* gdb.dwarf2/pr10770.exp: Use standard_testfile.
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
c5a57081 3 Copyright (C) 1999-2012 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
a6c442d8 19#include "exceptions.h"
8b93c638
JM
20#include "value.h"
21#include "expression.h"
22#include "frame.h"
8b93c638 23#include "language.h"
8b93c638 24#include "gdbcmd.h"
d2353924 25#include "block.h"
79a45b7d 26#include "valprint.h"
a6c442d8
MK
27
28#include "gdb_assert.h"
b66d6d2e 29#include "gdb_string.h"
0cc7d26f 30#include "gdb_regex.h"
8b93c638
JM
31
32#include "varobj.h"
28335dcc 33#include "vec.h"
6208b47d
VP
34#include "gdbthread.h"
35#include "inferior.h"
181875a4
JB
36#include "ada-varobj.h"
37#include "ada-lang.h"
8b93c638 38
b6313243
TT
39#if HAVE_PYTHON
40#include "python/python.h"
41#include "python/python-internal.h"
50389644
PA
42#else
43typedef int PyObject;
b6313243
TT
44#endif
45
85254831
KS
46/* The names of varobjs representing anonymous structs or unions. */
47#define ANONYMOUS_STRUCT_NAME _("<anonymous struct>")
48#define ANONYMOUS_UNION_NAME _("<anonymous union>")
49
8b93c638
JM
50/* Non-zero if we want to see trace of varobj level stuff. */
51
52int varobjdebug = 0;
920d2a44
AC
53static void
54show_varobjdebug (struct ui_file *file, int from_tty,
55 struct cmd_list_element *c, const char *value)
56{
57 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
58}
8b93c638 59
581e13c1 60/* String representations of gdb's format codes. */
8b93c638 61char *varobj_format_string[] =
72330bd6 62 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 63
581e13c1 64/* String representations of gdb's known languages. */
72330bd6 65char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638 66
0cc7d26f
TT
67/* True if we want to allow Python-based pretty-printing. */
68static int pretty_printing = 0;
69
70void
71varobj_enable_pretty_printing (void)
72{
73 pretty_printing = 1;
74}
75
8b93c638
JM
76/* Data structures */
77
78/* Every root variable has one of these structures saved in its
581e13c1 79 varobj. Members which must be free'd are noted. */
8b93c638 80struct varobj_root
72330bd6 81{
8b93c638 82
581e13c1 83 /* Alloc'd expression for this parent. */
72330bd6 84 struct expression *exp;
8b93c638 85
581e13c1 86 /* Block for which this expression is valid. */
72330bd6 87 struct block *valid_block;
8b93c638 88
44a67aa7
VP
89 /* The frame for this expression. This field is set iff valid_block is
90 not NULL. */
e64d9b3d 91 struct frame_id frame;
8b93c638 92
c5b48eac 93 /* The thread ID that this varobj_root belong to. This field
581e13c1 94 is only valid if valid_block is not NULL.
c5b48eac
VP
95 When not 0, indicates which thread 'frame' belongs to.
96 When 0, indicates that the thread list was empty when the varobj_root
97 was created. */
98 int thread_id;
99
a5defcdc
VP
100 /* If 1, the -var-update always recomputes the value in the
101 current thread and frame. Otherwise, variable object is
581e13c1 102 always updated in the specific scope/thread/frame. */
a5defcdc 103 int floating;
73a93a32 104
8756216b
DP
105 /* Flag that indicates validity: set to 0 when this varobj_root refers
106 to symbols that do not exist anymore. */
107 int is_valid;
108
581e13c1 109 /* Language info for this variable and its children. */
72330bd6 110 struct language_specific *lang;
8b93c638 111
581e13c1 112 /* The varobj for this root node. */
72330bd6 113 struct varobj *rootvar;
8b93c638 114
72330bd6
AC
115 /* Next root variable */
116 struct varobj_root *next;
117};
8b93c638
JM
118
119/* Every variable in the system has a structure of this type defined
581e13c1
MS
120 for it. This structure holds all information necessary to manipulate
121 a particular object variable. Members which must be freed are noted. */
8b93c638 122struct varobj
72330bd6 123{
8b93c638 124
581e13c1 125 /* Alloc'd name of the variable for this object. If this variable is a
72330bd6 126 child, then this name will be the child's source name.
581e13c1
MS
127 (bar, not foo.bar). */
128 /* NOTE: This is the "expression". */
72330bd6 129 char *name;
8b93c638 130
02142340
VP
131 /* Alloc'd expression for this child. Can be used to create a
132 root variable corresponding to this child. */
133 char *path_expr;
134
581e13c1
MS
135 /* The alloc'd name for this variable's object. This is here for
136 convenience when constructing this object's children. */
72330bd6 137 char *obj_name;
8b93c638 138
581e13c1 139 /* Index of this variable in its parent or -1. */
72330bd6 140 int index;
8b93c638 141
202ddcaa
VP
142 /* The type of this variable. This can be NULL
143 for artifial variable objects -- currently, the "accessibility"
144 variable objects in C++. */
72330bd6 145 struct type *type;
8b93c638 146
b20d8971
VP
147 /* The value of this expression or subexpression. A NULL value
148 indicates there was an error getting this value.
b2c2bd75
VP
149 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
150 the value is either NULL, or not lazy. */
30b28db1 151 struct value *value;
8b93c638 152
581e13c1 153 /* The number of (immediate) children this variable has. */
72330bd6 154 int num_children;
8b93c638 155
581e13c1 156 /* If this object is a child, this points to its immediate parent. */
72330bd6 157 struct varobj *parent;
8b93c638 158
28335dcc
VP
159 /* Children of this object. */
160 VEC (varobj_p) *children;
8b93c638 161
b6313243
TT
162 /* Whether the children of this varobj were requested. This field is
163 used to decide if dynamic varobj should recompute their children.
164 In the event that the frontend never asked for the children, we
165 can avoid that. */
166 int children_requested;
167
581e13c1
MS
168 /* Description of the root variable. Points to root variable for
169 children. */
72330bd6 170 struct varobj_root *root;
8b93c638 171
581e13c1 172 /* The format of the output for this object. */
72330bd6 173 enum varobj_display_formats format;
fb9b6b35 174
581e13c1 175 /* Was this variable updated via a varobj_set_value operation. */
fb9b6b35 176 int updated;
85265413
NR
177
178 /* Last print value. */
179 char *print_value;
25d5ea92
VP
180
181 /* Is this variable frozen. Frozen variables are never implicitly
182 updated by -var-update *
183 or -var-update <direct-or-indirect-parent>. */
184 int frozen;
185
186 /* Is the value of this variable intentionally not fetched? It is
187 not fetched if either the variable is frozen, or any parents is
188 frozen. */
189 int not_fetched;
b6313243 190
0cc7d26f
TT
191 /* Sub-range of children which the MI consumer has requested. If
192 FROM < 0 or TO < 0, means that all children have been
193 requested. */
194 int from;
195 int to;
196
197 /* The pretty-printer constructor. If NULL, then the default
198 pretty-printer will be looked up. If None, then no
199 pretty-printer will be installed. */
200 PyObject *constructor;
201
b6313243
TT
202 /* The pretty-printer that has been constructed. If NULL, then a
203 new printer object is needed, and one will be constructed. */
204 PyObject *pretty_printer;
0cc7d26f
TT
205
206 /* The iterator returned by the printer's 'children' method, or NULL
207 if not available. */
208 PyObject *child_iter;
209
210 /* We request one extra item from the iterator, so that we can
211 report to the caller whether there are more items than we have
212 already reported. However, we don't want to install this value
213 when we read it, because that will mess up future updates. So,
214 we stash it here instead. */
215 PyObject *saved_item;
72330bd6 216};
8b93c638 217
8b93c638 218struct cpstack
72330bd6
AC
219{
220 char *name;
221 struct cpstack *next;
222};
8b93c638
JM
223
224/* A list of varobjs */
225
226struct vlist
72330bd6
AC
227{
228 struct varobj *var;
229 struct vlist *next;
230};
8b93c638
JM
231
232/* Private function prototypes */
233
581e13c1 234/* Helper functions for the above subcommands. */
8b93c638 235
a14ed312 236static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 237
a14ed312
KB
238static void delete_variable_1 (struct cpstack **, int *,
239 struct varobj *, int, int);
8b93c638 240
a14ed312 241static int install_variable (struct varobj *);
8b93c638 242
a14ed312 243static void uninstall_variable (struct varobj *);
8b93c638 244
a14ed312 245static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 246
b6313243
TT
247static struct varobj *
248create_child_with_value (struct varobj *parent, int index, const char *name,
249 struct value *value);
250
8b93c638
JM
251/* Utility routines */
252
a14ed312 253static struct varobj *new_variable (void);
8b93c638 254
a14ed312 255static struct varobj *new_root_variable (void);
8b93c638 256
a14ed312 257static void free_variable (struct varobj *var);
8b93c638 258
74b7792f
AC
259static struct cleanup *make_cleanup_free_variable (struct varobj *var);
260
a14ed312 261static struct type *get_type (struct varobj *var);
8b93c638 262
6e2a9270
VP
263static struct type *get_value_type (struct varobj *var);
264
a14ed312 265static struct type *get_target_type (struct type *);
8b93c638 266
a14ed312 267static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 268
a14ed312 269static void cppush (struct cpstack **pstack, char *name);
8b93c638 270
a14ed312 271static char *cppop (struct cpstack **pstack);
8b93c638 272
8264ba82
AG
273static int update_type_if_necessary (struct varobj *var,
274 struct value *new_value);
275
acd65feb
VP
276static int install_new_value (struct varobj *var, struct value *value,
277 int initial);
278
581e13c1 279/* Language-specific routines. */
8b93c638 280
a14ed312 281static enum varobj_languages variable_language (struct varobj *var);
8b93c638 282
a14ed312 283static int number_of_children (struct varobj *);
8b93c638 284
a14ed312 285static char *name_of_variable (struct varobj *);
8b93c638 286
a14ed312 287static char *name_of_child (struct varobj *, int);
8b93c638 288
30b28db1 289static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 290
30b28db1 291static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 292
de051565
MK
293static char *my_value_of_variable (struct varobj *var,
294 enum varobj_display_formats format);
8b93c638 295
85265413 296static char *value_get_print_value (struct value *value,
b6313243 297 enum varobj_display_formats format,
d452c4bc 298 struct varobj *var);
85265413 299
b2c2bd75
VP
300static int varobj_value_is_changeable_p (struct varobj *var);
301
302static int is_root_p (struct varobj *var);
8b93c638 303
d8b65138
JK
304#if HAVE_PYTHON
305
9a1edae6
PM
306static struct varobj *varobj_add_child (struct varobj *var,
307 const char *name,
308 struct value *value);
b6313243 309
d8b65138
JK
310#endif /* HAVE_PYTHON */
311
d32cafc7
JB
312static int default_value_is_changeable_p (struct varobj *var);
313
8b93c638
JM
314/* C implementation */
315
a14ed312 316static int c_number_of_children (struct varobj *var);
8b93c638 317
a14ed312 318static char *c_name_of_variable (struct varobj *parent);
8b93c638 319
a14ed312 320static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 321
02142340
VP
322static char *c_path_expr_of_child (struct varobj *child);
323
30b28db1 324static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 325
30b28db1 326static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 327
a14ed312 328static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 329
de051565
MK
330static char *c_value_of_variable (struct varobj *var,
331 enum varobj_display_formats format);
8b93c638
JM
332
333/* C++ implementation */
334
a14ed312 335static int cplus_number_of_children (struct varobj *var);
8b93c638 336
a14ed312 337static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 338
a14ed312 339static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 340
a14ed312 341static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 342
02142340
VP
343static char *cplus_path_expr_of_child (struct varobj *child);
344
30b28db1 345static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 346
30b28db1 347static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 348
a14ed312 349static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 350
de051565
MK
351static char *cplus_value_of_variable (struct varobj *var,
352 enum varobj_display_formats format);
8b93c638
JM
353
354/* Java implementation */
355
a14ed312 356static int java_number_of_children (struct varobj *var);
8b93c638 357
a14ed312 358static char *java_name_of_variable (struct varobj *parent);
8b93c638 359
a14ed312 360static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 361
02142340
VP
362static char *java_path_expr_of_child (struct varobj *child);
363
30b28db1 364static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 365
30b28db1 366static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 367
a14ed312 368static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 369
de051565
MK
370static char *java_value_of_variable (struct varobj *var,
371 enum varobj_display_formats format);
8b93c638 372
40591b7d
JCD
373/* Ada implementation */
374
375static int ada_number_of_children (struct varobj *var);
376
377static char *ada_name_of_variable (struct varobj *parent);
378
379static char *ada_name_of_child (struct varobj *parent, int index);
380
381static char *ada_path_expr_of_child (struct varobj *child);
382
383static struct value *ada_value_of_root (struct varobj **var_handle);
384
385static struct value *ada_value_of_child (struct varobj *parent, int index);
386
387static struct type *ada_type_of_child (struct varobj *parent, int index);
388
389static char *ada_value_of_variable (struct varobj *var,
390 enum varobj_display_formats format);
391
d32cafc7
JB
392static int ada_value_is_changeable_p (struct varobj *var);
393
7a290c40
JB
394static int ada_value_has_mutated (struct varobj *var, struct value *new_val,
395 struct type *new_type);
396
8b93c638
JM
397/* The language specific vector */
398
399struct language_specific
72330bd6 400{
8b93c638 401
581e13c1 402 /* The language of this variable. */
72330bd6 403 enum varobj_languages language;
8b93c638 404
581e13c1 405 /* The number of children of PARENT. */
72330bd6 406 int (*number_of_children) (struct varobj * parent);
8b93c638 407
581e13c1 408 /* The name (expression) of a root varobj. */
72330bd6 409 char *(*name_of_variable) (struct varobj * parent);
8b93c638 410
581e13c1 411 /* The name of the INDEX'th child of PARENT. */
72330bd6 412 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 413
02142340
VP
414 /* Returns the rooted expression of CHILD, which is a variable
415 obtain that has some parent. */
416 char *(*path_expr_of_child) (struct varobj * child);
417
581e13c1 418 /* The ``struct value *'' of the root variable ROOT. */
30b28db1 419 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 420
581e13c1 421 /* The ``struct value *'' of the INDEX'th child of PARENT. */
30b28db1 422 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 423
581e13c1 424 /* The type of the INDEX'th child of PARENT. */
72330bd6 425 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 426
581e13c1 427 /* The current value of VAR. */
de051565
MK
428 char *(*value_of_variable) (struct varobj * var,
429 enum varobj_display_formats format);
7a290c40 430
d32cafc7
JB
431 /* Return non-zero if changes in value of VAR must be detected and
432 reported by -var-update. Return zero if -var-update should never
433 report changes of such values. This makes sense for structures
434 (since the changes in children values will be reported separately),
435 or for artifical objects (like 'public' pseudo-field in C++).
436
437 Return value of 0 means that gdb need not call value_fetch_lazy
438 for the value of this variable object. */
439 int (*value_is_changeable_p) (struct varobj *var);
440
7a290c40
JB
441 /* Return nonzero if the type of VAR has mutated.
442
443 VAR's value is still the varobj's previous value, while NEW_VALUE
444 is VAR's new value and NEW_TYPE is the var's new type. NEW_VALUE
445 may be NULL indicating that there is no value available (the varobj
446 may be out of scope, of may be the child of a null pointer, for
447 instance). NEW_TYPE, on the other hand, must never be NULL.
448
449 This function should also be able to assume that var's number of
450 children is set (not < 0).
