JM
432
433struct varobj *
2f408ecb 434varobj_get_handle (const char *objname)
8b93c638
JM
435{
436 struct vlist *cv;
437 const char *chp;
438 unsigned int index = 0;
439 unsigned int i = 1;
440
441 for (chp = objname; *chp; chp++)
442 {
443 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
444 }
445
446 cv = *(varobj_table + index);
2f408ecb 447 while (cv != NULL && cv->var->obj_name != objname)
8b93c638
JM
448 cv = cv->next;
449
450 if (cv == NULL)
8a3fe4f8 451 error (_("Variable object not found"));
8b93c638
JM
452
453 return cv->var;
454}
455
581e13c1 456/* Given the handle, return the name of the object. */
8b93c638 457
2f408ecb 458const char *
b09e2c59 459varobj_get_objname (const struct varobj *var)
8b93c638 460{
2f408ecb 461 return var->obj_name.c_str ();
8b93c638
JM
462}
463
2f408ecb
PA
464/* Given the handle, return the expression represented by the
465 object. */
8b93c638 466
2f408ecb 467std::string
b09e2c59 468varobj_get_expression (const struct varobj *var)
8b93c638
JM
469{
470 return name_of_variable (var);
471}
472
30914ca8 473/* See varobj.h. */
8b93c638
JM
474
475int
4c37490d 476varobj_delete (struct varobj *var, bool only_children)
8b93c638 477{
30914ca8 478 return delete_variable (var, only_children);
8b93c638
JM
479}
480
d8b65138
JK
481#if HAVE_PYTHON
482
b6313243
TT
483/* Convenience function for varobj_set_visualizer. Instantiate a
484 pretty-printer for a given value. */
485static PyObject *
486instantiate_pretty_printer (PyObject *constructor, struct value *value)
487{
b6313243
TT
488 PyObject *val_obj = NULL;
489 PyObject *printer;
b6313243 490
b6313243 491 val_obj = value_to_value_object (value);
b6313243
TT
492 if (! val_obj)
493 return NULL;
494
495 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
496 Py_DECREF (val_obj);
497 return printer;
b6313243
TT
498}
499
d8b65138
JK
500#endif
501
581e13c1 502/* Set/Get variable object display format. */
8b93c638
JM
503
504enum varobj_display_formats
505varobj_set_display_format (struct varobj *var,
506 enum varobj_display_formats format)
507{
508 switch (format)
509 {
510 case FORMAT_NATURAL:
511 case FORMAT_BINARY:
512 case FORMAT_DECIMAL:
513 case FORMAT_HEXADECIMAL:
514 case FORMAT_OCTAL:
1c35a88f 515 case FORMAT_ZHEXADECIMAL:
8b93c638
JM
516 var->format = format;
517 break;
518
519 default:
520 var->format = variable_default_display (var);
521 }
522
ae7d22a6
VP
523 if (varobj_value_is_changeable_p (var)
524 && var->value && !value_lazy (var->value))
525 {
99ad9427
YQ
526 var->print_value = varobj_value_get_print_value (var->value,
527 var->format, var);
ae7d22a6
VP
528 }
529
8b93c638
JM
530 return var->format;
531}
532
533enum varobj_display_formats
b09e2c59 534varobj_get_display_format (const struct varobj *var)
8b93c638
JM
535{
536 return var->format;
537}
538
9b972014 539gdb::unique_xmalloc_ptr<char>
b09e2c59 540varobj_get_display_hint (const struct varobj *var)
b6313243 541{
9b972014 542 gdb::unique_xmalloc_ptr<char> result;
b6313243
TT
543
544#if HAVE_PYTHON
0646da15
TT
545 if (!gdb_python_initialized)
546 return NULL;
547
bde7b3e3 548 gdbpy_enter_varobj enter_py (var);
d452c4bc 549
bb5ce47a
YQ
550 if (var->dynamic->pretty_printer != NULL)
551 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
b6313243
TT
552#endif
553
554 return result;
555}
556
0cc7d26f
TT
557/* Return true if the varobj has items after TO, false otherwise. */
558
4c37490d 559bool
b09e2c59 560varobj_has_more (const struct varobj *var, int to)
0cc7d26f 561{
ddf0ea08 562 if (var->children.size () > to)
4c37490d 563 return true;
ddf0ea08
SM
564
565 return ((to == -1 || var->children.size () == to)
bb5ce47a 566 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
567}
568
c5b48eac
VP
569/* If the variable object is bound to a specific thread, that
570 is its evaluation can always be done in context of a frame
571 inside that thread, returns GDB id of the thread -- which
581e13c1 572 is always positive. Otherwise, returns -1. */
c5b48eac 573int
b09e2c59 574varobj_get_thread_id (const struct varobj *var)
c5b48eac
VP
575{
576 if (var->root->valid_block && var->root->thread_id > 0)
577 return var->root->thread_id;
578 else
579 return -1;
580}
581
25d5ea92 582void
4c37490d 583varobj_set_frozen (struct varobj *var, bool frozen)
25d5ea92
VP
584{
585 /* When a variable is unfrozen, we don't fetch its value.
586 The 'not_fetched' flag remains set, so next -var-update
587 won't complain.
588
589 We don't fetch the value, because for structures the client
590 should do -var-update anyway. It would be bad to have different
591 client-size logic for structure and other types. */
592 var->frozen = frozen;
593}
594
4c37490d 595bool
b09e2c59 596varobj_get_frozen (const struct varobj *var)
25d5ea92
VP
597{
598 return var->frozen;
599}
600
0cc7d26f
TT
601/* A helper function that restricts a range to what is actually
602 available in a VEC. This follows the usual rules for the meaning
603 of FROM and TO -- if either is negative, the entire range is
604 used. */
605
99ad9427 606void
ddf0ea08
SM
607varobj_restrict_range (const std::vector<varobj *> &children,
608 int *from, int *to)
0cc7d26f 609{
ddf0ea08
SM
610 int len = children.size ();
611
0cc7d26f
TT
612 if (*from < 0 || *to < 0)
613 {
614 *from = 0;
ddf0ea08 615 *to = len;
0cc7d26f
TT
616 }
617 else
618 {
ddf0ea08
SM
619 if (*from > len)
620 *from = len;
621 if (*to > len)
622 *to = len;
0cc7d26f
TT
623 if (*from > *to)
624 *from = *to;
625 }
626}
627
628/* A helper for update_dynamic_varobj_children that installs a new
629 child when needed. */
630
631static void
632install_dynamic_child (struct varobj *var,
0604393c
SM
633 std::vector<varobj *> *changed,
634 std::vector<varobj *> *type_changed,
635 std::vector<varobj *> *newobj,
636 std::vector<varobj *> *unchanged,
4c37490d 637 bool *cchanged,
0cc7d26f 638 int index,
5a2e0d6e 639 struct varobj_item *item)
0cc7d26f 640{
ddf0ea08 641 if (var->children.size () < index + 1)
0cc7d26f
TT
642 {
643 /* There's no child yet. */
5a2e0d6e 644 struct varobj *child = varobj_add_child (var, item);
a109c7c1 645
0604393c 646 if (newobj != NULL)
0cc7d26f 647 {
0604393c 648 newobj->push_back (child);
4c37490d 649 *cchanged = true;
0cc7d26f
TT
650 }
651 }
bf8793bb 652 else
0cc7d26f 653 {
ddf0ea08 654 varobj *existing = var->children[index];
4c37490d 655 bool type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 656
8264ba82
AG
657 if (type_updated)
658 {
0604393c
SM
659 if (type_changed != NULL)
660 type_changed->push_back (existing);
8264ba82 661 }
5a2e0d6e 662 if (install_new_value (existing, item->value, 0))
0cc7d26f 663 {
0604393c
SM
664 if (!type_updated && changed != NULL)
665 changed->push_back (existing);
0cc7d26f 666 }
0604393c
SM
667 else if (!type_updated && unchanged != NULL)
668 unchanged->push_back (existing);
0cc7d26f
TT
669 }
670}
671
576ea091
YQ
672#if HAVE_PYTHON
673
4c37490d 674static bool
b09e2c59 675dynamic_varobj_has_child_method (const struct varobj *var)
0cc7d26f 676{
bb5ce47a 677 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f 678
0646da15 679 if (!gdb_python_initialized)
4c37490d 680 return false;
0646da15 681
bde7b3e3
TT
682 gdbpy_enter_varobj enter_py (var);
683 return PyObject_HasAttr (printer, gdbpy_children_cst);
0cc7d26f 684}
576ea091 685#endif
0cc7d26f 686
e5250216
YQ
687/* A factory for creating dynamic varobj's iterators. Returns an
688 iterator object suitable for iterating over VAR's children. */
689
690static struct varobj_iter *
691varobj_get_iterator (struct varobj *var)
692{
576ea091 693#if HAVE_PYTHON
e5250216
YQ
694 if (var->dynamic->pretty_printer)
695 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 696#endif
e5250216
YQ
697
698 gdb_assert_not_reached (_("\
699requested an iterator from a non-dynamic varobj"));
700}
701
827f100c
YQ
702/* Release and clear VAR's saved item, if any. */
703
704static void
705varobj_clear_saved_item (struct varobj_dynamic *var)
706{
707 if (var->saved_item != NULL)
708 {
709 value_free (var->saved_item->value);
