daily update
[deliverable/binutils-gdb.git] / gdb / varobj.c
CommitLineData
8b93c638 1/* Implementation of the GDB variable objects API.
bc8332bb 2
ecd75fc8 3 Copyright (C) 1999-2014 Free Software Foundation, Inc.
8b93c638
JM
4
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
a9762ec7 7 the Free Software Foundation; either version 3 of the License, or
8b93c638
JM
8 (at your option) any later version.
9
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
14
15 You should have received a copy of the GNU General Public License
a9762ec7 16 along with this program. If not, see <http://www.gnu.org/licenses/>. */
8b93c638
JM
17
18#include "defs.h"
a6c442d8 19#include "exceptions.h"
8b93c638
JM
20#include "value.h"
21#include "expression.h"
22#include "frame.h"
8b93c638 23#include "language.h"
8b93c638 24#include "gdbcmd.h"
d2353924 25#include "block.h"
79a45b7d 26#include "valprint.h"
0cc7d26f 27#include "gdb_regex.h"
8b93c638
JM
28
29#include "varobj.h"
28335dcc 30#include "vec.h"
6208b47d
VP
31#include "gdbthread.h"
32#include "inferior.h"
827f100c 33#include "varobj-iter.h"
8b93c638 34
b6313243
TT
35#if HAVE_PYTHON
36#include "python/python.h"
37#include "python/python-internal.h"
50389644
PA
38#else
39typedef int PyObject;
b6313243
TT
40#endif
41
8b93c638
JM
42/* Non-zero if we want to see trace of varobj level stuff. */
43
ccce17b0 44unsigned int varobjdebug = 0;
920d2a44
AC
45static void
46show_varobjdebug (struct ui_file *file, int from_tty,
47 struct cmd_list_element *c, const char *value)
48{
49 fprintf_filtered (file, _("Varobj debugging is %s.\n"), value);
50}
8b93c638 51
581e13c1 52/* String representations of gdb's format codes. */
8b93c638 53char *varobj_format_string[] =
72330bd6 54 { "natural", "binary", "decimal", "hexadecimal", "octal" };
8b93c638 55
0cc7d26f
TT
56/* True if we want to allow Python-based pretty-printing. */
57static int pretty_printing = 0;
58
59void
60varobj_enable_pretty_printing (void)
61{
62 pretty_printing = 1;
63}
64
8b93c638
JM
65/* Data structures */
66
67/* Every root variable has one of these structures saved in its
581e13c1 68 varobj. Members which must be free'd are noted. */
8b93c638 69struct varobj_root
72330bd6 70{
8b93c638 71
581e13c1 72 /* Alloc'd expression for this parent. */
72330bd6 73 struct expression *exp;
8b93c638 74
581e13c1 75 /* Block for which this expression is valid. */
270140bd 76 const struct block *valid_block;
8b93c638 77
44a67aa7
VP
78 /* The frame for this expression. This field is set iff valid_block is
79 not NULL. */
e64d9b3d 80 struct frame_id frame;
8b93c638 81
c5b48eac 82 /* The thread ID that this varobj_root belong to. This field
581e13c1 83 is only valid if valid_block is not NULL.
c5b48eac
VP
84 When not 0, indicates which thread 'frame' belongs to.
85 When 0, indicates that the thread list was empty when the varobj_root
86 was created. */
87 int thread_id;
88
a5defcdc
VP
89 /* If 1, the -var-update always recomputes the value in the
90 current thread and frame. Otherwise, variable object is
581e13c1 91 always updated in the specific scope/thread/frame. */
a5defcdc 92 int floating;
73a93a32 93
8756216b
DP
94 /* Flag that indicates validity: set to 0 when this varobj_root refers
95 to symbols that do not exist anymore. */
96 int is_valid;
97
99ad9427
YQ
98 /* Language-related operations for this variable and its
99 children. */
ca20d462 100 const struct lang_varobj_ops *lang_ops;
8b93c638 101
581e13c1 102 /* The varobj for this root node. */
72330bd6 103 struct varobj *rootvar;
8b93c638 104
72330bd6
AC
105 /* Next root variable */
106 struct varobj_root *next;
107};
8b93c638 108
bb5ce47a 109/* Dynamic part of varobj. */
8b93c638 110
bb5ce47a
YQ
111struct varobj_dynamic
112{
b6313243
TT
113 /* Whether the children of this varobj were requested. This field is
114 used to decide if dynamic varobj should recompute their children.
115 In the event that the frontend never asked for the children, we
116 can avoid that. */
117 int children_requested;
118
0cc7d26f
TT
119 /* The pretty-printer constructor. If NULL, then the default
120 pretty-printer will be looked up. If None, then no
121 pretty-printer will be installed. */
122 PyObject *constructor;
123
b6313243
TT
124 /* The pretty-printer that has been constructed. If NULL, then a
125 new printer object is needed, and one will be constructed. */
126 PyObject *pretty_printer;
0cc7d26f
TT
127
128 /* The iterator returned by the printer's 'children' method, or NULL
129 if not available. */
e5250216 130 struct varobj_iter *child_iter;
0cc7d26f
TT
131
132 /* We request one extra item from the iterator, so that we can
133 report to the caller whether there are more items than we have
134 already reported. However, we don't want to install this value
135 when we read it, because that will mess up future updates. So,
136 we stash it here instead. */
e5250216 137 varobj_item *saved_item;
72330bd6 138};
8b93c638 139
8b93c638 140struct cpstack
72330bd6
AC
141{
142 char *name;
143 struct cpstack *next;
144};
8b93c638
JM
145
146/* A list of varobjs */
147
148struct vlist
72330bd6
AC
149{
150 struct varobj *var;
151 struct vlist *next;
152};
8b93c638
JM
153
154/* Private function prototypes */
155
581e13c1 156/* Helper functions for the above subcommands. */
8b93c638 157
a14ed312 158static int delete_variable (struct cpstack **, struct varobj *, int);
8b93c638 159
a14ed312
KB
160static void delete_variable_1 (struct cpstack **, int *,
161 struct varobj *, int, int);
8b93c638 162
a14ed312 163static int install_variable (struct varobj *);
8b93c638 164
a14ed312 165static void uninstall_variable (struct varobj *);
8b93c638 166
a14ed312 167static struct varobj *create_child (struct varobj *, int, char *);
8b93c638 168
b6313243 169static struct varobj *
5a2e0d6e
YQ
170create_child_with_value (struct varobj *parent, int index,
171 struct varobj_item *item);
b6313243 172
8b93c638
JM
173/* Utility routines */
174
a14ed312 175static struct varobj *new_variable (void);
8b93c638 176
a14ed312 177static struct varobj *new_root_variable (void);
8b93c638 178
a14ed312 179static void free_variable (struct varobj *var);
8b93c638 180
74b7792f
AC
181static struct cleanup *make_cleanup_free_variable (struct varobj *var);
182
a14ed312 183static enum varobj_display_formats variable_default_display (struct varobj *);
8b93c638 184
a14ed312 185static void cppush (struct cpstack **pstack, char *name);
8b93c638 186
a14ed312 187static char *cppop (struct cpstack **pstack);
8b93c638 188
8264ba82
AG
189static int update_type_if_necessary (struct varobj *var,
190 struct value *new_value);
191
acd65feb
VP
192static int install_new_value (struct varobj *var, struct value *value,
193 int initial);
194
581e13c1 195/* Language-specific routines. */
8b93c638 196
a14ed312 197static int number_of_children (struct varobj *);
8b93c638 198
a14ed312 199static char *name_of_variable (struct varobj *);
8b93c638 200
a14ed312 201static char *name_of_child (struct varobj *, int);
8b93c638 202
30b28db1 203static struct value *value_of_root (struct varobj **var_handle, int *);
8b93c638 204
30b28db1 205static struct value *value_of_child (struct varobj *parent, int index);
8b93c638 206
de051565
MK
207static char *my_value_of_variable (struct varobj *var,
208 enum varobj_display_formats format);
8b93c638 209
b2c2bd75 210static int is_root_p (struct varobj *var);
8b93c638 211
9a1edae6 212static struct varobj *varobj_add_child (struct varobj *var,
5a2e0d6e 213 struct varobj_item *item);
b6313243 214
8b93c638
JM
215/* Private data */
216
581e13c1 217/* Mappings of varobj_display_formats enums to gdb's format codes. */
72330bd6 218static int format_code[] = { 0, 't', 'd', 'x', 'o' };
8b93c638 219
581e13c1 220/* Header of the list of root variable objects. */
8b93c638 221static struct varobj_root *rootlist;
8b93c638 222
581e13c1
MS
223/* Prime number indicating the number of buckets in the hash table. */
224/* A prime large enough to avoid too many colisions. */
8b93c638
JM
225#define VAROBJ_TABLE_SIZE 227
226
581e13c1 227/* Pointer to the varobj hash table (built at run time). */
8b93c638
JM
228static struct vlist **varobj_table;
229
8b93c638
JM
230\f
231
232/* API Implementation */
b2c2bd75
VP
233static int
234is_root_p (struct varobj *var)
235{
236 return (var->root->rootvar == var);
237}
8b93c638 238
d452c4bc
UW
239#ifdef HAVE_PYTHON
240/* Helper function to install a Python environment suitable for
241 use during operations on VAR. */
e5250216 242struct cleanup *
d452c4bc
UW
243varobj_ensure_python_env (struct varobj *var)
244{
245 return ensure_python_env (var->root->exp->gdbarch,
246 var->root->exp->language_defn);
247}
248#endif
249
581e13c1 250/* Creates a varobj (not its children). */
8b93c638 251
7d8547c9
AC
252/* Return the full FRAME which corresponds to the given CORE_ADDR
253 or NULL if no FRAME on the chain corresponds to CORE_ADDR. */
254
255static struct frame_info *
256find_frame_addr_in_frame_chain (CORE_ADDR frame_addr)
257{
258 struct frame_info *frame = NULL;
259
260 if (frame_addr == (CORE_ADDR) 0)
261 return NULL;
262
9d49bdc2
PA
263 for (frame = get_current_frame ();
264 frame != NULL;
265 frame = get_prev_frame (frame))
7d8547c9 266 {
1fac167a
UW
267 /* The CORE_ADDR we get as argument was parsed from a string GDB
268 output as $fp. This output got truncated to gdbarch_addr_bit.
269 Truncate the frame base address in the same manner before
270 comparing it against our argument. */
271 CORE_ADDR frame_base = get_frame_base_address (frame);
272 int addr_bit = gdbarch_addr_bit (get_frame_arch (frame));
a109c7c1 273
1fac167a
UW
274 if (addr_bit < (sizeof (CORE_ADDR) * HOST_CHAR_BIT))
275 frame_base &= ((CORE_ADDR) 1 << addr_bit) - 1;
276
277 if (frame_base == frame_addr)
7d8547c9
AC
278 return frame;
279 }
9d49bdc2
PA
280
281 return NULL;
7d8547c9
AC
282}
283
8b93c638
JM
284struct varobj *
285varobj_create (char *objname,
72330bd6 286 char *expression, CORE_ADDR frame, enum varobj_type type)
8b93c638
JM
287{
288 struct varobj *var;
8b93c638
JM
289 struct cleanup *old_chain;
290
581e13c1 291 /* Fill out a varobj structure for the (root) variable being constructed. */
8b93c638 292 var = new_root_variable ();
74b7792f 293 old_chain = make_cleanup_free_variable (var);
8b93c638
JM
294
295 if (expression != NULL)
296 {
e4195b40 297 struct frame_info *fi;
35633fef 298 struct frame_id old_id = null_frame_id;
3977b71f 299 const struct block *block;
bbc13ae3 300 const char *p;
e55dccf0 301 struct value *value = NULL;
8e7b59a5 302 volatile struct gdb_exception except;
1bb9788d 303 CORE_ADDR pc;
8b93c638 304
9d49bdc2
PA
305 /* Parse and evaluate the expression, filling in as much of the
306 variable's data as possible. */
307
308 if (has_stack_frames ())
309 {
581e13c1 310 /* Allow creator to specify context of variable. */
9d49bdc2
PA
311 if ((type == USE_CURRENT_FRAME) || (type == USE_SELECTED_FRAME))
312 fi = get_selected_frame (NULL);
313 else
314 /* FIXME: cagney/2002-11-23: This code should be doing a
315 lookup using the frame ID and not just the frame's
316 ``address''. This, of course, means an interface
317 change. However, with out that interface change ISAs,
318 such as the ia64 with its two stacks, won't work.