451
452 Languages where types do not mutate can set this to NULL. */
453 int (*value_has_mutated) (struct varobj *var, struct value *new_value,
454 struct type *new_type);
72330bd6 455};
8b93c638 456
581e13c1 457/* Array of known source language routines. */
d5d6fca5 458static struct language_specific languages[vlang_end] = {
581e13c1 459 /* Unknown (try treating as C). */
8b93c638 460 {
72330bd6
AC
461 vlang_unknown,
462 c_number_of_children,
463 c_name_of_variable,
464 c_name_of_child,
02142340 465 c_path_expr_of_child,
72330bd6
AC
466 c_value_of_root,
467 c_value_of_child,
468 c_type_of_child,
7a290c40 469 c_value_of_variable,
d32cafc7 470 default_value_is_changeable_p,
7a290c40 471 NULL /* value_has_mutated */}
8b93c638
JM
472 ,
473 /* C */
474 {
72330bd6
AC
475 vlang_c,
476 c_number_of_children,
477 c_name_of_variable,
478 c_name_of_child,
02142340 479 c_path_expr_of_child,
72330bd6
AC
480 c_value_of_root,
481 c_value_of_child,
482 c_type_of_child,
7a290c40 483 c_value_of_variable,
d32cafc7 484 default_value_is_changeable_p,
7a290c40 485 NULL /* value_has_mutated */}
8b93c638
JM
486 ,
487 /* C++ */
488 {
72330bd6
AC
489 vlang_cplus,
490 cplus_number_of_children,
491 cplus_name_of_variable,
492 cplus_name_of_child,
02142340 493 cplus_path_expr_of_child,
72330bd6
AC
494 cplus_value_of_root,
495 cplus_value_of_child,
496 cplus_type_of_child,
7a290c40 497 cplus_value_of_variable,
d32cafc7 498 default_value_is_changeable_p,
7a290c40 499 NULL /* value_has_mutated */}
8b93c638
JM
500 ,
501 /* Java */
502 {
72330bd6
AC
503 vlang_java,
504 java_number_of_children,
505 java_name_of_variable,
506 java_name_of_child,
02142340 507 java_path_expr_of_child,
72330bd6
AC
508 java_value_of_root,
509 java_value_of_child,
510 java_type_of_child,
7a290c40 511 java_value_of_variable,
d32cafc7 512 default_value_is_changeable_p,
7a290c40 513 NULL /* value_has_mutated */},
40591b7d
JCD
514 /* Ada */
515 {
516 vlang_ada,
517 ada_number_of_children,
518 ada_name_of_variable,
519 ada_name_of_child,
520 ada_path_expr_of_child,
521 ada_value_of_root,
522 ada_value_of_child,
523 ada_type_of_child,
7a290c40 524 ada_value_of_variable,
d32cafc7 525 ada_value_is_changeable_p,
7a290c40 526 ada_value_has_mutated}
8b93c638
JM
527};
528
581e13c1 529/* A little convenience enum for dealing with C++/Java. */
8b93c638 530enum vsections
72330bd6
AC
531{
532 v_public = 0, v_private, v_protected
533};
8b93c638
JM
534
535/* Private data */
536
581e13c1 537/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 538static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 539
581e13c1 540/* Header of the list of root variable objects. */
8b93c638 541static struct varobj_root *rootlist;
8b93c638 542
581e13c1
MS
543/* Prime number indicating the number of buckets in the hash table. */
544/* A prime large enough to avoid too many colisions. */
8b93c638
JM
545#define VAROBJ_TABLE_SIZE 227
546
581e13c1 547/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
548static struct vlist **varobj_table;
549
581e13c1 550/* Is the variable X one of our "fake" children? */
8b93c638
JM
551#define CPLUS_FAKE_CHILD(x) \
552((x) != NULL && (x)->type == NULL && (x)->value == NULL)
553\f
554
555/* API Implementation */
b2c2bd75
VP
556static int
557is_root_p (struct varobj *var)
558{
559 return (var->root->rootvar == var);
560}
8b93c638 561
d452c4bc
UW
562#ifdef HAVE_PYTHON
563/* Helper function to install a Python environment suitable for
564 use during operations on VAR. */
70221824 565static struct cleanup *
d452c4bc
UW
566varobj_ensure_python_env (struct varobj *var)
567{
568 return ensure_python_env (var->root->exp->gdbarch,
569 var->root->exp->language_defn);
570}
571#endif
572
581e13c1 573/* Creates a varobj (not its children). */
8b93c638 574
7d8547c9
AC
575/* Return the full FRAME which corresponds to the given CORE_ADDR
576 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
577
578static struct frame_info *
579find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
580{
581 struct frame_info *frame = NULL;
582
583 if (frame_addr == (CORE_ADDR) 0)
584 return NULL;
585
9d49bdc2
PA
586 for (frame = get_current_frame ();
587 frame != NULL;
588 frame = get_prev_frame (frame))
7d8547c9 589 {
1fac167a
UW
590 /* The CORE_ADDR we get as argument was parsed from a string GDB
591 output as $fp. This output got truncated to gdbarch_addr_bit.
592 Truncate the frame base address in the same manner before
593 comparing it against our argument. */
594 CORE_ADDR frame_base = get_frame_base_address (frame);
595 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 596
1fac167a
UW
597 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
598 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
599
600 if (frame_base == frame_addr)
7d8547c9
AC
601 return frame;
602 }
9d49bdc2
PA
603
604 return NULL;
7d8547c9
AC
605}
606
8b93c638
JM
607struct varobj *
608varobj_create (char *objname,
72330bd6 609 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
610{
611 struct varobj *var;
8b93c638
JM
612 struct cleanup *old_chain;
613
581e13c1 614 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 615 var = new_root_variable ();
74b7792f 616 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
617
618 if (expression != NULL)
619 {
e4195b40 620 struct frame_info *fi;
35633fef 621 struct frame_id old_id = null_frame_id;
e4195b40 622 struct block *block;
8b93c638
JM
623 char *p;
624 enum varobj_languages lang;
e55dccf0 625 struct value *value = NULL;
8e7b59a5 626 volatile struct gdb_exception except;
8b93c638 627
9d49bdc2
PA
628 /* Parse and evaluate the expression, filling in as much of the
629 variable's data as possible. */
630
631 if (has_stack_frames ())
632 {
581e13c1 633 /* Allow creator to specify context of variable. */
9d49bdc2
PA
634 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
635 fi = get_selected_frame (NULL);
636 else
637 /* FIXME: cagney/2002-11-23: This code should be doing a
638 lookup using the frame ID and not just the frame's
639 ``address''. This, of course, means an interface
640 change. However, with out that interface change ISAs,
641 such as the ia64 with its two stacks, won't work.
642 Similar goes for the case where there is a frameless
643 function. */
644 fi = find_frame_addr_in_frame_chain (frame);
645 }
8b93c638 646 else
9d49bdc2 647 fi = NULL;
8b93c638 648
581e13c1 649 /* frame = -2 means always use selected frame. */
73a93a32 650 if (type == USE_SELECTED_FRAME)
a5defcdc 651 var->root->floating = 1;
73a93a32 652
8b93c638
JM
653 block = NULL;
654 if (fi != NULL)
ae767bfb 655 block = get_frame_block (fi, 0);
8b93c638
JM
656
657 p = expression;
658 innermost_block = NULL;
73a93a32 659 /* Wrap the call to parse expression, so we can
581e13c1 660 return a sensible error. */
8e7b59a5
KS
661 TRY_CATCH (except, RETURN_MASK_ERROR)
662 {
663 var->root->exp = parse_exp_1 (&p, block, 0);
664 }
665
666 if (except.reason < 0)
73a93a32 667 {
f748fb40 668 do_cleanups (old_chain);
73a93a32
JI
669 return NULL;
670 }
8b93c638 671
581e13c1 672 /* Don't allow variables to be created for types. */
8b93c638
JM
673 if (var->root->exp->elts[0].opcode == OP_TYPE)
674 {
675 do_cleanups (old_chain);
bc8332bb
AC
676 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
677 " as an expression.\n");
8b93c638
JM
678 return NULL;
679 }
680
681 var->format = variable_default_display (var);
682 var->root->valid_block = innermost_block;
1b36a34b 683 var->name = xstrdup (expression);
02142340 684 /* For a root var, the name and the expr are the same. */
1b36a34b 685 var->path_expr = xstrdup (expression);
8b93c638
JM
686
687 /* When the frame is different from the current frame,
688 we must select the appropriate frame before parsing
689 the expression, otherwise the value will not be current.
581e13c1 690 Since select_frame is so benign, just call it for all cases. */
4e22772d 691 if (innermost_block)
8b93c638 692 {
4e22772d
JK
693 /* User could specify explicit FRAME-ADDR which was not found but
694 EXPRESSION is frame specific and we would not be able to evaluate
695 it correctly next time. With VALID_BLOCK set we must also set
696 FRAME and THREAD_ID. */
697 if (fi == NULL)
698 error (_("Failed to find the specified frame"));
699
7a424e99 700 var->root->frame = get_frame_id (fi);
c5b48eac 701 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 702 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 703 select_frame (fi);
8b93c638
JM
704 }
705
340a7723 706 /* We definitely need to catch errors here.
8b93c638 707 If evaluate_expression succeeds we got the value we wanted.
581e13c1 708 But if it fails, we still go on with a call to evaluate_type(). */
8e7b59a5
KS
709 TRY_CATCH (except, RETURN_MASK_ERROR)
710 {
711 value = evaluate_expression (var->root->exp);
712 }
713
714 if (except.reason < 0)
e55dccf0
VP
715 {
716 /* Error getting the value. Try to at least get the
717 right type. */
718 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 719
e55dccf0
VP
720 var->type = value_type (type_only_value);
721 }
8264ba82
AG
722 else
723 {
724 int real_type_found = 0;
725
726 var->type = value_actual_type (value, 0, &real_type_found);
727 if (real_type_found)
728 value = value_cast (var->type, value);
729 }
acd65feb 730
8b93c638
JM
731 /* Set language info */
732 lang = variable_language (var);
d5d6fca5 733 var->root->lang = &languages[lang];
8b93c638 734
d32cafc7
JB
735 install_new_value (var, value, 1 /* Initial assignment */);
736
581e13c1 737 /* Set ourselves as our root. */
8b93c638
JM
738 var->root->rootvar = var;
739
581e13c1 740 /* Reset the selected frame. */
35633fef
JK
741 if (frame_id_p (old_id))
742 select_frame (frame_find_by_id (old_id));
8b93c638
JM
743 }
744
73a93a32 745 /* If the variable object name is null, that means this
581e13c1 746 is a temporary variable, so don't install it. */
73a93a32
JI
747
748 if ((var != NULL) && (objname != NULL))
8b93c638 749 {
1b36a34b 750 var->obj_name = xstrdup (objname);
8b93c638
JM
751
752 /* If a varobj name is duplicated, the install will fail so
581e13c1 753 we must cleanup. */
8b93c638
JM
754 if (!install_variable (var))
755 {
756 do_cleanups (old_chain);
757 return NULL;
758 }
759 }
760
761 discard_cleanups (old_chain);
762 return var;
763}
764
581e13c1 765/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
766
767char *
768varobj_gen_name (void)
769{
770 static int id = 0;
e64d9b3d 771 char *obj_name;
8b93c638 772
581e13c1 773 /* Generate a name for this object. */
8b93c638 774 id++;
b435e160 775 obj_name = xstrprintf ("var%d", id);
8b93c638 776
e64d9b3d 777 return obj_name;
8b93c638
JM
778}
779
61d8f275
JK
780/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
781 error if OBJNAME cannot be found. */
8b93c638
JM
782
783struct varobj *
784varobj_get_handle (char *objname)
785{
786 struct vlist *cv;
787 const char *chp;
788 unsigned int index = 0;
789 unsigned int i = 1;
790
791 for (chp = objname; *chp; chp++)
792 {
793 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
794 }
795
796 cv = *(varobj_table + index);
797 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
798 cv = cv->next;
799
800 if (cv == NULL)
8a3fe4f8 801 error (_("Variable object not found"));
8b93c638
JM
802
803 return cv->var;
804}
805
581e13c1 806/* Given the handle, return the name of the object. */
8b93c638
JM
807
808char *
809varobj_get_objname (struct varobj *var)
810{
811 return var->obj_name;
812}
813
581e13c1 814/* Given the handle, return the expression represented by the object. */
8b93c638
JM
815
816char *
817varobj_get_expression (struct varobj *var)
818{
819 return name_of_variable (var);
820}
821
822/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
823 otherwise deletes only the children; returns a malloc'ed list of
824 all the (malloc'ed) names of the variables that have been deleted
581e13c1 825 (NULL terminated). */
8b93c638
JM
826
827int
828varobj_delete (struct varobj *var, char ***dellist, int only_children)
829{
830 int delcount;
831 int mycount;
832 struct cpstack *result = NULL;
833 char **cp;
834
581e13c1 835 /* Initialize a stack for temporary results. */
8b93c638
JM
836 cppush (&result, NULL);
837
838 if (only_children)
581e13c1 839 /* Delete only the variable children. */
8b93c638
JM
840 delcount = delete_variable (&result, var, 1 /* only the children */ );
841 else
581e13c1 842 /* Delete the variable and all its children. */
8b93c638
JM
843 delcount = delete_variable (&result, var, 0 /* parent+children */ );
844
581e13c1 845 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
846 if (dellist != NULL)
847 {
848 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
849
850 cp = *dellist;
851 mycount = delcount;
852 *cp = cppop (&result);
853 while ((*cp != NULL) && (mycount > 0))
854 {
855 mycount--;
856 cp++;
857 *cp = cppop (&result);
858 }
859
860 if (mycount || (*cp != NULL))
8a3fe4f8 861 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 862 mycount);
8b93c638
JM
863 }
864
865 return delcount;
866}
867
d8b65138
JK
868#if HAVE_PYTHON
869
b6313243
TT
870/* Convenience function for varobj_set_visualizer. Instantiate a
871 pretty-printer for a given value. */
872static PyObject *
873instantiate_pretty_printer (PyObject *constructor, struct value *value)
874{
b6313243
TT
875 PyObject *val_obj = NULL;
876 PyObject *printer;
b6313243 877
b6313243 878 val_obj = value_to_value_object (value);
b6313243
TT
879 if (! val_obj)
880 return NULL;
881
882 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
883 Py_DECREF (val_obj);
884 return printer;
b6313243
TT
885}
886
d8b65138
JK
887#endif
888
581e13c1 889/* Set/Get variable object display format. */
8b93c638
JM
890
891enum varobj_display_formats
892varobj_set_display_format (struct varobj *var,
893 enum varobj_display_formats format)
894{
895 switch (format)
896 {
897 case FORMAT_NATURAL:
898 case FORMAT_BINARY:
899 case FORMAT_DECIMAL:
900 case FORMAT_HEXADECIMAL:
901 case FORMAT_OCTAL:
902 var->format = format;
903 break;
904
905 default:
906 var->format = variable_default_display (var);
907 }
908
ae7d22a6
VP
909 if (varobj_value_is_changeable_p (var)
910 && var->value && !value_lazy (var->value))
911 {
6c761d9c 912 xfree (var->print_value);
d452c4bc 913 var->print_value = value_get_print_value (var->value, var->format, var);
ae7d22a6
VP
914 }
915
8b93c638
JM
916 return var->format;
917}
918
919enum varobj_display_formats
920varobj_get_display_format (struct varobj *var)
921{
922 return var->format;
923}
924
b6313243
TT
925char *
926varobj_get_display_hint (struct varobj *var)
927{
928 char *result = NULL;
929
930#if HAVE_PYTHON
d452c4bc
UW
931 struct cleanup *back_to = varobj_ensure_python_env (var);
932
b6313243
TT
933 if (var->pretty_printer)
934 result = gdbpy_get_display_hint (var->pretty_printer);
d452c4bc
UW
935
936 do_cleanups (back_to);
b6313243
TT
937#endif
938
939 return result;
940}
941
0cc7d26f
TT
942/* Return true if the varobj has items after TO, false otherwise. */
943
944int
945varobj_has_more (struct varobj *var, int to)
946{
947 if (VEC_length (varobj_p, var->children) > to)
948 return 1;
949 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
950 && var->saved_item != NULL);
951}
952
c5b48eac
VP
953/* If the variable object is bound to a specific thread, that
954 is its evaluation can always be done in context of a frame
955 inside that thread, returns GDB id of the thread -- which
581e13c1 956 is always positive. Otherwise, returns -1. */
c5b48eac
VP
957int
958varobj_get_thread_id (struct varobj *var)
959{
960 if (var->root->valid_block && var->root->thread_id > 0)
961 return var->root->thread_id;
962 else
963 return -1;
964}
965
25d5ea92
VP
966void
967varobj_set_frozen (struct varobj *var, int frozen)
968{
969 /* When a variable is unfrozen, we don't fetch its value.
970 The 'not_fetched' flag remains set, so next -var-update
971 won't complain.