0a8beaba 710 delete var->saved_item;
827f100c
YQ
711 var->saved_item = NULL;
712 }
713}
0cc7d26f 714
4c37490d 715static bool
b6313243 716update_dynamic_varobj_children (struct varobj *var,
0604393c
SM
717 std::vector<varobj *> *changed,
718 std::vector<varobj *> *type_changed,
719 std::vector<varobj *> *newobj,
720 std::vector<varobj *> *unchanged,
4c37490d
SM
721 bool *cchanged,
722 bool update_children,
0cc7d26f
TT
723 int from,
724 int to)
b6313243 725{
b6313243 726 int i;
b6313243 727
4c37490d 728 *cchanged = false;
b6313243 729
bb5ce47a 730 if (update_children || var->dynamic->child_iter == NULL)
b6313243 731 {
e5250216
YQ
732 varobj_iter_delete (var->dynamic->child_iter);
733 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 734
827f100c 735 varobj_clear_saved_item (var->dynamic);
b6313243 736
e5250216 737 i = 0;
b6313243 738
bb5ce47a 739 if (var->dynamic->child_iter == NULL)
4c37490d 740 return false;
b6313243 741 }
0cc7d26f 742 else
ddf0ea08 743 i = var->children.size ();
b6313243 744
0cc7d26f
TT
745 /* We ask for one extra child, so that MI can report whether there
746 are more children. */
747 for (; to < 0 || i < to + 1; ++i)
b6313243 748 {
827f100c 749 varobj_item *item;
b6313243 750
0cc7d26f 751 /* See if there was a leftover from last time. */
827f100c 752 if (var->dynamic->saved_item != NULL)
0cc7d26f 753 {
bb5ce47a
YQ
754 item = var->dynamic->saved_item;
755 var->dynamic->saved_item = NULL;
0cc7d26f
TT
756 }
757 else
a4c8e806 758 {
e5250216 759 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
760 /* Release vitem->value so its lifetime is not bound to the
761 execution of a command. */
762 if (item != NULL && item->value != NULL)
763 release_value_or_incref (item->value);
a4c8e806 764 }
b6313243 765
e5250216
YQ
766 if (item == NULL)
767 {
768 /* Iteration is done. Remove iterator from VAR. */
769 varobj_iter_delete (var->dynamic->child_iter);
770 var->dynamic->child_iter = NULL;
771 break;
772 }
0cc7d26f
TT
773 /* We don't want to push the extra child on any report list. */
774 if (to < 0 || i < to)
b6313243 775 {
4c37490d 776 bool can_mention = from < 0 || i >= from;
0cc7d26f 777
0cc7d26f 778 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 779 can_mention ? type_changed : NULL,
fe978cb0 780 can_mention ? newobj : NULL,
0cc7d26f 781 can_mention ? unchanged : NULL,
5e5ac9a5 782 can_mention ? cchanged : NULL, i,
827f100c
YQ
783 item);
784
0a8beaba 785 delete item;
b6313243 786 }
0cc7d26f 787 else
b6313243 788 {
bb5ce47a 789 var->dynamic->saved_item = item;
b6313243 790
0cc7d26f
TT
791 /* We want to truncate the child list just before this
792 element. */
793 break;
794 }
b6313243
TT
795 }
796
ddf0ea08 797 if (i < var->children.size ())
b6313243 798 {
4c37490d 799 *cchanged = true;
ddf0ea08
SM
800 for (int j = i; j < var->children.size (); ++j)
801 varobj_delete (var->children[j], 0);
802
803 var->children.resize (i);
b6313243 804 }
0cc7d26f
TT
805
806 /* If there are fewer children than requested, note that the list of
807 children changed. */
ddf0ea08 808 if (to >= 0 && var->children.size () < to)
4c37490d 809 *cchanged = true;
0cc7d26f 810
ddf0ea08 811 var->num_children = var->children.size ();
b6313243 812
4c37490d 813 return true;
b6313243 814}
25d5ea92 815
8b93c638
JM
816int
817varobj_get_num_children (struct varobj *var)
818{
819 if (var->num_children == -1)
b6313243 820 {
31f628ae 821 if (varobj_is_dynamic_p (var))
0cc7d26f 822 {
4c37490d 823 bool dummy;
0cc7d26f
TT
824
825 /* If we have a dynamic varobj, don't report -1 children.
826 So, try to fetch some children first. */
8264ba82 827 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
4c37490d 828 false, 0, 0);
0cc7d26f
TT
829 }
830 else
b6313243
TT
831 var->num_children = number_of_children (var);
832 }
8b93c638 833
0cc7d26f 834 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
835}
836
837/* Creates a list of the immediate children of a variable object;
581e13c1 838 the return code is the number of such children or -1 on error. */
8b93c638 839
ddf0ea08 840const std::vector<varobj *> &
0cc7d26f 841varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 842{
bd046f64 843 var->dynamic->children_requested = true;
b6313243 844
31f628ae 845 if (varobj_is_dynamic_p (var))
0cc7d26f 846 {
4c37490d
SM
847 bool children_changed;
848
b6313243
TT
849 /* This, in theory, can result in the number of children changing without
850 frontend noticing. But well, calling -var-list-children on the same
851 varobj twice is not something a sane frontend would do. */
8264ba82 852 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
4c37490d 853 &children_changed, false, 0, *to);
99ad9427 854 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
855 return var->children;
856 }
8b93c638 857
8b93c638
JM
858 if (var->num_children == -1)
859 var->num_children = number_of_children (var);
860
74a44383
DJ
861 /* If that failed, give up. */
862 if (var->num_children == -1)
d56d46f5 863 return var->children;
74a44383 864
28335dcc
VP
865 /* If we're called when the list of children is not yet initialized,
866 allocate enough elements in it. */
ddf0ea08
SM
867 while (var->children.size () < var->num_children)
868 var->children.push_back (NULL);
28335dcc 869
ddf0ea08 870 for (int i = 0; i < var->num_children; i++)
8b93c638 871 {
ddf0ea08 872 if (var->children[i] == NULL)
28335dcc
VP
873 {
874 /* Either it's the first call to varobj_list_children for
875 this variable object, and the child was never created,
876 or it was explicitly deleted by the client. */
2f408ecb 877 std::string name = name_of_child (var, i);
ddf0ea08 878 var->children[i] = create_child (var, i, name);
28335dcc 879 }
8b93c638
JM
880 }
881
99ad9427 882 varobj_restrict_range (var->children, from, to);
d56d46f5 883 return var->children;
8b93c638
JM
884}
885
b6313243 886static struct varobj *
5a2e0d6e 887varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 888{
ddf0ea08
SM
889 varobj *v = create_child_with_value (var, var->children.size (), item);
890
891 var->children.push_back (v);
a109c7c1 892
b6313243
TT
893 return v;
894}
895
8b93c638 896/* Obtain the type of an object Variable as a string similar to the one gdb
afa269ae
SM
897 prints on the console. The caller is responsible for freeing the string.
898 */
8b93c638 899
2f408ecb 900std::string
8b93c638
JM
901varobj_get_type (struct varobj *var)
902{
8ab91b96 903 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
904 NULL, too.)
905 Do not return a type for invalid variables as well. */
906 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
2f408ecb 907 return std::string ();
8b93c638 908
1a4300e9 909 return type_to_string (var->type);
8b93c638
JM
910}
911
1ecb4ee0
DJ
912/* Obtain the type of an object variable. */
913
914struct type *
b09e2c59 915varobj_get_gdb_type (const struct varobj *var)
1ecb4ee0
DJ
916{
917 return var->type;
918}
919
85254831
KS
920/* Is VAR a path expression parent, i.e., can it be used to construct
921 a valid path expression? */
922
4c37490d 923static bool
b09e2c59 924is_path_expr_parent (const struct varobj *var)
85254831 925{
9a9a7608
AB
926 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
927 return var->root->lang_ops->is_path_expr_parent (var);
928}
85254831 929
9a9a7608
AB
930/* Is VAR a path expression parent, i.e., can it be used to construct
931 a valid path expression? By default we assume any VAR can be a path
932 parent. */
85254831 933
4c37490d 934bool
b09e2c59 935varobj_default_is_path_expr_parent (const struct varobj *var)
9a9a7608 936{
4c37490d 937 return true;
85254831
KS
938}
939
940/* Return the path expression parent for VAR. */
941
c1cc6152
SM
942const struct varobj *
943varobj_get_path_expr_parent (const struct varobj *var)
85254831 944{
c1cc6152 945 const struct varobj *parent = var;
85254831
KS
946
947 while (!is_root_p (parent) && !is_path_expr_parent (parent))
948 parent = parent->parent;
949
950 return parent;
951}
952
02142340
VP
953/* Return a pointer to the full rooted expression of varobj VAR.
