Commit | Line | Data |
---|---|---|
350da6ee | 1 | /* Vector API for GDB. |
0fb0cc75 JB |
2 | Copyright (C) 2004, 2005, 2006, 2007, 2008, 2009 |
3 | Free Software Foundation, Inc. | |
350da6ee DJ |
4 | Contributed by Nathan Sidwell <nathan@codesourcery.com> |
5 | ||
6 | This file is part of GDB. | |
7 | ||
8 | This program is free software; you can redistribute it and/or modify | |
9 | it under the terms of the GNU General Public License as published by | |
a9762ec7 | 10 | the Free Software Foundation; either version 3 of the License, or |
350da6ee DJ |
11 | (at your option) any later version. |
12 | ||
13 | This program is distributed in the hope that it will be useful, | |
14 | but WITHOUT ANY WARRANTY; without even the implied warranty of | |
15 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | |
16 | GNU General Public License for more details. | |
17 | ||
18 | You should have received a copy of the GNU General Public License | |
a9762ec7 | 19 | along with this program. If not, see <http://www.gnu.org/licenses/>. */ |
350da6ee DJ |
20 | |
21 | #if !defined (GDB_VEC_H) | |
22 | #define GDB_VEC_H | |
23 | ||
24 | #include <stddef.h> | |
25 | #include "gdb_string.h" | |
26 | #include "gdb_assert.h" | |
27 | ||
28 | /* The macros here implement a set of templated vector types and | |
29 | associated interfaces. These templates are implemented with | |
30 | macros, as we're not in C++ land. The interface functions are | |
31 | typesafe and use static inline functions, sometimes backed by | |
32 | out-of-line generic functions. | |
33 | ||
34 | Because of the different behavior of structure objects, scalar | |
35 | objects and of pointers, there are three flavors, one for each of | |
36 | these variants. Both the structure object and pointer variants | |
37 | pass pointers to objects around -- in the former case the pointers | |
38 | are stored into the vector and in the latter case the pointers are | |
39 | dereferenced and the objects copied into the vector. The scalar | |
40 | object variant is suitable for int-like objects, and the vector | |
41 | elements are returned by value. | |
42 | ||
43 | There are both 'index' and 'iterate' accessors. The iterator | |
44 | returns a boolean iteration condition and updates the iteration | |
45 | variable passed by reference. Because the iterator will be | |
46 | inlined, the address-of can be optimized away. | |
47 | ||
48 | The vectors are implemented using the trailing array idiom, thus | |
49 | they are not resizeable without changing the address of the vector | |
50 | object itself. This means you cannot have variables or fields of | |
51 | vector type -- always use a pointer to a vector. The one exception | |
52 | is the final field of a structure, which could be a vector type. | |
53 | You will have to use the embedded_size & embedded_init calls to | |
54 | create such objects, and they will probably not be resizeable (so | |
55 | don't use the 'safe' allocation variants). The trailing array | |
56 | idiom is used (rather than a pointer to an array of data), because, | |
57 | if we allow NULL to also represent an empty vector, empty vectors | |
58 | occupy minimal space in the structure containing them. | |
59 | ||
60 | Each operation that increases the number of active elements is | |
61 | available in 'quick' and 'safe' variants. The former presumes that | |
62 | there is sufficient allocated space for the operation to succeed | |
63 | (it dies if there is not). The latter will reallocate the | |
64 | vector, if needed. Reallocation causes an exponential increase in | |
65 | vector size. If you know you will be adding N elements, it would | |
66 | be more efficient to use the reserve operation before adding the | |
67 | elements with the 'quick' operation. This will ensure there are at | |
68 | least as many elements as you ask for, it will exponentially | |
69 | increase if there are too few spare slots. If you want reserve a | |
70 | specific number of slots, but do not want the exponential increase | |
71 | (for instance, you know this is the last allocation), use a | |
72 | negative number for reservation. You can also create a vector of a | |
73 | specific size from the get go. | |
74 | ||
75 | You should prefer the push and pop operations, as they append and | |
76 | remove from the end of the vector. If you need to remove several | |
77 | items in one go, use the truncate operation. The insert and remove | |
78 | operations allow you to change elements in the middle of the | |
79 | vector. There are two remove operations, one which preserves the | |
80 | element ordering 'ordered_remove', and one which does not | |
81 | 'unordered_remove'. The latter function copies the end element | |
82 | into the removed slot, rather than invoke a memmove operation. The | |