972
973 We don't fetch the value, because for structures the client
974 should do -var-update anyway. It would be bad to have different
975 client-size logic for structure and other types. */
976 var->frozen = frozen;
977}
978
979int
980varobj_get_frozen (struct varobj *var)
981{
982 return var->frozen;
983}
984
0cc7d26f
TT
985/* A helper function that restricts a range to what is actually
986 available in a VEC. This follows the usual rules for the meaning
987 of FROM and TO -- if either is negative, the entire range is
988 used. */
989
990static void
991restrict_range (VEC (varobj_p) *children, int *from, int *to)
992{
993 if (*from < 0 || *to < 0)
994 {
995 *from = 0;
996 *to = VEC_length (varobj_p, children);
997 }
998 else
999 {
1000 if (*from > VEC_length (varobj_p, children))
1001 *from = VEC_length (varobj_p, children);
1002 if (*to > VEC_length (varobj_p, children))
1003 *to = VEC_length (varobj_p, children);
1004 if (*from > *to)
1005 *from = *to;
1006 }
1007}
1008
d8b65138
JK
1009#if HAVE_PYTHON
1010
0cc7d26f
TT
1011/* A helper for update_dynamic_varobj_children that installs a new
1012 child when needed. */
1013
1014static void
1015install_dynamic_child (struct varobj *var,
1016 VEC (varobj_p) **changed,
8264ba82 1017 VEC (varobj_p) **type_changed,
0cc7d26f
TT
1018 VEC (varobj_p) **new,
1019 VEC (varobj_p) **unchanged,
1020 int *cchanged,
1021 int index,
1022 const char *name,
1023 struct value *value)
1024{
1025 if (VEC_length (varobj_p, var->children) < index + 1)
1026 {
1027 /* There's no child yet. */
1028 struct varobj *child = varobj_add_child (var, name, value);
a109c7c1 1029
0cc7d26f
TT
1030 if (new)
1031 {
1032 VEC_safe_push (varobj_p, *new, child);
1033 *cchanged = 1;
1034 }
1035 }
1036 else
1037 {
1038 varobj_p existing = VEC_index (varobj_p, var->children, index);
a109c7c1 1039
8264ba82
AG
1040 int type_updated = update_type_if_necessary (existing, value);
1041 if (type_updated)
1042 {
1043 if (type_changed)
1044 VEC_safe_push (varobj_p, *type_changed, existing);
1045 }
0cc7d26f
TT
1046 if (install_new_value (existing, value, 0))
1047 {
8264ba82 1048 if (!type_updated && changed)
0cc7d26f
TT
1049 VEC_safe_push (varobj_p, *changed, existing);
1050 }
8264ba82 1051 else if (!type_updated && unchanged)
0cc7d26f
TT
1052 VEC_safe_push (varobj_p, *unchanged, existing);
1053 }
1054}
1055
0cc7d26f
TT
1056static int
1057dynamic_varobj_has_child_method (struct varobj *var)
1058{
1059 struct cleanup *back_to;
1060 PyObject *printer = var->pretty_printer;
1061 int result;
1062
1063 back_to = varobj_ensure_python_env (var);
1064 result = PyObject_HasAttr (printer, gdbpy_children_cst);
1065 do_cleanups (back_to);
1066 return result;
1067}
1068
1069#endif
1070
b6313243
TT
1071static int
1072update_dynamic_varobj_children (struct varobj *var,
1073 VEC (varobj_p) **changed,
8264ba82 1074 VEC (varobj_p) **type_changed,
0cc7d26f
TT
1075 VEC (varobj_p) **new,
1076 VEC (varobj_p) **unchanged,
1077 int *cchanged,
1078 int update_children,
1079 int from,
1080 int to)
b6313243
TT
1081{
1082#if HAVE_PYTHON
b6313243
TT
1083 struct cleanup *back_to;
1084 PyObject *children;
b6313243 1085 int i;
b6313243 1086 PyObject *printer = var->pretty_printer;
b6313243 1087
d452c4bc 1088 back_to = varobj_ensure_python_env (var);
b6313243
TT
1089
1090 *cchanged = 0;
1091 if (!PyObject_HasAttr (printer, gdbpy_children_cst))
1092 {
1093 do_cleanups (back_to);
1094 return 0;
1095 }
1096
0cc7d26f 1097 if (update_children || !var->child_iter)
b6313243 1098 {
0cc7d26f
TT
1099 children = PyObject_CallMethodObjArgs (printer, gdbpy_children_cst,
1100 NULL);
b6313243 1101
0cc7d26f
TT
1102 if (!children)
1103 {
1104 gdbpy_print_stack ();
1105 error (_("Null value returned for children"));
1106 }
b6313243 1107
0cc7d26f 1108 make_cleanup_py_decref (children);
b6313243 1109
0cc7d26f
TT
1110 if (!PyIter_Check (children))
1111 error (_("Returned value is not iterable"));
1112
1113 Py_XDECREF (var->child_iter);
1114 var->child_iter = PyObject_GetIter (children);
1115 if (!var->child_iter)
1116 {
1117 gdbpy_print_stack ();
1118 error (_("Could not get children iterator"));
1119 }
1120
1121 Py_XDECREF (var->saved_item);
1122 var->saved_item = NULL;
1123
1124 i = 0;
b6313243 1125 }
0cc7d26f
TT
1126 else
1127 i = VEC_length (varobj_p, var->children);
b6313243 1128
0cc7d26f
TT
1129 /* We ask for one extra child, so that MI can report whether there
1130 are more children. */
1131 for (; to < 0 || i < to + 1; ++i)
b6313243 1132 {
0cc7d26f 1133 PyObject *item;
a4c8e806 1134 int force_done = 0;
b6313243 1135
0cc7d26f
TT
1136 /* See if there was a leftover from last time. */
1137 if (var->saved_item)
1138 {
1139 item = var->saved_item;
1140 var->saved_item = NULL;
1141 }
1142 else
1143 item = PyIter_Next (var->child_iter);
b6313243 1144
0cc7d26f 1145 if (!item)
a4c8e806
TT
1146 {
1147 /* Normal end of iteration. */
1148 if (!PyErr_Occurred ())
1149 break;
1150
1151 /* If we got a memory error, just use the text as the
1152 item. */
1153 if (PyErr_ExceptionMatches (gdbpy_gdb_memory_error))
1154 {
1155 PyObject *type, *value, *trace;
1156 char *name_str, *value_str;
1157
1158 PyErr_Fetch (&type, &value, &trace);
1159 value_str = gdbpy_exception_to_string (type, value);
1160 Py_XDECREF (type);
1161 Py_XDECREF (value);
1162 Py_XDECREF (trace);
1163 if (!value_str)
1164 {
1165 gdbpy_print_stack ();
1166 break;
1167 }
1168
1169 name_str = xstrprintf ("<error at %d>", i);
1170 item = Py_BuildValue ("(ss)", name_str, value_str);
1171 xfree (name_str);
1172 xfree (value_str);
1173 if (!item)
1174 {
1175 gdbpy_print_stack ();
1176 break;
1177 }
1178
1179 force_done = 1;
1180 }
1181 else
1182 {
1183 /* Any other kind of error. */
1184 gdbpy_print_stack ();
1185 break;
1186 }
1187 }
b6313243 1188
0cc7d26f
TT
1189 /* We don't want to push the extra child on any report list. */
1190 if (to < 0 || i < to)
b6313243 1191 {
0cc7d26f 1192 PyObject *py_v;
ddd49eee 1193 const char *name;
0cc7d26f
TT
1194 struct value *v;
1195 struct cleanup *inner;
1196 int can_mention = from < 0 || i >= from;
1197
1198 inner = make_cleanup_py_decref (item);
1199
1200 if (!PyArg_ParseTuple (item, "sO", &name, &py_v))
a4c8e806
TT
1201 {
1202 gdbpy_print_stack ();
1203 error (_("Invalid item from the child list"));
1204 }
0cc7d26f
TT
1205
1206 v = convert_value_from_python (py_v);
8dc78533
JK
1207 if (v == NULL)
1208 gdbpy_print_stack ();
0cc7d26f 1209 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 1210 can_mention ? type_changed : NULL,
0cc7d26f
TT
1211 can_mention ? new : NULL,
1212 can_mention ? unchanged : NULL,
1213 can_mention ? cchanged : NULL, i, name, v);
1214 do_cleanups (inner);
b6313243 1215 }
0cc7d26f 1216 else
b6313243 1217 {
0cc7d26f
TT
1218 Py_XDECREF (var->saved_item);
1219 var->saved_item = item;
b6313243 1220
0cc7d26f
TT
1221 /* We want to truncate the child list just before this
1222 element. */
1223 break;
1224 }
a4c8e806
TT
1225
1226 if (force_done)
1227 break;
b6313243
TT
1228 }
1229
1230 if (i < VEC_length (varobj_p, var->children))
1231 {
0cc7d26f 1232 int j;
a109c7c1 1233
0cc7d26f
TT
1234 *cchanged = 1;
1235 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
1236 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
1237 VEC_truncate (varobj_p, var->children, i);
b6313243 1238 }
0cc7d26f
TT
1239
1240 /* If there are fewer children than requested, note that the list of
1241 children changed. */
1242 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
1243 *cchanged = 1;
1244
b6313243
TT
1245 var->num_children = VEC_length (varobj_p, var->children);
1246
1247 do_cleanups (back_to);
1248
b6313243
TT
1249 return 1;
1250#else
1251 gdb_assert (0 && "should never be called if Python is not enabled");
1252#endif
1253}
25d5ea92 1254
8b93c638
JM
1255int
1256varobj_get_num_children (struct varobj *var)
1257{
1258 if (var->num_children == -1)
b6313243 1259 {
0cc7d26f
TT
1260 if (var->pretty_printer)
1261 {
1262 int dummy;
1263
1264 /* If we have a dynamic varobj, don't report -1 children.
1265 So, try to fetch some children first. */
8264ba82 1266 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
1267 0, 0, 0);
1268 }
1269 else
b6313243
TT
1270 var->num_children = number_of_children (var);
1271 }
8b93c638 1272
0cc7d26f 1273 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
1274}
1275
1276/* Creates a list of the immediate children of a variable object;
581e13c1 1277 the return code is the number of such children or -1 on error. */
8b93c638 1278
d56d46f5 1279VEC (varobj_p)*
0cc7d26f 1280varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 1281{
8b93c638 1282 char *name;
b6313243
TT
1283 int i, children_changed;
1284
1285 var->children_requested = 1;
1286
0cc7d26f
TT
1287 if (var->pretty_printer)
1288 {
b6313243
TT
1289 /* This, in theory, can result in the number of children changing without
1290 frontend noticing. But well, calling -var-list-children on the same
1291 varobj twice is not something a sane frontend would do. */
8264ba82
AG
1292 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
1293 &children_changed, 0, 0, *to);
0cc7d26f
TT
1294 restrict_range (var->children, from, to);
1295 return var->children;
1296 }
8b93c638 1297
8b93c638
JM
1298 if (var->num_children == -1)
1299 var->num_children = number_of_children (var);
1300
74a44383
DJ
1301 /* If that failed, give up. */
1302 if (var->num_children == -1)
d56d46f5 1303 return var->children;
74a44383 1304
28335dcc
VP
1305 /* If we're called when the list of children is not yet initialized,
1306 allocate enough elements in it. */
1307 while (VEC_length (varobj_p, var->children) < var->num_children)
1308 VEC_safe_push (varobj_p, var->children, NULL);
1309
8b93c638
JM
1310 for (i = 0; i < var->num_children; i++)
1311 {
d56d46f5 1312 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
1313
1314 if (existing == NULL)
1315 {
1316 /* Either it's the first call to varobj_list_children for
1317 this variable object, and the child was never created,
1318 or it was explicitly deleted by the client. */
1319 name = name_of_child (var, i);
1320 existing = create_child (var, i, name);
1321 VEC_replace (varobj_p, var->children, i, existing);
1322 }
8b93c638
JM
1323 }
1324
0cc7d26f 1325 restrict_range (var->children, from, to);
d56d46f5 1326 return var->children;
8b93c638
JM
1327}
1328
d8b65138
JK
1329#if HAVE_PYTHON
1330
b6313243
TT
1331static struct varobj *
1332varobj_add_child (struct varobj *var, const char *name, struct value *value)
1333{
1334 varobj_p v = create_child_with_value (var,
1335 VEC_length (varobj_p, var->children),
1336 name, value);
a109c7c1 1337
b6313243 1338 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
1339 return v;
1340}
1341
d8b65138
JK
1342#endif /* HAVE_PYTHON */
1343
8b93c638 1344/* Obtain the type of an object Variable as a string similar to the one gdb
581e13c1 1345 prints on the console. */
8b93c638
JM
1346
1347char *
1348varobj_get_type (struct varobj *var)
1349{
581e13c1 1350 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
1351 NULL, too.)
1352 Do not return a type for invalid variables as well. */
1353 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
1354 return NULL;
1355
1a4300e9 1356 return type_to_string (var->type);
8b93c638
JM
1357}
1358
1ecb4ee0
DJ
1359/* Obtain the type of an object variable. */
1360
1361struct type *
1362varobj_get_gdb_type (struct varobj *var)
1363{
1364 return var->type;
1365}
1366
85254831
KS
1367/* Is VAR a path expression parent, i.e., can it be used to construct
1368 a valid path expression? */
1369
1370static int
1371is_path_expr_parent (struct varobj *var)
1372{
1373 struct type *type;
1374
1375 /* "Fake" children are not path_expr parents. */
1376 if (CPLUS_FAKE_CHILD (var))
1377 return 0;
1378
1379 type = get_value_type (var);
1380
1381 /* Anonymous unions and structs are also not path_expr parents. */
1382 return !((TYPE_CODE (type) == TYPE_CODE_STRUCT
1383 || TYPE_CODE (type) == TYPE_CODE_UNION)
1384 && TYPE_NAME (type) == NULL);
1385}
1386
1387/* Return the path expression parent for VAR. */
1388
1389static struct varobj *
1390get_path_expr_parent (struct varobj *var)
1391{
1392 struct varobj *parent = var;
1393
1394 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1395 parent = parent->parent;
1396
1397 return parent;
1398}
1399
02142340
VP
1400/* Return a pointer to the full rooted expression of varobj VAR.
1401 If it has not been computed yet, compute it. */
1402char *
1403varobj_get_path_expr (struct varobj *var)
1404{
1405 if (var->path_expr != NULL)
1406 return var->path_expr;
1407 else
1408 {
1409 /* For root varobjs, we initialize path_expr
1410 when creating varobj, so here it should be
1411 child varobj. */
1412 gdb_assert (!is_root_p (var));
1413 return (*var->root->lang->path_expr_of_child) (var);
1414 }
1415}
1416
8b93c638
JM
1417enum varobj_languages
1418varobj_get_language (struct varobj *var)
1419{
1420 return variable_language (var);
1421}
1422
1423int
1424varobj_get_attributes (struct varobj *var)
1425{
1426 int attributes = 0;
1427
340a7723 1428 if (varobj_editable_p (var))
581e13c1 1429 /* FIXME: define masks for attributes. */
8b93c638
JM
1430 attributes |= 0x00000001; /* Editable */
1431
1432 return attributes;
1433}
1434
0cc7d26f
TT
1435int
1436varobj_pretty_printed_p (struct varobj *var)
1437{
1438 return var->pretty_printer != NULL;
1439}
1440
de051565
MK
1441char *
1442varobj_get_formatted_value (struct varobj *var,
1443 enum varobj_display_formats format)
1444{
1445 return my_value_of_variable (var, format);
1446}
1447
8b93c638
JM
1448char *
1449varobj_get_value (struct varobj *var)
1450{
de051565 1451 return my_value_of_variable (var, var->format);
8b93c638
JM
1452}
1453
1454/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1455 value of the given expression. */
1456/* Note: Invokes functions that can call error(). */
8b93c638
JM
1457
1458int
1459varobj_set_value (struct varobj *var, char *expression)
1460{
34365054 1461 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1462 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1463 We need to first construct a legal expression for this -- ugh! */
1464 /* Does this cover all the bases? */
8b93c638 1465 struct expression *exp;
34365054 1466 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1467 int saved_input_radix = input_radix;
340a7723 1468 char *s = expression;
8e7b59a5 1469 volatile struct gdb_exception except;
8b93c638 1470
340a7723 1471 gdb_assert (varobj_editable_p (var));
8b93c638 1472
581e13c1 1473 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
340a7723 1474 exp = parse_exp_1 (&s, 0, 0);
8e7b59a5
KS
1475 TRY_CATCH (except, RETURN_MASK_ERROR)
1476 {
1477 value = evaluate_expression (exp);
1478 }
1479
1480 if (except.reason < 0)
340a7723 1481 {
581e13c1 1482 /* We cannot proceed without a valid expression. */
340a7723
NR
1483 xfree (exp);
1484 return 0;
8b93c638
JM
1485 }
1486
340a7723
NR
1487 /* All types that are editable must also be changeable. */
1488 gdb_assert (varobj_value_is_changeable_p (var));
1489
1490 /* The value of a changeable variable object must not be lazy. */
1491 gdb_assert (!value_lazy (var->value));
1492
1493 /* Need to coerce the input. We want to check if the
1494 value of the variable object will be different
1495 after assignment, and the first thing value_assign
1496 does is coerce the input.
1497 For example, if we are assigning an array to a pointer variable we
b021a221 1498 should compare the pointer with the array's address, not with the
340a7723
NR
1499 array's content. */
1500 value = coerce_array (value);
1501
8e7b59a5
KS
1502 /* The new value may be lazy. value_assign, or
1503 rather value_contents, will take care of this. */
1504 TRY_CATCH (except, RETURN_MASK_ERROR)
1505 {
1506 val = value_assign (var->value, value);
1507 }
1508
1509 if (except.reason < 0)
340a7723 1510 return 0;
8e7b59a5 1511
340a7723
NR
1512 /* If the value has changed, record it, so that next -var-update can
1513 report this change. If a variable had a value of '1', we've set it
1514 to '333' and then set again to '1', when -var-update will report this
1515 variable as changed -- because the first assignment has set the
1516 'updated' flag. There's no need to optimize that, because return value
1517 of -var-update should be considered an approximation. */
581e13c1 1518 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1519 input_radix = saved_input_radix;
1520 return 1;
8b93c638
JM
1521}
1522
0cc7d26f
TT
1523#if HAVE_PYTHON
1524
1525/* A helper function to install a constructor function and visualizer
1526 in a varobj. */
1527
1528static void
1529install_visualizer (struct varobj *var, PyObject *constructor,
1530 PyObject *visualizer)
1531{
1532 Py_XDECREF (var->constructor);
1533 var->constructor = constructor;
1534
1535 Py_XDECREF (var->pretty_printer);
1536 var->pretty_printer = visualizer;
1537
1538 Py_XDECREF (var->child_iter);
1539 var->child_iter = NULL;
1540}
1541
1542/* Install the default visualizer for VAR. */
1543
1544static void
1545install_default_visualizer (struct varobj *var)
1546{
d65aec65
PM
1547 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1548 if (CPLUS_FAKE_CHILD (var))
1549 return;
1550
0cc7d26f
TT
1551 if (pretty_printing)
1552 {
1553 PyObject *pretty_printer = NULL;
1554
1555 if (var->value)
1556 {
1557 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1558 if (! pretty_printer)
1559 {
1560 gdbpy_print_stack ();
1561 error (_("Cannot instantiate printer for default visualizer"));
1562 }
1563 }
1564
1565 if (pretty_printer == Py_None)
1566 {
1567 Py_DECREF (pretty_printer);
1568 pretty_printer = NULL;
1569 }
1570
1571 install_visualizer (var, NULL, pretty_printer);
1572 }
1573}
1574
1575/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1576 make a new object. */
1577
1578static void
1579construct_visualizer (struct varobj *var, PyObject *constructor)
1580{
1581 PyObject *pretty_printer;
1582
d65aec65
PM
1583 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1584 if (CPLUS_FAKE_CHILD (var))
1585 return;
1586
0cc7d26f
TT
1587 Py_INCREF (constructor);
1588 if (constructor == Py_None)
1589 pretty_printer = NULL;
1590 else
1591 {
1592 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1593 if (! pretty_printer)
1594 {
1595 gdbpy_print_stack ();
1596 Py_DECREF (constructor);
1597 constructor = Py_None;
1598 Py_INCREF (constructor);
1599 }
1600
1601 if (pretty_printer == Py_None)
1602 {
1603 Py_DECREF (pretty_printer);
1604 pretty_printer = NULL;
1605 }
1606 }
1607
1608 install_visualizer (var, constructor, pretty_printer);
1609}
1610
1611#endif /* HAVE_PYTHON */
1612
1613/* A helper function for install_new_value. This creates and installs
1614 a visualizer for VAR, if appropriate. */
1615
1616static void
1617install_new_value_visualizer (struct varobj *var)
1618{
1619#if HAVE_PYTHON
1620 /* If the constructor is None, then we want the raw value. If VAR
1621 does not have a value, just skip this. */
1622 if (var->constructor != Py_None && var->value)
1623 {
1624 struct cleanup *cleanup;
0cc7d26f
TT
1625
1626 cleanup = varobj_ensure_python_env (var);
1627
1628 if (!var->constructor)
1629 install_default_visualizer (var);
1630 else
1631 construct_visualizer (var, var->constructor);
1632
1633 do_cleanups (cleanup);
1634 }
1635#else
1636 /* Do nothing. */
1637#endif
1638}
1639
8264ba82
AG
1640/* When using RTTI to determine variable type it may be changed in runtime when
1641 the variable value is changed. This function checks whether type of varobj
1642 VAR will change when a new value NEW_VALUE is assigned and if it is so
1643 updates the type of VAR. */
1644
1645static int
1646update_type_if_necessary (struct varobj *var, struct value *new_value)
1647{
1648 if (new_value)
1649 {
1650 struct value_print_options opts;
1651
1652 get_user_print_options (&opts);
1653 if (opts.objectprint)
1654 {
1655 struct type *new_type;
1656 char *curr_type_str, *new_type_str;
1657
1658 new_type = value_actual_type (new_value, 0, 0);
1659 new_type_str = type_to_string (new_type);
1660 curr_type_str = varobj_get_type (var);
1661 if (strcmp (curr_type_str, new_type_str) != 0)
1662 {
1663 var->type = new_type;
1664
1665 /* This information may be not valid for a new type. */
1666 varobj_delete (var, NULL, 1);
1667 VEC_free (varobj_p, var->children);
1668 var->num_children = -1;
1669 return 1;
1670 }
1671 }
1672 }
1673
1674 return 0;
1675}
1676
acd65feb
VP
1677/* Assign a new value to a variable object. If INITIAL is non-zero,
1678 this is the first assignement after the variable object was just
1679 created, or changed type. In that case, just assign the value
1680 and return 0.
