gdb/
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
9b254dd1 3 Copyright (C) 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008
1ecb4ee0 4 Free Software Foundation, Inc.
8b93c638
JM
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
a9762ec7 8 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
a9762ec7 17 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
18
19#include "defs.h"
a6c442d8 20#include "exceptions.h"
8b93c638
JM
21#include "value.h"
22#include "expression.h"
23#include "frame.h"
8b93c638
JM
24#include "language.h"
25#include "wrapper.h"
26#include "gdbcmd.h"
d2353924 27#include "block.h"
a6c442d8
MK
28
29#include "gdb_assert.h"
b66d6d2e 30#include "gdb_string.h"
8b93c638
JM
31
32#include "varobj.h"
28335dcc 33#include "vec.h"
6208b47d
VP
34#include "gdbthread.h"
35#include "inferior.h"
8b93c638
JM
36
37/* Non-zero if we want to see trace of varobj level stuff. */
38
39int varobjdebug = 0;
920d2a44
AC
40static void
41show_varobjdebug (struct ui_file *file, int from_tty,
42 struct cmd_list_element *c, const char *value)
43{
44 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
45}
8b93c638
JM
46
47/* String representations of gdb's format codes */
48char *varobj_format_string[] =
72330bd6 49 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638
JM
50
51/* String representations of gdb's known languages */
72330bd6 52char *varobj_language_string[] = { "unknown", "C", "C++", "Java" };
8b93c638
JM
53
54/* Data structures */
55
56/* Every root variable has one of these structures saved in its
57 varobj. Members which must be free'd are noted. */
58struct varobj_root
72330bd6 59{
8b93c638 60
72330bd6
AC
61 /* Alloc'd expression for this parent. */
62 struct expression *exp;
8b93c638 63
72330bd6
AC
64 /* Block for which this expression is valid */
65 struct block *valid_block;
8b93c638 66
44a67aa7
VP
67 /* The frame for this expression. This field is set iff valid_block is
68 not NULL. */
e64d9b3d 69 struct frame_id frame;
8b93c638 70
c5b48eac
VP
71 /* The thread ID that this varobj_root belong to. This field
72 is only valid if valid_block is not NULL.
73 When not 0, indicates which thread 'frame' belongs to.
74 When 0, indicates that the thread list was empty when the varobj_root
75 was created. */
76 int thread_id;
77
a5defcdc
VP
78 /* If 1, the -var-update always recomputes the value in the
79 current thread and frame. Otherwise, variable object is
80 always updated in the specific scope/thread/frame */
81 int floating;
73a93a32 82
8756216b
DP
83 /* Flag that indicates validity: set to 0 when this varobj_root refers
84 to symbols that do not exist anymore. */
85 int is_valid;
86
72330bd6
AC
87 /* Language info for this variable and its children */
88 struct language_specific *lang;
8b93c638 89
72330bd6
AC
90 /* The varobj for this root node. */
91 struct varobj *rootvar;
8b93c638 92
72330bd6
AC
93 /* Next root variable */
94 struct varobj_root *next;
95};
8b93c638
JM
96
97/* Every variable in the system has a structure of this type defined
98 for it. This structure holds all information necessary to manipulate
99 a particular object variable. Members which must be freed are noted. */
100struct varobj
72330bd6 101{
8b93c638 102
72330bd6
AC
103 /* Alloc'd name of the variable for this object.. If this variable is a
104 child, then this name will be the child's source name.
105 (bar, not foo.bar) */
106 /* NOTE: This is the "expression" */
107 char *name;
8b93c638 108
02142340
VP
109 /* Alloc'd expression for this child. Can be used to create a
110 root variable corresponding to this child. */
111 char *path_expr;
112
72330bd6
AC
113 /* The alloc'd name for this variable's object. This is here for
114 convenience when constructing this object's children. */
115 char *obj_name;
8b93c638 116
72330bd6
AC
117 /* Index of this variable in its parent or -1 */
118 int index;
8b93c638 119
202ddcaa
VP
120 /* The type of this variable. This can be NULL
121 for artifial variable objects -- currently, the "accessibility"
122 variable objects in C++. */
72330bd6 123 struct type *type;
8b93c638 124
b20d8971
VP
125 /* The value of this expression or subexpression. A NULL value
126 indicates there was an error getting this value.
b2c2bd75
VP
127 Invariant: if varobj_value_is_changeable_p (this) is non-zero,
128 the value is either NULL, or not lazy. */
30b28db1 129 struct value *value;
8b93c638 130
72330bd6
AC
131 /* The number of (immediate) children this variable has */
132 int num_children;
8b93c638 133
72330bd6
AC
134 /* If this object is a child, this points to its immediate parent. */
135 struct varobj *parent;
8b93c638 136
28335dcc
VP
137 /* Children of this object. */
138 VEC (varobj_p) *children;
8b93c638 139
72330bd6
AC
140 /* Description of the root variable. Points to root variable for children. */
141 struct varobj_root *root;
8b93c638 142
72330bd6
AC
143 /* The format of the output for this object */
144 enum varobj_display_formats format;
fb9b6b35
JJ
145
146 /* Was this variable updated via a varobj_set_value operation */
147 int updated;
85265413
NR
148
149 /* Last print value. */
150 char *print_value;
25d5ea92
VP
151
152 /* Is this variable frozen. Frozen variables are never implicitly
153 updated by -var-update *
154 or -var-update <direct-or-indirect-parent>. */
155 int frozen;
156
157 /* Is the value of this variable intentionally not fetched? It is
158 not fetched if either the variable is frozen, or any parents is
159 frozen. */
160 int not_fetched;
72330bd6 161};
8b93c638 162
8b93c638 163struct cpstack
72330bd6
AC
164{
165 char *name;
166 struct cpstack *next;
167};
8b93c638
JM
168
169/* A list of varobjs */
170
171struct vlist
72330bd6
AC
172{
173 struct varobj *var;
174 struct vlist *next;
175};
8b93c638
JM
176
177/* Private function prototypes */
178
179/* Helper functions for the above subcommands. */
180
a14ed312 181static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 182
a14ed312
KB
183static void delete_variable_1 (struct cpstack **, int *,
184 struct varobj *, int, int);
8b93c638 185
a14ed312 186static int install_variable (struct varobj *);
8b93c638 187
a14ed312 188static void uninstall_variable (struct varobj *);
8b93c638 189
a14ed312 190static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 191
8b93c638
JM
192/* Utility routines */
193
a14ed312 194static struct varobj *new_variable (void);
8b93c638 195
a14ed312 196static struct varobj *new_root_variable (void);
8b93c638 197
a14ed312 198static void free_variable (struct varobj *var);
8b93c638 199
74b7792f
AC
200static struct cleanup *make_cleanup_free_variable (struct varobj *var);
201
a14ed312 202static struct type *get_type (struct varobj *var);
8b93c638 203
6e2a9270
VP
204static struct type *get_value_type (struct varobj *var);
205
a14ed312 206static struct type *get_target_type (struct type *);
8b93c638 207
a14ed312 208static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 209
a14ed312 210static void cppush (struct cpstack **pstack, char *name);
8b93c638 211
a14ed312 212static char *cppop (struct cpstack **pstack);
8b93c638 213
acd65feb
VP
214static int install_new_value (struct varobj *var, struct value *value,
215 int initial);
216
8b93c638
JM
217/* Language-specific routines. */
218
a14ed312 219static enum varobj_languages variable_language (struct varobj *var);
8b93c638 220
a14ed312 221static int number_of_children (struct varobj *);
8b93c638 222
a14ed312 223static char *name_of_variable (struct varobj *);
8b93c638 224
a14ed312 225static char *name_of_child (struct varobj *, int);
8b93c638 226
30b28db1 227static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 228
30b28db1 229static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 230
de051565
MK
231static char *my_value_of_variable (struct varobj *var,
232 enum varobj_display_formats format);
8b93c638 233
85265413
NR
234static char *value_get_print_value (struct value *value,
235 enum varobj_display_formats format);
236
b2c2bd75
VP
237static int varobj_value_is_changeable_p (struct varobj *var);
238
239static int is_root_p (struct varobj *var);
8b93c638
JM
240
241/* C implementation */
242
a14ed312 243static int c_number_of_children (struct varobj *var);
8b93c638 244
a14ed312 245static char *c_name_of_variable (struct varobj *parent);
8b93c638 246
a14ed312 247static char *c_name_of_child (struct varobj *parent, int index);
8b93c638 248
02142340
VP
249static char *c_path_expr_of_child (struct varobj *child);
250
30b28db1 251static struct value *c_value_of_root (struct varobj **var_handle);
8b93c638 252
30b28db1 253static struct value *c_value_of_child (struct varobj *parent, int index);
8b93c638 254
a14ed312 255static struct type *c_type_of_child (struct varobj *parent, int index);
8b93c638 256
de051565
MK
257static char *c_value_of_variable (struct varobj *var,
258 enum varobj_display_formats format);
8b93c638
JM
259
260/* C++ implementation */
261
a14ed312 262static int cplus_number_of_children (struct varobj *var);
8b93c638 263
a14ed312 264static void cplus_class_num_children (struct type *type, int children[3]);
8b93c638 265
a14ed312 266static char *cplus_name_of_variable (struct varobj *parent);
8b93c638 267
a14ed312 268static char *cplus_name_of_child (struct varobj *parent, int index);
8b93c638 269
02142340
VP
270static char *cplus_path_expr_of_child (struct varobj *child);
271
30b28db1 272static struct value *cplus_value_of_root (struct varobj **var_handle);
8b93c638 273
30b28db1 274static struct value *cplus_value_of_child (struct varobj *parent, int index);
8b93c638 275
a14ed312 276static struct type *cplus_type_of_child (struct varobj *parent, int index);
8b93c638 277
de051565
MK
278static char *cplus_value_of_variable (struct varobj *var,
279 enum varobj_display_formats format);
8b93c638
JM
280
281/* Java implementation */
282
a14ed312 283static int java_number_of_children (struct varobj *var);
8b93c638 284
a14ed312 285static char *java_name_of_variable (struct varobj *parent);
8b93c638 286
a14ed312 287static char *java_name_of_child (struct varobj *parent, int index);
8b93c638 288
02142340
VP
289static char *java_path_expr_of_child (struct varobj *child);
290
30b28db1 291static struct value *java_value_of_root (struct varobj **var_handle);
8b93c638 292
30b28db1 293static struct value *java_value_of_child (struct varobj *parent, int index);
8b93c638 294
a14ed312 295static struct type *java_type_of_child (struct varobj *parent, int index);
8b93c638 296
de051565
MK
297static char *java_value_of_variable (struct varobj *var,
298 enum varobj_display_formats format);
8b93c638
JM
299
300/* The language specific vector */
301
302struct language_specific
72330bd6 303{
8b93c638 304
72330bd6
AC
305 /* The language of this variable */
306 enum varobj_languages language;
8b93c638 307
72330bd6
AC
308 /* The number of children of PARENT. */
309 int (*number_of_children) (struct varobj * parent);
8b93c638 310
72330bd6
AC
311 /* The name (expression) of a root varobj. */
312 char *(*name_of_variable) (struct varobj * parent);
8b93c638 313
72330bd6
AC
314 /* The name of the INDEX'th child of PARENT. */
315 char *(*name_of_child) (struct varobj * parent, int index);
8b93c638 316
02142340
VP
317 /* Returns the rooted expression of CHILD, which is a variable
318 obtain that has some parent. */
319 char *(*path_expr_of_child) (struct varobj * child);
320
30b28db1
AC
321 /* The ``struct value *'' of the root variable ROOT. */
322 struct value *(*value_of_root) (struct varobj ** root_handle);
8b93c638 323
30b28db1
AC
324 /* The ``struct value *'' of the INDEX'th child of PARENT. */
325 struct value *(*value_of_child) (struct varobj * parent, int index);
8b93c638 326
72330bd6
AC
327 /* The type of the INDEX'th child of PARENT. */