319 Similar goes for the case where there is a frameless
320 function. */
321 fi = find_frame_addr_in_frame_chain (frame);
322 }
8b93c638 323 else
9d49bdc2 324 fi = NULL;
8b93c638 325
581e13c1 326 /* frame = -2 means always use selected frame. */
73a93a32 327 if (type == USE_SELECTED_FRAME)
a5defcdc 328 var->root->floating = 1;
73a93a32 329
1bb9788d 330 pc = 0;
8b93c638
JM
331 block = NULL;
332 if (fi != NULL)
1bb9788d
TT
333 {
334 block = get_frame_block (fi, 0);
335 pc = get_frame_pc (fi);
336 }
8b93c638
JM
337
338 p = expression;
339 innermost_block = NULL;
73a93a32 340 /* Wrap the call to parse expression, so we can
581e13c1 341 return a sensible error. */
8e7b59a5
KS
342 TRY_CATCH (except, RETURN_MASK_ERROR)
343 {
1bb9788d 344 var->root->exp = parse_exp_1 (&p, pc, block, 0);
8e7b59a5
KS
345 }
346
347 if (except.reason < 0)
73a93a32 348 {
f748fb40 349 do_cleanups (old_chain);
73a93a32
JI
350 return NULL;
351 }
8b93c638 352
581e13c1 353 /* Don't allow variables to be created for types. */
608b4967
TT
354 if (var->root->exp->elts[0].opcode == OP_TYPE
355 || var->root->exp->elts[0].opcode == OP_TYPEOF
356 || var->root->exp->elts[0].opcode == OP_DECLTYPE)
8b93c638
JM
357 {
358 do_cleanups (old_chain);
bc8332bb
AC
359 fprintf_unfiltered (gdb_stderr, "Attempt to use a type name"
360 " as an expression.\n");
8b93c638
JM
361 return NULL;
362 }
363
364 var->format = variable_default_display (var);
365 var->root->valid_block = innermost_block;
1b36a34b 366 var->name = xstrdup (expression);
02142340 367 /* For a root var, the name and the expr are the same. */
1b36a34b 368 var->path_expr = xstrdup (expression);
8b93c638
JM
369
370 /* When the frame is different from the current frame,
371 we must select the appropriate frame before parsing
372 the expression, otherwise the value will not be current.
581e13c1 373 Since select_frame is so benign, just call it for all cases. */
4e22772d 374 if (innermost_block)
8b93c638 375 {
4e22772d
JK
376 /* User could specify explicit FRAME-ADDR which was not found but
377 EXPRESSION is frame specific and we would not be able to evaluate
378 it correctly next time. With VALID_BLOCK set we must also set
379 FRAME and THREAD_ID. */
380 if (fi == NULL)
381 error (_("Failed to find the specified frame"));
382
7a424e99 383 var->root->frame = get_frame_id (fi);
c5b48eac 384 var->root->thread_id = pid_to_thread_id (inferior_ptid);
35633fef 385 old_id = get_frame_id (get_selected_frame (NULL));
c5b48eac 386 select_frame (fi);
8b93c638
JM
387 }
388
340a7723 389 /* We definitely need to catch errors here.
8b93c638 390 If evaluate_expression succeeds we got the value we wanted.
581e13c1 391 But if it fails, we still go on with a call to evaluate_type(). */
8e7b59a5
KS
392 TRY_CATCH (except, RETURN_MASK_ERROR)
393 {
394 value = evaluate_expression (var->root->exp);
395 }
396
397 if (except.reason < 0)
e55dccf0
VP
398 {
399 /* Error getting the value. Try to at least get the
400 right type. */
401 struct value *type_only_value = evaluate_type (var->root->exp);
a109c7c1 402
e55dccf0
VP
403 var->type = value_type (type_only_value);
404 }
8264ba82
AG
405 else
406 {
407 int real_type_found = 0;
408
409 var->type = value_actual_type (value, 0, &real_type_found);
410 if (real_type_found)
411 value = value_cast (var->type, value);
412 }
acd65feb 413
8b93c638 414 /* Set language info */
ca20d462 415 var->root->lang_ops = var->root->exp->language_defn->la_varobj_ops;
8b93c638 416
d32cafc7
JB
417 install_new_value (var, value, 1 /* Initial assignment */);
418
581e13c1 419 /* Set ourselves as our root. */
8b93c638
JM
420 var->root->rootvar = var;
421
581e13c1 422 /* Reset the selected frame. */
35633fef
JK
423 if (frame_id_p (old_id))
424 select_frame (frame_find_by_id (old_id));
8b93c638
JM
425 }
426
73a93a32 427 /* If the variable object name is null, that means this
581e13c1 428 is a temporary variable, so don't install it. */
73a93a32
JI
429
430 if ((var != NULL) && (objname != NULL))
8b93c638 431 {
1b36a34b 432 var->obj_name = xstrdup (objname);
8b93c638
JM
433
434 /* If a varobj name is duplicated, the install will fail so
581e13c1 435 we must cleanup. */
8b93c638
JM
436 if (!install_variable (var))
437 {
438 do_cleanups (old_chain);
439 return NULL;
440 }
441 }
442
443 discard_cleanups (old_chain);
444 return var;
445}
446
581e13c1 447/* Generates an unique name that can be used for a varobj. */
8b93c638
JM
448
449char *
450varobj_gen_name (void)
451{
452 static int id = 0;
e64d9b3d 453 char *obj_name;
8b93c638 454
581e13c1 455 /* Generate a name for this object. */
8b93c638 456 id++;
b435e160 457 obj_name = xstrprintf ("var%d", id);
8b93c638 458
e64d9b3d 459 return obj_name;
8b93c638
JM
460}
461
61d8f275
JK
462/* Given an OBJNAME, returns the pointer to the corresponding varobj. Call
463 error if OBJNAME cannot be found. */
8b93c638
JM
464
465struct varobj *
466varobj_get_handle (char *objname)
467{
468 struct vlist *cv;
469 const char *chp;
470 unsigned int index = 0;
471 unsigned int i = 1;
472
473 for (chp = objname; *chp; chp++)
474 {
475 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
476 }
477
478 cv = *(varobj_table + index);
479 while ((cv != NULL) && (strcmp (cv->var->obj_name, objname) != 0))
480 cv = cv->next;
481
482 if (cv == NULL)
8a3fe4f8 483 error (_("Variable object not found"));
8b93c638
JM
484
485 return cv->var;
486}
487
581e13c1 488/* Given the handle, return the name of the object. */
8b93c638
JM
489
490char *
491varobj_get_objname (struct varobj *var)
492{
493 return var->obj_name;
494}
495
581e13c1 496/* Given the handle, return the expression represented by the object. */
8b93c638
JM
497
498char *
499varobj_get_expression (struct varobj *var)
500{
501 return name_of_variable (var);
502}
503
504/* Deletes a varobj and all its children if only_children == 0,
3e43a32a
MS
505 otherwise deletes only the children; returns a malloc'ed list of
506 all the (malloc'ed) names of the variables that have been deleted
581e13c1 507 (NULL terminated). */
8b93c638
JM
508
509int
510varobj_delete (struct varobj *var, char ***dellist, int only_children)
511{
512 int delcount;
513 int mycount;
514 struct cpstack *result = NULL;
515 char **cp;
516
581e13c1 517 /* Initialize a stack for temporary results. */
8b93c638
JM
518 cppush (&result, NULL);
519
520 if (only_children)
581e13c1 521 /* Delete only the variable children. */
8b93c638
JM
522 delcount = delete_variable (&result, var, 1 /* only the children */ );
523 else
581e13c1 524 /* Delete the variable and all its children. */
8b93c638
JM
525 delcount = delete_variable (&result, var, 0 /* parent+children */ );
526
581e13c1 527 /* We may have been asked to return a list of what has been deleted. */
8b93c638
JM
528 if (dellist != NULL)
529 {
530 *dellist = xmalloc ((delcount + 1) * sizeof (char *));
531
532 cp = *dellist;
533 mycount = delcount;
534 *cp = cppop (&result);
535 while ((*cp != NULL) && (mycount > 0))
536 {
537 mycount--;
538 cp++;
539 *cp = cppop (&result);
540 }
541
542 if (mycount || (*cp != NULL))
8a3fe4f8 543 warning (_("varobj_delete: assertion failed - mycount(=%d) <> 0"),
72330bd6 544 mycount);
8b93c638
JM
545 }
546
547 return delcount;
548}
549
d8b65138
JK
550#if HAVE_PYTHON
551
b6313243
TT
552/* Convenience function for varobj_set_visualizer. Instantiate a
553 pretty-printer for a given value. */
554static PyObject *
555instantiate_pretty_printer (PyObject *constructor, struct value *value)
556{
b6313243
TT
557 PyObject *val_obj = NULL;
558 PyObject *printer;
b6313243 559
b6313243 560 val_obj = value_to_value_object (value);
b6313243
TT
561 if (! val_obj)
562 return NULL;
563
564 printer = PyObject_CallFunctionObjArgs (constructor, val_obj, NULL);
565 Py_DECREF (val_obj);
566 return printer;
b6313243
TT
567}
568
d8b65138
JK
569#endif
570
581e13c1 571/* Set/Get variable object display format. */
8b93c638
JM
572
573enum varobj_display_formats
574varobj_set_display_format (struct varobj *var,
575 enum varobj_display_formats format)
576{
577 switch (format)
578 {
579 case FORMAT_NATURAL:
580 case FORMAT_BINARY:
581 case FORMAT_DECIMAL:
582 case FORMAT_HEXADECIMAL:
583 case FORMAT_OCTAL:
584 var->format = format;
585 break;
586
587 default:
588 var->format = variable_default_display (var);
589 }
590
ae7d22a6
VP
591 if (varobj_value_is_changeable_p (var)
592 && var->value && !value_lazy (var->value))
593 {
6c761d9c 594 xfree (var->print_value);
99ad9427
YQ
595 var->print_value = varobj_value_get_print_value (var->value,
596 var->format, var);
ae7d22a6
VP
597 }
598
8b93c638
JM
599 return var->format;
600}
601
602enum varobj_display_formats
603varobj_get_display_format (struct varobj *var)
604{
605 return var->format;
606}
607
b6313243
TT
608char *
609varobj_get_display_hint (struct varobj *var)
610{
611 char *result = NULL;
612
613#if HAVE_PYTHON
0646da15
TT
614 struct cleanup *back_to;
615
616 if (!gdb_python_initialized)
617 return NULL;
618
619 back_to = varobj_ensure_python_env (var);
d452c4bc 620
bb5ce47a
YQ
621 if (var->dynamic->pretty_printer != NULL)
622 result = gdbpy_get_display_hint (var->dynamic->pretty_printer);
d452c4bc
UW
623
624 do_cleanups (back_to);
b6313243
TT
625#endif
626
627 return result;
628}
629
0cc7d26f
TT
630/* Return true if the varobj has items after TO, false otherwise. */
631
632int
633varobj_has_more (struct varobj *var, int to)
634{
635 if (VEC_length (varobj_p, var->children) > to)
636 return 1;
637 return ((to == -1 || VEC_length (varobj_p, var->children) == to)
bb5ce47a 638 && (var->dynamic->saved_item != NULL));
0cc7d26f
TT
639}
640
c5b48eac
VP
641/* If the variable object is bound to a specific thread, that
642 is its evaluation can always be done in context of a frame
643 inside that thread, returns GDB id of the thread -- which
581e13c1 644 is always positive. Otherwise, returns -1. */
c5b48eac
VP
645int
646varobj_get_thread_id (struct varobj *var)
647{
648 if (var->root->valid_block && var->root->thread_id > 0)
649 return var->root->thread_id;
650 else
651 return -1;
652}
653
25d5ea92
VP
654void
655varobj_set_frozen (struct varobj *var, int frozen)
656{
657 /* When a variable is unfrozen, we don't fetch its value.
658 The 'not_fetched' flag remains set, so next -var-update
659 won't complain.