83 | 'lower_bound' function will determine where to place an item in the | |
84 | array using insert that will maintain sorted order. | |
85 | ||
86 | If you need to directly manipulate a vector, then the 'address' | |
87 | accessor will return the address of the start of the vector. Also | |
88 | the 'space' predicate will tell you whether there is spare capacity | |
89 | in the vector. You will not normally need to use these two functions. | |
90 | ||
91 | Vector types are defined using a DEF_VEC_{O,P,I}(TYPEDEF) macro. | |
92 | Variables of vector type are declared using a VEC(TYPEDEF) macro. | |
93 | The characters O, P and I indicate whether TYPEDEF is a pointer | |
94 | (P), object (O) or integral (I) type. Be careful to pick the | |
95 | correct one, as you'll get an awkward and inefficient API if you | |
96 | use the wrong one. There is a check, which results in a | |
97 | compile-time warning, for the P and I versions, but there is no | |
98 | check for the O versions, as that is not possible in plain C. | |
99 | ||
100 | An example of their use would be, | |
101 | ||
102 | DEF_VEC_P(tree); // non-managed tree vector. | |
103 | ||
104 | struct my_struct { | |
105 | VEC(tree) *v; // A (pointer to) a vector of tree pointers. | |
106 | }; | |
107 | ||
108 | struct my_struct *s; | |
109 | ||
110 | if (VEC_length(tree, s->v)) { we have some contents } | |
111 | VEC_safe_push(tree, s->v, decl); // append some decl onto the end | |
112 | for (ix = 0; VEC_iterate(tree, s->v, ix, elt); ix++) | |
113 | { do something with elt } | |
114 | ||
115 | */ | |
116 | ||
117 | /* Macros to invoke API calls. A single macro works for both pointer | |
118 | and object vectors, but the argument and return types might well be | |
119 | different. In each macro, T is the typedef of the vector elements. | |
120 | Some of these macros pass the vector, V, by reference (by taking | |
121 | its address), this is noted in the descriptions. */ | |
122 | ||
123 | /* Length of vector | |
124 | unsigned VEC_T_length(const VEC(T) *v); | |
125 | ||
126 | Return the number of active elements in V. V can be NULL, in which | |
127 | case zero is returned. */ | |
128 | ||
129 | #define VEC_length(T,V) (VEC_OP(T,length)(V)) | |
130 | ||
131 | ||
132 | /* Check if vector is empty | |
133 | int VEC_T_empty(const VEC(T) *v); | |
134 | ||
135 | Return nonzero if V is an empty vector (or V is NULL), zero otherwise. */ | |
136 | ||
137 | #define VEC_empty(T,V) (VEC_length (T,V) == 0) | |
138 | ||
139 | ||
140 | /* Get the final element of the vector. | |
141 | T VEC_T_last(VEC(T) *v); // Integer | |
142 | T VEC_T_last(VEC(T) *v); // Pointer | |
143 | T *VEC_T_last(VEC(T) *v); // Object | |
144 | ||
145 | Return the final element. V must not be empty. */ | |
146 | ||
147 | #define VEC_last(T,V) (VEC_OP(T,last)(V VEC_ASSERT_INFO)) | |
148 | ||
149 | /* Index into vector | |
150 | T VEC_T_index(VEC(T) *v, unsigned ix); // Integer | |
151 | T VEC_T_index(VEC(T) *v, unsigned ix); // Pointer | |
152 | T *VEC_T_index(VEC(T) *v, unsigned ix); // Object | |
153 | ||
154 | Return the IX'th element. If IX must be in the domain of V. */ | |
155 | ||
156 | #define VEC_index(T,V,I) (VEC_OP(T,index)(V,I VEC_ASSERT_INFO)) | |
157 | ||
158 | /* Iterate over vector | |
159 | int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Integer | |
160 | int VEC_T_iterate(VEC(T) *v, unsigned ix, T &ptr); // Pointer | |
161 | int VEC_T_iterate(VEC(T) *v, unsigned ix, T *&ptr); // Object | |
162 | ||
163 | Return iteration condition and update PTR to point to the IX'th | |
164 | element. At the end of iteration, sets PTR to NULL. Use this to | |
165 | iterate over the elements of a vector as follows, | |
166 | ||
167 | for (ix = 0; VEC_iterate(T,v,ix,ptr); ix++) | |
168 | continue; */ | |
169 | ||
170 | #define VEC_iterate(T,V,I,P) (VEC_OP(T,iterate)(V,I,&(P))) | |
171 | ||
172 | /* Allocate new vector. | |
173 | VEC(T,A) *VEC_T_alloc(int reserve); | |
174 | ||
175 | Allocate a new vector with space for RESERVE objects. If RESERVE | |
176 | is zero, NO vector is created. */ | |
177 | ||
178 | #define VEC_alloc(T,N) (VEC_OP(T,alloc)(N)) | |
179 | ||
180 | /* Free a vector. | |
181 | void VEC_T_free(VEC(T,A) *&); | |
182 | ||
183 | Free a vector and set it to NULL. */ | |
184 | ||
185 | #define VEC_free(T,V) (VEC_OP(T,free)(&V)) | |
186 | ||
187 | /* Use these to determine the required size and initialization of a | |
188 | vector embedded within another structure (as the final member). | |
189 | ||
190 | size_t VEC_T_embedded_size(int reserve); | |
191 | void VEC_T_embedded_init(VEC(T) *v, int reserve); | |
192 | ||
193 | These allow the caller to perform the memory allocation. */ | |
194 | ||
195 | #define VEC_embedded_size(T,N) (VEC_OP(T,embedded_size)(N)) | |