954 If it has not been computed yet, compute it. */
2f408ecb
PA
955
956const char *
c1cc6152 957varobj_get_path_expr (const struct varobj *var)
02142340 958{
2f408ecb 959 if (var->path_expr.empty ())
02142340
VP
960 {
961 /* For root varobjs, we initialize path_expr
962 when creating varobj, so here it should be
963 child varobj. */
c1cc6152 964 struct varobj *mutable_var = (struct varobj *) var;
02142340 965 gdb_assert (!is_root_p (var));
2568868e 966
c1cc6152 967 mutable_var->path_expr = (*var->root->lang_ops->path_expr_of_child) (var);
02142340 968 }
2568868e 969
2f408ecb 970 return var->path_expr.c_str ();
02142340
VP
971}
972
fa4d0c40 973const struct language_defn *
b09e2c59 974varobj_get_language (const struct varobj *var)
8b93c638 975{
fa4d0c40 976 return var->root->exp->language_defn;
8b93c638
JM
977}
978
979int
b09e2c59 980varobj_get_attributes (const struct varobj *var)
8b93c638
JM
981{
982 int attributes = 0;
983
340a7723 984 if (varobj_editable_p (var))
581e13c1 985 /* FIXME: define masks for attributes. */
8b93c638
JM
986 attributes |= 0x00000001; /* Editable */
987
988 return attributes;
989}
990
cde5ef40
YQ
991/* Return true if VAR is a dynamic varobj. */
992
4c37490d 993bool
b09e2c59 994varobj_is_dynamic_p (const struct varobj *var)
0cc7d26f 995{
bb5ce47a 996 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
997}
998
2f408ecb 999std::string
de051565
MK
1000varobj_get_formatted_value (struct varobj *var,
1001 enum varobj_display_formats format)
1002{
1003 return my_value_of_variable (var, format);
1004}
1005
2f408ecb 1006std::string
8b93c638
JM
1007varobj_get_value (struct varobj *var)
1008{
de051565 1009 return my_value_of_variable (var, var->format);
8b93c638
JM
1010}
1011
1012/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1013 value of the given expression. */
1014/* Note: Invokes functions that can call error(). */
8b93c638 1015
4c37490d 1016bool
2f408ecb 1017varobj_set_value (struct varobj *var, const char *expression)
8b93c638 1018{
34365054 1019 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1020 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1021 We need to first construct a legal expression for this -- ugh! */
1022 /* Does this cover all the bases? */
34365054 1023 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1024 int saved_input_radix = input_radix;
bbc13ae3 1025 const char *s = expression;
8b93c638 1026
340a7723 1027 gdb_assert (varobj_editable_p (var));
8b93c638 1028
581e13c1 1029 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
4d01a485 1030 expression_up exp = parse_exp_1 (&s, 0, 0, 0);
492d29ea 1031 TRY
8e7b59a5 1032 {
4d01a485 1033 value = evaluate_expression (exp.get ());
8e7b59a5
KS
1034 }
1035
492d29ea 1036 CATCH (except, RETURN_MASK_ERROR)
340a7723 1037 {
581e13c1 1038 /* We cannot proceed without a valid expression. */
4c37490d 1039 return false;
8b93c638 1040 }
492d29ea 1041 END_CATCH
8b93c638 1042
340a7723
NR
1043 /* All types that are editable must also be changeable. */
1044 gdb_assert (varobj_value_is_changeable_p (var));
1045
1046 /* The value of a changeable variable object must not be lazy. */
1047 gdb_assert (!value_lazy (var->value));
1048
1049 /* Need to coerce the input. We want to check if the
1050 value of the variable object will be different
1051 after assignment, and the first thing value_assign
1052 does is coerce the input.
1053 For example, if we are assigning an array to a pointer variable we
b021a221 1054 should compare the pointer with the array's address, not with the
340a7723
NR
1055 array's content. */
1056 value = coerce_array (value);
1057
8e7b59a5
KS
1058 /* The new value may be lazy. value_assign, or
1059 rather value_contents, will take care of this. */
492d29ea 1060 TRY
8e7b59a5
KS
1061 {
1062 val = value_assign (var->value, value);
1063 }
1064
492d29ea
PA
1065 CATCH (except, RETURN_MASK_ERROR)
1066 {
4c37490d 1067 return false;
492d29ea
PA
1068 }
1069 END_CATCH
8e7b59a5 1070
340a7723
NR
1071 /* If the value has changed, record it, so that next -var-update can
1072 report this change. If a variable had a value of '1', we've set it
1073 to '333' and then set again to '1', when -var-update will report this
1074 variable as changed -- because the first assignment has set the
1075 'updated' flag. There's no need to optimize that, because return value
1076 of -var-update should be considered an approximation. */
4c37490d 1077 var->updated = install_new_value (var, val, false /* Compare values. */);
340a7723 1078 input_radix = saved_input_radix;
4c37490d 1079 return true;
8b93c638
JM
1080}
1081
0cc7d26f
TT
1082#if HAVE_PYTHON
1083
1084/* A helper function to install a constructor function and visualizer
bb5ce47a 1085 in a varobj_dynamic. */
0cc7d26f
TT
1086
1087static void
bb5ce47a 1088install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1089 PyObject *visualizer)
1090{
1091 Py_XDECREF (var->constructor);
1092 var->constructor = constructor;
1093
1094 Py_XDECREF (var->pretty_printer);
1095 var->pretty_printer = visualizer;
1096
e5250216 1097 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1098 var->child_iter = NULL;
1099}
1100
1101/* Install the default visualizer for VAR. */
1102
1103static void
1104install_default_visualizer (struct varobj *var)
1105{
d65aec65
PM
1106 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1107 if (CPLUS_FAKE_CHILD (var))
1108 return;
1109
0cc7d26f
TT
1110 if (pretty_printing)
1111 {
1112 PyObject *pretty_printer = NULL;
1113
1114 if (var->value)
1115 {
1116 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1117 if (! pretty_printer)
1118 {
1119 gdbpy_print_stack ();
1120 error (_("Cannot instantiate printer for default visualizer"));
1121 }
1122 }
1123
1124 if (pretty_printer == Py_None)
1125 {
1126 Py_DECREF (pretty_printer);
1127 pretty_printer = NULL;
1128 }
1129
bb5ce47a 1130 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1131 }
1132}
1133
1134/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1135 make a new object. */
1136
1137static void
1138construct_visualizer (struct varobj *var, PyObject *constructor)
1139{
1140 PyObject *pretty_printer;
1141
d65aec65
PM
1142 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1143 if (CPLUS_FAKE_CHILD (var))
1144 return;
1145
0cc7d26f
TT
1146 Py_INCREF (constructor);
1147 if (constructor == Py_None)
1148 pretty_printer = NULL;
1149 else
1150 {
1151 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1152 if (! pretty_printer)
1153 {
1154 gdbpy_print_stack ();
1155 Py_DECREF (constructor);
1156 constructor = Py_None;
1157 Py_INCREF (constructor);
1158 }
1159
1160 if (pretty_printer == Py_None)
1161 {
1162 Py_DECREF (pretty_printer);
1163 pretty_printer = NULL;
1164 }
1165 }
1166
bb5ce47a 1167 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1168}
1169
1170#endif /* HAVE_PYTHON */
1171
1172/* A helper function for install_new_value. This creates and installs
1173 a visualizer for VAR, if appropriate. */
1174
1175static void
1176install_new_value_visualizer (struct varobj *var)
1177{
1178#if HAVE_PYTHON
1179 /* If the constructor is None, then we want the raw value. If VAR
1180 does not have a value, just skip this. */
0646da15
TT
1181 if (!gdb_python_initialized)
1182 return;
1183
bb5ce47a 1184 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f 1185 {
bde7b3e3 1186 gdbpy_enter_varobj enter_py (var);
0cc7d26f 1187
bb5ce47a 1188 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1189 install_default_visualizer (var);
1190 else
bb5ce47a 1191 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1192 }
1193#else
1194 /* Do nothing. */
1195#endif
1196}
1197
8264ba82
AG
1198/* When using RTTI to determine variable type it may be changed in runtime when
1199 the variable value is changed. This function checks whether type of varobj
1200 VAR will change when a new value NEW_VALUE is assigned and if it is so
1201 updates the type of VAR. */
1202
4c37490d 1203static bool
8264ba82
AG
1204update_type_if_necessary (struct varobj *var, struct value *new_value)
1205{
1206 if (new_value)
1207 {
1208 struct value_print_options opts;
1209
1210 get_user_print_options (&opts);
1211 if (opts.objectprint)
1212 {
2f408ecb
PA
1213 struct type *new_type = value_actual_type (new_value, 0, 0);
1214 std::string new_type_str = type_to_string (new_type);
1215 std::string curr_type_str = varobj_get_type (var);
8264ba82 1216
2f408ecb
PA
1217 /* Did the type name change? */
1218 if (curr_type_str != new_type_str)
8264ba82
AG
1219 {
1220 var->type = new_type;
1221
1222 /* This information may be not valid for a new type. */
30914ca8 1223 varobj_delete (var, 1);
ddf0ea08 1224 var->children.clear ();
8264ba82 1225 var->num_children = -1;
4c37490d 1226 return true;
8264ba82
AG
1227 }
1228 }
1229 }
1230
4c37490d 1231 return false;
8264ba82
AG
1232}
1233
4c37490d
SM
1234/* Assign a new value to a variable object. If INITIAL is true,
1235 this is the first assignment after the variable object was just
acd65feb 1236 created, or changed type. In that case, just assign the value
4c37490d
SM
1237 and return false.