660
661 We don't fetch the value, because for structures the client
662 should do -var-update anyway. It would be bad to have different
663 client-size logic for structure and other types. */
664 var->frozen = frozen;
665}
666
667int
668varobj_get_frozen (struct varobj *var)
669{
670 return var->frozen;
671}
672
0cc7d26f
TT
673/* A helper function that restricts a range to what is actually
674 available in a VEC. This follows the usual rules for the meaning
675 of FROM and TO -- if either is negative, the entire range is
676 used. */
677
99ad9427
YQ
678void
679varobj_restrict_range (VEC (varobj_p) *children, int *from, int *to)
0cc7d26f
TT
680{
681 if (*from < 0 || *to < 0)
682 {
683 *from = 0;
684 *to = VEC_length (varobj_p, children);
685 }
686 else
687 {
688 if (*from > VEC_length (varobj_p, children))
689 *from = VEC_length (varobj_p, children);
690 if (*to > VEC_length (varobj_p, children))
691 *to = VEC_length (varobj_p, children);
692 if (*from > *to)
693 *from = *to;
694 }
695}
696
697/* A helper for update_dynamic_varobj_children that installs a new
698 child when needed. */
699
700static void
701install_dynamic_child (struct varobj *var,
702 VEC (varobj_p) **changed,
8264ba82 703 VEC (varobj_p) **type_changed,
0cc7d26f
TT
704 VEC (varobj_p) **new,
705 VEC (varobj_p) **unchanged,
706 int *cchanged,
707 int index,
5a2e0d6e 708 struct varobj_item *item)
0cc7d26f
TT
709{
710 if (VEC_length (varobj_p, var->children) < index + 1)
711 {
712 /* There's no child yet. */
5a2e0d6e 713 struct varobj *child = varobj_add_child (var, item);
a109c7c1 714
0cc7d26f
TT
715 if (new)
716 {
717 VEC_safe_push (varobj_p, *new, child);
718 *cchanged = 1;
719 }
720 }
bf8793bb 721 else
0cc7d26f
TT
722 {
723 varobj_p existing = VEC_index (varobj_p, var->children, index);
5a2e0d6e 724 int type_updated = update_type_if_necessary (existing, item->value);
bf8793bb 725
8264ba82
AG
726 if (type_updated)
727 {
728 if (type_changed)
729 VEC_safe_push (varobj_p, *type_changed, existing);
730 }
5a2e0d6e 731 if (install_new_value (existing, item->value, 0))
0cc7d26f 732 {
8264ba82 733 if (!type_updated && changed)
0cc7d26f
TT
734 VEC_safe_push (varobj_p, *changed, existing);
735 }
8264ba82 736 else if (!type_updated && unchanged)
0cc7d26f
TT
737 VEC_safe_push (varobj_p, *unchanged, existing);
738 }
739}
740
576ea091
YQ
741#if HAVE_PYTHON
742
0cc7d26f
TT
743static int
744dynamic_varobj_has_child_method (struct varobj *var)
745{
746 struct cleanup *back_to;
bb5ce47a 747 PyObject *printer = var->dynamic->pretty_printer;
0cc7d26f
TT
748 int result;
749
0646da15
TT
750 if (!gdb_python_initialized)
751 return 0;
752
0cc7d26f
TT
753 back_to = varobj_ensure_python_env (var);
754 result = PyObject_HasAttr (printer, gdbpy_children_cst);
755 do_cleanups (back_to);
756 return result;
757}
576ea091 758#endif
0cc7d26f 759
e5250216
YQ
760/* A factory for creating dynamic varobj's iterators. Returns an
761 iterator object suitable for iterating over VAR's children. */
762
763static struct varobj_iter *
764varobj_get_iterator (struct varobj *var)
765{
576ea091 766#if HAVE_PYTHON
e5250216
YQ
767 if (var->dynamic->pretty_printer)
768 return py_varobj_get_iterator (var, var->dynamic->pretty_printer);
576ea091 769#endif
e5250216
YQ
770
771 gdb_assert_not_reached (_("\
772requested an iterator from a non-dynamic varobj"));
773}
774
827f100c
YQ
775/* Release and clear VAR's saved item, if any. */
776
777static void
778varobj_clear_saved_item (struct varobj_dynamic *var)
779{
780 if (var->saved_item != NULL)
781 {
782 value_free (var->saved_item->value);
783 xfree (var->saved_item);
784 var->saved_item = NULL;
785 }
786}
0cc7d26f 787
b6313243
TT
788static int
789update_dynamic_varobj_children (struct varobj *var,
790 VEC (varobj_p) **changed,
8264ba82 791 VEC (varobj_p) **type_changed,
0cc7d26f
TT
792 VEC (varobj_p) **new,
793 VEC (varobj_p) **unchanged,
794 int *cchanged,
795 int update_children,
796 int from,
797 int to)
b6313243 798{
b6313243 799 int i;
b6313243 800
b6313243 801 *cchanged = 0;
b6313243 802
bb5ce47a 803 if (update_children || var->dynamic->child_iter == NULL)
b6313243 804 {
e5250216
YQ
805 varobj_iter_delete (var->dynamic->child_iter);
806 var->dynamic->child_iter = varobj_get_iterator (var);
b6313243 807
827f100c 808 varobj_clear_saved_item (var->dynamic);
b6313243 809
e5250216 810 i = 0;
b6313243 811
bb5ce47a 812 if (var->dynamic->child_iter == NULL)
827f100c 813 return 0;
b6313243 814 }
0cc7d26f
TT
815 else
816 i = VEC_length (varobj_p, var->children);
b6313243 817
0cc7d26f
TT
818 /* We ask for one extra child, so that MI can report whether there
819 are more children. */
820 for (; to < 0 || i < to + 1; ++i)
b6313243 821 {
827f100c 822 varobj_item *item;
b6313243 823
0cc7d26f 824 /* See if there was a leftover from last time. */
827f100c 825 if (var->dynamic->saved_item != NULL)
0cc7d26f 826 {
bb5ce47a
YQ
827 item = var->dynamic->saved_item;
828 var->dynamic->saved_item = NULL;
0cc7d26f
TT
829 }
830 else
a4c8e806 831 {
e5250216 832 item = varobj_iter_next (var->dynamic->child_iter);
827f100c
YQ
833 /* Release vitem->value so its lifetime is not bound to the
834 execution of a command. */
835 if (item != NULL && item->value != NULL)
836 release_value_or_incref (item->value);
a4c8e806 837 }
b6313243 838
e5250216
YQ
839 if (item == NULL)
840 {
841 /* Iteration is done. Remove iterator from VAR. */
842 varobj_iter_delete (var->dynamic->child_iter);
843 var->dynamic->child_iter = NULL;
844 break;
845 }
0cc7d26f
TT
846 /* We don't want to push the extra child on any report list. */
847 if (to < 0 || i < to)
b6313243 848 {
0cc7d26f
TT
849 int can_mention = from < 0 || i >= from;
850
0cc7d26f 851 install_dynamic_child (var, can_mention ? changed : NULL,
8264ba82 852 can_mention ? type_changed : NULL,
0cc7d26f
TT
853 can_mention ? new : NULL,
854 can_mention ? unchanged : NULL,
5e5ac9a5 855 can_mention ? cchanged : NULL, i,
827f100c
YQ
856 item);
857
858 xfree (item);
b6313243 859 }
0cc7d26f 860 else
b6313243 861 {
bb5ce47a 862 var->dynamic->saved_item = item;
b6313243 863
0cc7d26f
TT
864 /* We want to truncate the child list just before this
865 element. */
866 break;
867 }
b6313243
TT
868 }
869
870 if (i < VEC_length (varobj_p, var->children))
871 {
0cc7d26f 872 int j;
a109c7c1 873
0cc7d26f
TT
874 *cchanged = 1;
875 for (j = i; j < VEC_length (varobj_p, var->children); ++j)
876 varobj_delete (VEC_index (varobj_p, var->children, j), NULL, 0);
877 VEC_truncate (varobj_p, var->children, i);
b6313243 878 }
0cc7d26f
TT
879
880 /* If there are fewer children than requested, note that the list of
881 children changed. */
882 if (to >= 0 && VEC_length (varobj_p, var->children) < to)
883 *cchanged = 1;
884
b6313243 885 var->num_children = VEC_length (varobj_p, var->children);
b6313243 886
b6313243 887 return 1;
b6313243 888}
25d5ea92 889
8b93c638
JM
890int
891varobj_get_num_children (struct varobj *var)
892{
893 if (var->num_children == -1)
b6313243 894 {
31f628ae 895 if (varobj_is_dynamic_p (var))
0cc7d26f
TT
896 {
897 int dummy;
898
899 /* If we have a dynamic varobj, don't report -1 children.
900 So, try to fetch some children first. */
8264ba82 901 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL, &dummy,
0cc7d26f
TT
902 0, 0, 0);
903 }
904 else
b6313243
TT
905 var->num_children = number_of_children (var);
906 }
8b93c638 907
0cc7d26f 908 return var->num_children >= 0 ? var->num_children : 0;
8b93c638
JM
909}
910
911/* Creates a list of the immediate children of a variable object;
581e13c1 912 the return code is the number of such children or -1 on error. */
8b93c638 913
d56d46f5 914VEC (varobj_p)*
0cc7d26f 915varobj_list_children (struct varobj *var, int *from, int *to)
8b93c638 916{
8b93c638 917 char *name;
b6313243
TT
918 int i, children_changed;
919
bb5ce47a 920 var->dynamic->children_requested = 1;
b6313243 921
31f628ae 922 if (varobj_is_dynamic_p (var))
0cc7d26f 923 {
b6313243
TT
924 /* This, in theory, can result in the number of children changing without
925 frontend noticing. But well, calling -var-list-children on the same
926 varobj twice is not something a sane frontend would do. */
8264ba82
AG
927 update_dynamic_varobj_children (var, NULL, NULL, NULL, NULL,
928 &children_changed, 0, 0, *to);
99ad9427 929 varobj_restrict_range (var->children, from, to);
0cc7d26f
TT
930 return var->children;
931 }
8b93c638 932
8b93c638
JM
933 if (var->num_children == -1)
934 var->num_children = number_of_children (var);
935
74a44383
DJ
936 /* If that failed, give up. */
937 if (var->num_children == -1)
d56d46f5 938 return var->children;
74a44383 939
28335dcc
VP
940 /* If we're called when the list of children is not yet initialized,
941 allocate enough elements in it. */
942 while (VEC_length (varobj_p, var->children) < var->num_children)
943 VEC_safe_push (varobj_p, var->children, NULL);
944
8b93c638
JM
945 for (i = 0; i < var->num_children; i++)
946 {
d56d46f5 947 varobj_p existing = VEC_index (varobj_p, var->children, i);
28335dcc
VP
948
949 if (existing == NULL)
950 {
951 /* Either it's the first call to varobj_list_children for
952 this variable object, and the child was never created,
953 or it was explicitly deleted by the client. */
954 name = name_of_child (var, i);
955 existing = create_child (var, i, name);
956 VEC_replace (varobj_p, var->children, i, existing);
957 }
8b93c638
JM
958 }
959
99ad9427 960 varobj_restrict_range (var->children, from, to);
d56d46f5 961 return var->children;
8b93c638
JM
962}
963
b6313243 964static struct varobj *
5a2e0d6e 965varobj_add_child (struct varobj *var, struct varobj_item *item)
b6313243 966{
5a2e0d6e 967 varobj_p v = create_child_with_value (var,
b6313243 968 VEC_length (varobj_p, var->children),
5a2e0d6e 969 item);
a109c7c1 970
b6313243 971 VEC_safe_push (varobj_p, var->children, v);
b6313243
TT
972 return v;
973}
974
8b93c638 975/* Obtain the type of an object Variable as a string similar to the one gdb
581e13c1 976 prints on the console. */
8b93c638
JM
977
978char *
979varobj_get_type (struct varobj *var)
980{
8ab91b96 981 /* For the "fake" variables, do not return a type. (Its type is
8756216b
DP
982 NULL, too.)
983 Do not return a type for invalid variables as well. */
984 if (CPLUS_FAKE_CHILD (var) || !var->root->is_valid)
8b93c638
JM
985 return NULL;
986
1a4300e9 987 return type_to_string (var->type);
8b93c638
JM
988}
989
1ecb4ee0
DJ
990/* Obtain the type of an object variable. */
991
992struct type *
993varobj_get_gdb_type (struct varobj *var)
994{
995 return var->type;
996}
997
85254831
KS
998/* Is VAR a path expression parent, i.e., can it be used to construct
999 a valid path expression? */
1000
1001static int
1002is_path_expr_parent (struct varobj *var)
1003{
9a9a7608
AB
1004 gdb_assert (var->root->lang_ops->is_path_expr_parent != NULL);
1005 return var->root->lang_ops->is_path_expr_parent (var);
1006}
85254831 1007
9a9a7608
AB
1008/* Is VAR a path expression parent, i.e., can it be used to construct
1009 a valid path expression? By default we assume any VAR can be a path
1010 parent. */
85254831 1011
9a9a7608
AB
1012int
1013varobj_default_is_path_expr_parent (struct varobj *var)
1014{
1015 return 1;
85254831
KS
1016}
1017
1018/* Return the path expression parent for VAR. */
1019
99ad9427
YQ
1020struct varobj *
1021varobj_get_path_expr_parent (struct varobj *var)
85254831
KS
1022{
1023 struct varobj *parent = var;
1024
1025 while (!is_root_p (parent) && !is_path_expr_parent (parent))
1026 parent = parent->parent;
1027
1028 return parent;
1029}
1030
02142340
VP
1031/* Return a pointer to the full rooted expression of varobj VAR.
1032 If it has not been computed yet, compute it. */
1033char *
1034varobj_get_path_expr (struct varobj *var)
1035{
1036 if (var->path_expr != NULL)
1037 return var->path_expr;
1038 else
1039 {
1040 /* For root varobjs, we initialize path_expr
1041 when creating varobj, so here it should be
1042 child varobj. */
1043 gdb_assert (!is_root_p (var));
ca20d462 1044 return (*var->root->lang_ops->path_expr_of_child) (var);
02142340
VP
1045 }
1046}
1047
fa4d0c40 1048const struct language_defn *
8b93c638
JM
1049varobj_get_language (struct varobj *var)
1050{
fa4d0c40 1051 return var->root->exp->language_defn;
8b93c638
JM
1052}
1053
1054int
1055varobj_get_attributes (struct varobj *var)
1056{
1057 int attributes = 0;
1058
340a7723 1059 if (varobj_editable_p (var))
581e13c1 1060 /* FIXME: define masks for attributes. */
8b93c638
JM
1061 attributes |= 0x00000001; /* Editable */
1062
1063 return attributes;
1064}
1065
cde5ef40
YQ
1066/* Return true if VAR is a dynamic varobj. */
1067
0cc7d26f 1068int
cde5ef40 1069varobj_is_dynamic_p (struct varobj *var)
0cc7d26f 1070{
bb5ce47a 1071 return var->dynamic->pretty_printer != NULL;
0cc7d26f
TT
1072}
1073
de051565
MK
1074char *
1075varobj_get_formatted_value (struct varobj *var,
1076 enum varobj_display_formats format)
1077{
1078 return my_value_of_variable (var, format);
1079}
1080
8b93c638
JM
1081char *
1082varobj_get_value (struct varobj *var)
1083{
de051565 1084 return my_value_of_variable (var, var->format);
8b93c638
JM
1085}
1086
1087/* Set the value of an object variable (if it is editable) to the
581e13c1
MS
1088 value of the given expression. */
1089/* Note: Invokes functions that can call error(). */
8b93c638
JM
1090
1091int
1092varobj_set_value (struct varobj *var, char *expression)
1093{
34365054 1094 struct value *val = NULL; /* Initialize to keep gcc happy. */
8b93c638 1095 /* The argument "expression" contains the variable's new value.