196 | #define VEC_embedded_init(T,O,N) (VEC_OP(T,embedded_init)(VEC_BASE(O),N)) | |
197 | ||
198 | /* Copy a vector. | |
199 | VEC(T,A) *VEC_T_copy(VEC(T) *); | |
200 | ||
201 | Copy the live elements of a vector into a new vector. The new and | |
202 | old vectors need not be allocated by the same mechanism. */ | |
203 | ||
204 | #define VEC_copy(T,V) (VEC_OP(T,copy)(V)) | |
205 | ||
206 | /* Determine if a vector has additional capacity. | |
207 | ||
208 | int VEC_T_space (VEC(T) *v,int reserve) | |
209 | ||
210 | If V has space for RESERVE additional entries, return nonzero. You | |
211 | usually only need to use this if you are doing your own vector | |
212 | reallocation, for instance on an embedded vector. This returns | |
213 | nonzero in exactly the same circumstances that VEC_T_reserve | |
214 | will. */ | |
215 | ||
216 | #define VEC_space(T,V,R) (VEC_OP(T,space)(V,R VEC_ASSERT_INFO)) | |
217 | ||
218 | /* Reserve space. | |
219 | int VEC_T_reserve(VEC(T,A) *&v, int reserve); | |
220 | ||
221 | Ensure that V has at least abs(RESERVE) slots available. The | |
222 | signedness of RESERVE determines the reallocation behavior. A | |
223 | negative value will not create additional headroom beyond that | |
224 | requested. A positive value will create additional headroom. Note | |
225 | this can cause V to be reallocated. Returns nonzero iff | |
226 | reallocation actually occurred. */ | |
227 | ||
228 | #define VEC_reserve(T,V,R) (VEC_OP(T,reserve)(&(V),R VEC_ASSERT_INFO)) | |
229 | ||
230 | /* Push object with no reallocation | |
231 | T *VEC_T_quick_push (VEC(T) *v, T obj); // Integer | |
232 | T *VEC_T_quick_push (VEC(T) *v, T obj); // Pointer | |
233 | T *VEC_T_quick_push (VEC(T) *v, T *obj); // Object | |
234 | ||
235 | Push a new element onto the end, returns a pointer to the slot | |
236 | filled in. For object vectors, the new value can be NULL, in which | |
237 | case NO initialization is performed. There must | |
238 | be sufficient space in the vector. */ | |
239 | ||
240 | #define VEC_quick_push(T,V,O) (VEC_OP(T,quick_push)(V,O VEC_ASSERT_INFO)) | |
241 | ||
242 | /* Push object with reallocation | |
243 | T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Integer | |
244 | T *VEC_T_safe_push (VEC(T,A) *&v, T obj); // Pointer | |
245 | T *VEC_T_safe_push (VEC(T,A) *&v, T *obj); // Object | |
246 | ||
247 | Push a new element onto the end, returns a pointer to the slot | |
248 | filled in. For object vectors, the new value can be NULL, in which | |
249 | case NO initialization is performed. Reallocates V, if needed. */ | |
250 | ||
251 | #define VEC_safe_push(T,V,O) (VEC_OP(T,safe_push)(&(V),O VEC_ASSERT_INFO)) | |
252 | ||
253 | /* Pop element off end | |
254 | T VEC_T_pop (VEC(T) *v); // Integer | |
255 | T VEC_T_pop (VEC(T) *v); // Pointer | |
256 | void VEC_T_pop (VEC(T) *v); // Object | |
257 | ||
258 | Pop the last element off the end. Returns the element popped, for | |
259 | pointer vectors. */ | |
260 | ||
261 | #define VEC_pop(T,V) (VEC_OP(T,pop)(V VEC_ASSERT_INFO)) | |
262 | ||
263 | /* Truncate to specific length | |
264 | void VEC_T_truncate (VEC(T) *v, unsigned len); | |
265 | ||
266 | Set the length as specified. The new length must be less than or | |
267 | equal to the current length. This is an O(1) operation. */ | |
268 | ||
269 | #define VEC_truncate(T,V,I) \ | |
270 | (VEC_OP(T,truncate)(V,I VEC_ASSERT_INFO)) | |
271 | ||
272 | /* Grow to a specific length. | |
273 | void VEC_T_safe_grow (VEC(T,A) *&v, int len); | |
274 | ||
275 | Grow the vector to a specific length. The LEN must be as | |
276 | long or longer than the current length. The new elements are | |
277 | uninitialized. */ | |
278 | ||
279 | #define VEC_safe_grow(T,V,I) \ | |
280 | (VEC_OP(T,safe_grow)(&(V),I VEC_ASSERT_INFO)) | |
281 | ||
282 | /* Replace element | |
283 | T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Integer | |
284 | T VEC_T_replace (VEC(T) *v, unsigned ix, T val); // Pointer | |
285 | T *VEC_T_replace (VEC(T) *v, unsigned ix, T *val); // Object | |
286 | ||
287 | Replace the IXth element of V with a new value, VAL. For pointer | |
288 | vectors returns the original value. For object vectors returns a | |
289 | pointer to the new value. For object vectors the new value can be | |
290 | NULL, in which case no overwriting of the slot is actually | |
291 | performed. */ | |
292 | ||
293 | #define VEC_replace(T,V,I,O) (VEC_OP(T,replace)(V,I,O VEC_ASSERT_INFO)) | |
294 | ||
295 | /* Insert object with no reallocation | |
296 | T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Integer | |
297 | T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T val); // Pointer | |
298 | T *VEC_T_quick_insert (VEC(T) *v, unsigned ix, T *val); // Object | |
299 | ||
300 | Insert an element, VAL, at the IXth position of V. Return a pointer | |