1238 Otherwise, assign the new value, and return true if the value is
1239 different from the current one, false otherwise. The comparison is
581e13c1
MS
1240 done on textual representation of value. Therefore, some types
1241 need not be compared. E.g. for structures the reported value is
1242 always "{...}", so no comparison is necessary here. If the old
4c37490d 1243 value was NULL and new one is not, or vice versa, we always return true.
b26ed50d
VP
1244
1245 The VALUE parameter should not be released -- the function will
1246 take care of releasing it when needed. */
4c37490d
SM
1247static bool
1248install_new_value (struct varobj *var, struct value *value, bool initial)
acd65feb 1249{
4c37490d
SM
1250 bool changeable;
1251 bool need_to_fetch;
1252 bool changed = false;
1253 bool intentionally_not_fetched = false;
acd65feb 1254
acd65feb 1255 /* We need to know the varobj's type to decide if the value should
3e43a32a 1256 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1257 don't have a type. */
acd65feb 1258 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1259 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1260
1261 /* If the type has custom visualizer, we consider it to be always
581e13c1 1262 changeable. FIXME: need to make sure this behaviour will not
b6313243 1263 mess up read-sensitive values. */
bb5ce47a 1264 if (var->dynamic->pretty_printer != NULL)
4c37490d 1265 changeable = true;
b6313243 1266
acd65feb
VP
1267 need_to_fetch = changeable;
1268
b26ed50d
VP
1269 /* We are not interested in the address of references, and given
1270 that in C++ a reference is not rebindable, it cannot
1271 meaningfully change. So, get hold of the real value. */
1272 if (value)
0cc7d26f 1273 value = coerce_ref (value);
b26ed50d 1274
acd65feb
VP
1275 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1276 /* For unions, we need to fetch the value implicitly because
1277 of implementation of union member fetch. When gdb
1278 creates a value for a field and the value of the enclosing
1279 structure is not lazy, it immediately copies the necessary
1280 bytes from the enclosing values. If the enclosing value is
1281 lazy, the call to value_fetch_lazy on the field will read
1282 the data from memory. For unions, that means we'll read the
1283 same memory more than once, which is not desirable. So
1284 fetch now. */
4c37490d 1285 need_to_fetch = true;
acd65feb
VP
1286
1287 /* The new value might be lazy. If the type is changeable,
1288 that is we'll be comparing values of this type, fetch the
1289 value now. Otherwise, on the next update the old value
1290 will be lazy, which means we've lost that old value. */
1291 if (need_to_fetch && value && value_lazy (value))
1292 {
c1cc6152 1293 const struct varobj *parent = var->parent;
4c37490d 1294 bool frozen = var->frozen;
a109c7c1 1295
25d5ea92
VP
1296 for (; !frozen && parent; parent = parent->parent)
1297 frozen |= parent->frozen;
1298
1299 if (frozen && initial)
1300 {
1301 /* For variables that are frozen, or are children of frozen
1302 variables, we don't do fetch on initial assignment.
1303 For non-initial assignemnt we do the fetch, since it means we're
1304 explicitly asked to compare the new value with the old one. */
4c37490d 1305 intentionally_not_fetched = true;
25d5ea92 1306 }
8e7b59a5 1307 else
acd65feb 1308 {
8e7b59a5 1309
492d29ea 1310 TRY
8e7b59a5
KS
1311 {
1312 value_fetch_lazy (value);
1313 }
1314
492d29ea 1315 CATCH (except, RETURN_MASK_ERROR)
8e7b59a5
KS
1316 {
1317 /* Set the value to NULL, so that for the next -var-update,
1318 we don't try to compare the new value with this value,
1319 that we couldn't even read. */
1320 value = NULL;
1321 }
492d29ea 1322 END_CATCH
acd65feb 1323 }
acd65feb
VP
1324 }
1325
e848a8a5
TT
1326 /* Get a reference now, before possibly passing it to any Python
1327 code that might release it. */
1328 if (value != NULL)
1329 value_incref (value);
b6313243 1330
7a4d50bf
VP
1331 /* Below, we'll be comparing string rendering of old and new
1332 values. Don't get string rendering if the value is
1333 lazy -- if it is, the code above has decided that the value
1334 should not be fetched. */
2f408ecb 1335 std::string print_value;
bb5ce47a
YQ
1336 if (value != NULL && !value_lazy (value)
1337 && var->dynamic->pretty_printer == NULL)
99ad9427 1338 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1339
acd65feb
VP
1340 /* If the type is changeable, compare the old and the new values.
1341 If this is the initial assignment, we don't have any old value
1342 to compare with. */
7a4d50bf 1343 if (!initial && changeable)
acd65feb 1344 {
3e43a32a
MS
1345 /* If the value of the varobj was changed by -var-set-value,
1346 then the value in the varobj and in the target is the same.
1347 However, that value is different from the value that the
581e13c1 1348 varobj had after the previous -var-update. So need to the
3e43a32a 1349 varobj as changed. */
acd65feb 1350 if (var->updated)
4c37490d 1351 changed = true;
bb5ce47a 1352 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1353 {
1354 /* Try to compare the values. That requires that both
1355 values are non-lazy. */
25d5ea92
VP
1356 if (var->not_fetched && value_lazy (var->value))
1357 {
1358 /* This is a frozen varobj and the value was never read.
1359 Presumably, UI shows some "never read" indicator.
1360 Now that we've fetched the real value, we need to report
1361 this varobj as changed so that UI can show the real
1362 value. */
4c37490d 1363 changed = true;
25d5ea92
VP
1364 }
1365 else if (var->value == NULL && value == NULL)
581e13c1 1366 /* Equal. */
acd65feb
VP
1367 ;
1368 else if (var->value == NULL || value == NULL)
57e66780 1369 {
4c37490d 1370 changed = true;
57e66780 1371 }
acd65feb
VP
1372 else
1373 {
1374 gdb_assert (!value_lazy (var->value));
1375 gdb_assert (!value_lazy (value));
85265413 1376
2f408ecb
PA
1377 gdb_assert (!var->print_value.empty () && !print_value.empty ());
1378 if (var->print_value != print_value)
4c37490d 1379 changed = true;
acd65feb
VP
1380 }
1381 }
1382 }
85265413 1383
ee342b23
VP
1384 if (!initial && !changeable)
1385 {
1386 /* For values that are not changeable, we don't compare the values.
1387 However, we want to notice if a value was not NULL and now is NULL,
1388 or vise versa, so that we report when top-level varobjs come in scope
1389 and leave the scope. */
1390 changed = (var->value != NULL) != (value != NULL);
1391 }
1392
acd65feb 1393 /* We must always keep the new value, since children depend on it. */
25d5ea92 1394 if (var->value != NULL && var->value != value)
acd65feb
VP
1395 value_free (var->value);
1396 var->value = value;
25d5ea92 1397 if (value && value_lazy (value) && intentionally_not_fetched)
4c37490d 1398 var->not_fetched = true;
25d5ea92 1399 else
4c37490d
SM
1400 var->not_fetched = false;
1401 var->updated = false;
85265413 1402
0cc7d26f
TT
1403 install_new_value_visualizer (var);
1404
1405 /* If we installed a pretty-printer, re-compare the printed version
1406 to see if the variable changed. */
bb5ce47a 1407 if (var->dynamic->pretty_printer != NULL)
0cc7d26f 1408 {
99ad9427
YQ
1409 print_value = varobj_value_get_print_value (var->value, var->format,
1410 var);
2f408ecb
PA
1411 if ((var->print_value.empty () && !print_value.empty ())
1412 || (!var->print_value.empty () && print_value.empty ())
1413 || (!var->print_value.empty () && !print_value.empty ()
1414 && var->print_value != print_value))
4c37490d 1415 changed = true;
0cc7d26f 1416 }
0cc7d26f
TT
1417 var->print_value = print_value;
1418
b26ed50d 1419 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1420
1421 return changed;
1422}
acd65feb 1423
0cc7d26f
TT
1424/* Return the requested range for a varobj. VAR is the varobj. FROM
1425 and TO are out parameters; *FROM and *TO will be set to the
1426 selected sub-range of VAR. If no range was selected using
1427 -var-set-update-range, then both will be -1. */
1428void
b09e2c59 1429varobj_get_child_range (const struct varobj *var, int *from, int *to)
b6313243 1430{
0cc7d26f
TT
1431 *from = var->from;
1432 *to = var->to;
b6313243
TT
1433}
1434
0cc7d26f
TT
1435/* Set the selected sub-range of children of VAR to start at index
1436 FROM and end at index TO. If either FROM or TO is less than zero,
1437 this is interpreted as a request for all children. */
1438void
1439varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1440{
0cc7d26f
TT
1441 var->from = from;
1442 var->to = to;
b6313243
TT
1443}
1444
1445void
1446varobj_set_visualizer (struct varobj *var, const char *visualizer)
1447{
1448#if HAVE_PYTHON
bde7b3e3 1449 PyObject *mainmod;
b6313243 1450
0646da15
TT
1451 if (!gdb_python_initialized)
1452 return;
1453
bde7b3e3 1454 gdbpy_enter_varobj enter_py (var);
b6313243
TT
1455
1456 mainmod = PyImport_AddModule ("__main__");
7780f186 1457 gdbpy_ref<> globals (PyModule_GetDict (mainmod));
bde7b3e3 1458 Py_INCREF (globals.get ());
b6313243 1459
7780f186
TT
1460 gdbpy_ref<> constructor (PyRun_String (visualizer, Py_eval_input,
1461 globals.get (), globals.get ()));
b6313243 1462
bde7b3e3 1463 if (constructor == NULL)
b6313243
TT
1464 {
1465 gdbpy_print_stack ();
da1f2771 1466 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1467 }
1468
bde7b3e3 1469 construct_visualizer (var, constructor.get ());
b6313243 1470
0cc7d26f 1471 /* If there are any children now, wipe them. */
30914ca8 1472 varobj_delete (var, 1 /* children only */);
0cc7d26f 1473 var->num_children = -1;
b6313243 1474#else
da1f2771 1475 error (_("Python support required"));
b6313243
TT
1476#endif
1477}
1478
7a290c40 1479/* If NEW_VALUE is the new value of the given varobj (var), return
4c37490d 1480 true if var has mutated. In other words, if the type of
7a290c40
JB
1481 the new value is different from the type of the varobj's old
1482 value.
1483
1484 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1485
4c37490d 1486static bool
b09e2c59 1487varobj_value_has_mutated (const struct varobj *var, struct value *new_value,
7a290c40
JB
1488 struct type *new_type)
1489{
1490 /* If we haven't previously computed the number of children in var,
1491 it does not matter from the front-end's perspective whether
1492 the type has mutated or not. For all intents and purposes,
1493 it has not mutated. */
1494 if (var->num_children < 0)
4c37490d 1495 return false;
7a290c40 1496
4c37490d 1497 if (var->root->lang_ops->value_has_mutated != NULL)
8776cfe9
JB
1498 {
1499 /* The varobj module, when installing new values, explicitly strips
1500 references, saying that we're not interested in those addresses.