581e13c1
MS
1096 We need to first construct a legal expression for this -- ugh! */
1097 /* Does this cover all the bases? */
8b93c638 1098 struct expression *exp;
34365054 1099 struct value *value = NULL; /* Initialize to keep gcc happy. */
8b93c638 1100 int saved_input_radix = input_radix;
bbc13ae3 1101 const char *s = expression;
8e7b59a5 1102 volatile struct gdb_exception except;
8b93c638 1103
340a7723 1104 gdb_assert (varobj_editable_p (var));
8b93c638 1105
581e13c1 1106 input_radix = 10; /* ALWAYS reset to decimal temporarily. */
1bb9788d 1107 exp = parse_exp_1 (&s, 0, 0, 0);
8e7b59a5
KS
1108 TRY_CATCH (except, RETURN_MASK_ERROR)
1109 {
1110 value = evaluate_expression (exp);
1111 }
1112
1113 if (except.reason < 0)
340a7723 1114 {
581e13c1 1115 /* We cannot proceed without a valid expression. */
340a7723
NR
1116 xfree (exp);
1117 return 0;
8b93c638
JM
1118 }
1119
340a7723
NR
1120 /* All types that are editable must also be changeable. */
1121 gdb_assert (varobj_value_is_changeable_p (var));
1122
1123 /* The value of a changeable variable object must not be lazy. */
1124 gdb_assert (!value_lazy (var->value));
1125
1126 /* Need to coerce the input. We want to check if the
1127 value of the variable object will be different
1128 after assignment, and the first thing value_assign
1129 does is coerce the input.
1130 For example, if we are assigning an array to a pointer variable we
b021a221 1131 should compare the pointer with the array's address, not with the
340a7723
NR
1132 array's content. */
1133 value = coerce_array (value);
1134
8e7b59a5
KS
1135 /* The new value may be lazy. value_assign, or
1136 rather value_contents, will take care of this. */
1137 TRY_CATCH (except, RETURN_MASK_ERROR)
1138 {
1139 val = value_assign (var->value, value);
1140 }
1141
1142 if (except.reason < 0)
340a7723 1143 return 0;
8e7b59a5 1144
340a7723
NR
1145 /* If the value has changed, record it, so that next -var-update can
1146 report this change. If a variable had a value of '1', we've set it
1147 to '333' and then set again to '1', when -var-update will report this
1148 variable as changed -- because the first assignment has set the
1149 'updated' flag. There's no need to optimize that, because return value
1150 of -var-update should be considered an approximation. */
581e13c1 1151 var->updated = install_new_value (var, val, 0 /* Compare values. */);
340a7723
NR
1152 input_radix = saved_input_radix;
1153 return 1;
8b93c638
JM
1154}
1155
0cc7d26f
TT
1156#if HAVE_PYTHON
1157
1158/* A helper function to install a constructor function and visualizer
bb5ce47a 1159 in a varobj_dynamic. */
0cc7d26f
TT
1160
1161static void
bb5ce47a 1162install_visualizer (struct varobj_dynamic *var, PyObject *constructor,
0cc7d26f
TT
1163 PyObject *visualizer)
1164{
1165 Py_XDECREF (var->constructor);
1166 var->constructor = constructor;
1167
1168 Py_XDECREF (var->pretty_printer);
1169 var->pretty_printer = visualizer;
1170
e5250216 1171 varobj_iter_delete (var->child_iter);
0cc7d26f
TT
1172 var->child_iter = NULL;
1173}
1174
1175/* Install the default visualizer for VAR. */
1176
1177static void
1178install_default_visualizer (struct varobj *var)
1179{
d65aec65
PM
1180 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1181 if (CPLUS_FAKE_CHILD (var))
1182 return;
1183
0cc7d26f
TT
1184 if (pretty_printing)
1185 {
1186 PyObject *pretty_printer = NULL;
1187
1188 if (var->value)
1189 {
1190 pretty_printer = gdbpy_get_varobj_pretty_printer (var->value);
1191 if (! pretty_printer)
1192 {
1193 gdbpy_print_stack ();
1194 error (_("Cannot instantiate printer for default visualizer"));
1195 }
1196 }
1197
1198 if (pretty_printer == Py_None)
1199 {
1200 Py_DECREF (pretty_printer);
1201 pretty_printer = NULL;
1202 }
1203
bb5ce47a 1204 install_visualizer (var->dynamic, NULL, pretty_printer);
0cc7d26f
TT
1205 }
1206}
1207
1208/* Instantiate and install a visualizer for VAR using CONSTRUCTOR to
1209 make a new object. */
1210
1211static void
1212construct_visualizer (struct varobj *var, PyObject *constructor)
1213{
1214 PyObject *pretty_printer;
1215
d65aec65
PM
1216 /* Do not install a visualizer on a CPLUS_FAKE_CHILD. */
1217 if (CPLUS_FAKE_CHILD (var))
1218 return;
1219
0cc7d26f
TT
1220 Py_INCREF (constructor);
1221 if (constructor == Py_None)
1222 pretty_printer = NULL;
1223 else
1224 {
1225 pretty_printer = instantiate_pretty_printer (constructor, var->value);
1226 if (! pretty_printer)
1227 {
1228 gdbpy_print_stack ();
1229 Py_DECREF (constructor);
1230 constructor = Py_None;
1231 Py_INCREF (constructor);
1232 }
1233
1234 if (pretty_printer == Py_None)
1235 {
1236 Py_DECREF (pretty_printer);
1237 pretty_printer = NULL;
1238 }
1239 }
1240
bb5ce47a 1241 install_visualizer (var->dynamic, constructor, pretty_printer);
0cc7d26f
TT
1242}
1243
1244#endif /* HAVE_PYTHON */
1245
1246/* A helper function for install_new_value. This creates and installs
1247 a visualizer for VAR, if appropriate. */
1248
1249static void
1250install_new_value_visualizer (struct varobj *var)
1251{
1252#if HAVE_PYTHON
1253 /* If the constructor is None, then we want the raw value. If VAR
1254 does not have a value, just skip this. */
0646da15
TT
1255 if (!gdb_python_initialized)
1256 return;
1257
bb5ce47a 1258 if (var->dynamic->constructor != Py_None && var->value != NULL)
0cc7d26f
TT
1259 {
1260 struct cleanup *cleanup;
0cc7d26f
TT
1261
1262 cleanup = varobj_ensure_python_env (var);
1263
bb5ce47a 1264 if (var->dynamic->constructor == NULL)
0cc7d26f
TT
1265 install_default_visualizer (var);
1266 else
bb5ce47a 1267 construct_visualizer (var, var->dynamic->constructor);
0cc7d26f
TT
1268
1269 do_cleanups (cleanup);
1270 }
1271#else
1272 /* Do nothing. */
1273#endif
1274}
1275
8264ba82
AG
1276/* When using RTTI to determine variable type it may be changed in runtime when
1277 the variable value is changed. This function checks whether type of varobj
1278 VAR will change when a new value NEW_VALUE is assigned and if it is so
1279 updates the type of VAR. */
1280
1281static int
1282update_type_if_necessary (struct varobj *var, struct value *new_value)
1283{
1284 if (new_value)
1285 {
1286 struct value_print_options opts;
1287
1288 get_user_print_options (&opts);
1289 if (opts.objectprint)
1290 {
1291 struct type *new_type;
1292 char *curr_type_str, *new_type_str;
1293
1294 new_type = value_actual_type (new_value, 0, 0);
1295 new_type_str = type_to_string (new_type);
1296 curr_type_str = varobj_get_type (var);
1297 if (strcmp (curr_type_str, new_type_str) != 0)
1298 {
1299 var->type = new_type;
1300
1301 /* This information may be not valid for a new type. */
1302 varobj_delete (var, NULL, 1);
1303 VEC_free (varobj_p, var->children);
1304 var->num_children = -1;
1305 return 1;
1306 }
1307 }
1308 }
1309
1310 return 0;
1311}
1312
acd65feb
VP
1313/* Assign a new value to a variable object. If INITIAL is non-zero,
1314 this is the first assignement after the variable object was just
1315 created, or changed type. In that case, just assign the value
1316 and return 0.
581e13c1
MS
1317 Otherwise, assign the new value, and return 1 if the value is
1318 different from the current one, 0 otherwise. The comparison is
1319 done on textual representation of value. Therefore, some types
1320 need not be compared. E.g. for structures the reported value is
1321 always "{...}", so no comparison is necessary here. If the old
1322 value was NULL and new one is not, or vice versa, we always return 1.
b26ed50d
VP
1323
1324 The VALUE parameter should not be released -- the function will
1325 take care of releasing it when needed. */
acd65feb
VP
1326static int
1327install_new_value (struct varobj *var, struct value *value, int initial)
1328{
1329 int changeable;
1330 int need_to_fetch;
1331 int changed = 0;
25d5ea92 1332 int intentionally_not_fetched = 0;
7a4d50bf 1333 char *print_value = NULL;
acd65feb 1334
acd65feb 1335 /* We need to know the varobj's type to decide if the value should
3e43a32a 1336 be fetched or not. C++ fake children (public/protected/private)
581e13c1 1337 don't have a type. */
acd65feb 1338 gdb_assert (var->type || CPLUS_FAKE_CHILD (var));
b2c2bd75 1339 changeable = varobj_value_is_changeable_p (var);
b6313243
TT
1340
1341 /* If the type has custom visualizer, we consider it to be always
581e13c1 1342 changeable. FIXME: need to make sure this behaviour will not
b6313243 1343 mess up read-sensitive values. */
bb5ce47a 1344 if (var->dynamic->pretty_printer != NULL)
b6313243
TT
1345 changeable = 1;
1346
acd65feb
VP
1347 need_to_fetch = changeable;
1348
b26ed50d
VP
1349 /* We are not interested in the address of references, and given
1350 that in C++ a reference is not rebindable, it cannot
1351 meaningfully change. So, get hold of the real value. */
1352 if (value)
0cc7d26f 1353 value = coerce_ref (value);
b26ed50d 1354
acd65feb
VP
1355 if (var->type && TYPE_CODE (var->type) == TYPE_CODE_UNION)
1356 /* For unions, we need to fetch the value implicitly because
1357 of implementation of union member fetch. When gdb
1358 creates a value for a field and the value of the enclosing
1359 structure is not lazy, it immediately copies the necessary
1360 bytes from the enclosing values. If the enclosing value is
1361 lazy, the call to value_fetch_lazy on the field will read
1362 the data from memory. For unions, that means we'll read the
1363 same memory more than once, which is not desirable. So
1364 fetch now. */
1365 need_to_fetch = 1;
1366
1367 /* The new value might be lazy. If the type is changeable,
1368 that is we'll be comparing values of this type, fetch the
1369 value now. Otherwise, on the next update the old value
1370 will be lazy, which means we've lost that old value. */
1371 if (need_to_fetch && value && value_lazy (value))
1372 {
25d5ea92
VP
1373 struct varobj *parent = var->parent;
1374 int frozen = var->frozen;
a109c7c1 1375
25d5ea92
VP
1376 for (; !frozen && parent; parent = parent->parent)
1377 frozen |= parent->frozen;
1378
1379 if (frozen && initial)
1380 {
1381 /* For variables that are frozen, or are children of frozen
1382 variables, we don't do fetch on initial assignment.
1383 For non-initial assignemnt we do the fetch, since it means we're
1384 explicitly asked to compare the new value with the old one. */
1385 intentionally_not_fetched = 1;
1386 }
8e7b59a5 1387 else
acd65feb 1388 {
8e7b59a5
KS
1389 volatile struct gdb_exception except;
1390
1391 TRY_CATCH (except, RETURN_MASK_ERROR)
1392 {
1393 value_fetch_lazy (value);
1394 }
1395
1396 if (except.reason < 0)
1397 {
1398 /* Set the value to NULL, so that for the next -var-update,
1399 we don't try to compare the new value with this value,
1400 that we couldn't even read. */
1401 value = NULL;
1402 }
acd65feb 1403 }
acd65feb
VP
1404 }
1405
e848a8a5
TT
1406 /* Get a reference now, before possibly passing it to any Python
1407 code that might release it. */
1408 if (value != NULL)
1409 value_incref (value);
b6313243 1410
7a4d50bf
VP
1411 /* Below, we'll be comparing string rendering of old and new
1412 values. Don't get string rendering if the value is
1413 lazy -- if it is, the code above has decided that the value
1414 should not be fetched. */
bb5ce47a
YQ
1415 if (value != NULL && !value_lazy (value)
1416 && var->dynamic->pretty_printer == NULL)
99ad9427 1417 print_value = varobj_value_get_print_value (value, var->format, var);
7a4d50bf 1418
acd65feb
VP
1419 /* If the type is changeable, compare the old and the new values.