581e13c1
MS
1681 Otherwise, assign the new value, and return 1 if the value is
1682 different from the current one, 0 otherwise. The comparison is
1683 done on textual representation of value. Therefore, some types
1684 need not be compared. E.g. for structures the reported value is
1685 always "{...}", so no comparison is necessary here. If the old
1686 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1687
1688 The VALUE parameter should not be released -- the function will
1689 take care of releasing it when needed. */
acd65feb
VP
1690static int
1691install_new_value (struct varobj *var, struct value *value, int initial)
1692{
1693 int changeable;
1694 int need_to_fetch;
1695 int changed = 0;
25d5ea92 1696 int intentionally_not_fetched = 0;
7a4d50bf 1697 char *print_value = NULL;
acd65feb 1698
acd65feb 1699 /* We need to know the varobj's type to decide if the value should
3e43a32a 1700 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1701 don't have a type. */
acd65feb 1702 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1703 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1704
1705 /* If the type has custom visualizer, we consider it to be always
581e13c1 1706 changeable. FIXME: need to make sure this behaviour will not
b6313243
TT
1707 mess up read-sensitive values. */
1708 if (var->pretty_printer)
1709 changeable = 1;
1710
acd65feb
VP
1711 need_to_fetch = changeable;
1712
b26ed50d
VP
1713 /* We are not interested in the address of references, and given
1714 that in C++ a reference is not rebindable, it cannot
1715 meaningfully change. So, get hold of the real value. */
1716 if (value)
0cc7d26f 1717 value = coerce_ref (value);
b26ed50d 1718
acd65feb
VP
1719 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1720 /* For unions, we need to fetch the value implicitly because
1721 of implementation of union member fetch. When gdb
1722 creates a value for a field and the value of the enclosing
1723 structure is not lazy, it immediately copies the necessary
1724 bytes from the enclosing values. If the enclosing value is
1725 lazy, the call to value_fetch_lazy on the field will read
1726 the data from memory. For unions, that means we'll read the
1727 same memory more than once, which is not desirable. So
1728 fetch now. */
1729 need_to_fetch = 1;
1730
1731 /* The new value might be lazy. If the type is changeable,
1732 that is we'll be comparing values of this type, fetch the
1733 value now. Otherwise, on the next update the old value
1734 will be lazy, which means we've lost that old value. */
1735 if (need_to_fetch && value && value_lazy (value))
1736 {
25d5ea92
VP
1737 struct varobj *parent = var->parent;
1738 int frozen = var->frozen;
a109c7c1 1739
25d5ea92
VP
1740 for (; !frozen && parent; parent = parent->parent)
1741 frozen |= parent->frozen;
1742
1743 if (frozen && initial)
1744 {
1745 /* For variables that are frozen, or are children of frozen
1746 variables, we don't do fetch on initial assignment.
1747 For non-initial assignemnt we do the fetch, since it means we're
1748 explicitly asked to compare the new value with the old one. */
1749 intentionally_not_fetched = 1;
1750 }
8e7b59a5 1751 else
acd65feb 1752 {
8e7b59a5
KS
1753 volatile struct gdb_exception except;
1754
1755 TRY_CATCH (except, RETURN_MASK_ERROR)
1756 {
1757 value_fetch_lazy (value);
1758 }
1759
1760 if (except.reason < 0)
1761 {
1762 /* Set the value to NULL, so that for the next -var-update,
1763 we don't try to compare the new value with this value,
1764 that we couldn't even read. */
1765 value = NULL;
1766 }
acd65feb 1767 }
acd65feb
VP
1768 }
1769
e848a8a5
TT
1770 /* Get a reference now, before possibly passing it to any Python
1771 code that might release it. */
1772 if (value != NULL)
1773 value_incref (value);
b6313243 1774
7a4d50bf
VP
1775 /* Below, we'll be comparing string rendering of old and new
1776 values. Don't get string rendering if the value is
1777 lazy -- if it is, the code above has decided that the value
1778 should not be fetched. */
0cc7d26f 1779 if (value && !value_lazy (value) && !var->pretty_printer)
d452c4bc 1780 print_value = value_get_print_value (value, var->format, var);
7a4d50bf 1781
acd65feb
VP
1782 /* If the type is changeable, compare the old and the new values.
1783 If this is the initial assignment, we don't have any old value
1784 to compare with. */
7a4d50bf 1785 if (!initial && changeable)
acd65feb 1786 {
3e43a32a
MS
1787 /* If the value of the varobj was changed by -var-set-value,
1788 then the value in the varobj and in the target is the same.
1789 However, that value is different from the value that the
581e13c1 1790 varobj had after the previous -var-update. So need to the
3e43a32a 1791 varobj as changed. */
acd65feb 1792 if (var->updated)
57e66780 1793 {
57e66780
DJ
1794 changed = 1;
1795 }
0cc7d26f 1796 else if (! var->pretty_printer)
acd65feb
VP
1797 {
1798 /* Try to compare the values. That requires that both
1799 values are non-lazy. */
25d5ea92
VP
1800 if (var->not_fetched && value_lazy (var->value))
1801 {
1802 /* This is a frozen varobj and the value was never read.
1803 Presumably, UI shows some "never read" indicator.
1804 Now that we've fetched the real value, we need to report
1805 this varobj as changed so that UI can show the real
1806 value. */
1807 changed = 1;
1808 }
1809 else if (var->value == NULL && value == NULL)
581e13c1 1810 /* Equal. */
acd65feb
VP
1811 ;
1812 else if (var->value == NULL || value == NULL)
57e66780 1813 {
57e66780
DJ
1814 changed = 1;
1815 }
acd65feb
VP
1816 else
1817 {
1818 gdb_assert (!value_lazy (var->value));
1819 gdb_assert (!value_lazy (value));
85265413 1820
57e66780 1821 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1822 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1823 changed = 1;
acd65feb
VP
1824 }
1825 }
1826 }
85265413 1827
ee342b23
VP
1828 if (!initial && !changeable)
1829 {
1830 /* For values that are not changeable, we don't compare the values.
1831 However, we want to notice if a value was not NULL and now is NULL,
1832 or vise versa, so that we report when top-level varobjs come in scope
1833 and leave the scope. */
1834 changed = (var->value != NULL) != (value != NULL);
1835 }
1836
acd65feb 1837 /* We must always keep the new value, since children depend on it. */
25d5ea92 1838 if (var->value != NULL && var->value != value)
acd65feb
VP
1839 value_free (var->value);
1840 var->value = value;
25d5ea92
VP
1841 if (value && value_lazy (value) && intentionally_not_fetched)
1842 var->not_fetched = 1;
1843 else
1844 var->not_fetched = 0;
acd65feb 1845 var->updated = 0;
85265413 1846
0cc7d26f
TT
1847 install_new_value_visualizer (var);
1848
1849 /* If we installed a pretty-printer, re-compare the printed version
1850 to see if the variable changed. */
1851 if (var->pretty_printer)
1852 {
1853 xfree (print_value);
1854 print_value = value_get_print_value (var->value, var->format, var);
e8f781e2
TT
1855 if ((var->print_value == NULL && print_value != NULL)
1856 || (var->print_value != NULL && print_value == NULL)
1857 || (var->print_value != NULL && print_value != NULL
1858 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1859 changed = 1;
1860 }
1861 if (var->print_value)
1862 xfree (var->print_value);
1863 var->print_value = print_value;
1864
b26ed50d 1865 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1866
1867 return changed;
1868}
acd65feb 1869
0cc7d26f
TT
1870/* Return the requested range for a varobj. VAR is the varobj. FROM
1871 and TO are out parameters; *FROM and *TO will be set to the
1872 selected sub-range of VAR. If no range was selected using
1873 -var-set-update-range, then both will be -1. */
1874void
1875varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1876{
0cc7d26f
TT
1877 *from = var->from;
1878 *to = var->to;
b6313243
TT
1879}
1880
0cc7d26f
TT
1881/* Set the selected sub-range of children of VAR to start at index
1882 FROM and end at index TO. If either FROM or TO is less than zero,
1883 this is interpreted as a request for all children. */
1884void
1885varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1886{
0cc7d26f
TT
1887 var->from = from;
1888 var->to = to;
b6313243
TT
1889}
1890
1891void
1892varobj_set_visualizer (struct varobj *var, const char *visualizer)
1893{
1894#if HAVE_PYTHON
34fa1d9d
MS
1895 PyObject *mainmod, *globals, *constructor;
1896 struct cleanup *back_to;
b6313243 1897
d452c4bc 1898 back_to = varobj_ensure_python_env (var);
b6313243
TT
1899
1900 mainmod = PyImport_AddModule ("__main__");
1901 globals = PyModule_GetDict (mainmod);
1902 Py_INCREF (globals);
1903 make_cleanup_py_decref (globals);
1904
1905 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1906
0cc7d26f 1907 if (! constructor)
b6313243
TT
1908 {
1909 gdbpy_print_stack ();
da1f2771 1910 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1911 }
1912
0cc7d26f
TT
1913 construct_visualizer (var, constructor);
1914 Py_XDECREF (constructor);
b6313243 1915
0cc7d26f
TT
1916 /* If there are any children now, wipe them. */
1917 varobj_delete (var, NULL, 1 /* children only */);
1918 var->num_children = -1;
b6313243
TT
1919
1920 do_cleanups (back_to);
1921#else
da1f2771 1922 error (_("Python support required"));
b6313243
TT
1923#endif
1924}
1925
7a290c40
JB
1926/* If NEW_VALUE is the new value of the given varobj (var), return
1927 non-zero if var has mutated. In other words, if the type of
1928 the new value is different from the type of the varobj's old
1929 value.
1930
1931 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1932
1933static int
1934varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1935 struct type *new_type)
1936{
1937 /* If we haven't previously computed the number of children in var,
1938 it does not matter from the front-end's perspective whether
1939 the type has mutated or not. For all intents and purposes,
1940 it has not mutated. */
1941 if (var->num_children < 0)
1942 return 0;
1943
1944 if (var->root->lang->value_has_mutated)
1945 return var->root->lang->value_has_mutated (var, new_value, new_type);
1946 else
1947 return 0;
1948}
1949
8b93c638
JM
1950/* Update the values for a variable and its children. This is a
1951 two-pronged attack. First, re-parse the value for the root's
1952 expression to see if it's changed. Then go all the way
1953 through its children, reconstructing them and noting if they've
1954 changed.
1955
25d5ea92
VP
1956 The EXPLICIT parameter specifies if this call is result
1957 of MI request to update this specific variable, or
581e13c1 1958 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1959 update frozen variables.
705da579 1960
581e13c1 1961 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1962 returns TYPE_CHANGED, then it has done this and VARP will be modified
1963 to point to the new varobj. */
8b93c638 1964
1417b39d
JB
1965VEC(varobj_update_result) *
1966varobj_update (struct varobj **varp, int explicit)
8b93c638
JM
1967{
1968 int changed = 0;
25d5ea92 1969 int type_changed = 0;
8b93c638 1970 int i;
30b28db1 1971 struct value *new;
b6313243 1972 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1973 VEC (varobj_update_result) *result = NULL;
8b93c638 1974
25d5ea92
VP
1975 /* Frozen means frozen -- we don't check for any change in
1976 this varobj, including its going out of scope, or
1977 changing type. One use case for frozen varobjs is
1978 retaining previously evaluated expressions, and we don't
1979 want them to be reevaluated at all. */
1980 if (!explicit && (*varp)->frozen)
f7f9ae2c 1981 return result;
8756216b
DP
1982
1983 if (!(*varp)->root->is_valid)
f7f9ae2c 1984 {
cfce2ea2 1985 varobj_update_result r = {0};
a109c7c1 1986
cfce2ea2 1987 r.varobj = *varp;
f7f9ae2c
VP
1988 r.status = VAROBJ_INVALID;
1989 VEC_safe_push (varobj_update_result, result, &r);
1990 return result;
1991 }
8b93c638 1992
25d5ea92 1993 if ((*varp)->root->rootvar == *varp)
ae093f96 1994 {
cfce2ea2 1995 varobj_update_result r = {0};
a109c7c1 1996
cfce2ea2 1997 r.varobj = *varp;
f7f9ae2c
VP
1998 r.status = VAROBJ_IN_SCOPE;
1999
581e13c1 2000 /* Update the root variable. value_of_root can return NULL
25d5ea92 2001 if the variable is no longer around, i.e. we stepped out of
581e13c1 2002 the frame in which a local existed. We are letting the
25d5ea92
VP
2003 value_of_root variable dispose of the varobj if the type
2004 has changed. */
25d5ea92 2005 new = value_of_root (varp, &type_changed);
8264ba82
AG
2006 if (update_type_if_necessary(*varp, new))
2007 type_changed = 1;
f7f9ae2c 2008 r.varobj = *varp;
f7f9ae2c 2009 r.type_changed = type_changed;
ea56f9c2 2010 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 2011 r.changed = 1;
ea56f9c2 2012
25d5ea92 2013 if (new == NULL)
f7f9ae2c 2014 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 2015 r.value_installed = 1;
f7f9ae2c
VP
2016
2017 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 2018 {
0b4bc29a
JK
2019 if (r.type_changed || r.changed)
2020 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
2021 return result;
2022 }
2023
2024 VEC_safe_push (varobj_update_result, stack, &r);
2025 }
2026 else
2027 {
cfce2ea2 2028 varobj_update_result r = {0};
a109c7c1 2029
cfce2ea2 2030 r.varobj = *varp;
b6313243 2031 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 2032 }
8b93c638 2033
8756216b 2034 /* Walk through the children, reconstructing them all. */
b6313243 2035 while (!VEC_empty (varobj_update_result, stack))
8b93c638 2036 {
b6313243
TT
2037 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
2038 struct varobj *v = r.varobj;
2039
2040 VEC_pop (varobj_update_result, stack);
2041
2042 /* Update this variable, unless it's a root, which is already
2043 updated. */
2044 if (!r.value_installed)
7a290c40
JB
2045 {
2046 struct type *new_type;
2047
b6313243 2048 new = value_of_child (v->parent, v->index);
8264ba82
AG
2049 if (update_type_if_necessary(v, new))
2050 r.type_changed = 1;
7a290c40
JB
2051 if (new)
2052 new_type = value_type (new);
2053 else
2054 new_type = v->root->lang->type_of_child (v->parent, v->index);
2055
2056 if (varobj_value_has_mutated (v, new, new_type))
2057 {
2058 /* The children are no longer valid; delete them now.
2059 Report the fact that its type changed as well. */
2060 varobj_delete (v, NULL, 1 /* only_children */);
2061 v->num_children = -1;
2062 v->to = -1;
2063 v->from = -1;
2064 v->type = new_type;
2065 r.type_changed = 1;
2066 }
2067
2068 if (install_new_value (v, new, r.type_changed))
b6313243
TT
2069 {
2070 r.changed = 1;
2071 v->updated = 0;
2072 }
2073 }
2074
2075 /* We probably should not get children of a varobj that has a
2076 pretty-printer, but for which -var-list-children was never
581e13c1 2077 invoked. */
b6313243
TT
2078 if (v->pretty_printer)
2079 {
8264ba82
AG
2080 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
2081 VEC (varobj_p) *new = 0;
26f9bcee 2082 int i, children_changed = 0;
b6313243
TT
2083
2084 if (v->frozen)
2085 continue;
2086
0cc7d26f
TT
2087 if (!v->children_requested)
2088 {
2089 int dummy;
2090
2091 /* If we initially did not have potential children, but
2092 now we do, consider the varobj as changed.