1501 But detection of mutation happens before installing the new
1502 value, so our value may be a reference that we need to strip
1503 in order to remain consistent. */
1504 if (new_value != NULL)
1505 new_value = coerce_ref (new_value);
1506 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1507 }
7a290c40 1508 else
4c37490d 1509 return false;
7a290c40
JB
1510}
1511
8b93c638
JM
1512/* Update the values for a variable and its children. This is a
1513 two-pronged attack. First, re-parse the value for the root's
1514 expression to see if it's changed. Then go all the way
1515 through its children, reconstructing them and noting if they've
1516 changed.
1517
4c37490d 1518 The IS_EXPLICIT parameter specifies if this call is result
25d5ea92 1519 of MI request to update this specific variable, or
581e13c1 1520 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1521 update frozen variables.
705da579 1522
581e13c1 1523 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1524 returns TYPE_CHANGED, then it has done this and VARP will be modified
1525 to point to the new varobj. */
8b93c638 1526
0604393c 1527std::vector<varobj_update_result>
4c37490d 1528varobj_update (struct varobj **varp, bool is_explicit)
8b93c638 1529{
4c37490d 1530 bool type_changed = false;
fe978cb0 1531 struct value *newobj;
0604393c
SM
1532 std::vector<varobj_update_result> stack;
1533 std::vector<varobj_update_result> result;
8b93c638 1534
25d5ea92
VP
1535 /* Frozen means frozen -- we don't check for any change in
1536 this varobj, including its going out of scope, or
1537 changing type. One use case for frozen varobjs is
1538 retaining previously evaluated expressions, and we don't
1539 want them to be reevaluated at all. */
fe978cb0 1540 if (!is_explicit && (*varp)->frozen)
f7f9ae2c 1541 return result;
8756216b
DP
1542
1543 if (!(*varp)->root->is_valid)
f7f9ae2c 1544 {
0604393c 1545 result.emplace_back (*varp, VAROBJ_INVALID);
f7f9ae2c
VP
1546 return result;
1547 }
8b93c638 1548
25d5ea92 1549 if ((*varp)->root->rootvar == *varp)
ae093f96 1550 {
0604393c 1551 varobj_update_result r (*varp);
f7f9ae2c 1552
581e13c1 1553 /* Update the root variable. value_of_root can return NULL
25d5ea92 1554 if the variable is no longer around, i.e. we stepped out of
581e13c1 1555 the frame in which a local existed. We are letting the
25d5ea92
VP
1556 value_of_root variable dispose of the varobj if the type
1557 has changed. */
fe978cb0 1558 newobj = value_of_root (varp, &type_changed);
4c37490d
SM
1559 if (update_type_if_necessary (*varp, newobj))
1560 type_changed = true;
f7f9ae2c 1561 r.varobj = *varp;
f7f9ae2c 1562 r.type_changed = type_changed;
fe978cb0 1563 if (install_new_value ((*varp), newobj, type_changed))
4c37490d 1564 r.changed = true;
ea56f9c2 1565
fe978cb0 1566 if (newobj == NULL)
f7f9ae2c 1567 r.status = VAROBJ_NOT_IN_SCOPE;
4c37490d 1568 r.value_installed = true;
f7f9ae2c
VP
1569
1570 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1571 {
0b4bc29a 1572 if (r.type_changed || r.changed)
0604393c
SM
1573 result.push_back (std::move (r));
1574
b6313243
TT
1575 return result;
1576 }
a109c7c1 1577
0604393c 1578 stack.push_back (std::move (r));
b20d8971 1579 }
0604393c
SM
1580 else
1581 stack.emplace_back (*varp);
8b93c638 1582
8756216b 1583 /* Walk through the children, reconstructing them all. */
0604393c 1584 while (!stack.empty ())
8b93c638 1585 {
0604393c
SM
1586 varobj_update_result r = std::move (stack.back ());
1587 stack.pop_back ();
b6313243
TT
1588 struct varobj *v = r.varobj;
1589
b6313243
TT
1590 /* Update this variable, unless it's a root, which is already
1591 updated. */
1592 if (!r.value_installed)
7a290c40
JB
1593 {
1594 struct type *new_type;
1595
fe978cb0 1596 newobj = value_of_child (v->parent, v->index);
4c37490d
SM
1597 if (update_type_if_necessary (v, newobj))
1598 r.type_changed = true;
fe978cb0
PA
1599 if (newobj)
1600 new_type = value_type (newobj);
7a290c40 1601 else
ca20d462 1602 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40 1603
fe978cb0 1604 if (varobj_value_has_mutated (v, newobj, new_type))
7a290c40
JB
1605 {
1606 /* The children are no longer valid; delete them now.
1607 Report the fact that its type changed as well. */
30914ca8 1608 varobj_delete (v, 1 /* only_children */);
7a290c40
JB
1609 v->num_children = -1;
1610 v->to = -1;
1611 v->from = -1;
1612 v->type = new_type;
4c37490d 1613 r.type_changed = true;
7a290c40
JB
1614 }
1615
fe978cb0 1616 if (install_new_value (v, newobj, r.type_changed))
b6313243 1617 {
4c37490d
SM
1618 r.changed = true;
1619 v->updated = false;
b6313243
TT
1620 }
1621 }
1622
31f628ae
YQ
1623 /* We probably should not get children of a dynamic varobj, but
1624 for which -var-list-children was never invoked. */
1625 if (varobj_is_dynamic_p (v))
b6313243 1626 {
0604393c 1627 std::vector<varobj *> changed, type_changed, unchanged, newobj;
4c37490d 1628 bool children_changed = false;
b6313243
TT
1629
1630 if (v->frozen)
1631 continue;
1632
bd046f64 1633 if (!v->dynamic->children_requested)
0cc7d26f 1634 {
4c37490d 1635 bool dummy;
0cc7d26f
TT
1636
1637 /* If we initially did not have potential children, but
1638 now we do, consider the varobj as changed.
1639 Otherwise, if children were never requested, consider
1640 it as unchanged -- presumably, such varobj is not yet
1641 expanded in the UI, so we need not bother getting
1642 it. */
1643 if (!varobj_has_more (v, 0))
1644 {
8264ba82 1645 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
4c37490d 1646 &dummy, false, 0, 0);
0cc7d26f 1647 if (varobj_has_more (v, 0))
4c37490d 1648 r.changed = true;
0cc7d26f
TT
1649 }
1650
1651 if (r.changed)
0604393c 1652 result.push_back (std::move (r));
0cc7d26f
TT
1653
1654 continue;
1655 }
1656
4c37490d 1657 /* If update_dynamic_varobj_children returns false, then we have
b6313243 1658 a non-conforming pretty-printer, so we skip it. */
fe978cb0 1659 if (update_dynamic_varobj_children (v, &changed, &type_changed, &newobj,
4c37490d 1660 &unchanged, &children_changed, true,
0cc7d26f 1661 v->from, v->to))
b6313243 1662 {
0604393c 1663 if (children_changed || !newobj.empty ())
b6313243 1664 {
4c37490d 1665 r.children_changed = true;
0604393c 1666 r.newobj = std::move (newobj);
b6313243 1667 }
0cc7d26f
TT
1668 /* Push in reverse order so that the first child is
1669 popped from the work stack first, and so will be
1670 added to result first. This does not affect
1671 correctness, just "nicer". */
0604393c 1672 for (int i = type_changed.size () - 1; i >= 0; --i)
8264ba82 1673 {
0604393c 1674 varobj_update_result r (type_changed[i]);
8264ba82
AG
1675
1676 /* Type may change only if value was changed. */
4c37490d
SM
1677 r.changed = true;
1678 r.type_changed = true;
1679 r.value_installed = true;
0604393c
SM
1680
1681 stack.push_back (std::move (r));
8264ba82 1682 }
0604393c 1683 for (int i = changed.size () - 1; i >= 0; --i)
b6313243 1684 {
0604393c 1685 varobj_update_result r (changed[i]);
a109c7c1 1686
4c37490d
SM
1687 r.changed = true;
1688 r.value_installed = true;
0604393c
SM
1689
1690 stack.push_back (std::move (r));
b6313243 1691 }
0604393c
SM
1692 for (int i = unchanged.size () - 1; i >= 0; --i)
1693 {
1694 if (!unchanged[i]->frozen)
1695 {
1696 varobj_update_result r (unchanged[i]);
1697
4c37490d 1698 r.value_installed = true;
0cc7d26f 1699
0604393c
SM
1700 stack.push_back (std::move (r));
1701 }
1702 }
1703 if (r.changed || r.children_changed)
1704 result.push_back (std::move (r));
0cc7d26f 1705
b6313243
TT
1706 continue;
1707 }
1708 }
28335dcc
VP
1709
1710 /* Push any children. Use reverse order so that the first
1711 child is popped from the work stack first, and so
1712 will be added to result first. This does not
1713 affect correctness, just "nicer". */
0604393c 1714 for (int i = v->children.size () - 1; i >= 0; --i)
8b93c638 1715 {
ddf0ea08 1716 varobj *c = v->children[i];
a109c7c1 1717
28335dcc 1718 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1719 if (c != NULL && !c->frozen)
0604393c 1720 stack.emplace_back (c);
8b93c638 1721 }
b6313243
TT
1722
1723 if (r.changed || r.type_changed)
0604393c 1724 result.push_back (std::move (r));
8b93c638
JM
1725 }
1726
f7f9ae2c 1727 return result;
8b93c638 1728}
8b93c638
JM
1729
1730/* Helper functions */
1731
1732/*
1733 * Variable object construction/destruction
1734 */
1735
1736static int
4c37490d 1737delete_variable (struct varobj *var, bool only_children_p)
8b93c638
JM
1738{