1420 If this is the initial assignment, we don't have any old value
1421 to compare with. */
7a4d50bf 1422 if (!initial && changeable)
acd65feb 1423 {
3e43a32a
MS
1424 /* If the value of the varobj was changed by -var-set-value,
1425 then the value in the varobj and in the target is the same.
1426 However, that value is different from the value that the
581e13c1 1427 varobj had after the previous -var-update. So need to the
3e43a32a 1428 varobj as changed. */
acd65feb 1429 if (var->updated)
57e66780 1430 {
57e66780
DJ
1431 changed = 1;
1432 }
bb5ce47a 1433 else if (var->dynamic->pretty_printer == NULL)
acd65feb
VP
1434 {
1435 /* Try to compare the values. That requires that both
1436 values are non-lazy. */
25d5ea92
VP
1437 if (var->not_fetched && value_lazy (var->value))
1438 {
1439 /* This is a frozen varobj and the value was never read.
1440 Presumably, UI shows some "never read" indicator.
1441 Now that we've fetched the real value, we need to report
1442 this varobj as changed so that UI can show the real
1443 value. */
1444 changed = 1;
1445 }
1446 else if (var->value == NULL && value == NULL)
581e13c1 1447 /* Equal. */
acd65feb
VP
1448 ;
1449 else if (var->value == NULL || value == NULL)
57e66780 1450 {
57e66780
DJ
1451 changed = 1;
1452 }
acd65feb
VP
1453 else
1454 {
1455 gdb_assert (!value_lazy (var->value));
1456 gdb_assert (!value_lazy (value));
85265413 1457
57e66780 1458 gdb_assert (var->print_value != NULL && print_value != NULL);
85265413 1459 if (strcmp (var->print_value, print_value) != 0)
7a4d50bf 1460 changed = 1;
acd65feb
VP
1461 }
1462 }
1463 }
85265413 1464
ee342b23
VP
1465 if (!initial && !changeable)
1466 {
1467 /* For values that are not changeable, we don't compare the values.
1468 However, we want to notice if a value was not NULL and now is NULL,
1469 or vise versa, so that we report when top-level varobjs come in scope
1470 and leave the scope. */
1471 changed = (var->value != NULL) != (value != NULL);
1472 }
1473
acd65feb 1474 /* We must always keep the new value, since children depend on it. */
25d5ea92 1475 if (var->value != NULL && var->value != value)
acd65feb
VP
1476 value_free (var->value);
1477 var->value = value;
25d5ea92
VP
1478 if (value && value_lazy (value) && intentionally_not_fetched)
1479 var->not_fetched = 1;
1480 else
1481 var->not_fetched = 0;
acd65feb 1482 var->updated = 0;
85265413 1483
0cc7d26f
TT
1484 install_new_value_visualizer (var);
1485
1486 /* If we installed a pretty-printer, re-compare the printed version
1487 to see if the variable changed. */
bb5ce47a 1488 if (var->dynamic->pretty_printer != NULL)
0cc7d26f
TT
1489 {
1490 xfree (print_value);
99ad9427
YQ
1491 print_value = varobj_value_get_print_value (var->value, var->format,
1492 var);
e8f781e2
TT
1493 if ((var->print_value == NULL && print_value != NULL)
1494 || (var->print_value != NULL && print_value == NULL)
1495 || (var->print_value != NULL && print_value != NULL
1496 && strcmp (var->print_value, print_value) != 0))
0cc7d26f
TT
1497 changed = 1;
1498 }
1499 if (var->print_value)
1500 xfree (var->print_value);
1501 var->print_value = print_value;
1502
b26ed50d 1503 gdb_assert (!var->value || value_type (var->value));
acd65feb
VP
1504
1505 return changed;
1506}
acd65feb 1507
0cc7d26f
TT
1508/* Return the requested range for a varobj. VAR is the varobj. FROM
1509 and TO are out parameters; *FROM and *TO will be set to the
1510 selected sub-range of VAR. If no range was selected using
1511 -var-set-update-range, then both will be -1. */
1512void
1513varobj_get_child_range (struct varobj *var, int *from, int *to)
b6313243 1514{
0cc7d26f
TT
1515 *from = var->from;
1516 *to = var->to;
b6313243
TT
1517}
1518
0cc7d26f
TT
1519/* Set the selected sub-range of children of VAR to start at index
1520 FROM and end at index TO. If either FROM or TO is less than zero,
1521 this is interpreted as a request for all children. */
1522void
1523varobj_set_child_range (struct varobj *var, int from, int to)
b6313243 1524{
0cc7d26f
TT
1525 var->from = from;
1526 var->to = to;
b6313243
TT
1527}
1528
1529void
1530varobj_set_visualizer (struct varobj *var, const char *visualizer)
1531{
1532#if HAVE_PYTHON
34fa1d9d
MS
1533 PyObject *mainmod, *globals, *constructor;
1534 struct cleanup *back_to;
b6313243 1535
0646da15
TT
1536 if (!gdb_python_initialized)
1537 return;
1538
d452c4bc 1539 back_to = varobj_ensure_python_env (var);
b6313243
TT
1540
1541 mainmod = PyImport_AddModule ("__main__");
1542 globals = PyModule_GetDict (mainmod);
1543 Py_INCREF (globals);
1544 make_cleanup_py_decref (globals);
1545
1546 constructor = PyRun_String (visualizer, Py_eval_input, globals, globals);
b6313243 1547
0cc7d26f 1548 if (! constructor)
b6313243
TT
1549 {
1550 gdbpy_print_stack ();
da1f2771 1551 error (_("Could not evaluate visualizer expression: %s"), visualizer);
b6313243
TT
1552 }
1553
0cc7d26f
TT
1554 construct_visualizer (var, constructor);
1555 Py_XDECREF (constructor);
b6313243 1556
0cc7d26f
TT
1557 /* If there are any children now, wipe them. */
1558 varobj_delete (var, NULL, 1 /* children only */);
1559 var->num_children = -1;
b6313243
TT
1560
1561 do_cleanups (back_to);
1562#else
da1f2771 1563 error (_("Python support required"));
b6313243
TT
1564#endif
1565}
1566
7a290c40
JB
1567/* If NEW_VALUE is the new value of the given varobj (var), return
1568 non-zero if var has mutated. In other words, if the type of
1569 the new value is different from the type of the varobj's old
1570 value.
1571
1572 NEW_VALUE may be NULL, if the varobj is now out of scope. */
1573
1574static int
1575varobj_value_has_mutated (struct varobj *var, struct value *new_value,
1576 struct type *new_type)
1577{
1578 /* If we haven't previously computed the number of children in var,
1579 it does not matter from the front-end's perspective whether
1580 the type has mutated or not. For all intents and purposes,
1581 it has not mutated. */
1582 if (var->num_children < 0)
1583 return 0;
1584
ca20d462 1585 if (var->root->lang_ops->value_has_mutated)
8776cfe9
JB
1586 {
1587 /* The varobj module, when installing new values, explicitly strips
1588 references, saying that we're not interested in those addresses.
1589 But detection of mutation happens before installing the new
1590 value, so our value may be a reference that we need to strip
1591 in order to remain consistent. */
1592 if (new_value != NULL)
1593 new_value = coerce_ref (new_value);
1594 return var->root->lang_ops->value_has_mutated (var, new_value, new_type);
1595 }
7a290c40
JB
1596 else
1597 return 0;
1598}
1599
8b93c638
JM
1600/* Update the values for a variable and its children. This is a
1601 two-pronged attack. First, re-parse the value for the root's
1602 expression to see if it's changed. Then go all the way
1603 through its children, reconstructing them and noting if they've
1604 changed.
1605
25d5ea92
VP
1606 The EXPLICIT parameter specifies if this call is result
1607 of MI request to update this specific variable, or
581e13c1 1608 result of implicit -var-update *. For implicit request, we don't
25d5ea92 1609 update frozen variables.
705da579 1610
581e13c1 1611 NOTE: This function may delete the caller's varobj. If it
8756216b
DP
1612 returns TYPE_CHANGED, then it has done this and VARP will be modified
1613 to point to the new varobj. */
8b93c638 1614
1417b39d
JB
1615VEC(varobj_update_result) *
1616varobj_update (struct varobj **varp, int explicit)
8b93c638 1617{
25d5ea92 1618 int type_changed = 0;
8b93c638 1619 int i;
30b28db1 1620 struct value *new;
b6313243 1621 VEC (varobj_update_result) *stack = NULL;
f7f9ae2c 1622 VEC (varobj_update_result) *result = NULL;
8b93c638 1623
25d5ea92
VP
1624 /* Frozen means frozen -- we don't check for any change in
1625 this varobj, including its going out of scope, or
1626 changing type. One use case for frozen varobjs is
1627 retaining previously evaluated expressions, and we don't
1628 want them to be reevaluated at all. */
1629 if (!explicit && (*varp)->frozen)
f7f9ae2c 1630 return result;
8756216b
DP
1631
1632 if (!(*varp)->root->is_valid)
f7f9ae2c 1633 {
cfce2ea2 1634 varobj_update_result r = {0};
a109c7c1 1635
cfce2ea2 1636 r.varobj = *varp;
f7f9ae2c
VP
1637 r.status = VAROBJ_INVALID;
1638 VEC_safe_push (varobj_update_result, result, &r);
1639 return result;
1640 }
8b93c638 1641
25d5ea92 1642 if ((*varp)->root->rootvar == *varp)
ae093f96 1643 {
cfce2ea2 1644 varobj_update_result r = {0};
a109c7c1 1645
cfce2ea2 1646 r.varobj = *varp;
f7f9ae2c
VP
1647 r.status = VAROBJ_IN_SCOPE;
1648
581e13c1 1649 /* Update the root variable. value_of_root can return NULL
25d5ea92 1650 if the variable is no longer around, i.e. we stepped out of
581e13c1 1651 the frame in which a local existed. We are letting the
25d5ea92
VP
1652 value_of_root variable dispose of the varobj if the type
1653 has changed. */
25d5ea92 1654 new = value_of_root (varp, &type_changed);
8264ba82
AG
1655 if (update_type_if_necessary(*varp, new))
1656 type_changed = 1;
f7f9ae2c 1657 r.varobj = *varp;
f7f9ae2c 1658 r.type_changed = type_changed;
ea56f9c2 1659 if (install_new_value ((*varp), new, type_changed))
f7f9ae2c 1660 r.changed = 1;
ea56f9c2 1661
25d5ea92 1662 if (new == NULL)
f7f9ae2c 1663 r.status = VAROBJ_NOT_IN_SCOPE;
b6313243 1664 r.value_installed = 1;
f7f9ae2c
VP
1665
1666 if (r.status == VAROBJ_NOT_IN_SCOPE)
b6313243 1667 {
0b4bc29a
JK
1668 if (r.type_changed || r.changed)
1669 VEC_safe_push (varobj_update_result, result, &r);
b6313243
TT
1670 return result;
1671 }
1672
1673 VEC_safe_push (varobj_update_result, stack, &r);
1674 }
1675 else
1676 {
cfce2ea2 1677 varobj_update_result r = {0};
a109c7c1 1678
cfce2ea2 1679 r.varobj = *varp;
b6313243 1680 VEC_safe_push (varobj_update_result, stack, &r);
b20d8971 1681 }
8b93c638 1682
8756216b 1683 /* Walk through the children, reconstructing them all. */
b6313243 1684 while (!VEC_empty (varobj_update_result, stack))
8b93c638 1685 {
b6313243
TT
1686 varobj_update_result r = *(VEC_last (varobj_update_result, stack));
1687 struct varobj *v = r.varobj;
1688
1689 VEC_pop (varobj_update_result, stack);
1690
1691 /* Update this variable, unless it's a root, which is already
1692 updated. */
1693 if (!r.value_installed)
7a290c40
JB
1694 {
1695 struct type *new_type;
1696
b6313243 1697 new = value_of_child (v->parent, v->index);
8264ba82
AG
1698 if (update_type_if_necessary(v, new))
1699 r.type_changed = 1;
7a290c40
JB
1700 if (new)
1701 new_type = value_type (new);
1702 else
ca20d462 1703 new_type = v->root->lang_ops->type_of_child (v->parent, v->index);
7a290c40
JB
1704
1705 if (varobj_value_has_mutated (v, new, new_type))
1706 {
1707 /* The children are no longer valid; delete them now.
1708 Report the fact that its type changed as well. */
1709 varobj_delete (v, NULL, 1 /* only_children */);
1710 v->num_children = -1;
1711 v->to = -1;
1712 v->from = -1;
1713 v->type = new_type;
1714 r.type_changed = 1;
1715 }
1716
1717 if (install_new_value (v, new, r.type_changed))
b6313243
TT
1718 {
1719 r.changed = 1;
1720 v->updated = 0;
1721 }
1722 }
1723
31f628ae
YQ
1724 /* We probably should not get children of a dynamic varobj, but
1725 for which -var-list-children was never invoked. */
1726 if (varobj_is_dynamic_p (v))
b6313243 1727 {
8264ba82
AG
1728 VEC (varobj_p) *changed = 0, *type_changed = 0, *unchanged = 0;
1729 VEC (varobj_p) *new = 0;
26f9bcee 1730 int i, children_changed = 0;
b6313243
TT
1731
1732 if (v->frozen)
1733 continue;
1734
bb5ce47a 1735 if (!v->dynamic->children_requested)
0cc7d26f
TT
1736 {
1737 int dummy;
1738
1739 /* If we initially did not have potential children, but
1740 now we do, consider the varobj as changed.