328 struct type *(*type_of_child) (struct varobj * parent, int index);
8b93c638 329
72330bd6 330 /* The current value of VAR. */
de051565
MK
331 char *(*value_of_variable) (struct varobj * var,
332 enum varobj_display_formats format);
72330bd6 333};
8b93c638
JM
334
335/* Array of known source language routines. */
d5d6fca5 336static struct language_specific languages[vlang_end] = {
8b93c638
JM
337 /* Unknown (try treating as C */
338 {
72330bd6
AC
339 vlang_unknown,
340 c_number_of_children,
341 c_name_of_variable,
342 c_name_of_child,
02142340 343 c_path_expr_of_child,
72330bd6
AC
344 c_value_of_root,
345 c_value_of_child,
346 c_type_of_child,
72330bd6 347 c_value_of_variable}
8b93c638
JM
348 ,
349 /* C */
350 {
72330bd6
AC
351 vlang_c,
352 c_number_of_children,
353 c_name_of_variable,
354 c_name_of_child,
02142340 355 c_path_expr_of_child,
72330bd6
AC
356 c_value_of_root,
357 c_value_of_child,
358 c_type_of_child,
72330bd6 359 c_value_of_variable}
8b93c638
JM
360 ,
361 /* C++ */
362 {
72330bd6
AC
363 vlang_cplus,
364 cplus_number_of_children,
365 cplus_name_of_variable,
366 cplus_name_of_child,
02142340 367 cplus_path_expr_of_child,
72330bd6
AC
368 cplus_value_of_root,
369 cplus_value_of_child,
370 cplus_type_of_child,
72330bd6 371 cplus_value_of_variable}
8b93c638
JM
372 ,
373 /* Java */
374 {
72330bd6
AC
375 vlang_java,
376 java_number_of_children,
377 java_name_of_variable,
378 java_name_of_child,
02142340 379 java_path_expr_of_child,
72330bd6
AC
380 java_value_of_root,
381 java_value_of_child,
382 java_type_of_child,
72330bd6 383 java_value_of_variable}
8b93c638
JM
384};
385
386/* A little convenience enum for dealing with C++/Java */
387enum vsections
72330bd6
AC
388{
389 v_public = 0, v_private, v_protected
390};
8b93c638
JM
391
392/* Private data */
393
394/* Mappings of varobj_display_formats enums to gdb's format codes */
72330bd6 395static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638
JM
396
397/* Header of the list of root variable objects */
398static struct varobj_root *rootlist;
399static int rootcount = 0; /* number of root varobjs in the list */
400
401/* Prime number indicating the number of buckets in the hash table */
402/* A prime large enough to avoid too many colisions */
403#define VAROBJ_TABLE_SIZE 227
404
405/* Pointer to the varobj hash table (built at run time) */
406static struct vlist **varobj_table;
407
8b93c638
JM
408/* Is the variable X one of our "fake" children? */
409#define CPLUS_FAKE_CHILD(x) \
410((x) != NULL && (x)->type == NULL && (x)->value == NULL)
411\f
412
413/* API Implementation */
b2c2bd75
VP
414static int
415is_root_p (struct varobj *var)
416{
417 return (var->root->rootvar == var);
418}
8b93c638
JM
419
420/* Creates a varobj (not its children) */
421
7d8547c9
AC
422/* Return the full FRAME which corresponds to the given CORE_ADDR
423 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
424
425static struct frame_info *
426find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
427{
428 struct frame_info *frame = NULL;
429
430 if (frame_addr == (CORE_ADDR) 0)
431 return NULL;
432
433 while (1)
434 {
435 frame = get_prev_frame (frame);
436 if (frame == NULL)
437 return NULL;
eb5492fa 438 if (get_frame_base_address (frame) == frame_addr)
7d8547c9
AC
439 return frame;
440 }
441}
442
8b93c638
JM
443struct varobj *
444varobj_create (char *objname,
72330bd6 445 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
446{
447 struct varobj *var;
2c67cb8b
AC
448 struct frame_info *fi;
449 struct frame_info *old_fi = NULL;
8b93c638
JM
450 struct block *block;
451 struct cleanup *old_chain;
452
453 /* Fill out a varobj structure for the (root) variable being constructed. */
454 var = new_root_variable ();
74b7792f 455 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
456
457 if (expression != NULL)
458 {
459 char *p;
460 enum varobj_languages lang;
e55dccf0 461 struct value *value = NULL;
02142340 462 int expr_len;
8b93c638
JM
463
464 /* Parse and evaluate the expression, filling in as much
465 of the variable's data as possible */
466
467 /* Allow creator to specify context of variable */
72330bd6 468 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
206415a3 469 fi = deprecated_safe_get_selected_frame ();
8b93c638 470 else
7d8547c9
AC
471 /* FIXME: cagney/2002-11-23: This code should be doing a
472 lookup using the frame ID and not just the frame's
473 ``address''. This, of course, means an interface change.
474 However, with out that interface change ISAs, such as the
475 ia64 with its two stacks, won't work. Similar goes for the
476 case where there is a frameless function. */
8b93c638
JM
477 fi = find_frame_addr_in_frame_chain (frame);
478
73a93a32
JI
479 /* frame = -2 means always use selected frame */
480 if (type == USE_SELECTED_FRAME)
a5defcdc 481 var->root->floating = 1;
73a93a32 482
8b93c638
JM
483 block = NULL;
484 if (fi != NULL)
ae767bfb 485 block = get_frame_block (fi, 0);
8b93c638
JM
486
487 p = expression;
488 innermost_block = NULL;
73a93a32
JI
489 /* Wrap the call to parse expression, so we can
490 return a sensible error. */
491 if (!gdb_parse_exp_1 (&p, block, 0, &var->root->exp))
492 {
493 return NULL;
494 }
8b93c638
JM
495
496 /* Don't allow variables to be created for types. */
497 if (var->root->exp->elts[0].opcode == OP_TYPE)
498 {
499 do_cleanups (old_chain);
bc8332bb
AC
500 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
501 " as an expression.\n");
8b93c638
JM
502 return NULL;
503 }
504
505 var->format = variable_default_display (var);
506 var->root->valid_block = innermost_block;
02142340
VP
507 expr_len = strlen (expression);
508 var->name = savestring (expression, expr_len);
509 /* For a root var, the name and the expr are the same. */
510 var->path_expr = savestring (expression, expr_len);
8b93c638
JM
511
512 /* When the frame is different from the current frame,
513 we must select the appropriate frame before parsing
514 the expression, otherwise the value will not be current.
515 Since select_frame is so benign, just call it for all cases. */
44a67aa7 516 if (innermost_block && fi != NULL)
8b93c638 517 {
7a424e99 518 var->root->frame = get_frame_id (fi);
c5b48eac 519 var->root->thread_id = pid_to_thread_id (inferior_ptid);
206415a3 520 old_fi = get_selected_frame (NULL);
c5b48eac 521 select_frame (fi);
8b93c638
JM
522 }
523
340a7723 524 /* We definitely need to catch errors here.
8b93c638
JM
525 If evaluate_expression succeeds we got the value we wanted.
526 But if it fails, we still go on with a call to evaluate_type() */
acd65feb 527 if (!gdb_evaluate_expression (var->root->exp, &value))
e55dccf0
VP
528 {
529 /* Error getting the value. Try to at least get the
530 right type. */
531 struct value *type_only_value = evaluate_type (var->root->exp);
532 var->type = value_type (type_only_value);
533 }
534 else
535 var->type = value_type (value);
acd65feb 536
acd65feb 537 install_new_value (var, value, 1 /* Initial assignment */);
8b93c638
JM
538
539 /* Set language info */
540 lang = variable_language (var);
d5d6fca5 541 var->root->lang = &languages[lang];
8b93c638
JM
542
543 /* Set ourselves as our root */
544 var->root->rootvar = var;
545
546 /* Reset the selected frame */
547 if (fi != NULL)
0f7d239c 548 select_frame (old_fi);
8b93c638
JM
549 }
550
73a93a32
JI
551 /* If the variable object name is null, that means this
552 is a temporary variable, so don't install it. */
553
554 if ((var != NULL) && (objname != NULL))
8b93c638
JM
555 {
556 var->obj_name = savestring (objname, strlen (objname));
557
558 /* If a varobj name is duplicated, the install will fail so
559 we must clenup */
560 if (!install_variable (var))
561 {
562 do_cleanups (old_chain);
563 return NULL;
564 }
565 }
566
567 discard_cleanups (old_chain);
568 return var;
569}
570
571/* Generates an unique name that can be used for a varobj */
572
573char *
574varobj_gen_name (void)
575{
576 static int id = 0;
e64d9b3d 577 char *obj_name;
8b93c638
JM
578
579 /* generate a name for this object */
580 id++;
b435e160 581 obj_name = xstrprintf ("var%d", id);
8b93c638 582
e64d9b3d 583 return obj_name;
8b93c638
JM
584}
585
586/* Given an "objname", returns the pointer to the corresponding varobj
587 or NULL if not found */
588
589struct varobj *
590varobj_get_handle (char *objname)
591{
592 struct vlist *cv;
593 const char *chp;
594 unsigned int index = 0;
595 unsigned int i = 1;
596
597 for (chp = objname; *chp; chp++)
598 {
599 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
600 }
601
602 cv = *(varobj_table + index);
603 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
604 cv = cv->next;
605
606 if (cv == NULL)
8a3fe4f8 607 error (_("Variable object not found"));
8b93c638
JM
608
609 return cv->var;
610}
611
612/* Given the handle, return the name of the object */
613
614char *
615varobj_get_objname (struct varobj *var)
616{
617 return var->obj_name;
618}
619
620/* Given the handle, return the expression represented by the object */
621
622char *
623varobj_get_expression (struct varobj *var)
624{
625 return name_of_variable (var);
626}
627
628/* Deletes a varobj and all its children if only_children == 0,
629 otherwise deletes only the children; returns a malloc'ed list of all the
630 (malloc'ed) names of the variables that have been deleted (NULL terminated) */
631
632int
633varobj_delete (struct varobj *var, char ***dellist, int only_children)
634{
635 int delcount;
636 int mycount;
637 struct cpstack *result = NULL;
638 char **cp;
639
640 /* Initialize a stack for temporary results */
641 cppush (&result, NULL);
642
643 if (only_children)
644 /* Delete only the variable children */
645 delcount = delete_variable (&result, var, 1 /* only the children */ );
646 else
647 /* Delete the variable and all its children */
648 delcount = delete_variable (&result, var, 0 /* parent+children */ );
649
650 /* We may have been asked to return a list of what has been deleted */
651 if (dellist != NULL)
652 {
653 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
654
655 cp = *dellist;
656 mycount = delcount;
657 *cp = cppop (&result);
658 while ((*cp != NULL) && (mycount > 0))
659 {
660 mycount--;
661 cp++;
662 *cp = cppop (&result);
663 }
664
665 if (mycount || (*cp != NULL))
8a3fe4f8 666 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 667 mycount);
8b93c638
JM
668 }
669
670 return delcount;
671}
672
673/* Set/Get variable object display format */
674
675enum varobj_display_formats
676varobj_set_display_format (struct varobj *var,
677 enum varobj_display_formats format)
678{
679 switch (format)
680 {
681 case FORMAT_NATURAL:
682 case FORMAT_BINARY:
683 case FORMAT_DECIMAL:
684 case FORMAT_HEXADECIMAL:
685 case FORMAT_OCTAL:
686 var->format = format;
687 break;
688
689 default:
690 var->format = variable_default_display (var);
691 }
692
ae7d22a6
VP
693 if (varobj_value_is_changeable_p (var)
694 && var->value && !value_lazy (var->value))
695 {
6c761d9c 696 xfree (var->print_value);
ae7d22a6
VP
697 var->print_value = value_get_print_value (var->value, var->format);
698 }
699
8b93c638
JM
700 return var->format;
701}
702
703enum varobj_display_formats
704varobj_get_display_format (struct varobj *var)
705{
706 return var->format;
707}
708
c5b48eac
VP
709/* If the variable object is bound to a specific thread, that
710 is its evaluation can always be done in context of a frame
711 inside that thread, returns GDB id of the thread -- which
712 is always positive. Otherwise, returns -1. */
713int
714varobj_get_thread_id (struct varobj *var)
715{
716 if (var->root->valid_block && var->root->thread_id > 0)
717 return var->root->thread_id;
718 else
719 return -1;
720}
721
25d5ea92
VP
722void
723varobj_set_frozen (struct varobj *var, int frozen)
724{
725 /* When a variable is unfrozen, we don't fetch its value.