1739 int delcount = 0;
1740
30914ca8 1741 delete_variable_1 (&delcount, var, only_children_p,
4c37490d 1742 true /* remove_from_parent_p */ );
8b93c638
JM
1743
1744 return delcount;
1745}
1746
581e13c1 1747/* Delete the variable object VAR and its children. */
8b93c638
JM
1748/* IMPORTANT NOTE: If we delete a variable which is a child
1749 and the parent is not removed we dump core. It must be always
581e13c1 1750 initially called with remove_from_parent_p set. */
8b93c638 1751static void
4c37490d
SM
1752delete_variable_1 (int *delcountp, struct varobj *var, bool only_children_p,
1753 bool remove_from_parent_p)
8b93c638 1754{
581e13c1 1755 /* Delete any children of this variable, too. */
ddf0ea08 1756 for (varobj *child : var->children)
28335dcc 1757 {
214270ab
VP
1758 if (!child)
1759 continue;
ddf0ea08 1760
8b93c638 1761 if (!remove_from_parent_p)
28335dcc 1762 child->parent = NULL;
ddf0ea08 1763
4c37490d 1764 delete_variable_1 (delcountp, child, false, only_children_p);
8b93c638 1765 }
ddf0ea08 1766 var->children.clear ();
8b93c638 1767
581e13c1 1768 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1769 if (only_children_p)
1770 return;
1771
581e13c1 1772 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
2f408ecb 1773 /* If the name is empty, this is a temporary variable, that has not
581e13c1 1774 yet been installed, don't report it, it belongs to the caller... */
2f408ecb 1775 if (!var->obj_name.empty ())
8b93c638 1776 {
8b93c638
JM
1777 *delcountp = *delcountp + 1;
1778 }
1779
581e13c1 1780 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1781 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1782 (as indicated by remove_from_parent_p) we don't bother doing an
1783 expensive list search to find the element to remove when we are
581e13c1 1784 discarding the list afterwards. */
72330bd6 1785 if ((remove_from_parent_p) && (var->parent != NULL))
ddf0ea08 1786 var->parent->children[var->index] = NULL;
72330bd6 1787
2f408ecb 1788 if (!var->obj_name.empty ())
73a93a32 1789 uninstall_variable (var);
8b93c638 1790
581e13c1 1791 /* Free memory associated with this variable. */
9e5b9d2b 1792 delete var;
8b93c638
JM
1793}
1794
581e13c1 1795/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
4c37490d 1796static bool
fba45db2 1797install_variable (struct varobj *var)
8b93c638
JM
1798{
1799 struct vlist *cv;
1800 struct vlist *newvl;
1801 const char *chp;
1802 unsigned int index = 0;
1803 unsigned int i = 1;
1804
2f408ecb 1805 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1806 {
1807 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1808 }
1809
1810 cv = *(varobj_table + index);
2f408ecb 1811 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1812 cv = cv->next;
1813
1814 if (cv != NULL)
8a3fe4f8 1815 error (_("Duplicate variable object name"));
8b93c638 1816
581e13c1 1817 /* Add varobj to hash table. */
8d749320 1818 newvl = XNEW (struct vlist);
8b93c638
JM
1819 newvl->next = *(varobj_table + index);
1820 newvl->var = var;
1821 *(varobj_table + index) = newvl;
1822
581e13c1 1823 /* If root, add varobj to root list. */
b2c2bd75 1824 if (is_root_p (var))
8b93c638 1825 {
581e13c1 1826 /* Add to list of root variables. */
8b93c638
JM
1827 if (rootlist == NULL)
1828 var->root->next = NULL;
1829 else
1830 var->root->next = rootlist;
1831 rootlist = var->root;
8b93c638
JM
1832 }
1833
4c37490d 1834 return true; /* OK */
8b93c638
JM
1835}
1836
581e13c1 1837/* Unistall the object VAR. */
8b93c638 1838static void
fba45db2 1839uninstall_variable (struct varobj *var)
8b93c638
JM
1840{
1841 struct vlist *cv;
1842 struct vlist *prev;
1843 struct varobj_root *cr;
1844 struct varobj_root *prer;
1845 const char *chp;
1846 unsigned int index = 0;
1847 unsigned int i = 1;
1848
581e13c1 1849 /* Remove varobj from hash table. */
2f408ecb 1850 for (chp = var->obj_name.c_str (); *chp; chp++)
8b93c638
JM
1851 {
1852 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1853 }
1854
1855 cv = *(varobj_table + index);
1856 prev = NULL;
2f408ecb 1857 while (cv != NULL && cv->var->obj_name != var->obj_name)
8b93c638
JM
1858 {
1859 prev = cv;
1860 cv = cv->next;
1861 }
1862
1863 if (varobjdebug)
2f408ecb 1864 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name.c_str ());
8b93c638
JM
1865
1866 if (cv == NULL)
1867 {
72330bd6
AC
1868 warning
1869 ("Assertion failed: Could not find variable object \"%s\" to delete",
2f408ecb 1870 var->obj_name.c_str ());
8b93c638
JM
1871 return;
1872 }
1873
1874 if (prev == NULL)
1875 *(varobj_table + index) = cv->next;
1876 else
1877 prev->next = cv->next;
1878
b8c9b27d 1879 xfree (cv);
8b93c638 1880
581e13c1 1881 /* If root, remove varobj from root list. */
b2c2bd75 1882 if (is_root_p (var))
8b93c638 1883 {
581e13c1 1884 /* Remove from list of root variables. */
8b93c638
JM
1885 if (rootlist == var->root)
1886 rootlist = var->root->next;
1887 else
1888 {
1889 prer = NULL;
1890 cr = rootlist;
1891 while ((cr != NULL) && (cr->rootvar != var))
1892 {
1893 prer = cr;
1894 cr = cr->next;
1895 }
1896 if (cr == NULL)
1897 {
8f7e195f
JB
1898 warning (_("Assertion failed: Could not find "
1899 "varobj \"%s\" in root list"),
2f408ecb 1900 var->obj_name.c_str ());
8b93c638
JM
1901 return;
1902 }
1903 if (prer == NULL)
1904 rootlist = NULL;
1905 else
1906 prer->next = cr->next;
1907 }
8b93c638
JM
1908 }
1909
1910}
1911
837ce252
SM
1912/* Create and install a child of the parent of the given name.
1913
1914 The created VAROBJ takes ownership of the allocated NAME. */
1915
8b93c638 1916static struct varobj *
2f408ecb 1917create_child (struct varobj *parent, int index, std::string &name)
b6313243 1918{
5a2e0d6e
YQ
1919 struct varobj_item item;
1920
2f408ecb 1921 std::swap (item.name, name);
5a2e0d6e
YQ
1922 item.value = value_of_child (parent, index);
1923
1924 return create_child_with_value (parent, index, &item);
b6313243
TT
1925}
1926
1927static struct varobj *
5a2e0d6e
YQ
1928create_child_with_value (struct varobj *parent, int index,
1929 struct varobj_item *item)
8b93c638 1930{
9e5b9d2b 1931 varobj *child = new varobj (parent->root);
8b93c638 1932
5e5ac9a5 1933 /* NAME is allocated by caller. */
2f408ecb 1934 std::swap (child->name, item->name);
8b93c638 1935 child->index = index;
8b93c638 1936 child->parent = parent;
85254831 1937
99ad9427 1938 if (varobj_is_anonymous_child (child))
2f408ecb
PA
1939 child->obj_name = string_printf ("%s.%d_anonymous",
1940 parent->obj_name.c_str (), index);
85254831 1941 else
2f408ecb
PA
1942 child->obj_name = string_printf ("%s.%s",
1943 parent->obj_name.c_str (),
1944 child->name.c_str ());
85254831 1945
8b93c638
JM
1946 install_variable (child);
1947
acd65feb
VP
1948 /* Compute the type of the child. Must do this before
1949 calling install_new_value. */
5a2e0d6e 1950 if (item->value != NULL)
acd65feb 1951 /* If the child had no evaluation errors, var->value
581e13c1 1952 will be non-NULL and contain a valid type. */
5a2e0d6e 1953 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 1954 else
581e13c1 1955 /* Otherwise, we must compute the type. */
ca20d462
YQ
1956 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
1957 child->index);
5a2e0d6e 1958 install_new_value (child, item->value, 1);
acd65feb 1959
8b93c638
JM
1960 return child;
1961}
8b93c638
JM
1962\f
1963
1964/*
1965 * Miscellaneous utility functions.
1966 */
1967
581e13c1 1968/* Allocate memory and initialize a new variable. */
9e5b9d2b
SM
1969varobj::varobj (varobj_root *root_)
1970: root (root_), dynamic (new varobj_dynamic)
8b93c638 1971{
8b93c638
JM
1972}
1973
581e13c1 1974/* Free any allocated memory associated with VAR. */
9e5b9d2b
SM
1975
1976varobj::~varobj ()
8b93c638 1977{
9e5b9d2b
SM
1978 varobj *var = this;
1979
d452c4bc 1980#if HAVE_PYTHON
bb5ce47a 1981 if (var->dynamic->pretty_printer != NULL)
d452c4bc 1982 {
bde7b3e3 1983 gdbpy_enter_varobj enter_py (var);
bb5ce47a
YQ
1984
1985 Py_XDECREF (var->dynamic->constructor);
1986 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
1987 }
1988#endif
1989
827f100c
YQ
1990 varobj_iter_delete (var->dynamic->child_iter);
1991 varobj_clear_saved_item (var->dynamic);
36746093
JK
1992 value_free (var->value);
1993
b2c2bd75 1994 if (is_root_p (var))
4d01a485 1995 delete var->root;
8b93c638 1996
9e5b9d2b 1997 delete var->dynamic;
74b7792f
AC
1998}
1999
6e2a9270
VP
2000/* Return the type of the value that's stored in VAR,
2001 or that would have being stored there if the
581e13c1 2002 value were accessible.