301 | to the slot created. For vectors of object, the new value can be | |
302 | NULL, in which case no initialization of the inserted slot takes | |
303 | place. There must be sufficient space. */ | |
304 | ||
305 | #define VEC_quick_insert(T,V,I,O) \ | |
306 | (VEC_OP(T,quick_insert)(V,I,O VEC_ASSERT_INFO)) | |
307 | ||
308 | /* Insert object with reallocation | |
309 | T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Integer | |
310 | T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T val); // Pointer | |
311 | T *VEC_T_safe_insert (VEC(T,A) *&v, unsigned ix, T *val); // Object | |
312 | ||
313 | Insert an element, VAL, at the IXth position of V. Return a pointer | |
314 | to the slot created. For vectors of object, the new value can be | |
315 | NULL, in which case no initialization of the inserted slot takes | |
316 | place. Reallocate V, if necessary. */ | |
317 | ||
318 | #define VEC_safe_insert(T,V,I,O) \ | |
319 | (VEC_OP(T,safe_insert)(&(V),I,O VEC_ASSERT_INFO)) | |
320 | ||
321 | /* Remove element retaining order | |
322 | T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Integer | |
323 | T VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Pointer | |
324 | void VEC_T_ordered_remove (VEC(T) *v, unsigned ix); // Object | |
325 | ||
326 | Remove an element from the IXth position of V. Ordering of | |
327 | remaining elements is preserved. For pointer vectors returns the | |
328 | removed object. This is an O(N) operation due to a memmove. */ | |
329 | ||
330 | #define VEC_ordered_remove(T,V,I) \ | |
331 | (VEC_OP(T,ordered_remove)(V,I VEC_ASSERT_INFO)) | |
332 | ||
333 | /* Remove element destroying order | |
334 | T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Integer | |
335 | T VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Pointer | |
336 | void VEC_T_unordered_remove (VEC(T) *v, unsigned ix); // Object | |
337 | ||
338 | Remove an element from the IXth position of V. Ordering of | |
339 | remaining elements is destroyed. For pointer vectors returns the | |
340 | removed object. This is an O(1) operation. */ | |
341 | ||
342 | #define VEC_unordered_remove(T,V,I) \ | |
343 | (VEC_OP(T,unordered_remove)(V,I VEC_ASSERT_INFO)) | |
344 | ||
345 | /* Remove a block of elements | |
346 | void VEC_T_block_remove (VEC(T) *v, unsigned ix, unsigned len); | |
347 | ||
348 | Remove LEN elements starting at the IXth. Ordering is retained. | |
349 | This is an O(1) operation. */ | |
350 | ||
351 | #define VEC_block_remove(T,V,I,L) \ | |
352 | (VEC_OP(T,block_remove)(V,I,L) VEC_ASSERT_INFO) | |
353 | ||
354 | /* Get the address of the array of elements | |
355 | T *VEC_T_address (VEC(T) v) | |
356 | ||
357 | If you need to directly manipulate the array (for instance, you | |
358 | want to feed it to qsort), use this accessor. */ | |
359 | ||
360 | #define VEC_address(T,V) (VEC_OP(T,address)(V)) | |
361 | ||
362 | /* Find the first index in the vector not less than the object. | |
363 | unsigned VEC_T_lower_bound (VEC(T) *v, const T val, | |
364 | int (*lessthan) (const T, const T)); // Integer | |
365 | unsigned VEC_T_lower_bound (VEC(T) *v, const T val, | |
366 | int (*lessthan) (const T, const T)); // Pointer | |
367 | unsigned VEC_T_lower_bound (VEC(T) *v, const T *val, | |
368 | int (*lessthan) (const T*, const T*)); // Object | |
369 | ||
370 | Find the first position in which VAL could be inserted without | |
371 | changing the ordering of V. LESSTHAN is a function that returns | |
372 | true if the first argument is strictly less than the second. */ | |
373 | ||
374 | #define VEC_lower_bound(T,V,O,LT) \ | |
375 | (VEC_OP(T,lower_bound)(V,O,LT VEC_ASSERT_INFO)) | |
376 | ||
377 | /* Reallocate an array of elements with prefix. */ | |
378 | extern void *vec_p_reserve (void *, int); | |
379 | extern void *vec_o_reserve (void *, int, size_t, size_t); | |
1e8877aa | 380 | #define vec_free_(V) xfree (V) |
350da6ee DJ |
381 | |
382 | #define VEC_ASSERT_INFO ,__FILE__,__LINE__ | |
383 | #define VEC_ASSERT_DECL ,const char *file_,unsigned line_ | |
384 | #define VEC_ASSERT_PASS ,file_,line_ | |
385 | #define vec_assert(expr, op) \ | |
386 | ((void)((expr) ? 0 : (gdb_assert_fail (op, file_, line_, ASSERT_FUNCTION), 0))) | |
387 | ||
388 | #define VEC(T) VEC_##T | |
389 | #define VEC_OP(T,OP) VEC_##T##_##OP | |
390 | ||
391 | #define VEC_T(T) \ | |
392 | typedef struct VEC(T) \ | |
393 | { \ | |
394 | unsigned num; \ | |
395 | unsigned alloc; \ | |
396 | T vec[1]; \ | |
397 | } VEC(T) | |
398 | ||
399 | /* Vector of integer-like object. */ | |
400 | #define DEF_VEC_I(T) \ | |
401 | static inline void VEC_OP (T,must_be_integral_type) (void) \ | |
402 | { \ | |
403 | (void)~(T)0; \ | |
404 | } \ | |
405 | \ | |
406 | VEC_T(T); \ | |
407 | DEF_VEC_FUNC_P(T) \ | |
408 | DEF_VEC_ALLOC_FUNC_I(T) \ | |