1741 Otherwise, if children were never requested, consider
1742 it as unchanged -- presumably, such varobj is not yet
1743 expanded in the UI, so we need not bother getting
1744 it. */
1745 if (!varobj_has_more (v, 0))
1746 {
8264ba82 1747 update_dynamic_varobj_children (v, NULL, NULL, NULL, NULL,
0cc7d26f
TT
1748 &dummy, 0, 0, 0);
1749 if (varobj_has_more (v, 0))
1750 r.changed = 1;
1751 }
1752
1753 if (r.changed)
1754 VEC_safe_push (varobj_update_result, result, &r);
1755
1756 continue;
1757 }
1758
b6313243
TT
1759 /* If update_dynamic_varobj_children returns 0, then we have
1760 a non-conforming pretty-printer, so we skip it. */
8264ba82
AG
1761 if (update_dynamic_varobj_children (v, &changed, &type_changed, &new,
1762 &unchanged, &children_changed, 1,
0cc7d26f 1763 v->from, v->to))
b6313243 1764 {
0cc7d26f 1765 if (children_changed || new)
b6313243 1766 {
0cc7d26f
TT
1767 r.children_changed = 1;
1768 r.new = new;
b6313243 1769 }
0cc7d26f
TT
1770 /* Push in reverse order so that the first child is
1771 popped from the work stack first, and so will be
1772 added to result first. This does not affect
1773 correctness, just "nicer". */
8264ba82
AG
1774 for (i = VEC_length (varobj_p, type_changed) - 1; i >= 0; --i)
1775 {
1776 varobj_p tmp = VEC_index (varobj_p, type_changed, i);
1777 varobj_update_result r = {0};
1778
1779 /* Type may change only if value was changed. */
1780 r.varobj = tmp;
1781 r.changed = 1;
1782 r.type_changed = 1;
1783 r.value_installed = 1;
1784 VEC_safe_push (varobj_update_result, stack, &r);
1785 }
0cc7d26f 1786 for (i = VEC_length (varobj_p, changed) - 1; i >= 0; --i)
b6313243 1787 {
0cc7d26f 1788 varobj_p tmp = VEC_index (varobj_p, changed, i);
cfce2ea2 1789 varobj_update_result r = {0};
a109c7c1 1790
cfce2ea2 1791 r.varobj = tmp;
0cc7d26f 1792 r.changed = 1;
b6313243
TT
1793 r.value_installed = 1;
1794 VEC_safe_push (varobj_update_result, stack, &r);
1795 }
0cc7d26f
TT
1796 for (i = VEC_length (varobj_p, unchanged) - 1; i >= 0; --i)
1797 {
1798 varobj_p tmp = VEC_index (varobj_p, unchanged, i);
a109c7c1 1799
0cc7d26f
TT
1800 if (!tmp->frozen)
1801 {
cfce2ea2 1802 varobj_update_result r = {0};
a109c7c1 1803
cfce2ea2 1804 r.varobj = tmp;
0cc7d26f
TT
1805 r.value_installed = 1;
1806 VEC_safe_push (varobj_update_result, stack, &r);
1807 }
1808 }
b6313243
TT
1809 if (r.changed || r.children_changed)
1810 VEC_safe_push (varobj_update_result, result, &r);
0cc7d26f 1811
8264ba82
AG
1812 /* Free CHANGED, TYPE_CHANGED and UNCHANGED, but not NEW,
1813 because NEW has been put into the result vector. */
0cc7d26f 1814 VEC_free (varobj_p, changed);
8264ba82 1815 VEC_free (varobj_p, type_changed);
0cc7d26f
TT
1816 VEC_free (varobj_p, unchanged);
1817
b6313243
TT
1818 continue;
1819 }
1820 }
28335dcc
VP
1821
1822 /* Push any children. Use reverse order so that the first
1823 child is popped from the work stack first, and so
1824 will be added to result first. This does not
1825 affect correctness, just "nicer". */
1826 for (i = VEC_length (varobj_p, v->children)-1; i >= 0; --i)
8b93c638 1827 {
28335dcc 1828 varobj_p c = VEC_index (varobj_p, v->children, i);
a109c7c1 1829
28335dcc 1830 /* Child may be NULL if explicitly deleted by -var-delete. */
25d5ea92 1831 if (c != NULL && !c->frozen)
28335dcc 1832 {
cfce2ea2 1833 varobj_update_result r = {0};
a109c7c1 1834
cfce2ea2 1835 r.varobj = c;
b6313243 1836 VEC_safe_push (varobj_update_result, stack, &r);
28335dcc 1837 }
8b93c638 1838 }
b6313243
TT
1839
1840 if (r.changed || r.type_changed)
1841 VEC_safe_push (varobj_update_result, result, &r);
8b93c638
JM
1842 }
1843
b6313243
TT
1844 VEC_free (varobj_update_result, stack);
1845
f7f9ae2c 1846 return result;
8b93c638
JM
1847}
1848\f
1849
1850/* Helper functions */
1851
1852/*
1853 * Variable object construction/destruction
1854 */
1855
1856static int
fba45db2
KB
1857delete_variable (struct cpstack **resultp, struct varobj *var,
1858 int only_children_p)
8b93c638
JM
1859{
1860 int delcount = 0;
1861
1862 delete_variable_1 (resultp, &delcount, var,
1863 only_children_p, 1 /* remove_from_parent_p */ );
1864
1865 return delcount;
1866}
1867
581e13c1 1868/* Delete the variable object VAR and its children. */
8b93c638
JM
1869/* IMPORTANT NOTE: If we delete a variable which is a child
1870 and the parent is not removed we dump core. It must be always
581e13c1 1871 initially called with remove_from_parent_p set. */
8b93c638 1872static void
72330bd6
AC
1873delete_variable_1 (struct cpstack **resultp, int *delcountp,
1874 struct varobj *var, int only_children_p,
1875 int remove_from_parent_p)
8b93c638 1876{
28335dcc 1877 int i;
8b93c638 1878
581e13c1 1879 /* Delete any children of this variable, too. */
28335dcc
VP
1880 for (i = 0; i < VEC_length (varobj_p, var->children); ++i)
1881 {
1882 varobj_p child = VEC_index (varobj_p, var->children, i);
a109c7c1 1883
214270ab
VP
1884 if (!child)
1885 continue;
8b93c638 1886 if (!remove_from_parent_p)
28335dcc
VP
1887 child->parent = NULL;
1888 delete_variable_1 (resultp, delcountp, child, 0, only_children_p);
8b93c638 1889 }
28335dcc 1890 VEC_free (varobj_p, var->children);
8b93c638 1891
581e13c1 1892 /* if we were called to delete only the children we are done here. */
8b93c638
JM
1893 if (only_children_p)
1894 return;
1895
581e13c1 1896 /* Otherwise, add it to the list of deleted ones and proceed to do so. */
73a93a32 1897 /* If the name is null, this is a temporary variable, that has not
581e13c1 1898 yet been installed, don't report it, it belongs to the caller... */
73a93a32 1899 if (var->obj_name != NULL)
8b93c638 1900 {
5b616ba1 1901 cppush (resultp, xstrdup (var->obj_name));
8b93c638
JM
1902 *delcountp = *delcountp + 1;
1903 }
1904
581e13c1 1905 /* If this variable has a parent, remove it from its parent's list. */
8b93c638
JM
1906 /* OPTIMIZATION: if the parent of this variable is also being deleted,
1907 (as indicated by remove_from_parent_p) we don't bother doing an
1908 expensive list search to find the element to remove when we are
581e13c1 1909 discarding the list afterwards. */
72330bd6 1910 if ((remove_from_parent_p) && (var->parent != NULL))
8b93c638 1911 {
28335dcc 1912 VEC_replace (varobj_p, var->parent->children, var->index, NULL);
8b93c638 1913 }
72330bd6 1914
73a93a32
JI
1915 if (var->obj_name != NULL)
1916 uninstall_variable (var);
8b93c638 1917
581e13c1 1918 /* Free memory associated with this variable. */
8b93c638
JM
1919 free_variable (var);
1920}
1921
581e13c1 1922/* Install the given variable VAR with the object name VAR->OBJ_NAME. */
8b93c638 1923static int
fba45db2 1924install_variable (struct varobj *var)
8b93c638
JM
1925{
1926 struct vlist *cv;
1927 struct vlist *newvl;
1928 const char *chp;
1929 unsigned int index = 0;
1930 unsigned int i = 1;
1931
1932 for (chp = var->obj_name; *chp; chp++)
1933 {
1934 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1935 }
1936
1937 cv = *(varobj_table + index);
1938 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1939 cv = cv->next;
1940
1941 if (cv != NULL)
8a3fe4f8 1942 error (_("Duplicate variable object name"));
8b93c638 1943
581e13c1 1944 /* Add varobj to hash table. */
8b93c638
JM
1945 newvl = xmalloc (sizeof (struct vlist));
1946 newvl->next = *(varobj_table + index);
1947 newvl->var = var;
1948 *(varobj_table + index) = newvl;
1949
581e13c1 1950 /* If root, add varobj to root list. */
b2c2bd75 1951 if (is_root_p (var))
8b93c638 1952 {
581e13c1 1953 /* Add to list of root variables. */
8b93c638
JM
1954 if (rootlist == NULL)
1955 var->root->next = NULL;
1956 else
1957 var->root->next = rootlist;
1958 rootlist = var->root;
8b93c638
JM
1959 }
1960
1961 return 1; /* OK */
1962}
1963
581e13c1 1964/* Unistall the object VAR. */
8b93c638 1965static void
fba45db2 1966uninstall_variable (struct varobj *var)
8b93c638
JM
1967{
1968 struct vlist *cv;
1969 struct vlist *prev;
1970 struct varobj_root *cr;
1971 struct varobj_root *prer;
1972 const char *chp;
1973 unsigned int index = 0;
1974 unsigned int i = 1;
1975
581e13c1 1976 /* Remove varobj from hash table. */
8b93c638
JM
1977 for (chp = var->obj_name; *chp; chp++)
1978 {
1979 index = (index + (i++ * (unsigned int) *chp)) % VAROBJ_TABLE_SIZE;
1980 }
1981
1982 cv = *(varobj_table + index);
1983 prev = NULL;
1984 while ((cv != NULL) && (strcmp (cv->var->obj_name, var->obj_name) != 0))
1985 {
1986 prev = cv;
1987 cv = cv->next;
1988 }
1989
1990 if (varobjdebug)
1991 fprintf_unfiltered (gdb_stdlog, "Deleting %s\n", var->obj_name);
1992
1993 if (cv == NULL)
1994 {
72330bd6
AC
1995 warning
1996 ("Assertion failed: Could not find variable object \"%s\" to delete",
1997 var->obj_name);
8b93c638
JM
1998 return;
1999 }
2000
2001 if (prev == NULL)
2002 *(varobj_table + index) = cv->next;
2003 else
2004 prev->next = cv->next;
2005
b8c9b27d 2006 xfree (cv);
8b93c638 2007
581e13c1 2008 /* If root, remove varobj from root list. */
b2c2bd75 2009 if (is_root_p (var))
8b93c638 2010 {
581e13c1 2011 /* Remove from list of root variables. */
8b93c638
JM
2012 if (rootlist == var->root)
2013 rootlist = var->root->next;
2014 else
2015 {
2016 prer = NULL;
2017 cr = rootlist;
2018 while ((cr != NULL) && (cr->rootvar != var))
2019 {
2020 prer = cr;
2021 cr = cr->next;
2022 }
2023 if (cr == NULL)
2024 {
8f7e195f
JB
2025 warning (_("Assertion failed: Could not find "
2026 "varobj \"%s\" in root list"),
3e43a32a 2027 var->obj_name);
8b93c638
JM
2028 return;
2029 }
2030 if (prer == NULL)
2031 rootlist = NULL;
2032 else
2033 prer->next = cr->next;
2034 }
8b93c638
JM
2035 }
2036
2037}
2038
581e13c1 2039/* Create and install a child of the parent of the given name. */
8b93c638 2040static struct varobj *
fba45db2 2041create_child (struct varobj *parent, int index, char *name)
b6313243 2042{
5a2e0d6e
YQ
2043 struct varobj_item item;
2044
2045 item.name = name;
2046 item.value = value_of_child (parent, index);
2047
2048 return create_child_with_value (parent, index, &item);
b6313243
TT
2049}
2050
2051static struct varobj *
5a2e0d6e
YQ
2052create_child_with_value (struct varobj *parent, int index,
2053 struct varobj_item *item)
8b93c638
JM
2054{
2055 struct varobj *child;
2056 char *childs_name;
2057
2058 child = new_variable ();
2059
5e5ac9a5 2060 /* NAME is allocated by caller. */
5a2e0d6e 2061 child->name = item->name;
8b93c638 2062 child->index = index;
8b93c638
JM
2063 child->parent = parent;
2064 child->root = parent->root;
85254831 2065
99ad9427 2066 if (varobj_is_anonymous_child (child))
85254831
KS
2067 childs_name = xstrprintf ("%s.%d_anonymous", parent->obj_name, index);
2068 else
5a2e0d6e 2069 childs_name = xstrprintf ("%s.%s", parent->obj_name, item->name);
8b93c638 2070 child->obj_name = childs_name;
85254831 2071
8b93c638
JM
2072 install_variable (child);
2073
acd65feb
VP
2074 /* Compute the type of the child. Must do this before
2075 calling install_new_value. */
5a2e0d6e 2076 if (item->value != NULL)
acd65feb 2077 /* If the child had no evaluation errors, var->value
581e13c1 2078 will be non-NULL and contain a valid type. */
5a2e0d6e 2079 child->type = value_actual_type (item->value, 0, NULL);
acd65feb 2080 else
581e13c1 2081 /* Otherwise, we must compute the type. */
ca20d462
YQ
2082 child->type = (*child->root->lang_ops->type_of_child) (child->parent,
2083 child->index);
5a2e0d6e 2084 install_new_value (child, item->value, 1);
acd65feb 2085
8b93c638
JM
2086 return child;
2087}
8b93c638
JM
2088\f
2089
2090/*
2091 * Miscellaneous utility functions.