726 The 'not_fetched' flag remains set, so next -var-update
727 won't complain.
728
729 We don't fetch the value, because for structures the client
730 should do -var-update anyway. It would be bad to have different
731 client-size logic for structure and other types. */
732 var->frozen = frozen;
733}
734
735int
736varobj_get_frozen (struct varobj *var)
737{
738 return var->frozen;
739}
740
741
8b93c638
JM
742int
743varobj_get_num_children (struct varobj *var)
744{
745 if (var->num_children == -1)
746 var->num_children = number_of_children (var);
747
748 return var->num_children;
749}
750
751/* Creates a list of the immediate children of a variable object;
752 the return code is the number of such children or -1 on error */
753
d56d46f5
VP
754VEC (varobj_p)*
755varobj_list_children (struct varobj *var)
8b93c638
JM
756{
757 struct varobj *child;
758 char *name;
759 int i;
760
8b93c638
JM
761 if (var->num_children == -1)
762 var->num_children = number_of_children (var);
763
74a44383
DJ
764 /* If that failed, give up. */
765 if (var->num_children == -1)
d56d46f5 766 return var->children;
74a44383 767
28335dcc
VP
768 /* If we're called when the list of children is not yet initialized,
769 allocate enough elements in it. */
770 while (VEC_length (varobj_p, var->children) < var->num_children)
771 VEC_safe_push (varobj_p, var->children, NULL);
772
8b93c638
JM
773 for (i = 0; i < var->num_children; i++)
774 {
d56d46f5 775 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
776
777 if (existing == NULL)
778 {
779 /* Either it's the first call to varobj_list_children for
780 this variable object, and the child was never created,
781 or it was explicitly deleted by the client. */
782 name = name_of_child (var, i);
783 existing = create_child (var, i, name);
784 VEC_replace (varobj_p, var->children, i, existing);
785 }
8b93c638
JM
786 }
787
d56d46f5 788 return var->children;
8b93c638
JM
789}
790
791/* Obtain the type of an object Variable as a string similar to the one gdb
792 prints on the console */
793
794char *
795varobj_get_type (struct varobj *var)
796{
30b28db1 797 struct value *val;
8b93c638
JM
798 struct cleanup *old_chain;
799 struct ui_file *stb;
800 char *thetype;
801 long length;
802
803 /* For the "fake" variables, do not return a type. (It's type is
8756216b
DP
804 NULL, too.)
805 Do not return a type for invalid variables as well. */
806 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
807 return NULL;
808
809 stb = mem_fileopen ();
810 old_chain = make_cleanup_ui_file_delete (stb);
811
30b28db1 812 /* To print the type, we simply create a zero ``struct value *'' and
8b93c638
JM
813 cast it to our type. We then typeprint this variable. */
814 val = value_zero (var->type, not_lval);
df407dfe 815 type_print (value_type (val), "", stb, -1);
8b93c638
JM
816
817 thetype = ui_file_xstrdup (stb, &length);
818 do_cleanups (old_chain);
819 return thetype;
820}
821
1ecb4ee0
DJ
822/* Obtain the type of an object variable. */
823
824struct type *
825varobj_get_gdb_type (struct varobj *var)
826{
827 return var->type;
828}
829
02142340
VP
830/* Return a pointer to the full rooted expression of varobj VAR.
831 If it has not been computed yet, compute it. */
832char *
833varobj_get_path_expr (struct varobj *var)
834{
835 if (var->path_expr != NULL)
836 return var->path_expr;
837 else
838 {
839 /* For root varobjs, we initialize path_expr
840 when creating varobj, so here it should be
841 child varobj. */
842 gdb_assert (!is_root_p (var));
843 return (*var->root->lang->path_expr_of_child) (var);
844 }
845}
846
8b93c638
JM
847enum varobj_languages
848varobj_get_language (struct varobj *var)
849{
850 return variable_language (var);
851}
852
853int
854varobj_get_attributes (struct varobj *var)
855{
856 int attributes = 0;
857
340a7723 858 if (varobj_editable_p (var))
8b93c638
JM
859 /* FIXME: define masks for attributes */
860 attributes |= 0x00000001; /* Editable */
861
862 return attributes;
863}
864
de051565
MK
865char *
866varobj_get_formatted_value (struct varobj *var,
867 enum varobj_display_formats format)
868{
869 return my_value_of_variable (var, format);
870}
871
8b93c638
JM
872char *
873varobj_get_value (struct varobj *var)
874{
de051565 875 return my_value_of_variable (var, var->format);
8b93c638
JM
876}
877
878/* Set the value of an object variable (if it is editable) to the
879 value of the given expression */
880/* Note: Invokes functions that can call error() */
881
882int
883varobj_set_value (struct varobj *var, char *expression)
884{
30b28db1 885 struct value *val;
8b93c638 886 int offset = 0;
a6c442d8 887 int error = 0;
8b93c638
JM
888
889 /* The argument "expression" contains the variable's new value.
890 We need to first construct a legal expression for this -- ugh! */
891 /* Does this cover all the bases? */
892 struct expression *exp;
30b28db1 893 struct value *value;
8b93c638 894 int saved_input_radix = input_radix;
340a7723
NR
895 char *s = expression;
896 int i;
8b93c638 897
340a7723 898 gdb_assert (varobj_editable_p (var));
8b93c638 899
340a7723
NR
900 input_radix = 10; /* ALWAYS reset to decimal temporarily */
901 exp = parse_exp_1 (&s, 0, 0);
902 if (!gdb_evaluate_expression (exp, &value))
903 {
904 /* We cannot proceed without a valid expression. */
905 xfree (exp);
906 return 0;
8b93c638
JM
907 }
908
340a7723
NR
909 /* All types that are editable must also be changeable. */
910 gdb_assert (varobj_value_is_changeable_p (var));
911
912 /* The value of a changeable variable object must not be lazy. */
913 gdb_assert (!value_lazy (var->value));
914
915 /* Need to coerce the input. We want to check if the
916 value of the variable object will be different
917 after assignment, and the first thing value_assign
918 does is coerce the input.
919 For example, if we are assigning an array to a pointer variable we
920 should compare the pointer with the the array's address, not with the
921 array's content. */
922 value = coerce_array (value);
923
924 /* The new value may be lazy. gdb_value_assign, or
925 rather value_contents, will take care of this.
926 If fetching of the new value will fail, gdb_value_assign
927 with catch the exception. */
928 if (!gdb_value_assign (var->value, value, &val))
929 return 0;
930
931 /* If the value has changed, record it, so that next -var-update can
932 report this change. If a variable had a value of '1', we've set it
933 to '333' and then set again to '1', when -var-update will report this
934 variable as changed -- because the first assignment has set the
935 'updated' flag. There's no need to optimize that, because return value
936 of -var-update should be considered an approximation. */
937 var->updated = install_new_value (var, val, 0 /* Compare values. */);
938 input_radix = saved_input_radix;
939 return 1;
8b93c638
JM
940}
941
942/* Returns a malloc'ed list with all root variable objects */
943int
944varobj_list (struct varobj ***varlist)
945{
946 struct varobj **cv;
947 struct varobj_root *croot;
948 int mycount = rootcount;
949
950 /* Alloc (rootcount + 1) entries for the result */
951 *varlist = xmalloc ((rootcount + 1) * sizeof (struct varobj *));
952
953 cv = *varlist;
954 croot = rootlist;
955 while ((croot != NULL) && (mycount > 0))
956 {
957 *cv = croot->rootvar;
958 mycount--;
959 cv++;
960 croot = croot->next;
961 }
962 /* Mark the end of the list */
963 *cv = NULL;
964
965 if (mycount || (croot != NULL))
72330bd6
AC
966 warning
967 ("varobj_list: assertion failed - wrong tally of root vars (%d:%d)",
968 rootcount, mycount);
8b93c638
JM
969
970 return rootcount;
971}
972
acd65feb
VP
973/* Assign a new value to a variable object. If INITIAL is non-zero,
974 this is the first assignement after the variable object was just
975 created, or changed type. In that case, just assign the value
976 and return 0.
977 Otherwise, assign the value and if type_changeable returns non-zero,
978 find if the new value is different from the current value.
b26ed50d
VP
979 Return 1 if so, and 0 if the values are equal.
980
981 The VALUE parameter should not be released -- the function will
982 take care of releasing it when needed. */
acd65feb
VP
983static int
984install_new_value (struct varobj *var, struct value *value, int initial)
985{
986 int changeable;
987 int need_to_fetch;
988 int changed = 0;
25d5ea92 989 int intentionally_not_fetched = 0;
7a4d50bf 990 char *print_value = NULL;
acd65feb 991
acd65feb
VP
992 /* We need to know the varobj's type to decide if the value should
993 be fetched or not. C++ fake children (public/protected/private) don't have
994 a type. */
995 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 996 changeable = varobj_value_is_changeable_p (var);
acd65feb
VP
997 need_to_fetch = changeable;
998
b26ed50d
VP
999 /* We are not interested in the address of references, and given
1000 that in C++ a reference is not rebindable, it cannot
1001 meaningfully change. So, get hold of the real value. */
1002 if (value)
1003 {
1004 value = coerce_ref (value);
1005 release_value (value);
1006 }
1007
acd65feb
VP
1008 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1009 /* For unions, we need to fetch the value implicitly because
1010 of implementation of union member fetch. When gdb
1011 creates a value for a field and the value of the enclosing
1012 structure is not lazy, it immediately copies the necessary
1013 bytes from the enclosing values. If the enclosing value is
1014 lazy, the call to value_fetch_lazy on the field will read
1015 the data from memory. For unions, that means we'll read the
1016 same memory more than once, which is not desirable. So
1017 fetch now. */
1018 need_to_fetch = 1;
1019
1020 /* The new value might be lazy. If the type is changeable,
1021 that is we'll be comparing values of this type, fetch the
1022 value now. Otherwise, on the next update the old value
1023 will be lazy, which means we've lost that old value. */
1024 if (need_to_fetch && value && value_lazy (value))
1025 {
25d5ea92
VP
1026 struct varobj *parent = var->parent;
1027 int frozen = var->frozen;
1028 for (; !frozen && parent; parent = parent->parent)
1029 frozen |= parent->frozen;
1030
1031 if (frozen && initial)
1032 {
1033 /* For variables that are frozen, or are children of frozen
1034 variables, we don't do fetch on initial assignment.
1035 For non-initial assignemnt we do the fetch, since it means we're
1036 explicitly asked to compare the new value with the old one. */
1037 intentionally_not_fetched = 1;
1038 }
1039 else if (!gdb_value_fetch_lazy (value))
acd65feb 1040 {
acd65feb
VP
1041 /* Set the value to NULL, so that for the next -var-update,
1042 we don't try to compare the new value with this value,
1043 that we couldn't even read. */
1044 value = NULL;
1045 }
acd65feb
VP
1046 }
1047
7a4d50bf
VP
1048 /* Below, we'll be comparing string rendering of old and new
1049 values. Don't get string rendering if the value is
1050 lazy -- if it is, the code above has decided that the value
1051 should not be fetched. */
1052 if (value && !value_lazy (value))
1053 print_value = value_get_print_value (value, var->format);
1054
acd65feb
VP
1055 /* If the type is changeable, compare the old and the new values.