6e2a9270
VP
2003
2004 This differs from VAR->type in that VAR->type is always
2005 the true type of the expession in the source language.
2006 The return value of this function is the type we're
2007 actually storing in varobj, and using for displaying
2008 the values and for comparing previous and new values.
2009
2010 For example, top-level references are always stripped. */
99ad9427 2011struct type *
b09e2c59 2012varobj_get_value_type (const struct varobj *var)
6e2a9270
VP
2013{
2014 struct type *type;
2015
2016 if (var->value)
2017 type = value_type (var->value);
2018 else
2019 type = var->type;
2020
2021 type = check_typedef (type);
2022
aa006118 2023 if (TYPE_IS_REFERENCE (type))
6e2a9270
VP
2024 type = get_target_type (type);
2025
2026 type = check_typedef (type);
2027
2028 return type;
2029}
2030
8b93c638 2031/* What is the default display for this variable? We assume that
581e13c1 2032 everything is "natural". Any exceptions? */
8b93c638 2033static enum varobj_display_formats
fba45db2 2034variable_default_display (struct varobj *var)
8b93c638
JM
2035{
2036 return FORMAT_NATURAL;
2037}
2038
8b93c638
JM
2039/*
2040 * Language-dependencies
2041 */
2042
2043/* Common entry points */
2044
8b93c638
JM
2045/* Return the number of children for a given variable.
2046 The result of this function is defined by the language
581e13c1 2047 implementation. The number of children returned by this function
8b93c638 2048 is the number of children that the user will see in the variable
581e13c1 2049 display. */
8b93c638 2050static int
b09e2c59 2051number_of_children (const struct varobj *var)
8b93c638 2052{
ca20d462 2053 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2054}
2055
2f408ecb
PA
2056/* What is the expression for the root varobj VAR? */
2057
2058static std::string
b09e2c59 2059name_of_variable (const struct varobj *var)
8b93c638 2060{
ca20d462 2061 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2062}
2063
2f408ecb
PA
2064/* What is the name of the INDEX'th child of VAR? */
2065
2066static std::string
fba45db2 2067name_of_child (struct varobj *var, int index)
8b93c638 2068{
ca20d462 2069 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2070}
2071
2213e2be 2072/* If frame associated with VAR can be found, switch
4c37490d 2073 to it and return true. Otherwise, return false. */
2213e2be 2074
4c37490d 2075static bool
b09e2c59 2076check_scope (const struct varobj *var)
2213e2be
YQ
2077{
2078 struct frame_info *fi;
4c37490d 2079 bool scope;
2213e2be
YQ
2080
2081 fi = frame_find_by_id (var->root->frame);
2082 scope = fi != NULL;
2083
2084 if (fi)
2085 {
2086 CORE_ADDR pc = get_frame_pc (fi);
2087
2088 if (pc < BLOCK_START (var->root->valid_block) ||
2089 pc >= BLOCK_END (var->root->valid_block))
4c37490d 2090 scope = false;
2213e2be
YQ
2091 else
2092 select_frame (fi);
2093 }
2094 return scope;
2095}
2096
2097/* Helper function to value_of_root. */
2098
2099static struct value *
2100value_of_root_1 (struct varobj **var_handle)
2101{
2102 struct value *new_val = NULL;
2103 struct varobj *var = *var_handle;
4c37490d 2104 bool within_scope = false;
2213e2be
YQ
2105
2106 /* Only root variables can be updated... */
2107 if (!is_root_p (var))
2108 /* Not a root var. */
2109 return NULL;
2110
5ed8105e 2111 scoped_restore_current_thread restore_thread;
2213e2be
YQ
2112
2113 /* Determine whether the variable is still around. */
2114 if (var->root->valid_block == NULL || var->root->floating)
4c37490d 2115 within_scope = true;
2213e2be
YQ
2116 else if (var->root->thread_id == 0)
2117 {
2118 /* The program was single-threaded when the variable object was
2119 created. Technically, it's possible that the program became
2120 multi-threaded since then, but we don't support such
2121 scenario yet. */
2122 within_scope = check_scope (var);
2123 }
2124 else
2125 {
5d5658a1
PA
2126 ptid_t ptid = global_thread_id_to_ptid (var->root->thread_id);
2127
2128 if (!ptid_equal (minus_one_ptid, ptid))
2213e2be
YQ
2129 {
2130 switch_to_thread (ptid);
2131 within_scope = check_scope (var);
2132 }
2133 }
2134
2135 if (within_scope)
2136 {
2213e2be
YQ
2137
2138 /* We need to catch errors here, because if evaluate
2139 expression fails we want to just return NULL. */
492d29ea 2140 TRY
2213e2be 2141 {
4d01a485 2142 new_val = evaluate_expression (var->root->exp.get ());
2213e2be 2143 }
492d29ea
PA
2144 CATCH (except, RETURN_MASK_ERROR)
2145 {
2146 }
2147 END_CATCH
2213e2be
YQ
2148 }
2149
2213e2be
YQ
2150 return new_val;
2151}
2152
a5defcdc
VP
2153/* What is the ``struct value *'' of the root variable VAR?
2154 For floating variable object, evaluation can get us a value
2155 of different type from what is stored in varobj already. In
2156 that case:
2157 - *type_changed will be set to 1
2158 - old varobj will be freed, and new one will be
2159 created, with the same name.
2160 - *var_handle will be set to the new varobj
2161 Otherwise, *type_changed will be set to 0. */
30b28db1 2162static struct value *
4c37490d 2163value_of_root (struct varobj **var_handle, bool *type_changed)
8b93c638 2164{
73a93a32
JI
2165 struct varobj *var;
2166
2167 if (var_handle == NULL)
2168 return NULL;
2169
2170 var = *var_handle;
2171
2172 /* This should really be an exception, since this should
581e13c1 2173 only get called with a root variable. */
73a93a32 2174
b2c2bd75 2175 if (!is_root_p (var))
73a93a32
JI
2176 return NULL;
2177
a5defcdc 2178 if (var->root->floating)
73a93a32
JI
2179 {
2180 struct varobj *tmp_var;
6225abfa 2181
2f408ecb 2182 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
73a93a32
JI
2183 USE_SELECTED_FRAME);
2184 if (tmp_var == NULL)
2185 {
2186 return NULL;
2187 }
2f408ecb
PA
2188 std::string old_type = varobj_get_type (var);
2189 std::string new_type = varobj_get_type (tmp_var);
2190 if (old_type == new_type)
73a93a32 2191 {
fcacd99f
VP
2192 /* The expression presently stored inside var->root->exp
2193 remembers the locations of local variables relatively to
2194 the frame where the expression was created (in DWARF location
2195 button, for example). Naturally, those locations are not
2196 correct in other frames, so update the expression. */
2197
4d01a485 2198 std::swap (var->root->exp, tmp_var->root->exp);
fcacd99f 2199
30914ca8 2200 varobj_delete (tmp_var, 0);
73a93a32
JI
2201 *type_changed = 0;
2202 }
2203 else
2204 {
2f408ecb 2205 tmp_var->obj_name = var->obj_name;
0cc7d26f
TT
2206 tmp_var->from = var->from;
2207 tmp_var->to = var->to;
30914ca8 2208 varobj_delete (var, 0);
a5defcdc 2209
73a93a32
JI
2210 install_variable (tmp_var);
2211 *var_handle = tmp_var;
705da579 2212 var = *var_handle;
4c37490d 2213 *type_changed = true;
73a93a32
JI
2214 }
2215 }
2216 else
2217 {
2218 *type_changed = 0;
2219 }
2220
7a290c40
JB
2221 {
2222 struct value *value;
2223
2213e2be 2224 value = value_of_root_1 (var_handle);
7a290c40
JB
2225 if (var->value == NULL || value == NULL)
2226 {
2227 /* For root varobj-s, a NULL value indicates a scoping issue.
2228 So, nothing to do in terms of checking for mutations. */
2229 }
2230 else if (varobj_value_has_mutated (var, value, value_type (value)))
2231 {
2232 /* The type has mutated, so the children are no longer valid.