2093 Otherwise, if children were never requested, consider
2094 it as unchanged -- presumably, such varobj is not yet
2095 expanded in the UI, so we need not bother getting
2096 it. */
2097 if (!varobj_has_more (v, 0))
2098 {
8264ba82 2099 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
2100 &dummy, 0, 0, 0);
2101 if (varobj_has_more (v, 0))
2102 r.changed = 1;
2103 }
2104
2105 if (r.changed)
2106 VEC_safe_push (varobj_update_result, result, &r);
2107
2108 continue;
2109 }
2110
b6313243
TT
2111 /* If update_dynamic_varobj_children returns 0, then we have
2112 a non-conforming pretty-printer, so we skip it. */
8264ba82
AG
2113 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
2114 &unchanged, &children_changed, 1,
0cc7d26f 2115 v->from, v->to))
b6313243 2116 {
0cc7d26f 2117 if (children_changed || new)
b6313243 2118 {
0cc7d26f
TT
2119 r.children_changed = 1;
2120 r.new = new;
b6313243 2121 }
0cc7d26f
TT
2122 /* Push in reverse order so that the first child is
2123 popped from the work stack first, and so will be
2124 added to result first. This does not affect
2125 correctness, just "nicer". */
8264ba82
AG
2126 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
2127 {
2128 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
2129 varobj_update_result r = {0};
2130
2131 /* Type may change only if value was changed. */
2132 r.varobj = tmp;
2133 r.changed = 1;
2134 r.type_changed = 1;
2135 r.value_installed = 1;
2136 VEC_safe_push (varobj_update_result, stack, &r);
2137 }
0cc7d26f 2138 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 2139 {
0cc7d26f 2140 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 2141 varobj_update_result r = {0};
a109c7c1 2142
cfce2ea2 2143 r.varobj = tmp;
0cc7d26f 2144 r.changed = 1;
b6313243
TT
2145 r.value_installed = 1;
2146 VEC_safe_push (varobj_update_result, stack, &r);
2147 }
0cc7d26f
TT
2148 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
2149 {
2150 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 2151
0cc7d26f
TT
2152 if (!tmp->frozen)
2153 {
cfce2ea2 2154 varobj_update_result r = {0};
a109c7c1 2155
cfce2ea2 2156 r.varobj = tmp;
0cc7d26f
TT
2157 r.value_installed = 1;
2158 VEC_safe_push (varobj_update_result, stack, &r);
2159 }
2160 }
b6313243
TT
2161 if (r.changed || r.children_changed)
2162 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 2163
8264ba82
AG
2164 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
2165 because NEW has been put into the result vector. */
0cc7d26f 2166 VEC_free (varobj_p, changed);
8264ba82 2167 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
2168 VEC_free (varobj_p, unchanged);
2169
b6313243
TT
2170 continue;
2171 }
2172 }
28335dcc
VP
2173
2174 /* Push any children. Use reverse order so that the first
2175 child is popped from the work stack first, and so
2176 will be added to result first. This does not
2177 affect correctness, just "nicer". */
2178 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 2179 {
28335dcc 2180 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 2181
28335dcc 2182 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 2183 if (c != NULL && !c->frozen)
28335dcc 2184 {
cfce2ea2 2185 varobj_update_result r = {0};
a109c7c1 2186
cfce2ea2 2187 r.varobj = c;
b6313243 2188 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 2189 }
8b93c638 2190 }
b6313243
TT
2191
2192 if (r.changed || r.type_changed)
2193 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
2194 }
2195
b6313243
TT
2196 VEC_free (varobj_update_result, stack);
2197
f7f9ae2c 2198 return result;
8b93c638
JM
2199}
2200\f
2201
2202/* Helper functions */
2203
2204/*
2205 * Variable object construction/destruction
2206 */
2207
2208static int
fba45db2
KB
2209delete_variable (struct cpstack **resultp, struct varobj *var,
2210 int only_children_p)
8b93c638
JM
2211{
2212 int delcount = 0;
2213
2214 delete_variable_1 (resultp, &delcount, var,
2215 only_children_p, 1 /* remove_from_parent_p */ );
2216
2217 return delcount;
2218}
2219
581e13c1 2220/* Delete the variable object VAR and its children. */
8b93c638
JM
2221/* IMPORTANT NOTE: If we delete a variable which is a child
2222 and the parent is not removed we dump core. It must be always
581e13c1 2223 initially called with remove_from_parent_p set. */
8b93c638 2224static void
72330bd6
AC
2225delete_variable_1 (struct cpstack **resultp, int *delcountp,
2226 struct varobj *var, int only_children_p,
2227 int remove_from_parent_p)
8b93c638 2228{
28335dcc 2229 int i;
8b93c638 2230
581e13c1 2231 /* Delete any children of this variable, too. */
28335dcc
VP
2232 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
2233 {
2234 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 2235
214270ab
VP
2236 if (!child)
2237 continue;
8b93c638 2238 if (!remove_from_parent_p)
28335dcc
VP
2239 child->parent = NULL;
2240 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 2241 }
28335dcc 2242 VEC_free (varobj_p, var->children);
8b93c638 2243
581e13c1 2244 /* if we were called to delete only the children we are done here. */
8b93c638
JM
2245 if (only_children_p)
2246 return;
2247
581e13c1 2248 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 2249 /* If the name is null, this is a temporary variable, that has not
581e13c1 2250 yet been installed, don't report it, it belongs to the caller... */
73a93a32 2251 if (var->obj_name != NULL)
8b93c638 2252 {
5b616ba1 2253 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
2254 *delcountp = *delcountp + 1;
2255 }
2256
581e13c1 2257 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
2258 /* OPTIMIZATION: if the parent of this variable is also being deleted,
2259 (as indicated by remove_from_parent_p) we don't bother doing an
2260 expensive list search to find the element to remove when we are
581e13c1 2261 discarding the list afterwards. */
72330bd6 2262 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 2263 {
28335dcc 2264 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 2265 }
72330bd6 2266
73a93a32
JI
2267 if (var->obj_name != NULL)
2268 uninstall_variable (var);
8b93c638 2269
581e13c1 2270 /* Free memory associated with this variable. */
8b93c638
JM
2271 free_variable (var);
2272}
2273
581e13c1 2274/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 2275static int
fba45db2 2276install_variable (struct varobj *var)
8b93c638
JM
2277{
2278 struct vlist *cv;
2279 struct vlist *newvl;
2280 const char *chp;
2281 unsigned int index = 0;
2282 unsigned int i = 1;
2283
2284 for (chp = var->obj_name; *chp; chp++)
2285 {
2286 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2287 }
2288
2289 cv = *(varobj_table + index);
2290 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2291 cv = cv->next;
2292
2293 if (cv != NULL)
8a3fe4f8 2294 error (_("Duplicate variable object name"));
8b93c638 2295
581e13c1 2296 /* Add varobj to hash table. */
8b93c638
JM
2297 newvl = xmalloc (sizeof (struct vlist));
2298 newvl->next = *(varobj_table + index);
2299 newvl->var = var;
2300 *(varobj_table + index) = newvl;
2301
581e13c1 2302 /* If root, add varobj to root list. */
b2c2bd75 2303 if (is_root_p (var))
8b93c638 2304 {
581e13c1 2305 /* Add to list of root variables. */
8b93c638
JM
2306 if (rootlist == NULL)
2307 var->root->next = NULL;
2308 else
2309 var->root->next = rootlist;
2310 rootlist = var->root;
8b93c638
JM
2311 }
2312
2313 return 1; /* OK */
2314}
2315
581e13c1 2316/* Unistall the object VAR. */
8b93c638 2317static void
fba45db2 2318uninstall_variable (struct varobj *var)
8b93c638
JM
2319{
2320 struct vlist *cv;
2321 struct vlist *prev;
2322 struct varobj_root *cr;
2323 struct varobj_root *prer;
2324 const char *chp;
2325 unsigned int index = 0;
2326 unsigned int i = 1;
2327
581e13c1 2328 /* Remove varobj from hash table. */
8b93c638
JM
2329 for (chp = var->obj_name; *chp; chp++)
2330 {
2331 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
2332 }
2333
2334 cv = *(varobj_table + index);
2335 prev = NULL;
2336 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
2337 {
2338 prev = cv;
2339 cv = cv->next;
2340 }
2341
2342 if (varobjdebug)
2343 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
2344
2345 if (cv == NULL)
2346 {
72330bd6
AC
2347 warning
2348 ("Assertion failed: Could not find variable object \"%s\" to delete",
2349 var->obj_name);
8b93c638
JM
2350 return;
2351 }
2352
2353 if (prev == NULL)
2354 *(varobj_table + index) = cv->next;
2355 else
2356 prev->next = cv->next;
2357
b8c9b27d 2358 xfree (cv);
8b93c638 2359
581e13c1 2360 /* If root, remove varobj from root list. */
b2c2bd75 2361 if (is_root_p (var))
8b93c638 2362 {
581e13c1 2363 /* Remove from list of root variables. */
8b93c638
JM
2364 if (rootlist == var->root)
2365 rootlist = var->root->next;
2366 else
2367 {
2368 prer = NULL;
2369 cr = rootlist;
2370 while ((cr != NULL) && (cr->rootvar != var))
2371 {
2372 prer = cr;
2373 cr = cr->next;
2374 }
2375 if (cr == NULL)
2376 {
8f7e195f
JB
2377 warning (_("Assertion failed: Could not find "
2378 "varobj \"%s\" in root list"),
3e43a32a 2379 var->obj_name);
8b93c638
JM
2380 return;
2381 }
2382 if (prer == NULL)
2383 rootlist = NULL;
2384 else
2385 prer->next = cr->next;
2386 }
8b93c638
JM
2387 }
2388
2389}
2390
581e13c1 2391/* Create and install a child of the parent of the given name. */
8b93c638 2392static struct varobj *
fba45db2 2393create_child (struct varobj *parent, int index, char *name)
b6313243
TT
2394{
2395 return create_child_with_value (parent, index, name,
2396 value_of_child (parent, index));
2397}
2398
85254831
KS
2399/* Does CHILD represent a child with no name? This happens when
2400 the child is an anonmous struct or union and it has no field name
2401 in its parent variable.
2402
2403 This has already been determined by *_describe_child. The easiest
2404 thing to do is to compare the child's name with ANONYMOUS_*_NAME. */
2405
2406static int
2407is_anonymous_child (struct varobj *child)
2408{
2409 return (strcmp (child->name, ANONYMOUS_STRUCT_NAME) == 0
2410 || strcmp (child->name, ANONYMOUS_UNION_NAME) == 0);
2411}
2412
b6313243
TT
2413static struct varobj *
2414create_child_with_value (struct varobj *parent, int index, const char *name,
2415 struct value *value)
8b93c638
JM
2416{
2417 struct varobj *child;
2418 char *childs_name;
2419
2420 child = new_variable ();
2421
581e13c1 2422 /* Name is allocated by name_of_child. */
b6313243
TT
2423 /* FIXME: xstrdup should not be here. */
2424 child->name = xstrdup (name);
8b93c638 2425 child->index = index;
8b93c638
JM
2426 child->parent = parent;
2427 child->root = parent->root;
85254831
KS
2428
2429 if (is_anonymous_child (child))
2430 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2431 else
2432 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638 2433 child->obj_name = childs_name;
85254831 2434
8b93c638
JM
2435 install_variable (child);
2436
acd65feb
VP
2437 /* Compute the type of the child. Must do this before
2438 calling install_new_value. */
2439 if (value != NULL)
2440 /* If the child had no evaluation errors, var->value
581e13c1 2441 will be non-NULL and contain a valid type. */
8264ba82 2442 child->type = value_actual_type (value, 0, NULL);
acd65feb 2443 else
581e13c1 2444 /* Otherwise, we must compute the type. */
acd65feb
VP
2445 child->type = (*child->root->lang->type_of_child) (child->parent,
2446 child->index);
2447 install_new_value (child, value, 1);
2448
8b93c638
JM
2449 return child;
2450}
8b93c638
JM
2451\f
2452
2453/*
2454 * Miscellaneous utility functions.
2455 */
2456
581e13c1 2457/* Allocate memory and initialize a new variable. */
8b93c638
JM
2458static struct varobj *
2459new_variable (void)
2460{
2461 struct varobj *var;
2462
2463 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2464 var->name = NULL;
02142340 2465 var->path_expr = NULL;
8b93c638
JM
2466 var->obj_name = NULL;
2467 var->index = -1;
2468 var->type = NULL;
2469 var->value = NULL;
8b93c638
JM
2470 var->num_children = -1;
2471 var->parent = NULL;
2472 var->children = NULL;
2473 var->format = 0;
2474 var->root = NULL;
fb9b6b35 2475 var->updated = 0;
85265413 2476 var->print_value = NULL;
25d5ea92
VP
2477 var->frozen = 0;
2478 var->not_fetched = 0;
b6313243 2479 var->children_requested = 0;
0cc7d26f
TT
2480 var->from = -1;
2481 var->to = -1;
2482 var->constructor = 0;
b6313243 2483 var->pretty_printer = 0;
0cc7d26f
TT
2484 var->child_iter = 0;
2485 var->saved_item = 0;
8b93c638
JM
2486
2487 return var;
2488}
2489
581e13c1 2490/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2491static struct varobj *
2492new_root_variable (void)
2493{
2494 struct varobj *var = new_variable ();
a109c7c1 2495
3e43a32a 2496 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
8b93c638
JM
2497 var->root->lang = NULL;
2498 var->root->exp = NULL;
2499 var->root->valid_block = NULL;
7a424e99 2500 var->root->frame = null_frame_id;
a5defcdc 2501 var->root->floating = 0;
8b93c638 2502 var->root->rootvar = NULL;
8756216b 2503 var->root->is_valid = 1;
8b93c638
JM
2504
2505 return var;
2506}
2507
581e13c1 2508/* Free any allocated memory associated with VAR. */
8b93c638 2509static void
fba45db2 2510free_variable (struct varobj *var)
8b93c638 2511{
d452c4bc
UW
2512#if HAVE_PYTHON
2513 if (var->pretty_printer)
2514 {
2515 struct cleanup *cleanup = varobj_ensure_python_env (var);
0cc7d26f
TT
2516 Py_XDECREF (var->constructor);
2517 Py_XDECREF (var->pretty_printer);
2518 Py_XDECREF (var->child_iter);
2519 Py_XDECREF (var->saved_item);
d452c4bc
UW
2520 do_cleanups (cleanup);
2521 }
2522#endif
2523
36746093
JK
2524 value_free (var->value);
2525
581e13c1 2526 /* Free the expression if this is a root variable. */
b2c2bd75 2527 if (is_root_p (var))
8b93c638 2528 {
3038237c 2529 xfree (var->root->exp);
8038e1e2 2530 xfree (var->root);
8b93c638
JM
2531 }
2532
8038e1e2
AC
2533 xfree (var->name);
2534 xfree (var->obj_name);
85265413 2535 xfree (var->print_value);
02142340 2536 xfree (var->path_expr);
8038e1e2 2537 xfree (var);
8b93c638
JM
2538}
2539
74b7792f
AC
2540static void
2541do_free_variable_cleanup (void *var)
2542{
2543 free_variable (var);
2544}
2545
2546static struct cleanup *
2547make_cleanup_free_variable (struct varobj *var)
2548{
2549 return make_cleanup (do_free_variable_cleanup, var);
2550}
2551
581e13c1 2552/* This returns the type of the variable. It also skips past typedefs
6766a268 2553 to return the real type of the variable.
94b66fa7
KS
2554
2555 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
581e13c1 2556 except within get_target_type and get_type. */
8b93c638 2557static struct type *
fba45db2 2558get_type (struct varobj *var)
8b93c638
JM
2559{
2560 struct type *type;
8b93c638 2561
a109c7c1 2562 type = var->type;
6766a268
DJ
2563 if (type != NULL)
2564 type = check_typedef (type);
8b93c638
JM
2565
2566 return type;
2567}
2568
6e2a9270
VP
2569/* Return the type of the value that's stored in VAR,
2570 or that would have being stored there if the
581e13c1 2571 value were accessible.
6e2a9270
VP
2572
2573 This differs from VAR->type in that VAR->type is always
2574 the true type of the expession in the source language.
2575 The return value of this function is the type we're
2576 actually storing in varobj, and using for displaying
2577 the values and for comparing previous and new values.
2578
2579 For example, top-level references are always stripped. */
2580static struct type *
2581get_value_type (struct varobj *var)
2582{
2583 struct type *type;
2584
2585 if (var->value)
2586 type = value_type (var->value);
2587 else
2588 type = var->type;
2589
2590 type = check_typedef (type);
2591
2592 if (TYPE_CODE (type) == TYPE_CODE_REF)
2593 type = get_target_type (type);
2594
2595 type = check_typedef (type);
2596
2597 return type;
2598}
2599
8b93c638 2600/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
2601 past typedefs, just like get_type ().