1056 If this is the initial assignment, we don't have any old value
1057 to compare with. */
7a4d50bf 1058 if (!initial && changeable)
acd65feb
VP
1059 {
1060 /* If the value of the varobj was changed by -var-set-value, then the
1061 value in the varobj and in the target is the same. However, that value
1062 is different from the value that the varobj had after the previous
57e66780 1063 -var-update. So need to the varobj as changed. */
acd65feb 1064 if (var->updated)
57e66780 1065 {
57e66780
DJ
1066 changed = 1;
1067 }
acd65feb
VP
1068 else
1069 {
1070 /* Try to compare the values. That requires that both
1071 values are non-lazy. */
25d5ea92
VP
1072 if (var->not_fetched && value_lazy (var->value))
1073 {
1074 /* This is a frozen varobj and the value was never read.
1075 Presumably, UI shows some "never read" indicator.
1076 Now that we've fetched the real value, we need to report
1077 this varobj as changed so that UI can show the real
1078 value. */
1079 changed = 1;
1080 }
1081 else if (var->value == NULL && value == NULL)
acd65feb
VP
1082 /* Equal. */
1083 ;
1084 else if (var->value == NULL || value == NULL)
57e66780 1085 {
57e66780
DJ
1086 changed = 1;
1087 }
acd65feb
VP
1088 else
1089 {
1090 gdb_assert (!value_lazy (var->value));
1091 gdb_assert (!value_lazy (value));
85265413 1092
57e66780 1093 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1094 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1095 changed = 1;
acd65feb
VP
1096 }
1097 }
1098 }
85265413 1099
acd65feb 1100 /* We must always keep the new value, since children depend on it. */
25d5ea92 1101 if (var->value != NULL && var->value != value)
acd65feb
VP
1102 value_free (var->value);
1103 var->value = value;
7a4d50bf
VP
1104 if (var->print_value)
1105 xfree (var->print_value);
1106 var->print_value = print_value;
25d5ea92
VP
1107 if (value && value_lazy (value) && intentionally_not_fetched)
1108 var->not_fetched = 1;
1109 else
1110 var->not_fetched = 0;
acd65feb 1111 var->updated = 0;
85265413 1112
b26ed50d 1113 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1114
1115 return changed;
1116}
acd65feb 1117
8b93c638
JM
1118/* Update the values for a variable and its children. This is a
1119 two-pronged attack. First, re-parse the value for the root's
1120 expression to see if it's changed. Then go all the way
1121 through its children, reconstructing them and noting if they've
1122 changed.
1123
25d5ea92
VP
1124 The EXPLICIT parameter specifies if this call is result
1125 of MI request to update this specific variable, or
1126 result of implicit -var-update *. For implicit request, we don't
1127 update frozen variables.
705da579
KS
1128
1129 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1130 returns TYPE_CHANGED, then it has done this and VARP will be modified
1131 to point to the new varobj. */
8b93c638 1132
f7f9ae2c 1133VEC(varobj_update_result) *varobj_update (struct varobj **varp, int explicit)
8b93c638
JM
1134{
1135 int changed = 0;
25d5ea92 1136 int type_changed = 0;
8b93c638
JM
1137 int i;
1138 int vleft;
8b93c638
JM
1139 struct varobj *v;
1140 struct varobj **cv;
2c67cb8b 1141 struct varobj **templist = NULL;
30b28db1 1142 struct value *new;
28335dcc 1143 VEC (varobj_p) *stack = NULL;
f7f9ae2c 1144 VEC (varobj_update_result) *result = NULL;
e64d9b3d 1145 struct frame_info *fi;
8b93c638 1146
25d5ea92
VP
1147 /* Frozen means frozen -- we don't check for any change in
1148 this varobj, including its going out of scope, or
1149 changing type. One use case for frozen varobjs is
1150 retaining previously evaluated expressions, and we don't
1151 want them to be reevaluated at all. */
1152 if (!explicit && (*varp)->frozen)
f7f9ae2c 1153 return result;
8756216b
DP
1154
1155 if (!(*varp)->root->is_valid)
f7f9ae2c
VP
1156 {
1157 varobj_update_result r = {*varp};
1158 r.status = VAROBJ_INVALID;
1159 VEC_safe_push (varobj_update_result, result, &r);
1160 return result;
1161 }
8b93c638 1162
25d5ea92 1163 if ((*varp)->root->rootvar == *varp)
ae093f96 1164 {
f7f9ae2c
VP
1165 varobj_update_result r = {*varp};
1166 r.status = VAROBJ_IN_SCOPE;
1167
25d5ea92
VP
1168 /* Update the root variable. value_of_root can return NULL
1169 if the variable is no longer around, i.e. we stepped out of
1170 the frame in which a local existed. We are letting the
1171 value_of_root variable dispose of the varobj if the type
1172 has changed. */
25d5ea92 1173 new = value_of_root (varp, &type_changed);
f7f9ae2c
VP
1174 r.varobj = *varp;
1175
1176 r.type_changed = type_changed;
ea56f9c2 1177 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1178 r.changed = 1;
ea56f9c2 1179
25d5ea92 1180 if (new == NULL)
f7f9ae2c
VP
1181 r.status = VAROBJ_NOT_IN_SCOPE;
1182
1183 if (r.type_changed || r.changed)
1184 VEC_safe_push (varobj_update_result, result, &r);
1185
1186 if (r.status == VAROBJ_NOT_IN_SCOPE)
1187 return result;
b20d8971
VP
1188 }
1189
28335dcc 1190 VEC_safe_push (varobj_p, stack, *varp);
8b93c638 1191
8756216b 1192 /* Walk through the children, reconstructing them all. */
28335dcc 1193 while (!VEC_empty (varobj_p, stack))
8b93c638 1194 {
28335dcc
VP
1195 v = VEC_pop (varobj_p, stack);
1196
1197 /* Push any children. Use reverse order so that the first
1198 child is popped from the work stack first, and so
1199 will be added to result first. This does not
1200 affect correctness, just "nicer". */
1201 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1202 {
28335dcc
VP
1203 varobj_p c = VEC_index (varobj_p, v->children, i);
1204 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1205 if (c != NULL && !c->frozen)
28335dcc 1206 VEC_safe_push (varobj_p, stack, c);
8b93c638
JM
1207 }
1208
28335dcc
VP
1209 /* Update this variable, unless it's a root, which is already
1210 updated. */
25d5ea92 1211 if (v->root->rootvar != v)
28335dcc
VP
1212 {
1213 new = value_of_child (v->parent, v->index);
1214 if (install_new_value (v, new, 0 /* type not changed */))
1215 {
1216 /* Note that it's changed */
f7f9ae2c
VP
1217 varobj_update_result r = {v};
1218 r.changed = 1;
1219 VEC_safe_push (varobj_update_result, result, &r);
28335dcc
VP
1220 v->updated = 0;
1221 }
8b93c638 1222 }
8b93c638
JM
1223 }
1224
93b979d6 1225 VEC_free (varobj_p, stack);
f7f9ae2c 1226 return result;
8b93c638
JM
1227}
1228\f
1229
1230/* Helper functions */
1231
1232/*
1233 * Variable object construction/destruction
1234 */
1235
1236static int
fba45db2
KB
1237delete_variable (struct cpstack **resultp, struct varobj *var,
1238 int only_children_p)
8b93c638
JM
1239{
1240 int delcount = 0;
1241
1242 delete_variable_1 (resultp, &delcount, var,
1243 only_children_p, 1 /* remove_from_parent_p */ );
1244
1245 return delcount;
1246}
1247
1248/* Delete the variable object VAR and its children */
1249/* IMPORTANT NOTE: If we delete a variable which is a child
1250 and the parent is not removed we dump core. It must be always
1251 initially called with remove_from_parent_p set */
1252static void
72330bd6
AC
1253delete_variable_1 (struct cpstack **resultp, int *delcountp,
1254 struct varobj *var, int only_children_p,
1255 int remove_from_parent_p)
8b93c638 1256{
28335dcc 1257 int i;
8b93c638
JM
1258
1259 /* Delete any children of this variable, too. */
28335dcc
VP
1260 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1261 {
1262 varobj_p child = VEC_index (varobj_p, var->children, i);
214270ab
VP
1263 if (!child)
1264 continue;
8b93c638 1265 if (!remove_from_parent_p)
28335dcc
VP
1266 child->parent = NULL;
1267 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1268 }
28335dcc 1269 VEC_free (varobj_p, var->children);
8b93c638
JM
1270
1271 /* if we were called to delete only the children we are done here */
1272 if (only_children_p)
1273 return;
1274
1275 /* Otherwise, add it to the list of deleted ones and proceed to do so */
73a93a32
JI
1276 /* If the name is null, this is a temporary variable, that has not
1277 yet been installed, don't report it, it belongs to the caller... */
1278 if (var->obj_name != NULL)
8b93c638 1279 {
5b616ba1 1280 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1281 *delcountp = *delcountp + 1;
1282 }
1283
1284 /* If this variable has a parent, remove it from its parent's list */
1285 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1286 (as indicated by remove_from_parent_p) we don't bother doing an
1287 expensive list search to find the element to remove when we are
1288 discarding the list afterwards */
72330bd6 1289 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1290 {
28335dcc 1291 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1292 }
72330bd6 1293
73a93a32
JI
1294 if (var->obj_name != NULL)
1295 uninstall_variable (var);
8b93c638
JM
1296
1297 /* Free memory associated with this variable */
1298 free_variable (var);
1299}
1300
1301/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
1302static int
fba45db2 1303install_variable (struct varobj *var)
8b93c638
JM
1304{
1305 struct vlist *cv;
1306 struct vlist *newvl;
1307 const char *chp;
1308 unsigned int index = 0;
1309 unsigned int i = 1;
1310
1311 for (chp = var->obj_name; *chp; chp++)
1312 {
1313 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1314 }
1315
1316 cv = *(varobj_table + index);
1317 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1318 cv = cv->next;
1319
1320 if (cv != NULL)
8a3fe4f8 1321 error (_("Duplicate variable object name"));
8b93c638
JM
1322
1323 /* Add varobj to hash table */
1324 newvl = xmalloc (sizeof (struct vlist));
1325 newvl->next = *(varobj_table + index);
1326 newvl->var = var;
1327 *(varobj_table + index) = newvl;
1328
1329 /* If root, add varobj to root list */
b2c2bd75 1330 if (is_root_p (var))
8b93c638
JM
1331 {
1332 /* Add to list of root variables */
1333 if (rootlist == NULL)
1334 var->root->next = NULL;
1335 else
1336 var->root->next = rootlist;
1337 rootlist = var->root;
1338 rootcount++;
1339 }
1340
1341 return 1; /* OK */
1342}
1343
1344/* Unistall the object VAR. */
1345static void
fba45db2 1346uninstall_variable (struct varobj *var)
8b93c638
JM
1347{
1348 struct vlist *cv;
1349 struct vlist *prev;
1350 struct varobj_root *cr;
1351 struct varobj_root *prer;
1352 const char *chp;
1353 unsigned int index = 0;
1354 unsigned int i = 1;
1355
1356 /* Remove varobj from hash table */
1357 for (chp = var->obj_name; *chp; chp++)
1358 {
1359 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1360 }
1361
1362 cv = *(varobj_table + index);
1363 prev = NULL;
1364 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1365 {
1366 prev = cv;
1367 cv = cv->next;
1368 }
1369
1370 if (varobjdebug)
1371 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1372
1373 if (cv == NULL)
1374 {
72330bd6
AC
1375 warning
1376 ("Assertion failed: Could not find variable object \"%s\" to delete",
1377 var->obj_name);
8b93c638
JM
1378 return;
1379 }
1380
1381 if (prev == NULL)
1382 *(varobj_table + index) = cv->next;
1383 else
1384 prev->next = cv->next;
1385
b8c9b27d 1386 xfree (cv);
8b93c638
JM
1387
1388 /* If root, remove varobj from root list */
b2c2bd75 1389 if (is_root_p (var))
8b93c638
JM
1390 {
1391 /* Remove from list of root variables */
1392 if (rootlist == var->root)
1393 rootlist = var->root->next;
1394 else
1395 {
1396 prer = NULL;
1397 cr = rootlist;
1398 while ((cr != NULL) && (cr->rootvar != var))
1399 {
1400 prer = cr;
1401 cr = cr->next;
1402 }
1403 if (cr == NULL)
1404 {
72330bd6
AC
1405 warning
1406 ("Assertion failed: Could not find varobj \"%s\" in root list",
1407 var->obj_name);
8b93c638
JM
1408 return;
1409 }
1410 if (prer == NULL)
1411 rootlist = NULL;
1412 else
1413 prer->next = cr->next;
1414 }
1415 rootcount--;
1416 }
1417
1418}
1419
8b93c638
JM
1420/* Create and install a child of the parent of the given name */
1421static struct varobj *
fba45db2 1422create_child (struct varobj *parent, int index, char *name)
8b93c638
JM
1423{
1424 struct varobj *child;
1425 char *childs_name;
acd65feb 1426 struct value *value;
8b93c638
JM
1427
1428 child = new_variable ();
1429
1430 /* name is allocated by name_of_child */
1431 child->name = name;
1432 child->index = index;
acd65feb 1433 value = value_of_child (parent, index);
8b93c638
JM
1434 child->parent = parent;
1435 child->root = parent->root;
b435e160 1436 childs_name = xstrprintf ("%s.%s", parent->obj_name, name);
8b93c638
JM
1437 child->obj_name = childs_name;
1438 install_variable (child);
1439
acd65feb
VP
1440 /* Compute the type of the child. Must do this before
1441 calling install_new_value. */
1442 if (value != NULL)
1443 /* If the child had no evaluation errors, var->value
1444 will be non-NULL and contain a valid type. */
1445 child->type = value_type (value);
1446 else
1447 /* Otherwise, we must compute the type. */
1448 child->type = (*child->root->lang->type_of_child) (child->parent,
1449 child->index);
1450 install_new_value (child, value, 1);
1451
8b93c638
JM
1452 return child;
1453}
8b93c638
JM
1454\f
1455
1456/*
1457 * Miscellaneous utility functions.