2092 */
2093
581e13c1 2094/* Allocate memory and initialize a new variable. */
8b93c638
JM
2095static struct varobj *
2096new_variable (void)
2097{
2098 struct varobj *var;
2099
2100 var = (struct varobj *) xmalloc (sizeof (struct varobj));
2101 var->name = NULL;
02142340 2102 var->path_expr = NULL;
8b93c638
JM
2103 var->obj_name = NULL;
2104 var->index = -1;
2105 var->type = NULL;
2106 var->value = NULL;
8b93c638
JM
2107 var->num_children = -1;
2108 var->parent = NULL;
2109 var->children = NULL;
2110 var->format = 0;
2111 var->root = NULL;
fb9b6b35 2112 var->updated = 0;
85265413 2113 var->print_value = NULL;
25d5ea92
VP
2114 var->frozen = 0;
2115 var->not_fetched = 0;
bb5ce47a
YQ
2116 var->dynamic
2117 = (struct varobj_dynamic *) xmalloc (sizeof (struct varobj_dynamic));
2118 var->dynamic->children_requested = 0;
0cc7d26f
TT
2119 var->from = -1;
2120 var->to = -1;
bb5ce47a
YQ
2121 var->dynamic->constructor = 0;
2122 var->dynamic->pretty_printer = 0;
2123 var->dynamic->child_iter = 0;
2124 var->dynamic->saved_item = 0;
8b93c638
JM
2125
2126 return var;
2127}
2128
581e13c1 2129/* Allocate memory and initialize a new root variable. */
8b93c638
JM
2130static struct varobj *
2131new_root_variable (void)
2132{
2133 struct varobj *var = new_variable ();
a109c7c1 2134
3e43a32a 2135 var->root = (struct varobj_root *) xmalloc (sizeof (struct varobj_root));
ca20d462 2136 var->root->lang_ops = NULL;
8b93c638
JM
2137 var->root->exp = NULL;
2138 var->root->valid_block = NULL;
7a424e99 2139 var->root->frame = null_frame_id;
a5defcdc 2140 var->root->floating = 0;
8b93c638 2141 var->root->rootvar = NULL;
8756216b 2142 var->root->is_valid = 1;
8b93c638
JM
2143
2144 return var;
2145}
2146
581e13c1 2147/* Free any allocated memory associated with VAR. */
8b93c638 2148static void
fba45db2 2149free_variable (struct varobj *var)
8b93c638 2150{
d452c4bc 2151#if HAVE_PYTHON
bb5ce47a 2152 if (var->dynamic->pretty_printer != NULL)
d452c4bc
UW
2153 {
2154 struct cleanup *cleanup = varobj_ensure_python_env (var);
bb5ce47a
YQ
2155
2156 Py_XDECREF (var->dynamic->constructor);
2157 Py_XDECREF (var->dynamic->pretty_printer);
d452c4bc
UW
2158 do_cleanups (cleanup);
2159 }
2160#endif
2161
827f100c
YQ
2162 varobj_iter_delete (var->dynamic->child_iter);
2163 varobj_clear_saved_item (var->dynamic);
36746093
JK
2164 value_free (var->value);
2165
581e13c1 2166 /* Free the expression if this is a root variable. */
b2c2bd75 2167 if (is_root_p (var))
8b93c638 2168 {
3038237c 2169 xfree (var->root->exp);
8038e1e2 2170 xfree (var->root);
8b93c638
JM
2171 }
2172
8038e1e2
AC
2173 xfree (var->name);
2174 xfree (var->obj_name);
85265413 2175 xfree (var->print_value);
02142340 2176 xfree (var->path_expr);
bb5ce47a 2177 xfree (var->dynamic);
8038e1e2 2178 xfree (var);
8b93c638
JM
2179}
2180
74b7792f
AC
2181static void
2182do_free_variable_cleanup (void *var)
2183{
2184 free_variable (var);
2185}
2186
2187static struct cleanup *
2188make_cleanup_free_variable (struct varobj *var)
2189{
2190 return make_cleanup (do_free_variable_cleanup, var);
2191}
2192
6e2a9270
VP
2193/* Return the type of the value that's stored in VAR,
2194 or that would have being stored there if the
581e13c1 2195 value were accessible.
6e2a9270
VP
2196
2197 This differs from VAR->type in that VAR->type is always
2198 the true type of the expession in the source language.
2199 The return value of this function is the type we're
2200 actually storing in varobj, and using for displaying
2201 the values and for comparing previous and new values.
2202
2203 For example, top-level references are always stripped. */
99ad9427
YQ
2204struct type *
2205varobj_get_value_type (struct varobj *var)
6e2a9270
VP
2206{
2207 struct type *type;
2208
2209 if (var->value)
2210 type = value_type (var->value);
2211 else
2212 type = var->type;
2213
2214 type = check_typedef (type);
2215
2216 if (TYPE_CODE (type) == TYPE_CODE_REF)
2217 type = get_target_type (type);
2218
2219 type = check_typedef (type);
2220
2221 return type;
2222}
2223
8b93c638 2224/* What is the default display for this variable? We assume that
581e13c1 2225 everything is "natural". Any exceptions? */
8b93c638 2226static enum varobj_display_formats
fba45db2 2227variable_default_display (struct varobj *var)
8b93c638
JM
2228{
2229 return FORMAT_NATURAL;
2230}
2231
581e13c1 2232/* FIXME: The following should be generic for any pointer. */
8b93c638 2233static void
fba45db2 2234cppush (struct cpstack **pstack, char *name)
8b93c638
JM
2235{
2236 struct cpstack *s;
2237
2238 s = (struct cpstack *) xmalloc (sizeof (struct cpstack));
2239 s->name = name;
2240 s->next = *pstack;
2241 *pstack = s;
2242}
2243
581e13c1 2244/* FIXME: The following should be generic for any pointer. */
8b93c638 2245static char *
fba45db2 2246cppop (struct cpstack **pstack)
8b93c638
JM
2247{
2248 struct cpstack *s;
2249 char *v;
2250
2251 if ((*pstack)->name == NULL && (*pstack)->next == NULL)
2252 return NULL;
2253
2254 s = *pstack;
2255 v = s->name;
2256 *pstack = (*pstack)->next;
b8c9b27d 2257 xfree (s);
8b93c638
JM
2258
2259 return v;
2260}
2261\f
2262/*
2263 * Language-dependencies
2264 */
2265
2266/* Common entry points */
2267
8b93c638
JM
2268/* Return the number of children for a given variable.
2269 The result of this function is defined by the language
581e13c1 2270 implementation. The number of children returned by this function
8b93c638 2271 is the number of children that the user will see in the variable
581e13c1 2272 display. */
8b93c638 2273static int
fba45db2 2274number_of_children (struct varobj *var)
8b93c638 2275{
ca20d462 2276 return (*var->root->lang_ops->number_of_children) (var);
8b93c638
JM
2277}
2278
3e43a32a 2279/* What is the expression for the root varobj VAR? Returns a malloc'd
581e13c1 2280 string. */
8b93c638 2281static char *
fba45db2 2282name_of_variable (struct varobj *var)
8b93c638 2283{
ca20d462 2284 return (*var->root->lang_ops->name_of_variable) (var);
8b93c638
JM
2285}
2286
3e43a32a 2287/* What is the name of the INDEX'th child of VAR? Returns a malloc'd
581e13c1 2288 string. */
8b93c638 2289static char *
fba45db2 2290name_of_child (struct varobj *var, int index)
8b93c638 2291{
ca20d462 2292 return (*var->root->lang_ops->name_of_child) (var, index);
8b93c638
JM
2293}
2294
2213e2be
YQ
2295/* If frame associated with VAR can be found, switch
2296 to it and return 1. Otherwise, return 0. */
2297
2298static int
2299check_scope (struct varobj *var)
2300{
2301 struct frame_info *fi;
2302 int scope;
2303
2304 fi = frame_find_by_id (var->root->frame);
2305 scope = fi != NULL;
2306
2307 if (fi)
2308 {
2309 CORE_ADDR pc = get_frame_pc (fi);
2310
2311 if (pc < BLOCK_START (var->root->valid_block) ||
2312 pc >= BLOCK_END (var->root->valid_block))
2313 scope = 0;
2314 else
2315 select_frame (fi);
2316 }
2317 return scope;
2318}
2319
2320/* Helper function to value_of_root. */
2321
2322static struct value *
2323value_of_root_1 (struct varobj **var_handle)
2324{
2325 struct value *new_val = NULL;
2326 struct varobj *var = *var_handle;
2327 int within_scope = 0;
2328 struct cleanup *back_to;
2329
2330 /* Only root variables can be updated... */
2331 if (!is_root_p (var))
2332 /* Not a root var. */
2333 return NULL;
2334
2335 back_to = make_cleanup_restore_current_thread ();
2336
2337 /* Determine whether the variable is still around. */
2338 if (var->root->valid_block == NULL || var->root->floating)
2339 within_scope = 1;
2340 else if (var->root->thread_id == 0)
2341 {
2342 /* The program was single-threaded when the variable object was
2343 created. Technically, it's possible that the program became
2344 multi-threaded since then, but we don't support such
2345 scenario yet. */
2346 within_scope = check_scope (var);
2347 }
2348 else
2349 {
2350 ptid_t ptid = thread_id_to_pid (var->root->thread_id);
2351 if (in_thread_list (ptid))
2352 {
2353 switch_to_thread (ptid);
2354 within_scope = check_scope (var);
2355 }
2356 }
2357
2358 if (within_scope)
2359 {
2360 volatile struct gdb_exception except;
2361
2362 /* We need to catch errors here, because if evaluate
2363 expression fails we want to just return NULL. */
2364 TRY_CATCH (except, RETURN_MASK_ERROR)
2365 {
2366 new_val = evaluate_expression (var->root->exp);
2367 }
2368 }
2369
2370 do_cleanups (back_to);
2371
2372 return new_val;
2373}
2374
a5defcdc
VP
2375/* What is the ``struct value *'' of the root variable VAR?
2376 For floating variable object, evaluation can get us a value
2377 of different type from what is stored in varobj already. In
2378 that case:
2379 - *type_changed will be set to 1
2380 - old varobj will be freed, and new one will be
2381 created, with the same name.
2382 - *var_handle will be set to the new varobj
2383 Otherwise, *type_changed will be set to 0. */
30b28db1 2384static struct value *
fba45db2 2385value_of_root (struct varobj **var_handle, int *type_changed)
8b93c638 2386{
73a93a32
JI
2387 struct varobj *var;
2388
2389 if (var_handle == NULL)
2390 return NULL;
2391
2392 var = *var_handle;
2393
2394 /* This should really be an exception, since this should
581e13c1 2395 only get called with a root variable. */
73a93a32 2396
b2c2bd75 2397 if (!is_root_p (var))
73a93a32
JI
2398 return NULL;
2399
a5defcdc 2400 if (var->root->floating)
73a93a32
JI
2401 {
2402 struct varobj *tmp_var;
2403 char *old_type, *new_type;
6225abfa 2404
73a93a32
JI
2405 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2406 USE_SELECTED_FRAME);
2407 if (tmp_var == NULL)
2408 {
2409 return NULL;
2410 }
6225abfa 2411 old_type = varobj_get_type (var);
73a93a32 2412 new_type = varobj_get_type (tmp_var);
72330bd6 2413 if (strcmp (old_type, new_type) == 0)
73a93a32 2414 {
fcacd99f
VP
2415 /* The expression presently stored inside var->root->exp
2416 remembers the locations of local variables relatively to
2417 the frame where the expression was created (in DWARF location
2418 button, for example). Naturally, those locations are not
2419 correct in other frames, so update the expression. */
2420
2421 struct expression *tmp_exp = var->root->exp;
a109c7c1 2422
fcacd99f
VP
2423 var->root->exp = tmp_var->root->exp;
2424 tmp_var->root->exp = tmp_exp;
2425
73a93a32
JI
2426 varobj_delete (tmp_var, NULL, 0);
2427 *type_changed = 0;
2428 }
2429 else
2430 {
1b36a34b 2431 tmp_var->obj_name = xstrdup (var->obj_name);
0cc7d26f
TT
2432 tmp_var->from = var->from;
2433 tmp_var->to = var->to;
a5defcdc
VP
2434 varobj_delete (var, NULL, 0);
2435
73a93a32
JI
2436 install_variable (tmp_var);
2437 *var_handle = tmp_var;
705da579 2438 var = *var_handle;
73a93a32
JI
2439 *type_changed = 1;
2440 }
74dddad3
MS
2441 xfree (old_type);
2442 xfree (new_type);
73a93a32
JI
2443 }
2444 else
2445 {
2446 *type_changed = 0;
2447 }
2448
7a290c40
JB
2449 {
2450 struct value *value;
2451
2213e2be 2452 value = value_of_root_1 (var_handle);
7a290c40
JB
2453 if (var->value == NULL || value == NULL)
2454 {
2455 /* For root varobj-s, a NULL value indicates a scoping issue.