409 | struct vec_swallow_trailing_semi | |
410 | ||
411 | /* Vector of pointer to object. */ | |
412 | #define DEF_VEC_P(T) \ | |
413 | static inline void VEC_OP (T,must_be_pointer_type) (void) \ | |
414 | { \ | |
415 | (void)((T)1 == (void *)1); \ | |
416 | } \ | |
417 | \ | |
418 | VEC_T(T); \ | |
419 | DEF_VEC_FUNC_P(T) \ | |
420 | DEF_VEC_ALLOC_FUNC_P(T) \ | |
421 | struct vec_swallow_trailing_semi | |
422 | ||
423 | /* Vector of object. */ | |
424 | #define DEF_VEC_O(T) \ | |
425 | VEC_T(T); \ | |
426 | DEF_VEC_FUNC_O(T) \ | |
427 | DEF_VEC_ALLOC_FUNC_O(T) \ | |
428 | struct vec_swallow_trailing_semi | |
429 | ||
430 | #define DEF_VEC_ALLOC_FUNC_I(T) \ | |
431 | static inline VEC(T) *VEC_OP (T,alloc) \ | |
432 | (int alloc_) \ | |
433 | { \ | |
434 | /* We must request exact size allocation, hence the negation. */ \ | |
435 | return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \ | |
436 | offsetof (VEC(T),vec), sizeof (T)); \ | |
437 | } \ | |
438 | \ | |
439 | static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \ | |
440 | { \ | |
441 | size_t len_ = vec_ ? vec_->num : 0; \ | |
442 | VEC (T) *new_vec_ = NULL; \ | |
443 | \ | |
444 | if (len_) \ | |
445 | { \ | |
446 | /* We must request exact size allocation, hence the negation. */ \ | |
447 | new_vec_ = (VEC (T) *) \ | |
448 | vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \ | |
449 | \ | |
450 | new_vec_->num = len_; \ | |
451 | memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \ | |
452 | } \ | |
453 | return new_vec_; \ | |
454 | } \ | |
455 | \ | |
456 | static inline void VEC_OP (T,free) \ | |
457 | (VEC(T) **vec_) \ | |
458 | { \ | |
459 | if (*vec_) \ | |
1e8877aa | 460 | vec_free_ (*vec_); \ |
350da6ee DJ |
461 | *vec_ = NULL; \ |
462 | } \ | |
463 | \ | |
464 | static inline int VEC_OP (T,reserve) \ | |
465 | (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \ | |
466 | { \ | |
467 | int extend = !VEC_OP (T,space) \ | |
468 | (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \ | |
469 | \ | |
470 | if (extend) \ | |
471 | *vec_ = (VEC(T) *) vec_o_reserve (*vec_, alloc_, \ | |
472 | offsetof (VEC(T),vec), sizeof (T)); \ | |
473 | \ | |
474 | return extend; \ | |
475 | } \ | |
476 | \ | |
477 | static inline void VEC_OP (T,safe_grow) \ | |
478 | (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \ | |
479 | { \ | |
480 | vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \ | |
481 | "safe_grow"); \ | |
482 | VEC_OP (T,reserve) (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ \ | |
483 | VEC_ASSERT_PASS); \ | |
484 | (*vec_)->num = size_; \ | |
485 | } \ | |
486 | \ | |
487 | static inline T *VEC_OP (T,safe_push) \ | |
488 | (VEC(T) **vec_, const T obj_ VEC_ASSERT_DECL) \ | |
489 | { \ | |
490 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
491 | \ | |
492 | return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \ | |
493 | } \ | |
494 | \ | |
495 | static inline T *VEC_OP (T,safe_insert) \ | |
496 | (VEC(T) **vec_, unsigned ix_, const T obj_ VEC_ASSERT_DECL) \ | |
497 | { \ | |
498 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
499 | \ | |
500 | return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \ | |
501 | } | |
502 | ||
503 | #define DEF_VEC_FUNC_P(T) \ | |
504 | static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \ | |
505 | { \ | |
506 | return vec_ ? vec_->num : 0; \ | |
507 | } \ | |
508 | \ | |
509 | static inline T VEC_OP (T,last) \ | |
510 | (const VEC(T) *vec_ VEC_ASSERT_DECL) \ | |
511 | { \ | |
512 | vec_assert (vec_ && vec_->num, "last"); \ | |
513 | \ | |
514 | return vec_->vec[vec_->num - 1]; \ | |
515 | } \ | |
516 | \ | |
517 | static inline T VEC_OP (T,index) \ | |
518 | (const VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
519 | { \ | |
520 | vec_assert (vec_ && ix_ < vec_->num, "index"); \ | |
521 | \ | |
522 | return vec_->vec[ix_]; \ | |
523 | } \ | |
524 | \ | |
525 | static inline int VEC_OP (T,iterate) \ | |
526 | (const VEC(T) *vec_, unsigned ix_, T *ptr) \ | |
527 | { \ | |
528 | if (vec_ && ix_ < vec_->num) \ | |
529 | { \ | |
530 | *ptr = vec_->vec[ix_]; \ | |
531 | return 1; \ | |
532 | } \ | |
533 | else \ | |
534 | { \ | |
535 | *ptr = 0; \ | |
536 | return 0; \ | |
537 | } \ | |
538 | } \ | |
539 | \ | |
540 | static inline size_t VEC_OP (T,embedded_size) \ | |
541 | (int alloc_) \ | |
542 | { \ | |
543 | return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \ | |
544 | } \ | |
545 | \ | |
546 | static inline void VEC_OP (T,embedded_init) \ | |
547 | (VEC(T) *vec_, int alloc_) \ | |
548 | { \ | |
549 | vec_->num = 0; \ | |
550 | vec_->alloc = alloc_; \ | |
551 | } \ | |
552 | \ | |
553 | static inline int VEC_OP (T,space) \ | |
554 | (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \ | |
555 | { \ | |
556 | vec_assert (alloc_ >= 0, "space"); \ | |