1458 */
1459
1460/* Allocate memory and initialize a new variable */
1461static struct varobj *
1462new_variable (void)
1463{
1464 struct varobj *var;
1465
1466 var = (struct varobj *) xmalloc (sizeof (struct varobj));
1467 var->name = NULL;
02142340 1468 var->path_expr = NULL;
8b93c638
JM
1469 var->obj_name = NULL;
1470 var->index = -1;
1471 var->type = NULL;
1472 var->value = NULL;
8b93c638
JM
1473 var->num_children = -1;
1474 var->parent = NULL;
1475 var->children = NULL;
1476 var->format = 0;
1477 var->root = NULL;
fb9b6b35 1478 var->updated = 0;
85265413 1479 var->print_value = NULL;
25d5ea92
VP
1480 var->frozen = 0;
1481 var->not_fetched = 0;
8b93c638
JM
1482
1483 return var;
1484}
1485
1486/* Allocate memory and initialize a new root variable */
1487static struct varobj *
1488new_root_variable (void)
1489{
1490 struct varobj *var = new_variable ();
1491 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));;
1492 var->root->lang = NULL;
1493 var->root->exp = NULL;
1494 var->root->valid_block = NULL;
7a424e99 1495 var->root->frame = null_frame_id;
a5defcdc 1496 var->root->floating = 0;
8b93c638 1497 var->root->rootvar = NULL;
8756216b 1498 var->root->is_valid = 1;
8b93c638
JM
1499
1500 return var;
1501}
1502
1503/* Free any allocated memory associated with VAR. */
1504static void
fba45db2 1505free_variable (struct varobj *var)
8b93c638
JM
1506{
1507 /* Free the expression if this is a root variable. */
b2c2bd75 1508 if (is_root_p (var))
8b93c638 1509 {
96c1eda2 1510 free_current_contents (&var->root->exp);
8038e1e2 1511 xfree (var->root);
8b93c638
JM
1512 }
1513
8038e1e2
AC
1514 xfree (var->name);
1515 xfree (var->obj_name);
85265413 1516 xfree (var->print_value);
02142340 1517 xfree (var->path_expr);
8038e1e2 1518 xfree (var);
8b93c638
JM
1519}
1520
74b7792f
AC
1521static void
1522do_free_variable_cleanup (void *var)
1523{
1524 free_variable (var);
1525}
1526
1527static struct cleanup *
1528make_cleanup_free_variable (struct varobj *var)
1529{
1530 return make_cleanup (do_free_variable_cleanup, var);
1531}
1532
6766a268
DJ
1533/* This returns the type of the variable. It also skips past typedefs
1534 to return the real type of the variable.
94b66fa7
KS
1535
1536 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1537 except within get_target_type and get_type. */
8b93c638 1538static struct type *
fba45db2 1539get_type (struct varobj *var)
8b93c638
JM
1540{
1541 struct type *type;
1542 type = var->type;
1543
6766a268
DJ
1544 if (type != NULL)
1545 type = check_typedef (type);
8b93c638
JM
1546
1547 return type;
1548}
1549
6e2a9270
VP
1550/* Return the type of the value that's stored in VAR,
1551 or that would have being stored there if the
1552 value were accessible.
1553
1554 This differs from VAR->type in that VAR->type is always
1555 the true type of the expession in the source language.
1556 The return value of this function is the type we're
1557 actually storing in varobj, and using for displaying
1558 the values and for comparing previous and new values.
1559
1560 For example, top-level references are always stripped. */
1561static struct type *
1562get_value_type (struct varobj *var)
1563{
1564 struct type *type;
1565
1566 if (var->value)
1567 type = value_type (var->value);
1568 else
1569 type = var->type;
1570
1571 type = check_typedef (type);
1572
1573 if (TYPE_CODE (type) == TYPE_CODE_REF)
1574 type = get_target_type (type);
1575
1576 type = check_typedef (type);
1577
1578 return type;
1579}
1580
8b93c638 1581/* This returns the target type (or NULL) of TYPE, also skipping
94b66fa7
KS
1582 past typedefs, just like get_type ().
1583
1584 NOTE: TYPE_TARGET_TYPE should NOT be used anywhere in this file
1585 except within get_target_type and get_type. */
8b93c638 1586static struct type *
fba45db2 1587get_target_type (struct type *type)
8b93c638
JM
1588{
1589 if (type != NULL)
1590 {
1591 type = TYPE_TARGET_TYPE (type);
6766a268
DJ
1592 if (type != NULL)
1593 type = check_typedef (type);
8b93c638
JM
1594 }
1595
1596 return type;
1597}
1598
1599/* What is the default display for this variable? We assume that
1600 everything is "natural". Any exceptions? */
1601static enum varobj_display_formats
fba45db2 1602variable_default_display (struct varobj *var)
8b93c638
JM
1603{
1604 return FORMAT_NATURAL;
1605}
1606
8b93c638
JM
1607/* FIXME: The following should be generic for any pointer */
1608static void
fba45db2 1609cppush (struct cpstack **pstack, char *name)
8b93c638
JM
1610{
1611 struct cpstack *s;
1612
1613 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
1614 s->name = name;
1615 s->next = *pstack;
1616 *pstack = s;
1617}
1618
1619/* FIXME: The following should be generic for any pointer */
1620static char *
fba45db2 1621cppop (struct cpstack **pstack)
8b93c638
JM
1622{
1623 struct cpstack *s;
1624 char *v;
1625
1626 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
1627 return NULL;
1628
1629 s = *pstack;
1630 v = s->name;
1631 *pstack = (*pstack)->next;
b8c9b27d 1632 xfree (s);
8b93c638
JM
1633
1634 return v;
1635}
1636\f
1637/*
1638 * Language-dependencies
1639 */
1640
1641/* Common entry points */
1642
1643/* Get the language of variable VAR. */
1644static enum varobj_languages
fba45db2 1645variable_language (struct varobj *var)
8b93c638
JM
1646{
1647 enum varobj_languages lang;
1648
1649 switch (var->root->exp->language_defn->la_language)
1650 {
1651 default:
1652 case language_c:
1653 lang = vlang_c;
1654 break;
1655 case language_cplus:
1656 lang = vlang_cplus;
1657 break;
1658 case language_java:
1659 lang = vlang_java;
1660 break;
1661 }
1662
1663 return lang;
1664}
1665
1666/* Return the number of children for a given variable.
1667 The result of this function is defined by the language
1668 implementation. The number of children returned by this function
1669 is the number of children that the user will see in the variable
1670 display. */
1671static int
fba45db2 1672number_of_children (struct varobj *var)
8b93c638
JM
1673{
1674 return (*var->root->lang->number_of_children) (var);;
1675}
1676
1677/* What is the expression for the root varobj VAR? Returns a malloc'd string. */
1678static char *
fba45db2 1679name_of_variable (struct varobj *var)
8b93c638
JM
1680{
1681 return (*var->root->lang->name_of_variable) (var);
1682}
1683
1684/* What is the name of the INDEX'th child of VAR? Returns a malloc'd string. */
1685static char *
fba45db2 1686name_of_child (struct varobj *var, int index)
8b93c638
JM
1687{
1688 return (*var->root->lang->name_of_child) (var, index);
1689}
1690
a5defcdc
VP
1691/* What is the ``struct value *'' of the root variable VAR?
1692 For floating variable object, evaluation can get us a value
1693 of different type from what is stored in varobj already. In
1694 that case:
1695 - *type_changed will be set to 1
1696 - old varobj will be freed, and new one will be
1697 created, with the same name.
1698 - *var_handle will be set to the new varobj
1699 Otherwise, *type_changed will be set to 0. */
30b28db1 1700static struct value *
fba45db2 1701value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 1702{
73a93a32
JI
1703 struct varobj *var;
1704
1705 if (var_handle == NULL)
1706 return NULL;
1707
1708 var = *var_handle;
1709
1710 /* This should really be an exception, since this should
1711 only get called with a root variable. */
1712
b2c2bd75 1713 if (!is_root_p (var))
73a93a32
JI
1714 return NULL;
1715
a5defcdc 1716 if (var->root->floating)
73a93a32
JI
1717 {
1718 struct varobj *tmp_var;
1719 char *old_type, *new_type;
6225abfa 1720
73a93a32
JI
1721 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
1722 USE_SELECTED_FRAME);
1723 if (tmp_var == NULL)
1724 {
1725 return NULL;
1726 }
6225abfa 1727 old_type = varobj_get_type (var);
73a93a32 1728 new_type = varobj_get_type (tmp_var);
72330bd6 1729 if (strcmp (old_type, new_type) == 0)
73a93a32 1730 {
fcacd99f
VP
1731 /* The expression presently stored inside var->root->exp
1732 remembers the locations of local variables relatively to
1733 the frame where the expression was created (in DWARF location
1734 button, for example). Naturally, those locations are not
1735 correct in other frames, so update the expression. */
1736
1737 struct expression *tmp_exp = var->root->exp;
1738 var->root->exp = tmp_var->root->exp;
1739 tmp_var->root->exp = tmp_exp;
1740
73a93a32
JI
1741 varobj_delete (tmp_var, NULL, 0);
1742 *type_changed = 0;
1743 }
1744 else
1745 {
a5defcdc
VP
1746 tmp_var->obj_name =
1747 savestring (var->obj_name, strlen (var->obj_name));
1748 varobj_delete (var, NULL, 0);
1749
73a93a32
JI
1750 install_variable (tmp_var);
1751 *var_handle = tmp_var;
705da579 1752 var = *var_handle;
73a93a32
JI
1753 *type_changed = 1;
1754 }
74dddad3
MS
1755 xfree (old_type);
1756 xfree (new_type);
73a93a32
JI
1757 }
1758 else
1759 {
1760 *type_changed = 0;
1761 }
1762
1763 return (*var->root->lang->value_of_root) (var_handle);
8b93c638
JM
1764}
1765
30b28db1
AC
1766/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
1767static struct value *
fba45db2 1768value_of_child (struct varobj *parent, int index)
8b93c638 1769{
30b28db1 1770 struct value *value;
8b93c638
JM
1771
1772 value = (*parent->root->lang->value_of_child) (parent, index);
1773
8b93c638
JM
1774 return value;
1775}
1776
8b93c638
JM
1777/* GDB already has a command called "value_of_variable". Sigh. */
1778static char *
de051565 1779my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 1780{
8756216b 1781 if (var->root->is_valid)
de051565 1782 return (*var->root->lang->value_of_variable) (var, format);
8756216b
DP
1783 else
1784 return NULL;
8b93c638
JM
1785}
1786
85265413
NR
1787static char *
1788value_get_print_value (struct value *value, enum varobj_display_formats format)
1789{
1790 long dummy;
57e66780
DJ
1791 struct ui_file *stb;
1792 struct cleanup *old_chain;
85265413 1793 char *thevalue;
57e66780
DJ
1794
1795 if (value == NULL)
1796 return NULL;
1797
1798 stb = mem_fileopen ();
1799 old_chain = make_cleanup_ui_file_delete (stb);
1800
d8ca156b
JB
1801 common_val_print (value, stb, format_code[(int) format], 1, 0, 0,
1802 current_language);
85265413 1803 thevalue = ui_file_xstrdup (stb, &dummy);
57e66780 1804
85265413
NR
1805 do_cleanups (old_chain);
1806 return thevalue;
1807}
1808
340a7723
NR
1809int
1810varobj_editable_p (struct varobj *var)
1811{
1812 struct type *type;
1813 struct value *value;
1814
1815 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
1816 return 0;
1817
1818 type = get_value_type (var);
1819
1820 switch (TYPE_CODE (type))
1821 {
1822 case TYPE_CODE_STRUCT:
1823 case TYPE_CODE_UNION:
1824 case TYPE_CODE_ARRAY:
1825 case TYPE_CODE_FUNC:
1826 case TYPE_CODE_METHOD:
1827 return 0;
1828 break;
1829
1830 default:
1831 return 1;
1832 break;
1833 }
1834}
1835
acd65feb
VP
1836/* Return non-zero if changes in value of VAR
1837 must be detected and reported by -var-update.