2602
2603 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
581e13c1 2604 except within get_target_type and get_type. */
8b93c638 2605static struct type *
fba45db2 2606get_target_type (struct type *type)
8b93c638
JM
2607{
2608 if (type != NULL)
2609 {
2610 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
2611 if (type != NULL)
2612 type = check_typedef (type);
8b93c638
JM
2613 }
2614
2615 return type;
2616}
2617
2618/* What is the default display for this variable? We assume that
581e13c1 2619 everything is "natural". Any exceptions? */
8b93c638 2620static enum varobj_display_formats
fba45db2 2621variable_default_display (struct varobj *var)
8b93c638
JM
2622{
2623 return FORMAT_NATURAL;
2624}
2625
581e13c1 2626/* FIXME: The following should be generic for any pointer. */
8b93c638 2627static void
fba45db2 2628cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2629{
2630 struct cpstack *s;
2631
2632 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2633 s->name = name;
2634 s->next = *pstack;
2635 *pstack = s;
2636}
2637
581e13c1 2638/* FIXME: The following should be generic for any pointer. */
8b93c638 2639static char *
fba45db2 2640cppop (struct cpstack **pstack)
8b93c638
JM
2641{
2642 struct cpstack *s;
2643 char *v;
2644
2645 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2646 return NULL;
2647
2648 s = *pstack;
2649 v = s->name;
2650 *pstack = (*pstack)->next;
b8c9b27d 2651 xfree (s);
8b93c638
JM
2652
2653 return v;
2654}
2655\f
2656/*
2657 * Language-dependencies
2658 */
2659
2660/* Common entry points */
2661
581e13c1 2662/* Get the language of variable VAR. */
8b93c638 2663static enum varobj_languages
fba45db2 2664variable_language (struct varobj *var)
8b93c638
JM
2665{
2666 enum varobj_languages lang;
2667
2668 switch (var->root->exp->language_defn->la_language)
2669 {
2670 default:
2671 case language_c:
2672 lang = vlang_c;
2673 break;
2674 case language_cplus:
2675 lang = vlang_cplus;
2676 break;
2677 case language_java:
2678 lang = vlang_java;
2679 break;
40591b7d
JCD
2680 case language_ada:
2681 lang = vlang_ada;
2682 break;
8b93c638
JM
2683 }
2684
2685 return lang;
2686}
2687
2688/* Return the number of children for a given variable.
2689 The result of this function is defined by the language
581e13c1 2690 implementation. The number of children returned by this function
8b93c638 2691 is the number of children that the user will see in the variable
581e13c1 2692 display. */
8b93c638 2693static int
fba45db2 2694number_of_children (struct varobj *var)
8b93c638 2695{
82ae4854 2696 return (*var->root->lang->number_of_children) (var);
8b93c638
JM
2697}
2698
3e43a32a 2699/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2700 string. */
8b93c638 2701static char *
fba45db2 2702name_of_variable (struct varobj *var)
8b93c638
JM
2703{
2704 return (*var->root->lang->name_of_variable) (var);
2705}
2706
3e43a32a 2707/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2708 string. */
8b93c638 2709static char *
fba45db2 2710name_of_child (struct varobj *var, int index)
8b93c638
JM
2711{
2712 return (*var->root->lang->name_of_child) (var, index);
2713}
2714
a5defcdc
VP
2715/* What is the ``struct value *'' of the root variable VAR?
2716 For floating variable object, evaluation can get us a value
2717 of different type from what is stored in varobj already. In
2718 that case:
2719 - *type_changed will be set to 1
2720 - old varobj will be freed, and new one will be
2721 created, with the same name.
2722 - *var_handle will be set to the new varobj
2723 Otherwise, *type_changed will be set to 0. */
30b28db1 2724static struct value *
fba45db2 2725value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2726{
73a93a32
JI
2727 struct varobj *var;
2728
2729 if (var_handle == NULL)
2730 return NULL;
2731
2732 var = *var_handle;
2733
2734 /* This should really be an exception, since this should
581e13c1 2735 only get called with a root variable. */
73a93a32 2736
b2c2bd75 2737 if (!is_root_p (var))
73a93a32
JI
2738 return NULL;
2739
a5defcdc 2740 if (var->root->floating)
73a93a32
JI
2741 {
2742 struct varobj *tmp_var;
2743 char *old_type, *new_type;
6225abfa 2744
73a93a32
JI
2745 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2746 USE_SELECTED_FRAME);
2747 if (tmp_var == NULL)
2748 {
2749 return NULL;
2750 }
6225abfa 2751 old_type = varobj_get_type (var);
73a93a32 2752 new_type = varobj_get_type (tmp_var);
72330bd6 2753 if (strcmp (old_type, new_type) == 0)
73a93a32 2754 {
fcacd99f
VP
2755 /* The expression presently stored inside var->root->exp
2756 remembers the locations of local variables relatively to
2757 the frame where the expression was created (in DWARF location
2758 button, for example). Naturally, those locations are not
2759 correct in other frames, so update the expression. */
2760
2761 struct expression *tmp_exp = var->root->exp;
a109c7c1 2762
fcacd99f
VP
2763 var->root->exp = tmp_var->root->exp;
2764 tmp_var->root->exp = tmp_exp;
2765
73a93a32
JI
2766 varobj_delete (tmp_var, NULL, 0);
2767 *type_changed = 0;
2768 }
2769 else
2770 {
1b36a34b 2771 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2772 tmp_var->from = var->from;
2773 tmp_var->to = var->to;
a5defcdc
VP
2774 varobj_delete (var, NULL, 0);
2775
73a93a32
JI
2776 install_variable (tmp_var);
2777 *var_handle = tmp_var;
705da579 2778 var = *var_handle;
73a93a32
JI
2779 *type_changed = 1;
2780 }
74dddad3
MS
2781 xfree (old_type);
2782 xfree (new_type);
73a93a32
JI
2783 }
2784 else
2785 {
2786 *type_changed = 0;
2787 }
2788
7a290c40
JB
2789 {
2790 struct value *value;
2791
2792 value = (*var->root->lang->value_of_root) (var_handle);
2793 if (var->value == NULL || value == NULL)
2794 {
2795 /* For root varobj-s, a NULL value indicates a scoping issue.
2796 So, nothing to do in terms of checking for mutations. */
2797 }
2798 else if (varobj_value_has_mutated (var, value, value_type (value)))
2799 {
2800 /* The type has mutated, so the children are no longer valid.
2801 Just delete them, and tell our caller that the type has
2802 changed. */
2803 varobj_delete (var, NULL, 1 /* only_children */);
2804 var->num_children = -1;
2805 var->to = -1;
2806 var->from = -1;
2807 *type_changed = 1;
2808 }
2809 return value;
2810 }
8b93c638
JM
2811}
2812
581e13c1 2813/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2814static struct value *
fba45db2 2815value_of_child (struct varobj *parent, int index)
8b93c638 2816{
30b28db1 2817 struct value *value;
8b93c638
JM
2818
2819 value = (*parent->root->lang->value_of_child) (parent, index);
2820
8b93c638
JM
2821 return value;
2822}
2823
581e13c1 2824/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2825static char *
de051565 2826my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2827{
8756216b 2828 if (var->root->is_valid)
0cc7d26f
TT
2829 {
2830 if (var->pretty_printer)
2831 return value_get_print_value (var->value, var->format, var);
2832 return (*var->root->lang->value_of_variable) (var, format);
2833 }
8756216b
DP
2834 else
2835 return NULL;
8b93c638
JM
2836}
2837
85265413 2838static char *
b6313243 2839value_get_print_value (struct value *value, enum varobj_display_formats format,
d452c4bc 2840 struct varobj *var)
85265413 2841{
57e66780 2842 struct ui_file *stb;
621c8364 2843 struct cleanup *old_chain;
fbb8f299 2844 gdb_byte *thevalue = NULL;
79a45b7d 2845 struct value_print_options opts;
be759fcf
PM
2846 struct type *type = NULL;
2847 long len = 0;
2848 char *encoding = NULL;
2849 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2850 /* Initialize it just to avoid a GCC false warning. */
2851 CORE_ADDR str_addr = 0;
09ca9e2e 2852 int string_print = 0;
57e66780
DJ
2853
2854 if (value == NULL)
2855 return NULL;
2856
621c8364
TT
2857 stb = mem_fileopen ();
2858 old_chain = make_cleanup_ui_file_delete (stb);
2859
be759fcf 2860 gdbarch = get_type_arch (value_type (value));
b6313243
TT
2861#if HAVE_PYTHON
2862 {
d452c4bc
UW
2863 PyObject *value_formatter = var->pretty_printer;
2864
09ca9e2e
TT
2865 varobj_ensure_python_env (var);
2866
0cc7d26f 2867 if (value_formatter)
b6313243 2868 {
0cc7d26f
TT
2869 /* First check to see if we have any children at all. If so,
2870 we simply return {...}. */
2871 if (dynamic_varobj_has_child_method (var))
621c8364
TT
2872 {
2873 do_cleanups (old_chain);
2874 return xstrdup ("{...}");
2875 }
b6313243 2876
0cc7d26f 2877 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
b6313243 2878 {
0cc7d26f 2879 struct value *replacement;
0cc7d26f
TT
2880 PyObject *output = NULL;
2881
0cc7d26f 2882 output = apply_varobj_pretty_printer (value_formatter,
621c8364
TT
2883 &replacement,
2884 stb);
00bd41d6
PM
2885
2886 /* If we have string like output ... */
0cc7d26f
TT
2887 if (output)
2888 {
09ca9e2e
TT
2889 make_cleanup_py_decref (output);
2890
00bd41d6
PM
2891 /* If this is a lazy string, extract it. For lazy
2892 strings we always print as a string, so set
2893 string_print. */
be759fcf 2894 if (gdbpy_is_lazy_string (output))
0cc7d26f 2895 {
09ca9e2e
TT
2896 gdbpy_extract_lazy_string (output, &str_addr, &type,
2897 &len, &encoding);
2898 make_cleanup (free_current_contents, &encoding);
be759fcf
PM
2899 string_print = 1;
2900 }
2901 else
2902 {
00bd41d6
PM
2903 /* If it is a regular (non-lazy) string, extract
2904 it and copy the contents into THEVALUE. If the
2905 hint says to print it as a string, set
2906 string_print. Otherwise just return the extracted
2907 string as a value. */
2908
be759fcf
PM
2909 PyObject *py_str
2910 = python_string_to_target_python_string (output);
a109c7c1 2911
be759fcf
PM
2912 if (py_str)
2913 {
2914 char *s = PyString_AsString (py_str);
00bd41d6
PM
2915 char *hint;
2916
2917 hint = gdbpy_get_display_hint (value_formatter);
2918 if (hint)
2919 {
2920 if (!strcmp (hint, "string"))
2921 string_print = 1;
2922 xfree (hint);
2923 }
a109c7c1 2924
be759fcf
PM
2925 len = PyString_Size (py_str);
2926 thevalue = xmemdup (s, len + 1, len + 1);
2927 type = builtin_type (gdbarch)->builtin_char;
2928 Py_DECREF (py_str);
09ca9e2e
TT
2929
2930 if (!string_print)
2931 {
2932 do_cleanups (old_chain);
2933 return thevalue;
2934 }
2935
2936 make_cleanup (xfree, thevalue);
be759fcf 2937 }
8dc78533
JK
2938 else
2939 gdbpy_print_stack ();
0cc7d26f 2940 }
0cc7d26f 2941 }
00bd41d6
PM
2942 /* If the printer returned a replacement value, set VALUE
2943 to REPLACEMENT. If there is not a replacement value,
2944 just use the value passed to this function. */
0cc7d26f
TT
2945 if (replacement)
2946 value = replacement;
b6313243 2947 }
b6313243 2948 }
b6313243
TT
2949 }
2950#endif
2951
79a45b7d
TT
2952 get_formatted_print_options (&opts, format_code[(int) format]);
2953 opts.deref_ref = 0;
b6313243 2954 opts.raw = 1;
00bd41d6
PM
2955
2956 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2957 if (thevalue)
09ca9e2e
TT
2958 LA_PRINT_STRING (stb, type, thevalue, len, encoding, 0, &opts);
2959 else if (string_print)
00bd41d6
PM
2960 /* Otherwise, if string_print is set, and it is not a regular
2961 string, it is a lazy string. */
09ca9e2e 2962 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2963 else
00bd41d6 2964 /* All other cases. */
b6313243 2965 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2966
759ef836 2967 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2968
85265413
NR
2969 do_cleanups (old_chain);
2970 return thevalue;
2971}
2972
340a7723
NR
2973int
2974varobj_editable_p (struct varobj *var)
2975{
2976 struct type *type;
340a7723
NR
2977
2978 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2979 return 0;
2980
2981 type = get_value_type (var);
2982
2983 switch (TYPE_CODE (type))
2984 {
2985 case TYPE_CODE_STRUCT:
2986 case TYPE_CODE_UNION:
2987 case TYPE_CODE_ARRAY:
2988 case TYPE_CODE_FUNC:
2989 case TYPE_CODE_METHOD:
2990 return 0;
2991 break;
2992
2993 default:
2994 return 1;
2995 break;
2996 }
2997}
2998
d32cafc7 2999/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 3000
8b93c638 3001static int
b2c2bd75 3002varobj_value_is_changeable_p (struct varobj *var)
8b93c638 3003{
d32cafc7 3004 return var->root->lang->value_is_changeable_p (var);
8b93c638
JM
3005}
3006
5a413362
VP
3007/* Return 1 if that varobj is floating, that is is always evaluated in the
3008 selected frame, and not bound to thread/frame. Such variable objects
3009 are created using '@' as frame specifier to -var-create. */
3010int
3011varobj_floating_p (struct varobj *var)
3012{
3013 return var->root->floating;
3014}
3015
2024f65a
VP
3016/* Given the value and the type of a variable object,
3017 adjust the value and type to those necessary
3018 for getting children of the variable object.
3019 This includes dereferencing top-level references
3020 to all types and dereferencing pointers to
581e13c1 3021 structures.
2024f65a 3022
8264ba82
AG
3023 If LOOKUP_ACTUAL_TYPE is set the enclosing type of the
3024 value will be fetched and if it differs from static type
3025 the value will be casted to it.
3026
581e13c1 3027 Both TYPE and *TYPE should be non-null. VALUE
2024f65a
VP
3028 can be null if we want to only translate type.
3029 *VALUE can be null as well -- if the parent
581e13c1 3030 value is not known.
02142340
VP
3031
3032 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
b6313243 3033 depending on whether pointer was dereferenced
02142340 3034 in this function. */
2024f65a
VP
3035static void
3036adjust_value_for_child_access (struct value **value,
02142340 3037 struct type **type,
8264ba82
AG
3038 int *was_ptr,
3039 int lookup_actual_type)
2024f65a
VP
3040{
3041 gdb_assert (type && *type);
3042
02142340
VP
3043 if (was_ptr)
3044 *was_ptr = 0;
3045
2024f65a
VP
3046 *type = check_typedef (*type);
3047
3048 /* The type of value stored in varobj, that is passed
3049 to us, is already supposed to be
3050 reference-stripped. */
3051
3052 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
3053
3054 /* Pointers to structures are treated just like
3055 structures when accessing children. Don't
3056 dererences pointers to other types. */
3057 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
3058 {
3059 struct type *target_type = get_target_type (*type);
3060 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
3061 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
3062 {
3063 if (value && *value)
3f4178d6 3064 {
8e7b59a5 3065 volatile struct gdb_exception except;
a109c7c1 3066
8e7b59a5
KS
3067 TRY_CATCH (except, RETURN_MASK_ERROR)
3068 {
3069 *value = value_ind (*value);
3070 }
3071
3072 if (except.reason < 0)
3f4178d6
DJ
3073 *value = NULL;
3074 }
2024f65a 3075 *type = target_type;
02142340
VP
3076 if (was_ptr)
3077 *was_ptr = 1;
2024f65a
VP
3078 }
3079 }
3080
3081 /* The 'get_target_type' function calls check_typedef on
3082 result, so we can immediately check type code. No
3083 need to call check_typedef here. */
8264ba82
AG
3084
3085 /* Access a real type of the value (if necessary and possible). */
3086 if (value && *value && lookup_actual_type)
3087 {
3088 struct type *enclosing_type;
3089 int real_type_found = 0;
3090
3091 enclosing_type = value_actual_type (*value, 1, &real_type_found);
3092 if (real_type_found)
3093 {
3094 *type = enclosing_type;
3095 *value = value_cast (enclosing_type, *value);
3096 }
3097 }
2024f65a
VP
3098}
3099
d32cafc7
JB
3100/* Implement the "value_is_changeable_p" varobj callback for most
3101 languages. */
3102
3103static int
3104default_value_is_changeable_p (struct varobj *var)
3105{
3106 int r;
3107 struct type *type;
3108
3109 if (CPLUS_FAKE_CHILD (var))
3110 return 0;
3111
3112 type = get_value_type (var);
3113
3114 switch (TYPE_CODE (type))
3115 {
3116 case TYPE_CODE_STRUCT:
3117 case TYPE_CODE_UNION:
3118 case TYPE_CODE_ARRAY:
3119 r = 0;
3120 break;
3121
3122 default:
3123 r = 1;
3124 }
3125
3126 return r;
3127}
3128
8b93c638 3129/* C */
d32cafc7 3130
8b93c638 3131static int
fba45db2 3132c_number_of_children (struct varobj *var)
8b93c638 3133{
2024f65a
VP
3134 struct type *type = get_value_type (var);
3135 int children = 0;
8b93c638 3136 struct type *target;
8b93c638 3137
8264ba82 3138 adjust_value_for_child_access (NULL, &type, NULL, 0);
8b93c638 3139 target = get_target_type (type);
8b93c638
JM
3140
3141 switch (TYPE_CODE (type))
3142 {
3143 case TYPE_CODE_ARRAY:
3144 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 3145 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
3146 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
3147 else
74a44383
DJ
3148 /* If we don't know how many elements there are, don't display
3149 any. */
3150 children = 0;
8b93c638
JM
3151 break;
3152
3153 case TYPE_CODE_STRUCT:
3154 case TYPE_CODE_UNION:
3155 children = TYPE_NFIELDS (type);
3156 break;
3157
3158 case TYPE_CODE_PTR:
581e13c1 3159 /* The type here is a pointer to non-struct. Typically, pointers
2024f65a
VP
3160 have one child, except for function ptrs, which have no children,
3161 and except for void*, as we don't know what to show.