557 | return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ | |
558 | } \ | |
559 | \ | |
560 | static inline T *VEC_OP (T,quick_push) \ | |
561 | (VEC(T) *vec_, T obj_ VEC_ASSERT_DECL) \ | |
562 | { \ | |
563 | T *slot_; \ | |
564 | \ | |
565 | vec_assert (vec_->num < vec_->alloc, "quick_push"); \ | |
566 | slot_ = &vec_->vec[vec_->num++]; \ | |
567 | *slot_ = obj_; \ | |
568 | \ | |
569 | return slot_; \ | |
570 | } \ | |
571 | \ | |
572 | static inline T VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \ | |
573 | { \ | |
574 | T obj_; \ | |
575 | \ | |
576 | vec_assert (vec_->num, "pop"); \ | |
577 | obj_ = vec_->vec[--vec_->num]; \ | |
578 | \ | |
579 | return obj_; \ | |
580 | } \ | |
581 | \ | |
582 | static inline void VEC_OP (T,truncate) \ | |
583 | (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \ | |
584 | { \ | |
585 | vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \ | |
586 | if (vec_) \ | |
587 | vec_->num = size_; \ | |
588 | } \ | |
589 | \ | |
590 | static inline T VEC_OP (T,replace) \ | |
591 | (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \ | |
592 | { \ | |
593 | T old_obj_; \ | |
594 | \ | |
595 | vec_assert (ix_ < vec_->num, "replace"); \ | |
596 | old_obj_ = vec_->vec[ix_]; \ | |
597 | vec_->vec[ix_] = obj_; \ | |
598 | \ | |
599 | return old_obj_; \ | |
600 | } \ | |
601 | \ | |
602 | static inline T *VEC_OP (T,quick_insert) \ | |
603 | (VEC(T) *vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \ | |
604 | { \ | |
605 | T *slot_; \ | |
606 | \ | |
607 | vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \ | |
608 | slot_ = &vec_->vec[ix_]; \ | |
609 | memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ | |
610 | *slot_ = obj_; \ | |
611 | \ | |
612 | return slot_; \ | |
613 | } \ | |
614 | \ | |
615 | static inline T VEC_OP (T,ordered_remove) \ | |
616 | (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
617 | { \ | |
618 | T *slot_; \ | |
619 | T obj_; \ | |
620 | \ | |
621 | vec_assert (ix_ < vec_->num, "ordered_remove"); \ | |
622 | slot_ = &vec_->vec[ix_]; \ | |
623 | obj_ = *slot_; \ | |
624 | memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ | |
625 | \ | |
626 | return obj_; \ | |
627 | } \ | |
628 | \ | |
629 | static inline T VEC_OP (T,unordered_remove) \ | |
630 | (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
631 | { \ | |
632 | T *slot_; \ | |
633 | T obj_; \ | |
634 | \ | |
635 | vec_assert (ix_ < vec_->num, "unordered_remove"); \ | |
636 | slot_ = &vec_->vec[ix_]; \ | |
637 | obj_ = *slot_; \ | |
638 | *slot_ = vec_->vec[--vec_->num]; \ | |
639 | \ | |
640 | return obj_; \ | |
641 | } \ | |
642 | \ | |
643 | static inline void VEC_OP (T,block_remove) \ | |
644 | (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \ | |
645 | { \ | |
646 | T *slot_; \ | |
647 | \ | |
648 | vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \ | |
649 | slot_ = &vec_->vec[ix_]; \ | |
650 | vec_->num -= len_; \ | |
651 | memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ | |
652 | } \ | |
653 | \ | |
654 | static inline T *VEC_OP (T,address) \ | |
655 | (VEC(T) *vec_) \ | |
656 | { \ | |
657 | return vec_ ? vec_->vec : 0; \ | |
658 | } \ | |
659 | \ | |
660 | static inline unsigned VEC_OP (T,lower_bound) \ | |
661 | (VEC(T) *vec_, const T obj_, \ | |
662 | int (*lessthan_)(const T, const T) VEC_ASSERT_DECL) \ | |
663 | { \ | |
664 | unsigned int len_ = VEC_OP (T, length) (vec_); \ | |
665 | unsigned int half_, middle_; \ | |
666 | unsigned int first_ = 0; \ | |
667 | while (len_ > 0) \ | |
668 | { \ | |
669 | T middle_elem_; \ | |
670 | half_ = len_ >> 1; \ | |
671 | middle_ = first_; \ | |
672 | middle_ += half_; \ | |
673 | middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \ | |
674 | if (lessthan_ (middle_elem_, obj_)) \ | |
675 | { \ | |
676 | first_ = middle_; \ | |
677 | ++first_; \ | |
678 | len_ = len_ - half_ - 1; \ | |
679 | } \ | |
680 | else \ | |
681 | len_ = half_; \ | |
682 | } \ | |
683 | return first_; \ | |
684 | } | |
685 | ||
686 | #define DEF_VEC_ALLOC_FUNC_P(T) \ | |
687 | static inline VEC(T) *VEC_OP (T,alloc) \ | |
688 | (int alloc_) \ | |
689 | { \ | |
690 | /* We must request exact size allocation, hence the negation. */ \ | |
691 | return (VEC(T) *) vec_p_reserve (NULL, -alloc_); \ | |
692 | } \ | |
693 | \ | |
694 | static inline void VEC_OP (T,free) \ | |
695 | (VEC(T) **vec_) \ | |
696 | { \ | |
697 | if (*vec_) \ | |
1e8877aa | 698 | vec_free_ (*vec_); \ |
350da6ee DJ |
699 | *vec_ = NULL; \ |
700 | } \ | |
701 | \ | |
702 | static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \ | |
703 | { \ | |
704 | size_t len_ = vec_ ? vec_->num : 0; \ | |
705 | VEC (T) *new_vec_ = NULL; \ | |
706 | \ | |
707 | if (len_) \ | |
708 | { \ | |
709 | /* We must request exact size allocation, hence the negation. */ \ | |