1838 Return zero is -var-update should never report
1839 changes of such values. This makes sense for structures
1840 (since the changes in children values will be reported separately),
1841 or for artifical objects (like 'public' pseudo-field in C++).
1842
1843 Return value of 0 means that gdb need not call value_fetch_lazy
1844 for the value of this variable object. */
8b93c638 1845static int
b2c2bd75 1846varobj_value_is_changeable_p (struct varobj *var)
8b93c638
JM
1847{
1848 int r;
1849 struct type *type;
1850
1851 if (CPLUS_FAKE_CHILD (var))
1852 return 0;
1853
6e2a9270 1854 type = get_value_type (var);
8b93c638
JM
1855
1856 switch (TYPE_CODE (type))
1857 {
72330bd6
AC
1858 case TYPE_CODE_STRUCT:
1859 case TYPE_CODE_UNION:
1860 case TYPE_CODE_ARRAY:
1861 r = 0;
1862 break;
8b93c638 1863
72330bd6
AC
1864 default:
1865 r = 1;
8b93c638
JM
1866 }
1867
1868 return r;
1869}
1870
5a413362
VP
1871/* Return 1 if that varobj is floating, that is is always evaluated in the
1872 selected frame, and not bound to thread/frame. Such variable objects
1873 are created using '@' as frame specifier to -var-create. */
1874int
1875varobj_floating_p (struct varobj *var)
1876{
1877 return var->root->floating;
1878}
1879
2024f65a
VP
1880/* Given the value and the type of a variable object,
1881 adjust the value and type to those necessary
1882 for getting children of the variable object.
1883 This includes dereferencing top-level references
1884 to all types and dereferencing pointers to
1885 structures.
1886
1887 Both TYPE and *TYPE should be non-null. VALUE
1888 can be null if we want to only translate type.
1889 *VALUE can be null as well -- if the parent
02142340
VP
1890 value is not known.
1891
1892 If WAS_PTR is not NULL, set *WAS_PTR to 0 or 1
1893 depending on whether pointer was deferenced
1894 in this function. */
2024f65a
VP
1895static void
1896adjust_value_for_child_access (struct value **value,
02142340
VP
1897 struct type **type,
1898 int *was_ptr)
2024f65a
VP
1899{
1900 gdb_assert (type && *type);
1901
02142340
VP
1902 if (was_ptr)
1903 *was_ptr = 0;
1904
2024f65a
VP
1905 *type = check_typedef (*type);
1906
1907 /* The type of value stored in varobj, that is passed
1908 to us, is already supposed to be
1909 reference-stripped. */
1910
1911 gdb_assert (TYPE_CODE (*type) != TYPE_CODE_REF);
1912
1913 /* Pointers to structures are treated just like
1914 structures when accessing children. Don't
1915 dererences pointers to other types. */
1916 if (TYPE_CODE (*type) == TYPE_CODE_PTR)
1917 {
1918 struct type *target_type = get_target_type (*type);
1919 if (TYPE_CODE (target_type) == TYPE_CODE_STRUCT
1920 || TYPE_CODE (target_type) == TYPE_CODE_UNION)
1921 {
1922 if (value && *value)
3f4178d6
DJ
1923 {
1924 int success = gdb_value_ind (*value, value);
1925 if (!success)
1926 *value = NULL;
1927 }
2024f65a 1928 *type = target_type;
02142340
VP
1929 if (was_ptr)
1930 *was_ptr = 1;
2024f65a
VP
1931 }
1932 }
1933
1934 /* The 'get_target_type' function calls check_typedef on
1935 result, so we can immediately check type code. No
1936 need to call check_typedef here. */
1937}
1938
8b93c638
JM
1939/* C */
1940static int
fba45db2 1941c_number_of_children (struct varobj *var)
8b93c638 1942{
2024f65a
VP
1943 struct type *type = get_value_type (var);
1944 int children = 0;
8b93c638 1945 struct type *target;
8b93c638 1946
02142340 1947 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638 1948 target = get_target_type (type);
8b93c638
JM
1949
1950 switch (TYPE_CODE (type))
1951 {
1952 case TYPE_CODE_ARRAY:
1953 if (TYPE_LENGTH (type) > 0 && TYPE_LENGTH (target) > 0
d78df370 1954 && !TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
8b93c638
JM
1955 children = TYPE_LENGTH (type) / TYPE_LENGTH (target);
1956 else
74a44383
DJ
1957 /* If we don't know how many elements there are, don't display
1958 any. */
1959 children = 0;
8b93c638
JM
1960 break;
1961
1962 case TYPE_CODE_STRUCT:
1963 case TYPE_CODE_UNION:
1964 children = TYPE_NFIELDS (type);
1965 break;
1966
1967 case TYPE_CODE_PTR:
2024f65a
VP
1968 /* The type here is a pointer to non-struct. Typically, pointers
1969 have one child, except for function ptrs, which have no children,
1970 and except for void*, as we don't know what to show.
1971
0755e6c1
FN
1972 We can show char* so we allow it to be dereferenced. If you decide
1973 to test for it, please mind that a little magic is necessary to
1974 properly identify it: char* has TYPE_CODE == TYPE_CODE_INT and
1975 TYPE_NAME == "char" */
2024f65a
VP
1976 if (TYPE_CODE (target) == TYPE_CODE_FUNC
1977 || TYPE_CODE (target) == TYPE_CODE_VOID)
1978 children = 0;
1979 else
1980 children = 1;
8b93c638
JM
1981 break;
1982
1983 default:
1984 /* Other types have no children */
1985 break;
1986 }
1987
1988 return children;
1989}
1990
1991static char *
fba45db2 1992c_name_of_variable (struct varobj *parent)
8b93c638
JM
1993{
1994 return savestring (parent->name, strlen (parent->name));
1995}
1996
bbec2603
VP
1997/* Return the value of element TYPE_INDEX of a structure
1998 value VALUE. VALUE's type should be a structure,
1999 or union, or a typedef to struct/union.
2000
2001 Returns NULL if getting the value fails. Never throws. */
2002static struct value *
2003value_struct_element_index (struct value *value, int type_index)
8b93c638 2004{
bbec2603
VP
2005 struct value *result = NULL;
2006 volatile struct gdb_exception e;
8b93c638 2007
bbec2603
VP
2008 struct type *type = value_type (value);
2009 type = check_typedef (type);
2010
2011 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
2012 || TYPE_CODE (type) == TYPE_CODE_UNION);
8b93c638 2013
bbec2603
VP
2014 TRY_CATCH (e, RETURN_MASK_ERROR)
2015 {
2016 if (TYPE_FIELD_STATIC (type, type_index))
2017 result = value_static_field (type, type_index);
2018 else
2019 result = value_primitive_field (value, 0, type_index, type);
2020 }
2021 if (e.reason < 0)
2022 {
2023 return NULL;
2024 }
2025 else
2026 {
2027 return result;
2028 }
2029}
2030
2031/* Obtain the information about child INDEX of the variable
2032 object PARENT.
2033 If CNAME is not null, sets *CNAME to the name of the child relative
2034 to the parent.