3162
0755e6c1
FN
3163 We can show char* so we allow it to be dereferenced. If you decide
3164 to test for it, please mind that a little magic is necessary to
3165 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
581e13c1 3166 TYPE_NAME == "char". */
2024f65a
VP
3167 if (TYPE_CODE (target) == TYPE_CODE_FUNC
3168 || TYPE_CODE (target) == TYPE_CODE_VOID)
3169 children = 0;
3170 else
3171 children = 1;
8b93c638
JM
3172 break;
3173
3174 default:
581e13c1 3175 /* Other types have no children. */
8b93c638
JM
3176 break;
3177 }
3178
3179 return children;
3180}
3181
3182static char *
fba45db2 3183c_name_of_variable (struct varobj *parent)
8b93c638 3184{
1b36a34b 3185 return xstrdup (parent->name);
8b93c638
JM
3186}
3187
bbec2603
VP
3188/* Return the value of element TYPE_INDEX of a structure
3189 value VALUE. VALUE's type should be a structure,
581e13c1 3190 or union, or a typedef to struct/union.
bbec2603
VP
3191
3192 Returns NULL if getting the value fails. Never throws. */
3193static struct value *
3194value_struct_element_index (struct value *value, int type_index)
8b93c638 3195{
bbec2603
VP
3196 struct value *result = NULL;
3197 volatile struct gdb_exception e;
bbec2603 3198 struct type *type = value_type (value);
a109c7c1 3199
bbec2603
VP
3200 type = check_typedef (type);
3201
3202 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
3203 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 3204
bbec2603
VP
3205 TRY_CATCH (e, RETURN_MASK_ERROR)
3206 {
d6a843b5 3207 if (field_is_static (&TYPE_FIELD (type, type_index)))
bbec2603
VP
3208 result = value_static_field (type, type_index);
3209 else
3210 result = value_primitive_field (value, 0, type_index, type);
3211 }
3212 if (e.reason < 0)
3213 {
3214 return NULL;
3215 }
3216 else
3217 {
3218 return result;
3219 }
3220}
3221
3222/* Obtain the information about child INDEX of the variable
581e13c1 3223 object PARENT.
bbec2603
VP
3224 If CNAME is not null, sets *CNAME to the name of the child relative
3225 to the parent.
3226 If CVALUE is not null, sets *CVALUE to the value of the child.
3227 If CTYPE is not null, sets *CTYPE to the type of the child.
3228
3229 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
3230 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
3231 to NULL. */
3232static void
3233c_describe_child (struct varobj *parent, int index,
02142340
VP
3234 char **cname, struct value **cvalue, struct type **ctype,
3235 char **cfull_expression)
bbec2603
VP
3236{
3237 struct value *value = parent->value;
2024f65a 3238 struct type *type = get_value_type (parent);
02142340
VP
3239 char *parent_expression = NULL;
3240 int was_ptr;
8e7b59a5 3241 volatile struct gdb_exception except;
bbec2603
VP
3242
3243 if (cname)
3244 *cname = NULL;
3245 if (cvalue)
3246 *cvalue = NULL;
3247 if (ctype)
3248 *ctype = NULL;
02142340
VP
3249 if (cfull_expression)
3250 {
3251 *cfull_expression = NULL;
85254831 3252 parent_expression = varobj_get_path_expr (get_path_expr_parent (parent));
02142340 3253 }
8264ba82 3254 adjust_value_for_child_access (&value, &type, &was_ptr, 0);
bbec2603 3255
8b93c638
JM
3256 switch (TYPE_CODE (type))
3257 {
3258 case TYPE_CODE_ARRAY:
bbec2603 3259 if (cname)
3e43a32a
MS
3260 *cname
3261 = xstrdup (int_string (index
3262 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3263 10, 1, 0, 0));
bbec2603
VP
3264
3265 if (cvalue && value)
3266 {
3267 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
a109c7c1 3268
8e7b59a5
KS
3269 TRY_CATCH (except, RETURN_MASK_ERROR)
3270 {
3271 *cvalue = value_subscript (value, real_index);
3272 }
bbec2603
VP
3273 }
3274
3275 if (ctype)
3276 *ctype = get_target_type (type);
3277
02142340 3278 if (cfull_expression)
43bbcdc2
PH
3279 *cfull_expression =
3280 xstrprintf ("(%s)[%s]", parent_expression,
3281 int_string (index
3282 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)),
3283 10, 1, 0, 0));
02142340
VP
3284
3285
8b93c638
JM
3286 break;
3287
3288 case TYPE_CODE_STRUCT:
3289 case TYPE_CODE_UNION:
85254831 3290 {
0d5cff50 3291 const char *field_name;
bbec2603 3292
85254831
KS
3293 /* If the type is anonymous and the field has no name,
3294 set an appropriate name. */
3295 field_name = TYPE_FIELD_NAME (type, index);
3296 if (field_name == NULL || *field_name == '\0')
3297 {
3298 if (cname)
3299 {
3300 if (TYPE_CODE (TYPE_FIELD_TYPE (type, index))
3301 == TYPE_CODE_STRUCT)
3302 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3303 else
3304 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3305 }
bbec2603 3306
85254831
KS
3307 if (cfull_expression)
3308 *cfull_expression = xstrdup ("");
3309 }
3310 else
3311 {
3312 if (cname)
3313 *cname = xstrdup (field_name);
bbec2603 3314
85254831
KS
3315 if (cfull_expression)
3316 {
3317 char *join = was_ptr ? "->" : ".";
a109c7c1 3318
85254831
KS
3319 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression,
3320 join, field_name);
3321 }
3322 }
02142340 3323
85254831
KS
3324 if (cvalue && value)
3325 {
3326 /* For C, varobj index is the same as type index. */
3327 *cvalue = value_struct_element_index (value, index);
3328 }
3329
3330 if (ctype)
3331 *ctype = TYPE_FIELD_TYPE (type, index);
3332 }
8b93c638
JM
3333 break;
3334
3335 case TYPE_CODE_PTR:
bbec2603
VP
3336 if (cname)
3337 *cname = xstrprintf ("*%s", parent->name);
8b93c638 3338
bbec2603 3339 if (cvalue && value)
3f4178d6 3340 {
8e7b59a5
KS
3341 TRY_CATCH (except, RETURN_MASK_ERROR)
3342 {
3343 *cvalue = value_ind (value);
3344 }
a109c7c1 3345
8e7b59a5 3346 if (except.reason < 0)
3f4178d6
DJ
3347 *cvalue = NULL;
3348 }
bbec2603 3349
2024f65a
VP
3350 /* Don't use get_target_type because it calls
3351 check_typedef and here, we want to show the true
3352 declared type of the variable. */
bbec2603 3353 if (ctype)
2024f65a 3354 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
3355
3356 if (cfull_expression)
3357 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 3358
8b93c638
JM
3359 break;
3360
3361 default:
581e13c1 3362 /* This should not happen. */
bbec2603
VP
3363 if (cname)
3364 *cname = xstrdup ("???");
02142340
VP
3365 if (cfull_expression)
3366 *cfull_expression = xstrdup ("???");
581e13c1 3367 /* Don't set value and type, we don't know then. */
8b93c638 3368 }
bbec2603 3369}
8b93c638 3370
bbec2603
VP
3371static char *
3372c_name_of_child (struct varobj *parent, int index)
3373{
3374 char *name;
a109c7c1 3375
02142340 3376 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3377 return name;
3378}
3379
02142340
VP
3380static char *
3381c_path_expr_of_child (struct varobj *child)
3382{
3383 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
3384 &child->path_expr);
3385 return child->path_expr;
3386}
3387
c5b48eac
VP
3388/* If frame associated with VAR can be found, switch
3389 to it and return 1. Otherwise, return 0. */
3390static int
3391check_scope (struct varobj *var)
3392{
3393 struct frame_info *fi;
3394 int scope;
3395
3396 fi = frame_find_by_id (var->root->frame);
3397 scope = fi != NULL;
3398
3399 if (fi)
3400 {
3401 CORE_ADDR pc = get_frame_pc (fi);
a109c7c1 3402
c5b48eac
VP
3403 if (pc < BLOCK_START (var->root->valid_block) ||
3404 pc >= BLOCK_END (var->root->valid_block))
3405 scope = 0;
3406 else
3407 select_frame (fi);
3408 }
3409 return scope;
3410}
3411
30b28db1 3412static struct value *
fba45db2 3413c_value_of_root (struct varobj **var_handle)
8b93c638 3414{
5e572bb4 3415 struct value *new_val = NULL;
73a93a32 3416 struct varobj *var = *var_handle;
c5b48eac 3417 int within_scope = 0;
6208b47d
VP
3418 struct cleanup *back_to;
3419
581e13c1 3420 /* Only root variables can be updated... */
b2c2bd75 3421 if (!is_root_p (var))
581e13c1 3422 /* Not a root var. */
73a93a32
JI
3423 return NULL;
3424
4f8d22e3 3425 back_to = make_cleanup_restore_current_thread ();
72330bd6 3426
581e13c1 3427 /* Determine whether the variable is still around. */
a5defcdc 3428 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 3429 within_scope = 1;
c5b48eac
VP
3430 else if (var->root->thread_id == 0)
3431 {
3432 /* The program was single-threaded when the variable object was
3433 created. Technically, it's possible that the program became
3434 multi-threaded since then, but we don't support such
3435 scenario yet. */
3436 within_scope = check_scope (var);
3437 }
8b93c638
JM
3438 else
3439 {
c5b48eac
VP
3440 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
3441 if (in_thread_list (ptid))
d2353924 3442 {
c5b48eac
VP
3443 switch_to_thread (ptid);
3444 within_scope = check_scope (var);
3445 }
8b93c638 3446 }
72330bd6 3447
8b93c638
JM
3448 if (within_scope)
3449 {
8e7b59a5
KS
3450 volatile struct gdb_exception except;
3451
73a93a32 3452 /* We need to catch errors here, because if evaluate
85d93f1d 3453 expression fails we want to just return NULL. */
8e7b59a5
KS
3454 TRY_CATCH (except, RETURN_MASK_ERROR)
3455 {
3456 new_val = evaluate_expression (var->root->exp);
3457 }
3458
8b93c638
JM
3459 return new_val;
3460 }
3461
6208b47d
VP
3462 do_cleanups (back_to);
3463
8b93c638
JM
3464 return NULL;
3465}
3466
30b28db1 3467static struct value *
fba45db2 3468c_value_of_child (struct varobj *parent, int index)
8b93c638 3469{
bbec2603 3470 struct value *value = NULL;
8b93c638 3471
a109c7c1 3472 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3473 return value;
3474}
3475
3476static struct type *
fba45db2 3477c_type_of_child (struct varobj *parent, int index)
8b93c638 3478{
bbec2603 3479 struct type *type = NULL;
a109c7c1 3480
02142340 3481 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3482 return type;
3483}
3484
8b93c638 3485static char *
de051565 3486c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 3487{
14b3d9c9
JB
3488 /* BOGUS: if val_print sees a struct/class, or a reference to one,
3489 it will print out its children instead of "{...}". So we need to
3490 catch that case explicitly. */
3491 struct type *type = get_type (var);
e64d9b3d 3492
581e13c1 3493 /* Strip top-level references. */
14b3d9c9
JB
3494 while (TYPE_CODE (type) == TYPE_CODE_REF)
3495 type = check_typedef (TYPE_TARGET_TYPE (type));
3496
3497 switch (TYPE_CODE (type))
8b93c638
JM
3498 {
3499 case TYPE_CODE_STRUCT:
3500 case TYPE_CODE_UNION:
3501 return xstrdup ("{...}");
3502 /* break; */
3503
3504 case TYPE_CODE_ARRAY:
3505 {
e64d9b3d 3506 char *number;
a109c7c1 3507
b435e160 3508 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 3509 return (number);
8b93c638
JM
3510 }
3511 /* break; */
3512
3513 default:
3514 {
575bbeb6
KS
3515 if (var->value == NULL)
3516 {
3517 /* This can happen if we attempt to get the value of a struct
581e13c1
MS
3518 member when the parent is an invalid pointer. This is an
3519 error condition, so we should tell the caller. */
575bbeb6
KS
3520 return NULL;
3521 }
3522 else
3523 {
25d5ea92
VP
3524 if (var->not_fetched && value_lazy (var->value))
3525 /* Frozen variable and no value yet. We don't
3526 implicitly fetch the value. MI response will
3527 use empty string for the value, which is OK. */
3528 return NULL;
3529
b2c2bd75 3530 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 3531 gdb_assert (!value_lazy (var->value));
de051565
MK
3532
3533 /* If the specified format is the current one,
581e13c1 3534 we can reuse print_value. */
de051565
MK
3535 if (format == var->format)
3536 return xstrdup (var->print_value);
3537 else
d452c4bc 3538 return value_get_print_value (var->value, format, var);
85265413 3539 }
e64d9b3d 3540 }
8b93c638
JM
3541 }
3542}
3543\f
3544
3545/* C++ */
3546
3547static int
fba45db2 3548cplus_number_of_children (struct varobj *var)
8b93c638 3549{
8264ba82 3550 struct value *value = NULL;
8b93c638
JM
3551 struct type *type;
3552 int children, dont_know;
8264ba82
AG
3553 int lookup_actual_type = 0;
3554 struct value_print_options opts;
8b93c638
JM
3555
3556 dont_know = 1;
3557 children = 0;
3558
8264ba82
AG
3559 get_user_print_options (&opts);
3560
8b93c638
JM
3561 if (!CPLUS_FAKE_CHILD (var))
3562 {
2024f65a 3563 type = get_value_type (var);
8264ba82
AG
3564
3565 /* It is necessary to access a real type (via RTTI). */
3566 if (opts.objectprint)
3567 {
3568 value = var->value;
3569 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3570 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3571 }
3572 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
8b93c638
JM
3573
3574 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 3575 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
3576 {
3577 int kids[3];
3578
3579 cplus_class_num_children (type, kids);
3580 if (kids[v_public] != 0)
3581 children++;
3582 if (kids[v_private] != 0)
3583 children++;
3584 if (kids[v_protected] != 0)
3585 children++;
3586
581e13c1 3587 /* Add any baseclasses. */
8b93c638
JM
3588 children += TYPE_N_BASECLASSES (type);
3589 dont_know = 0;
3590
581e13c1 3591 /* FIXME: save children in var. */
8b93c638
JM
3592 }
3593 }
3594 else
3595 {
3596 int kids[3];
3597
2024f65a 3598 type = get_value_type (var->parent);
8264ba82
AG
3599
3600 /* It is necessary to access a real type (via RTTI). */
3601 if (opts.objectprint)
3602 {
3603 struct varobj *parent = var->parent;
3604
3605 value = parent->value;
3606 lookup_actual_type = (TYPE_CODE (parent->type) == TYPE_CODE_REF
3607 || TYPE_CODE (parent->type) == TYPE_CODE_PTR);
3608 }
3609 adjust_value_for_child_access (&value, &type, NULL, lookup_actual_type);
8b93c638
JM
3610
3611 cplus_class_num_children (type, kids);
6e382aa3 3612 if (strcmp (var->name, "public") == 0)
8b93c638 3613 children = kids[v_public];
6e382aa3 3614 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
3615 children = kids[v_private];
3616 else
3617 children = kids[v_protected];
3618 dont_know = 0;
3619 }
3620
3621 if (dont_know)
3622 children = c_number_of_children (var);
3623
3624 return children;
3625}
3626
3627/* Compute # of public, private, and protected variables in this class.
3628 That means we need to descend into all baseclasses and find out
581e13c1 3629 how many are there, too. */
8b93c638 3630static void
1669605f 3631cplus_class_num_children (struct type *type, int children[3])
8b93c638 3632{
d48cc9dd
DJ
3633 int i, vptr_fieldno;
3634 struct type *basetype = NULL;
8b93c638
JM
3635
3636 children[v_public] = 0;
3637 children[v_private] = 0;
3638 children[v_protected] = 0;
3639
d48cc9dd 3640 vptr_fieldno = get_vptr_fieldno (type, &basetype);
8b93c638
JM
3641 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
3642 {
d48cc9dd
DJ
3643 /* If we have a virtual table pointer, omit it. Even if virtual
3644 table pointers are not specifically marked in the debug info,
3645 they should be artificial. */
3646 if ((type == basetype && i == vptr_fieldno)
3647 || TYPE_FIELD_ARTIFICIAL (type, i))
8b93c638
JM
3648 continue;
3649
3650 if (TYPE_FIELD_PROTECTED (type, i))
3651 children[v_protected]++;
3652 else if (TYPE_FIELD_PRIVATE (type, i))
3653 children[v_private]++;
3654 else
3655 children[v_public]++;
3656 }
3657}
3658
3659static char *
fba45db2 3660cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
3661{
3662 return c_name_of_variable (parent);
3663}
3664
2024f65a
VP
3665enum accessibility { private_field, protected_field, public_field };
3666
3667/* Check if field INDEX of TYPE has the specified accessibility.