710 | new_vec_ = (VEC (T) *)(vec_p_reserve (NULL, -len_)); \ | |
711 | \ | |
712 | new_vec_->num = len_; \ | |
713 | memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \ | |
714 | } \ | |
715 | return new_vec_; \ | |
716 | } \ | |
717 | \ | |
718 | static inline int VEC_OP (T,reserve) \ | |
719 | (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \ | |
720 | { \ | |
721 | int extend = !VEC_OP (T,space) \ | |
722 | (*vec_, alloc_ < 0 ? -alloc_ : alloc_ VEC_ASSERT_PASS); \ | |
723 | \ | |
724 | if (extend) \ | |
725 | *vec_ = (VEC(T) *) vec_p_reserve (*vec_, alloc_); \ | |
726 | \ | |
727 | return extend; \ | |
728 | } \ | |
729 | \ | |
730 | static inline void VEC_OP (T,safe_grow) \ | |
731 | (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \ | |
732 | { \ | |
733 | vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \ | |
734 | "safe_grow"); \ | |
735 | VEC_OP (T,reserve) \ | |
736 | (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \ | |
737 | (*vec_)->num = size_; \ | |
738 | } \ | |
739 | \ | |
740 | static inline T *VEC_OP (T,safe_push) \ | |
741 | (VEC(T) **vec_, T obj_ VEC_ASSERT_DECL) \ | |
742 | { \ | |
743 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
744 | \ | |
745 | return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \ | |
746 | } \ | |
747 | \ | |
748 | static inline T *VEC_OP (T,safe_insert) \ | |
749 | (VEC(T) **vec_, unsigned ix_, T obj_ VEC_ASSERT_DECL) \ | |
750 | { \ | |
751 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
752 | \ | |
753 | return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \ | |
754 | } | |
755 | ||
756 | #define DEF_VEC_FUNC_O(T) \ | |
757 | static inline unsigned VEC_OP (T,length) (const VEC(T) *vec_) \ | |
758 | { \ | |
759 | return vec_ ? vec_->num : 0; \ | |
760 | } \ | |
761 | \ | |
762 | static inline T *VEC_OP (T,last) (VEC(T) *vec_ VEC_ASSERT_DECL) \ | |
763 | { \ | |
764 | vec_assert (vec_ && vec_->num, "last"); \ | |
765 | \ | |
766 | return &vec_->vec[vec_->num - 1]; \ | |
767 | } \ | |
768 | \ | |
769 | static inline T *VEC_OP (T,index) \ | |
770 | (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
771 | { \ | |
772 | vec_assert (vec_ && ix_ < vec_->num, "index"); \ | |
773 | \ | |
774 | return &vec_->vec[ix_]; \ | |
775 | } \ | |
776 | \ | |
777 | static inline int VEC_OP (T,iterate) \ | |
778 | (VEC(T) *vec_, unsigned ix_, T **ptr) \ | |
779 | { \ | |
780 | if (vec_ && ix_ < vec_->num) \ | |
781 | { \ | |
782 | *ptr = &vec_->vec[ix_]; \ | |
783 | return 1; \ | |
784 | } \ | |
785 | else \ | |
786 | { \ | |
787 | *ptr = 0; \ | |
788 | return 0; \ | |
789 | } \ | |
790 | } \ | |
791 | \ | |
792 | static inline size_t VEC_OP (T,embedded_size) \ | |
793 | (int alloc_) \ | |
794 | { \ | |
795 | return offsetof (VEC(T),vec) + alloc_ * sizeof(T); \ | |
796 | } \ | |
797 | \ | |
798 | static inline void VEC_OP (T,embedded_init) \ | |
799 | (VEC(T) *vec_, int alloc_) \ | |
800 | { \ | |
801 | vec_->num = 0; \ | |
802 | vec_->alloc = alloc_; \ | |
803 | } \ | |
804 | \ | |
805 | static inline int VEC_OP (T,space) \ | |
806 | (VEC(T) *vec_, int alloc_ VEC_ASSERT_DECL) \ | |
807 | { \ | |
808 | vec_assert (alloc_ >= 0, "space"); \ | |
809 | return vec_ ? vec_->alloc - vec_->num >= (unsigned)alloc_ : !alloc_; \ | |
810 | } \ | |
811 | \ | |
812 | static inline T *VEC_OP (T,quick_push) \ | |
813 | (VEC(T) *vec_, const T *obj_ VEC_ASSERT_DECL) \ | |
814 | { \ | |
815 | T *slot_; \ | |
816 | \ | |
817 | vec_assert (vec_->num < vec_->alloc, "quick_push"); \ | |
818 | slot_ = &vec_->vec[vec_->num++]; \ | |
819 | if (obj_) \ | |
820 | *slot_ = *obj_; \ | |
821 | \ | |
822 | return slot_; \ | |
823 | } \ | |
824 | \ | |
825 | static inline void VEC_OP (T,pop) (VEC(T) *vec_ VEC_ASSERT_DECL) \ | |
826 | { \ | |
827 | vec_assert (vec_->num, "pop"); \ | |
828 | --vec_->num; \ | |
829 | } \ | |
830 | \ | |
831 | static inline void VEC_OP (T,truncate) \ | |
832 | (VEC(T) *vec_, unsigned size_ VEC_ASSERT_DECL) \ | |
833 | { \ | |
834 | vec_assert (vec_ ? vec_->num >= size_ : !size_, "truncate"); \ | |
835 | if (vec_) \ | |
836 | vec_->num = size_; \ | |
837 | } \ | |
838 | \ | |
839 | static inline T *VEC_OP (T,replace) \ | |
840 | (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \ | |
841 | { \ | |
842 | T *slot_; \ | |
843 | \ | |
844 | vec_assert (ix_ < vec_->num, "replace"); \ | |
845 | slot_ = &vec_->vec[ix_]; \ | |
846 | if (obj_) \ | |
847 | *slot_ = *obj_; \ | |
848 | \ | |
849 | return slot_; \ | |
850 | } \ | |
851 | \ | |
852 | static inline T *VEC_OP (T,quick_insert) \ | |
853 | (VEC(T) *vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \ | |
854 | { \ | |
855 | T *slot_; \ | |
856 | \ | |
857 | vec_assert (vec_->num < vec_->alloc && ix_ <= vec_->num, "quick_insert"); \ | |
858 | slot_ = &vec_->vec[ix_]; \ | |