2035 If CVALUE is not null, sets *CVALUE to the value of the child.
2036 If CTYPE is not null, sets *CTYPE to the type of the child.
2037
2038 If any of CNAME, CVALUE, or CTYPE is not null, but the corresponding
2039 information cannot be determined, set *CNAME, *CVALUE, or *CTYPE
2040 to NULL. */
2041static void
2042c_describe_child (struct varobj *parent, int index,
02142340
VP
2043 char **cname, struct value **cvalue, struct type **ctype,
2044 char **cfull_expression)
bbec2603
VP
2045{
2046 struct value *value = parent->value;
2024f65a 2047 struct type *type = get_value_type (parent);
02142340
VP
2048 char *parent_expression = NULL;
2049 int was_ptr;
bbec2603
VP
2050
2051 if (cname)
2052 *cname = NULL;
2053 if (cvalue)
2054 *cvalue = NULL;
2055 if (ctype)
2056 *ctype = NULL;
02142340
VP
2057 if (cfull_expression)
2058 {
2059 *cfull_expression = NULL;
2060 parent_expression = varobj_get_path_expr (parent);
2061 }
2062 adjust_value_for_child_access (&value, &type, &was_ptr);
bbec2603 2063
8b93c638
JM
2064 switch (TYPE_CODE (type))
2065 {
2066 case TYPE_CODE_ARRAY:
bbec2603
VP
2067 if (cname)
2068 *cname = xstrprintf ("%d", index
2069 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2070
2071 if (cvalue && value)
2072 {
2073 int real_index = index + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type));
2074 struct value *indval =
6d84d3d8 2075 value_from_longest (builtin_type_int32, (LONGEST) real_index);
bbec2603
VP
2076 gdb_value_subscript (value, indval, cvalue);
2077 }
2078
2079 if (ctype)
2080 *ctype = get_target_type (type);
2081
02142340
VP
2082 if (cfull_expression)
2083 *cfull_expression = xstrprintf ("(%s)[%d]", parent_expression,
2084 index
2085 + TYPE_LOW_BOUND (TYPE_INDEX_TYPE (type)));
2086
2087
8b93c638
JM
2088 break;
2089
2090 case TYPE_CODE_STRUCT:
2091 case TYPE_CODE_UNION:
bbec2603
VP
2092 if (cname)
2093 {
2094 char *string = TYPE_FIELD_NAME (type, index);
2095 *cname = savestring (string, strlen (string));
2096 }
2097
2098 if (cvalue && value)
2099 {
2100 /* For C, varobj index is the same as type index. */
2101 *cvalue = value_struct_element_index (value, index);
2102 }
2103
2104 if (ctype)
2105 *ctype = TYPE_FIELD_TYPE (type, index);
2106
02142340
VP
2107 if (cfull_expression)
2108 {
2109 char *join = was_ptr ? "->" : ".";
2110 *cfull_expression = xstrprintf ("(%s)%s%s", parent_expression, join,
2111 TYPE_FIELD_NAME (type, index));
2112 }
2113
8b93c638
JM
2114 break;
2115
2116 case TYPE_CODE_PTR:
bbec2603
VP
2117 if (cname)
2118 *cname = xstrprintf ("*%s", parent->name);
8b93c638 2119
bbec2603 2120 if (cvalue && value)
3f4178d6
DJ
2121 {
2122 int success = gdb_value_ind (value, cvalue);
2123 if (!success)
2124 *cvalue = NULL;
2125 }
bbec2603 2126
2024f65a
VP
2127 /* Don't use get_target_type because it calls
2128 check_typedef and here, we want to show the true
2129 declared type of the variable. */
bbec2603 2130 if (ctype)
2024f65a 2131 *ctype = TYPE_TARGET_TYPE (type);
02142340
VP
2132
2133 if (cfull_expression)
2134 *cfull_expression = xstrprintf ("*(%s)", parent_expression);
bbec2603 2135
8b93c638
JM
2136 break;
2137
2138 default:
2139 /* This should not happen */
bbec2603
VP
2140 if (cname)
2141 *cname = xstrdup ("???");
02142340
VP
2142 if (cfull_expression)
2143 *cfull_expression = xstrdup ("???");
bbec2603 2144 /* Don't set value and type, we don't know then. */
8b93c638 2145 }
bbec2603 2146}
8b93c638 2147
bbec2603
VP
2148static char *
2149c_name_of_child (struct varobj *parent, int index)
2150{
2151 char *name;
02142340 2152 c_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
2153 return name;
2154}
2155
02142340
VP
2156static char *
2157c_path_expr_of_child (struct varobj *child)
2158{
2159 c_describe_child (child->parent, child->index, NULL, NULL, NULL,
2160 &child->path_expr);
2161 return child->path_expr;
2162}
2163
c5b48eac
VP
2164/* If frame associated with VAR can be found, switch
2165 to it and return 1. Otherwise, return 0. */
2166static int
2167check_scope (struct varobj *var)
2168{
2169 struct frame_info *fi;
2170 int scope;
2171
2172 fi = frame_find_by_id (var->root->frame);
2173 scope = fi != NULL;
2174
2175 if (fi)
2176 {
2177 CORE_ADDR pc = get_frame_pc (fi);
2178 if (pc < BLOCK_START (var->root->valid_block) ||
2179 pc >= BLOCK_END (var->root->valid_block))
2180 scope = 0;
2181 else
2182 select_frame (fi);
2183 }
2184 return scope;
2185}
2186
30b28db1 2187static struct value *
fba45db2 2188c_value_of_root (struct varobj **var_handle)
8b93c638 2189{
5e572bb4 2190 struct value *new_val = NULL;
73a93a32 2191 struct varobj *var = *var_handle;
8b93c638 2192 struct frame_info *fi;
c5b48eac 2193 int within_scope = 0;
6208b47d
VP
2194 struct cleanup *back_to;
2195
73a93a32 2196 /* Only root variables can be updated... */
b2c2bd75 2197 if (!is_root_p (var))
73a93a32
JI
2198 /* Not a root var */
2199 return NULL;
2200
4f8d22e3 2201 back_to = make_cleanup_restore_current_thread ();
72330bd6 2202
8b93c638 2203 /* Determine whether the variable is still around. */
a5defcdc 2204 if (var->root->valid_block == NULL || var->root->floating)
8b93c638 2205 within_scope = 1;
c5b48eac
VP
2206 else if (var->root->thread_id == 0)
2207 {
2208 /* The program was single-threaded when the variable object was
2209 created. Technically, it's possible that the program became
2210 multi-threaded since then, but we don't support such
2211 scenario yet. */
2212 within_scope = check_scope (var);
2213 }
8b93c638
JM
2214 else
2215 {
c5b48eac
VP
2216 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2217 if (in_thread_list (ptid))
d2353924 2218 {
c5b48eac
VP
2219 switch_to_thread (ptid);
2220 within_scope = check_scope (var);
2221 }
8b93c638 2222 }
72330bd6 2223
8b93c638
JM
2224 if (within_scope)
2225 {
73a93a32 2226 /* We need to catch errors here, because if evaluate
85d93f1d
VP
2227 expression fails we want to just return NULL. */
2228 gdb_evaluate_expression (var->root->exp, &new_val);
8b93c638
JM
2229 return new_val;
2230 }
2231
6208b47d
VP
2232 do_cleanups (back_to);
2233
8b93c638
JM
2234 return NULL;
2235}
2236
30b28db1 2237static struct value *
fba45db2 2238c_value_of_child (struct varobj *parent, int index)
8b93c638 2239{
bbec2603 2240 struct value *value = NULL;
02142340 2241 c_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
2242
2243 return value;
2244}
2245
2246static struct type *
fba45db2 2247c_type_of_child (struct varobj *parent, int index)
8b93c638 2248{
bbec2603 2249 struct type *type = NULL;
02142340 2250 c_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
2251 return type;
2252}
2253
8b93c638 2254static char *
de051565 2255c_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2256{
14b3d9c9
JB
2257 /* BOGUS: if val_print sees a struct/class, or a reference to one,
2258 it will print out its children instead of "{...}". So we need to
2259 catch that case explicitly. */
2260 struct type *type = get_type (var);
e64d9b3d 2261
14b3d9c9
JB
2262 /* Strip top-level references. */
2263 while (TYPE_CODE (type) == TYPE_CODE_REF)
2264 type = check_typedef (TYPE_TARGET_TYPE (type));
2265
2266 switch (TYPE_CODE (type))
8b93c638
JM
2267 {
2268 case TYPE_CODE_STRUCT:
2269 case TYPE_CODE_UNION:
2270 return xstrdup ("{...}");
2271 /* break; */
2272
2273 case TYPE_CODE_ARRAY:
2274 {
e64d9b3d 2275 char *number;
b435e160 2276 number = xstrprintf ("[%d]", var->num_children);
e64d9b3d 2277 return (number);
8b93c638
JM
2278 }
2279 /* break; */
2280
2281 default:
2282 {
575bbeb6
KS
2283 if (var->value == NULL)
2284 {
2285 /* This can happen if we attempt to get the value of a struct
2286 member when the parent is an invalid pointer. This is an
2287 error condition, so we should tell the caller. */
2288 return NULL;
2289 }
2290 else
2291 {
25d5ea92
VP
2292 if (var->not_fetched && value_lazy (var->value))
2293 /* Frozen variable and no value yet. We don't
2294 implicitly fetch the value. MI response will
2295 use empty string for the value, which is OK. */
2296 return NULL;
2297
b2c2bd75 2298 gdb_assert (varobj_value_is_changeable_p (var));
acd65feb 2299 gdb_assert (!value_lazy (var->value));
de051565
MK
2300
2301 /* If the specified format is the current one,
2302 we can reuse print_value */
2303 if (format == var->format)
2304 return xstrdup (var->print_value);
2305 else
2306 return value_get_print_value (var->value, format);
85265413 2307 }
e64d9b3d 2308 }
8b93c638
JM
2309 }
2310}
2311\f
2312
2313/* C++ */
2314
2315static int
fba45db2 2316cplus_number_of_children (struct varobj *var)
8b93c638
JM
2317{
2318 struct type *type;
2319 int children, dont_know;
2320
2321 dont_know = 1;
2322 children = 0;
2323
2324 if (!CPLUS_FAKE_CHILD (var))
2325 {
2024f65a 2326 type = get_value_type (var);
02142340 2327 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
2328
2329 if (((TYPE_CODE (type)) == TYPE_CODE_STRUCT) ||
72330bd6 2330 ((TYPE_CODE (type)) == TYPE_CODE_UNION))
8b93c638
JM
2331 {
2332 int kids[3];
2333
2334 cplus_class_num_children (type, kids);
2335 if (kids[v_public] != 0)
2336 children++;
2337 if (kids[v_private] != 0)
2338 children++;
2339 if (kids[v_protected] != 0)
2340 children++;
2341
2342 /* Add any baseclasses */
2343 children += TYPE_N_BASECLASSES (type);
2344 dont_know = 0;
2345
2346 /* FIXME: save children in var */
2347 }
2348 }
2349 else
2350 {
2351 int kids[3];
2352
2024f65a 2353 type = get_value_type (var->parent);
02142340 2354 adjust_value_for_child_access (NULL, &type, NULL);
8b93c638
JM
2355
2356 cplus_class_num_children (type, kids);
6e382aa3 2357 if (strcmp (var->name, "public") == 0)
8b93c638 2358 children = kids[v_public];
6e382aa3 2359 else if (strcmp (var->name, "private") == 0)
8b93c638
JM
2360 children = kids[v_private];
2361 else
2362 children = kids[v_protected];
2363 dont_know = 0;
2364 }
2365
2366 if (dont_know)
2367 children = c_number_of_children (var);
2368
2369 return children;
2370}
2371
2372/* Compute # of public, private, and protected variables in this class.
2373 That means we need to descend into all baseclasses and find out
2374 how many are there, too. */
2375static void
1669605f 2376cplus_class_num_children (struct type *type, int children[3])
8b93c638
JM
2377{
2378 int i;
2379
2380 children[v_public] = 0;
2381 children[v_private] = 0;
2382 children[v_protected] = 0;
2383
2384 for (i = TYPE_N_BASECLASSES (type); i < TYPE_NFIELDS (type); i++)
2385 {
2386 /* If we have a virtual table pointer, omit it. */
72330bd6 2387 if (TYPE_VPTR_BASETYPE (type) == type && TYPE_VPTR_FIELDNO (type) == i)
8b93c638
JM
2388 continue;
2389
2390 if (TYPE_FIELD_PROTECTED (type, i))
2391 children[v_protected]++;
2392 else if (TYPE_FIELD_PRIVATE (type, i))
2393 children[v_private]++;
2394 else
2395 children[v_public]++;
2396 }
2397}
2398
2399static char *
fba45db2 2400cplus_name_of_variable (struct varobj *parent)
8b93c638
JM
2401{
2402 return c_name_of_variable (parent);
2403}
2404
2024f65a
VP
2405enum accessibility { private_field, protected_field, public_field };
2406
2407/* Check if field INDEX of TYPE has the specified accessibility.