2233 Just delete them, and tell our caller that the type has
2234 changed. */
30914ca8 2235 varobj_delete (var, 1 /* only_children */);
7a290c40
JB
2236 var->num_children = -1;
2237 var->to = -1;
2238 var->from = -1;
4c37490d 2239 *type_changed = true;
7a290c40
JB
2240 }
2241 return value;
2242 }
8b93c638
JM
2243}
2244
581e13c1 2245/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2246static struct value *
c1cc6152 2247value_of_child (const struct varobj *parent, int index)
8b93c638 2248{
30b28db1 2249 struct value *value;
8b93c638 2250
ca20d462 2251 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2252
8b93c638
JM
2253 return value;
2254}
2255
581e13c1 2256/* GDB already has a command called "value_of_variable". Sigh. */
2f408ecb 2257static std::string
de051565 2258my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2259{
8756216b 2260 if (var->root->is_valid)
0cc7d26f 2261 {
bb5ce47a 2262 if (var->dynamic->pretty_printer != NULL)
99ad9427 2263 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2264 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2265 }
8756216b 2266 else
2f408ecb 2267 return std::string ();
8b93c638
JM
2268}
2269
99ad9427
YQ
2270void
2271varobj_formatted_print_options (struct value_print_options *opts,
2272 enum varobj_display_formats format)
2273{
2274 get_formatted_print_options (opts, format_code[(int) format]);
2275 opts->deref_ref = 0;
2276 opts->raw = 1;
2277}
2278
2f408ecb 2279std::string
99ad9427
YQ
2280varobj_value_get_print_value (struct value *value,
2281 enum varobj_display_formats format,
b09e2c59 2282 const struct varobj *var)
85265413 2283{
79a45b7d 2284 struct value_print_options opts;
be759fcf
PM
2285 struct type *type = NULL;
2286 long len = 0;
1eba6383 2287 gdb::unique_xmalloc_ptr<char> encoding;
3a182a69
JK
2288 /* Initialize it just to avoid a GCC false warning. */
2289 CORE_ADDR str_addr = 0;
4c37490d 2290 bool string_print = false;
57e66780
DJ
2291
2292 if (value == NULL)
2f408ecb 2293 return std::string ();
57e66780 2294
d7e74731 2295 string_file stb;
2f408ecb
PA
2296 std::string thevalue;
2297
b6313243 2298#if HAVE_PYTHON
0646da15
TT
2299 if (gdb_python_initialized)
2300 {
bb5ce47a 2301 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2302
68cdc557 2303 gdbpy_enter_varobj enter_py (var);
09ca9e2e 2304
0646da15
TT
2305 if (value_formatter)
2306 {
2307 /* First check to see if we have any children at all. If so,
2308 we simply return {...}. */
2309 if (dynamic_varobj_has_child_method (var))
d7e74731 2310 return "{...}";
b6313243 2311
0646da15
TT
2312 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2313 {
2314 struct value *replacement;
0646da15 2315
7780f186
TT
2316 gdbpy_ref<> output (apply_varobj_pretty_printer (value_formatter,
2317 &replacement,
2318 &stb));
0646da15
TT
2319
2320 /* If we have string like output ... */
68cdc557 2321 if (output != NULL)
0646da15 2322 {
0646da15
TT
2323 /* If this is a lazy string, extract it. For lazy
2324 strings we always print as a string, so set
2325 string_print. */
68cdc557 2326 if (gdbpy_is_lazy_string (output.get ()))
0646da15 2327 {
68cdc557
TT
2328 gdbpy_extract_lazy_string (output.get (), &str_addr,
2329 &type, &len, &encoding);
4c37490d 2330 string_print = true;
0646da15
TT
2331 }
2332 else
2333 {
2334 /* If it is a regular (non-lazy) string, extract
2335 it and copy the contents into THEVALUE. If the
2336 hint says to print it as a string, set
2337 string_print. Otherwise just return the extracted
2338 string as a value. */
2339
9b972014 2340 gdb::unique_xmalloc_ptr<char> s
68cdc557 2341 = python_string_to_target_string (output.get ());
0646da15
TT
2342
2343 if (s)
2344 {
e3821cca 2345 struct gdbarch *gdbarch;
0646da15 2346
9b972014
TT
2347 gdb::unique_xmalloc_ptr<char> hint
2348 = gdbpy_get_display_hint (value_formatter);
0646da15
TT
2349 if (hint)
2350 {
9b972014 2351 if (!strcmp (hint.get (), "string"))
4c37490d 2352 string_print = true;
0646da15
TT
2353 }
2354
9b972014 2355 thevalue = std::string (s.get ());
2f408ecb 2356 len = thevalue.size ();
e3821cca 2357 gdbarch = get_type_arch (value_type (value));
0646da15 2358 type = builtin_type (gdbarch)->builtin_char;
0646da15
TT
2359
2360 if (!string_print)
d7e74731 2361 return thevalue;
0646da15
TT
2362 }
2363 else
2364 gdbpy_print_stack ();
2365 }
2366 }
2367 /* If the printer returned a replacement value, set VALUE
2368 to REPLACEMENT. If there is not a replacement value,
2369 just use the value passed to this function. */
2370 if (replacement)
2371 value = replacement;
2372 }
2373 }
2374 }
b6313243
TT
2375#endif
2376
99ad9427 2377 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2378
2379 /* If the THEVALUE has contents, it is a regular string. */
2f408ecb 2380 if (!thevalue.empty ())
d7e74731 2381 LA_PRINT_STRING (&stb, type, (gdb_byte *) thevalue.c_str (),
1eba6383 2382 len, encoding.get (), 0, &opts);
09ca9e2e 2383 else if (string_print)
00bd41d6
PM
2384 /* Otherwise, if string_print is set, and it is not a regular
2385 string, it is a lazy string. */
d7e74731 2386 val_print_string (type, encoding.get (), str_addr, len, &stb, &opts);
b6313243 2387 else
00bd41d6 2388 /* All other cases. */
d7e74731 2389 common_val_print (value, &stb, 0, &opts, current_language);
57e66780 2390
d7e74731 2391 return std::move (stb.string ());
85265413
NR
2392}
2393
4c37490d 2394bool
b09e2c59 2395varobj_editable_p (const struct varobj *var)
340a7723
NR
2396{
2397 struct type *type;
340a7723
NR
2398
2399 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
4c37490d 2400 return false;
340a7723 2401
99ad9427 2402 type = varobj_get_value_type (var);
340a7723
NR
2403
2404 switch (TYPE_CODE (type))
2405 {
2406 case TYPE_CODE_STRUCT:
2407 case TYPE_CODE_UNION:
2408 case TYPE_CODE_ARRAY:
2409 case TYPE_CODE_FUNC:
2410 case TYPE_CODE_METHOD:
4c37490d 2411 return false;
340a7723
NR
2412 break;
2413
2414 default:
4c37490d 2415 return true;
340a7723
NR
2416 break;
2417 }
2418}
2419
d32cafc7 2420/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2421
4c37490d 2422bool
b09e2c59 2423varobj_value_is_changeable_p (const struct varobj *var)
8b93c638 2424{
ca20d462 2425 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2426}
2427
4c37490d 2428/* Return true if that varobj is floating, that is is always evaluated in the
5a413362
VP
2429 selected frame, and not bound to thread/frame. Such variable objects
2430 are created using '@' as frame specifier to -var-create. */
4c37490d 2431bool
b09e2c59 2432varobj_floating_p (const struct varobj *var)
5a413362
VP
2433{
2434 return var->root->floating;
2435}
2436
d32cafc7
JB
2437/* Implement the "value_is_changeable_p" varobj callback for most
2438 languages. */
2439
4c37490d 2440bool
b09e2c59 2441varobj_default_value_is_changeable_p (const struct varobj *var)
d32cafc7 2442{
4c37490d 2443 bool r;
d32cafc7
JB
2444 struct type *type;
2445
2446 if (CPLUS_FAKE_CHILD (var))
4c37490d 2447 return false;
d32cafc7 2448
99ad9427 2449 type = varobj_get_value_type (var);
d32cafc7
JB
2450
2451 switch (TYPE_CODE (type))
2452 {
2453 case TYPE_CODE_STRUCT:
2454 case TYPE_CODE_UNION:
2455 case TYPE_CODE_ARRAY:
4c37490d 2456 r = false;
d32cafc7
JB
2457 break;
2458
2459 default:
4c37490d 2460 r = true;
d32cafc7
JB
2461 }
2462
2463 return r;
2464}
2465
54333c3b
JK
2466/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2467 with an arbitrary caller supplied DATA pointer. */
2468
2469void
2470all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2471{
2472 struct varobj_root *var_root, *var_root_next;
2473
2474 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2475
2476 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2477 {
2478 var_root_next = var_root->next;
2479
2480 (*func) (var_root->rootvar, data);
2481 }
2482}
8756216b 2483
54333c3b 2484/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2485 defined on globals. It is a helper for varobj_invalidate.
2486
2487 This function is called after changing the symbol file, in this case the
2488 pointers to "struct type" stored by the varobj are no longer valid. All
2489 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2490
54333c3b
JK
2491static void
2492varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2493{
4e969b4f
AB
2494 /* global and floating var must be re-evaluated. */
2495 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2496 {
54333c3b 2497 struct varobj *tmp_var;
2dbd25e5 2498
54333c3b
JK
2499 /* Try to create a varobj with same expression. If we succeed
2500 replace the old varobj, otherwise invalidate it. */
2f408ecb 2501 tmp_var = varobj_create (NULL, var->name.c_str (), (CORE_ADDR) 0,
54333c3b
JK
2502 USE_CURRENT_FRAME);
2503 if (tmp_var != NULL)
2504 {
2f408ecb 2505 tmp_var->obj_name = var->obj_name;
30914ca8 2506 varobj_delete (var, 0);
54333c3b 2507 install_variable (tmp_var);
2dbd25e5 2508 }
54333c3b 2509 else
4c37490d 2510 var->root->is_valid = false;
2dbd25e5 2511 }
54333c3b 2512 else /* locals must be invalidated. */
4c37490d 2513 var->root->is_valid = false;
54333c3b
JK
2514}
2515
2516/* Invalidate the varobjs that are tied to locals and re-create the ones that
2517 are defined on globals.
2518 Invalidated varobjs will be always printed in_scope="invalid". */
2519
2520void
2521varobj_invalidate (void)
2522{
2523 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2524}
481695ed 2525
1c3569d4
MR
2526void
2527_initialize_varobj (void)
2528{
8d749320 2529 varobj_table = XCNEWVEC (struct vlist *, VAROBJ_TABLE_SIZE);
1c3569d4
MR
2530
2531 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
2532 &varobjdebug,
2533 _("Set varobj debugging."),
2534 _("Show varobj debugging."),
2535 _("When non-zero, varobj debugging is enabled."),
2536 NULL, show_varobjdebug,
2537 &setdebuglist, &showdebuglist);
2538}
This page took 2.049596 seconds and 4 git commands to generate.