859 | memmove (slot_ + 1, slot_, (vec_->num++ - ix_) * sizeof (T)); \ | |
860 | if (obj_) \ | |
861 | *slot_ = *obj_; \ | |
862 | \ | |
863 | return slot_; \ | |
864 | } \ | |
865 | \ | |
866 | static inline void VEC_OP (T,ordered_remove) \ | |
867 | (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
868 | { \ | |
869 | T *slot_; \ | |
870 | \ | |
871 | vec_assert (ix_ < vec_->num, "ordered_remove"); \ | |
872 | slot_ = &vec_->vec[ix_]; \ | |
873 | memmove (slot_, slot_ + 1, (--vec_->num - ix_) * sizeof (T)); \ | |
874 | } \ | |
875 | \ | |
876 | static inline void VEC_OP (T,unordered_remove) \ | |
877 | (VEC(T) *vec_, unsigned ix_ VEC_ASSERT_DECL) \ | |
878 | { \ | |
879 | vec_assert (ix_ < vec_->num, "unordered_remove"); \ | |
880 | vec_->vec[ix_] = vec_->vec[--vec_->num]; \ | |
881 | } \ | |
882 | \ | |
883 | static inline void VEC_OP (T,block_remove) \ | |
884 | (VEC(T) *vec_, unsigned ix_, unsigned len_ VEC_ASSERT_DECL) \ | |
885 | { \ | |
886 | T *slot_; \ | |
887 | \ | |
888 | vec_assert (ix_ + len_ <= vec_->num, "block_remove"); \ | |
889 | slot_ = &vec_->vec[ix_]; \ | |
890 | vec_->num -= len_; \ | |
891 | memmove (slot_, slot_ + len_, (vec_->num - ix_) * sizeof (T)); \ | |
892 | } \ | |
893 | \ | |
894 | static inline T *VEC_OP (T,address) \ | |
895 | (VEC(T) *vec_) \ | |
896 | { \ | |
897 | return vec_ ? vec_->vec : 0; \ | |
898 | } \ | |
899 | \ | |
900 | static inline unsigned VEC_OP (T,lower_bound) \ | |
901 | (VEC(T) *vec_, const T *obj_, \ | |
902 | int (*lessthan_)(const T *, const T *) VEC_ASSERT_DECL) \ | |
903 | { \ | |
904 | unsigned int len_ = VEC_OP (T, length) (vec_); \ | |
905 | unsigned int half_, middle_; \ | |
906 | unsigned int first_ = 0; \ | |
907 | while (len_ > 0) \ | |
908 | { \ | |
909 | T *middle_elem_; \ | |
910 | half_ = len_ >> 1; \ | |
911 | middle_ = first_; \ | |
912 | middle_ += half_; \ | |
913 | middle_elem_ = VEC_OP (T,index) (vec_, middle_ VEC_ASSERT_PASS); \ | |
914 | if (lessthan_ (middle_elem_, obj_)) \ | |
915 | { \ | |
916 | first_ = middle_; \ | |
917 | ++first_; \ | |
918 | len_ = len_ - half_ - 1; \ | |
919 | } \ | |
920 | else \ | |
921 | len_ = half_; \ | |
922 | } \ | |
923 | return first_; \ | |
924 | } | |
925 | ||
926 | #define DEF_VEC_ALLOC_FUNC_O(T) \ | |
927 | static inline VEC(T) *VEC_OP (T,alloc) \ | |
928 | (int alloc_) \ | |
929 | { \ | |
930 | /* We must request exact size allocation, hence the negation. */ \ | |
931 | return (VEC(T) *) vec_o_reserve (NULL, -alloc_, \ | |
932 | offsetof (VEC(T),vec), sizeof (T)); \ | |
933 | } \ | |
934 | \ | |
935 | static inline VEC(T) *VEC_OP (T,copy) (VEC(T) *vec_) \ | |
936 | { \ | |
937 | size_t len_ = vec_ ? vec_->num : 0; \ | |
938 | VEC (T) *new_vec_ = NULL; \ | |
939 | \ | |
940 | if (len_) \ | |
941 | { \ | |
942 | /* We must request exact size allocation, hence the negation. */ \ | |
943 | new_vec_ = (VEC (T) *) \ | |
944 | vec_o_reserve (NULL, -len_, offsetof (VEC(T),vec), sizeof (T)); \ | |
945 | \ | |
946 | new_vec_->num = len_; \ | |
947 | memcpy (new_vec_->vec, vec_->vec, sizeof (T) * len_); \ | |
948 | } \ | |
949 | return new_vec_; \ | |
950 | } \ | |
951 | \ | |
952 | static inline void VEC_OP (T,free) \ | |
953 | (VEC(T) **vec_) \ | |
954 | { \ | |
955 | if (*vec_) \ | |
1e8877aa | 956 | vec_free_ (*vec_); \ |
350da6ee DJ |
957 | *vec_ = NULL; \ |
958 | } \ | |
959 | \ | |
960 | static inline int VEC_OP (T,reserve) \ | |
961 | (VEC(T) **vec_, int alloc_ VEC_ASSERT_DECL) \ | |
962 | { \ | |
963 | int extend = !VEC_OP (T,space) (*vec_, alloc_ < 0 ? -alloc_ : alloc_ \ | |
964 | VEC_ASSERT_PASS); \ | |
965 | \ | |
966 | if (extend) \ | |
967 | *vec_ = (VEC(T) *) \ | |
968 | vec_o_reserve (*vec_, alloc_, offsetof (VEC(T),vec), sizeof (T)); \ | |
969 | \ | |
970 | return extend; \ | |
971 | } \ | |
972 | \ | |
973 | static inline void VEC_OP (T,safe_grow) \ | |
974 | (VEC(T) **vec_, int size_ VEC_ASSERT_DECL) \ | |
975 | { \ | |
976 | vec_assert (size_ >= 0 && VEC_OP(T,length) (*vec_) <= (unsigned)size_, \ | |
977 | "safe_grow"); \ | |
978 | VEC_OP (T,reserve) \ | |
979 | (vec_, (int)(*vec_ ? (*vec_)->num : 0) - size_ VEC_ASSERT_PASS); \ | |
980 | (*vec_)->num = size_; \ | |
981 | } \ | |
982 | \ | |
983 | static inline T *VEC_OP (T,safe_push) \ | |
984 | (VEC(T) **vec_, const T *obj_ VEC_ASSERT_DECL) \ | |
985 | { \ | |
986 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
987 | \ | |
988 | return VEC_OP (T,quick_push) (*vec_, obj_ VEC_ASSERT_PASS); \ | |
989 | } \ | |
990 | \ | |
991 | static inline T *VEC_OP (T,safe_insert) \ | |
992 | (VEC(T) **vec_, unsigned ix_, const T *obj_ VEC_ASSERT_DECL) \ | |
993 | { \ | |
994 | VEC_OP (T,reserve) (vec_, 1 VEC_ASSERT_PASS); \ | |
995 | \ | |
996 | return VEC_OP (T,quick_insert) (*vec_, ix_, obj_ VEC_ASSERT_PASS); \ | |
997 | } | |
998 | ||
999 | #endif /* GDB_VEC_H */ |