2456 So, nothing to do in terms of checking for mutations. */
2457 }
2458 else if (varobj_value_has_mutated (var, value, value_type (value)))
2459 {
2460 /* The type has mutated, so the children are no longer valid.
2461 Just delete them, and tell our caller that the type has
2462 changed. */
2463 varobj_delete (var, NULL, 1 /* only_children */);
2464 var->num_children = -1;
2465 var->to = -1;
2466 var->from = -1;
2467 *type_changed = 1;
2468 }
2469 return value;
2470 }
8b93c638
JM
2471}
2472
581e13c1 2473/* What is the ``struct value *'' for the INDEX'th child of PARENT? */
30b28db1 2474static struct value *
fba45db2 2475value_of_child (struct varobj *parent, int index)
8b93c638 2476{
30b28db1 2477 struct value *value;
8b93c638 2478
ca20d462 2479 value = (*parent->root->lang_ops->value_of_child) (parent, index);
8b93c638 2480
8b93c638
JM
2481 return value;
2482}
2483
581e13c1 2484/* GDB already has a command called "value_of_variable". Sigh. */
8b93c638 2485static char *
de051565 2486my_value_of_variable (struct varobj *var, enum varobj_display_formats format)
8b93c638 2487{
8756216b 2488 if (var->root->is_valid)
0cc7d26f 2489 {
bb5ce47a 2490 if (var->dynamic->pretty_printer != NULL)
99ad9427 2491 return varobj_value_get_print_value (var->value, var->format, var);
ca20d462 2492 return (*var->root->lang_ops->value_of_variable) (var, format);
0cc7d26f 2493 }
8756216b
DP
2494 else
2495 return NULL;
8b93c638
JM
2496}
2497
99ad9427
YQ
2498void
2499varobj_formatted_print_options (struct value_print_options *opts,
2500 enum varobj_display_formats format)
2501{
2502 get_formatted_print_options (opts, format_code[(int) format]);
2503 opts->deref_ref = 0;
2504 opts->raw = 1;
2505}
2506
2507char *
2508varobj_value_get_print_value (struct value *value,
2509 enum varobj_display_formats format,
2510 struct varobj *var)
85265413 2511{
57e66780 2512 struct ui_file *stb;
621c8364 2513 struct cleanup *old_chain;
ac91cd70 2514 char *thevalue = NULL;
79a45b7d 2515 struct value_print_options opts;
be759fcf
PM
2516 struct type *type = NULL;
2517 long len = 0;
2518 char *encoding = NULL;
2519 struct gdbarch *gdbarch = NULL;
3a182a69
JK
2520 /* Initialize it just to avoid a GCC false warning. */
2521 CORE_ADDR str_addr = 0;
09ca9e2e 2522 int string_print = 0;
57e66780
DJ
2523
2524 if (value == NULL)
2525 return NULL;
2526
621c8364
TT
2527 stb = mem_fileopen ();
2528 old_chain = make_cleanup_ui_file_delete (stb);
2529
be759fcf 2530 gdbarch = get_type_arch (value_type (value));
b6313243 2531#if HAVE_PYTHON
0646da15
TT
2532 if (gdb_python_initialized)
2533 {
bb5ce47a 2534 PyObject *value_formatter = var->dynamic->pretty_printer;
d452c4bc 2535
0646da15 2536 varobj_ensure_python_env (var);
09ca9e2e 2537
0646da15
TT
2538 if (value_formatter)
2539 {
2540 /* First check to see if we have any children at all. If so,
2541 we simply return {...}. */
2542 if (dynamic_varobj_has_child_method (var))
2543 {
2544 do_cleanups (old_chain);
2545 return xstrdup ("{...}");
2546 }
b6313243 2547
0646da15
TT
2548 if (PyObject_HasAttr (value_formatter, gdbpy_to_string_cst))
2549 {
2550 struct value *replacement;
2551 PyObject *output = NULL;
2552
2553 output = apply_varobj_pretty_printer (value_formatter,
2554 &replacement,
2555 stb);
2556
2557 /* If we have string like output ... */
2558 if (output)
2559 {
2560 make_cleanup_py_decref (output);
2561
2562 /* If this is a lazy string, extract it. For lazy
2563 strings we always print as a string, so set
2564 string_print. */
2565 if (gdbpy_is_lazy_string (output))
2566 {
2567 gdbpy_extract_lazy_string (output, &str_addr, &type,
2568 &len, &encoding);
2569 make_cleanup (free_current_contents, &encoding);
2570 string_print = 1;
2571 }
2572 else
2573 {
2574 /* If it is a regular (non-lazy) string, extract
2575 it and copy the contents into THEVALUE. If the
2576 hint says to print it as a string, set
2577 string_print. Otherwise just return the extracted
2578 string as a value. */
2579
2580 char *s = python_string_to_target_string (output);
2581
2582 if (s)
2583 {
2584 char *hint;
2585
2586 hint = gdbpy_get_display_hint (value_formatter);
2587 if (hint)
2588 {
2589 if (!strcmp (hint, "string"))
2590 string_print = 1;
2591 xfree (hint);
2592 }
2593
2594 len = strlen (s);
2595 thevalue = xmemdup (s, len + 1, len + 1);
2596 type = builtin_type (gdbarch)->builtin_char;
2597 xfree (s);
2598
2599 if (!string_print)
2600 {
2601 do_cleanups (old_chain);
2602 return thevalue;
2603 }
2604
2605 make_cleanup (xfree, thevalue);
2606 }
2607 else
2608 gdbpy_print_stack ();
2609 }
2610 }
2611 /* If the printer returned a replacement value, set VALUE
2612 to REPLACEMENT. If there is not a replacement value,
2613 just use the value passed to this function. */
2614 if (replacement)
2615 value = replacement;
2616 }
2617 }
2618 }
b6313243
TT
2619#endif
2620
99ad9427 2621 varobj_formatted_print_options (&opts, format);
00bd41d6
PM
2622
2623 /* If the THEVALUE has contents, it is a regular string. */
b6313243 2624 if (thevalue)
ac91cd70 2625 LA_PRINT_STRING (stb, type, (gdb_byte *) thevalue, len, encoding, 0, &opts);
09ca9e2e 2626 else if (string_print)
00bd41d6
PM
2627 /* Otherwise, if string_print is set, and it is not a regular
2628 string, it is a lazy string. */
09ca9e2e 2629 val_print_string (type, encoding, str_addr, len, stb, &opts);
b6313243 2630 else
00bd41d6 2631 /* All other cases. */
b6313243 2632 common_val_print (value, stb, 0, &opts, current_language);
00bd41d6 2633
759ef836 2634 thevalue = ui_file_xstrdup (stb, NULL);
57e66780 2635
85265413
NR
2636 do_cleanups (old_chain);
2637 return thevalue;
2638}
2639
340a7723
NR
2640int
2641varobj_editable_p (struct varobj *var)
2642{
2643 struct type *type;
340a7723
NR
2644
2645 if (!(var->root->is_valid && var->value && VALUE_LVAL (var->value)))
2646 return 0;
2647
99ad9427 2648 type = varobj_get_value_type (var);
340a7723
NR
2649
2650 switch (TYPE_CODE (type))
2651 {
2652 case TYPE_CODE_STRUCT:
2653 case TYPE_CODE_UNION:
2654 case TYPE_CODE_ARRAY:
2655 case TYPE_CODE_FUNC:
2656 case TYPE_CODE_METHOD:
2657 return 0;
2658 break;
2659
2660 default:
2661 return 1;
2662 break;
2663 }
2664}
2665
d32cafc7 2666/* Call VAR's value_is_changeable_p language-specific callback. */
acd65feb 2667
99ad9427 2668int
b2c2bd75 2669varobj_value_is_changeable_p (struct varobj *var)
8b93c638 2670{
ca20d462 2671 return var->root->lang_ops->value_is_changeable_p (var);
8b93c638
JM
2672}
2673
5a413362
VP
2674/* Return 1 if that varobj is floating, that is is always evaluated in the
2675 selected frame, and not bound to thread/frame. Such variable objects
2676 are created using '@' as frame specifier to -var-create. */
2677int
2678varobj_floating_p (struct varobj *var)
2679{
2680 return var->root->floating;
2681}
2682
d32cafc7
JB
2683/* Implement the "value_is_changeable_p" varobj callback for most
2684 languages. */
2685
99ad9427
YQ
2686int
2687varobj_default_value_is_changeable_p (struct varobj *var)
d32cafc7
JB
2688{
2689 int r;
2690 struct type *type;
2691
2692 if (CPLUS_FAKE_CHILD (var))
2693 return 0;
2694
99ad9427 2695 type = varobj_get_value_type (var);
d32cafc7
JB
2696
2697 switch (TYPE_CODE (type))
2698 {
2699 case TYPE_CODE_STRUCT:
2700 case TYPE_CODE_UNION:
2701 case TYPE_CODE_ARRAY:
2702 r = 0;
2703 break;
2704
2705 default:
2706 r = 1;
2707 }
2708
2709 return r;
2710}
2711
54333c3b
JK
2712/* Iterate all the existing _root_ VAROBJs and call the FUNC callback for them
2713 with an arbitrary caller supplied DATA pointer. */
2714
2715void
2716all_root_varobjs (void (*func) (struct varobj *var, void *data), void *data)
2717{
2718 struct varobj_root *var_root, *var_root_next;
2719
2720 /* Iterate "safely" - handle if the callee deletes its passed VAROBJ. */
2721
2722 for (var_root = rootlist; var_root != NULL; var_root = var_root_next)
2723 {
2724 var_root_next = var_root->next;
2725
2726 (*func) (var_root->rootvar, data);
2727 }
2728}
8b93c638
JM
2729\f
2730extern void _initialize_varobj (void);
2731void
2732_initialize_varobj (void)
2733{
2734 int sizeof_table = sizeof (struct vlist *) * VAROBJ_TABLE_SIZE;
2735
2736 varobj_table = xmalloc (sizeof_table);
2737 memset (varobj_table, 0, sizeof_table);
2738
f989a1c8 2739 add_setshow_zuinteger_cmd ("varobj", class_maintenance,
ccce17b0
YQ
2740 &varobjdebug,
2741 _("Set varobj debugging."),
2742 _("Show varobj debugging."),
2743 _("When non-zero, varobj debugging is enabled."),
2744 NULL, show_varobjdebug,
f989a1c8 2745 &setdebuglist, &showdebuglist);
8b93c638 2746}
8756216b 2747
54333c3b 2748/* Invalidate varobj VAR if it is tied to locals and re-create it if it is
4e969b4f
AB
2749 defined on globals. It is a helper for varobj_invalidate.
2750
2751 This function is called after changing the symbol file, in this case the
2752 pointers to "struct type" stored by the varobj are no longer valid. All
2753 varobj must be either re-evaluated, or marked as invalid here. */
2dbd25e5 2754
54333c3b
JK
2755static void
2756varobj_invalidate_iter (struct varobj *var, void *unused)
8756216b 2757{
4e969b4f
AB
2758 /* global and floating var must be re-evaluated. */
2759 if (var->root->floating || var->root->valid_block == NULL)
2dbd25e5 2760 {
54333c3b 2761 struct varobj *tmp_var;
2dbd25e5 2762
54333c3b
JK
2763 /* Try to create a varobj with same expression. If we succeed
2764 replace the old varobj, otherwise invalidate it. */
2765 tmp_var = varobj_create (NULL, var->name, (CORE_ADDR) 0,
2766 USE_CURRENT_FRAME);
2767 if (tmp_var != NULL)
2768 {
2769 tmp_var->obj_name = xstrdup (var->obj_name);
2770 varobj_delete (var, NULL, 0);
2771 install_variable (tmp_var);
2dbd25e5 2772 }
54333c3b
JK
2773 else
2774 var->root->is_valid = 0;
2dbd25e5 2775 }
54333c3b
JK
2776 else /* locals must be invalidated. */
2777 var->root->is_valid = 0;
2778}
2779
2780/* Invalidate the varobjs that are tied to locals and re-create the ones that
2781 are defined on globals.
2782 Invalidated varobjs will be always printed in_scope="invalid". */
2783
2784void
2785varobj_invalidate (void)
2786{
2787 all_root_varobjs (varobj_invalidate_iter, NULL);
8756216b 2788}
This page took 2.051156 seconds and 4 git commands to generate.