3668 Return 0 if so and 1 otherwise. */
3669static int
3670match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 3671{
2024f65a
VP
3672 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
3673 return 1;
3674 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
3675 return 1;
3676 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
3677 && !TYPE_FIELD_PROTECTED (type, index))
3678 return 1;
3679 else
3680 return 0;
3681}
3682
3683static void
3684cplus_describe_child (struct varobj *parent, int index,
02142340
VP
3685 char **cname, struct value **cvalue, struct type **ctype,
3686 char **cfull_expression)
2024f65a 3687{
2024f65a 3688 struct value *value;
8b93c638 3689 struct type *type;
02142340 3690 int was_ptr;
8264ba82 3691 int lookup_actual_type = 0;
02142340 3692 char *parent_expression = NULL;
8264ba82
AG
3693 struct varobj *var;
3694 struct value_print_options opts;
8b93c638 3695
2024f65a
VP
3696 if (cname)
3697 *cname = NULL;
3698 if (cvalue)
3699 *cvalue = NULL;
3700 if (ctype)
3701 *ctype = NULL;
02142340
VP
3702 if (cfull_expression)
3703 *cfull_expression = NULL;
2024f65a 3704
8264ba82
AG
3705 get_user_print_options (&opts);
3706
3707 var = (CPLUS_FAKE_CHILD (parent)) ? parent->parent : parent;
3708 if (opts.objectprint)
3709 lookup_actual_type = (TYPE_CODE (var->type) == TYPE_CODE_REF
3710 || TYPE_CODE (var->type) == TYPE_CODE_PTR);
3711 value = var->value;
3712 type = get_value_type (var);
3713 if (cfull_expression)
3714 parent_expression = varobj_get_path_expr (get_path_expr_parent (var));
8b93c638 3715
8264ba82 3716 adjust_value_for_child_access (&value, &type, &was_ptr, lookup_actual_type);
2024f65a
VP
3717
3718 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 3719 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 3720 {
02142340 3721 char *join = was_ptr ? "->" : ".";
a109c7c1 3722
8b93c638
JM
3723 if (CPLUS_FAKE_CHILD (parent))
3724 {
6e382aa3
JJ
3725 /* The fields of the class type are ordered as they
3726 appear in the class. We are given an index for a
3727 particular access control type ("public","protected",
3728 or "private"). We must skip over fields that don't
3729 have the access control we are looking for to properly
581e13c1 3730 find the indexed field. */
6e382aa3 3731 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 3732 enum accessibility acc = public_field;
d48cc9dd
DJ
3733 int vptr_fieldno;
3734 struct type *basetype = NULL;
0d5cff50 3735 const char *field_name;
d48cc9dd
DJ
3736
3737 vptr_fieldno = get_vptr_fieldno (type, &basetype);
6e382aa3 3738 if (strcmp (parent->name, "private") == 0)
2024f65a 3739 acc = private_field;
6e382aa3 3740 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
3741 acc = protected_field;
3742
3743 while (index >= 0)
6e382aa3 3744 {
d48cc9dd
DJ
3745 if ((type == basetype && type_index == vptr_fieldno)
3746 || TYPE_FIELD_ARTIFICIAL (type, type_index))
2024f65a
VP
3747 ; /* ignore vptr */
3748 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
3749 --index;
3750 ++type_index;
6e382aa3 3751 }
2024f65a
VP
3752 --type_index;
3753
85254831
KS
3754 /* If the type is anonymous and the field has no name,
3755 set an appopriate name. */
3756 field_name = TYPE_FIELD_NAME (type, type_index);
3757 if (field_name == NULL || *field_name == '\0')
3758 {
3759 if (cname)
3760 {
3761 if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3762 == TYPE_CODE_STRUCT)
3763 *cname = xstrdup (ANONYMOUS_STRUCT_NAME);
3764 else if (TYPE_CODE (TYPE_FIELD_TYPE (type, type_index))
3765 == TYPE_CODE_UNION)
3766 *cname = xstrdup (ANONYMOUS_UNION_NAME);
3767 }
3768
3769 if (cfull_expression)
3770 *cfull_expression = xstrdup ("");
3771 }
3772 else
3773 {
3774 if (cname)
3775 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
3776
3777 if (cfull_expression)
3778 *cfull_expression
3779 = xstrprintf ("((%s)%s%s)", parent_expression, join,
3780 field_name);
3781 }
2024f65a
VP
3782
3783 if (cvalue && value)
3784 *cvalue = value_struct_element_index (value, type_index);
3785
3786 if (ctype)
3787 *ctype = TYPE_FIELD_TYPE (type, type_index);
3788 }
3789 else if (index < TYPE_N_BASECLASSES (type))
3790 {
3791 /* This is a baseclass. */
3792 if (cname)
3793 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
3794
3795 if (cvalue && value)
0cc7d26f 3796 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
6e382aa3 3797
2024f65a
VP
3798 if (ctype)
3799 {
3800 *ctype = TYPE_FIELD_TYPE (type, index);
3801 }
02142340
VP
3802
3803 if (cfull_expression)
3804 {
3805 char *ptr = was_ptr ? "*" : "";
a109c7c1 3806
581e13c1 3807 /* Cast the parent to the base' type. Note that in gdb,
02142340
VP
3808 expression like
3809 (Base1)d
3810 will create an lvalue, for all appearences, so we don't
3811 need to use more fancy:
3812 *(Base1*)(&d)
0d932b2f
MK
3813 construct.
3814
3815 When we are in the scope of the base class or of one
3816 of its children, the type field name will be interpreted
3817 as a constructor, if it exists. Therefore, we must
3818 indicate that the name is a class name by using the
3819 'class' keyword. See PR mi/11912 */
3820 *cfull_expression = xstrprintf ("(%s(class %s%s) %s)",
02142340
VP
3821 ptr,
3822 TYPE_FIELD_NAME (type, index),
3823 ptr,
3824 parent_expression);
3825 }
8b93c638 3826 }
8b93c638
JM
3827 else
3828 {
348144ba 3829 char *access = NULL;
6e382aa3 3830 int children[3];
a109c7c1 3831
2024f65a 3832 cplus_class_num_children (type, children);
6e382aa3 3833
8b93c638 3834 /* Everything beyond the baseclasses can
6e382aa3
JJ
3835 only be "public", "private", or "protected"
3836
3837 The special "fake" children are always output by varobj in
581e13c1 3838 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
3839 index -= TYPE_N_BASECLASSES (type);
3840 switch (index)
3841 {
3842 case 0:
6e382aa3 3843 if (children[v_public] > 0)
2024f65a 3844 access = "public";
6e382aa3 3845 else if (children[v_private] > 0)
2024f65a 3846 access = "private";
6e382aa3 3847 else
2024f65a 3848 access = "protected";
6e382aa3 3849 break;
8b93c638 3850 case 1:
6e382aa3 3851 if (children[v_public] > 0)
8b93c638 3852 {
6e382aa3 3853 if (children[v_private] > 0)
2024f65a 3854 access = "private";
6e382aa3 3855 else
2024f65a 3856 access = "protected";
8b93c638 3857 }
6e382aa3 3858 else if (children[v_private] > 0)
2024f65a 3859 access = "protected";
6e382aa3 3860 break;
8b93c638 3861 case 2:
581e13c1 3862 /* Must be protected. */
2024f65a 3863 access = "protected";
6e382aa3 3864 break;
8b93c638 3865 default:
581e13c1 3866 /* error! */
8b93c638
JM
3867 break;
3868 }
348144ba
MS
3869
3870 gdb_assert (access);
2024f65a
VP
3871 if (cname)
3872 *cname = xstrdup (access);
8b93c638 3873
02142340 3874 /* Value and type and full expression are null here. */
2024f65a 3875 }
8b93c638 3876 }
8b93c638
JM
3877 else
3878 {
02142340 3879 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
3880 }
3881}
8b93c638 3882
2024f65a
VP
3883static char *
3884cplus_name_of_child (struct varobj *parent, int index)
3885{
3886 char *name = NULL;
a109c7c1 3887
02142340 3888 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
3889 return name;
3890}
3891
02142340
VP
3892static char *
3893cplus_path_expr_of_child (struct varobj *child)
3894{
3895 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
3896 &child->path_expr);
3897 return child->path_expr;
3898}
3899
30b28db1 3900static struct value *
fba45db2 3901cplus_value_of_root (struct varobj **var_handle)
8b93c638 3902{
73a93a32 3903 return c_value_of_root (var_handle);
8b93c638
JM
3904}
3905
30b28db1 3906static struct value *
fba45db2 3907cplus_value_of_child (struct varobj *parent, int index)
8b93c638 3908{
2024f65a 3909 struct value *value = NULL;
a109c7c1 3910
02142340 3911 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
3912 return value;
3913}
3914
3915static struct type *
fba45db2 3916cplus_type_of_child (struct varobj *parent, int index)
8b93c638 3917{
2024f65a 3918 struct type *type = NULL;
a109c7c1 3919
02142340 3920 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
3921 return type;
3922}
3923
8b93c638 3924static char *
a109c7c1
MS
3925cplus_value_of_variable (struct varobj *var,
3926 enum varobj_display_formats format)
8b93c638
JM
3927{
3928
3929 /* If we have one of our special types, don't print out
581e13c1 3930 any value. */
8b93c638
JM
3931 if (CPLUS_FAKE_CHILD (var))
3932 return xstrdup ("");
3933
de051565 3934 return c_value_of_variable (var, format);
8b93c638
JM
3935}
3936\f
3937/* Java */
3938
3939static int
fba45db2 3940java_number_of_children (struct varobj *var)
8b93c638
JM
3941{
3942 return cplus_number_of_children (var);
3943}
3944
3945static char *
fba45db2 3946java_name_of_variable (struct varobj *parent)
8b93c638
JM
3947{
3948 char *p, *name;
3949
3950 name = cplus_name_of_variable (parent);
3951 /* If the name has "-" in it, it is because we
581e13c1 3952 needed to escape periods in the name... */
8b93c638
JM
3953 p = name;
3954
3955 while (*p != '\000')
3956 {
3957 if (*p == '-')
3958 *p = '.';
3959 p++;
3960 }
3961
3962 return name;
3963}
3964
3965static char *
fba45db2 3966java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
3967{
3968 char *name, *p;
3969
3970 name = cplus_name_of_child (parent, index);
581e13c1 3971 /* Escape any periods in the name... */
8b93c638
JM
3972 p = name;
3973
3974 while (*p != '\000')
3975 {
3976 if (*p == '.')
3977 *p = '-';
3978 p++;
3979 }
3980
3981 return name;
3982}
3983
02142340
VP
3984static char *
3985java_path_expr_of_child (struct varobj *child)
3986{
3987 return NULL;
3988}
3989
30b28db1 3990static struct value *
fba45db2 3991java_value_of_root (struct varobj **var_handle)
8b93c638 3992{
73a93a32 3993 return cplus_value_of_root (var_handle);
8b93c638
JM
3994}
3995
30b28db1 3996static struct value *
fba45db2 3997java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
3998{
3999 return cplus_value_of_child (parent, index);
4000}
4001
4002static struct type *
fba45db2 4003java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
4004{
4005 return cplus_type_of_child (parent, index);
4006}
4007
8b93c638 4008static char *
de051565 4009java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 4010{
de051565 4011 return cplus_value_of_variable (var, format);
8b93c638 4012}
54333c3b 4013
40591b7d
JCD
4014/* Ada specific callbacks for VAROBJs. */
4015
4016static int
4017ada_number_of_children (struct varobj *var)
4018{
181875a4 4019 return ada_varobj_get_number_of_children (var->value, var->type);
40591b7d
JCD
4020}
4021
4022static char *
4023ada_name_of_variable (struct varobj *parent)
4024{
4025 return c_name_of_variable (parent);
4026}
4027
4028static char *
4029ada_name_of_child (struct varobj *parent, int index)
4030{
181875a4
JB
4031 return ada_varobj_get_name_of_child (parent->value, parent->type,
4032 parent->name, index);
40591b7d
JCD
4033}
4034
4035static char*
4036ada_path_expr_of_child (struct varobj *child)
4037{
181875a4
JB
4038 struct varobj *parent = child->parent;
4039 const char *parent_path_expr = varobj_get_path_expr (parent);
4040
4041 return ada_varobj_get_path_expr_of_child (parent->value,
4042 parent->type,
4043 parent->name,
4044 parent_path_expr,
4045 child->index);
40591b7d
JCD
4046}
4047
4048static struct value *
4049ada_value_of_root (struct varobj **var_handle)
4050{
4051 return c_value_of_root (var_handle);
4052}
4053
4054static struct value *
4055ada_value_of_child (struct varobj *parent, int index)
4056{
181875a4
JB
4057 return ada_varobj_get_value_of_child (parent->value, parent->type,
4058 parent->name, index);
40591b7d
JCD
4059}
4060
4061static struct type *
4062ada_type_of_child (struct varobj *parent, int index)
4063{
181875a4
JB
4064 return ada_varobj_get_type_of_child (parent->value, parent->type,
4065 index);
40591b7d
JCD
4066}
4067
4068static char *
4069ada_value_of_variable (struct varobj *var, enum varobj_display_formats format)
4070{
181875a4
JB
4071 struct value_print_options opts;
4072
4073 get_formatted_print_options (&opts, format_code[(int) format]);
4074 opts.deref_ref = 0;
4075 opts.raw = 1;
4076
4077 return ada_varobj_get_value_of_variable (var->value, var->type, &opts);
40591b7d
JCD
4078}
4079
d32cafc7
JB
4080/* Implement the "value_is_changeable_p" routine for Ada. */
4081
4082static int
4083ada_value_is_changeable_p (struct varobj *var)
4084{
4085 struct type *type = var->value ? value_type (var->value) : var->type;
4086
4087 if (ada_is_array_descriptor_type (type)
4088 && TYPE_CODE (type) == TYPE_CODE_TYPEDEF)
4089 {
4090 /* This is in reality a pointer to an unconstrained array.
4091 its value is changeable. */
4092 return 1;
4093 }
4094
4095 if (ada_is_string_type (type))
4096 {
4097 /* We display the contents of the string in the array's
4098 "value" field. The contents can change, so consider
4099 that the array is changeable. */
4100 return 1;
4101 }
4102
4103 return default_value_is_changeable_p (var);
4104}
4105
7a290c40
JB
4106/* Implement the "value_has_mutated" routine for Ada. */
4107
4108static int
4109ada_value_has_mutated (struct varobj *var, struct value *new_val,
4110 struct type *new_type)
4111{
181875a4
JB
4112 int i;
4113 int from = -1;
4114 int to = -1;
4115
4116 /* If the number of fields have changed, then for sure the type
4117 has mutated. */
4118 if (ada_varobj_get_number_of_children (new_val, new_type)
4119 != var->num_children)
4120 return 1;
4121
4122 /* If the number of fields have remained the same, then we need
4123 to check the name of each field. If they remain the same,
4124 then chances are the type hasn't mutated. This is technically
4125 an incomplete test, as the child's type might have changed
4126 despite the fact that the name remains the same. But we'll
4127 handle this situation by saying that the child has mutated,
4128 not this value.
4129
4130 If only part (or none!) of the children have been fetched,
4131 then only check the ones we fetched. It does not matter
4132 to the frontend whether a child that it has not fetched yet
4133 has mutated or not. So just assume it hasn't. */
4134
4135 restrict_range (var->children, &from, &to);
4136 for (i = from; i < to; i++)
4137 if (strcmp (ada_varobj_get_name_of_child (new_val, new_type,
4138 var->name, i),
4139 VEC_index (varobj_p, var->children, i)->name) != 0)
4140 return 1;
4141
7a290c40
JB
4142 return 0;
4143}
4144
54333c3b
JK
4145/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
4146 with an arbitrary caller supplied DATA pointer. */
4147
4148void
4149all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
4150{
4151 struct varobj_root *var_root, *var_root_next;
4152
4153 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
4154
4155 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
4156 {
4157 var_root_next = var_root->next;
4158
4159 (*func) (var_root->rootvar, data);
4160 }
4161}
8b93c638
JM
4162\f
4163extern void _initialize_varobj (void);
4164void
4165_initialize_varobj (void)
4166{
4167 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
4168
4169 varobj_table = xmalloc (sizeof_table);
4170 memset (varobj_table, 0, sizeof_table);
4171
85c07804 4172 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
3e43a32a
MS
4173 &varobjdebug,
4174 _("Set varobj debugging."),
4175 _("Show varobj debugging."),
4176 _("When non-zero, varobj debugging is enabled."),
4177 NULL, show_varobjdebug,
85c07804 4178 &setlist, &showlist);
8b93c638 4179}
8756216b 4180
54333c3b
JK
4181/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4182 defined on globals. It is a helper for varobj_invalidate. */
2dbd25e5 4183
54333c3b
JK
4184static void
4185varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 4186{
54333c3b
JK
4187 /* Floating varobjs are reparsed on each stop, so we don't care if the
4188 presently parsed expression refers to something that's gone. */
4189 if (var->root->floating)
4190 return;
8756216b 4191
54333c3b
JK
4192 /* global var must be re-evaluated. */
4193 if (var->root->valid_block == NULL)
2dbd25e5 4194 {
54333c3b 4195 struct varobj *tmp_var;
2dbd25e5 4196
54333c3b
JK
4197 /* Try to create a varobj with same expression. If we succeed
4198 replace the old varobj, otherwise invalidate it. */
4199 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
4200 USE_CURRENT_FRAME);
4201 if (tmp_var != NULL)
4202 {
4203 tmp_var->obj_name = xstrdup (var->obj_name);
4204 varobj_delete (var, NULL, 0);
4205 install_variable (tmp_var);
2dbd25e5 4206 }
54333c3b
JK
4207 else
4208 var->root->is_valid = 0;
2dbd25e5 4209 }
54333c3b
JK
4210 else /* locals must be invalidated. */
4211 var->root->is_valid = 0;
4212}
4213
4214/* Invalidate the varobjs that are tied to locals and re-create the ones that
4215 are defined on globals.
4216 Invalidated varobjs will be always printed in_scope="invalid". */
4217
4218void
4219varobj_invalidate (void)
4220{
4221 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 4222}
This page took 2.967769 seconds and 4 git commands to generate.