2408 Return 0 if so and 1 otherwise. */
2409static int
2410match_accessibility (struct type *type, int index, enum accessibility acc)
8b93c638 2411{
2024f65a
VP
2412 if (acc == private_field && TYPE_FIELD_PRIVATE (type, index))
2413 return 1;
2414 else if (acc == protected_field && TYPE_FIELD_PROTECTED (type, index))
2415 return 1;
2416 else if (acc == public_field && !TYPE_FIELD_PRIVATE (type, index)
2417 && !TYPE_FIELD_PROTECTED (type, index))
2418 return 1;
2419 else
2420 return 0;
2421}
2422
2423static void
2424cplus_describe_child (struct varobj *parent, int index,
02142340
VP
2425 char **cname, struct value **cvalue, struct type **ctype,
2426 char **cfull_expression)
2024f65a 2427{
348144ba 2428 char *name = NULL;
2024f65a 2429 struct value *value;
8b93c638 2430 struct type *type;
02142340
VP
2431 int was_ptr;
2432 char *parent_expression = NULL;
8b93c638 2433
2024f65a
VP
2434 if (cname)
2435 *cname = NULL;
2436 if (cvalue)
2437 *cvalue = NULL;
2438 if (ctype)
2439 *ctype = NULL;
02142340
VP
2440 if (cfull_expression)
2441 *cfull_expression = NULL;
2024f65a 2442
8b93c638
JM
2443 if (CPLUS_FAKE_CHILD (parent))
2444 {
2024f65a
VP
2445 value = parent->parent->value;
2446 type = get_value_type (parent->parent);
02142340
VP
2447 if (cfull_expression)
2448 parent_expression = varobj_get_path_expr (parent->parent);
8b93c638
JM
2449 }
2450 else
2024f65a
VP
2451 {
2452 value = parent->value;
2453 type = get_value_type (parent);
02142340
VP
2454 if (cfull_expression)
2455 parent_expression = varobj_get_path_expr (parent);
2024f65a 2456 }
8b93c638 2457
02142340 2458 adjust_value_for_child_access (&value, &type, &was_ptr);
2024f65a
VP
2459
2460 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
3f4178d6 2461 || TYPE_CODE (type) == TYPE_CODE_UNION)
8b93c638 2462 {
02142340 2463 char *join = was_ptr ? "->" : ".";
8b93c638
JM
2464 if (CPLUS_FAKE_CHILD (parent))
2465 {
6e382aa3
JJ
2466 /* The fields of the class type are ordered as they
2467 appear in the class. We are given an index for a
2468 particular access control type ("public","protected",
2469 or "private"). We must skip over fields that don't
2470 have the access control we are looking for to properly
2471 find the indexed field. */
2472 int type_index = TYPE_N_BASECLASSES (type);
2024f65a 2473 enum accessibility acc = public_field;
6e382aa3 2474 if (strcmp (parent->name, "private") == 0)
2024f65a 2475 acc = private_field;
6e382aa3 2476 else if (strcmp (parent->name, "protected") == 0)
2024f65a
VP
2477 acc = protected_field;
2478
2479 while (index >= 0)
6e382aa3 2480 {
2024f65a
VP
2481 if (TYPE_VPTR_BASETYPE (type) == type
2482 && type_index == TYPE_VPTR_FIELDNO (type))
2483 ; /* ignore vptr */
2484 else if (match_accessibility (type, type_index, acc))
6e382aa3
JJ
2485 --index;
2486 ++type_index;
6e382aa3 2487 }
2024f65a
VP
2488 --type_index;
2489
2490 if (cname)
2491 *cname = xstrdup (TYPE_FIELD_NAME (type, type_index));
2492
2493 if (cvalue && value)
2494 *cvalue = value_struct_element_index (value, type_index);
2495
2496 if (ctype)
2497 *ctype = TYPE_FIELD_TYPE (type, type_index);
02142340
VP
2498
2499 if (cfull_expression)
2500 *cfull_expression = xstrprintf ("((%s)%s%s)", parent_expression,
2501 join,
2502 TYPE_FIELD_NAME (type, type_index));
2024f65a
VP
2503 }
2504 else if (index < TYPE_N_BASECLASSES (type))
2505 {
2506 /* This is a baseclass. */
2507 if (cname)
2508 *cname = xstrdup (TYPE_FIELD_NAME (type, index));
2509
2510 if (cvalue && value)
6e382aa3 2511 {
2024f65a 2512 *cvalue = value_cast (TYPE_FIELD_TYPE (type, index), value);
02142340 2513 release_value (*cvalue);
6e382aa3
JJ
2514 }
2515
2024f65a
VP
2516 if (ctype)
2517 {
2518 *ctype = TYPE_FIELD_TYPE (type, index);
2519 }
02142340
VP
2520
2521 if (cfull_expression)
2522 {
2523 char *ptr = was_ptr ? "*" : "";
2524 /* Cast the parent to the base' type. Note that in gdb,
2525 expression like
2526 (Base1)d
2527 will create an lvalue, for all appearences, so we don't
2528 need to use more fancy:
2529 *(Base1*)(&d)
2530 construct. */
2531 *cfull_expression = xstrprintf ("(%s(%s%s) %s)",
2532 ptr,
2533 TYPE_FIELD_NAME (type, index),
2534 ptr,
2535 parent_expression);
2536 }
8b93c638 2537 }
8b93c638
JM
2538 else
2539 {
348144ba 2540 char *access = NULL;
6e382aa3 2541 int children[3];
2024f65a 2542 cplus_class_num_children (type, children);
6e382aa3 2543
8b93c638 2544 /* Everything beyond the baseclasses can
6e382aa3
JJ
2545 only be "public", "private", or "protected"
2546
2547 The special "fake" children are always output by varobj in
2548 this order. So if INDEX == 2, it MUST be "protected". */
8b93c638
JM
2549 index -= TYPE_N_BASECLASSES (type);
2550 switch (index)
2551 {
2552 case 0:
6e382aa3 2553 if (children[v_public] > 0)
2024f65a 2554 access = "public";
6e382aa3 2555 else if (children[v_private] > 0)
2024f65a 2556 access = "private";
6e382aa3 2557 else
2024f65a 2558 access = "protected";
6e382aa3 2559 break;
8b93c638 2560 case 1:
6e382aa3 2561 if (children[v_public] > 0)
8b93c638 2562 {
6e382aa3 2563 if (children[v_private] > 0)
2024f65a 2564 access = "private";
6e382aa3 2565 else
2024f65a 2566 access = "protected";
8b93c638 2567 }
6e382aa3 2568 else if (children[v_private] > 0)
2024f65a 2569 access = "protected";
6e382aa3 2570 break;
8b93c638 2571 case 2:
6e382aa3 2572 /* Must be protected */
2024f65a 2573 access = "protected";
6e382aa3 2574 break;
8b93c638
JM
2575 default:
2576 /* error! */
2577 break;
2578 }
348144ba
MS
2579
2580 gdb_assert (access);
2024f65a
VP
2581 if (cname)
2582 *cname = xstrdup (access);
8b93c638 2583
02142340 2584 /* Value and type and full expression are null here. */
2024f65a 2585 }
8b93c638 2586 }
8b93c638
JM
2587 else
2588 {
02142340 2589 c_describe_child (parent, index, cname, cvalue, ctype, cfull_expression);
2024f65a
VP
2590 }
2591}
8b93c638 2592
2024f65a
VP
2593static char *
2594cplus_name_of_child (struct varobj *parent, int index)
2595{
2596 char *name = NULL;
02142340 2597 cplus_describe_child (parent, index, &name, NULL, NULL, NULL);
8b93c638
JM
2598 return name;
2599}
2600
02142340
VP
2601static char *
2602cplus_path_expr_of_child (struct varobj *child)
2603{
2604 cplus_describe_child (child->parent, child->index, NULL, NULL, NULL,
2605 &child->path_expr);
2606 return child->path_expr;
2607}
2608
30b28db1 2609static struct value *
fba45db2 2610cplus_value_of_root (struct varobj **var_handle)
8b93c638 2611{
73a93a32 2612 return c_value_of_root (var_handle);
8b93c638
JM
2613}
2614
30b28db1 2615static struct value *
fba45db2 2616cplus_value_of_child (struct varobj *parent, int index)
8b93c638 2617{
2024f65a 2618 struct value *value = NULL;
02142340 2619 cplus_describe_child (parent, index, NULL, &value, NULL, NULL);
8b93c638
JM
2620 return value;
2621}
2622
2623static struct type *
fba45db2 2624cplus_type_of_child (struct varobj *parent, int index)
8b93c638 2625{
2024f65a 2626 struct type *type = NULL;
02142340 2627 cplus_describe_child (parent, index, NULL, NULL, &type, NULL);
8b93c638
JM
2628 return type;
2629}
2630
8b93c638 2631static char *
de051565 2632cplus_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638
JM
2633{
2634
2635 /* If we have one of our special types, don't print out
2636 any value. */
2637 if (CPLUS_FAKE_CHILD (var))
2638 return xstrdup ("");
2639
de051565 2640 return c_value_of_variable (var, format);
8b93c638
JM
2641}
2642\f
2643/* Java */
2644
2645static int
fba45db2 2646java_number_of_children (struct varobj *var)
8b93c638
JM
2647{
2648 return cplus_number_of_children (var);
2649}
2650
2651static char *
fba45db2 2652java_name_of_variable (struct varobj *parent)
8b93c638
JM
2653{
2654 char *p, *name;
2655
2656 name = cplus_name_of_variable (parent);
2657 /* If the name has "-" in it, it is because we
2658 needed to escape periods in the name... */
2659 p = name;
2660
2661 while (*p != '\000')
2662 {
2663 if (*p == '-')
2664 *p = '.';
2665 p++;
2666 }
2667
2668 return name;
2669}
2670
2671static char *
fba45db2 2672java_name_of_child (struct varobj *parent, int index)
8b93c638
JM
2673{
2674 char *name, *p;
2675
2676 name = cplus_name_of_child (parent, index);
2677 /* Escape any periods in the name... */
2678 p = name;
2679
2680 while (*p != '\000')
2681 {
2682 if (*p == '.')
2683 *p = '-';
2684 p++;
2685 }
2686
2687 return name;
2688}
2689
02142340
VP
2690static char *
2691java_path_expr_of_child (struct varobj *child)
2692{
2693 return NULL;
2694}
2695
30b28db1 2696static struct value *
fba45db2 2697java_value_of_root (struct varobj **var_handle)
8b93c638 2698{
73a93a32 2699 return cplus_value_of_root (var_handle);
8b93c638
JM
2700}
2701
30b28db1 2702static struct value *
fba45db2 2703java_value_of_child (struct varobj *parent, int index)
8b93c638
JM
2704{
2705 return cplus_value_of_child (parent, index);
2706}
2707
2708static struct type *
fba45db2 2709java_type_of_child (struct varobj *parent, int index)
8b93c638
JM
2710{
2711 return cplus_type_of_child (parent, index);
2712}
2713
8b93c638 2714static char *
de051565 2715java_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2716{
de051565 2717 return cplus_value_of_variable (var, format);
8b93c638
JM
2718}
2719\f
2720extern void _initialize_varobj (void);
2721void
2722_initialize_varobj (void)
2723{
2724 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2725
2726 varobj_table = xmalloc (sizeof_table);
2727 memset (varobj_table, 0, sizeof_table);
2728
85c07804
AC
2729 add_setshow_zinteger_cmd ("debugvarobj", class_maintenance,
2730 &varobjdebug, _("\
2731Set varobj debugging."), _("\
2732Show varobj debugging."), _("\
2733When non-zero, varobj debugging is enabled."),
2734 NULL,
920d2a44 2735 show_varobjdebug,
85c07804 2736 &setlist, &showlist);
8b93c638 2737}
8756216b
DP
2738
2739/* Invalidate the varobjs that are tied to locals and re-create the ones that
2740 are defined on globals.
2741 Invalidated varobjs will be always printed in_scope="invalid". */
2742void
2743varobj_invalidate (void)
2744{
2745 struct varobj **all_rootvarobj;
2746 struct varobj **varp;
2747
2748 if (varobj_list (&all_rootvarobj) > 0)
2749 {
2750 varp = all_rootvarobj;
2751 while (*varp != NULL)
2752 {
603ba1de
VP
2753 /* Floating varobjs are reparsed on each stop, so we don't care if
2754 the presently parsed expression refers to something that's gone. */
2755 if ((*varp)->root->floating)
2756 continue;
2757
8756216b
DP
2758 /* global var must be re-evaluated. */
2759 if ((*varp)->root->valid_block == NULL)
2760 {
2761 struct varobj *tmp_var;
2762
2763 /* Try to create a varobj with same expression. If we succeed replace
2764 the old varobj, otherwise invalidate it. */
2765 tmp_var = varobj_create (NULL, (*varp)->name, (CORE_ADDR) 0, USE_CURRENT_FRAME);
2766 if (tmp_var != NULL)
2767 {
2768 tmp_var->obj_name = xstrdup ((*varp)->obj_name);
2769 varobj_delete (*varp, NULL, 0);
2770 install_variable (tmp_var);
2771 }
2772 else
2773 (*varp)->root->is_valid = 0;
2774 }
2775 else /* locals must be invalidated. */
2776 (*varp)->root->is_valid = 0;
2777
2778 varp++;
2779 }
2780 xfree (all_rootvarobj);
2781 }
2782 return;
2783}
This page took 0.957794 seconds and 4 git commands to generate.